WorldWideScience

Sample records for open-cycle mhd generators

  1. Analysis of Fluctuations in a Combustion-Driven Open-Cycle MHD Generator.

    Science.gov (United States)

    Skorska, Malgorzata Bozena

    Fluctuations present in MHD generators may cause significant degradation in the generated power. The fluctuations may result from three sources. First, the mass flow rates of the components' input to the combustor vary. Second, the combustor initiates its own variations which are functions of the combustor geometry and injection techniques. Third, the generator action, i.e., flow of plasma in a magnetic field, introduces variations in the plasma variables. The purpose of the study is to investigate the fluctuations of MHD output signals, which may either arise from the combustor fluctuations propagating into a conducting channel, or are inherent in the generator dynamics. The analysis of fluctuations is based on the analytical and empirical models. Both models assume that stochastic processes take place within the MHD plasma, and both models yield results in the form of autocorrelation, crosscorrelation, and power spectral density functions of the system variables. The study showed that fluctuations, whose frequencies exceed 200 Hz, in the plasma density, velocity, pressure, current and voltage variables are acoustic in nature, and are caused by longitudinal standing waves present in the generator. The analysis proved that Hall generators develop fluctuations mainly in the range 700 Hz to 2000 Hz, whereas Faraday and DCW generators are favorable for the low frequency fluctuations. Parametric study of the plasma disclosed that stronger magnetic fields and larger Hall parameters increase the frequency range of fluctuations. Changes in plasma specific heat ratio or in inlet steady-state parameters may increase or decrease the intensities of some odd harmonics of the standing waves. The fluctuations that originate in the combustion chamber also affect the plasma variables. A white noise character of these fluctuations guarantees a fairly uniform distribution of energy in the fluctuations of the plasma variables in the frequency range up to 200 Hz. Future research in

  2. Operational analysis of open-cycle MHD

    Science.gov (United States)

    Lippert, T. E.; McCutchan, D. A.

    1980-07-01

    Open cycle magnetohydrodynamic (OCMHD) conceptual power plant designs are studied in the context of a utility system to form a better basis for understanding their design, design requirements, and market possibilities. Based on assumed or projected plant costs and performance characteristics, assumed economics and escalation factors, and one coal supply and delivery scenario, overall and regional OCMHD utility market possibilities are reviewed. Additionally, for one hypothetical utility system a generation expansion plan is developed that includes OCMHD as a baseload power generating station. The impact on generation system economics and operation of alternating selected MHD plant cost and performance characteristics is reviewed. Baseload plant availability is shown as an important plant design consideration, and a general methodology and data base is developed to assess the impact on design and cost of various reliability decisions. An overall plant availability goal is set and the required availabilities of various MHD high technology components are derived to meet the plant goal. The approach is then extended to projecting channel life goals for various plant design configurations and assumptions.

  3. Characterization of open-cycle coal-fired MHD generators. 14th/15th quarterly technical progress report, February 1-July 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wormhoudt, J.; Yousefian, V.; Weinberg, M.; Kolb, C.; Martinez-Sanchez, M.; Cheng, W.; Bien, F.; Dvore, D.; Unkel, W.; Stewart, G.

    1980-09-01

    The successful design of full-scale, open-cycle, coal-fired MHD generators for baseload electrical production requires a detailed understanding of the plasma chemical and plasma dynamic characteristics of anticipated combustor and channel fluids. Progress in efforts to model the efficiency of an open-cycle, coal-fired MHD channel based on the characterization of the channel flow as well as laboratory experiments to validate the modeling effort as detailed. In addition, studies related to understanding arcing phenomena in the vicinity of an anode are reported.

  4. Characterization of open-cycle coal-fired MHD generators. Quarterly technical summary report No. 6, October 1--December 31, 1977. [PACKAGE code

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, C.E.; Yousefian, V.; Wormhoudt, J.; Haimes, R.; Martinez-Sanchez, M.; Kerrebrock, J.L.

    1978-01-30

    Research has included theoretical modeling of important plasma chemical effects such as: conductivity reductions due to condensed slag/electron interactions; conductivity and generator efficiency reductions due to the formation of slag-related negative ion species; and the loss of alkali seed due to chemical combination with condensed slag. A summary of the major conclusions in each of these areas is presented. A major output of the modeling effort has been the development of an MHD plasma chemistry core flow model. This model has been formulated into a computer program designated the PACKAGE code (Plasma Analysis, Chemical Kinetics, And Generator Efficiency). The PACKAGE code is designed to calculate the effect of coal rank, ash percentage, ash composition, air preheat temperatures, equivalence ratio, and various generator channel parameters on the overall efficiency of open-cycle, coal-fired MHD generators. A complete description of the PACKAGE code and a preliminary version of the PACKAGE user's manual are included. A laboratory measurements program involving direct, mass spectrometric sampling of the positive and negative ions formed in a one atmosphere coal combustion plasma was also completed during the contract's initial phase. The relative ion concentrations formed in a plasma due to the methane augmented combustion of pulverized Montana Rosebud coal with potassium carbonate seed and preheated air are summarized. Positive ions measured include K/sup +/, KO/sup +/, Na/sup +/, Rb/sup +/, Cs/sup +/, and CsO/sup +/, while negative ions identified include PO/sub 3//sup -/, PO/sub 2//sup -/, BO/sub 2//sup -/, OH/sup -/, SH/sup -/, and probably HCrO/sub 3/, HMoO/sub 4//sup -/, and HWO/sub 3//sup -/. Comparison of the measurements with PACKAGE code predictions are presented. Preliminary design considerations for a mass spectrometric sampling probe capable of characterizing coal combustion plasmas from full scale combustors and flow trains are presented

  5. Technical support for open-cycle MHD program. Progress report, January-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bomkamp, D. H. [ed.

    1980-07-01

    The support program for open-cycle MHD at the Argonne National Laboratory consists of developing the analytical tools needed for investigation of the performance of the major components in the combined-cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and, also, on the integration of these analytical models into a model of the entire power-producing system. The present project activities include modeling of the combustor, generator, seed deposition, and formation and decomposition of NO. Parametric studies were performed to evaluate the performance of the U-25B generator and to support the design of the US U-25B generator. Refinements and improvements to the MHD systems code and executive program are described.

  6. US/USSR cooperative program in open-cycle MHD electrical power gneration. Joint test report No. 2: tests in the U-25B facility; MHD generator test No. 3

    Energy Technology Data Exchange (ETDEWEB)

    Tempelmeyer, K E; Sokolov, Y N [eds.

    1979-04-01

    The third joint test with a Soviet U-25B MHD generator and a US superconducting magnet system (SCMS) was conducted in the Soviet U-25B Facility. The primary objectives of the 3rd test were: (1) to operate the facility and MHD channel over a wider range of test parameters, and (2) to study the performance of all components and systems of the flow train at increased mass flow rates of combustion products (up to 4 kg/s), at high magnetic-field induction (up to 5 T), and high values of the electrical field in the MHD generator. The third test has demonstrated that all components and systems of the U-25B facility performed reliably. The electric power generated by the MHD generaor reached a maximum of 575 kW during this test. The MHD generator was operated under electrical loading conditions for 9 hours, and the combustor for a total of approximately 14 hours. Very high Hall fields (2.1 kV/m) were produced in the MHD channel, with a total Hall voltage of 4.24 kV. A detailed description is given of (1) performance of all components and systems of the U-25B facility, (2) analysis of the thermal, gasdynamic, and electrical characteristics of the MHD generator, (3) results of plasma diagnostic studies, (4) studies of vibrational characteristics of the flow train, (5) fluctuation of electrodynamic and gasdynamic parameters, (6) interaction of the MHD generator with the superconducting magnet, and (7) an operational problem, which terminated the test.

  7. Technical support for open-cycle MHD program. Progress report, April-June 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bomkamp, D H [ed.

    1979-07-01

    The support program for open-cycle MHD at Argonne National Laboratory is developing the analytical tools needed to investigate the performance of the major components in the combined cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and also on the integration of these analytical representations into a model of the entire power producing system. The project activities currently include modeling of the combustor, MHD channel, slag separator and the high temperature air heater. In addition, these models are combined into a complete system model which is presently capable of carrying out optimizations of the entire system on either thermodynamic efficiency or cost of electrical power. Also, in support of other aspects of the open-cycle program, test plans are developed and facility and program reviews are provided upon request to support the needs and requirements of the DOE/MHD Division.

  8. GPSAP/V2 with applications to open-cycle MHD systems

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, H. K.

    1981-01-01

    A preprocessor technique for performing lumped component system analysis is presented. By employing simple preprocessor statements, system configurations, constraints, and objective functions can easily be established and analyzed. Use is made of M.J.D. Powell's hybrid equation solver and his sequential quadratic programming method for solving constrained optimization problems. The use of recursive calling capability in both equation solver and optimizer makes possible a fast and efficient general methodology for decomposition and analysis of systems. By retaining the build-up Jacobians and Hessians of the constraints and objective functions, and effective means of reducing computing time is developed during parameter studies. Also presented is a collection of simple first-order models used in open-cycle MHD (OCMHD) applications. Examples of simple system configurations and their analysis are included.

  9. Investigation of Rocket Powered, Open Cycle, Magnetohydrodynamic Generators for High, Pulsed Power Needs in Space.

    Science.gov (United States)

    1986-11-01

    Linear MHD Generator ......... . 15 5. Liquid Fuel Linear MHD Generator ....... . 15 6. MHD Disk Generator Experiment .......... .. 20 7. Swirl Ratio (K...Swirl Vanes ...... ............. . 46 17. Current Loop Estimation of MHD Magnet ..... . 46 v %J List of Tables Table Page I. Summary of MHD Disk Generator Design...linear generators, 10 -q tqople I JI . Catbde Anode ,. outlet Inlet Fig. 3. MHD Disk Generator Adapted from (26:1506) ~ r 1V ~w :%*.:%V

  10. MHD Generation Code

    CERN Document Server

    Frutos-Alfaro, Francisco

    2015-01-01

    A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a code that can be used as a seed for a MHD code for numerical applications. As an example, we present part of output of our programs for Cartesian coordinates and how to do the discretization.

  11. Principal characteristics of SFC type MHD generator

    Energy Technology Data Exchange (ETDEWEB)

    Kayukawa, Naoyuki; Oikawa, Shun-ichi; Aoki, Yoshiaki; Seidou, Tadashi; Okinaka, Noriyuki

    1988-02-01

    This paper describes the experimental and analytical results obtained for an MHD channel with a two dimensionally shaped magnetic field configuration called 'the SFC-type'. The power generating performance was examined under various load conditions and B-field intensities with a 2 MWt shock tunnel MHD facility. It is demonstrated that the power output performance and the enthalpy extraction scaling law of the conventional uniform B-field MHD generator (UFC-type) were significantly improved by the SFC-design of the spatial distribution of the magnetic field. The arcing processes were also examined by a high speed camera and the post-test observation of arc spot traces on electrodes. Further, the characteristic frequencies of each of the so-called micro and constricted arcs were clarified by spectral analyses. The critical current densities, which define the transient conditions of each from the diffuse-to micro arc, and from the micro-to constricted arc modes could be clearly obtained by the present spectral analysis method. We also investigated the three-dimensional behavior under strong magnetic field based on the coupled electrical and hydrodynamical equations for both of the middle scale SFC-and UFC-type generators. Finally, it is concluded from the above mentioned various aspects that the shaped 2-D magnetic field design will offer a most useful means for the realization of a compact, high efficiency and a long duration open-cycle MHD generator.

  12. MHD Generation Code

    OpenAIRE

    Frutos-Alfaro, Francisco; Carboni-Mendez, Rodrigo

    2015-01-01

    A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a c...

  13. Performance analysis of commercial scale Ar-Cs disk MHD generator connected to electric power system with synchronous generator

    Energy Technology Data Exchange (ETDEWEB)

    Kang, L.; Matsuo, T. [Kyoto University (Japan). Dept. of Electrical Engineering; Inui, Y. [Toyohashi University of Technology (Japan). Dept. of Electrical and Electronic Engineering; Ishikawa, M. [University of Tsukuba (Japan). Inst. of Engineering Mechanics and Systems; Umoto, J. [Fukuyama University (Japan)

    2000-09-01

    Performance analyses of a commercial scale closed-cycle MHD disk generator are performed. A large scale MHD generator, superconducting magnet, inversion system and synchronous generator are designed. The MHD generator is operated with Ar-Cs plasma and connected to the ac power infinite bus through line-commutated inverters, while the synchronous generator is operated in parallel. The thermal input is 1000 MW, and the power output is 400 and 200 MW, from the MHD and synchronous generators. Fault analyses have found that rather large fluctuations within the MHD generator are induced by faults of the inverter and power transmission line, but control of the inverters can recover the MHD generation system to normal operation within 0.15 s. The feature of behavior of the MHD generator is the same with or without the parallel operation of the synchronous generator. The interaction between the MHD and the synchronous generators is small, and this feature is much different from the open-cycle MHD generation system, since the variation of output current of the closed-cycle disk MHD generator is much smaller compared with open-cycle MHD generators. (author)

  14. Coal-fired open cycle MHD combustion plasmas - Chemical equilibrium and transport properties workshop results

    Science.gov (United States)

    Sullivan, L. D.; Klepeis, J. E.; Coderre, W. J.; Fischer, W. H.

    1980-01-01

    For electrical power generation utilizing a high temperature alkali-seeded coal combustion plasma, the certainty of high electrical conductivity in the presence of coal ash and trace impurities is vitally important, especially for use in extrapolation of existing designs to higher power levels, as envisioned for commercial applications. The paper surveys the results of the workshop which provides an industry wide overview of the computational methods and analyses that are currently in use. Attention is given to uncertainty bands for plasma electrical conductivity. Also discussed are other issues such as coal, slag, seed, and conductivity. Finally, the paper gives suggested areas for further work.

  15. Key contributions in MHD power generation. Quarterly technical progress report, 1 December 1979-29 February 1980

    Energy Technology Data Exchange (ETDEWEB)

    Louis, J.F.

    1980-09-01

    A separate entry was made in the data base for reports on each of the four tasks: (1) arcing phenomena in MHD generators; (2) open cycle MHD disk generator program; (3) electrode module development and testing; and (4) coal combustion studies. (WHK)

  16. Critical contributions in MHD power generation. Quarterly technical progress report, December 1, 1977-February 28, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Louis, J.F.

    1978-03-01

    Research and development in open-cycle coal-fired MHD power generation is described. The scope and objectives of the MIT program are: (1) establish chemical, thermal, and electrical data to guide materials selection, develop improved detail designs, and support performance analyses of MHD electrode modules and insulator materials; (2) parametrically investigate selected electrode properties of critical design importance in chemical, thermal, and electrical environments simulating a coal-fired MHD generator; (3) develop combustion data pertinent to the design of MHD combustors; (4) establish techniques for the analysis and understanding of critical MHD phenomena which have an important bearing on MHD generator performance; such phenomena include inter-electrode breakdown, time-dependent behavior, effective plasma properties and plasma inhomogeneities; (5) establish the operating characteristics of an MHD disk generator; (6) continue work on computer techniques for modeling and for design and cost analysis of MHD components and the overall system; (7) integrate the engineering data and design criteria, as applicable, which are developed in the listed tasks into a model of the MHD channel; (8) participate in the US/USSR Cooperative Program in MHD Power Generation; and (9) participate in technical support of the DOE MHD Project Office. Progress in each of these areas is reported. (WHK)

  17. Critical contributions in MHD power generation. Quarterly technical progress report, September 1--November 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Louis, J.F.

    1977-12-01

    Research and development in open-cycle coal-fired MHD power generation at Massachusetts Institute of Technology (MIT) is summarized. Progress is reported on the following tasks: (1) Establish chemical, thermal, and electrical data to guide materials selection, develop improved detail designs, and support performance analyses of MHD electrode modules and insulator materials; (2) parametrically investigate selected electrode properties of critical design importance in chemical, thermal, and electrical environments simulating a coal-fired MHD generator; (3) develop combustion data pertinent to the design of MHD combustors; this work is intended to determine the combustion characteristics of selected coal feedstock in terms of devolatilization kinetics, char characteristics, and combustion gas chemistry; (4) establish techniques for the analysis and understanding of critical MHD phenomena which have an important bearing on MHD generator performance; such phenomena include inter-electrode breakdown, time-dependent behavior, effective plasma properties and plasma inhomogeneities; (5) establish the operating characteristics of an MHD disk generator; (6) continue work on computer techniques for modeling and for design and cost analysis of MHD components and the overall system; (7) integrate the engineering data and design criteria, as applicable, which are developed in the above-listed tasks into a model of the MHD channel; (8) participate in technical support of the DOE MHD Project Office.

  18. Critical contributions in MHD power generation. Quarterly technical progress report, December 1, 1976--February 28, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Louis, J.F.

    1977-08-01

    Research progress in open-cycle coal-fired MHD power generation at Massachusetts Institute of Technology (MIT) is reported. The scope and objectives of the MIT program are to: (1) Establish chemical, thermal, and electrical data to guide materials selection, develop improved detail designs, and support performance analyses of MHD electrode modules and insulator materials; (2) establish basic mechanical properties to guide detail design and fabrication of high field strength superconducting magnets for MHD applications; (3) parametrically investigate selected electrode properties of critical design importance in chemical, thermal, and electrical environments simulating a coal-fired MHD generator; (4) develop combustion data pertinent to the design of MHD combustors; (5) establish techniques for the analysis and understanding of critical MHD phenomena which have an important bearing on MHD generator performance; such phenomena include inter-electrode breakdown, time-dependent behavior, effective plasma properties and plasma inhomogeneities; (6) establish the operating characteristics of an MHD disk generator; (7) continue work on computer techniques for modeling and for design and cost analysis of MHD components and the overall system; (8) integrate the engineering data and design criteria, as applicable, which are developed in the above-listed tasks into a model of the MHD channel; (9) Participate in technical support of the ERDA MHD Project Office; (10) participate in the US/USSR Cooperative Program in MHD Power Generation. (11) During the summer of 1976, a short-term task in U-25 electrode screening was temporarily added to the scope of the contract. This effort involved screening tests, in the MIT MHD simulation facility of electrode modules and configurations intended for tests in the Soviet U-25 generator.

  19. Coupled generator and combustor performance calculations for potential early commercial MHD power plants

    Science.gov (United States)

    Dellinger, T. C.; Hnat, J. G.; Marston, C. H.

    1979-01-01

    A parametric study of the performance of the MHD generator and combustor components of potential early commercial open-cycle MHD/steam power plants is presented. Consideration is given to the effects of air heater system concept, MHD combustor type, coal type, thermal input power, oxygen enrichment of the combustion, subsonic and supersonic generator flow and magnetic field strength on coupled generator and combustor performance. The best performance is found to be attained with a 3000 F, indirectly fired air heater, no oxygen enrichment, Illinois no. 6 coal, a two-stage cyclone combustor with 85% slag rejection, a subsonic generator, and a magnetic field configuration yielding a constant transverse electric field of 4 kV/m. Results indicate that optimum net MHD generator power is generally compressor-power-limited rather than electric-stress-limited, with optimum net power a relatively weak function of operating pressure.

  20. Critical contributions in MHD power generation. Quarterly technical progress report, June 1--August 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Louis, J.F.

    1977-10-01

    Current research and development in open-cycle coal-fired MHD power generation at Massachusetts Institute of Technology is presented. Progress is reported on the following tasks: (1) Establish chemical, thermal, and electrical data to guide materials selection, develop improved detail designs, and support performance analyses of MHD electrode modules and insulator materials; (2) Parametrically investigate selected electrode properties of critical design importance in chemical, thermal, and electrical environments simulating a coal-fired MHD generator; (3) Develop combustion data pertinent to the design of MHD combustors; this work is intended to determine the combustion characteristics of selected coal feed stock in terms of devolatilization kinetics, char characteristics, and combustion gas chemistry; (4) Establish techniques for the analysis and understanding of critical MHD phenomena which have an important bearing on MHD generator performance; such phenomena include inter-electrode breakdown, time-dependent behavior, effective plasma properties and plasma inhomogeneities; (5) Establish the operating characteristics of an MHD disk generator; (6) Continue work on computer techniques for modeling and for design and cost analysis of MHD components and the overall system; (7) Integrate the engineering data and design criteria, as applicable, which are developed in the above-listed tasks into a model of the MHD channel.

  1. Critical contributions in MHD power generation. Quarterly technical progress report, June 1--August 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Louis, J.F.

    1976-10-01

    Research progress on open-cycle coal-fired MHD power generation at Massachusetts Institute of Technology is detailed. Work is reported in the following areas: (1) Establish chemical, thermal, and electrical data to guide materials selection, develop improved detail designs, and support performance analyses of MHD electrode modules and insulator materials; (2) parametrically investigate selected electrode properties of critical design importance in chemical, thermal, and electrical environments simulating a coal-fired MHD generator; (3) develop combustion data pertinent to the design of MHD combustors; (4) establish techniques for the analysis and understanding of critical MHD phenomena which have an important bearing on MHD generator performance; (5) establish the operating characteristics of an MHD disk generator; (6) continue work on computer techniques for modeling and for design and cost analysis of MHD components and the overall system; (7) integrate the engineering data and design criteria, as applicable, which are developed in the above-listed tasks into a model of the MHD channel; (8) U-25 electrode screening tests.

  2. Explosively-driven magnetohydrodynamic (MHD) generator studies

    Energy Technology Data Exchange (ETDEWEB)

    Agee, F.J.; Lehr, F.M. [Phillips Lab., Kirtland AFB, NM (United States); Vigil, M.; Kaye, R. [Sandia National Labs., Albuquerque, NM (United States); Gaudet, J.; Shiffler, D. [New Mexico Univ., Albuquerque, NM (United States)

    1995-08-01

    Plasma jet generators have been designed and tested which used an explosive driver and shocktube with a rectangular cross section that optimize the flow velocity and electrical conductivity. The latest in a series of designs has been tested using a reactive load to diagnose the electrical properties of the MHD generator/electromagnet combination. The results of these tests indicate that the plasma jet/MHD generator design does generate a flow velocity greater than 25 km/s and produces several gigawatts of pulsed power in a very small package size. A larger, new generator design is also presented.

  3. Design Study: Rocket Based MHD Generator

    Science.gov (United States)

    1997-01-01

    This report addresses the technical feasibility and design of a rocket based MHD generator using a sub-scale LOx/RP rocket motor. The design study was constrained by assuming the generator must function within the performance and structural limits of an existing magnet and by assuming realistic limits on (1) the axial electric field, (2) the Hall parameter, (3) current density, and (4) heat flux (given the criteria of heat sink operation). The major results of the work are summarized as follows: (1) A Faraday type of generator with rectangular cross section is designed to operate with a combustor pressure of 300 psi. Based on a magnetic field strength of 1.5 Tesla, the electrical power output from this generator is estimated to be 54.2 KW with potassium seed (weight fraction 3.74%) and 92 KW with cesium seed (weight fraction 9.66%). The former corresponds to a enthalpy extraction ratio of 2.36% while that for the latter is 4.16%; (2) A conceptual design of the Faraday MHD channel is proposed, based on a maximum operating time of 10 to 15 seconds. This concept utilizes a phenolic back wall for inserting the electrodes and inter-electrode insulators. Copper electrode and aluminum oxide insulator are suggested for this channel; and (3) A testing configuration for the sub-scale rocket based MHD system is proposed. An estimate of performance of an ideal rocket based MHD accelerator is performed. With a current density constraint of 5 Amps/cm(exp 2) and a conductivity of 30 Siemens/m, the push power density can be 250, 431, and 750 MW/m(sup 3) when the induced voltage uB have values of 5, 10, and 15 KV/m, respectively.

  4. MAGNETOHYDRODYNAMIC EQUATIONS (MHD GENERATION CODE

    Directory of Open Access Journals (Sweden)

    Francisco Frutos Alfaro

    2017-04-01

    Full Text Available A program to generate codes in Fortran and C of the full magnetohydrodynamic equations is shown. The program uses the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the magnetohydrodynamic equations to obtain a code that can be used as a seed for a magnetohydrodynamic code for numerical applications. As an example, we present part of the output of our programs for Cartesian coordinates and how to do the discretization.

  5. MHD power generation with fully ionized seed

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, H.; Shioda, S.

    1977-01-01

    Recovery of power density in the regime of fully ionized seed has been demonstrated experimentally using an MHD disk generator with the effective Hall parameter up to 5.0 when the seed was fully ionized. The experiments were conducted with a shock-heated and potassium-seeded argon plasma under the following conditions: stagnation gas pressure = 0.92 atm, stagnation gas temperature = 2750 K, flow Mach number = 2.5, and seed fraction = 1.4 x 10/sup -5/. Measurements of electron-number density and spectroscopic observations of both potassium and argon lines confirmed that the recovery of power output was due to the reduction of ionization instability. This fact indicates that the successful operation of a disk generator utilizing nonequilibrium ionization seems to be possible and that the suppression of ionization instability can also provide higher adiabatic efficiency. Furthermore, the lower seed fraction offers technological advantages related to seed problems.

  6. Analysis of Linear MHD Power Generators

    Energy Technology Data Exchange (ETDEWEB)

    Witalis, E.A.

    1965-02-15

    The finite electrode size effects on the performance of an infinitely long MHD power generation duct are calculated by means of conformal mapping. The general conformal transformation is deduced and applied in a graphic way. The analysis includes variations in the segmentation degree, the Hall parameter of the gas and the electrode/insulator length ratio as well as the influence of the external circuitry and loading. A general criterion for a minimum of the generator internal resistance is given. The same criterion gives the conditions for the occurrence of internal current leakage between adjacent electrodes. It is also shown that the highest power output at a prescribed efficiency is always obtained when the current is made to flow between exactly opposed electrodes. Curves are presented showing the power-efficiency relations and other generator properties as depending on the segmentation degree and the Hall parameter in the cases of axial and transverse power extraction. The implications of limiting the current to flow between a finite number of identical electrodes are introduced and combined with the condition for current flow between opposed electrodes. The characteristics of generators with one or a few external loads can then be determined completely and examples are given in a table. It is shown that the performance of such generators must not necessarily be inferior to that of segmented generators with many independent loads. However, the problems of channel end losses and off-design loading have not been taken into consideration.

  7. Laser-powered MHD generators for space application

    Science.gov (United States)

    Jalufka, N. W.

    1986-10-01

    Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.

  8. Superconducting magnet system for an experimental disk MHD facility

    NARCIS (Netherlands)

    Knoopers, H.G.; Kate, ten H.H.J.; Klundert, van de L.J.M.

    1991-01-01

    A predesign of a split-pair magnet for a magnetohydrodynamic (MHD) facility for testing a 10-MW open-cycle disk or a 5-MW closed-cycle disk generator is presented. The magnet system consists of a NbTi and a Nb 3Sn section, which provide a magnetic field of 9 T in the active area of the MHD channel.

  9. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 2: Advanced energy conversion systems. Part 1: Open-cycle gas turbines

    Science.gov (United States)

    Brown, D. H.; Corman, J. C.

    1976-01-01

    Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.

  10. Numerical Calculation of the Output Power of a MHD Generator

    Directory of Open Access Journals (Sweden)

    Adrian CARABINEANU

    2014-12-01

    Full Text Available Using Lazăr Dragoş’s analytic solution for the electric potential we perform some numerical calculations in order to find the characteristics of a Faraday magnetohydrodymamics (MHD power generator (total power, useful power and Joule dissipation power.

  11. Three-dimensional characteristics of SFC type MHD generator

    Energy Technology Data Exchange (ETDEWEB)

    Oikawa, Shun' ichi; Kayukawa, Naoyuki

    1988-03-20

    Concerning a Faraday type MHD generator with power output 100 MWe, a parabolic three-dimensional analysis was made on the SFC type and the conventional UFC type of the applied magnetic field, comparing the electrical and fluid fields of both types. Results are as follows: (1) In Faraday type MHD generator, Hall current which is an ineffective current is suppressed by SFC magnetic field coordination. (2) In the case of UFC, a current concentration to the central anode which occurs in the large Faraday type MHD generator does not occur in the case of SFC type. (3) In SFC, a secondary flow in the electrode boundary, especially in the vicinity of the anode is weak. (4) In addition to the velocity overshoot in the dielectric wall boundary layer, in the case of SFC, it generates in the electric wall. As a result, concentrated arc columns are suppressed by the acceleration of heat transfer to the electrode wall. (13 figs, 1 tab, 13 refs)

  12. Uranium droplet nuclear reactor core with MHD generator

    Science.gov (United States)

    Anghaie, Samim; Kumar, Ratan

    An innovative concept employing liquid uranium droplets as fuel in an ultrahigh-temperature vapor core reactor (UTVR) magnetohydrodynamic (MHD) generator power system for space power generation has been studied. Metallic vapor in superheated form acts as a working fluid for a closed-Rankine-type thermodynamic cycle. Usage of fuel and working fluid in this form assures certain advantages. The major technical issues emerging as a result involve a method for droplet generation, droplet transport in the reactor core, heat generation in the fuel and transport to the metallic vapor, and materials compatibility. A qualitative and quantitative attempt to resolve these issues has indicated the promise and tentative feasibility of the system.

  13. Some questions of variable operational modes of an MHD generator

    Energy Technology Data Exchange (ETDEWEB)

    Belikov, V.V.; Breyev, V.V.; Gubarev, A.V.; Zotov, A.V.

    1979-01-01

    A Faraday MHD generator with solid electrodes is analyzed for the case of a variable load and three circuit configurations: series, parallel and independent excitation of the generator. The equivalent circuits are drawn along with the current-voltage and load characteristics (power and voltage at the load terminals as a function of generator current) for the series and parallel excitation cases. With independent excitation, the current-voltage characteristic is linear since the magnetic field induction in the generator channel at small magnetic Reynolds numbers does not depend on the generator current. The influence of the counterpressure at the channel outlet in a supersonic MHD generator is discussed in qualitative terms. Two modes are defined: when the pressure in the receiver following the channel is less than a certain value below the critical cross-section of the supersonic nozzle ahead of the channel (normal flow); and when the receiver pressure exceeds this specified value (anomalous flow), which leads to density jumps in the supersonic nozzle and subsonic flow in the interaction region. These concepts are employed in a discussion of the stability of steady-state flow and transient modes. Analytical expressions are derived for the excitation current and the load current in an MHD generator with a parallel configuration of the excitation winding, and these are plotted as a function of time. Transient operational modes of the generator with a series winding configuration of the magnet system are also shown, with the current plotted as a function of time. Expressions are derived for characteristic parameters which specify stable operational modes.

  14. MHD waves generated by high-frequency photospheric vortex motions

    Directory of Open Access Journals (Sweden)

    V. Fedun

    2011-06-01

    Full Text Available In this paper, we discuss simulations of MHD wave generation and propagation through a three-dimensional open magnetic flux tube in the lower solar atmosphere. By using self-similar analytical solutions for modelling the magnetic field in Cartesian coordinate system, we have constructed a 3-D magnetohydrostatic configuration which is used as the initial condition for non-linear MHD wave simulations. For a driver we have implemented a high-frequency vortex-type motion at the footpoint region of the open magnetic flux tube. It is found that the implemented swirly source is able to excite different types of wave modes, i.e. sausage, kink and torsional Alfvén modes. Analysing these waves by magneto-seismology tools could provide insight into the magnetic structure of the lower solar atmosphere.

  15. Equations of state for self-excited MHD generator studies

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, F.J.; Ross, M.; Haggin, G.L.; Wong, L.K.

    1980-02-26

    We have constructed a state-of-the-art equation of state (EOS) for argon covering the temperature density range attainable by currently proposed self-excited MHD generators. The EOS for conditions in the flow channel was obtained primarily by a non-ideal plasma code (ACTEX) that is based on a many body activity expansion. For conditions in the driver chamber the EOS was primarily obtained from a fluid code (HDFP) that calculates the fluid properties from perturbation theory based on the insulator interatomic pair potential but including electronic excitations. The results are in agreement with several sets of experimental data in the 0.6 - 91 GPa pressure range.

  16. Effects of water molecules of Ar-Cs MHD disk generator operated with strong MHD interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, M.; Kosugi, A.; Inui, Y.; Kabashima, S.

    1998-07-01

    Effects of water molecule impurity are studied on performance of a disk type MHD generator operated with Ar-Cs weakly ionized plasma. To reveal phenomena for a wide range of operation conditions, time-dependent one-dimensional analyses are carried out, where an up-wind, second order Chakravarthy TVD scheme is applied for the gasdynamics, while a Galerkin FEM is used for the electrodynamics. A simplified model is used for the water molecule impurity, where total effects of nonelastic collision between electrons and water molecules are estimated by the collision loss factor of electrons and also the electron momentum-transfer collision frequency is taken into account. The collision loss factor of electrons and the electron momentum-transfer collision frequency are taken from references, and the loss factor is assumed to be 700 independently of the electron temperature. On the Fuji-1 facilities at Tokyo Institute Technology, Japan, series of experiment A4105 were carried out with the Disk F-4 generator. Ar was heated with the heat-exchanger heated by the natural gas-air combustion and the metal cesium was used as the seeding material, while SCM maintained the magnetic field of 4.7 T at the center of disk and the very strong MHD interaction was realized. The thermal input was about 3 MW, the electrical output was about 500 kW with the enthalpy extraction ratio of about 17%. The numerical analyses have shown that the water molecule enhances the ionization instability at the low voltage loading because of insufficient Joule heating for electrons. The generator performance is degraded and the strong MHD interaction between the unstable plasma and the flow field induces slow and fast moving shock waves, leading to the very complicated flow field. The fast and slow moving shocks collide with each other, merge into a sharp shock moving downward, and then the shock front moves back slightly to maintain the pressure balance, collides again with another weak moving shock, and

  17. Observations of nonequilibrium electrical discharge in an MHD disk generator

    Energy Technology Data Exchange (ETDEWEB)

    Harada, N.; Yamasaki, H.; Shioda, S.

    1986-04-01

    Discharge phenomena (nonequilibrium) in an MHD disk generator with potassium-seeded argon as a working gas have been investigated experimentally using a shock tube facility. A detailed study of high-speed photographs shows that an unsteady motion of a strongly constricted discharge occurs, particularly in the disk entrance region, characterized by a negative Hall potential. Responding to a suitable external load resistance, the negative Hall potential is reduced due to the development of a stable region against the ionization instability under full seed ionization; thus, a substantial increase of power output can be achieved. Under this condition, a uniform discharge is observed downstream and the strongly inhomogeneous and unsteady discharge is confined to a narrow region at the entrance. For smaller load resistances, intense spiral arcs with enhanced fluctuations are observed. 18 references.

  18. Computer controlled MHD power consolidation and pulse-generation system

    Science.gov (United States)

    Johnson, R.

    The major goal of this project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility will be established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a magnetohydrodynamic (MHD) Faraday connected generator which may be viewed as a multi-terminal d.c. source. This consolidation/inversion process is referred to subsequently as Pulse-Amplitude-Synthesis-and-Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible Phase 2 prototype system. This report covers the initial six months portion of the project and includes discussions on the following areas: (1) selection of a control computer with software tool kit for development of the PASC controller contract requirement; (2) problem formulation considerations for simulation of the PASC technique on digital computers; (3) initial simulation results for the PASC transformer, including simulation results obtained using SPICE and the INTEG program; (4) a survey of available gate-turn-off (GTO's), power semiconductors, power field effect transistors (PFET's), and fiber optics signal cabling and transducers.

  19. Computer controlled MHD power consolidation and pulse generation system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Marcotte, K.; Donnelly, M.

    1990-01-01

    The major goal of this research project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility has been established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a Faraday connected MHD generator which may be viewed as a multi-terminal dc source and is simulated for the purpose of this demonstration by a set of dc power supplies. This consolidation/inversion (CI), process will be referred to subsequently as Pulse Amplitude Synthesis and Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible phase II prototype system. This report period work summarizes the accomplishments and covers the high points of the two year project. 6 refs., 41 figs.

  20. Theoretical Investigation of Operation Modes of MHD Generators for Energy-bypass Engines

    Institute of Scientific and Technical Information of China (English)

    Jingfeng Tang; Nan Li; Daren Yu

    2014-01-01

    A MHD generator with different arrangements of electromagnetic fields will lead the generator working in three modes.A quasi-one-dimensional approximation is used for the model of the MHD generator to analyze the inner mechanism of operation modes.For the MHD generator with a uniform constant magnetic field,a specific critical electric field Ecr is required to decelerate a supersonic entrance flow into a subsonic exit flow.Otherwise,the generator works in a steady mode with a larger electric field than Ecr in which a steady supersonic flow is provided at the exit,or the generator works in a choked mode with a smaller electric field than Ecr in which the supersonic entrance flow is choked in the channel.The detailed flow field characteristics in different operation modes are discussed,demonstrating the relationship of operation modes with electromagnetic fields.

  1. Numerical simulation study of disk MHD generator for nonequilibrium plasma (NPG) system

    Energy Technology Data Exchange (ETDEWEB)

    Tsunoda, Kazumi [Shibaura Institute of Technology, Tokyo (Japan); Harada, Nob [Nagaoka Univ. of Technology (Japan)

    1995-12-31

    Design and performance prediction of a disk-shaped magnetohydrodynamic (MHD) generator, which is applied to the nonequilibrium plasma generator (NPG) system, have been carried out by means of a quasi-one-dimensional numerical simulation. The calculations have been performed for generator with constant height which is planned to be used for NPG-MHD disk generator pulse power demonstration. A maximum enthalpy extraction ratio obtained from the present calculation reached up to 20%, and, in this case, the electron temperature of working plasma fluctuated in the unstable regime against ionization instability. Taking into account this phenomenon, in order to obtain much higher generator performance, the MHD channel, in which electron temperature was kept at 5000 K, was designed. With this channel, enthalpy extraction ratio of 40% and output power of 7.2 MW were achieved without major modification of the supersonic nozzle, the inlet swirl vanes and the configuration of magnet system.

  2. Sub-atmospheric disk generators for coal-fired MHD/steam combined cycle power plant

    Energy Technology Data Exchange (ETDEWEB)

    Messerle, H.K.; Fang, Y.; Simpson, S.W.; Marty, S.M. (Sydney Univ. (Australia). School of Electrical Engineering)

    1989-01-01

    A coal fired MHD disk generator in a combined cycle MHD/steam power generation system with a diffuser operating at sub-atmospheric pressure is proposed. The effects of pressure on the performance of a radial outflow MHD disk generator and other system components are analysed. Using a previous study as a reference case, preliminary calculations show that, in such a sub-atmospheric system, improved power station efficiency can be achieved. In addition, operation at reduced values of magnetic field strength would be feasible. Calculations have also been carried out for a 30 MW{sub th} experimental disk generator operating at reduced pressure with a magnetic field strength of 2 T. Flow conditions at sub-atmospheric pressure would provide an improved simulation of a full-scale generator operating at normal pressures. (author).

  3. Characterization of the three-dimensional supersonic flow for the MHD generator

    Institute of Scientific and Technical Information of China (English)

    LU HaoYu; LEE ChunHian; DONG HaiTao

    2009-01-01

    A numerical procedure based on a five-wave MHD model associated with non-ideal, low magnetic Reynolds number MHD flows was developed in the present study for analyzing the flow fields in the MHD generator of a MHD bypass scramjet. The numerical procedure is composed of an entropy condi-tioned scheme for solving the non-homogeneous Navier-Stokes equations, in conjunction with an SOR method for solving the elliptic equation governing the electrical potential. It was found that a separation would take place near the downstream edge of the second electrode, where the local adverse pressure gradient is large, and the core of the flow field is characterized as a 2-D flow due to the Hartmann ef-fects along the direction of the magnetic field. The electric current lines would be increasingly distorted as the magnetic interactive parameter increases, and even induce an eddy current. Induced eddy cur-rent was also found in the different cross-sections along the axial direction, all of these would definitely deteriorate the performance of the MHD generator. The cross-sectional M-shape velocity profile found along the axial direction between the insulating walls is responsible for the formation of the vortex flow at the corner of the insulator cross-section, which, in turn, induces the corner eddy current at the cor-ner. A numerical parametric study was also performed, and the computed performance parameters for the MHD generator suggest that, in order to enhance the performance of MHD generator, the magnetic interaction parameter should be elevated.

  4. Characterization of the three-dimensional supersonic flow for the MHD generator

    Institute of Scientific and Technical Information of China (English)

    LEE; ChunHian

    2009-01-01

    A numerical procedure based on a five-wave MHD model associated with non-ideal,low magnetic Reynolds number MHD flows was developed in the present study for analyzing the flow fields in the MHD generator of a MHD bypass scramjet. The numerical procedure is composed of an entropy conditioned scheme for solving the non-homogeneous Navier-Stokes equations,in conjunction with an SOR method for solving the elliptic equation governing the electrical potential. It was found that a separation would take place near the downstream edge of the second electrode,where the local adverse pressure gradient is large,and the core of the flow field is characterized as a 2-D flow due to the Hartmann effects along the direction of the magnetic field. The electric current lines would be increasingly distorted as the magnetic interactive parameter increases,and even induce an eddy current. Induced eddy current was also found in the different cross-sections along the axial direction,all of these would definitely deteriorate the performance of the MHD generator. The cross-sectional M-shape velocity profile found along the axial direction between the insulating walls is responsible for the formation of the vortex flow at the corner of the insulator cross-section,which,in turn,induces the corner eddy current at the corner. A numerical parametric study was also performed,and the computed performance parameters for the MHD generator suggest that,in order to enhance the performance of MHD generator,the magnetic interaction parameter should be elevated.

  5. MHD generators as pulse power sources for arc-driven railguns

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, N.; Raugi, M.; Tellini, A. [Univ. di Pisa (Italy). Dipt. di Sistemi Elettrici e Automazione

    1995-01-01

    In this paper the performances of an electromagnetic launch system constituted by an arc driven railgun powered by a MHD generator are investigated. A small bore plasma driven railgun for fusion fuel pellet injection is examined considering as pulse power source a MHD generator having characteristics taken from operating devices. The analysis of the railgun and generator has been carried out by means of a lumped parameter equivalent network model that takes into account drag force and ablation effects and allowing the evaluation of the main electrical and thermodynamic quantity distributions of the plasma arc.

  6. Fundamental Studies On Development Of MHD (Magnetohydrodynamic) Generator Implement On Wave Energy Harvesting

    Science.gov (United States)

    Majid, M. F. M. A.; Apandi, Muhamad Al-Hakim Md; Sabri, M.; Shahril, K.

    2016-02-01

    As increasing of agricultural and industrial activities each year has led to an increasing in demand for energy. Possibility in the future, the country was not able to offer a lot of energy and power demand. This means that we need to focus on renewable energy to supply the demand for energy. Energy harvesting is among a method that can contribute on the renewable energy. MHD power generator is a new way to harvest the energy especially Ocean wave energy. An experimental investigation was conducted to explore performance of MHD generator. The effect of intensity of NaCl Solution (Sea Water), flow rate of NaCl solution, magnetic strength and magnet position to the current produce was analyzed. The result shows that each factor is give a significant effect to the current produce, because of that each factor need to consider on develop of MHD generator to harvest the wave energy as an alternative way to support the demand for energy.

  7. MHD-ETF design criteria

    Energy Technology Data Exchange (ETDEWEB)

    Retallick, F.D.

    1978-04-01

    This document establishes criteria to be utilized for the design of a pilot-scale (150 to 300 MW thermal) open cycle, coal-fired MHD/steam plant. Criteria for this Engineering Test Facility (ETF) are presented relative to plant siting, plant engineering and operations, MHD-ETF testing, costing and scheduling.

  8. Direct generation of steam and electricity in a open cycle Rankine; Generacion directa de vapor y electricidad en un ciclo Rankine abierto

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Alvaro; Almanza, Rafael; Flores, Vicente [UNAM, Mexico, D.F. (Mexico)

    2000-07-01

    In this work the results of the experimental tests about steam and electricity generation are presented. This work carried out in the solar thermal power plant of the Institute of Engineering with direct steam generation in parabolic through. The global efficiency of the system is studied as for the conversion solar-electricity. The efficiency is determined and it describes the obtaining process of the main plant components, like they are, the solar steam generator, the steam motor and the electric generator. [Spanish] En este trabajo se presentan los resultados de las pruebas experimentales de la generacion de vapor y electricidad realizadas en la planta solar del Instituto de Ingenieria con generacion directa de vapor en concentradores de canal parabolico. Se estudia la eficiencia global del sistema en cuanto a la conversion de energia solar-electricidad. Se determina la eficiencia y describe el proceso de obtencion de la misma y de los principales componentes de la planta como son, el generador de vapor solar, el motor de pistones de vapor y el alternador electrico.

  9. Generation of sheet currents by high frequency fast MHD waves

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Manuel, E-mail: mnjmhd@am.uva.es

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium. - Highlights: • Regular solutions of quasilinear hyperbolic systems may evolve into shocks. • The shock location is found for high frequency fast MHD waves. • The result is applied to static axisymmetric equilibria. • The previous process may lead to the formation of sheet currents and destruction of the equilibrium.

  10. High-temperature coal-syngas plasma characteristics for advanced MHD power generation

    Energy Technology Data Exchange (ETDEWEB)

    Mikheev, A.V.; Kayukawa, N.; Okinaka, N.; Kamada, Y.; Yatsu, S. [Hokkaido University, Hokkaido (Japan)

    2006-03-15

    Properties of magnetohydrodynamic (MHD) plasma based on syngas (CO, H{sub 2}) combustion products were investigated experimentally with shock tube facility. The experiments were carried out under various MHD generator load and shock tube operation conditions. Important characteristics of syngas plasma such as temperature, electric field, conductivity, and total output power were directly measured and evaluated. Special attention was paid to the influence of syngas composition (CO : H{sub 2} : O{sub 2} ratio). The results show that syngas combustion can provide high plasma ionization and attainable plasma electrical conductivity has an order of 60-80 S/m at gas temperature 3100-3300 K.

  11. Superconducting magnet system for an experimental disk MHD facility

    OpenAIRE

    Knoopers, H.G.; Kate, ten, H.H.J.; Klundert, van de, L.J.M.

    1991-01-01

    A predesign of a split-pair magnet for a magnetohydrodynamic (MHD) facility for testing a 10-MW open-cycle disk or a 5-MW closed-cycle disk generator is presented. The magnet system consists of a NbTi and a Nb 3Sn section, which provide a magnetic field of 9 T in the active area of the MHD channel. The optimization process, which is based on minimum conductor costs is discussed, and the proposed conductor design is described. Basic solutions for the construction of the magnet, the cryostat an...

  12. Experimental studies on joule dissipation in a nonequilibrium MHD disk generator

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H.; Okamura, T.; Shioda, S. [Tokyo Institute of Technology, Tokyo (Japan)

    1996-12-20

    Joule dissipation in a nonequilibrium MHD disk generator was successfully estimated from power generation experiments. Faraday current in the disk generator was measured. The reduction of the total pressure caused by the Joule dissipation was also estimated. Experimental results suggest that the isentropic efficiency of the generator is strongly affected by the value of the Joule dissipation. When the applied magnetic flux density increased, the extraction of electrical power increased remarkably, however the total pressure loss caused by the entropy production was suppressed. The high MHD interaction caused by the high magnetic flux density did not deteriorate the performance of the generator. It is considered from this fact that the application of higher magnetic flux density is essential to get higher isentropic efficiency. 10 refs., 8 figs., 1 tab.

  13. Improvements of the Computerized Data Acquisition System for 25MWt Experimental Facility of Coal-fired MHD Generator

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper introduces the design and development of a new computerized data acquisition system for the coal-fired magnetohydrodynamical (MHD) electrical power generation experiments. Compared to the previous system, it has a higher sampling rate and an improved simultaneity performance. It also improves the data collection method and sensor design for the measurement of Faraday voltages and Faraday currents. The system has been successfully used in many regular MHD generator tests. It provides an excellent base for the future research and development of the Coal-fired MHD electrical power generation.

  14. Superconducting magnet system for a space-based 100 MW MHD disk generator

    Energy Technology Data Exchange (ETDEWEB)

    Marston, P.G.

    1988-03-01

    The conceptual design of a 6 T superconducting magnet system for a space-based 100 MW single-coil MHD disk generator is described. Overall cold-mass dimensions are 2.325 m diameter by 0.15 m thickness. Average current density in the winding is 1.8 x 10/sup 8/ A/m/sup 2/. Stored energy is 45 MJ. Total system weight is 5000 kg.

  15. Measurements of properties concerning isentropic efficiency in a nonequilibrium MHD disk generator

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H.; Okamura, T.; Shioda, S. [Tokyo Inst. of Tech., Yokohama (Japan)

    1996-06-01

    The isentropic efficiency and the effective Hall parameter in a nonequilibrium disk MHD generator have been successfully evaluated on the basis of the experiments under high enthalpy extraction conditions. Special attention is devoted to measuring the exit total pressure and the Faraday current. The maximum isentropic efficiency achieved in the present experiments was 46% with the enthalpy extraction ratio of 31.6%. The experimentally obtained values of the effective Hall parameter covered a range of 2--3.

  16. Liquid-metal MHD energy conversion. Status report, March 1976--September 1977. [Coal combustion products are mixed with liquid copper and act as working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Petrick, M; Dunn, P F; Pierson, E S; Dauzvardis, P V; Pollack, I

    1979-05-01

    A new open-cycle coal-fired liquid-metal MHD concept has been developed, in which the combustion products are mixed directly with liquid copper and the mixture is then passed through the MHD generator. This concept yields a system with an efficiency comparable to that of open-cycle plasma MHD at combustor temperatures as much as 1000 K lower and MHD generator temperatures more than 1000 K lower than is the case for open-cycle plasma MHD. Significantly, the liquid-metal system uses components that are close to or within present-day technology, and it appears that readily available containment materials are compatible with the fluids. The first commercial system studies for the liquid-metal Rankine-cycle concept show that it yields a higher conversion efficiency than conventional steam cycles for lower-temperature heat sources, such as a liquid-metal fast-breeder reactor, a light-water reactor, or solar collectors without any potential for hazardous reactions betweeen liquid metals (e.g., sodium) and water. Fabrication of the high-temperature liquid-metal MHD facility has been completed, and shakedown runs have been performed, using a substitute mixer-generator test section. Data obtained in this test section agreed well with existing single-phase and newly-developed two-phase correlations for the pressure gradient.

  17. Preliminary Experimental Investigation on MHD Power Generation Using Seeded Supersonic Argon Flow as Working Fluid

    Institute of Scientific and Technical Information of China (English)

    LI Yiwen; LI Yinghong; LU Haoyu; ZHU Tao; ZHANG Bailing; CHEN Feng; ZHAO Xiaohu

    2011-01-01

    This paper presents a preliminary experimental investigation on magnetohydrodynamic (MHD) power generation using seeded supersonic argon flow as working fluid.Helium and argon are used as driver and driven gas respectively in a shock tunnel.Equilibrium contact surface operating mode is used to obtain high temperature gas,and the conductivity is obtained by adding seed K2CO3 powder into the driven section.Under the conditions of nozzle inlet total pressure being 0.32 MPa,total temperature 6 504 K,magnetic field density about 0.5 T and nozzle outlet velocity 1 959 m/s,induction voltage and short-circuit current of the segmentation MHD power generation channel are measured,and the experimental results agree with theoretical calculations; the average conductivity is about 20 S/m calculated from characteristics of voltage and current.When load factor is 0.5,the maximum power density of the MHD power generation channel reaches 4.797 1 MW/m3,and the maximum enthalpy extraction rate is 0.34%.Finally,the principle and method of indirect testing for gas state parameters are derived and analyzed.

  18. Characteristics of Linear MHD Generators with One or a Few Loads

    Energy Technology Data Exchange (ETDEWEB)

    Witalis, E.A.

    1966-02-15

    The theoretical performance of linear series segmented MHD generators with finite size electrodes and one or a few identical external loads is investigated. The analysis is an extension of our conformal mapping investigation previously reported. The electrical characteristics are evaluated as functions of the segmentation degree, the Hall parameter and the relative position of short-circuited electrodes. Special consideration is given to the influence of staggering the electrodes, i. e. shifting the relative positions of short-circuited electrodes. General electrical terminal characteristics, i. e. the full current-voltage relation, can not be obtained by the exact analytical method, which is applicable only to so-called design load conditions or infinitely long MHD channels. However, it is shown how the general properties can be explained qualitatively and calculated approximately by describing off-design modes of operation in terms of a fictitious 'effective' number of external loads.

  19. Ring-shaped discharge structures in a closed cycle MHD disk generator

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, H.; Kabashima, S.

    1987-06-01

    Numerical simulations are carried out to study plasma properties in a nonequilibrium disk-type MHD generator. The analysis is based on a two-dimensional time-dependent MHD equation, and is performed in the r-z plane. From the r-z analysis, the current distributions in the boundary layer, electrode regions are obtained, as well as the channel main flow region. The two-state nature of plasma, i.e., the formation of streamers and their dynamical behavior in the channel is confirmed. The dependence of the streamer properties on the magnetic field strength and load resistance is examined. The calculations suggest the existence of an eddy current in the boundary layer for the high-loading parameter. Some enhanced eddy currents in the nozzle region and the intensive eddy current at the upper-stream edge of the cathode are obtained for some plasma parameters. 19 references.

  20. An open cycle absorption heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M.; Longo, G.A. (Padua Univ. (Italy)); Piccininni, F. (Politecnico di Bari (Italy). Ist. di Fisica Tecnica)

    1992-09-01

    By using absorption dehumidification it is possible to obtain an open cycle absorption heat pump fed by a natural gas burner. The machine couples great simplicity with very good thermodynamic performance. The main feature is the recovery of the latent heat of the air flow. The open cycle heat pump is applied here to building heating, internal temperature 20[sup o]C, relative humidity 50%, with forced ventilation. The system has essentially a packed tower bed for dehumidification, a regenerator fed by a natural gas burner, connected to a condenser, and some heat exchangers. (author).

  1. Key contributions in MHD power generation. Quarterly report, 1 June 1979-31 August 1979

    Energy Technology Data Exchange (ETDEWEB)

    Louis, J F

    1979-11-01

    Activities during the third quarter of the contract period are reported in detail. The tasks reported on include: (1) investigation of electrical behavior in the vicinity of electrode and insulating walls; (2) studies of critical performance issues in the development of combustion disk generators; (3) development and testing of electrode modules, including studies of insulator properties; and (4) determination of coal combustion kinetics and ash behavior relevant to two-stage MHD combustors, and investigation of the mixing and flow aerodynamics of a high swirl geometry second stage.

  2. Fault analysis of mid-channel power takeoff in DCW MHD generators

    Science.gov (United States)

    Ishikawa, M.; Wu, Y. C. L.; Scott, M. H.

    1982-06-01

    Analysis is presented of the effect of loading faults on the mid-channel power takeoff of a diagonal-conducting-wall MHD generator in special loading schemes. Two-dimensional calculations indicate that an open-circuit condition in the upstream load circuit results in a large current density at the power takeoff anode and drives a shorting current over the interframe insulators at the cathode side. A short-circuit condition in the upstream load circuit results in a large current density at the power takeoff cathode and a shorting current over the interframe insulators at the anode side.

  3. Key contributions in MHD power generation. Quarterly technical progress report, September 1, 1979-November 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Louis, J F

    1980-03-01

    Separate entries were made in the data base for the four tasks which include: (1) investigation of electrical behavior in the vicinity of electrode and insulating walls; (2) studies of critical performance issues in the development of combustion disk generators; (3) development and testing of electrode modules, including studies of insulator properties; and (4) determination of coal combustion kinetics and ash behavior relevant to two-stage MHD combustors, and investigation of the mixing and flow aerodynamics of a high swirl geometry second stage. (WHK)

  4. Design of helium-driven MHD disk generators with high performance

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, H.; Kabashima, S.; Yamasaki, H.; Shioda, S. (Tokyo Inst. of Tech. (JP). Dept. of Energy Sciences)

    1990-01-01

    A design method for helium-driven MHD disk generator channels including boundary-layer behavior is proposed. In this method, the main flow in the channels is one-dimensionally treated, taking account of the concept of effective cross-sectional area of the channels. This effective area is determined by solving two-dimensional boundary-layer equations. Using this method, the generator channels on various scales are numerically designed under the condition of fully ionized seed. Furthermore, the scale effects of the boundary layer on the area ratio, heat loss and adiabatic efficiency of the generators are examined. It is found from this study that a generator having a thermal input of more than 100 MW is required to achieve high enthalpy extraction with high adiabatic efficiency (more than 65%). (author).

  5. Numerical Study of Plasma-Fluid Behavior and Generation Characteristics of the Closed Loop MHD Electrical Power Generator

    Science.gov (United States)

    Ohno, Jun; Liberati, Alessandro; Murakami, Tomoyuki; Okuno, Yoshihiro

    Time dependent r-z two-dimensional numerical simulations with LES technique have been carried out in order to clarify the plasma fluid behavior and power generation characteristics of the disk MHD generator under the rated operation conditions demonstrated in the closed loop experimental facility at Tokyo Tech. The generator currently installed could suffer from the non-uniform and low electrical conductivity, and the boundary layer separation even under the rated operation conditions. The large amount of generated electric power is consumed in the boundary layer separation region, which reduces a net output power. Reducing the back pressure and improving the inlet plasma conditions surely provide the higher generator performance. The influence of 90 degree bend downstream duct on the generator performance is found to be not marked.

  6. Experimental and theoretical studies of the effects of nonuniformities in equilibrium MHD generators

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, M.; Shamma, S.E.; Louis, J.F.

    1980-01-01

    An experimental study of the effects of thermal and velocity nonuniformities is performed in an equilibrium plasma for a range of Hall parameters. An electrodeless MHD disk generator with radial flow is chosen as the ideal geometry for these experiments. By introducing equally spaced cold blades in the flow, it is possible to create well defined two-dimensional wake nonuniformities with strong variations of the plasma properties in the direction normal to the magnetic field and the flow. This type of nonuniformity is predicted to provide the strongest reduction of Hall coefficient and effective conductivity for high values of Hall parameter. This degradation is controlled by both the level of nonuniformities and the value of the ideal Hall parameter. The former is dependent upon the number of blades (root mean square deviation of the conductivity), and the latter is dependent upon the values of the magnetic field intensities. The results provide basic quantitative information about the effects of conductivity and velocity nonuniformities on the performance of equilibrium MHD generators over a wide range of Hall coefficients, between 2 and 7. Reduction formulae are established between the effective and ideal Hall parameters for different levels of nonuniformities intensities. Theoretical predictions are derived from a detailed two-dimensional electrodynamic analysis and a simplified engineering model based on a generalization of Rosa's layer model. These experiments validate the analytical studies and support the use of the theoretical layer models in describing the effect of boundary layers on the performance of linear generators.

  7. Improvement of performance of non-equilibrium MHD disk generator by means of segmented loads; Hiheiko disk gata MHD hatsudenki ni okeru bunkatsu fuka ni yoru seino kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, H.; Okuno, Y.; Kabashima, S. [Tokyo Institute of Technology, Tokyo (Japan)

    1995-08-20

    The performance of non-equilibrium MHD disk generator with segmented loads is examined with {gamma}-{theta} two dimensional numerical simulations. The use of segmented loads is found to improve the generator performance when a low electron temperature plasma is introduced to the channel. The simulation results reveal the desired values of load resistances connected in upstream and downstream regions, respectively. The concept of the segmented loads is considered to be superior to rearranging seed fractions and load resistances. 10 refs., 6 figs., 2 tabs.

  8. Experimental studies on isentropic efficiency of a nonequilibrium MHD disk generator

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hajime [National Defense Academy, Yokosuka (Japan). Dept. of Mechanical Engineering; Okamura, Tetsuji [Tokyo Inst. of Tech., Yokohama (Japan). Dept. of Energy Sciences; Shioda, Susumu [Keio Univ., Fujisawa (Japan). Faculty of Environmental Information

    1998-02-01

    Isentropic efficiency of the nonequilibrium MHD power generator was studied by a shock tube driven disk generator. Cesium seeded helium was used as a working gas. From the measurements of Faraday current density distribution, it was possible to estimate the general tendency of Joule dissipation in the generator. The Joule dissipation did not decrease due to the occurrence of nonuniformity of the plasma when external load resistance was low, although it decreased with the decrease in the load resistance when the load resistance was high. The electrical efficiency increased with the increase in applied magnetic flux density. This fact is thought to be caused by high Hall parameter and the stabilization of the plasma due to high degree of seed ionization.

  9. FLASH MHD simulations of experiments that study shock-generated magnetic fields

    Science.gov (United States)

    Tzeferacos, P.; Fatenejad, M.; Flocke, N.; Graziani, C.; Gregori, G.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Scopatz, A.; Weide, K.

    2015-12-01

    We summarize recent additions and improvements to the high energy density physics capabilities in FLASH, highlighting new non-ideal magneto-hydrodynamic (MHD) capabilities. We then describe 3D Cartesian and 2D cylindrical FLASH MHD simulations that have helped to design and analyze experiments conducted at the Vulcan laser facility. In these experiments, a laser illuminates a carbon rod target placed in a gas-filled chamber. A magnetic field diagnostic (called a Bdot) employing three very small induction coils is used to measure all three components of the magnetic field at a chosen point in space. The simulations have revealed that many fascinating physical processes occur in the experiments. These include megagauss magnetic fields generated by the interaction of the laser with the target via the Biermann battery mechanism, which are advected outward by the vaporized target material but decrease in strength due to expansion and resistivity; magnetic fields generated by an outward expanding shock via the Biermann battery mechanism; and a breakout shock that overtakes the first wave, the contact discontinuity between the target material and the gas, and then the initial expanding shock. Finally, we discuss the validation and predictive science we have done for this experiment with FLASH.

  10. Design of a vertical annulus with MHD flow using entropy generation analysis

    Directory of Open Access Journals (Sweden)

    Mahian Omid

    2013-01-01

    Full Text Available Optimal design of a heat exchanger is one of the concerns of energy conversion engineers. In the present work, the mixed convection flow between two vertical concentric pipes with constant heat flux at the boundaries and MHD flow effects is considered. To determine the optimal design for such a heat exchanger, at first, the momentum and energy equations are simplified and solved analytically. Next, using entropy generation analysis and cost analysis, the operational costs due to entropy generation are estimated. It is concluded that with an increase in the Hartmann number, the energy costs increase. In addition, for two small deviations from the base radius ratio 2(=P including 9.1=P and 1.2=P , the changes in the energy cost are calculated. It is found that for 9.1=P the energy cost increases by 17.5% while for P = 2.1 the energy cost is reduced by 13.6 %.

  11. Integration of MHD load models with circuit representations the Z generator.

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Christopher A.; Ampleford, David J.; Jones, Brent Manley; McBride, Ryan D.; Bailey, James E.; Jones, Michael C.; Gomez, Matthew Robert.; Cuneo, Michael Edward; Nakhleh, Charles; Stygar, William A.; Savage, Mark Edward; Wagoner, Timothy C.; Moore, James K.

    2013-03-01

    MHD models of imploding loads fielded on the Z accelerator are typically driven by reduced or simplified circuit representations of the generator. The performance of many of the imploding loads is critically dependent on the current and power delivered to them, so may be strongly influenced by the generators response to their implosion. Current losses diagnosed in the transmission lines approaching the load are further known to limit the energy delivery, while exhibiting some load dependence. Through comparing the convolute performance of a wide variety of short pulse Z loads we parameterize a convolute loss resistance applicable between different experiments. We incorporate this, and other current loss terms into a transmission line representation of the Z vacuum section. We then apply this model to study the current delivery to a wide variety of wire array and MagLif style liner loads.

  12. The generation and damping of propagating MHD kink waves in the solar atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Morton, R. J. [Mathematics and Information Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Verth, G.; Erdélyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Hillier, A., E-mail: richard.morton@northumbria.ac.uk, E-mail: g.verth@sheffield.ac.uk, E-mail: robertus@sheffield.ac.uk [Kwasan and Hida Observatories, Kyoto University, 17 Ohmine-cho Kita Kazan, Yamashina-ku, Kyoto City, Kyoto 607-8471 (Japan)

    2014-03-20

    The source of the non-thermal energy required for the heating of the upper solar atmosphere to temperatures in excess of a million degrees and the acceleration of the solar wind to hundreds of kilometers per second is still unclear. One such mechanism for providing the required energy flux is incompressible torsional Alfvén and kink magnetohydrodynamic (MHD) waves, which are magnetically dominated waves supported by the Sun's pervasive and complex magnetic field. In particular, propagating MHD kink waves have recently been observed to be ubiquitous throughout the solar atmosphere, but, until now, critical details of the transport of the kink wave energy throughout the Sun's atmosphere were lacking. Here, the ubiquity of the waves is exploited for statistical studies in the highly dynamic solar chromosphere. This large-scale investigation allows for the determination of the chromospheric kink wave velocity power spectra, a missing link necessary for determining the energy transport between the photosphere and corona. Crucially, the power spectra contain evidence for horizontal photospheric motions being an important mechanism for kink wave generation in the quiescent Sun. In addition, a comparison with measured coronal power spectra is provided for the first time, revealing frequency-dependent transmission profiles, suggesting that there is enhanced damping of kink waves in the lower corona.

  13. Open cycle cooling systems using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Sovrano, M.

    Open cycle cooling systems are particularly suitable for utilizing solar energy. In all these systems the adsorption and absorption phenomena are very important, hence they are described separately. The cycles used are essentially two: the Baum-Kakabaev cycle using liquid absorbers and the dehumidification/humidification cycle where also adsorbent substances can be utilized. Solar energy is used in the regeneration process of dehumidifying substances. Reactivation modes can be various: suitability of one mode or the other can depend on the climate of the site where the system is installed.

  14. Chemical dehumidification and heat recovery: Open-cycle heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Longo, G.A.; Piccininni, F. (Padua Univ. (Italy). Ist. di Fisica Tecnica)

    1992-02-01

    This article examines an open-cycle heat pump based on a stacked column working with an absorbing solution. The column treats both the expelled air and the fumes generated by the combustion of the methane feeding the solution regenerator. The system is quite easy: it consists of a stacked column, a regenerator with its condenser and four heat exchangers. A simulation - based on a 12kW charge with a 1000 kg/h air exchange - proved that it is possible to obtain an REP higher than 1.5.

  15. MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity

    Energy Technology Data Exchange (ETDEWEB)

    Mehrez, Zouhaier, E-mail: zouhaier.mehrez@yahoo.fr [Laboratoire d’Energétique et des Transferts Thermique et Massique (LETTM), Département de Physique, Faculté des Sciences de Tunis, Université d’el Manar, El Manar 2092 (Tunisia); ISSAT Gabes, Rue Omar Ibn Khattab, Université de Gabes, 6072 Zrig, Gabes (Tunisia); El Cafsi, Afif; Belghith, Ali [Laboratoire d’Energétique et des Transferts Thermique et Massique (LETTM), Département de Physique, Faculté des Sciences de Tunis, Université d’el Manar, El Manar 2092 (Tunisia); Le Quéré, Patrick [LIMSI-CNRS Bat. 508, B.P. 133, 91403 Orsay Cedex (France)

    2015-01-15

    The present numerical work investigates the effect of an external oriented magnetic field on heat transfer and entropy generation of Cu–water nanofluid flow in an open cavity heated from below. The governing equations are solved numerically by the finite-volume method. The study has been carried out for a wide range of solid volume fraction 0≤φ≤0.06, Hartmann number 0≤Ha≤100, Reynolds number 100≤Re≤500 and Richardson number 0.001≤Ri≤1 at three inclination angles of magnetic field γ: 0°, 45° and 90°. The numerical results are given by streamlines, isotherms, average Nusselt number, average entropy generation and Bejan number. The results show that flow behavior, temperature distribution, heat transfer and entropy generation are strongly affected by the presence of a magnetic field. The average Nusselt number and entropy generation, which increase by increasing volume fraction of nanoparticles, depend mainly on the Hartmann number and inclination angle of the magnetic field. The variation rates of heat transfer and entropy generation while adding nanoparticles or applying a magnetic field depend on the Richardson and Reynolds numbers. - Highlights: • MHD effects on Cu–water nanofluid flow into an open cavity are studied. • Entropy generation and heat transfer are strongly influenced by the magnetic field. • The effect of nanoparticles volume fraction depends on Hartmann number. • The influence of the magnetic field varies by varying Reynolds and Richardson numbers.

  16. Numerical Simulation of Entropy Generation with Thermal Radiation on MHD Carreau Nanofluid towards a Shrinking Sheet

    Directory of Open Access Journals (Sweden)

    Muhammad Mubashir Bhatti

    2016-05-01

    Full Text Available In this article, entropy generation with radiation on non-Newtonian Carreau nanofluid towards a shrinking sheet is investigated numerically. The effects of magnetohydrodynamics (MHD are also taken into account. Firstly, the governing flow problem is simplified into ordinary differential equations from partial differential equations with the help of similarity variables. The solution of the resulting nonlinear differential equations is solved numerically with the help of the successive linearization method and Chebyshev spectral collocation method. The influence of all the emerging parameters is discussed with the help of graphs and tables. It is observed that the influence of magnetic field and fluid parameters oppose the flow. It is also analyzed that thermal radiation effects and the Prandtl number show opposite behavior on temperature profile. Furthermore, it is also observed that entropy profile increases for all the physical parameters.

  17. Entropy Generation on MHD Casson Nanofluid Flow over a Porous Stretching/Shrinking Surface

    Directory of Open Access Journals (Sweden)

    Jia Qing

    2016-04-01

    Full Text Available In this article, entropy generation on MHD Casson nanofluid over a porous Stretching/Shrinking surface has been investigated. The influences of nonlinear thermal radiation and chemical reaction have also taken into account. The governing Casson nanofluid flow problem consists of momentum equation, energy equation and nanoparticle concentration. Similarity transformation variables have been used to transform the governing coupled partial differential equations into ordinary differential equations. The resulting highly nonlinear coupled ordinary differential equations have been solved numerically with the help of Successive linearization method (SLM and Chebyshev spectral collocation method. The impacts of various pertinent parameters of interest are discussed for velocity profile, temperature profile, concentration profile and entropy profile. The expression for local Nusselt number and local Sherwood number are also analyzed and discussed with the help of tables. Furthermore, comparison with the existing is also made as a special case of our study.

  18. An innovative demonstration of high power density in a compact MHD (magnetohydrodynamic) generator

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H.J.; Lineberry, J.T.; Chapman, J.N.

    1990-06-01

    The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible. 4 refs., 60 figs., 9 tabs.

  19. Open cycle gas core nuclear rockets

    Science.gov (United States)

    Ragsdale, Robert

    1991-01-01

    The open cycle gas core engine is a nuclear propulsion device. Propulsion is provided by hot hydrogen which is heated directly by thermal radiation from the nuclear fuel. Critical mass is sustained in the uranium plasma in the center. It has typically 30 to 50 kg of fuel. It is a thermal reactor in the sense that fissions are caused by absorption of thermal neutrons. The fast neutrons go out to an external moderator/reflector material and, by collision, slow down to thermal energy levels, and then come back in and cause fission. The hydrogen propellant is stored in a tank. The advantage of the concept is very high specific impulse because you can take the plasma to any temperature desired by increasing the fission level by withdrawing or turning control rods or control drums.

  20. Open-cycle vapor compression heat pump

    Science.gov (United States)

    Becker, F. E.; Ruggles, A. E.

    1985-03-01

    Large quantities of low-grade energy in the form of low-pressure steam and low-temperature heat are often discharged to the environment by industry. The practical and economical recovery of energy from these sources is often limited by the number of applications that can directly use low-temperature heat. Thermo Electron has developed an open-cycle steam heat pump system capable of the direct recovery and upgrading of low-grade waste energy. The system compresses low-pressure waste steam (or steam made from sources of low-temperature waste heat) to produce high-pressure steam suitable for use in industrial processes. A prototype system has been developed that is capable of recovering and recompressing up to 10,000 lb/hr of waste steam, while using only 50 percent of the fuel that would be required to produce comparable steam in a boiler.

  1. Study of the processes resulting from the use of alkaline seed in natural gas-fired MHD facilities

    Energy Technology Data Exchange (ETDEWEB)

    Styrikovich, M.A.; Mostinskii, I.L.

    1977-01-01

    Various ways of ionizing seed injection and recovery, applicable to open-cycle magnetohydrodynamic (MHD) power generation facilities, operating on sulfur-free gaseous fossil fuel, are discussed and experimentally verified. The physical and chemical changes of the seed and the heat and mass transfer processes resulting from seed application are investigated using the U-02 experimental MHD facility and laboratory test facilities. Engineering methods for calculating the processes of seed droplet vaporization, condensation and the precipitation of submicron particles of K/sub 2/CO/sub 3/ on the heat exchange surface are also included.

  2. Comparison of Performances of Scramjet-Driven Experimental DCW-MHD Generators with Different Cross-Section

    Science.gov (United States)

    Niwa, Naoyuki; Takahashi, Toru; Fujino, Takayasu; Ishikawa, Motoo

    The purpose of this study is to examine the influence of shape of cross-section of scramjet engine driven experimental DCW-MHD generator on generator performance by three-dimensional numerical analyses. We have designed the MHD generators with symmetric square and circular cross-section, based on the experimental MHD generator with asymmetric square cross-section. Under the optimum load condition, the electric power output becomes 26.6kW for the asymmetric square cross-section, 24.6kW for the symmetric square cross-section, and 22.4kW for the circular cross-section. The highest output is obtained for the experimental generator with asymmetric square cross-section. The difference of electric power output is induced by the difference of flow velocity and boundary layer thickness. For the generator with asymmetric square cross-section, the average flow velocity becomes the highest and the boundary layer becomes the thinnest. The compression wave is generated depending on the channel shape. The difference of flow velocity and boundary layer thickness is induced by the superposition of compression wave.

  3. MHD Free Convection from an Isothermal Truncated Cone with Variable Viscosity and Internal Heat Generation (Absorption

    Directory of Open Access Journals (Sweden)

    A.H.Srinivasa,

    2016-02-01

    Full Text Available This paper presents a study of MHD free convection flow of an electrically conducting incompressible fluid with variable viscosity about an isothermal truncated cone in the presence of heat generation or absorption. The fluid viscosity is assumed to vary as a inverse linear function of temperature. The non-linear coupled partial differential equations governing the flow and heat transfer have been solved numerically by using an implicit finite - difference scheme along with quasilinearization technique. The non-similar solutions have been obtained for the problem, overcoming numerical difficulties near the leading edge and in the downstream regime. Results indicate that skin friction and heat transfer are strongly affected by, both, viscosity-variation parameter and magnetic field. In fact, the transverse magnetic field influences the momentum and thermal fields, considerably. Further, skin friction is found to decrease and heat transfer increases near the leading edge. Also, it is found that the direction of heat transfer gets reversed during heat generation.

  4. Indo-Soviet experiment on an MHD generator test section at the Soviet U-O/sub 2/ facility

    Energy Technology Data Exchange (ETDEWEB)

    Ananthapadmanabhan, P.V.; Bapat, A.V.; Das, A.K. (Bhabha Atomic Research Centre, Bombay (India))

    1982-09-01

    This paper summarizes the major results of the joint Indo-Soviet experiment for testing the Indian MHD generator channel section, designed and fabricated at the Bhabha Atomic Research Centre, Bombay, which was carried out at the U-02 facility in Moscow, USSR, in May 1980. The total test duration was 65 hours and included electrophysical tests and life tests under applied electric fields. The main purpose of the tests was to substantiate the physical concepts, computer codes, design features and special processing techniques involved in the development of MHD generators for the Indian pilot plant at Tiruchirapalli. The experimental observations on the phenomena of heat transfer to the walls, gas dynamics in the channel, electrical characteristics of the generator and near-electrode processes including the analysis of arc spots correlate with the theoretical estimates based on present uderstanding of the physical processes occuring in similar MHD generators. The post-operational inspection of the channel section and extensive investigation of materials through microscopic analysis, chemical analysis and x-ray analysis are also reported in this paper. The joint test programme has clearly demonstrated the definite operating capability of the test section and has given sufficient information and encouragement for building better and improved channels for the future.

  5. The Transient MHD Flow Generated by a PeriodicWall Motion in a Porous Space

    Directory of Open Access Journals (Sweden)

    Mohammed Abdulhameed

    2016-01-01

    Full Text Available The problem of transient flow of incompressible third grade fluid on the two-dimensional magnetohydrodynamic (MHD flow in a porous space is analyzed. The flow is generated due to the motion of the plate in its plane with a periodic velocity. Under the flow assumptions, the governing nonlinear partial differential equation is transformed into steady-state and transient nonlinear equations. The reduced equation for the transient flow is solved analytically using symmetry approach while the nonlinear steady-state equation is solved using a modified version of He’s homotopy perturbation method. The effect of several operating parameters on the flow hydromagnetic is discussed. The results indicated that for the considered case, t = 1:5 is the moment after which the time-dependent transient motion of the fluid can be approximated with the steady-state motion, described by the steady-state solution. It is clear that, after this value of time t the time-dependent transient solution can be neglected.

  6. MHD generator electrode development. Quarterly report, October-December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Sadler, J W; Cadoff, L H; Dietrick, D L

    1981-01-01

    This program is directed towards the engineering development of cold metallic electrodes which are alternatives to the use of platinum as an anode clad material for MHD generators. Results of continuing laboratory screening tests are presented. Improvements in the anode arc test methodology and test setup, which have resulted in improved reproducibility as well as test simplification, are discussed. Laboratory electrochemical corrosion testing has been initiated using aqueous and molten salts as the aggressive constituent in the electrolyte. Initial results from these tests are reported. On the basis of these test results, electrochemical corrosion tests using a molten salt are preferred. As a result of ongoing laboratory screening tests, acceptance criteria, which are interim in nature and are likely to change based on future test results have been defined for the anode arc and electrochemical corrosion tests. Reflecting the initial laboratory test results, a listing of candidate advanced alloys which should demonstrate improved corrosion resistance has been defined. Upon completion of WESTF modifications, facility checkout and activation operations have been initiated. Progress, as well as those difficulties which have been encountered, in completing WESTF activation is reported. Detailed engineering and test planning activities in support of WESTF tests are reported.

  7. Performance experiments with a shock-tunnel-driven argon-cesium MHD disk generator

    Energy Technology Data Exchange (ETDEWEB)

    Veefkind, A.; Karavasilev, P.; Wang, D.

    1988-08-01

    An extensive amount of data has been collected concerning MHD disk generator performance under different operation conditions. The results are obtained from a large number of runs with the Eindhoven shock tunnel facility. The runs are carried out at different stagnation temperatures, stagnation pressures, external loads, and seed fractions. Two channels have been used, one with and one without inlet swirl. Voltage, pressure, and radiation measurements have been employed. Current to voltage characteristics have been measured for different seed ratios. The enthalpy extractions of the disk with inlet swirl are found to be comparable with similar experiments with linear channels. The enthalpy extractions of the radial disk are found to be lower. A high enthalpy extraction (18 percent at a stagnation temperature of 2100 K) is reported at a comparatively low stagnation pressure (4.2 bar). A one-dimensional-gasdynamical analysis using measured voltages as an input is discussed. The measured fluctuations of electron temperature and density indicate that the results are obtained in a nonuniform plasma. 10 references.

  8. Open-cycle vapor compression heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Becker, F.E.

    1983-06-01

    Waste energy in the form of low pressure waste steam and low grade waste heat can be efficiently recovered and upgraded to high pressure steam by means of an open-cycle steam heat pump system. Thermo Electron has developed a steam heat pump system. A description of the system highlights the rotary screw compressor, the gas engine prime mover, the speed increaser, and the control system. The amount of energy saved by the system is dependent on the performance of the prime mover as well as the compressor. Energy savings of 40 to 70 percent are predicted. A demonstration system was installed at Monsanto in Indian Orchard, Massachusetts. Energy savings of over 63% compared to current steam generation efficiency is expected.

  9. Numerical study of certain 3-dimensional effects in a sectioned MHD generator channel with successive inclusion of electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikov, V.L.

    1982-01-01

    In a 3-dimensional statement, a study is made of the effect of finite sectioning, shapes of electrodes and heterogeneity of the plasma parameters on the characteristics of the diagonal MHD generator. It is indicated that increase in specific electrical conductance of the plasma at the insulator wall results in a monotonic decrease in the voltage idling. There is an optimal specific electrical conductance of plasma at the electrode wall in which the voltage idling is the maximum. The expediency is shown of making channels with external commutation. There is an optimal ratio between the lengths of the electrode and the insulator.

  10. The energy associated with MHD waves generation in the solar wind plasma

    Science.gov (United States)

    delaTorre, A.

    1995-01-01

    Gyrotropic symmetry is usually assumed in measurements of electron distribution functions in the heliosphere. This prevents the calculation of a net current perpendicular to the magnetic field lines. Previous theoretical results derived by one of the authors for a collisionless plasma with isotropic electrons in a strong magnetic field have shown that the excitation of MHD modes becomes possible when the external perpendicular current is non-zero. We consider then that any anisotropic electron population can be thought of as 'external', interacting with the remaining plasma through the self-consistent electromagnetic field. From this point of view any perpendicular current may be due to the anisotropic electrons, or to an external source like a stream, or to both. As perpendicular currents cannot be derived from the measured distribution functions, we resort to Ampere's law and experimental data of magnetic field fluctuations. The transfer of energy between MHD modes and external currents is then discussed.

  11. An open cycle gas core fusion rocket for space exploration

    Science.gov (United States)

    Kammash, T.; Godfrey, T.

    A nuclear propulsion system that utilizes fusion reactions to heat a plasma in a magnetically confined device is examined as a potential rocket. It makes use of a high density plasma in a magnetic mirror geometry with a collision mean free path much shorter than its length. Under these conditions the plasma behaves like a fluid with confinement properties dictated by gasdynamic laws. Accordingly, the plasma escape from the device is analogous to the flow of a gas into vacuum from a vessel with a hole. Such a system is capable of producing a very high specific impulse albeit at modest thrust. One approach for enhancing the thrust is to use an auxiliary hydrogen propellant that could be regeneratively heated before it is introduced into the reactor chamber. As is flows past the fusion plasma it will be further heated by the radiation (bremsstrahlung and synchrotron) emanating from the plasma, and upon emergence from the nozzle it will generate the desired thrust. The system thus functions much like an open cycle gas core rocket with very attractive propulsive capabilities. In this paper we present the underlying physics principles of such a concept and assess its capability by applying the results to a round trip mission to Mars. It is shown that the propulsion parameters exceed those of a gas core fission reactor and without many of major hydrodynamic problems confronted by the latter.

  12. MHD-Conjugate Free Convection from an Isothermal Horizontal Circular Cylinder with Joule Heating and Heat Generation

    Directory of Open Access Journals (Sweden)

    NHM. A. Azim

    2013-01-01

    Full Text Available The present work is devoted to the numerical study of laminar magnetohydrodynamic (MHD conjugate natural convection flow from a horizontal circular cylinder taking into account Joule heating and internal heat generation. The governing equations and the associated boundary conditions for this analysis are made nondimensional forms using a set of dimensionless variables. Thus, the nondimensional governing equations are solved numerically using finite difference method with Keller box scheme. Numerical outcomes are found for different values of the magnetic parameter, conjugate conduction parameter, Prandtl number, Joule heating parameter, and heat generation parameter for the velocity and the temperature within the boundary layer as well as the skin friction coefficients and the rate of heat transfer along the surface. It is found that the skin friction increases, and heat transfer rate decreases for escalating value of Joule heating parameter and heat generation parameter. Results are presented graphically with detailed discussion.

  13. Entropy Generation Analysis of Open Parallel Microchannels Embedded Within a Permeable Continuous Moving Surface: Application to Magnetohydrodynamics (MHD

    Directory of Open Access Journals (Sweden)

    Mohammad H. Yazdi

    2011-12-01

    Full Text Available This paper presents a new design of open parallel microchannels embedded within a permeable continuous moving surface due to reduction of exergy losses in magnetohydrodynamic (MHD flow at a prescribed surface temperature (PST. The entropy generation number is formulated by an integral of the local rate of entropy generation along the width of the surface based on an equal number of microchannels and no-slip gaps interspersed between those microchannels. The velocity, the temperature, the velocity gradient and the temperature gradient adjacent to the wall are substituted into this equation resulting from the momentum and energy equations obtained numerically by an explicit Runge-Kutta (4, 5 formula, the Dormand-Prince pair and shooting method. The entropy generation number, as well as the Bejan number, for various values of the involved parameters of the problem are also presented and discussed in detail.

  14. Use of a Nonequilibrium MHD Generator for Conversion of SNTP Nuclear Thermal Rocket Exhaust to DC Electric Power for a Multimegawatt Nuclear Electric Propulsion System

    Science.gov (United States)

    Finley, Charles J.

    1994-07-01

    This paper explores a method by which the energy of a high speed flowing gas can efficiently be converted into DC electric power by a magnetohydrodynamic (MHD) generator. A nonequilibrium state may be created in the working fluid during the ionization process using an arc discharge. This nonequilibrium state may possibly be sustained in the fluid using the waste heat byproduct of the natural operation of the generator, if certain characteristics of the fluid/MHD system are maintained. The improved efficiency of the resulting nonequilibrium MHD generator not only allows the system to deliver increased power to the load, but reduces the amount of energy to be expelled from the closed fluid cycle by a radiator.

  15. Inertial Current Generators of Poynting Flux in MHD Simulations of Black Hole Ergospheres

    CERN Document Server

    Punsly, B

    2005-01-01

    This Letter investigates the physics that is responsible for creating the current system that supports the outgoing Poynting flux emanating from the ergosphere of a rotating black hole in the limit that the magnetic energy density greatly exceeds the plasma rest mass density (magnetically dominated limit). The underlying physics is derived from published three-dimensional simulations that obey the general relativistic equations of perfect magnetohydrodynamics (MHD). It is found that the majority of the Poynting flux emitted from the magnetically dominated regions of the ergosphere has a source associated with inertial effects outside of the event horizon.

  16. Angular Momentum Transport by Acoustic Modes Generated in the Boundary Layer II: MHD Simulations

    CERN Document Server

    Belyaev, Mikhail A; Stone, James M

    2013-01-01

    We perform global unstratified 3D magnetohydrodynamic simulations of an astrophysical boundary layer (BL) -- an interface region between an accretion disk and a weakly magnetized accreting object such as a white dwarf -- with the goal of understanding the effects of magnetic field on the BL. We use cylindrical coordinates with an isothermal equation of state and investigate a number of initial field geometries including toroidal, vertical, and vertical with zero net flux. Our initial setup consists of a Keplerian disk attached to a non-rotating star. In a previous work, we found that in hydrodynamical simulations, sound waves excited by shear in the BL were able to efficiently transport angular momentum and drive mass accretion onto the star. Here we confirm that in MHD simulations, waves serve as an efficient means of angular momentum transport in the vicinity of the BL, despite the magnetorotational instability (MRI) operating in the disk. In particular, the angular momentum current due to waves is at times...

  17. MHD-, ships-, jet engine unit consisting of electrochemical cells producing hydrogen, magneto-caloric hydrogen liquefier, liquid hydrogen-cooled high temperature superconductor-, MHD-, jet engine, liquid hydrogen internal combustion engine as high temperature-, superconductor-, generator-drive. High temperature superconductor coil and permanent magnet superconductor hollow cylinder as battery. MHD-Schiffs-Strahltriebwerks-Aggregat bestehend aus Wasserstoff-produzierenden elektrochemischen Solarzellen, magnetokalorischem Wasserstoffverfluessiger, Fluessigwasserstoff gekuehltem Hochtemperatur-Supraleiter-MHD-Strahltriebwerk, Fluessigwasserstoff-Verbrennungsmotor als Hochtemperatur-Supraleiter-Generator-Antrieb, Hochtemperatur-Supraleiter-Spule und permanentmagnetischem Supraleiter-Hohlzylinder als Akku

    Energy Technology Data Exchange (ETDEWEB)

    Berling, E.

    1991-05-02

    MHD-, ships-, jet engine-unit consisting of electrochemical cells producing hydrogen, magneto-caloric hydrogen liquifier, liquid hydrogen-cooled high temperature superconductor-, MHD-, jet engine, liquid hydrogen internal combustion engine as high temperature-, superconductor-, generator-drive. High temperature superconductor coil and permanent magnet superconductor hollow cylinder as battery. Ships water jet engines with magneto hydrodynamic (MHD) low temperature superconductor drive are known. The invention of the ceramic high temperature superconductor MHD drive, which is cooled with liquid hydrogen. The hydrogen is obtained electro-chemically directly from seawater, and is liquified magneto-calorically. The high temperature superconductor elements of the engine, liquifier, generator, storage coil, permanent magnet hollow cylinder store are coupled by a common liquid hydrogen cooling circuit. The internal combustion engine driving the generator is fuelled by the same liquid hydrogen by which the high temperature superconductor elements are cooled.

  18. High temperature sciences relatd to open-cycle, coal-fired MHD systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    Individual papers were entered separately into the data base. Topics covered include: gas-plasma chemistry; electronic, ionic, and molecular processes; materials; slag/seed properties; and slag/seed interactions.

  19. On Unsteady Three-Dimensional Axisymmetric MHD Nanofluid Flow with Entropy Generation and Thermo-Diffusion Effects on a Non-Linear Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Mohammed Almakki

    2017-07-01

    Full Text Available The entropy generation in unsteady three-dimensional axisymmetric magnetohydrodynamics (MHD nanofluid flow over a non-linearly stretching sheet is investigated. The flow is subject to thermal radiation and a chemical reaction. The conservation equations are solved using the spectral quasi-linearization method. The novelty of the work is in the study of entropy generation in three-dimensional axisymmetric MHD nanofluid and the choice of the spectral quasi-linearization method as the solution method. The effects of Brownian motion and thermophoresis are also taken into account. The nanofluid particle volume fraction on the boundary is passively controlled. The results show that as the Hartmann number increases, both the Nusselt number and the Sherwood number decrease, whereas the skin friction increases. It is further shown that an increase in the thermal radiation parameter corresponds to a decrease in the Nusselt number. Moreover, entropy generation increases with respect to some physical parameters.

  20. Open-cycle centrifugal vapor-compression heat pump

    Science.gov (United States)

    Burgmeier, L. R.; Horner, J. E.

    1987-11-01

    The objectives of the program were: (1) to develop an open cycle, high lift, centrifugal steam compressor system that can be efficiently retrofitted to existing multi-effect and high temperature differential evaporators while maintaining the cost benefits of a single stage centrifugal compressor, and (2) to demonstrate the energy saving cost benefits of driving the compressor with a natural gas fueled gas turbine engine. The turbine exhaust was to be used for final drying of the product that was evaporated. The installation of the system is described along with the test activities through May 1987.

  1. Entropy Generation Analysis in a Variable Viscosity MHD Channel Flow with Permeable Walls and Convective Heating

    Directory of Open Access Journals (Sweden)

    A. S. Eegunjobi

    2013-01-01

    Full Text Available This paper examines the effects of the thermodynamic second law on steady flow of an incompressible variable viscosity electrically conducting fluid in a channel with permeable walls and convective surface boundary conditions. The nonlinear model governing equations are solved numerically using shooting quadrature. Numerical results of the velocity and temperature profiles are utilised to compute the entropy generation number and the Bejan number. The results revealed that entropy generation minimization can be achieved by appropriate combination of the regulated values of thermophysical parameters controlling the flow systems.

  2. Entropy Generation Analysis for Variable Thermal Conductivity MHD Radiative Nanofluid Flow through Channel

    Directory of Open Access Journals (Sweden)

    Md. Sarwar Alam

    2016-01-01

    Full Text Available The present work inspects the entropy generation on radiative heat transfer in the flow of variable thermal conductivity optically thin viscous Cu–water nanofluid with an external magnetic field through a parallel isothermal plate channel. Our approach uses the power series from the governing non-linear differential equations for small values of thermal conductivity variation parameter which are then analysed by various generalizations of Hermite- Padé approximation method. The influences of the pertinent flow parameters on velocity, temperature, thermal conductivity criticality conditions and entropy generation are discussed quantitatively both numerically and graphically. A stability analysis has been performed for the rate of heat transfer which signifies that the lower solution branch is stable and physically acceptable, whereas the upper solution branch is unstable.

  3. Numerical Investigation of Entropy Generation in Unsteady MHD Generalized Couette Flow with Variable Electrical Conductivity

    Science.gov (United States)

    Chinyoka, T.; Makinde, O. D.

    2013-01-01

    The thermodynamic second law analysis is utilized to investigate the inherent irreversibility in an unsteady hydromagnetic generalized Couette flow with variable electrical conductivity in the presence of induced electric field. Based on some simplified assumption, the model nonlinear governing equations are obtained and solved numerically using semidiscretization finite difference techniques. Effects of various thermophysical parameters on the fluid velocity, temperature, current density, skin friction, the Nusselt number, entropy generation number, and the Bejan number are presented graphically and discussed quantitatively. PMID:23956691

  4. Visualization of the Flux Rope Generation Process Using Large Quantities of MHD Simulation Data

    Directory of Open Access Journals (Sweden)

    Y Kubota

    2013-03-01

    Full Text Available We present a new concept of analysis using visualization of large quantities of simulation data. The time development of 3D objects with high temporal resolution provides the opportunity for scientific discovery. We visualize large quantities of simulation data using the visualization application 'Virtual Aurora' based on AVS (Advanced Visual Systems and the parallel distributed processing at "Space Weather Cloud" in NICT based on Gfarm technology. We introduce two results of high temporal resolution visualization: the magnetic flux rope generation process and dayside reconnection using a system of magnetic field line tracing.

  5. Non-planar MHD model for solar flare-generated disturbances in the heliospheric equatorial plane

    Science.gov (United States)

    Wu, S. T.; Dryer, M.; Han, S. M.

    1983-01-01

    An analysis, with a representative (canonical) example of solar-flare-generated equatorial disturbances, is made for the temporal and spatial changes in the solar wind plasma and magnetic field environment between the sun and 1 AU. The goal is to search for first-order global consequences rather than to make a parametric study. The analysis treats all three plasma velocity and magnetic field components in any convenient heliospheric plane of symmetry. The representative disturbance is examined for the canonical case in which the temporal and spatial changes in a homogeneous solar wind caused by a solar-flare-generated shock wave are described. All plasma and field parameters at three radial locations are examined. These are the central meridian and 33 deg W and 90 deg W of the flare's central meridian. It is found that the incorporation of a small meridional magnetic field in the ambient magnetic spiral field has negligible effect on the results. The magnetic field exhibits strong kinking within the interplanetary shocked flow, even reversed polarity that, coupled with low temperature and low density, suggests a plausible explanation for magnetic clouds' with accompanying double-streaming of electrons observed at directions approximately 90 deg to the heliocentric radius.

  6. Polar Cap Potential Saturation during the Bastille Day Storm using Next Generation Magnetosphere-Ionosphere Coupling Global MHD Simulation

    Science.gov (United States)

    Kubota, Y.; Nagatsuma, T.; Den, M.; Tanaka, T.; Fujita, S.

    2015-12-01

    We are developing a real-time numerical simulator for the solar-wind-magnetosphere-ionosphere coupling system using next generation magnetosphere-ionosphere coupling global MHD simulation called REPPU (REProduce Plasma Universe) code. The feature of simulation has an advanced robustness to strong solar wind case because a triangular grid is used, which is able to calculate in the uniform accuracy over the whole region. Therefore we can simulate extreme event such as the Bastille day storm. The resolution is 7682 grids in the horizontal direction and 240 grids in the radial direction. The inner boundary of the simulation box is set at 2.6 Re. We investigate the reproduction of the magnetosphere-ionosphere coupling simulation in strong solar wind case. Therefore we compared the simulation results with the observation of the Bastille day storm event (2000/7/15), in which the solar wind velocity is above 1000 km/s and the value of Bz reached -60 nT. Especially, we focus the cross polar cap potential (CPCP) saturation and time variation because the CPCP represents the value of magnetospheric - ionospheric convection strength via region 1 current. The CPCP depends on solar wind electric field, dynamic pressure and ionospheric conductivity [Siscoe et al., 2002; Kivelson et al., 2008]. The model of Kivelson et al. [2008] shows a good reproduction to the CPCP variation. However their study assumes that the ionospheric conductivity is constant. The conductivity in our simulation of the Bastille day event is varied by the auroral activity. In this lecture, we discuss the effect of both the auroral conductance and solar EUV-driven conductance to CPCP saturation.

  7. Development of Liquid-Vapor Core Reactors with MHD Generator for Space Power and Propulsion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Samim Anghaie

    2002-08-13

    Any reactor that utilizes fuel consisting of a fissile material in a gaseous state may be referred to as a gaseous core reactor (GCR). Studies on GCRs have primarily been limited to the conceptual phase, mostly due to budget cuts and program cancellations in the early 1970's. A few scientific experiments have been conducted on candidate concepts, primarily of static pressure fissile gas filling a cylindrical or spherical cavity surrounded by a moderating shell, such as beryllium, heavy water, or graphite. The main interest in this area of nuclear power generation is for space applications. The interest in space applications has developed due to the promise of significant enhancement in fuel utilization, safety, plant efficiency, special high-performance features, load-following capabilities, power conversion optimization, and other key aspects of nuclear power generation. The design of a successful GCR adapted for use in space is complicated. The fissile material studied in the pa st has been in a fluorine compound, either a tetrafluoride or a hexafluoride. Both of these molecules have an impact on the structural material used in the making of a GCR. Uranium hexafluoride as a fuel allows for a lower operating temperature, but at temperatures greater than 900K becomes essentially impossible to contain. This difficulty with the use of UF6 has caused engineers and scientists to use uranium tetrafluoride, which is a more stable molecule but has the disadvantage of requiring significantly higher operating temperatures. Gas core reactors have traditionally been studied in a steady state configuration. In this manner a fissile gas and working fluid are introduced into the core, called a cavity, that is surrounded by a reflector constructed of materials such as Be or BeO. These reactors have often been described as cavity reactors because the density of the fissile gas is low and criticality is achieved only by means of the reflector to reduce neutron leakage from the

  8. Effects of thermophoresis and heat generation/absorption on MHD flow due to an oscillatory stretching sheet with chemically reactive species

    Science.gov (United States)

    Sheikh, Mariam; Abbas, Zaheer

    2015-12-01

    The effects of chemical reaction and heat generation/absorption on MHD flow over an oscillatory stretching surface in a viscous fluid have been studied in the presence of thermophoresis. The porous plate is oscillated back and forth in its own plane and suction/injection is also taking into account. The similarity solution of the developed non-linear governing partial differential equations is constructed in the form of series using homotopy analysis method. The convergence of the obtained series solutions is discussed in the whole domain (0 ≤ η ≤ ∞) . A parametric study of the all governing parameters is accomplished and the physical results are shown graphically.

  9. Non-linear heat and mass transfer in a MHD Homann nanofluid flow through a porous medium with chemical reaction, heat generation and uniform inflow

    Science.gov (United States)

    EL-Dabe, N. T.; Attia, H. A.; Essawy, M. A. I.; Ramadan, A. A.; Abdel-Hamid, A. H.

    2016-11-01

    The steady MHD axisymmetric flow of an incompressible viscous electrically conducting nanofluid impinging on a permeable plate is investigated with heat and mass transfer. An external uniform magnetic field as well as a uniform inflow, in the presence of either suction or injection, are applied normal to the plate. The effects of heat (generation/absorption) and chemical reaction have been accentuated. This study indicates the incorporated influence of both the thermophoresis phenomenon and the Brownian behavior. Numerical solutions for the governing non-linear momentum, energy and nanoparticle equations have been obtained. The rates of heat and mass transfer are presented and discussed.

  10. MHD Energy Bypass Scramjet Engine

    Science.gov (United States)

    Mehta, Unmeel B.; Bogdanoff, David W.; Park, Chul; Arnold, Jim (Technical Monitor)

    2001-01-01

    Revolutionary rather than evolutionary changes in propulsion systems are most likely to decrease cost of space transportation and to provide a global range capability. Hypersonic air-breathing propulsion is a revolutionary propulsion system. The performance of scramjet engines can be improved by the AJAX energy management concept. A magneto-hydro-dynamics (MHD) generator controls the flow and extracts flow energy in the engine inlet and a MHD accelerator downstream of the combustor accelerates the nozzle flow. A progress report toward developing the MHD technology is presented herein. Recent theoretical efforts are reviewed and ongoing experimental efforts are discussed. The latter efforts also include an ongoing collaboration between NASA, the US Air Force Research Laboratory, US industry, and Russian scientific organizations. Two of the critical technologies, the ionization of the air and the MHD accelerator, are briefly discussed. Examples of limiting the combustor entrance Mach number to a low supersonic value with a MHD energy bypass scheme are presented, demonstrating an improvement in scramjet performance. The results for a simplified design of an aerospace plane show that the specific impulse of the MHD-bypass system is better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Equilibrium ionization and non-equilibrium ionization are discussed. The thermodynamic condition of air at the entrance of the engine inlet determines the method of ionization. The required external power for non-equilibrium ionization is computed. There have been many experiments in which electrical power generation has successfully been achieved by magneto-hydrodynamic (MHD) means. However, relatively few experiments have been made to date for the reverse case of achieving gas acceleration by the MHD means. An experiment in a shock tunnel is described in which MHD acceleration is investigated experimentally. MHD has several

  11. Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task 1

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal fired, closed cycle, magnetohydrodynamic power generation are detailed. These accomplishments relate to all system aspects of a CCMHD power generation system including coal combustion, heat transfer to the MHD working fluid, MHD power generation, heat and cesium seed recovery and overall systems analysis. Direct coal firing of the combined cycle has been under laboratory development in the form of a high slag rejection, regeneratively air cooled cyclone coal combustor concept, originated within this program. A hot bottom ceramic regenerative heat exchanger system was assembled and test fired with coal for the purposes of evaluating the catalytic effect of alumina on NO/sub x/ emission reduction and operability of the refractory dome support system. Design, procurement, fabrication and partial installation of a heat and seed recovery flow apparatus was accomplished and was based on a stream tube model of the full scale system using full scale temperatures, tube sizes, rates of temperature change and tube geometry. Systems analysis capability was substantially upgraded by the incorporation of a revised systems code, with emphasis on ease of operator interaction as well as separability of component subroutines. The updated code was used in the development of a new plant configuration, the Feedwater Cooled (FCB) Brayton Cycle, which is superior to the CCMHD/Steam cycle both in performance and cost. (WHK)

  12. Scaling Group Transformation for MHD Boundary Layer Slip Flow of a Nanofluid over a Convectively Heated Stretching Sheet with Heat Generation

    Directory of Open Access Journals (Sweden)

    Md. Jashim Uddin

    2012-01-01

    Full Text Available Steady viscous incompressible MHD laminar boundary layer slip flow of an electrically conducting nanofluid over a convectively heated permeable moving linearly stretching sheet has been investigated numerically. The effects of Brownian motion, thermophoresis, magnetic field, and heat generation/absorption are included in the nanofluid model. The similarity transformations for the governing equations are developed. The effects of the pertinent parameters, Lewis number, magnetic field, Brownian motion, heat generation, thermophoretic, momentum slip and Biot number on the flow field, temperature, skin friction factor, heat transfer rate, and nanoparticle, volume fraction rate are displayed in both graphical and tabular forms. Comparisons of analytical (for special cases and numerical solutions with the existing results in the literature are made and is found a close agreement, that supports the validity of the present analysis and the accuracy of our numerical computations. Results for the reduced Nusselt and Sherwood numbers are provided in tabular and graphical forms for various values of the flow controlling parameters which govern the momentum, energy, and the nanoparticle volume fraction transport in the MHD boundary layer.

  13. Open-cycle magnetohydrodynamic power plant with CO.sub.2 recycling

    Science.gov (United States)

    Berry, Gregory F.

    1991-01-01

    A method of converting the chemical energy of fossil fuel to electrical and mechanical energy with a MHD generator. The fossil fuel is mixed with preheated oxygen and carbon dioxide and a conducting seed of potassium carbonate to form a combustive and electrically conductive mixture which is burned in a combustion chamber. The burned combustion mixture is passed through a MHD generator to generate electrical energy. The burned combustion mixture is passed through a diffuser to restore the mixture approximately to atmospheric pressure, leaving a spent combustion mixture which is used to heat oxygen from an air separation plant and recycled carbon dioxide for combustion in a high temperature oxygen preheater and for heating water/steam for producing superheated steam. Relatively pure carbon dioxide is separated from the spent combustion mixture for further purification or for exhaust, while the remainder of the carbon dioxide is recycled from the spent combustion mixture to a carbon dioxide purification plant for removal of water and any nitrous oxides present, leaving a greater than 98% pure carbon dioxide. A portion of the greater then 98% pure carbon dioxide stream is recovered and the remainder is recycled to combine with the oxygen for preheating and combination with the fossil fuel to form a combustion mixture.

  14. Viscous Dissipation and Thermal Radiation effects in MHD flow of Jeffrey Nanofluid through Impermeable Surface with Heat Generation/Absorption

    Science.gov (United States)

    Sharma, Kalpna; Gupta, Sumit

    2017-06-01

    This paper investigates steady two dimensional flow of an incompressible magnetohydrodynamic (MHD) boundary layer flow and heat transfer of nanofluid over an impermeable surface in presence of thermal radiation and viscous dissipation. By using similarity transformation, the arising governing equations of momentum, energy and nanoparticle concentration are transformed into coupled nonlinear ordinary differential equations, which are than solved by homotopy analysis method (HAM). The effect of different physical parameters, namely, Prandtl number Pr, Eckert number Ec, Magnetic parameter M, Brownian motion parameter Nb, Thermophoresis parameter Nt, Lewis parameter Le and Radiation parameter Rd on the velocity, temperature and concentration profiles along with the Nusselt number and skin friction coefficient are discussed graphically and in tabular form in details. The present results are also compared with existing limiting solutions.

  15. Three-dimensional, time-dependent, MHD model of a solar flare-generated interplanetary shock wave

    Science.gov (United States)

    Dryer, M.; Wu, S. T.; Han, S. M.

    1986-01-01

    A three-dimensional time-dependent MHD model of the propagation of an interplanetary shock wave into an ambient three-dimensional heliospheric solar wind is initialized with a peak velocity of 1000 km/s at the center of a right circular cone of 18 deg included angle at 18 solar radii. Differences from a previous 2-1/2 simulation (Wu et al., 1983; Gislason et al., 1984; Dryer et al., 1984) include diminuation of the solar peak velocity and concentration of the peak density at each radius. The IMF magnitude starts with high-latitude peaks, and helical-like IMF rotation is noted due to a large-amplitude nonlinear Alfven wave in the shocked plasma.

  16. Radiation-driven MHD systems for space applications

    Science.gov (United States)

    Lee, J. H.; Jalufka, N. W.

    High-power radiation such as concentrated solar or high-power laser radiation is considered as a driver for magnetohydrodynamic (MHD) systems which could be developed for efficient power generation and propulsion in space. Eight different systems are conceivable since the MHD systems can be classified in two: plasma and liquid-metal MHD's. Each of these systems is reviewed and solar- (or laser-) driven MHD thrusters are proposed.

  17. RADIATION EFFECTS ON MHD FLOW PAST AN IMPULSIVELY STARTED EXPONENTIALLY ACCELERATED VERTICAL PLATE WITH VARIABLE TEMPERATURE IN THE PRESENCE OF HEAT GENERATION

    Directory of Open Access Journals (Sweden)

    A.G Vijaya Kumar,

    2011-04-01

    Full Text Available The objective of the present study is to investigate Radiation effects on unsteady MHD flow of an electrically conducting radiating, viscous, incompressible fluid past an impulsively started movingexponentially accelerated vertical plate with variable temperature in the presence of heat generation and applied transverse magnetic field. The fluid is considered is gray, absorbing/emitting radiation but a nonscattering medium. At time t > 0, the temperature of the plate raised linearly with time t. The dimensionless governing equations involved in the present analysis are solved using the Laplace transform technique. The velocity, temperature, skin friction and the rate of heat transfer are shown graphically and with some numerical computations in terms of the parameters M(the magnetic fieldparameter, R(the radiation parameter, H(the heat source parameter, Pr(the prendtl number, a(exponential index and t(time.

  18. Modeling of fast neutral-beam-generated ion effects on MHD-spectroscopic observations of resistive wall mode stability in DIII-D plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Turco, F., E-mail: turcof@fusion.gat.com; Hanson, J. M.; Navratil, G. A. [Columbia University, 116th and Broadway, New York, New York 10027 (United States); Turnbull, A. D. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States)

    2015-02-15

    Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall β{sub N} limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing β{sub N}, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma to an externally applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code [Liu et al., Phys. Plasmas 15, 112503 (2008)], which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ∼13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest β{sub N} levels (∼90% of the ideal no-wall limit). The toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high β{sub N}.

  19. Open-cycle vapor compression heat pump. Annual progress report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    Sakhuja, R.; Becker, F.E.

    1981-05-05

    Approximately 10 percent of U.S. energy is used by industry in the form of process steam at 100 psi or less. In many industrial plants, a portion of this steam is simply vented to the atmosphere or condensed after use in the process because it cannot be fully utilized or economically recovered. Also, a great amount of low-grade heat energy is wasted because it cannot be economically recovered. Recovery and upgrading of these low-grade steam or waste heat sources offers a great potential of energy conservation. Thermo Electron is developing an open cycle vapor compression steam heat pump to meet this objective. The system utilizes excess low-pressure steam or that produced from an industrial excess heat source with a waste heat boiler and compresses this steam to the desired pressure level for process use. The compressor is driven by a prime mover such as a gas turbine, gas engine, etc. The prime mover exhaust heat also can be recovered to generate additional process steam. The fuel consumption of this system can be as low as 30 to 50 percent in comparison to a direct-fired boiler over the expected range of process conditions. Simple payback periods as low as one year can be achieved.

  20. On Spectral Relaxation Method for Entropy Generation on a MHD Flow and Heat Transfer of a Maxwell Fluid

    Directory of Open Access Journals (Sweden)

    Stanford Shateyi

    2015-01-01

    Full Text Available The present study investigates entropy generation on a magnetohydrodynamic flow and heat transfer of a Maxwell fluid using a spectral relaxation method. The method is based on simple iteration schemes formed by reduction of the order of the momentum equation followed by a rearrangement of the resulting governing nonlinear equation systems which are then solved using spectral methods. The velocity and temperature profiles are obtained numerically and used to generate the entropy generation number. Entropy generation increased with the Reynolds number, the magnetic parameter and the dimensionless group parameter while decreased for higher Prandtl numbers. The effect of the flow parameters on the velocity and temperature of the flow were also investigated. The results were validated using the bvp4c where the spectral relaxation method was found to be accurate and rapidly convergent to the numerical results.

  1. Effects of temperature dependent conductivity and absorptive/generative heat transfer on MHD three dimensional flow of Williamson fluid due to bidirectional non-linear stretching surface

    Science.gov (United States)

    Bilal, S.; Khalil-ur-Rehman; Malik, M. Y.; Hussain, Arif; Khan, Mair

    Present work is communicated to identify characteristics of magnetohydrodynamic (MHD) three dimensional boundary layer flow of Williamson fluid confined by a bidirectional stretched surface. Conductivity of working fluid is assumed to be temperature dependent. Generative/absorptive heat transfer is also taken into account. Mathematical model is formulated in the form of partial expressions and then transmuted into ordinary differential equations with the help of newfangled set of similarity transformations. The resulting non-linear differential system of equations is solved numerically with the aid of Runge-Kutta algorithm supported by shooting method. Flow features are exemplified quantitatively through graphs. Scintillating results for friction factor and convective heat transfer are computed and scrutinized tabularly. Furthermore, the accuracy of present results is tested with existing literature and we found an excellent agreement. It is inferred that velocity along x-direction mounts whereas along y-direction depreciates for incrementing values of stretching ratio parameter. Moreover, it is also elucidated that non-linearity index tends to decrement the velocity and thermal distributions of fluid flow.

  2. [Development of open cycling air pressure control system used for glaucoma research].

    Science.gov (United States)

    Zhang, Hong; Li, Gui-gang; Wang, Xue-fang; Hu, Wei-kun; Xie, Er-juan; Chen, Lian-yi; Shan, Chang-mei; Zhao, Guo-hong

    2006-06-01

    To develop and set up a new culture system, which can apply pressure to cultured cells with open cycling air. The effects of this new system on the pH value, HCO(3)(-) concentration, O(2) pressure (pO(2)), CO2 pressure (pCO(2)) and the proliferation of retinal pigment epithelium (RPE) were tested to evaluate its efficiency in the study of glaucoma. In the open cycling air pressure control culture system, the pressure inside the culture flasks was controlled by increase or decrease of the perfuse airflow. The influence of different culture systems (normal pressure culture system, open cycling air pressure control system and occlusive pressure control system) on the pH value, HCO(3)(-) concentration, pO(2), pCO(2) and proliferation of RPE were tested. The data were analyzed with SPSS software. The open cycling air pressure control culture system worked effectively, the pressure inside the culture flask can be controlled from 0 to 100 mm Hg. The difference of pH value, HCO(3)(-) concentration, pO(2), and pCO(2) of culture medium and the proliferation of RPE between normal pressure culture system and open cycling air pressure control system were not significant (P = 0.927, 0.887, 0.818, 0.770, 0.719, respectively). There was significant difference in these data between normal pressure culture system and occlusive pressure control system (P = 0.001, 0.000, 0.000, 0.000, 0.000, respectively). A new designed standard culture system applying pressure to cells with open cycling air was effective at pressure controlling and pH value, HCO(3)(-) concentration, pO(2) and pCO(2) controlling. This system may act as an ideal model in the experimental study of glaucoma.

  3. MHD Flow Control

    Science.gov (United States)

    2006-09-01

    Aerospace Applications, AIAA-Paper 96-2355, New Orleans, 1996 2. V.A.Bityurin, A.N.Bocharov, J.Lineberry, MHD Aerospace Applications, Invited Lecture ...Paper 2003- 4303, Orlando, FL 8. V.A.Bityurin, Prospective of MHD Interaction in Hypersonic and Propulsion Technologies, In: von Karman Series : Lectures ...Efforts in MHD AeoSpace Applications, In: von Karman Series : Lectures , Introduction of Magneto-Fluid Dynamics for AeroSpace Applications, von Karman

  4. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    Science.gov (United States)

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1988-01-01

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  5. Effects of Radiation and Chemical Reaction on MHD Convective Flow over a Permeable Stretching Surface with Suction and Heat Generation

    Directory of Open Access Journals (Sweden)

    Penem Mohan KRISNA

    2014-03-01

    Full Text Available In this study, we analyze the effects of thermal radiation and chemical reaction on the steady 2 dimensional stagnation point flow of a viscous incompressible electrically conducting fluid over a stretching surface, with suction and heat generation. The partial differential equations governing the flow are solved numerically by using the shooting technique. The effects of various parameters on velocity, temperature, and concentration profiles, as well as Nusselt number, Skin friction coefficient, and Sherwood number, are examined, and presented graphically and through tables. It is found that velocity, temperature, and rate of heat transfer of the fluid are influenced more by radiation and chemical reaction parameters, along with applied magnetic field.

  6. Review and assessments of potential environmental, health and safety impacts of MHD technology. Final draft

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The purpose of this document is to develop an environmental, health and safety (EH and S) assessment and begin a site - specific assessment of these and socio - economic impacts for the magnetohydrodynamics program of the United States Department of Energy. This assessment includes detailed scientific and technical information on the specific EH and S issues mentioned in the MHD Environmental Development Plan. A review of current literature on impact-related subjects is also included. This document addresses the coal-fired, open-cycle MHD technology and reviews and assesses potential EH and S impacts resulting from operation of commercially-installed technology.

  7. Internal friction between fluid particles of MHD tangent hyperbolic fluid with heat generation: Using coefficients improved by Cash and Karp

    Science.gov (United States)

    Salahuddin, T.; Khan, Imad; Malik, M. Y.; Khan, Mair; Hussain, Arif; Awais, Muhammad

    2017-05-01

    The present work examines the internal resistance between fluid particles of tangent hyperbolic fluid flow due to a non-linear stretching sheet with heat generation. Using similarity transformations, the governing system of partial differential equations is transformed into a coupled non-linear ordinary differential system with variable coefficients. Unlike the current analytical works on the flow problems in the literature, the main concern here is to numerically work out and find the solution by using Runge-Kutta-Fehlberg coefficients improved by Cash and Karp (Naseer et al., Alexandria Eng. J. 53, 747 (2014)). To determine the relevant physical features of numerous mechanisms acting on the deliberated problem, it is sufficient to have the velocity profile and temperature field and also the drag force and heat transfer rate all as given in the current paper.

  8. The influence of thermal radiation on MHD station-point flow past a stretching sheet with heat generation

    Institute of Scientific and Technical Information of China (English)

    Jing Zhu; Lian-Cun Zheng; Xin-Xin Zhang

    2011-01-01

    This letter is concerned with the plane and axisymmetric stagnation-point flows and heat transfer of an electrically-conducting fluid past a stretching sheet in the presence of the thermal radiation and heat generation or absorption. The analytical solutions for the velocity distribution and dimensionless temperature profiles are obtained for the various values of the ratio of free stream velocity and stretching velocity,heat source parameter,Prandtl number,thermal radiation parameter,the suction and injection velocity parameter and magnetic parameter and dimensionality index in the series form with the help of homotopy analysis method(HAM). Convergence of the series is explicitly discussed. In addition,shear stress and heat flux at the surface are calculated.

  9. Heat line analysis for MHD mixed convection flow of nanofluid within a driven cavity containing heat generating block

    Science.gov (United States)

    Parvin, Salma; Siddiqua, Ayesha

    2016-07-01

    Mixed convective flow and heat transfer characteristics of nanofluid inside a double lid driven cavity with a square heat generating block is analyzed numerically based on heat line approach. The water- alumina nanofluid is chosen as the operational fluid through the enclosure. The governing partial differential equations with proper boundary conditions are solved by Finite Element Method using Galerkin's weighted residual scheme. Calculations are performed for different solid volume fraction (χ) of nanoparticles 0 ≤ χ ≤ 0.15. Results are shown in terms of stream lines, isothermal lines, heat lines, average Nusselt number, average velocity and average temperature. An enhancement in heat transfer rate is observed with the increase of nanoparticles volume fraction.

  10. MHD flow and heat transfer of a micropolar fluid over a stretching surface with heat generation (absorption and slip velocity

    Directory of Open Access Journals (Sweden)

    Mostafa A.A. Mahmoud

    2012-04-01

    Full Text Available In this work, the effects of slip velocity on the flow and heat transfer for an electrically conducting micropolar fluid over a permeable stretching surface with variable heat flux in the presence of heat generation (absorption and a transverse magnetic field are investigated. The governing partial differential equations describing the problem are converted to a system of non-linear ordinary differential equations by using the similarity transformation, which is solved numerically using the Chebyshev spectral method. The effects of the slip parameter on the flow, micro-rotation and temperature profiles as well as on the local skin-friction coefficient, the wall couple stress and the local Nusselt number are presented graphically. The numerical results of the local skin-friction coefficient, the wall couple stress and the local Nusselt number are given in a tabular form and discussed.

  11. MHD control in burning plasmas MHD control in burning plasmas

    Science.gov (United States)

    Donné, Tony; Liang, Yunfeng

    2012-07-01

    Fusion physics focuses on the complex behaviour of hot plasmas confined by magnetic fields with the ultimate aim to develop a fusion power plant. In the future generation of tokamaks like ITER, the power generated by the fusion reactions substantially exceeds the external input power (Pfusion}/Pin >= 10). When this occurs one speaks of a burning plasma. Twenty per cent of the generated fusion power in a burning plasma is carried by the charged alpha particles, which transfer their energy to the ambient plasma in collisions, a process called thermalization. A new phenomenon in burning plasmas is that the alpha particles, which form a minority but carry a large fraction of the plasma kinetic energy, can collectively drive certain types of magneto-hydrodynamic (MHD) modes, while they can suppress other MHD modes. Both types of MHD modes can have desirable effects on the plasma, as well as be detrimental to the plasma. For example, the so-called sawtooth instability, on the one hand, is largely responsible for the transport of the thermalized alpha particles out of the core, but, on the other hand, may result in the loss of the energetic alphas before they have fully thermalized. A further undesirable effect of the sawtooth instability is that it may trigger other MHD modes such as neoclassical tearing modes (NTMs). These NTMs, in turn, are detrimental to the plasma confinement and in some cases may even lead to disruptive termination of the plasma. At the edge of the plasma, finally, so-called edge localized modes or ELMs occur, which result in extremely high transient heat and particle loads on the plasma-facing components of a reactor. In order to balance the desired and detrimental effects of these modes, active feedback control is required. An additional complication occurs in a burning plasma as the external heating power, which is nowadays generally used for plasma control, is small compared to the heating power of the alpha particles. The scientific challenge

  12. Conservative numerical methods for a two-temperature resistive MHD model with self-generated magnetic field term

    Directory of Open Access Journals (Sweden)

    Imbert-Gérard Lise-Marie

    2011-11-01

    Full Text Available We propose numerical methods on Cartesian meshes for solving the 2-D axisymmetric two-temperature resistivive magnetohydrodynamics equations with self-generated magnetic field and Braginskii’s [1] closures. These rely on a splitting of the complete system in several subsystems according to the nature of the underlying mathematical operator. The hyperbolic part is solved using conservative high-order dimensionally split Lagrange-remap schemes whereas semi-implicit diffusion operators have been developed for the thermal and resistive conduction equations. Source terms are treated explictly. Numerical results on the deceleration phase of an ICF implosion test problem are proposed, a benchmark which was initially proposed in [2]. Nous proposons dans cet article des méthodes numériques pour les équations de la magnétohydrodynamique résistive à deux températures avec champ magnétique auto-généré et relations de fermeture de Braginskii [1] en géométrie 2-D axisymétrique sur maillage cartésien. Celles-ci sont basées sur une décomposition du système complet selon la nature des opérateurs mathématiques sous-jacents. La partie hyperbolique est résolue par des schémas conservatifs Lagrange-projection d’ordre élevé en directions alternées tandis que des opérateurs de diffusion semi-implicites ont été développés pour les équations de conduction thermique et résistive. Les termes sources sont traités de manière explicite. Des résultats numériques sur un cas-test simulant la phase de décélération d’une implosion de capsule FCI sont proposés, ce benchmark ayant été initialement présenté dans [2].

  13. Open-Cycle Gas Turbine/Steam Turbine Combined Cycles with synthetic fuels from coal

    Science.gov (United States)

    Shah, R. P.; Corman, J. C.

    1977-01-01

    The Open-Cycle Gas Turbine/Steam Turbine Combined Cycle can be an effective energy conversion system for converting coal to electricity. The intermediate step in this energy conversion process is to convert the coal into a fuel acceptable to a gas turbine. This can be accomplished by producing a synthetic gas or liquid, and by removing, in the fuel conversion step, the elements in the fuel that would be harmful to the environment if combusted. In this paper, two open-cycle gas turbine combined systems are evaluated: one employing an integrated low-Btu gasifier, and one utilizing a semi-clean liquid fuel. A consistent technical/economic information base is developed for these two systems, and is compared with a reference steam plant burning coal directly in a conventional furnace.

  14. The open-cycle gas-core nuclear rocket engine - Some engineering considerations.

    Science.gov (United States)

    Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyk, L. C.

    1971-01-01

    A preliminary design study of a conceptual 6000-MW open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 44,200 lb and a specific impulse of 4400 sec. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel) and the waste heat rejection system were considered conceptually and were sized.

  15. Simple MHD Equilibria

    Science.gov (United States)

    Schnack, Dalton D.

    In this lecture we will examine some simple examples of MHD equilibrium configurations. These will all be in cylindrical geometry. They form the basis for more complicated equilibrium states in toroidal geometry.

  16. Two-Dimensional MHD Numerical Simulations of Magnetic Reconnection Triggered by A Supernova Shock in Interstellar Medium, Generation of X-Ray Gas in Galaxy

    CERN Document Server

    Tanuma, S; Kudoh, T; Shibata, K; Tanuma, Syuniti; Yokoyama, Takaaki; Kudoh, Takahiro; Shibata, Kazunari

    2001-01-01

    We examine the magnetic reconnection triggered by a supernova (or a point explosion) in interstellar medium, by performing two-dimensional resistive magnetohydrodynamic (MHD) numerical simulations with high spatial resolution. We found that the magnetic reconnection starts long after a supernova shock (fast-mode MHD shock) passes a current sheet. The current sheet evolves as follows: (i) Tearing-mode instability is excited by the supernova shock, and the current sheet becomes thin in its nonlinear stage. (ii) The current-sheet thinning is saturated when the current-sheet thickness becomes comparable to that of Sweet-Parker current sheet. After that, Sweet-Parker type reconnection starts, and the current-sheet length increases. (iii) ``Secondary tearing-mode instability'' occurs in the thin Sweet-Parker current sheet. (iv) As a result, further current-sheet thinning occurs and anomalous resistivity sets in, because gas density decreases in the current sheet. Petschek type reconnection starts and heats interste...

  17. Theoretical study on the ideal open cycle of the liquid nitrogen engine

    Institute of Scientific and Technical Information of China (English)

    俞小莉; 元广杰; 苏石川; 蒋彦龙; 陈国邦

    2002-01-01

    This article described the characteristics of the liquid nitrogen engine's ideal open cycle.Using two interconnecting strokes to achieve the power output can mitigate the trade-off between high efficiency and the potential mechanical complexity of multiple-cylinder engines. The total specific energy of the binary media (methane-nitrogen) cycle system could be much higher than the unitary medium (liquid nitrogen) cycle system. By theoretical analysis, the reasonably acceptable driving range proved the feasibility of the liquid nitrogen engine used for supplying power for a lightweight car.

  18. Theoretical study on the ideal open cycle of the liquid nitrogen engine

    Institute of Scientific and Technical Information of China (English)

    俞小莉; 元广杰; 苏石川; 蒋彦龙; 陈国邦

    2002-01-01

    This article described the characteristics of the liquid nitrogen engine's ideal open cycle. Using two interconnecting strokes to achieve the power output can mitigate the trade-off between high efficiency and the potential mechanical complexity of multiple-cylinder engines. The total specific energy of the binary media (methane-nitrogen) cycle system could be much higher than the unitary medium (liquid nitrogen) cycle system. By theoretical analysis, the reasonably acceptable driving range proved the feasibility of the liquid nitrogen engine used for supplying power for a lightweight car.

  19. Open-cycle centrifugal vapor-compression heat pump. Final report, January 1986-May 1987

    Energy Technology Data Exchange (ETDEWEB)

    Burgmeier, L.R.; Horner, J.E.

    1987-11-30

    The objectives of the program were (1) to develop an open-cycle, high-lift, centrifugal steam-compressor system that can be efficiently retrofitted to existing multi-effect and high-temperature differential evaporators while maintaining the cost benefits of a single-stage centrifugal compressor, and (2) to demonstrate the energy saving and cost benefits of driving the compressor with a natural-gas-fueled gas-turbine engine. The turbine exhaust was to be used for final drying of the product that was evaporated. The report describes the installation of the system and the test activities through May 1987.

  20. Open-cycle desiccant air conditioning as an alternative to vapor compression cooling in residential applications

    Energy Technology Data Exchange (ETDEWEB)

    Jurinak, J.J.; Beckman, W.A.; Mitchell, J.W.

    1984-08-01

    The performance of open-cycle desiccant air conditioners for residential applications is evaluated. The performance of these systems is compared to that of vapor compression air conditioners on the basis of primary energy use and cost. Systems with improved dehumidifiers can achieve seasonal COP's on the order of 1.1. These systems, when coupled with a solar energy system to supply regeneration energy, are significantly better than conventional air conditioners on a primary energy basis, but are not presently cost-competitive.

  1. Open-cycle centrifugal vapor-compression heat pump. Annual report, March 1984-February 1985

    Energy Technology Data Exchange (ETDEWEB)

    Iles, T.L.; Burgmeier, L.R.; Liu, A.Y.

    1985-04-01

    The objectives of the program are to (1) develop an open-cycle high-lift centrifugal steam compressor system that can be efficiently retrofitted to existing multi-effect and high-temperature differential evaporators while maintaining the cost benefits of a single-stage centrifugal compressor and (2) demonstrate the energy saving and cost benefits of driving the compressor with a natural-gas-fueled gas turbine engine. The turbine exhaust will be used for final drying of the product that was evaporated. This report describes the design and fabrication of the system and the test activities through February 1985.

  2. Open-cycle centrifugal vapor-compression heat pump. Annual report, March 1983-February 1984

    Energy Technology Data Exchange (ETDEWEB)

    Iles, T.L.; Burgmeier, L.R.; Stanko, J.E.

    1984-04-01

    The objectives of this program are: (1) to develop an open-cycle high-lift centrifugal steam compressor system that can be efficiently retrofitted to existing multi-effect and high-temperature differential evaporators while maintaining the cost benefits of a single-stage centrifugal compressor and (2) to demonstrate the energy saving and cost benefits of driving the compressor with a natural-gas-fueled gas turbine engine. The turbine exhaust will be used for final drying of the product that was evaporated. This report describes the design and fabrication of the system and the test activities through February 1984.

  3. Energy Cascades in MHD

    Science.gov (United States)

    Alexakis, A.

    2009-04-01

    Most astrophysical and planetary systems e.g., solar convection and stellar winds, are in a turbulent state and coupled to magnetic fields. Understanding and quantifying the statistical properties of magneto-hydro-dynamic (MHD) turbulence is crucial to explain the involved physical processes. Although the phenomenological theory of hydro-dynamic (HD) turbulence has been verified up to small corrections, a similar statement cannot be made for MHD turbulence. Since the phenomenological description of Hydrodynamic turbulence by Kolmogorov in 1941 there have been many attempts to derive a similar description for turbulence in conducting fluids (i.e Magneto-Hydrodynamic turbulence). However such a description is going to be based inevitably on strong assumptions (typically borrowed from hydrodynamics) that do not however necessarily apply to the MHD case. In this talk I will discuss some of the properties and differences of the energy and helicity cascades in turbulent MHD and HD flows. The investigation is going to be based on the analysis of direct numerical simulations. The cascades in MHD turbulence appear to be a more non-local process (in scale space) than in Hydrodynamics. Some implications of these results to turbulent modeling will be discussed

  4. Unsteady MHD free convective flow past a vertical porous plate ...

    African Journals Online (AJOL)

    user

    2000 Mathematics subject classification: 76 W 05. Keywords: Free ... the design of MHD generators and accelerators, underground water energy storage system etc. ... In many works on plasma physics, the Hall effect is disregarded. But if the.

  5. Seawater test results of Open-Cycle Ocean Thermal Energy Conversion (OC-OTEC) components

    Science.gov (United States)

    Zangrando, F.; Bharathan, D.; Link, H.; Panchal, C. B.

    Key components of open-cycle ocean thermal energy conversion systems- the flash evaporator, mist eliminator, passive predeaerator, two surface condenser stages, and two direct-contact condenser stages- have been tested using seawater. These components operate at lower steam pressures and higher inlet noncondensable gas concentrations than do conventional power plant heat exchangers. The rate of heat exchanged between the evaporator and the condenser is on the order of 1.25MW-thermal, requiring a warm seawater flow of about 0.1 cu m/s; the cold seawater flow is on the order of half the warm water flow. In addition to characterizing the performance of the various components, the system has produced potable water from condensation of the steam produced in the evaporator. The information obtained in these tests is being used to design a larger scale experiment in which net power production is expected to be demonstrate for the first time using OC-OTEC technology.

  6. Dimensional approach on hot air turbine power plant in opened cycle for straw recycling

    Science.gov (United States)

    Bălănescu, D. T.; Homutescu, V. M.; Atanasiu, M. V.

    2016-08-01

    Currently, disposal of straw is one of the biggest problems that crop plant producers are facing. The ideal case implies not only to get rid of straw but also to recover its energetic potential. In this context, the performance of a hot air turbine power plant operating in open cycle, with straw as fuel, was analyzed in a previous study and proved to be a very interesting solution for straw disposal. As consequence, dimensional analysis of the hot air turbine power plant is required into the next step and this makes the subject of the present study. The dimensional analysis is focused on the compressed air heater - the largest component of the Power Plant, with crucial role in what concerns its entire size and mass. Once both performance and dimensional analysis performed, the final conclusions are drawn in an overall approach, by taking also into consideration the economic aspects.

  7. Open-cycle vapor compression heat pump. Annual technical report Jan-Dec 82

    Energy Technology Data Exchange (ETDEWEB)

    Becker, F.E.; Ruggles, A.E.

    1983-04-01

    Large quantities of low-grade energy are wasted by industry in the form of low-pressure steam and low-temperature heat. The practical and economical recovery of energy from these sources is restricted by the limited number of useful applications for low-grade energy, and is further complicated by contamination of the waste streams. Thermo Electron has developed an open-cycle steam heat pump system capable of the direct recovery and upgrading of low-grade waste steam. The system compresses low-pressure waste steam (or steam made from sources of low-temperature waste heat) to produce high-pressure steam suitable for use in industrial processes.

  8. Some results of the study of the application of the MHD method to power engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shelkov, Ye.M.; Pishchikov, S.I.; Pinkhasik, M.S.; Zakharko, Yu.A.

    1977-10-01

    Several stages in the development of experimental MHD units in the USSR are described and the characteristics of the units listed. The U-25 unit has been in operation since 1971, producing 20 to 25 MW burning natural gas in oxygen-enriched air with 1 mol. % potassium ionizing additive. Photographs are presented of the combustion chamber, MHD generator and MHD generator with top cover removed. The measurement and recording system is outlined.

  9. Proceedings of the workshop on nonlinear MHD and extended MHD

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  10. Nonlinear helical MHD instability

    Energy Technology Data Exchange (ETDEWEB)

    Zueva, N.M.; Solov' ev, L.S.

    1977-07-01

    An examination is made of the boundary problem on the development of MHD instability in a toroidal plasma. Two types of local helical instability are noted - Alfven and thermal, and the corresponding criteria of instability are cited. An evaluation is made of the maximum attainable kinetic energy, limited by the degree to which the law of conservation is fulfilled. An examination is made of a precise solution to a kinematic problem on the helical evolution of a cylindrical magnetic configuration at a given velocity distribution in a plasma. A numerical computation of the development of MHD instability in a plasma cylinder by a computerized solution of MHD equations is made where the process's helical symmetry is conserved. The development of instability is of a resonance nature. The instability involves the entire cross section of the plasma and leads to an inside-out reversal of the magnetic surfaces when there is a maximum unstable equilibrium configuration in the nonlinear stage. The examined instability in the tore is apparently stabilized by a magnetic hole when certain limitations are placed on the distribution of flows in the plasma. 29 references, 8 figures.

  11. Soret and Dufour Effects on Unsteady MHD Heat and Mass Transfer from a Permeable Stretching Sheet with Thermophoresis and Non-Uniform Heat Generation/Absorption

    Directory of Open Access Journals (Sweden)

    P. Sudarsana Reddy

    2016-01-01

    Full Text Available This paper is focused on the study of heat and mass transfer characteristics of an unsteady MHD boundary layer flow through porous medium over a stretching sheet in the presence of thermo-diffusion and diffusion-thermo effects with thermophoresis, thermal radiation and non-uniform heat source/sink. The transformed conservation equations are solved numerically subject to the boundary conditions using an optimized, extensively validated, variational finite element analysis. The numerical code is validated with previous studies on special cases of the problem. The influence of important non-dimensional parameters, namely suction parameter (f_w, magnetic parameter (M, unsteadiness parameter (α, Soret parameter (Sr, Dufour parameter (Du thermophoretic parameter (τ, space dependent (A1 and temperature dependent parameters (B1 and radiation parameter(An on the velocity, temperature and concentration fields as well as the skin-friction coefficient, Nusselt number and Sherwood number are examined in detail and the results are shown graphically and in tabular form to know the physical importance of the problem. It is found that the imposition of wall fluid suction (f_w>0 in the flow problem has the effect of depreciating the velocity, temperature and concentration boundary layer thicknesses at every finite value of η. This deceleration in momentum, thermal and concentration profiles is because of the fact that suction is taken away the warm fluid from the surface of the stretching sheet.

  12. Open-cycle vapor-compression heat pump. Annual report, April 1983-April 1984

    Energy Technology Data Exchange (ETDEWEB)

    Becker, F.E.; Ruggles, A.E.

    1984-05-01

    Large quantities of low-grade energy in the form of low-pressure steam and low-temperature heat are wasted by industry. The practical and economical recovery of energy from these sources is often limited by the number of applications for the use of low-temperature heat. Thermo Electron has developed an open-cycle steam-heat-pump system capable of the direct recovery and upgrading of low-grade waste steam. The system compresses low-pressure waste steam (or steam made from sources of low-temperature waste heat) to produce high-pressure steam suitable for use in industrial processes. A prototype system has been developed that is capable of recovering and recompressing up to 10,000 lb/hr of waste steam, while using only 50 percent of the fuel that would be required to produce comparable steam in a boiler. The prototype steam recompression system, using a 2200-cfm rotary screw compressor driven by a 500-hp natural-gas engine, was tested at Thermo Electron and then installed at the Monsanto Company in western Massachusetts for a yearlong field test.

  13. Open-cycle vapor compression heat pump. Final report, January 1979-January 1985

    Energy Technology Data Exchange (ETDEWEB)

    Becker, F.E.; Ruggles, A.E.

    1985-03-01

    Large quantities of low-grade energy in the form of low-pressure steam and low-temperature heat are often discharged to the environment by industry. The practical and economical recovery of energy from these sources is often limited by the number of applications that can directly use low-temperature heat. Thermo Electron has developed an open-cycle steam heat-pump system capable of the direct recovery and upgrading of low-grade waste energy. The system compresses low-pressure waste steam (or steam made from sources of low-temperature waste heat) to produce high-pressure steam suitable for use in industrial processes. A prototype system has been developed that is capable of recovering and recompressing up to 10,000 lb/hr of waste steam, while using only 50% of the fuel that would be required to produce comparable steam in a boiler. The prototype steam-recompression system, using a 2200-cfm rotary-screw compressor, driven by a 500-hp natural-gas engine, was tested at Thermo Electron and then installed at the Monsanto Company in western Massachusetts for a year-long field test.

  14. Mhd models for pne

    Directory of Open Access Journals (Sweden)

    G. García Segura

    2000-01-01

    Full Text Available Se presenta un escenario auto consistente para explicar la morfolog a de las nebulosas planetarias. El escenario es consistente con la distribuci on Gal actica de los diferentes tipos morfol ogicos. Este trabajo resuelve, por medio de efectos MHD, algunas de las caracter sticas controversiales que aparecen en las nebulosas planetarias. Estas caracter sticas incluyen la presencia de ujos axisim etricos y colimados, con una cinem atica que aumenta linealmente con la distancia y la existencia de morfolog as asim etricas tales como las de las nebulosas con simetr a de punto.

  15. MHD turbulence and distributed chaos

    CERN Document Server

    Bershadskii, A

    2016-01-01

    It is shown, using results of recent direct numerical simulations, that spectral properties of distributed chaos in MHD turbulence with zero mean magnetic field are similar to those of hydrodynamic turbulence. An exception is MHD spontaneous breaking of space translational symmetry, when the stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$ has $\\beta=4/7$.

  16. Type I Planetary Migration with MHD Turbulence

    CERN Document Server

    Laughlin, G; Adams, F; Laughlin, Gregory; Steinacker, Adriane; Adams, Fred

    2004-01-01

    This paper examines how type I planet migration is affected by the presence of turbulent density fluctuations in the circumstellar disk. For type I migration, the planet does not clear a gap in the disk and its secular motion is driven by torques generated by the wakes it creates in the surrounding disk fluid. MHD turbulence creates additional density perturbations that gravitationally interact with the planet and can dominate the torques produced by the migration mechanism itself. This paper shows that conventional type I migration can be readily overwhelmed by turbulent perturbations and hence the usual description of type I migration should be modified in locations where the magnetorotational instability is active. In general, the migrating planet does not follow a smooth inward trned, but rather exhibits a random walk through phase space. Our main conclusion is that MHD turbulence will alter the time scales for type I planet migration and -- because of chaos -- requires the time scales to be described by ...

  17. Simulating solar MHD

    Directory of Open Access Journals (Sweden)

    M. Schüssler

    Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 105 G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.

    Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.

  18. Annular MHD Physics for Turbojet Energy Bypass

    Science.gov (United States)

    Schneider, Steven J.

    2011-01-01

    The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).

  19. Nonlinear MHD dynamo operating at equipartition

    DEFF Research Database (Denmark)

    Archontis, V.; Dorch, Bertil; Nordlund, Åke

    2007-01-01

    Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy-equipartition a......Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy......-equipartition and a turbulent state. The generation and evolution of such strong magnetic fields is relevant for the understanding of dynamo action that occurs in stars and other astrophysical objects. Aims.We study the mode of operation of this dynamo, in the linear and non-linear saturation regimes. We also consider...... the effect of varying the magnetic and fluid Reymolds number on the non-linear behaviour of the system. Methods.We perform three-dimensional non-linear MHD simulations and visualization using a high resolution numerical scheme. Results.We find that this dynamo has a high growth rate in the linear regime...

  20. Numerical Study of Entropy Generation in Mixed MHD Convection in a Square Lid-Driven Cavity Filled with Darcy–Brinkman–Forchheimer Porous Medium

    Directory of Open Access Journals (Sweden)

    Rahma Bouabda

    2016-12-01

    Full Text Available This investigation deals with the numerical simulation of entropy generation at mixed convection flow in a lid-driven saturated porous cavity submitted to a magnetic field. The magnetic field is applied in the direction that is normal to the cavity cross section. The governing equations, written in the Darcy–Brinkman–Forchheimer formulation, are solved using a numerical code based on the Control Volume Finite Element Method. The flow structure and heat transfer are presented in the form of streamlines, isotherms and average Nusselt number. The entropy generation was studied for various values of Darcy number (10−3 ≤ Da ≤ 1 and for a range of Hartmann number (0 ≤ Ha ≤ 102. It was found that entropy generation is affected by the variations of the considered dimensionless physical parameters. Moreover, the form drag related to the Forchheimer effect remains significant until a critical Hartmann number value.

  1. Effects of space and temperature dependent internal heat generation/absorption on MHD flow of a nanofluid over a stretching sheet

    Institute of Scientific and Technical Information of China (English)

    GANGA B; SARANYA S; VISHNU GANESH N; ABDUL HAKEEM A K

    2015-01-01

    In this paper we analyzed the effects of space and temperature dependent internal heat generation/absorption (non-uniform heat source/sink) on magnetohydrodynamic boundary layer flow of water based nanofluid over a stretching sheet with different nanoparticles. The flow is generated due to linear stretching of the sheet and influenced by uniform magnetic field, which is applied normally to the stretching sheet. A scaling group of transformation is used to reduce the governing momentum and energy equations into non-linear ordinary differential equations. The resulting differential equations are solved analytically using hypergeometric functions and numerically by the fourth order Runge-Kutta method with shooting technique. The influence of nanoparticle volume fraction, magnetic field, Prandtl number, non uniform heat source/sink, local skin friction coefficient and reduced Nusselt number are investigated for different nanoparticles.

  2. The impact of three dimensional MHD instabilities on the generation of warm dense matter using a MA-class linear transformer driver

    Science.gov (United States)

    Gourdain, P.-A.; Seyler, C. E.

    2017-09-01

    Warm dense matter is difficult to generate since it corresponds to a state of matter which pressure is order of magnitude larger than can be handled by natural materials. A diamond anvil can be used to pressurize matter up to one Gbar, this matter is at high density but at room temperature. High power lasers and heavy ion beams can generate warm dense matter on time scales where measuring quasi-static transport coefficients such as viscosity or heat conduction proves difficult since both experimental techniques relies on inertial confinement. We present here a third method to generate warm dense matter. It uses a pulsed-power driver which current rise time is substantially shortened by using a plasma opening switch, limiting the development of electrothermal instabilities. The switch relies on the implosion of a gas puff Z-pinch which carries most of the discharge current until the pinch reaches the sample. After that, the sample is compressed until it reaches the warm dense matter regime. Three-dimensional magnetohydrodynamics computations show that if the density of the gas is low enough no detectable instabilities (e.g. kinks and sausages modes) impede the remainder of the implosion.

  3. Three-dimensional fluid and electrodynamic modeling for MHD DCW channels

    Science.gov (United States)

    Liu, B. L.; Lineberry, J. T.; Schmidt, H. J.

    1983-01-01

    A three dimensional, numerical solution for modeling diagonal conducting wall (DCW) magnetohydrodynamic (MHD) generators is developed and discussed. Cross plane gasdynamic and electrodynamic profiles are computed considering coupled MHD flow and electrical phenomena. A turbulent transport model based on the mixing length theory is used to deal with wall roughness generated turbulence effects. The infinitely fine electrode segmentation formulation is applied to simplify the governing electrical equations. Calculations show the development of distorted temperature and velocity profiles under influence of magnetohydrodynamic interaction. Since both sidewall and electrode wall boundary losses are treated, the results furnish a realistic representation of MHD generator behavior.

  4. MHD mixed convection and entropy generation of water-alumina nanofluid flow in a double lid driven cavity with discrete heating

    Science.gov (United States)

    Hussain, S.; Mehmood, K.; Sagheer, M.

    2016-12-01

    In the present study, entropy generation due to mixed convection in a partially heated square double lid driven cavity filled with Al2O3 -water nanofluid under the influence of inclined magnetic field is numerically investigated. At the lower wall of the cavity two heat sources are fixed, with the condition that the remaining part of the bottom wall is kept insulated. Top wall and vertically moving walls are maintained at constant cold temperature. Buoyant force is responsible for the flow along with the two moving vertical walls. Governing equations are discretized in space using LBB-stable finite element pair Q2 / P1disc which lead to 3rd and 2nd order accuracy in the L2-norm for the velocity/temperature and pressure, respectively and the fully implicit Crank-Nicolson scheme of 2nd order accuracy is utilized for the temporal discretization. The discretized systems of nonlinear equations are treated by using the Newton method and the associated linear subproblems are solved by means of Guassian elimination method. Numerical results are presented and analyzed by means of streamlines, isotherms, tables and some useful plots. Impacts of emerging parameters on the flow, in specific ranges such as Reynolds number (1 ≤ Re ≤ 100) , Richardson number (1 ≤ Ri ≤ 50) , Hartman number (0 ≤ Ha ≤ 100) , solid volume fraction (0 ≤ ϕ ≤ 0.2) as well as the angles of inclined magnetic field (0 ° ≤ γ ≤ 90 °) are investigated and the findings are exactly of the same order as that of the previously performed analysis. Calculation of average Nusselt number, entropy generation due to heat transfer, fluid friction and magnetic field, total entropy generation, Bejan number and kinetic energy are the main focus of our study.

  5. Entropy Generation on MHD Flow of Powell-Eyring Fluid Between Radially Stretching Rotating Disk with Diffusion-Thermo and Thermo-Diffusion Effects

    Directory of Open Access Journals (Sweden)

    Khan Najeeb Alam

    2017-03-01

    Full Text Available An investigation is performed for an alyzing the effect of entropy generation on the steady, laminar, axisymmetric flow of an incompressible Powell-Eyring fluid. The flow is considered in the presence of vertically applied magnetic field between radially stretching rotating disks. The Energy and concentration equation is taking into account to investigate the heat dissipation, Soret, Dufour and Joule heating effects. To describe the considered flow non-dimensionalized equations, an exact similarity function is used to reduce a set of the partial differential equation into a system of non-linear coupled ordinary differential equation with the associated boundary conditions. Using homotopy analysis method (HAM, an analytic solution for velocity, temperature and concentration profiles are obtained over the entire range of the imperative parameters. The velocity components, concentration and temperature field are used to determine the entropy generation. Plots illustrate important results on the effect of physical flow parameters. Results obtained by means of HAM are then compared with the results obtained by using optimized homotopy analysis method (OHAM. They are in very good agreement.

  6. Radiation, Heat Generation and Viscous Dissipation Effects on MHD Boundary Layer Flow for the Blasius and Sakiadis Flows with a Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    K. GANGADHAR

    2015-01-01

    Full Text Available This study is devoted to investigate the radiation, heat generation viscous dissipation and magnetohydrodynamic effects on the laminar boundary layer about a flat-plate in a uniform stream of fluid (Blasius flow, and about a moving plate in a quiescent ambient fluid (Sakiadis flow both under a convective surface boundary condition. Using a similarity variable, the governing nonlinear partial differential equations have been transformed into a set of coupled nonlinear ordinary differential equations, which are solved numerically by using shooting technique alongside with the forth order of Runge-Kutta method and the variations of dimensionless surface temperature and fluid-solid interface characteristics for different values of Magnetic field parameter M, Grashof number Gr, Prandtl number Pr, radiation parameter NR, Heat generation parameter Q, Convective parameter  and the Eckert number Ec, which characterizes our convection processes are graphed and tabulated. Quite different and interesting behaviors were encountered for Blasius flow compared with a Sakiadis flow. A comparison with previously published results on special cases of the problem shows excellent agreement.

  7. Flow Matching Results of an MHD Energy Bypass System on a Supersonic Turbojet Engine Using the Numerical Propulsion System Simulation (NPSS) Environment

    Science.gov (United States)

    Benyo, Theresa L.

    2011-01-01

    Flow matching has been successfully achieved for an MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment helped perform a thermodynamic cycle analysis to properly match the flows from an inlet employing a MHD energy bypass system (consisting of an MHD generator and MHD accelerator) on a supersonic turbojet engine. Working with various operating conditions (such as the applied magnetic field, MHD generator length and flow conductivity), interfacing studies were conducted between the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis. This paper further describes the analysis of a supersonic turbojet engine with an MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to a range of 0 to 7.0 Mach with specific net thrust range of 740 N-s/kg (at ambient Mach = 3.25) to 70 N-s/kg (at ambient Mach = 7). These results were achieved with an applied magnetic field of 2.5 Tesla and conductivity levels in a range from 2 mhos/m (ambient Mach = 7) to 5.5 mhos/m (ambient Mach = 3.5) for an MHD generator length of 3 m.

  8. Lie group analysis of heat and mass transfer effects on steady MHD free convection dissipative fluid flow past an inclined porous surface with heat generation

    Directory of Open Access Journals (Sweden)

    Reddy Gnaneswara M.

    2012-01-01

    Full Text Available In this paper, an analysis has been carried out to study heat and mass transfer effects on steady two-dimensional flow of an electrically conducting incompressible dissipating fluid past an inclined semi-infinite porous surface with heat generation. A scaling group of transformations is applied to the governing equations. The system remains invariant due to some relations among the parameters of the transformations. After finding three absolute invariants, a third-order ordinary differential equation corresponding to the momentum equation, and two secondorder ordinary differential equations corresponding to energy and diffusion equations are derived. The coupled ordinary differential equations along with the boundary conditions are solved numerically. Many results are obtained and a representative set is displayed graphically to illustrate the influence of the various parameters on the dimensionless velocity, temperature and concentration profiles. Comparisons with previously published work are performed and the results are found to be in very good agreement.

  9. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, Alexandra; Koster, Sander; Eijkel, Jan C.T.; Berg, van den Albert; Lucklum, F.; Verpoorte, E.; Rooij, de Nico F.

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined

  10. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachin

  11. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  12. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  13. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops

    CERN Document Server

    Al-Ghafri, Khalil Salim

    2015-01-01

    The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops namely thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function that ensures the temperature evolution of the background plasma due to radiation coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglect the magnetic field perturbation and eventually reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale much larger than the oscillation period that subsequently enables...

  14. Machine modification for active MHD control in RFX

    Energy Technology Data Exchange (ETDEWEB)

    Sonato, P. E-mail: sonato@igi.pd.cnr.it; Chitarin, G.; Zaccaria, P.; Gnesotto, F.; Ortolani, S.; Buffa, A.; Bagatin, M.; Baker, W.R.; Dal Bello, S.; Fiorentin, P.; Grando, L.; Marchiori, G.; Marcuzzi, D.; Masiello, A.; Peruzzo, S.; Pomaro, N.; Serianni, G

    2003-09-01

    Recent studies on RFP and Tokamak devices call for an active control of the MHD and resistive wall modes to induce plasma mode rotation and to prevent mode phase locking. The results obtained on RFX, where slow rotation of phase locked modes has been induced, support the possibility of extending active MHD mode control through a substantial modification of the device. A new first wall with an integrated system of electric and magnetic transducers has been realised. A close fitting 3 mm thick Cu shell replaces the 65 mm Al shell. A toroidal support structure (TSS) made of stainless steel replaces the shell in supporting all the forces acting on the torus. A system of 192 saddle coils is provided to actively control the MHD modes. This system completely surrounds the toroidal surface and allows the generation of harmonic fields with m=0 and m=1 poloidal wave number and with a toroidal spectrum up to n=24.

  15. Using Coronal Hole Maps to Constrain MHD Models

    Science.gov (United States)

    Caplan, Ronald M.; Downs, Cooper; Linker, Jon A.; Mikic, Zoran

    2017-08-01

    In this presentation, we explore the use of coronal hole maps (CHMs) as a constraint for thermodynamic MHD models of the solar corona. Using our EUV2CHM software suite (predsci.com/chd), we construct CHMs from SDO/AIA 193Å and STEREO-A/EUVI 195Å images for multiple Carrington rotations leading up to the August 21st, 2017 total solar eclipse. We then contruct synoptic CHMs from synthetic EUV images generated from global thermodynamic MHD simulations of the corona for each rotation. Comparisons of apparent coronal hole boundaries and estimates of the net open flux are used to benchmark and constrain our MHD model leading up to the eclipse. Specifically, the comparisons are used to find optimal parameterizations of our wave turbulence dissipation (WTD) coronal heating model.

  16. Numerical Simulation of Pulse Detonation Rocket-Induced MHD Ejector (PDRIME) Concepts for Advanced Propulsion Systems

    Science.gov (United States)

    2012-02-28

    Engineering, 2010. 8 Roth, T., “ Modeling and Numerical Simulations of Pulse Detonation Engines with MHD Thrust Augmentation”, M.S. thesis, Department of...throat, at time 2.3ms. Results are shown for the PDE (blow-down model ) with and without MHD generation in the region between 0.4 and 0.8m from the...down model ) for different values of the exit- to-throat area ratio and for different altitudes, without MHD generation and without the presence of the

  17. The Biermann Catastrophe in Numerical MHD

    CERN Document Server

    Graziani, Carlo; Lee, Dongwook; Lamb, Donald Q; Weide, Klaus; Fatenejad, Milad; Miller, Joshua

    2014-01-01

    The Biermann Battery effect is a popular mechanism for generating magnetic fields in initially unmagnetized plasmas, and is frequently invoked in cosmic magnetogenesis and studied in High-Energy Density laboratory physics experiments. Generation of magnetic fields by the Biermann effect due to mis-aligned density and temperature gradients in smooth flow _behind_ shocks is well known. We show that a magnetic field is also generated _within_ shocks as a result of the electron-ion charge separation that they induce. A straightforward implementation of the Biermann effect in MHD codes does not capture this physical process, and worse, produces unphysical magnetic fields at shocks whose value does not converge with resolution. We show that this breakdown of convergence is due to naive discretization. We show that a careful consideration of the kinetic picture of ion viscous shocks leads to a formulation of the Biermann effect in terms of the electron temperature -- which is continuous across shocks -- that gives r...

  18. Problems in nonlinear resistive MHD

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L. [General Atomics, San Diego, CA (United States)

    1998-12-31

    Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1.

  19. Magnetohydrodynamic (MHD) channel corner seal

    Science.gov (United States)

    Spurrier, Francis R.

    1980-01-01

    A corner seal for an MHD duct includes a compressible portion which contacts the duct walls and an insulating portion which contacts the electrodes, sidewall bars and insulators. The compressible portion may be a pneumatic or hydraulic gasket or an open-cell foam rubber. The insulating portion is segmented into a plurality of pieces of the same thickness as the electrodes, insulators and sidewall bars and aligned therewith, the pieces aligned with the insulator being of a different size from the pieces aligned with the electrodes and sidewall bars to create a stepped configuration along the corners of the MHD channel.

  20. Sustainability Indicators for Open-Cycle Thorium-Fuelled Nuclear Energy

    OpenAIRE

    2012-01-01

    The potential for countries which currently have a nominal nuclear energy infrastructure to adopt thorium-uranium-fuelled nuclear energy systems, using a once-through “open” nuclear fuel cycle, has been presented by the International Atomic Energy Agency. This paper highlights Generation III and III+ nuclear energy technologies that could potentially adopt an open thorium-uranium fuel cycle and qualitatively highlights the main differences between the open thorium-uranium and open uranium fue...

  1. System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134

    Energy Technology Data Exchange (ETDEWEB)

    Annen, K.D.

    1981-08-01

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

  2. Initial Flow Matching Results of MHD Energy Bypass on a Supersonic Turbojet Engine Using the Numerical Propulsion System Simulation (NPSS) Environment

    Science.gov (United States)

    Benyo, Theresa L.

    2010-01-01

    Preliminary flow matching has been demonstrated for a MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment was used to perform a thermodynamic cycle analysis to properly match the flows from an inlet to a MHD generator and from the exit of a supersonic turbojet to a MHD accelerator. Working with various operating conditions such as the enthalpy extraction ratio and isentropic efficiency of the MHD generator and MHD accelerator, interfacing studies were conducted between the pre-ionizers, the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis and describes the NPSS analysis of a supersonic turbojet engine with a MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to an explored and desired range of 0 to 7.0 Mach.

  3. Direct-contact condensers for open-cycle OTEC applications: Model validation with fresh water experiments for structured packings

    Science.gov (United States)

    Bharathan, D.; Parsons, B. K.; Althof, J. A.

    1988-10-01

    The objective of the reported work was to develop analytical methods for evaluating the design and performance of advanced high-performance heat exchangers for use in open-cycle thermal energy conversion (OC-OTEC) systems. This report describes the progress made on validating a one-dimensional, steady-state analytical computer of fresh water experiments. The condenser model represents the state of the art in direct-contact heat exchange for condensation for OC-OTEC applications. This is expected to provide a basis for optimizing OC-OTEC plant configurations. Using the model, we examined two condenser geometries, a cocurrent and a countercurrent configuration. This report provides detailed validation results for important condenser parameters for cocurrent and countercurrent flows. Based on the comparisons and uncertainty overlap between the experimental data and predictions, the model is shown to predict critical condenser performance parameters with an uncertainty acceptable for general engineering design and performance evaluations.

  4. Direct-contact condensers for open-cycle OTEC applications: Model validation with fresh water experiments for structured packings

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.; Parsons, B.K.; Althof, J.A.

    1988-10-01

    The objective of the reported work was to develop analytical methods for evaluating the design and performance of advanced high-performance heat exchangers for use in open-cycle thermal energy conversion (OC-OTEC) systems. This report describes the progress made on validating a one-dimensional, steady-state analytical computer of fresh water experiments. The condenser model represents the state of the art in direct-contact heat exchange for condensation for OC-OTEC applications. This is expected to provide a basis for optimizing OC-OTEC plant configurations. Using the model, we examined two condenser geometries, a cocurrent and a countercurrent configuration. This report provides detailed validation results for important condenser parameters for cocurrent and countercurrent flows. Based on the comparisons and uncertainty overlap between the experimental data and predictions, the model is shown to predict critical condenser performance parameters with an uncertainty acceptable for general engineering design and performance evaluations. 33 refs., 69 figs., 38 tabs.

  5. Do open-cycle hatcheries relying on tourism conserve sea turtles? Sri Lankan developments and economic-ecological considerations.

    Science.gov (United States)

    Tisdell, Clem; Wilson, Clevo

    2005-04-01

    By combining economic analysis of markets with ecological parameters, this article considers the role that tourism-based sea turtle hatcheries (of an open-cycle type) can play in conserving populations of sea turtles. Background is provided on the nature and development of such hatcheries in Sri Lanka. The modeling facilitates the assessment of the impacts of turtle hatcheries on the conservation of sea turtles and enables the economic and ecological consequences of tourism, based on such hatcheries, to be better appreciated. The results demonstrate that sea turtle hatcheries serving tourists can make a positive contribution to sea turtle conservation, but that their conservation effectiveness depends on the way they are managed. Possible negative effects are also identified. Economic market models are combined with turtle population survival relationships to predict the conservation impact of turtle hatcheries and their consequence for the total economic value obtained from sea turtle populations.

  6. MHD Turbulence and Magnetic Dynamos

    Science.gov (United States)

    Shebalin, John V

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much

  7. Magnetic levitation and MHD propulsion

    Science.gov (United States)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d

  8. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops

    Indian Academy of Sciences (India)

    K. S. Al-Ghafri

    2015-06-01

    The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops, namely, thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function, that ensures the temperature evolution of the background plasma due to radiation, coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglecting the magnetic field perturbation and, eventually, reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale, much larger than the oscillation period that subsequently enables using the WKB theory to study the properties of standing wave. The governing equation describing the time-dependent amplitude of waves is obtained and solved analytically. The analytically derived solutions are numerically evaluated to give further insight into the evolution of the standing acoustic waves. We find that the plasma cooling gives rise to a decrease in the amplitude of oscillations. In spite of the reduction in damping rate caused by rising the cooling, the damping scenario of slow standing MHD waves strongly increases in hot coronal loops.

  9. 3D MHD Models of Active Region Loops

    Science.gov (United States)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  10. Integral Constraints and MHD Stability

    Science.gov (United States)

    Jensen, T. H.

    2003-10-01

    Determining stability of a plasma in MHD equilibrium, energetically isolated by a conducting wall, requires an assumption on what governs the dynamics of the plasma. One example is the assumption that the plasma obeys ideal MHD, leading to the well known ``δ W" criteria [I. Bernstein, et al., Proc. Roy. Soc. London A244, 17 (1958)]. A radically different approach was used by Taylor [J.B. Taylor, Rev. Mod. Phys. 58, 741 (1986)] in assuming that the dynamics of the plasma is restricted only by the requirement that helicity, an integral constant associated with the plasma, is conserved. The relevancy of Taylor's assumption is supported by the agreement between resulting theoretical results and experimental observations. Another integral constraint involves the canonical angular momentum of the plasma particles. One consequence of using this constraint is that tokamak plasmas have no poloidal current in agreement with some current hole tokamak observations [T.H. Jensen, Phys. Lett. A 305, 183 (2002)].

  11. Shunting ratios for MHD flows

    Energy Technology Data Exchange (ETDEWEB)

    Birzvalk, Yu.

    1978-01-01

    The shunting ratio and the local shunting ratio, pertaining to currents induced by a magnetic field in a flow channel, are properly defined and systematically reviewed on the basis of the Lagrange criterion. Their definition is based on the energy balance and related to dimensionless parameters characterizing an MHD flow, these parameters evolving from the Hartmann number and the hydrodynamic Reynolds number as well as the magnetic Reynolds number, and the Lundquist number. These shunting ratios, of current density in the core of a stream (uniform) or equivalent mean current density to the short-circuit (maximum) current density, are given here for a slot channel with nonconducting or conducting walls, for a conduction channel with heavy side rails, and for an MHD-flow around bodies. 5 references, 1 figure.

  12. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Design Requirements Document (DRD)

    Science.gov (United States)

    Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.

    1981-01-01

    A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.

  13. MHD Turbulence in Accretion Disk Boundary Layers

    CERN Document Server

    Chan, Chi-kwan

    2012-01-01

    The physical modeling of the accretion disk boundary layer, the region where the disk meets the surface of the accreting star, usually relies on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear viscosity, widely adopted in astrophysics, satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability is inefficient in this inner disk region. I will discuss the results of a recent study on the generation of hydromagnetic stresses and energy density in the boundary layer around a weakly magnetized star. Our findings suggest that although magnetic energy density can be significantly amplified in this region, angular momentum transport is rather inefficient. This seems consistent with the results obtained in numerical simulations...

  14. The Biermann catastrophe of numerical MHD

    Science.gov (United States)

    Graziani, C.; Tzeferacos, P.; Lee, D.; Lamb, D. Q.; Weide, K.; Fatenejad, M.; Miller, J.

    2016-05-01

    The Biermann Battery effect is frequently invoked in cosmic magnetogenesis and studied in High-Energy Density laboratory physics experiments. Unfortunately, direct implementation of the Biermann effect in MHD codes is known to produce unphysical magnetic fields at shocks whose value does not converge with resolution. We show that this convergence breakdown is due to naive discretization, which fails to account for the fact that discretized irrotational vector fields have spurious solenoidal components that grow without bound near a discontinuity. We show that careful consideration of the kinetics of ion viscous shocks leads to a formulation of the Biermann effect that gives rise to a convergent algorithm. We note a novel physical effect a resistive magnetic precursor in which Biermann-generated field in the shock “leaks” resistively upstream. The effect appears to be potentially observable in experiments at laser facilities.

  15. NaK-nitrogen liquid metal MHD converter tests at 30 kw

    Science.gov (United States)

    Cerini, D. J.

    1974-01-01

    The feasibility of electrical power generation with an ambient temperature liquid-metal MHD separator cycle is demonstrated by tests in which a NaK-nitrogen LM-MHD converter was operated at nozzle inlet pressures ranging from 100 to 165 N/sq cm, NaK flow rates from 46 to 72 kg/sec, and nitrogen flow rates from 2.4 to 3.8 kg/sec. The generator was operated as an eight-phase linear induction generator, with two of the eight phases providing magnetic field compensation to minimized electrical end losses at the generator channel inlet and exit.

  16. Open cycle thermoacoustics

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Robert Stowers [Georgia Inst. of Technology, Atlanta, GA (United States)

    2000-01-01

    A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.

  17. Results of scoping tests for open-cycle OTEC (ocean thermal energy conversion) components operating with seawater

    Energy Technology Data Exchange (ETDEWEB)

    Zangrando, F; Bharathan, D; Green, H J; Link, H F; Parsons, B K; Parsons, J M; Pesaran, A A [Solar Energy Research Inst., Golden, CO (USA); Panchal, C B [Argonne National Lab., IL (USA)

    1990-09-01

    This report presents comprehensive documentation of the experimental research conducted on open-cycle ocean thermal energy conversion (OC-OTEC) components operating with seawater as a working fluid. The results of this research are presented in the context of previous analysis and fresh-water testing; they provide a basis for understanding and predicting with confidence the performance of all components of an OC-OTEC system except the turbine. Seawater tests have confirmed the results that were obtained in fresh-water tests and predicted by the analytical models of the components. A sound technical basis has been established for the design of larger systems in which net power will be produced for the first time from OC-OTEC technology. Design and operation of a complete OC-OTEC system that produces power will provide sufficient confidence to warrant complete transfer of OC-OTEC technology to the private sector. Each components performance is described in a separate chapter written by the principal investigator responsible for technical aspects of the specific tests. Chapters have been indexed separately for inclusion on the data base.

  18. MHD Driving of Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Arieh Königl

    2007-01-01

    Full Text Available Paulatinamente se ha ido reconociendo que los campos magnéticos juegan un papel dominante en la producción y colimación de chorros astrofísicos. Demostramos aquí, usando soluciones semianalíticas exactas para las ecuaciones de MHD ideal en relatividad especial, que un disco de acreción altamente magnetizado (con un campo magnético principalmente poloidal o azimutal alrededor de un agujero negro es capaz de acelerar un flujo de protones y electrones a los factores de Lorentz y energías cinéticas asociadas a fuentes de destellos de rayos gama y nucleos activos de galaxias. También se discuten las contribuciones a la aceleración provenientes de efectos térmicos (por presión de radiación y pares electrón-positrón y de MHD no ideal. Notamos que la aceleración por MHD se caracteriza por ser extendida espacialmente, y esta propiedad se manifesta más claramente en flujos relativistas. Las indicaciones observacionales de que la aceleración de movimientos superlumínicos en chorros de radio ocurre sobre escalas mucho más grandes que las del agujero negro propiamente, apoyan la idea de que la producción de chorros es principalmente un fenómeno magnético. Presentamos resultados preliminares de un modelo global que puede utilizarse para probar esta interpretación.

  19. Global MHD model of the earth's magnetosphere

    Science.gov (United States)

    Wu, C. C.

    1983-01-01

    A global MHD model of the earth's magnetosphere is defined. An introduction to numerical methods for solving the MHD equations is given with emphasis on the shock-capturing technique. Finally, results concerning the shape of the magnetosphere and the plasma flows inside the magnetosphere are presented.

  20. MHD Turbulence, Turbulent Dynamo and Applications

    CERN Document Server

    Beresnyak, Andrey

    2014-01-01

    MHD Turbulence is common in many space physics and astrophysics environments. We first discuss the properties of incompressible MHD turbulence. A well-conductive fluid amplifies initial magnetic fields in a process called small-scale dynamo. Below equipartition scale for kinetic and magnetic energies the spectrum is steep (Kolmogorov -5/3) and is represented by critically balanced strong MHD turbulence. In this paper we report the basic reasoning behind universal nonlinear small-scale dynamo and the inertial range of MHD turbulence. We measured the efficiency of the small-scale dynamo $C_E=0.05$, Kolmogorov constant $C_K=4.2$ and anisotropy constant $C_A=0.63$ for MHD turbulence in high-resolution direct numerical simulations. We also discuss so-called imbalanced or cross-helical MHD turbulence which is relevant for in many objects, most prominently in the solar wind. We show that properties of incompressible MHD turbulence are similar to the properties of Alfv\\'enic part of MHD cascade in compressible turbul...

  1. An MHD model of the earth's magnetosphere

    Science.gov (United States)

    Wu, C. C.

    1985-01-01

    It is pointed out that the earth's magnetosphere arises from the interaction of the solar wind with the earth's geomagnetic field. A global magnetohydrodynamics (MHD) model of the earth's magnetosphere has drawn much attention in recent years. In this model, MHD equations are used to describe the solar wind interaction with the magnetosphere. In the present paper, some numerical aspects of the model are considered. Attention is given to the ideal MHD equations, an equation of state for the plasma, the model as an initial- and boundary-value problem, the shock capturing technique, computational requirements and techniques for global MHD modeling, a three-dimensional mesh system employed in the global MHD model, and some computational results.

  2. Measurements of conductivity nonuniformities and fluctuations in combustion MHD plasmas

    Science.gov (United States)

    Kowalik, R. M.

    1980-03-01

    Diagnostics for the characterization of electrical conductivity nonuniformities in combustion magnetohydrodynamic (MHD) plasmas were developed. An initial characterization of nonuniformities in the Stanford M-2 linear generator was obtained and recommendations were made concerning the use of the diagnostics in practical MHD generator configurations. A laser induced fluorescene (LIF) diagnostic for nonintrusive measurements of local conductivity fluctuations was developed. This diagnostic and other line of sight averaged optical nonuniformity diagnostics were successfully demonstrated in several experiments in the Standford M-2 combustion systems. Results were used to characterize the nonuniformities in the M-2 system and to compare and evaluate the diagnostics. Conductivity nonuniformities were found to be predominantly streamers which had relatively long length scales of the order of l m in the axial flow direction. Shortet transverse length scales of the order of 0.1 m were found perpendicular to the flow direction. A combination of LIF and plasma luminosity diagnostics is recommended for future characterizations of conductivity uniformities in combustion MHD plasmas.

  3. Seismic Halos Around Active Regions: An MHD Theory

    CERN Document Server

    Hanasoge, Shravan M

    2007-01-01

    Comprehending the manner in which magnetic fields affect propagating waves is a first step toward the helioseismic construction of accurate models of active region sub-surface structure and dynamics. Here, we present a numerical method to compute the linear interaction of waves with magnetic fields embedded in a solar-like stratified background. The ideal Magneto-Hydrodynamic (MHD) equations are solved in a 3-dimensional box that straddles the solar photosphere, extending from 35 Mm within to 1.2 Mm into the atmosphere. One of the challenges in performing these simulations involves generating a Magneto-Hydro-Static (MHS) state wherein the stratification assumes horizontal inhomogeneity in addition to the strong vertical stratification associated with the near-surface layers. Keeping in mind that the aim of this effort is to understand and characterize linear MHD interactions, we discuss a means of computing statically consistent background states. Results from a simulation of waves interacting with a flux tub...

  4. Feasibility of MHD submarine propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D. (ed.) (Argonne National Lab., IL (United States)); Sikes, W.C. (ed.) (Newport News Shipbuilding and Dry Dock Co., VA (United States))

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

  5. Electron MHD: dynamics and turbulence

    CERN Document Server

    Lyutikov, Maxim

    2013-01-01

    (Abridged) We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron MHD (EMHD). We argue there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact non-linear solutions; (ii) co-linear whistlers do not interact (including counter-propagating); (iii) waves with the same value of the wave vector, $k_1=k_2$, do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero-mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfven turbulence cannot be transferred to the E...

  6. Effects of MHD slow shocks propagating along magnetic flux tubes in a dipole magnetic field

    Directory of Open Access Journals (Sweden)

    N. V. Erkaev

    2002-01-01

    Full Text Available Variations of the plasma pressure in a magnetic flux tube can produce MHD waves evolving into shocks. In the case of a low plasma beta, plasma pressure pulses in the magnetic flux tube generate MHD slow shocks propagating along the tube. For converging magnetic field lines, such as in a dipole magnetic field, the cross section of the magnetic flux tube decreases enormously with increasing magnetic field strength. In such a case, the propagation of MHD waves along magnetic flux tubes is rather different from that in the case of uniform magnetic fields. In this paper, the propagation of MHD slow shocks is studied numerically using the ideal MHD equations in an approximation suitable for a thin magnetic flux tube with a low plasma beta. The results obtained in the numerical study show that the jumps in the plasma parameters at the MHD slow shock increase greatly while the shock is propagating in the narrowing magnetic flux tube. The results are applied to the case of the interaction between Jupiter and its satellite Io, the latter being considered as a source of plasma pressure pulses.

  7. MHD stability limits in the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Reimerdes, H. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2001-07-01

    Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation {kappa} and triangularity {delta}, with high {kappa}, and low {delta} leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The

  8. Alfven Wave Tomography for Cold MHD Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    I.Y. Dodin; N.J. Fisch

    2001-09-07

    Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation.

  9. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

  10. Cosmological AMR MHD with Enzo

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hao [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory; Li, Shengtai [Los Alamos National Laboratory

    2009-01-01

    In this work, we present EnzoMHD, the extension of the cosmological code Enzoto include magnetic fields. We use the hyperbolic solver of Li et al. (2008) for the computation of interface fluxes. We use constrained transport methods of Balsara & Spicer (1999) and Gardiner & Stone (2005) to advance the induction equation, the reconstruction technique of Balsara (2001) to extend the Adaptive Mesh Refinement of Berger & Colella (1989) already used in Enzo, though formulated in a slightly different way for ease of implementation. This combination of methods preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non cosmologjcal tests problems to demonstrate the quality of solution resulting from this combination of solvers.

  11. Pulse Detonation Rocket MHD Power Experiment

    Science.gov (United States)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent

  12. Pulse Detonation Rocket MHD Power Experiment

    Science.gov (United States)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent

  13. Extended MHD Modeling of Tearing-Driven Magnetic Relaxation

    Science.gov (United States)

    Sauppe, Joshua

    2016-10-01

    Driven plasma pinch configurations are characterized by the gradual accumulation and episodic release of free energy in discrete relaxation events. The hallmark of this relaxation in a reversed-field pinch (RFP) plasma is flattening of the parallel current density profile effected by a fluctuation-induced dynamo emf in Ohm's law. Nonlinear two-fluid modeling of macroscopic RFP dynamics has shown appreciable coupling of magnetic relaxation and the evolution of plasma flow. Accurate modeling of RFP dynamics requires the Hall effect in Ohm's law as well as first order ion finite Larmor radius (FLR) effects, represented by the Braginskii ion gyroviscous stress tensor. New results find that the Hall dynamo effect from / ne can counter the MHD effect from - in some of the relaxation events. The MHD effect dominates these events and relaxes the current profile toward the Taylor state, but the opposition of the two dynamos generates plasma flow in the direction of equilibrium current density, consistent with experimental measurements. Detailed experimental measurements of the MHD and Hall emf terms are compared to these extended MHD predictions. Tracking the evolution of magnetic energy, helicity, and hybrid helicity during relaxation identifies the most important contributions in single-fluid and two-fluid models. Magnetic helicity is well conserved relative to the magnetic energy during relaxation. The hybrid helicity is dominated by magnetic helicity in realistic low-beta pinch conditions and is also well conserved. Differences of less than 1 % between magnetic helicity and hybrid helicity are observed with two-fluid modeling and result from cross helicity evolution through ion FLR effects, which have not been included in contemporary relaxation theories. The kinetic energy driven by relaxation in the computations is dominated by velocity components perpendicular to the magnetic field, an effect that had not been predicted. Work performed at University of Wisconsin

  14. Characteristics of laminar MHD fluid hammer in pipe

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.Y.; Liu, Y.J., E-mail: yajun@scut.edu.cn

    2016-01-01

    As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier–Stocks equations, coupling with Lorentz force is numerically solved in a reservoir–pipe–valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems. - Highlights: • Characteristics of laminar MHD fluid hammer are discussed by simulation. • MHD effect has significant influence on attenuation of wave. • MHD effect strengthens line packing. • MHD effect inhibits Richardson annular effect.

  15. Open cycle liquid desiccant dehumidifier and hybrid solar/electric absorption refrigeration system. Annual report, January 1993--December 1993. Calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Nimmo, B.G.; Thornbloom, M.D.

    1995-04-01

    This annual report presents work performed during calendar year 1993 by the Florida Solar Energy Center under contract to the US Department of Energy. Two distinctively different solar powered indoor climate control systems were analyzed: the open cycle liquid desiccant dehumidifier, and an improved efficiency absorption system which may be fired by flat plate solar collectors. Both tasks represent new directions relative to prior FSEC research in Solar Cooling and Dehumidification.

  16. Open Boundary Conditions for Dissipative MHD

    Energy Technology Data Exchange (ETDEWEB)

    Meier, E T

    2011-11-10

    In modeling magnetic confinement, astrophysics, and plasma propulsion, representing the entire physical domain is often difficult or impossible, and artificial, or 'open' boundaries are appropriate. A novel open boundary condition (BC) for dissipative MHD, called Lacuna-based open BC (LOBC), is presented. LOBC, based on the idea of lacuna-based truncation originally presented by V.S. Ryaben'kii and S.V. Tsynkov, provide truncation with low numerical noise and minimal reflections. For hyperbolic systems, characteristic-based BC (CBC) exist for separating the solution into outgoing and incoming parts. In the hyperbolic-parabolic dissipative MHD system, such separation is not possible, and CBC are numerically unstable. LOBC are applied in dissipative MHD test problems including a translating FRC, and coaxial-electrode plasma acceleration. Solution quality is compared to solutions using CBC and zero-normal derivative BC. LOBC are a promising new open BC option for dissipative MHD.

  17. Resistive MHD jet simulations with large resistivity

    CERN Document Server

    Cemeljic, Miljenko; Vlahakis, Nektarios; Tsinganos, Kanaris

    2009-01-01

    Axisymmetric resistive MHD simulations for radially self-similar initial conditions are performed, using the NIRVANA code. The magnetic diffusivity could occur in outflows above an accretion disk, being transferred from the underlying disk into the disk corona by MHD turbulence (anomalous turbulent diffusivity), or as a result of ambipolar diffusion in partially ionized flows. We introduce, in addition to the classical magnetic Reynolds number Rm, which measures the importance of resistive effects in the induction equation, a new number Rb, which measures the importance of the resistive effects in the energy equation. We find two distinct regimes of solutions in our simulations. One is the low-resistivity regime, in which results do not differ much from ideal-MHD solutions. In the high-resistivity regime, results seem to show some periodicity in time-evolution, and depart significantly from the ideal-MHD case. Whether this departure is caused by numerical or physical reasons is of considerable interest for nu...

  18. Open-cycle heat pumps for industrial waste-heat utilization. Project technical report, May 12, 1980-October 10, 1980. Phase I. Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Open-Cycle Industrial Process Heat Pumps (IPHP) are potentially a cost-effective method of utilizing an industrial plant's waste heat. The objective of Phase I of the work was to determine the feasibility of an open-cycle industrial process heat pump. This was accomplished by the evaluation of four potential sites for the installation of open-cycle industrial process heat pump equipment. While it was the original plan to evaluate only three sites, the need for a fourth site became apparent upon completion of studies of the Amstar applications. On the basis of initial screening, it was decided to concentrate on the large waste stream at General Electric's NORYL facility (Selkirk, NY) and a smaller waste stream at the Schoeller Paper Company (Pulaski, NY). These two sites provided opportunities to exploit the features of the open-cyle IPHP without major site constraints. Site studies were conducted to obtain process information such as flow rates, process temperatures, dynamic behavior of the process streams, process control functions, and capacity/time schedules. Information relating to structure and utilities, floor loadings, physical space constraints, electric service, piping runs between equipment location, and waste water tapping points was gathered. These data were analyzed and resulted in the selection of two applications with acceptable thermodynamic performance.

  19. MHD equilibria with diamagnetic effects

    Science.gov (United States)

    Tessarotto, M.; Zorat, R.; Johnson, J. L.; White, R. B.

    1997-11-01

    An outstanding issue in magnetic confinement is the establishment of MHD equilibria with enhanced flow shear profiles for which turbulence (and transport) may be locally effectively suppressed or at least substantially reduced with respect to standard weak turbulence models. Strong flows develop in the presence of equilibrium E× B-drifts produced by a strong radial electric field, as well as due to diamagnetic contributions produced by steep equilibrium radial profiles of number density, temperature and the flow velocity itself. In the framework of a kinetic description, this generally requires the construction of guiding-center variables correct to second order in the relevant expansion parameter. For this purpose, the Lagrangian approach developed recently by Tessarotto et al. [1] is adopted. In this paper the conditions of existence of such equilibria are analyzed and their basic physical properties are investigated in detail. 1 - M. Pozzo, M. Tessarotto and R. Zorat, in Theory of fusion Plasmas, E.Sindoni et al. eds. (Societá Italiana di Fisica, Editrice Compositori, Bologna, 1996), p.295.

  20. MHD Jets in inhomogeneous media

    Directory of Open Access Journals (Sweden)

    S. O´Sullivan

    2002-01-01

    Full Text Available Presentamos simulaciones de la propagaci on de jets moleculares no-adiab aticos en un medio ambiente inhomog eneo. Los jets tienen condiciones descritos por un modelo de jet MHD en el cual la forma de las l neas magn eticas se prescribe cerca de la fuente. Per les de densidad ambiental fueron elegidos para representar la zona de transici on entre las regiones exteriores de una nube molecular y el medio interestelar. Escalamos las tasas de enfriamiento at omico y molecular a niveles apropriados para resolver todas las escalas espaciales apropriadas. Con la inclusi on de variabilidad de la fuente, las simulaciones reproducen varias caracter sticas observacionales de jets moleculares, entre ellas las cavidades moleculares. Adicionalmente, encontramos similitudes entre teor a y observaci on para la fracci on de ionizaci on a lo largo del jet. Encontramos que la extensi on lateral de las super cies de trabajo internas son sensibles al medio ambiente. Tambi en presentamos resultados preliminares para un m etodo de calcular mapas de emisi on en l neas usando solamente variables fundamentales de estado que parecen reproducir la emisi on lamentosa de Balmer en frentes de choque.

  1. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

  2. Estimating a planetary magnetic field with time-dependent global MHD simulations using an adjoint approach

    Science.gov (United States)

    Nabert, Christian; Othmer, Carsten; Glassmeier, Karl-Heinz

    2017-05-01

    The interaction of the solar wind with a planetary magnetic field causes electrical currents that modify the magnetic field distribution around the planet. We present an approach to estimating the planetary magnetic field from in situ spacecraft data using a magnetohydrodynamic (MHD) simulation approach. The method is developed with respect to the upcoming BepiColombo mission to planet Mercury aimed at determining the planet's magnetic field and its interior electrical conductivity distribution. In contrast to the widely used empirical models, global MHD simulations allow the calculation of the strongly time-dependent interaction process of the solar wind with the planet. As a first approach, we use a simple MHD simulation code that includes time-dependent solar wind and magnetic field parameters. The planetary parameters are estimated by minimizing the misfit of spacecraft data and simulation results with a gradient-based optimization. As the calculation of gradients with respect to many parameters is usually very time-consuming, we investigate the application of an adjoint MHD model. This adjoint MHD model is generated by an automatic differentiation tool to compute the gradients efficiently. The computational cost for determining the gradient with an adjoint approach is nearly independent of the number of parameters. Our method is validated by application to THEMIS (Time History of Events and Macroscale Interactions during Substorms) magnetosheath data to estimate Earth's dipole moment.

  3. Evaluation of MHD materials for use in high-temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Guidotti, R.

    1978-06-15

    The MHD and high-temperature fuel cell literature was surveyed for data pertaining to materials properties in order to identify materials used in MHD power generation which also might be suitable for component use in high-temperature fuel cells. Classes of MHD-electrode materials evaluated include carbides, nitrides, silicides, borides, composites, and oxides. Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/ used as a reference point to evaluate materials for use in the solid-oxide fuel cell. Physical and chemical properties such as electrical resistivity, coefficient of thermal expansion, and thermodynamic stability toward oxidation were used to screen candidate materials. A number of the non-oxide ceramic MHD-electrode materials appear promising for use in the solid-electrolyte and molten-carbonate fuel cell as anodes or anode constituents. The MHD-insulator materials appear suitable candidates for electrolyte-support tiles in the molten-carbonate fuel cells. The merits and possible problem areas for these applications are discussed and additional needed areas of research are delineated.

  4. MHD-steam thermal power plant electrical stations with zero stack emission

    Energy Technology Data Exchange (ETDEWEB)

    Borghi, C.A.; Botti, M.; Ribani, P.L. [Univ. of Bologna (Italy)

    1994-12-31

    In the present work a system study of a combined cycle MHD-steam thermal power plant electrical station with zero stack emission through recirculation of CO{sub 2}, is presented. The design of the MHD generator of the topper is done by means of a quasi-one-dimensional optimisation model. The thermodynamic of the combustion gas, typical of this cycle, is considered. The technology of the components is conventional. An overall efficiency larger than 41% for power plants with electrical power inputs above 600 MWe, are obtained.

  5. A numerical code for a three-dimensional magnetospheric MHD equilibrium model

    Science.gov (United States)

    Voigt, G.-H.

    1992-01-01

    Two dimensional and three dimensional MHD equilibrium models were begun for Earth's magnetosphere. The original proposal was motivated by realizing that global, purely data based models of Earth's magnetosphere are inadequate for studying the underlying plasma physical principles according to which the magnetosphere evolves on the quasi-static convection time scale. Complex numerical grid generation schemes were established for a 3-D Poisson solver, and a robust Grad-Shafranov solver was coded for high beta MHD equilibria. Thus, the effects were calculated of both the magnetopause geometry and boundary conditions on the magnetotail current distribution.

  6. Dipole Alignment in Rotating MHD Turbulence

    Science.gov (United States)

    Shebalin, John V.; Fu, Terry; Morin, Lee

    2012-01-01

    We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.

  7. Linear MHD stability analysis of post-disruption plasmas in ITER

    Science.gov (United States)

    Aleynikova, K.; Huijsmans, G. T. A.; Aleynikov, P.

    2016-05-01

    Most of the plasma current can be replaced by a runaway electron (RE) current during plasma disruptions in ITER. In this case the post-disruption plasma current profile is likely to be more peaked than the pre-disruption profile. The MHD activity of such plasma will affect the runaway electron generation and confinement and the dynamics of the plasma position evolution (Vertical Displacement Event), limiting the timeframe for runaway electrons and disruption mitigation. In the present paper, we evaluate the influence of the possible RE seed current parameters on the onset of the MHD instabilities. By varying the RE seed current profile, we search for subsequent plasma evolutions with the highest and the lowest MHD activity. This information can be applied to a development of desirable ITER disruption scenario.

  8. Test particle acceleration in a numerical MHD experiment of an anemone jet

    CERN Document Server

    Rosdahl, Karl Joakim

    2010-01-01

    To use a 3D numerical MHD experiment representing magnetic flux emerging into an open field region as a background field for tracing charged particles. The interaction between the two flux systems generates a localised current sheet where MHD reconnection takes place. We investigate how efficiently the reconnection region accelerates charged particles and what kind of energy distribution they acquire. The particle tracing is done numerically using the Guiding Center Approximation on individual data sets from the numerical MHD experiment. We derive particle and implied photon distribution functions having power law forms, and look at the impact patterns of particles hitting the photosphere. We find that particles reach energies far in excess of those seen in observations of solar flares. However the structure of the impact region in the photosphere gives a good representation of the topological structure of the magnetic field.

  9. The mathematical theory of reduced MHD models for fusion plasmas

    OpenAIRE

    Guillard, Hervé

    2015-01-01

    The derivation of reduced MHD models for fusion plasma is here formulated as a special instance of the general theory of singular limit of hyperbolic system of PDEs with large operator. This formulation allows to use the general results of this theory and to prove rigorously that reduced MHD models are valid approximations of the full MHD equations. In particular, it is proven that the solutions of the full MHD system converge to the solutions of an appropriate reduced model.

  10. Simulation of wave interactions with MHD

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, D; Bernholdt, D; Berry, L; Elwasif, W; Jaeger, E; Keyes, D; Klasky, S [Oak Ridge National Laboratory, Oak Ridge, TN 37331 (United States); Alba, C; Choi, M [General Atomics, San Diego, CA 92186 (United States); Bateman, G [Lehigh University, Bethlehem, PA 18015 (United States); Bonoli, P [Plasma Science and Fusion Center, MTT, Cambridge, MA 02139 (United States); Bramley, R [Indiana University, Bloomington, IN 47405 (United States); Breslau, J; Chance, M; Chen, J; Fu, G; Jardin, S [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Harvey, R [CompX, Del Mar, CA 92014 (United States); Jenkins, T [University of Wisconsin, Madison, WI 53706 (United States); Kruger, S [Tech-X, Boulder, CO 80303 (United States)], E-mail: batchelordb@ornl.gov (and others)

    2008-07-15

    The broad scientific objectives of the SWIM (Simulation 01 Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RP effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.

  11. Simulation of wave interactions with MHD

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, Donald B [ORNL; Abla, G [General Atomics, San Diego; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, R [Indiana University; Breslau, J. [Princeton Plasma Physics Laboratory (PPPL); Chance, M. [Princeton Plasma Physics Laboratory (PPPL); Chen, J. [Princeton Plasma Physics Laboratory (PPPL); Choi, M. [General Atomics; Elwasif, Wael R [ORNL; Fu, GuoYong [Princeton Plasma Physics Laboratory (PPPL); Harvey, R. W. [CompX, Del Mar, CA; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Jenkins, T [University of Wisconsin; Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Kruger, Scott [Tech-X Corporation; Ku, Long-Poe [Princeton Plasma Physics Laboratory (PPPL); Lynch, Vickie E [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, D. [General Atomics; Schnack, [University of Wisconsin; Wright, J. [Massachusetts Institute of Technology (MIT)

    2008-07-01

    The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RF effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.

  12. Parametric study of prospective early commercial MHD power plants (PSPEC). General Electric Company, task 1: Parametric analysis

    Science.gov (United States)

    Marston, C. H.; Alyea, F. N.; Bender, D. J.; Davis, L. K.; Dellinger, T. C.; Hnat, J. G.; Komito, E. H.; Peterson, C. A.; Rogers, D. A.; Roman, A. J.

    1980-01-01

    The performance and cost of moderate technology coal-fired open cycle MHD/steam power plant designs which can be expected to require a shorter development time and have a lower development cost than previously considered mature OCMHD/steam plants were determined. Three base cases were considered: an indirectly-fired high temperature air heater (HTAH) subsystem delivering air at 2700 F, fired by a state of the art atmospheric pressure gasifier, and the HTAH subsystem was deleted and oxygen enrichment was used to obtain requisite MHD combustion temperature. Coal pile to bus bar efficiencies in ease case 1 ranged from 41.4% to 42.9%, and cost of electricity (COE) was highest of the three base cases. For base case 2 the efficiency range was 42.0% to 45.6%, and COE was lowest. For base case 3 the efficiency range was 42.9% to 44.4%, and COE was intermediate. The best parametric cases in bases cases 2 and 3 are recommended for conceptual design. Eventual choice between these approaches is dependent on further evaluation of the tradeoffs among HTAH development risk, O2 plant integration, and further refinements of comparative costs.

  13. Euler potentials for the MHD Kamchatnov-Hopf soliton solution

    NARCIS (Netherlands)

    Semenov, VS; Korovinski, DB; Biernat, HK

    2002-01-01

    In the MHD description of plasma phenomena the concept of magnetic helicity turns out to be very useful. We present here an example of introducing Euler potentials into a topological MHD soliton which has non-trivial helicity. The MHD soliton solution (Kamchatnov, 1982) is based on the Hopf invarian

  14. Safety and reliability in superconducting MHD magnets

    Energy Technology Data Exchange (ETDEWEB)

    Laverick, C.; Powell, J.; Hsieh, S.; Reich, M.; Botts, T.; Prodell, A.

    1979-07-01

    This compilation adapts studies on safety and reliability in fusion magnets to similar problems in superconducting MHD magnets. MHD base load magnet requirements have been identified from recent Francis Bitter National Laboratory reports and that of other contracts. Information relevant to this subject in recent base load magnet design reports for AVCO - Everett Research Laboratories and Magnetic Corporation of America is included together with some viewpoints from a BNL workshop on structural analysis needed for superconducting coils in magnetic fusion energy. A summary of design codes used in large bubble chamber magnet design is also included.

  15. Experimental Study of MHD-Assisted Mixing and Combustion Under Low Pressure Conditions

    Science.gov (United States)

    Gao, Ling; Zhang, Bailing; Li, Yiwen; Fan, Hao; Duan, Chengduo; Wang, Yutian

    2016-08-01

    In order to reveal the mechanism of MHD-assisted mixing, and analyse the major parameters which influence the effect of MHD-assisted mixing, experiments of MHD-assisted mixing are carried out with a non-premixed butane-air combustion system. The evolvement of the discharge section and the effect of MHD-assisted mixing on combustion are investigated by changing the magnetic flux density and airflow velocity. The results show that the discharge area not only bends but also rotates around the centered wire electrode, which are mainly caused by the Lorentz force. Moreover, the highest curvature occurs near the centered wire electrode. The discharge localizes near the surface of the wire electrode and annular electrode when there is no ponderomotive force. However, if the ponderomotive force is applied, the discharge happens between these two electrodes and it gradually shrinks with time. The discharge area cannot localize near the annular electrode, which is due to the increase of energy loss in the airflow. When the airflow velocity exceeds a certain value, the discharge section becomes unstable because the injected energy cannot maintain the discharge. The rotation motion of the discharge section could enlarge the contact surface between butane and air, and is therefore beneficial for mixing and combustion. Magnetic flux density and airflow velocity are critical parameters for MHD-assisted mixing. supported by National Natural Science Foundation of China (No. 11372352) and the Mechanism Research on Near Electrode Thermal-Electromagnetic-Flow of High Temperature Supersonic MHD Generation (No. 51306207), and Natural Science Foundation of Shaanxi Province of China (No. 2015JM5184)

  16. Fully Parallel MHD Stability Analysis Tool

    Science.gov (United States)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2015-11-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Results of MARS parallelization and of the development of a new fix boundary equilibrium code adapted for MARS input will be reported. Work is supported by the U.S. DOE SBIR program.

  17. Application of ADER Scheme in MHD Simulation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yanyan; FENG Xueshang; JIANG Chaowei; ZHOU Yufen

    2012-01-01

    The Arbitrary accuracy Derivatives Riemann problem method(ADER) scheme is a new high order numerical scheme based on the concept of finite volume integration,and it is very easy to be extended up to any order of space and time accuracy by using a Taylor time expansion at the cell interface position.So far the approach has been applied successfully to flow mechanics problems.Our objective here is to carry out the extension of multidimensional ADER schemes to multidimensional MHD systems of conservation laws by calculating several MHD problems in one and two dimensions: (ⅰ) Brio-Wu shock tube problem,(ⅱ) Dai-Woodward shock tube problem,(ⅲ) Orszag-Tang MHD vortex problem.The numerical results prove that the ADER scheme possesses the ability to solve MHD problem,remains high order accuracy both in space and time,keeps precise in capturing the shock.Meanwhile,the compared tests show that the ADER scheme can restrain the oscillation and obtain the high order non-oscillatory result.

  18. Hodograph method in MHD orthogonal fluid flows

    Directory of Open Access Journals (Sweden)

    P. V. Nguyen

    1992-01-01

    Full Text Available Equations for steady plane MHD orthogonal flows of a viscous incompressible fluid of finite electrical conductivity are recast in the hodograph plane by using the Legendre transform function of the streamfunction. Three examples are studied to illustrate the developed theory. Solutions and geometries for these examples are determined.

  19. Pseudo-reconnection in MHD numerical simulation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A class of pseudo-reconnections caused by a shifted mesh in magnetohydrodynamics (MHD) simulations is reported. In terms of this mesh system, some non-physical results may be obtained in certain circumstances, e.g. magnetic reconnection occurs without resistivity. After comparison, another kind of mesh is strongly recommended.

  20. MHD equilibrium and stability in heliotron plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ichiguchi, Katsuji [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-09-01

    Recent topics in the theoretical magnetohydrodynamic (MHD) analysis in the heliotron configuration are overviewed. Particularly, properties of three-dimensional equilibria, stability boundary of the interchange mode, effects of the net toroidal current including the bootstrap current and the ballooning mode stability are focused. (author)

  1. Collisionless magnetic reconnection under anisotropic MHD approximation

    Science.gov (United States)

    Hirabayashi, Kota; Hoshino, Masahiro

    We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless magneto-hydro-dynamic (MHD) simulations based on the double adiabatic approximation, which is an important step to bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observation. According to our results, a pair of slow shocks does form in the reconnection layer. The resultant shock waves, however, are quite weak compared with those in an isotropic MHD from the point of view of the plasma compression and the amount of the magnetic energy released across the shock. Once the slow shock forms, the downstream plasma are heated in highly anisotropic manner and a firehose-sense (P_{||}>P_{⊥}) pressure anisotropy arises. The maximum anisotropy is limited by the marginal firehose criterion, 1-(P_{||}-P_{⊥})/B(2) =0. In spite of the weakness of the shocks, the resultant reconnection rate is kept at the same level compared with that in the corresponding ordinary MHD simulations. It is also revealed that the sequential order of propagation of the slow shock and the rotational discontinuity, which appears when the guide field component exists, changes depending on the magnitude of the guide field. Especially, when no guide field exists, the rotational discontinuity degenerates with the contact discontinuity remaining at the position of the initial current sheet, while with the slow shock in the isotropic MHD. Our result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.

  2. A non-equilibrium plasma generator

    Energy Technology Data Exchange (ETDEWEB)

    Lineberry, J.T.; Wu, Y.C.L.; Martin, J.F. [ERC, Incorporated, Tullahoma, TN (United States)

    1993-12-31

    This paper summarizes research ideas, results and activities on a DOE MHD SBIR entitled: {open_quote}A Light Metal Fueled Nonequilibrium Plasma Generator (NPG){close_quotes}. The NPG is a concept for a device that has the capability of producing a nonequilibrium plasma from metal combustion. The results of preliminary studies on the NPG concept are given. These studies address fundamentals of the NPG including operating concepts of the NPG concept, results of studies on the quality of the plasma that it can produce, and theoretical evaluations of the nonequilibrium ionization process in an MHD disk generator driven by an NPG. A discussion of potential applications for the NPG is given. These applications encompass pulse MHD power, commercial MHD power and disk MHD generator research.

  3. MHD compressor---expander conversion system integrated with GCR inside a deployable reflector

    Energy Technology Data Exchange (ETDEWEB)

    Tuninetti, G. (Ansaldo S.p.A., Genoa (Italy). Research Div.); Botta, E.; Criscuolo, C.; Riscossa, P. (Ansaldo S.p.A., Genoa (Italy). Nuclear Div.); Giammanco, F. (Pisa Univ. (Italy). Dipt. di Fisica); Rosa-Clot, M. (Florence Univ. (Italy). Dipt. di Fisica)

    1989-04-20

    This work originates from the proposal MHD Compressor-Expander Conversion System Integrated with a GCR Inside a Deployable Reflector''. The proposal concerned an innovative concept of nuclear, closed-cycle MHD converter for power generation on space-based systems in the multi-megawatt range. The basic element of this converter is the Power Conversion Unit (PCU) consisting of a gas core reactor directly coupled to an MHD expansion channel. Integrated with the PCU, a deployable reflector provides reactivity control. The working fluid could be either uranium hexafluoride or a mixture of uranium hexafluoride and helium, added to enhance the heat transfer properties. The original Statement of Work, which concerned the whole conversion system, was subsequently redirected and focused on the basic mechanisms of neutronics, reactivity control, ionization and electrical conductivity in the PCU. Furthermore, the study was required to be inherently generic such that the study was required to be inherently generic such that the analysis an results can be applied to various nuclear reactor and/or MHD channel designs''.

  4. Towards a Scalable Fully-Implicit Fully-coupled Resistive MHD Formulation with Stabilized FE Methods

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J N; Pawlowski, R P; Banks, J W; Chacon, L; Lin, P T; Tuminaro, R S

    2009-06-03

    This paper presents an initial study that is intended to explore the development of a scalable fully-implicit stabilized unstructured finite element (FE) capability for low-Mach-number resistive MHD. The discussion considers the development of the stabilized FE formulation and the underlying fully-coupled preconditioned Newton-Krylov nonlinear iterative solver. To enable robust, scalable and efficient solution of the large-scale sparse linear systems generated by the Newton linearization, fully-coupled algebraic multilevel preconditioners are employed. Verification results demonstrate the expected order-of-acuracy for the stabilized FE discretization of a 2D vector potential form for the steady and transient solution of the resistive MHD system. In addition, this study puts forth a set of challenging prototype problems that include the solution of an MHD Faraday conduction pump, a hydromagnetic Rayleigh-Bernard linear stability calculation, and a magnetic island coalescence problem. Initial results that explore the scaling of the solution methods are presented on up to 4096 processors for problems with up to 64M unknowns on a CrayXT3/4. Additionally, a large-scale proof-of-capability calculation for 1 billion unknowns for the MHD Faraday pump problem on 24,000 cores is presented.

  5. Multimegawatt nuclear electric propulsion with gaseous and vapor core reactors with MHD

    Science.gov (United States)

    Knight, Travis; Anghaie, Samim; Smith, Blair; Houts, Michael

    2001-02-01

    This study investigated the development of a system concept for space power generation and nuclear electric propulsion based on a fissioning plasma core reactor (FPCR) with magnetohydrodynamic (MHD) power conversion system, coupled to a magnetoplasmadynamic (MPD) thruster. The FPCR is a liquid-vapor core reactor concept operating with metallic uranium or uranium tetrafluoride (UF4) vapor as the fissioning fuel and alkali metals or their fluorides as working fluid in a closed Rankine cycle with MHD energy conversion. Candidate working fluids include K, Li, Na, KF, LiF, NaF, etc. The system features core outlet temperatures of 3000 to 4000 K at pressures of about 1 to 10 MPa, MHD temperatures of 2000 to 3000 K, and radiator temperatures of 1200 to 2000 K. This combination of parameters offers the potential for low total system specific mass in the range of 0.4 to 0.6 kg/kWe. The MHD output could be coupled with minimal power conditioning to the variable specific impulse magnetoplasma rocket (VASIMR), MPD thrusters or other types of thruster for producing thrust at very high specific impulse (Isp=1500 to 10,000 s). .

  6. MHD heat and seed recovery technology project. Tenth quarterly report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Petrick, M.; Johnson, T. R.

    1980-12-01

    The MHD Heat and Seed Recovery Technology Project at Argonne National Laboratory is obtaining information for the design and operation of the steam plant downstream of the MHD channel-diffuser, and of the seed regeneration process. The project goal is to supply the engineering data required in the design of components for prototype and demonstration MHD facilities. The primary effort of the HSR Technology Project at Argonne is directed toward experimental investigations of critical problem areas, such as (1) corrosion and erosion of refractories and metal alloys; (2) NO/sub x/ behavior in the radiant boiler and secondary combustor; (3) radiant boiler design to meet the multiple requirements of steam generation, NO/sub x/ decomposition, and seed-slag separation; (4) effects of solid or liquid seed deposits on heat transfer and gas flow in the steam and air heaters; (5) formation, growth, and deposition of seed-slag particles; and (6) character of the combustion gas effluents. These investigations are performed primarily in a 2-MW test facility, the Argonne MHD Process Engineering Laboratory (AMPEL). Other project activities are related to studies of the thermochemistry of the seed-slag combustion gas system, and evaluation of seed regeneration processes. Progress is reported.

  7. VisAn MHD: a toolbox in Matlab for MHD computer model data visualisation and analysis

    Directory of Open Access Journals (Sweden)

    P. Daum

    2007-03-01

    Full Text Available Among the many challenges facing modern space physics today is the need for a visualisation and analysis package which can examine the results from the diversity of numerical and empirical computer models as well as observational data. Magnetohydrodynamic (MHD models represent the latest numerical models of the complex Earth's space environment and have the unique ability to span the enormous distances present in the magnetosphere from several hundred kilometres to several thousand kilometres above the Earth surface. This feature enables scientist to study complex structures of processes where otherwise only point measurements from satellites or ground-based instruments are available. Only by combining these observational data and the MHD simulations it is possible to enlarge the scope of the point-to-point observations and to fill the gaps left by measurements in order to get a full 3-D representation of the processes in our geospace environment. In this paper we introduce the VisAn MHD toolbox for Matlab as a tool for the visualisation and analysis of observational data and MHD simulations. We have created an easy to use tool which is capable of highly sophisticated visualisations and data analysis of the results from a diverse set of MHD models in combination with in situ measurements from satellites and ground-based instruments. The toolbox is being released under an open-source licensing agreement to facilitate and encourage community use and contribution.

  8. Unsteady MHD Mixed Convection Slip Flow of Casson Fluid over Nonlinearly Stretching Sheet Embedded in a Porous Medium with Chemical Reaction, Thermal Radiation, Heat Generation/Absorption and Convective Boundary Conditions.

    Science.gov (United States)

    Ullah, Imran; Bhattacharyya, Krishnendu; Shafie, Sharidan; Khan, Ilyas

    2016-01-01

    Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail.

  9. MHD Shallow Water Waves: Linear Analysis

    CERN Document Server

    Heng, Kevin

    2009-01-01

    We present a linear analysis of inviscid, incompressible, magnetohydrodynamic (MHD) shallow water systems. In spherical geometry, a generic property of such systems is the existence of five wave modes. Three of them (two magneto-Poincare modes and one magneto-Rossby mode) are previously known. The other two wave modes are strongly influenced by the magnetic field and rotation, and have substantially lower angular frequencies; as such, we term them "magnetostrophic modes". We obtain analytical functions for the velocity, height and magnetic field perturbations in the limit that the magnitude of the MHD analogue of Lamb's parameter is large. On a sphere, the magnetostrophic modes reside near the poles, while the other modes are equatorially confined. Magnetostrophic modes may be an ingredient in explaining the frequency drifts observed in Type I X-ray bursts from neutron stars.

  10. MHD Equilibria and Triggers for Prominence Eruption

    CERN Document Server

    Fan, Yuhong

    2015-01-01

    Magneto-hydrodynamic (MHD) simulations of the emergence of twisted magnetic flux tubes from the solar interior into the corona are discussed to illustrate how twisted and sheared coronal magnetic structures (with free magnetic energy), capable of driving filament eruptions, can form in the corona in emerging active regions. Several basic mechanisms that can disrupt the quasi-equilibrium coronal structures and trigger the release of the stored free magnetic energy are discussed. These include both ideal processes such as the onset of the helical kink instability and the torus instability of a twisted coronal flux rope structure and the non-ideal process of the onset of fast magnetic reconnections in current sheets. Representative MHD simulations of the non-linear evolution involving these mechanisms are presented.

  11. Cosmic ray transport in MHD turbulence

    CERN Document Server

    Yan, Huirong

    2007-01-01

    Numerical simulations shed light onto earlier not trackable problem of magnetohydrodynamic (MHD) turbulence. They allowed to test the predictions of different models and choose the correct ones. Inevitably, this progress calls for revisions in the picture of cosmic ray (CR) transport. It also shed light on the problems with the present day numerical modeling of CR. In this paper we focus on the analytical way of describing CR propagation and scattering, which should be used in synergy with the numerical studies. In particular, we use recently established scaling laws for MHD modes to obtain the transport properties for CRs. We include nonlinear effects arising from large scale trapping, to remove the 90 degree divergence. We determine how the efficiency of the scattering and CR mean free path depend on the characteristics of ionized media, e.g. plasma $\\beta$, Coulomb collisional mean free path. Implications for particle transport in interstellar medium and solar corona are discussed. We also examine the perp...

  12. Magnetic Reconnection in a Compressible MHD Plasma

    Science.gov (United States)

    Hesse, Michael; Birn, Joachim; Zenitani, Seiji

    2011-01-01

    Using steady-state resistive MHD, magnetic reconnection is reinvestigated for conditions of high resistivity/low magnetic Reynolds number, when the thickness of the diffusion region is no longer small compared to its length. Implicit expressions for the reconnection rate and other reconnection parameters are derived based on the requirements of mass, momentum, and energy conservation. These expressions are solved via simple iterative procedures. Implications specifically for low Reynolds number/high resistivity are being discussed

  13. MHD simulations on an unstructured mesh

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, H.R. [New York Univ., NY (United States); Park, W.; Belova, E.; Fu, G.Y. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Longcope, D.W. [Univ. of Montana, Missoula, MT (United States); Sugiyama, L.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1998-12-31

    Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D.

  14. Statistical Theory of the Ideal MHD Geodynamo

    Science.gov (United States)

    Shebalin, J. V.

    2012-01-01

    A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the

  15. MHD Technology Transfer, Integration and Review Committee

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

  16. Modeling parameter influences on MHD swirl combustion nozzle design

    Science.gov (United States)

    Lilley, D. G.; Gupta, A. K.; Busnaina, A. A.

    1982-01-01

    Attention is given to a research project which has the goal to develop a two-stage slagging gasifier-combustor in the form of a high-intensity combustor, taking into account a suitable aerodynamic design of the second stage nozzle which will prevent the separation of the boundary layer as the flow turns from axial to radial direction. The specific objectives of the present investigation are to test the effect of various second-stage nozzle geometries, flow rates, swirl number, and distribution in the first and second stages upon the corresponding flowfield in the second stage. Special emphasis is given to the avoidance of boundary layer separation as the flow turns from axial to radial direction into the MHD disk generator.

  17. Inductive ionospheric solver for magnetospheric MHD simulations

    Directory of Open Access Journals (Sweden)

    H. Vanhamäki

    2011-01-01

    Full Text Available We present a new scheme for solving the ionospheric boundary conditions required in magnetospheric MHD simulations. In contrast to the electrostatic ionospheric solvers currently in use, the new solver takes ionospheric induction into account by solving Faraday's law simultaneously with Ohm's law and current continuity. From the viewpoint of an MHD simulation, the new inductive solver is similar to the electrostatic solvers, as the same input data is used (field-aligned current [FAC] and ionospheric conductances and similar output is produced (ionospheric electric field. The inductive solver is tested using realistic, databased models of an omega-band and westward traveling surge. Although the tests were performed with local models and MHD simulations require a global ionospheric solution, we may nevertheless conclude that the new solution scheme is feasible also in practice. In the test cases the difference between static and electrodynamic solutions is up to ~10 V km−1 in certain locations, or up to 20-40% of the total electric field. This is in agreement with previous estimates. It should also be noted that if FAC is replaced by the ground magnetic field (or ionospheric equivalent current in the input data set, exactly the same formalism can be used to construct an inductive version of the KRM method originally developed by Kamide et al. (1981.

  18. The Statistical Mechanics of Ideal MHD Turbulence

    Science.gov (United States)

    Shebalin, John V.

    2003-01-01

    Turbulence is a universal, nonlinear phenomenon found in all energetic fluid and plasma motion. In particular. understanding magneto hydrodynamic (MHD) turbulence and incorporating its effects in the computation and prediction of the flow of ionized gases in space, for example, are great challenges that must be met if such computations and predictions are to be meaningful. Although a general solution to the "problem of turbulence" does not exist in closed form, numerical integrations allow us to explore the phase space of solutions for both ideal and dissipative flows. For homogeneous, incompressible turbulence, Fourier methods are appropriate, and phase space is defined by the Fourier coefficients of the physical fields. In the case of ideal MHD flows, a fairly robust statistical mechanics has been developed, in which the symmetry and ergodic properties of phase space is understood. A discussion of these properties will illuminate our principal discovery: Coherent structure and randomness co-exist in ideal MHD turbulence. For dissipative flows, as opposed to ideal flows, progress beyond the dimensional analysis of Kolmogorov has been difficult. Here, some possible future directions that draw on the ideal results will also be discussed. Our conclusion will be that while ideal turbulence is now well understood, real turbulence still presents great challenges.

  19. MHD thrust vectoring of a rocket engine

    Science.gov (United States)

    Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic

    2016-09-01

    In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.

  20. Inductive ionospheric solver for magnetospheric MHD simulations

    Science.gov (United States)

    Vanhamäki, H.

    2011-01-01

    We present a new scheme for solving the ionospheric boundary conditions required in magnetospheric MHD simulations. In contrast to the electrostatic ionospheric solvers currently in use, the new solver takes ionospheric induction into account by solving Faraday's law simultaneously with Ohm's law and current continuity. From the viewpoint of an MHD simulation, the new inductive solver is similar to the electrostatic solvers, as the same input data is used (field-aligned current [FAC] and ionospheric conductances) and similar output is produced (ionospheric electric field). The inductive solver is tested using realistic, databased models of an omega-band and westward traveling surge. Although the tests were performed with local models and MHD simulations require a global ionospheric solution, we may nevertheless conclude that the new solution scheme is feasible also in practice. In the test cases the difference between static and electrodynamic solutions is up to ~10 V km-1 in certain locations, or up to 20-40% of the total electric field. This is in agreement with previous estimates. It should also be noted that if FAC is replaced by the ground magnetic field (or ionospheric equivalent current) in the input data set, exactly the same formalism can be used to construct an inductive version of the KRM method originally developed by Kamide et al. (1981).

  1. The CHEASE code for toroidal MHD equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Luetjens, H. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique; Bondeson, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Inst. for Electromagnetic Field Theory and Plasma Physics; Sauter, O. [ITER-San Diego, La Jolla, CA (United States)

    1996-03-01

    CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function {Psi}. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs.

  2. MHD Flow Visualization of Magnetopause and Polar Cusps Vortices

    Science.gov (United States)

    Collado-Vega, Y. M.; Kessel, R. L.; Shao, X.; Boller, R. A.

    2007-01-01

    Detailed analysis of Wind, Geotail, and Cluster data shows how magnetopause boundary and polar cusps vortices associated with high speed streams can be a carrier of energy flux to the Earth's magnetosphere. For our analysis time interval, March 29 . - April 5 2002, the Interplanetary Magnetic Field (IMF) is primarily northward and MHD simulations of vortices along the flanks within nine hours of the time interval suggest that a Kelvin Helmholtz (KH) instability is likely present. Vortices were classified by solar wind input provided by the Wind satellite located 70-80 RE upstream from Earth. We present statistics for a total of 304 vortices found near the ecliptic plane on the magnetopause flanks, 273 with northward IMF and 31 with southward IMF. The vortices generated under northward IMF were more driven into the dawnside than into the duskside, being substantially more ordered on the duskside. Most of the vortices were large in scale, up to 10 RE, and with a rotation axis closely aligned with the Z(sub GSE) direction. They rotated preferentially clockwise on the dawnside, and. counter-clockwise on the duskside. Those generated under southward IMF were less ordered, fewer in number, and also smaller in diameter. Significant vortex activity occurred on the nightside region of the magnetosphere for these southward cases in contrast to the northward IMF cases on which most of the activity was driven onto the magnetopause flanks. Magnetopause crossings seen by the Geotail spacecraft for the time interval were analyzed and compared with the MHD simulation to validate our results. Vortices over the polar cusps are also being analyzed and the simulation results will be compared to the multi-point measurements of the four Cluster satellites.

  3. Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.A.; Campbell, R.; Logan, B.G. (California Univ., Davis, CA (USA); Lawrence Livermore National Lab., CA (USA))

    1988-10-01

    The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.

  4. Evolutionary Conditions in the Dissipative MHD System Revisited

    CERN Document Server

    Inoue, Tsuyoshi

    2007-01-01

    The evolutionary conditions for the dissipative continuous magnetohydrodynamic (MHD) shocks are studied. We modify Hada's approach in the stability analysis of the MHD shock waves. The matching conditions between perturbed shock structure and asymptotic wave modes shows that all types of the MHD shocks, including the intermediate shocks, are evolutionary and perturbed solutions are uniquely defined. We also adopt our formalism to the MHD shocks in the system with resistivity without viscosity, which is often used in numerical simulation, and show that all types of shocks that are found in the system satisfy the evolutionary condition and perturbed solutions are uniquely defined. These results suggest that the intermediate shocks may appear in reality.

  5. Shock-associated MHD waves - A model for interstellar density fluctuations

    Science.gov (United States)

    Spangler, Steven R.

    1988-01-01

    The possibility that the density fluctuations responsible for radio scintillations could be due to ion-beam-generated MHD waves near interstellar shock waves is discussed. This suggestion is inspired by spacecraft observations which reveal these phenomena near shocks in the solar system. The model quite naturally accounts for the scale on which these fluctuations occur; it is dictated by the wavelength of the unstable waves.

  6. Understanding Accretion Disks through Three Dimensional Radiation MHD Simulations

    Science.gov (United States)

    Jiang, Yan-Fei

    I study the structures and thermal properties of black hole accretion disks in the radiation pressure dominated regime. Angular momentum transfer in the disk is provided by the turbulence generated by the magneto-rotational instability (MRI), which is calculated self-consistently with a recently developed 3D radiation magneto-hydrodynamics (MHD) code based on Athena. This code, developed by my collaborators and myself, couples both the radiation momentum and energy source terms with the ideal MHD equations by modifying the standard Godunov method to handle the stiff radiation source terms. We solve the two momentum equations of the radiation transfer equations with a variable Eddington tensor (VET), which is calculated with a time independent short characteristic module. This code is well tested and accurate in both optically thin and optically thick regimes. It is also accurate for both radiation pressure and gas pressure dominated flows. With this code, I find that when photon viscosity becomes significant, the ratio between Maxwell stress and Reynolds stress from the MRI turbulence can increase significantly with radiation pressure. The thermal instability of the radiation pressure dominated disk is then studied with vertically stratified shearing box simulations. Unlike the previous results claiming that the radiation pressure dominated disk with MRI turbulence can reach a steady state without showing any unstable behavior, I find that the radiation pressure dominated disks always either collapse or expand until we have to stop the simulations. During the thermal runaway, the heating and cooling rates from the simulations are consistent with the general criterion of thermal instability. However, details of the thermal runaway are different from the predictions of the standard alpha disk model, as many assumptions in that model are not satisfied in the simulations. We also identify the key reasons why previous simulations do not find the instability. The thermal

  7. Wave damping by MHD turbulence and its effect upon cosmic ray propagation in the ISM

    CERN Document Server

    Farmer, A J; Farmer, Alison J.; Goldreich, Peter

    2004-01-01

    Cosmic rays scatter off magnetic irregularities (Alfven waves) with which they are resonant, that is waves of wavelength comparable to their gyroradii. These waves may be generated either by the cosmic rays themselves, if they stream faster than the Alfven speed, or by sources of MHD turbulence. Waves excited by streaming cosmic rays are ideally shaped for scattering, whereas the scattering efficiency of MHD turbulence is severely diminished by its anisotropy. We show that MHD turbulence has an indirect effect on cosmic ray propagation by acting as a damping mechanism for cosmic ray generated waves. The hot (``coronal'') phase of the interstellar medium is the best candidate location for cosmic ray confinement by scattering from self-generated waves. We relate the streaming velocity of cosmic rays to the rate of turbulent dissipation in this medium, for the case in which turbulent damping is the dominant damping mechanism. We conclude that cosmic rays with up to 10^2 GeV could not stream much faster than the ...

  8. Laboratory Plasma Source as an MHD Model for Astrophysical Jets

    Science.gov (United States)

    Mayo, Robert M.

    1997-01-01

    The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to

  9. MHD stability limits in the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Reimerdes, H. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2001-07-01

    Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation {kappa} and triangularity {delta}, with high {kappa}, and low {delta} leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The

  10. NONLINEAR MHD WAVES IN A PROMINENCE FOOT

    Energy Technology Data Exchange (ETDEWEB)

    Ofman, L. [Catholic University of America, Washington, DC 20064 (United States); Knizhnik, K.; Kucera, T. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cit, 5 place Jules Janssen, F-92195 Meudon (France)

    2015-11-10

    We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s{sup −1}, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.

  11. An advanced implicit solver for MHD

    Science.gov (United States)

    Udrea, Bogdan

    A new implicit algorithm has been developed for the solution of the time-dependent, viscous and resistive single fluid magnetohydrodynamic (MHD) equations. The algorithm is based on an approximate Riemann solver for the hyperbolic fluxes and central differencing applied on a staggered grid for the parabolic fluxes. The algorithm employs a locally aligned coordinate system that allows the solution to the Riemann problems to be solved in a natural direction, normal to cell interfaces. The result is an original scheme that is robust and reduces the complexity of the flux formulas. The evaluation of the parabolic fluxes is also implemented using a locally aligned coordinate system, this time on the staggered grid. The implicit formulation employed by WARP3 is a two level scheme that was applied for the first time to the single fluid MHD model. The flux Jacobians that appear in the implicit scheme are evaluated numerically. The linear system that results from the implicit discretization is solved using a robust symmetric Gauss-Seidel method. The code has an explicit mode capability so that implementation and test of new algorithms or new physics can be performed in this simpler mode. Last but not least the code was designed and written to run on parallel computers so that complex, high resolution runs can be per formed in hours rather than days. The code has been benchmarked against analytical and experimental gas dynamics and MHD results. The benchmarks consisted of one-dimensional Riemann problems and diffusion dominated problems, two-dimensional supersonic flow over a wedge, axisymmetric magnetoplasmadynamic (MPD) thruster simulation and three-dimensional supersonic flow over intersecting wedges and spheromak stability simulation. The code has been proven to be robust and the results of the simulations showed excellent agreement with analytical and experimental results. Parallel performance studies showed that the code performs as expected when run on parallel

  12. Magnetic stresses in ideal MHD plasmas

    DEFF Research Database (Denmark)

    Jensen, V.O.

    1995-01-01

    and it is shown that the resulting magnetic forces on a finite volume element can be obtained by integrating the magnetic stresses over the surface of the element. The concept is used to rederive and discuss the equilibrium conditions for axisymmetric toroidal plasmas, including the virial theorem......The concept of magnetic stresses in ideal MHD plasma theory is reviewed and revisited with the aim of demonstrating its advantages as a basis for calculating and understanding plasma equilibria. Expressions are derived for the various stresses that transmit forces in a magnetized plasma...

  13. Modeling magnetized neutron stars using resistive MHD

    CERN Document Server

    Palenzuela, Carlos

    2013-01-01

    This work presents an implementation of the resistive MHD equations for a generic algebraic Ohm's law which includes the effects of finite resistivity within full General Relativity. The implementation naturally accounts for magnetic-field-induced anisotropies and, by adopting a phenomenological current, is able to accurately describe electromagnetic fields in the star and in its magnetosphere. We illustrate the application of this approach in interesting systems with astrophysical implications; the aligned rotator solution and the collapse of a magnetized rotating neutron star to a black hole.

  14. Local potential analysis of MHD instability

    Science.gov (United States)

    Sen, K. K.; Wilson, S. J.

    1985-02-01

    The use of the local potential method for studying instabilities of MHD fluids is examined. The mathematical method is similar to that developed by the authors for studying the time-dependent radiative transfer problem and the radiative stability of interstellar masers. The scheme is based on the universal evolution criterion proposed by Glansdorff and Prigogine (1964) as demonstrated by Hays (1965) for the heat equation and Schechter and Himmelblau (1965) for the Benard problem in hydrodynamics. The scheme for securing stability criteria is demonstrated for two particular cases.

  15. MHD Equations with Regularity in One Direction

    Directory of Open Access Journals (Sweden)

    Zujin Zhang

    2014-01-01

    Full Text Available We consider the 3D MHD equations and prove that if one directional derivative of the fluid velocity, say, ∂3u∈Lp0, T;LqR3, with 2/p + 3/q = γ ∈ [1,3/2, 3/γ ≤ q ≤ 1/(γ - 1, then the solution is in fact smooth.  This improves previous results greatly.

  16. MHD squeezing flow between two infinite plates

    Directory of Open Access Journals (Sweden)

    Umar Khan

    2014-03-01

    Full Text Available Magneto hydrodynamic (MHD squeezing flow of a viscous fluid has been discussed. Conservation laws combined with similarity transformations have been used to formulate the flow mathematically that leads to a highly nonlinear ordinary differential equation. Analytical solution to the resulting differential equation is determined by employing Variation of Parameters Method (VPM. Runge–Kutta order-4 method is also used to solve the same problem for the sake of comparison. It is found that solution using VPM reduces the computational work yet maintains a very high level of accuracy. The influence of different parameters is also discussed and demonstrated graphically.

  17. Relativistic MHD with Adaptive Mesh Refinement

    CERN Document Server

    Anderson, M; Liebling, S L; Neilsen, D; Anderson, Matthew; Hirschmann, Eric; Liebling, Steven L.; Neilsen, David

    2006-01-01

    We solve the relativistic magnetohydrodynamics (MHD) equations using a finite difference Convex ENO method (CENO) in 3+1 dimensions within a distributed parallel adaptive mesh refinement (AMR) infrastructure. In flat space we examine a Balsara blast wave problem along with a spherical blast wave and a relativistic rotor test both with unigrid and AMR simulations. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. We also investigate the impact of hyperbolic divergence cleaning for the spherical blast wave and relativistic rotor. We include unigrid and mesh refinement parallel performance measurements for the spherical blast wave.

  18. 3D MHD Simulations of Tokamak Disruptions

    Science.gov (United States)

    Woodruff, Simon; Stuber, James

    2014-10-01

    Two disruption scenarios are modeled numerically by use of the CORSICA 2D equilibrium and NIMROD 3D MHD codes. The work follows the simulations of pressure-driven modes in DIII-D and VDEs in ITER. The aim of the work is to provide starting points for simulation of tokamak disruption mitigation techniques currently in the CDR phase for ITER. Pressure-driven instability growth rates previously observed in simulations of DIIID are verified; Halo and Hiro currents produced during vertical displacements are observed in simulations of ITER with implementation of resistive walls in NIMROD. We discuss plans to exercise new code capabilities and validation.

  19. Evaluation of feedback in conductive MHD devices

    Energy Technology Data Exchange (ETDEWEB)

    Grinberg, G.K.

    1977-01-01

    A method is recommended for computing feedback and the self-energizing threshold of conducting MHD devices. Circuits of equivalent magnetizing currents are used for this purpose in addition to equivalent electrical circuits. This kind of an approach makes it possible to reflect the influence of R/sub m/ on the operation of the device. Dimensionless functions were found which determine the critical value of the Reynolds magnetic number. The computations demonstrated that the redistribution of the magnetic field in the machine's operating zone under the influence of an induced field must be considered.

  20. Stationary MHD equilibria describing azimuthal rotations in symmetric plasmas

    Science.gov (United States)

    da Silva, Sidney T.; Viana, Ricardo L.

    2016-12-01

    We consider the stationary magnetohydrodynamical (MHD) equilibrium equation for an axisymmetric plasma undergoing azimuthal rotations. The case of cylindrical symmetry is treated, and we present two semi-analytical solutions for the stationary MHD equilibrium equations, from which a number of physical properties of the magnetically confined plasma are derived.

  1. The Calculus of Variations and the Ideal MHD Energy Principle

    Science.gov (United States)

    Schnack, Dalton D.

    In Lecture 22, we showed that the ideal MHD force operator is self-adjoint and suggested that this allowed a formulation in which the stability of a system could be determined without solving a differential equation. Going further requires a little background in the calculus of variations. In the lecture we begin this discussion,1 and formulate the ideal MHD energy principle.

  2. Sunspot seismic halos generated by fast MHD wave refraction

    CERN Document Server

    Khomenko, E

    2009-01-01

    We suggest an explanation for the high-frequency power excess surrounding active regions known as seismic halos. The idea is based on numerical simulations of magneto-acoustic waves propagation in sunspots. We propose that such an excess can be caused by the additional energy injected by fast mode waves refracted in the higher atmosphere due to the rapid increase of the Alfven speed. Our model qualitatively explains the magnitude of the halo and allows to make some predictions of its behavior that can be checked in future observations.

  3. MHD Coal Fired Flow Facility. Quarterly technical progress report, July-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Altstatt, M. C.; Attig, R. C.; Brosnan, D. A.

    1980-11-01

    Significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Energy Conversion Facility (ECF) are described. On Task 1, the first phase of the downstream quench system was completed. On Task 2, all three combustor sections were completed, hydrotested, ASME code stamped, and delivered to UTSI. The nozzle was also delivered. Fabrication of support stands and cooling water manifolds for the combustor and vitiation heater were completed, heat transfer and thermal stress analysis, along with design development, were conducted on the generator and radiant furnace and secondary combustor installation progressed as planned. Under Task 3 an Elemental Analyzer and Atomic Absorption Spectrophotometer/Graphite Furnace were received and installed, sites were prepared for two air monitoring stations, phytoplankton analysis began, and foliage and soil sampling was conducted using all study plots. Some 288 soil samples were combined to make 72 samples which were analyzed. Also, approval was granted to dispose of MHD flyash and slag at the Franklin County landfill. Task 4 effort consisted of completing all component test plans, and establishing the capability of displaying experimental data in graphical format. Under Task 7, a preliminary testing program for critical monitoring of the local current and voltage non-uniformities in the generator electrodes was outlined, electrode metal wear characteristics were documented, boron nitride/refrasil composite interelectrode sealing was improved, and several refractories for downstream MHD applications were evaluated with promising results.

  4. FTE Dependence on IMF Orientation and Presence of Hall Physics in Global MHD Simulations

    Science.gov (United States)

    Maynard, K. M.; Germaschewski, K.; Lin, L.; Raeder, J.

    2013-12-01

    Flux Transfer Events (FTEs) are poleward traveling flux ropes that form in the dayside magnetopause and represent significant coupling of the solar wind to the magnetosphere during times of southward IMF. In the 35 years since their discovery, FTEs have been extensively observed and modeled; however, there is still no consensus on their generation mechanism. Previous modeling efforts have shown that FTE occurrence and size depend on the resistivity model that is used in simulations and the structure of X-lines in the magnetopause. We use Hall OpenGGCM, a global Hall-MHD code, to study the formation and propagation of FTEs in the dayside magnetopause using synthetic solar wind conditions. We examine large scale FTE structure and nearby magnetic separators for a range of IMF clock angles and dipole tilts. In addition, we investigate how FTE formation and recurrence rate depends on the presence of the Hall term in the generalized Ohm's law compared with resistive MHD.

  5. Gas Core Reactor Numerical Simulation Using a Coupled MHD-MCNP Model

    Science.gov (United States)

    Kazeminezhad, F.; Anghaie, S.

    2008-01-01

    Analysis is provided in this report of using two head-on magnetohydrodynamic (MHD) shocks to achieve supercritical nuclear fission in an axially elongated cylinder filled with UF4 gas as an energy source for deep space missions. The motivation for each aspect of the design is explained and supported by theory and numerical simulations. A subsequent report will provide detail on relevant experimental work to validate the concept. Here the focus is on the theory of and simulations for the proposed gas core reactor conceptual design from the onset of shock generations to the supercritical state achieved when the shocks collide. The MHD model is coupled to a standard nuclear code (MCNP) to observe the neutron flux and fission power attributed to the supercritical state brought about by the shock collisions. Throughout the modeling, realistic parameters are used for the initial ambient gaseous state and currents to ensure a resulting supercritical state upon shock collisions.

  6. Newtonian CAFE: a new ideal MHD code to study the solar atmosphere

    Science.gov (United States)

    González-Avilés, J. J.; Cruz-Osorio, A.; Lora-Clavijo, F. D.; Guzmán, F. S.

    2015-12-01

    We present a new code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centres on the analysis of solar phenomena within the photosphere-corona region. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As solar tests we present the transverse oscillations of Alfvénic pulses in coronal loops using a 2.5D model, and as 3D tests we present the propagation of impulsively generated MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the Harten-Lax-van Leer-Einfeldt (HLLE) flux formula combined with Minmod, MC, and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.

  7. Newtonian CAFE: a new ideal MHD code to study the solar atmosphere

    CERN Document Server

    Gonzalez-Aviles, J J; Lora-Clavijo, F D; Guzman, F S

    2015-01-01

    We present a new code designed to solve the equations of classical ideal magneto-hydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centers on the analysis of solar phenomena within the photosphere-corona region. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As solar tests we present the transverse oscillations of Alfvenic pulses in coronal loops using a 2.5D model, and as 3D tests we present the propagation of impulsively generated MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the HLLE flux formula combined with Minmod, MC and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.

  8. Neutrino oscillations in MHD supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, S; Kotake, K [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Takiwaki, T, E-mail: shio.k@nao.ac.j [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2010-01-01

    We calculate the neutrino oscillations numerically in magnetohydrodynamic (MHD) explosion models to see how asphericity has impacts on neutrino spectra. Magneto-driven explosions are one of the most attracting scenarios for producing large scale departures from spherical symmetric geometry, that are reported by many observational data. We find that the event rates at Super-Kamiokande (SK) seen from the polar direction (e.g., the rotational axis of the supernovae) decrease when the shock wave is propagating through H-resonance. In addition, we find that L-resonance in this situation becomes non-adiabatic, and the effect of L-resonance appears in the neutrino signal, because the MHD shock can propagate to the stellar surface without shock-stall after core bounce, and the shock reaches the L-resonance at earlier stage than the conventional spherical supernova explosion models. Our results suggest that we may obtain the observational signatures of the two resonances in SK for Galactic supernova.

  9. Generations.

    Science.gov (United States)

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession.

  10. Three-dimensional MHD modeling of vertical kink oscillations in an active region plasma curtain

    Science.gov (United States)

    Ofman, L.; Parisi, M.; Srivastava, A. K.

    2015-10-01

    Context. Observations on 2011 August 9 of an X 6.9-class flare in active region (AR) 11263 by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), were followed by a rare detection of vertical kink oscillations in a large-scale coronal active region plasma curtain in extreme UV coronal lines with periods in the range 8.8-14.9 min. Aims: Our aim is to study the generation and propagation of the magnetohydrodynamic (MHD) oscillations in the plasma curtain taking the realistic 3D magnetic and the density structure of the curtain into account. We also aim to test and improve coronal seismology for a more accurate determination of the magnetic field than with the standard method. Methods: We use the observed morphological and dynamical conditions, as well as plasma properties of the coronal curtain, to initialize a 3D MHD model of the observed vertical and transverse oscillations. To accomplish this, we implemented the impulsively excited velocity pulse mimicking the flare-generated nonlinear fast magnetosonic propagating disturbance interacting obliquely with the curtain. The model is simplified by utilizing an initial dipole magnetic field, isothermal energy equation, and gravitationally stratified density guided by observational parameters. Results: Using the 3D MHD model, we are able to reproduce the details of the vertical oscillations and study the process of their excitation by a nonlinear fast magnetosonic pulse, propagation, and damping, finding agreement with the observations. Conclusions: We estimate the accuracy of simplified slab-based coronal seismology by comparing the determined magnetic field strength to actual values from the 3D MHD modeling results, and demonstrate the importance of taking more realistic magnetic geometry and density for improving coronal seismology into account. A movie associated to Fig. 1 is available in electronic form at http://www.aanda.org

  11. Metallurgical technologies, energy conversion, and magnetohydrodynamic flows

    Energy Technology Data Exchange (ETDEWEB)

    Branover, H.; Unger, Y.

    1993-01-01

    The present volume discusses metallurgical applications of MHD, R D on MHD devices employing liquid working medium for process applications, electromagnetic (EM) modulation of molten metal flow, EM pump performance of superconducting MHD devices, induction EM alkali-metal pumps, a physical model for EM-driven flow in channel-induction furnaces, grain refinement in Al alloys via EM vibrational method, dendrite growth of solidifying metal in dc magnetic field, MHD for mass and heat transfer in single-crystal melt growth, inverse EM shaping, and liquid-metal MHD development in Israel. Also discussed are the embrittlement of steel by lead, an open cycle MHD disk generator, the acceleration of gas-liquid piston flows for molten-metal MHD generators, MHD flow around a cylinder, new MHD drag coefficients, liquid-metal MHD two-phase flow, and two-phase liquid gas mixers for MHD energy conversion.

  12. High-Order Finite Difference GLM-MHD Schemes for Cell-Centered MHD

    CERN Document Server

    Mignone, A; Bodo, G

    2010-01-01

    We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. (J. Comput. Phys. 175 (2002) 645-673). The resulting...

  13. Global and Kinetic MHD Simulation by the Gpic-MHD Code

    Institute of Scientific and Technical Information of China (English)

    Hiroshi NAITOU; Yusuke YAMADA; Kenji KAJIWARA; Wei-li LEE; Shinji TOKUDA; Masatoshi YAGI

    2011-01-01

    In order to implement large-scale and high-beta tokamak simulation, a new algorithm of the electromagnetic gyrokinetic PIC (particle-in-cell) code was proposed and installed on the Gpic-MHD code [Gyrokinetic PIC code for magnetohydrodynamic (MHD) simulation]. In the new algorithm, the vorticity equation and the generalized Ohm's law along the magnetic field are derived from the basic equations of the gyrokinetic Vlasov, Poisson, and Ampere system and are used to describe the spatio-temporal evolution of the field quantities of the electrostatic potential φ and the longitudinal component of the vector potential Az. The basic algorithm is equivalent to solving the reduced-MHD-type equations with kinetic corrections, in which MHD physics related to Alfven modes are well described. The estimation of perturbed electron pressure from particle dynamics is dominant, while the effects of other moments are negligible. Another advantage of the algorithm is that the longitudinal induced electric field, ETz = -δAz/δt, is explicitly estimated by the generalized Ohm's law and used in the equations of motion. Furthermore, the particle velocities along the magnetic field are used (vz-formulation) instead of generalized momentums (pz-formulation), hence there is no problem of 'cancellation', which would otherwise appear when Az is estimated from the Ampere's law in the pz-formulation. The successful simulation of the collisionless internal kink mode by the new Gpic-MHD with realistic values of the large-scale and high-beta tokamaks revealed the usefulness of the new algorithm.

  14. Analogue Kerr-like geometries in a MHD inflow

    CERN Document Server

    Noda, Sousuke; Takahashi, Masaaki

    2016-01-01

    We present a model of the analogue black hole in magnetohydrodynamic (MHD) flow. For a two dimensional axisymmetric stationary trans-magnetosonic inflow with a sink, using the dispersion relation of the MHD waves, we introduce the effective geometries for magnetoacoustic waves propagating in the MHD flow. Investigating the properties of the effective potentials for magnetoacoustic rays, we find that the effective geometries can be classified into five types which include analogue spacetimes of the Kerr black hole, ultra spinning stars with ergoregions and spinning stars without ergoregions. We address the effects of the magnetic pressure and the magnetic tension on each magnetoacoustic geometries.

  15. Nonlinear evolution of parallel propagating Alfven waves: Vlasov - MHD simulation

    CERN Document Server

    Nariyuki, Y; Kumashiro, T; Hada, T

    2009-01-01

    Nonlinear evolution of circularly polarized Alfv\\'en waves are discussed by using the recently developed Vlasov-MHD code, which is a generalized Landau-fluid model. The numerical results indicate that as far as the nonlinearity in the system is not so large, the Vlasov-MHD model can validly solve time evolution of the Alfv\\'enic turbulence both in the linear and nonlinear stages. The present Vlasov-MHD model is proper to discuss the solar coronal heating and solar wind acceleration by Alfve\\'n waves propagating from the photosphere.

  16. Finite Larmor radius influence on MHD solitary waves

    Directory of Open Access Journals (Sweden)

    E. Mjølhus

    2009-04-01

    Full Text Available MHD solitons are studied in a model where the usual Hall-MHD model is extended to include the finite Larmor radius (FLR corrections to the pressure tensor. The resulting 4-dimensional set of differential equations is treated numerically. In this extended model, the point at infinity can be of several types. Necessary for the existence of localized solutions is that it is either a saddle-saddle, a saddle-center, or, possibly, a focus-focus. In cases of saddle-center, numerical solutions for localized travelling structures have been obtained, and compared with corresponding results from the Hall-MHD model.

  17. Fine strand-like structure in the solar corona from MHD transverse oscillations

    CERN Document Server

    Antolin, P; Van Doorsselaere, T

    2014-01-01

    Current analytical and numerical modelling suggest the existence of ubiquitous thin current sheets in the corona that could explain the observed heating requirements. On the other hand, new high resolution observations of the corona indicate that its magnetic field may tend to organise itself in fine strand-like structures of few hundred kilometres widths. The link between small structure in models and the observed widths of strand-like structure several orders of magnitude larger is still not clear. A popular theoretical scenario is the nanoflare model, in which each strand is the product of an ensemble of heating events. Here, we suggest an alternative mechanism for strand generation. Through forward modelling of 3D MHD simulations we show that small amplitude transverse MHD waves can lead in a few periods time to strand-like structure in loops in EUV intensity images. Our model is based on previous numerical work showing that transverse MHD oscillations can lead to Kelvin-Helmholtz instabilities that defor...

  18. Laser-Plasma Modeling Using PERSEUS Extended-MHD Simulation Code for HED Plasmas

    Science.gov (United States)

    Hamlin, Nathaniel; Seyler, Charles

    2016-10-01

    We discuss the use of the PERSEUS extended-MHD simulation code for high-energy-density (HED) plasmas in modeling laser-plasma interactions in relativistic and nonrelativistic regimes. By formulating the fluid equations as a relaxation system in which the current is semi-implicitly time-advanced using the Generalized Ohm's Law, PERSEUS enables modeling of two-fluid phenomena in dense plasmas without the need to resolve the smallest electron length and time scales. For relativistic and nonrelativistic laser-target interactions, we have validated a cycle-averaged absorption (CAA) laser driver model against the direct approach of driving the electromagnetic fields. The CAA model refers to driving the radiation energy and flux rather than the fields, and using hyperbolic radiative transport, coupled to the plasma equations via energy source terms, to model absorption and propagation of the radiation. CAA has the advantage of not requiring adequate grid resolution of each laser wavelength, so that the system can span many wavelengths without requiring prohibitive CPU time. For several laser-target problems, we compare existing MHD results to extended-MHD results generated using PERSEUS with the CAA model, and examine effects arising from Hall physics. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.

  19. JOINT INVERSE CASCADE OF MAGNETIC ENERGY AND MAGNETIC HELICITY IN MHD TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, R.; Frick, P.; Mizeva, I. [Institute of Continuous Media Mechanics, Korolyov str. 1, 614013 Perm (Russian Federation)

    2015-01-10

    We show that oppositely directed fluxes of energy and magnetic helicity coexist in the inertial range in fully developed magnetohydrodynamic (MHD) turbulence with small-scale sources of magnetic helicity. Using a helical shell model of MHD turbulence, we study the high Reynolds number MHD turbulence for helicity injection at a scale that is much smaller than the scale of energy injection. In a short range of scales larger than the forcing scale of magnetic helicity, a bottleneck-like effect appears, which results in a local reduction of the spectral slope. The slope changes in a domain with a high level of relative magnetic helicity, which determines that part of the magnetic energy is related to the helical modes at a given scale. If the relative helicity approaches unity, the spectral slope tends to –3/2. We show that this energy pileup is caused by an inverse cascade of magnetic energy associated with the magnetic helicity. This negative energy flux is the contribution of the pure magnetic-to-magnetic energy transfer, which vanishes in the non-helical limit. In the context of astrophysical dynamos, our results indicate that a large-scale dynamo can be affected by the magnetic helicity generated at small scales. The kinetic helicity, in particular, is not involved in the process at all. An interesting finding is that an inverse cascade of magnetic energy can be provided by a small-scale source of magnetic helicity fluctuations without a mean injection of magnetic helicity.

  20. A Resistive MHD Simulation of the Shear Flow Effects on the Structure of Reconnection Layer

    Institute of Scientific and Technical Information of China (English)

    SUN Xiaoxia; WANG Chunhua; LIN Yu; WANG Xiaogang

    2007-01-01

    By using a one-dimensional resistive magnetohydrodynamic (MHD) model, the Rie-mann problem is solved numerically for the structure of the reconnection layer under a sheared flow along the anti-parallel magnetic field components. The simulation is carried out for general cases with symmetric or asymmetric plasma densities and magnetic fields on the two sides of the initial current sheet, and cases with or without a guide magnetic field, as in various space and fusion plasmas. The generation of MHD discontinuities in the reconnection layer is discussed, including time-dependent intermediate shocks, intermediate shocks, slow shocks, slow expansion waves, and the contact discontinuity. It is shown that the structure of the reconnection layer is significantly affected by the presence of the shear flow. For an initial symmetric current sheet, the symmetry condition is altered due to the shear flow. For cases with an asymmetric initial current sheet, as at the Earth's magnetopause, the strengths of MHD discontinuities change significantly with the shear flow speed. Moreover, the general results for the reconnection layers in the outflow regions on either side of the X line are discussed systematically for the first time.

  1. Exploring reconnection, current sheets, and dissipation in a laboratory MHD turbulence experiment

    Science.gov (United States)

    Schaffner, D. A.

    2015-12-01

    The Swarthmore Spheromak Experiment (SSX) can serve as a testbed for studying MHD turbulence in a controllable laboratory setting, and in particular, explore the phenomena of reconnection, current sheets and dissipation in MHD turbulence. Plasma with turbulently fluctuating magnetic and velocity fields can be generated using a plasma gun source and launched into a flux-conserving cylindrical tunnel. No background magnetic field is applied so internal fields are allowed to evolve dynamically. Point measurements of magnetic and velocity fluctuations yield broadband power-law spectra with a steepening breakpoint indicative of the onset of a dissipation scale. The frequency range at which this steepening occurs can be correlated to the ion inertial scale of the plasma, a length which is characteristic of the size of current sheets in MHD plasmas and suggests a connection to dissipation. Observation of non-Gaussian intermittent jumps in magnetic field magnitude and angle along with measurements of ion temperature bursts suggests the presence of current sheets embedded within the turbulent plasma, and possibly even active reconnection sites. Additionally, structure function analysis coupled with appeals to fractal scaling models support the hypothesis that current sheets are associated with dissipation in this system.

  2. Observational Tests of Recent MHD Turbulence Perspectives

    Science.gov (United States)

    Ghosh, Sanjoy

    2001-06-01

    This grant seeks to analyze the Heliospheric Missions data to test current theories on the angular dependence (with respect to mean magnetic field direction) of magnetohydrodynamic (MHD) turbulence in the solar wind. Solar wind turbulence may be composed of two or more dynamically independent components. Such components include magnetic pressure-balanced structures, velocity shears, quasi-2D turbulence, and slab (Alfven) waves. We use a method, developed during the first two years of this grant, for extracting the individual reduced spectra of up to three separate turbulence components from a single spacecraft time series. The method has been used on ISEE-3 data, Pioneer Venus Orbiter, Ulysses, and Voyager data samples. The correlation of fluctuations as a function of angle between flow direction and magnetic-field direction is the focus of study during the third year.

  3. Drag reduction in turbulent MHD pipe flows

    Science.gov (United States)

    Orlandi, P.

    1996-01-01

    This is a preliminary study devoted to verifying whether or not direct simulations of turbulent Magneto-Hydro-Dynamic (MHD) flows in liquid metals reproduce experimental observations of drag reduction. Two different cases have been simulated by a finite difference scheme which is second order accurate in space and time. In the first case, an external azimuthal magnetic field is imposed. In this case, the magnetic field acts on the mean axial velocity and complete laminarization of the flow at N(sub a) = 30 has been achieved. In the second case, an axial magnetic field is imposed which affects only fluctuating velocities, and thus the action is less efficient. This second case is more practical, but comparison between numerical and experimental results is only qualitative.

  4. 3-D nonlinear evolution of MHD instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, G.; Hicks, H. R.; Wooten, J. W.

    1977-03-01

    The nonlinear evolution of ideal MHD internal instabilities is investigated in straight cylindrical geometry by means of a 3-D initial-value computer code. These instabilities are characterized by pairs of velocity vortex cells rolling off each other and helically twisted down the plasma column. The cells persist until the poloidal velocity saturates at a few tenths of the Alfven velocity. The nonlinear phase is characterized by convection around these essentially fixed vortex cells. For example, the initially centrally peaked temperature profile is convected out and around to form an annulus of high temperature surrounding a small region of lower temperature. Weak, centrally localized instabilities do not alter the edge of the plasma. Strong, large-scale instabilities, resulting from a stronger longitudinal equilibrium current, drive the plasma against the wall. After three examples of instability are analyzed in detail, the numerical methods and their verification are discussed.

  5. A helically distorted MHD flux rope model

    Science.gov (United States)

    Theobald, Michael L.; Montgomery, David

    1990-01-01

    A flux rope model is proposed which has a variable degree of helical distortion from axisymmetry. The basis for this suggestion is a series of numerical and analytical investigations of magnetohydrodynamic states which result when an axial electric current is directed down on dc magnetic field. The helically distorted states involve a flow velocity and seem to be favored because of their lower rate of energy dissipation. Emphasis is on the magnetometer and particle energy analyzer traces that might be characteristic of such flux ropes. It is shown that even a fractionally small helical distortion may considerably alter the traces in minimum-variance coordinates. In short, what may be fairly common MHD processes can render a flux rope almost unrecognizable under standard diagnostics, even if the departures from axisymmetry are not great.

  6. Global MHD Models of the Solar Corona

    Science.gov (United States)

    Suess, S. T.; Rose, Franklin (Technical Monitor)

    2001-01-01

    Global magnetohydrodynamic (MHD) models of the solar corona are computationally intensive, numerically complex simulations that have produced important new results over the past few years. After a brief overview of how these models usually work, I will address three topics: (1) How these models are now routinely used to predict the morphology of the corona and analyze Earth and space-based remote observations of the Sun; (2) The direct application of these models to the analysis of physical processes in the corona and chromosphere and to the interpretation of in situ solar wind observations; and (3) The use of results from global models to validate the approximations used to make detailed studies of physical processes in the corona that are not otherwise possible using the global models themselves.

  7. Activation of MHD reconnection on ideal timescales

    CERN Document Server

    Landi, S; Del Zanna, L; Tenerani, A; Pucci, F

    2016-01-01

    Magnetic reconnection in laboratory, space and astrophysical plasmas is often invoked to explain explosive energy release and particle acceleration. However, the timescales involved in classical models within the macroscopic MHD regime are far too slow to match the observations. Here we revisit the tearing instability by performing visco-resistive two-dimensional numerical simulations of the evolution of thin current sheets, for a variety of initial configurations and of values of the Lunquist number $S$, up to $10^7$. Results confirm that when the critical aspect ratio of $S^{1/3}$ is reached in the reconnecting current sheets, the instability proceeds on ideal (Alfv\\'enic) macroscopic timescales, as required to explain observations. Moreover, the same scaling is seen to apply also to the local, secondary reconnection events triggered during the nonlinear phase of the tearing instability, thus accelerating the cascading process to increasingly smaller spatial and temporal scales. The process appears to be ro...

  8. Resonant interactions of perturbations in MHD flows

    Energy Technology Data Exchange (ETDEWEB)

    Sagalakov, A.M.; Shtern, V.N.

    1977-01-17

    The nonlinear theory of hydrodynamic stability differentiates three types of interactions: deformation of the initial velocity profile by Reynolds stress pulsations, multiplication of harmonics, and the resonant interaction of harmonics with dissimilar wave numbers and frequencies. This article analyzes an approach considering the first and third of these non-linear mechanisms, producing an acceptable approximation of the averaged characteristics of a developing pulsation movement, particularly the averaged turbulent velocity profile. The approach consists in analysis of triharmonic oscillations, the parameters of which satisfy the resonant relationships. A model of a triharmonic pulsation mode is studied which is applicable to MHD flows. It is shown in particular how a magnetic field transverse to the flow plane suppresses the resonant interaction of three-dimensional perturbations. This agrees with experimental studies on two-dimensional turbulence conducted earlier. 11 references, 3 figures.

  9. Magnetorotational Instability of Dissipative MHD Flows

    Energy Technology Data Exchange (ETDEWEB)

    HERRON, ISOM H

    2010-07-10

    Executive summary Two important general problems of interest in plasma physics that may be addressed successfully by Magnetohydrodynamics (MHD) are: (1) Find magnetic field configurations capable of confining a plasma in equilibrium. (2) Study the stability properties of each such an equilibrium. It is often found that the length scale of many instabilities and waves that are able to grow or propagate in a system, are comparable with plasma size, such as in magnetically confined thermonuclear plasmas or in astrophysical accretion disks. Thus MHD is able to provide a good description of such large-scale disturbances. The Magnetorotational instability (MRI) is one particular instance of a potential instability. The project involved theoretical work on fundamental aspects of plasma physics. Researchers at the Princeton Plasma Physics Laboratory (PPPL) began to perform a series of liquid metal Couette flow experiments between rotating cylinders. Their purpose was to produce MRI, which they had predicted theoretically 2002, but was only observed in the laboratory since this project began. The personnel on the project consisted of three persons: (1) The PI, who was partially supported on the budget during each of four summers 2005-2008. (2) Two graduate research assistants, who worked consecutively on the project throughout the years 2005-2009. As a result, the first student, Fritzner Soliman, obtained an M.S. degree in 2006; the second student, Pablo Suarez obtained the Ph.D. degree in 2009. The work was in collaboration with scientists in Princeton, periodic trips were made by the PI as part of the project. There were 4 peer-reviewed publications and one book produced.

  10. Eigenanalysis of Ideal Hall MHD Turbulence

    Science.gov (United States)

    Fu, T.; Shebalin, J. V.

    2011-12-01

    Ideal, incompressible, homogeneous, Hall magnetohydrodynamic (HMHD) turbulence may be investigated through a Fourier spectral method. In three-dimensional periodic geometry, the independent Fourier coefficients represent a canonical ensemble described by a Gaussian probability density. The canonical ensemble is based on the conservation of three invariants: total energy, generalized helicity, and magnetic helicity. Generalized helicity in HMHD takes the place of cross helicity in MHD. The invariants determine the modal probability density giving the spectral structure and equilibrium statistics of ideal HMHD, which are compared to known MHD results. New results in absolute equilibrium ensemble theory are derived using a novel approach that involves finding the eigenvalues of a Hermitian covariance matrix for each modal probability density. The associated eigenvectors transform the original phase space variables into eigenvariables through a special unitary transformation. These are the normal modes which facilitate the analysis of ideal HMHD non-linear dynamics. The eigenanalysis predicts that the low wavenumber modes with very small eigenvalues may have mean values that are large compared to their standard deviations, contrary to the ideal ensemble prediction of zero mean values. (Expectation values may also be relatively large at the highest wave numbers, but the addition of even small levels of dissipation removes any relevance this may have for real-world turbulence.) This behavior is non-ergodic over very long times for a numerical simulation and is termed 'broken ergodicity'. For fixed values of the ideal invariants, the effect is seen to be enhanced with increased numerical grid size. Broken ergodicity at low wave number modes gives rise to large-scale, quasi-stationary, coherent structure. Physically, this corresponds to plasma relaxation to force-free states. For real HMHD turbulence with dissipation, broken ergodicity and coherent structure are still

  11. Global MHD simulations of Neptune's magnetosphere

    Science.gov (United States)

    Mejnertsen, L.; Eastwood, J. P.; Chittenden, J. P.; Masters, A.

    2016-08-01

    A global magnetohydrodynamic (MHD) simulation has been performed in order to investigate the outer boundaries of Neptune's magnetosphere at the time of Voyager 2's flyby in 1989 and to better understand the dynamics of magnetospheres formed by highly inclined planetary dipoles. Using the MHD code Gorgon, we have implemented a precessing dipole to mimic Neptune's tilted magnetic field and rotation axes. By using the solar wind parameters measured by Voyager 2, the simulation is verified by finding good agreement with Voyager 2 magnetometer observations. Overall, there is a large-scale reconfiguration of magnetic topology and plasma distribution. During the "pole-on" magnetospheric configuration, there only exists one tail current sheet, contained between a rarefied lobe region which extends outward from the dayside cusp, and a lobe region attached to the nightside cusp. It is found that the tail current always closes to the magnetopause current system, rather than closing in on itself, as suggested by other models. The bow shock position and shape is found to be dependent on Neptune's daily rotation, with maximum standoff being during the pole-on case. Reconnection is found on the magnetopause but is highly modulated by the interplanetary magnetic field (IMF) and time of day, turning "off" and "on" when the magnetic shear between the IMF and planetary fields is large enough. The simulation shows that the most likely location for reconnection to occur during Voyager 2's flyby was far from the spacecraft trajectory, which may explain the relative lack of associated signatures in the observations.

  12. A Two-Fluid, MHD Coronal Model

    Science.gov (United States)

    Suess, S. T.; Wang, A.-H.; Wu, S. T.; Poletto, G.; McComas, D. J.

    1999-01-01

    We describe first results from a numerical two-fluid MHD model of the global structure of the solar Corona. The model is two-fluid in the sense that it accounts for the collisional energy exchange between protons and electrons. As in our single-fluid model, volumetric heat and Momentum sources are required to produce high speed wind from Corona] holes, low speed wind above streamers, and mass fluxes similar to the empirical solar wind. By specifying different proton and electron heating functions we obtain a high proton temperature in the coronal hole and a relatively low proton temperature above the streamer (in comparison with the electron temperature). This is consistent with inferences from SOHO/UltraViolet Coronagraph Spectrometer instrument (UVCS), and with the Ulysses/Solar Wind Observations Over the Poles of the Sun instrument (SWOOPS) proton and electron temperature measurements which we show from the fast latitude scan. The density in the coronal hole between 2 and 5 solar radii (2 and 5 R(sub S)) is similar to the density reported from SPARTAN 201.-01 measurements by Fisher and Guhathakurta [19941. The proton mass flux scaled to 1 AU is 2.4 x 10(exp 8)/sq cm s, which is consistent with Ulysses observations. Inside the closed field region, the density is sufficiently high so that the simulation gives equal proton and electron temperatures due to the high collision rate. In open field regions (in the coronal hole and above the streamer) the proton and electron temperatures differ by varying amounts. In the streamer the temperature and density are similar to those reported empirically by Li et al. [1998], and the plasma beta is larger than unity everywhere above approx. 1.5 R(sub S), as it is in all other MHD coronal streamer models [e.g., Steinolfson et al., 1982; also G. A. Gary and D. Alexander, Constructing the coronal magnetic field, submitted to Solar Physics, 1998].

  13. Local conservative regularizations of compressible MHD and neutral flows

    CERN Document Server

    Krishnaswami, Govind S; Thyagaraja, Anantanarayanan

    2016-01-01

    Ideal systems like MHD and Euler flow may develop singularities in vorticity (w = curl v). Viscosity and resistivity provide dissipative regularizations of the singularities. In this paper we propose a minimal, local, conservative, nonlinear, dispersive regularization of compressible flow and ideal MHD, in analogy with the KdV regularization of the 1D kinematic wave equation. This work extends and significantly generalizes earlier work on incompressible Euler and ideal MHD. It involves a micro-scale cutoff length lambda which is a function of density, unlike in the incompressible case. In MHD, it can be taken to be of order the electron collisionless skin depth c/omega_pe. Our regularization preserves the symmetries of the original systems, and with appropriate boundary conditions, leads to associated conservation laws. Energy and enstrophy are subject to a priori bounds determined by initial data in contrast to the unregularized systems. A Hamiltonian and Poisson bracket formulation is developed and applied ...

  14. Generalized similarity method in unsteady two-dimensional MHD ...

    African Journals Online (AJOL)

    user

    International Journal of Engineering, Science and Technology. Vol. 1, No. ... Controlling of crystallization processes in metallurgy and influence of magnetic field on discrete chemical systems bring. MHD and heat ...... Nomenclature. B. [T].

  15. Passive stabilization in a linear MHD stability code

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M.

    1980-03-01

    Utilizing a Galerkin procedure to calculate the vacuum contribution to the ideal MHD Lagrangian, the implementation of realistic boundary conditions are described in a linear stability code. The procedure permits calculation of the effect of arbitrary conducting structure on ideal MHD instabilities, as opposed to the prior use of an encircling shell. The passive stabilization of conducting coils on the tokamak vertical instability is calculated within the PEST code and gives excellent agreement with 2-D time dependent simulations of PDX.

  16. Extraction of MHD Signal Based on Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    赵晴初; 赵彤; 李旻; 黄胜华; 徐佩霞

    2002-01-01

    Mirnov signals mixed with interferences are a kind of non-stationary signal. It can not obtain satisfactory effects to extract MHD signals from mirnov signals by Fourier Transform. This paper suggests that the wavelet transform can be used to treat mirnov signals. Theoretical analysis and experimental result have indicated that using the time-frequency analysis characteristics of the wavelet transform to filter mirnov signals can remove effectively interferences and extract useful MHD signals.

  17. MHD biconvective flow of Powell Eyring nanofluid over stretched surface

    Science.gov (United States)

    Naseem, Faiza; Shafiq, Anum; Zhao, Lifeng; Naseem, Anum

    2017-06-01

    The present work is focused on behavioral characteristics of gyrotactic microorganisms to describe their role in heat and mass transfer in the presence of magnetohydrodynamic (MHD) forces in Powell-Eyring nanofluids. Implications concerning stretching sheet with respect to velocity, temperature, nanoparticle concentration and motile microorganism density were explored to highlight influential parameters. Aim of utilizing microorganisms was primarily to stabilize the nanoparticle suspension due to bioconvection generated by the combined effects of buoyancy forces and magnetic field. Influence of Newtonian heating was also analyzed by taking into account thermophoretic mechanism and Brownian motion effects to insinuate series solutions mediated by homotopy analysis method (HAM). Mathematical model captured the boundary layer regime that explicitly involved contemporary non linear partial differential equations converted into the ordinary differential equations. To depict nanofluid flow characteristics, pertinent parameters namely bioconvection Lewis number Lb, traditional Lewis number Le, bioconvection Péclet number Pe, buoyancy ratio parameter Nr, bioconvection Rayleigh number Rb, thermophoresis parameter Nt, Hartmann number M, Grashof number Gr, and Eckert number Ec were computed and analyzed. Results revealed evidence of hydromagnetic bioconvection for microorganism which was represented by graphs and tables. Our findings further show a significant effect of Newtonian heating over a stretching plate by examining the coefficient values of skin friction, local Nusselt number and the local density number. Comparison was made between Newtonian fluid and Powell-Eyring fluid on velocity field and temperature field. Results are compared of with contemporary studies and our findings are found in excellent agreement with these studies.

  18. Magnetosheath Turbulence at MHD Scales: A Statistical Study

    Science.gov (United States)

    Huang, Shiyong; Sahraoui, Fouad; Hadid, Lina; Yuan, Zhigang

    2015-04-01

    Turbulence is ubiquitous in space plasmas, such as terrestrial magnetotail and magnetosheath, solar wind, or the interstellar medium. In the solar wind, it is well established that at MHD scales, the magnetic energy spectra generally follow the so-called Kolmogorov's spectrum f-5/3. In the magnetosheath, Alexandrova et al. [2006] observed a Kolmogorov-like inertial range in the frequency range f < fci. In this study, we used three years data from the Cluster mission to statistically investigate the existence of the Kolmogorov inertial range in the whole magnetosheath, including flanks and subsolar regions. Statistical results show that most spectra are shallower than the Kolmogorov one, and have a scaling ~ f-1recalling the energy containing scales of solarwind turbulence. These spectra were found to be populated by uncorrelated fluctuations. The Kolmogorov scaling is observed only away from the bock shock and in the flanks region. These results suggest that random-like fluctuations are generated behind the shock, which reach a fully developed turbulence state only after some time corresponding to their propagation (or advection) away from the shock. At kinetic scales no dependence of the turbulence scaling on the location in the magnetosheath was found.

  19. MHD coal combustor technology. Final report, phase II

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    The design, performance, and testing of a 20-MW coal combustor for scaleup to 50 MW for use in an MHD generator are described. The design incorporates the following key features: (1) a two-stage combustor with an intermediate slag separator to remove slag at a low temperture, thus minimizing enthalpy losses required for heating and vaporizing the slag; (2) a first-stage pentad (four air streams impinging on one coal stream) injector design with demonstrated efficient mixing, promoting high carbon burnout; (3) a two-section first-stage combustion chamber; the first stage using a thin slag-protected refractory layer and the second section using a thick refractory layer, both to minimize heat losses; (4) a refractory lining in the slag separator to minimize heat losses; (5) a second-stage combustor, which provided both de-swirl of the combustion products exiting from the slag separator and simple mixing of the vitiated secondary air and seed; (6) a dense-phase coal feed system to minimize cold carrier gas entering the first-stage combustors; (7) a dry seed injection system using pulverized K/sub 2/CO/sub 3/ with a 1% amorphous, fumed silicon dioxide additive to enhance flowability, resulting in rapid vaporization and ionization and ensuring maximum performance; and (8) a performance evaluation module (PEM) of rugged design based on an existing, successfully-fired unit. (WHK)

  20. MHD simulations with resistive wall and magnetic separatrix

    Science.gov (United States)

    Strauss, H. R.; Pletzer, A.; Park, W.; Jardin, S.; Breslau, J.; Sugiyama, L.

    2004-12-01

    A number of problems in resistive MHD magnetic fusion simulations describe plasmas with three regions: the core, the halo region, and the resistive boundary. Treating these problems requires maintenance of an adequate resistivity contrast between the core and halo. This can be helped by the presence of a magnetic separatrix, which in any case is required for reasons of realistic modeling. An appropriate mesh generation capability is also needed to include the halo region when a separatrix is present. Finally a resistive wall boundary condition is required, to allow both two dimensional and three dimensional magnetic perturbations to penetrate the wall. Preliminary work is presented on halo current simulations in ITER. The first step is the study of VDE (vertical displacement event) instabilities. The growth rate is consistent with scaling inversely proportional to the resistive wall penetration time. The simulations have resistivity proportional to the -3/2 power of the temperature. Simulations have been done with resistivity contrast between the plasma core and wall of 1000 times, to model the vacuum region between the core and resistive shell. Some 3D simulations are shown of disruptions competing with VDEs. Toroidal peaking factors are up to about 3.

  1. Study of MHD activities in the plasma of SST-1

    Energy Technology Data Exchange (ETDEWEB)

    Dhongde, Jasraj; Bhandarkar, Manisha; Pradhan, Subrata, E-mail: pradhan@ipr.res.in; Kumar, Sameer

    2016-10-15

    Highlights: • An account of MHD activity in the plasma of SST-1 • Observation of MHD instabilities with mode m = 2, n = 1 in SST-1 plasma. • MHD instabilities study of characteristic growth time, growth rate of island and island width etc. in SST-1 plasma. - Abstract: Steady State Superconducting Tokamak (SST-1) is a medium size Tokamak in operation at the Institute for Plasma Research, India. SST-1 has been consistently producing plasma currents in excess of 60 kA, with plasma durations above 400 ms and a central magnetic field of 1.5 T over last few experimental campaigns of 2014. Investigation of these experimental data suggests the presence of MHD activity in the SST-1 plasma. Further analysis clearly explains the behavior of MHD instabilities observed (i.e. tearing modes with m = 2, n = 1), estimating the growth rate and the island width in the SST-1 plasma. Poloidal magnetic field and Toroidal magnetic field fluctuations in SST-1 are observed using Mirnov coils. Onsets of disruptions in connection with MHD activities have been correlated with other diagnostics such as ECE, Density and Hα etc. The observations have been cross compared with the theoretical calculations and are found to be in good agreement.

  2. From MHD regime to quiescent non-inductive discharges in Tore Supra: experimental observations and MHD modelling

    Science.gov (United States)

    Maget, P.; Huysmans, G. T. A.; Lütjens, H.; Ottaviani, M.; Moreau, Ph; Ségui, J.-L.

    2009-06-01

    Attempts to run non-inductive plasma discharges on Tore Supra sometimes fail due to the triggering of magneto-hydro-dynamic (MHD) instabilities that saturate at a large amplitude, producing degraded confinement and loss of wave driven fast electrons (the so-called MHD regime (Maget et al 2005 Nucl. Fusion 45 69-80)). In this paper we investigate the transition to this soft (in the sense of non-disruptive) MHD limit from experimental observations, and compare it with non-linear code predictions. Such a comparison suggests that different non-linear regimes, with periodic relaxations or saturation, are correctly understood. However, successful non-inductive discharges without detectable magnetic island at q = 2 cannot be reproduced if realistic transport coefficients are used in the computation. Additional physics seems mandatory for explaining these discharges, such as diamagnetic effects, that could also justify cases of abrupt transition to the MHD regime.

  3. EVIDENCE OF ACTIVE MHD INSTABILITY IN EULAG-MHD SIMULATIONS OF SOLAR CONVECTION

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul, E-mail: nicolas.laws@gmail.ca, E-mail: strugarek@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Qc H3C 3J7 (Canada)

    2015-11-10

    We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos and Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.

  4. Local flow characteristics in a MHD induction machine duct at large parameters of electromagnetic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Valdmane, R.A.; Krishberg, R.R.; Lielpeter, Ya.Ya.; Mikryukov, Ch.K.; Ulmanis, L.Ya.

    1977-07-01

    A study is made of the velocity distribution along the duct width of an induction MHD machine with a traveling magnetic field under pump, generator and damping conditions. The computed velocity profiles were compared to those obtained on a sodium circuit under pump and damping conditions. The parameter values for electromagnetic interaction E in the experiments and in the computations changed from 2 to 4.5. Agreement was obtained between the measured velocity distribution and the compared ones at values E > 1. 6 references, 7 figures.

  5. MHD Disc Winds and Linewidth Distributions

    CERN Document Server

    Chajet, Laura S

    2013-01-01

    We study AGN emission line profiles combining an improved version of the accretion disc-wind model of Murray & Chiang with the magneto-hydrodynamic model of Emmering et al. We show how the shape, broadening and shift of the C IV line depend not only on the viewing angle to the object but also on the wind launching angle, especially for small launching angles. We have compared the dispersions in our model C IV linewidth distributions to observational upper limit on that dispersion, considering both smooth and clumpy torus models. As the torus half-opening angle (measured from the polar axis) increases above about 18? degrees, increasingly larger wind launching angles are required to match the observational constraints. Above a half-opening angle of about 47? degrees, no wind launch angle (within the maximum allowed by the MHD solutions) can match the observations. Considering a model that replaces the torus by a warped disc yields the same constraints obtained with the two other models.

  6. Simulation of MHD collimation from differential rotation

    Science.gov (United States)

    Carey, Christopher

    2005-10-01

    Recent observations indicate that astrophysical outflows from active galactic nuclei are permeated with helical magnetic fields[1]. The most promising theory for the formation of the magnetic configurations in these magnetically driven jets is the coiling of an initial seed field by the differential rotation of the accretion disk surrounding the central object. We have begun simulations that are relevant to these Poynting jets using the NIMROD code[2]. To simulate dynamics on length scales that are significantly larger than the accretion disk, the non-relativistic MHD equations are evolved on a hemispherical logarithmic mesh. The accretion disk is treated as a condition on the lower boundary by applying a Keplerian velocity to the azimuthal component of the fluid velocity and a prescribed flux of mass through the boundary. The magnetic field configuration is initialized to a dipole like field. Formation of a jet outflow is observed later in time. The initial field is coiled up and collimated, driving a large current density on the axis of symmetry. Slipping of magnetic field lines due to non-ideal effects has been investigated. 1. Asada K. et. al., Pub. of the Astr. Soc. of Japan, 54, L39-L43, 2002 2. Sovinec C. et. al., J. Comp. Phys., 195, 355-386, 2004

  7. Nonlinear MHD waves in a Prominence Foot

    CERN Document Server

    Ofman, Leon; Kucera, Therese; Schmieder, Brigitte

    2015-01-01

    We study nonlinear waves in a prominence foot using 2.5D MHD model motivated by recent high-resolution observations with Hinode/SOT in Ca~II emission of a prominence on October 10, 2012 showing highly dynamic small-scale motions in the prominence material. Observations of H$\\alpha$ intensities and of Doppler shifts show similar propagating fluctuations. However the optically thick nature of the emission lines inhibits unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity ($\\delta I/I\\sim \\delta n/n$). The waves are evident as significant density fluctuations that vary with height, and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with typical period in the range of 5-11 minutes, and wavelengths $\\sim <$2000 km. Recent Doppler shift observations show the transverse displacement of the propagating wav...

  8. Activation of MHD reconnection on ideal timescales

    Science.gov (United States)

    Landi, S.; Papini, E.; Del Zanna, L.; Tenerani, A.; Pucci, F.

    2017-01-01

    Magnetic reconnection in laboratory, space and astrophysical plasmas is often invoked to explain explosive energy release and particle acceleration. However, the timescales involved in classical models within the macroscopic MHD regime are far too slow to match the observations. Here we revisit the tearing instability by performing visco-resistive two-dimensional numerical simulations of the evolution of thin current sheets, for a variety of initial configurations and of values of the Lunquist number S, up to 107. Results confirm that when the critical aspect ratio of S 1/3 is reached in the reconnecting current sheets, the instability proceeds on ideal (Alfvénic) macroscopic timescales, as required to explain observations. Moreover, the same scaling is seen to apply also to the local, secondary reconnection events triggered during the nonlinear phase of the tearing instability, thus accelerating the cascading process to increasingly smaller spatial and temporal scales. The process appears to be robust, as the predicted scaling is measured both in inviscid simulations and when using a Prandtl number P  =  1 in the viscous regime.

  9. Hot self-similar relativistic MHD flows

    CERN Document Server

    Zakamska, Nadia L; Blandford, Roger D

    2008-01-01

    We consider axisymmetric relativistic jets with a toroidal magnetic field and an ultrarelativistic equation of state, with the goal of studying the lateral structure of jets whose pressure is matched to the pressure of the medium through which they propagate. We find all self-similar steady-state solutions of the relativistic MHD equations for this setup. One of the solutions is the case of a parabolic jet being accelerated by the pressure gradient as it propagates through a medium with pressure declining as p(z)\\propto z^{-2}. As the jet material expands due to internal pressure gradients, it runs into the ambient medium resulting in a pile-up of material along the jet boundary, while the magnetic field acts to produce a magnetic pinch along the axis of the jet. Such jets can be in a lateral pressure equilibrium only if their opening angle \\theta_j at distance z is smaller than about 1/\\gamma, where \\gamma is the characteristic bulk Lorentz-factor at this distance; otherwise, different parts of the jet canno...

  10. Corrosion and arc erosion in MHD channels

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, R.J. (Montana State Univ., Bozeman, MT (United States). Dept. of Mechanical Engineering); Pollina, R.J. (Montana State Univ., Bozeman, MT (United States). Dept. of Mechanical Engineering EG and G Energy Measurements, Inc., Las Vegas, NV (United States))

    1992-08-01

    The problems connected with gas side corrosion for the design of the lA4 (POC) channel hardware are explored and results of gas side wear rate tests in the Textron Mark VII facility are presented. It is shown that the proposed designs meet a 2000 hour lifetime criterion based upon these materials tests. Improvement in cathode lifetime is demonstrated with lower voltage intercathode gaps. The corrosion of these materials is discussed and it is shown how lifetimes are dependent upon gap voltage and average metal temperature. The importance of uniformity of slagging to the durability of the anode wall is demonstrated. The wear mechanism of the anodes in the MHD channel is analyzed. In addition to gas-side corrosion, the results of specific water corrosion tests of sidewall materials are discussed. All of the tests reported here were carried out to confirm the gas-side performance and the manufacturability of anode and sidewall designs and to address questions posed about the durability of tungsten-copper on the waterside. the results of water corrosion tests of the tungsten copper alloy sidewall material are presented to show that with proper control of waterside pH and, if necessary, dissolved oxygen, one can obtain reliable performance with no degradation of heat transfer with this material. The final choice of materials was determined primarily by the outcome of these tests and also by the question of the manufacturability of the prospective designs.

  11. Time-dependent simulation of oblique MHD cosmic-ray shocks using the two-fluid model

    Science.gov (United States)

    Frank, Adam; Jones, T. W.; Ryu, Dongsu

    1995-01-01

    Using a new, second-order accurate numerical method we present dynamical simulations of oblique MHD cosmic-ray (CR)-modified plane shock evolution. Most of the calculations are done with a two-fluid model for diffusive shock acceleration, but we provide also comparisons between a typical shock computed that way against calculations carried out using the more complete, momentum-dependent, diffusion-advection equation. We also illustrate a test showing that these simulations evolve to dynamical equilibria consistent with previously published steady state analytic calculations for such shocks. In order to improve understanding of the dynamical role of magnetic fields in shocks modified by CR pressure we have explored for time asymptotic states the parameter space of upstream fast mode Mach number, M(sub f), and plasma beta. We compile the results into maps of dynamical steady state CR acceleration efficiency, epsilon(sub c). We have run simulations using constant, and nonisotropic, obliquity (and hence spatially) dependent forms of the diffusion coefficient kappa. Comparison of the results shows that while the final steady states achieved are the same in each case, the history of CR-MHD shocks can be strongly modified by variations in kappa and, therefore, in the acceleration timescale. Also, the coupling of CR and MHD in low beta, oblique shocks substantially influences the transient density spike that forms in strongly CR-modified shocks. We find that inside the density spike a MHD slow mode wave can be generated that eventually steepens into a shock. A strong layer develops within the density spike, driven by MHD stresses. We conjecture that currents in the shear layer could, in nonplanar flows, results in enhanced particle accretion through drift acceleration.

  12. Feasibility of MHD submarine propulsion. Phase II, MHD propulsion: Testing in a two Tesla test facility

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D. [ed.] [Argonne National Lab., IL (United States); Sikes, W.C. [ed.] [Newport News Shipbuilding and Dry Dock Co., VA (United States)

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

  13. Nonlinear MHD simulation of current drive by multi-pulsed coaxial helicity injection in spherical torus

    Science.gov (United States)

    Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro

    2011-10-01

    The dynamics of structures of magnetic field, current density, and plasma flow generated during multi-pulsed coaxial helicity injection in spherical torus is investigated by 3-D nonlinear MHD simulations. During the driven phase, the flux and current amplifications occur due to the merging and magnetic reconnection between the preexisting plasma in the confinement region and the ejected plasma from the gun region involving the n = 1 helical kink distortion of the central open flux column (COFC). Interestingly, the diamagnetic poloidal flow which tends toward the gun region is then observed due to the steep pressure gradients of the COFC generated by ohmic heating through an injection current winding around the inboard field lines, resulting in the formation of the strong poloidal flow shear at the interface between the COFC and the core region. This result is consistent with the flow shear observed in the HIST. During the decay phase, the configuration approaches the axisymmetric MHD equilibrium state without flow because of the dissipation of magnetic fluctuation energy to increase the closed flux surfaces, suggesting the generation of ordered magnetic field structure. The parallel current density λ concentrated in the COFC then diffuses to the core region so as to reduce the gradient in λ, relaxing in the direction of the Taylor state.

  14. MHD simulations of Plasma Jets and Plasma-surface interactions in Coaxial Plasma Accelerators

    Science.gov (United States)

    Subramaniam, Vivek; Raja, Laxminarayan

    2016-10-01

    Coaxial plasma accelerators belong to a class of electromagnetic acceleration devices which utilize a self-induced Lorentz force to accelerate magnetized thermal plasma to large velocities ( 40 Km/s). The plasma jet generated as a result, due to its high energy density, can be used to mimic the plasma-surface interactions at the walls of thermonuclear fusion reactors during an Edge Localized Mode (ELM) disruption event. We present the development of a Magnetohydrodynamics (MHD) simulation tool to describe the plasma acceleration and jet formation processes in coaxial plasma accelerators. The MHD model is used to study the plasma-surface impact interaction generated by the impingement of the jet on a target material plate. The study will characterize the extreme conditions generated on the target material surface by resolving the magnetized shock boundary layer interaction and the viscous/thermal diffusion effects. Additionally, since the plasma accelerator is operated in vacuum conditions, a novel plasma-vacuum interface tracking algorithm is developed to simulate the expansion of the high density plasma into a vacuum background in a physically consistent manner.

  15. Roles of initial current carrier in the distribution of field-aligned current in 3-D Hall MHD simulations

    Institute of Scientific and Technical Information of China (English)

    ZHANG XianGuo; PU ZuYin; MA ZhiWei; ZHOU XuZhi

    2008-01-01

    A three-dimensional (3-D) Hall MHD simulation is carried out to study the roles of initial current carrier in the topology of magnetic field,the generation and distribuering the contribution of ions to the initial current,the topology of the obtained magnetic field turns to be more complex. In some cases,it is found that not only the traditional By quadrupole structure but also a reversal By quadrupole structure appears in the simulation box. This can explain the observational features near the diffusion region,which are inconsistent with the Hall MHD theory with the total initial current carried by electrons. Several other interesting features are also emerged. First,motions of electrons and ions are decoupled from each other in the small plasma region (Hall effect region) with a scale less than or comparable with the ion inertial length or ion skin depth di=c/ωp. In the non-Hall effect region,the global magnetic structure is shifted in +y direction under the influence of ions with initial y directional motion. However,in the Hall effect region,magnetic field lines are bent in -y direction,mainly controlled by the motion of electrons,then By is generated. Second,FACs emerge as a result of the appearance of By. Compared with the prior Hall MHD simulation results,the generated FACs shift in +y direction,

  16. A New MHD-assisted Stokes Inversion Technique

    Science.gov (United States)

    Riethmüller, T. L.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.

    2017-03-01

    We present a new method of Stokes inversion of spectropolarimetric data and evaluate it by taking the example of a Sunrise/IMaX observation. An archive of synthetic Stokes profiles is obtained by the spectral synthesis of state-of-the-art magnetohydrodynamics (MHD) simulations and a realistic degradation to the level of the observed data. The definition of a merit function allows the archive to be searched for the synthetic Stokes profiles that best match the observed profiles. In contrast to traditional Stokes inversion codes, which solve the Unno-Rachkovsky equations for the polarized radiative transfer numerically and fit the Stokes profiles iteratively, the new technique provides the full set of atmospheric parameters. This gives us the ability to start an MHD simulation that takes the inversion result as an initial condition. After a relaxation process of half an hour solar time we obtain physically consistent MHD data sets with a target similar to the observation. The new MHD simulation is used to repeat the method in a second iteration, which further improves the match between observation and simulation, resulting in a factor of 2.2 lower mean {χ }2 value. One advantage of the new technique is that it provides the physical parameters on a geometrical height scale. It constitutes a first step toward inversions that give results consistent with the MHD equations.

  17. Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tataronis, J. A.

    2004-06-01

    This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.

  18. Dynamo action in dissipative, forced, rotating MHD turbulence

    Science.gov (United States)

    Shebalin, John V.

    2016-06-01

    Magnetohydrodynamic (MHD) turbulence is an inherent feature of large-scale, energetic astrophysical and geophysical magnetofluids. In general, these are rotating and are energized through buoyancy and shear, while viscosity and resistivity provide a means of dissipation of kinetic and magnetic energy. Studies of unforced, rotating, ideal (i.e., non-dissipative) MHD turbulence have produced interesting results, but it is important to determine how these results are affected by dissipation and forcing. Here, we extend our previous work and examine dissipative, forced, and rotating MHD turbulence. Incompressibility is assumed, and finite Fourier series represent turbulent velocity and magnetic field on a 643 grid. Forcing occurs at an intermediate wave number by a method that keeps total energy relatively constant and allows for injection of kinetic and magnetic helicity. We find that 3-D energy spectra are asymmetric when forcing is present. We also find that dynamo action occurs when forcing has either kinetic or magnetic helicity, with magnetic helicity injection being more important. In forced, dissipative MHD turbulence, the dynamo manifests itself as a large-scale coherent structure that is similar to that seen in the ideal case. These results imply that MHD turbulence, per se, may play a fundamental role in the creation and maintenance of large-scale (i.e., dipolar) stellar and planetary magnetic fields.

  19. Results from a large-scale MHD propulsion experiment

    Science.gov (United States)

    Petrick, M.; Libera, J.; Bouillard, J. X.; Pierson, E. S.; Hill, D.

    Magnetohydrodynamic (MHD) thrusters have long been recognized as potentially attractive candidates for ship propulsion because such systems eliminate the conventional rotating drive components. The MHD thruster is essentially an electromagnetic (EM) pump operating in seawater. An electrical current is passed directly through the seawater and interacts with an applied magnetic field; the interaction of the magnetic field and the electrode current in the seawater results in a Lorentz force acting on the water, and the reaction to this force propels the vessel forward. The concept of EM propulsion has been examined periodically during the past 35 years as an alternative method of propulsion for surface ships and submersibles. The conclusions reached in early studies were that MHD thrusters restricted to fields of 2 T (the state-of-the-art at that time) were impractical and very inefficient. With the evolution of superconducting magnet technology, later studies investigated the performance of MHD thrusters with much higher magnetic field strengths and concluded that at higher fields (greater than 6-T) practical MHD propulsion systems appear possible. The feasibility of attaining the requisite higher magnetic fields has increased markedly because of rapid advances in building high-field superconducting magnets and the recent evolution of high-temperature superconductors.

  20. Lattice Boltzmann Large Eddy Simulation Model of MHD

    CERN Document Server

    Flint, Christopher

    2016-01-01

    The work of Ansumali \\textit{et al.}\\cite{Ansumali} is extended to Two Dimensional Magnetohydrodynamic (MHD) turbulence in which energy is cascaded to small spatial scales and thus requires subgrid modeling. Applying large eddy simulation (LES) modeling of the macroscopic fluid equations results in the need to apply ad-hoc closure schemes. LES is applied to a suitable mesoscopic lattice Boltzmann representation from which one can recover the MHD equations in the long wavelength, long time scale Chapman-Enskog limit (i.e., the Knudsen limit). Thus on first performing filter width expansions on the lattice Boltzmann equations followed by the standard small Knudsen expansion on the filtered lattice Boltzmann system results in a closed set of MHD turbulence equations provided we enforce the physical constraint that the subgrid effects first enter the dynamics at the transport time scales. In particular, a multi-time relaxation collision operator is considered for the density distribution function and a single rel...

  1. Recent observations of MHD fluctuations in the solar wind

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    Full Text Available A short review of recent observations of solar wind fluctuations in the magnetohydrodynamic (MHD range of scales is presented. In recent years, the use of high time-resolution data on an extended interval of heliocentric distance has allowed significant advances in our knowledge of MHD fluctuations. We first focus on the origin and evolution of the Alfvénic-type fluctuations. The role of interplanetary sources and the influence of interactions with structures convected by the solar wind are examined. Then compressive fluctuations are investigated, with special attention being given to their nature and origin. Observations are discussed in the light of recent theories and models. Finally, predictions for MHD turbulence in polar regions of the heliosphere are highlighted.

  2. A Parametric Study of Extended-MHD Drift Tearing

    CERN Document Server

    King, Jacob R

    2014-01-01

    The linear drift-tearing mode is analyzed for different regimes of the plasma-$\\beta$, ion-skin-depth parameter space with an unreduced, extended-MHD model. New dispersion relations are found at moderate plasma $\\beta$ and previous drift-tearing results are classified as applicable at small plasma $\\beta$. The drift stabilization of the mode in the regimes varies from non-existent/weak to complete. As the diamagnetic-drift frequency is proportional to the plasma $\\beta$, verification exercises with unreduced, extended-MHD models in the small plasma-$\\beta$ regimes are impractical. The new dispersion relations in the moderate plasma-$\\beta$ regimes are used to verify the extended-MHD implementation of the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. Given the small boundary-layer skin depth, discussion of the validity of the first-order finite-Larmour-radius model is presented.

  3. Using Faraday Rotation to Probe MHD Instabilities in Intracluster Media

    CERN Document Server

    Bogdanovic, Tamara; Massey, Richard

    2010-01-01

    It has recently been suggested that conduction-driven magnetohydrodynamic (MHD) instabilities may operate at all radii within an intracluster medium (ICM), and profoundly affect the structure of a cluster's magnetic field. Where MHD instabilities dominate the dynamics of an ICM, they will re-orient magnetic field lines perpendicular to the temperature gradient inside a cooling core, or parallel to the temperature gradient outside it. This characteristic structure of magnetic field could be probed by measurements of polarized radio emission from background sources. Motivated by this possibility we have constructed 3-d models of a magnetized cooling core cluster and calculated Faraday rotation measure (RM) maps in the plane of the sky under realistic observing conditions. We compare a scenario in which magnetic field geometry is characterized by conduction driven MHD instabilities to that where it is determined by the turbulent motions. We find that future high-sensitivity spectro-polarimetric measurements of R...

  4. MHD discontinuities in solar flares: continuous transitions and plasma heating

    CERN Document Server

    Ledentsov, L S

    2015-01-01

    The boundary conditions for the ideal MHD equations on a plane dis- continuity surface are investigated. It is shown that, for a given mass flux through a discontinuity, its type depends only on the relation between inclina- tion angles of a magnetic field. Moreover, the conservation laws on a surface of discontinuity allow changing a discontinuity type with gradual (continu- ous) changes in the conditions of plasma flow. Then there are the so-called transition solutions that satisfy simultaneously two types of discontinuities. We obtain all transition solutions on the basis of the complete system of boundary conditions for the MHD equations. We also found the expression describing a jump of internal energy of the plasma flowing through the dis- continuity. Firstly, this allows constructing a generalized scheme of possible continuous transitions between MHD discontinuities. Secondly, it enables the examination of the dependence of plasma heating by plasma density and configuration of the magnetic field near t...

  5. MHD Flows in Compact Astrophysical Objects Accretion, Winds and Jets

    CERN Document Server

    Beskin, Vasily S

    2010-01-01

    Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy e...

  6. Steady-State Axisymmetric MHD Solutions with Various Boundary Conditions

    CERN Document Server

    Wang, Lile

    2014-01-01

    Axisymmetric magnetohydrodynamics (MHD) can be invoked for describing astrophysical magnetized flows and formulated to model stellar magnetospheres including main sequence stars (e.g. the Sun), compact stellar objects [e.g. magnetic white dwarfs (MWDs), radio pulsars, anomalous X-ray pulsars (AXPs), magnetars, isolated neutron stars etc.], and planets as a major step forward towards a full three-dimensional model construction. Using powerful and reliable numerical solvers based on two distinct finite-difference method (FDM) and finite-element method (FEM) schemes of algorithm, we examine axisymmetric steady-state or stationary MHD models in Throumoulopoulos & Tasso (2001), finding that their separable semi-analytic nonlinear solutions are actually not unique given their specific selection of several free functionals and chosen boundary conditions. The multiplicity of nonlinear steady MHD solutions gives rise to differences in the total energies contained in the magnetic fields and flow velocity fields as ...

  7. Course 1: Accretion and Ejection-Related MHD

    Science.gov (United States)

    Heyvaerts, Jean

    This lecture is an introduction to MHD. Relevant equations, both in the classical and special-relativistic regimes are derived. The magnetic field evolution is considered both in the perfect-MHD limit and when weak resistivity is present, giving rise to reconnection flows. A short section gives a flavour of dynamo theory. Examples of simple stationnary flows and equilibria are then presented. Stationnary, axisymmetric, rotating perfect-MHD winds and jets are discussed in some more detail. Their asymptotic structure is described. The last sections deal with small motions about an equilibrium and stability. These issues are illustrated by a few classical examples. The last section discusses linear aspects of the magneto-rotationnal instability.

  8. Lectures in magnetohydrodynamics. With an appendix on extended MHD

    Energy Technology Data Exchange (ETDEWEB)

    Schnack, Dalton D. [Wisconsin Univ., Madison, WI (United States). Dept. Physics

    2009-07-01

    This concise and self-contained primer is based on class-tested notes for an advanced graduate course in MHD. The broad areas chosen for presentation are the derivation and properties of the fundamental equations, equilibrium, waves and instabilities, self-organization, turbulence, and dynamos. The latter topics require the inclusion of the effects of resistivity and nonlinearity. Together, these span the range of MHD issues that have proven to be important for understanding magnetically confined plasmas as well as in some space and astrophysical applications. The combined length and style of the thirty-eight lectures are appropriate for complete presentation in a single semester. An extensive appendix on extended MHD is included as further reading. (orig.)

  9. Laboratory identification of MHD eruption criteria in the solar corona

    Science.gov (United States)

    Myers, Clayton E.

    2015-11-01

    Ideal magnetohydrodynamic (MHD) instabilities such as the kink and torus instabilities are believed to play an important role in driving ``storage-and-release'' eruptions in the solar corona. These instabilities act on long-lived, arched magnetic flux ropes that are ``line-tied'' to the solar surface. In spite of numerous observational and computational studies, the conditions under which these instabilities produce an eruption remain a subject of intense debate. In this paper, we use a line-tied, arched flux rope experiment to study storage-and-release eruptions in the laboratory. An in situ array of miniature magnetic probes is used to assess the equilibrium and stability of the laboratory flux ropes. Two major results are reported here: First, a new stability regime is identified where torus-unstable flux ropes fail to erupt. In this ``failed torus'' regime, the flux rope is torus-unstable but kink-stable. Under these conditions, a dynamic ``toroidal field tension force'' surges in magnitude, causing the flux rope to contract. This tension force, which is missing from existing eruption models, is the J × B force between self-generated poloidal currents in the flux rope and the toroidal (guide) component of the vacuum field. Secondly, a clear torus instability threshold is observed in the kink-unstable regime. This latter result, which is consistent with existing theoretical and numerical results, verifies the key role of the torus instability in driving solar eruptions. In collaboration with M. Yamada, H. Ji, J. Yoo, W. Fox, J. Jara-Almonte, A. Savcheva, and E. E. DeLuca. This research is supported by DoE Contract No. DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).

  10. Existence of two MHD reconnection modes in a solar 3D magnetic null point topology

    Science.gov (United States)

    Pariat, Etienne; Antiochos, Spiro; DeVore, C. Richard; Dalmasse, Kévin

    2012-07-01

    Magnetic topologies with a 3D magnetic null point are common in the solar atmosphere and occur at different spatial scales: such structures can be associated with some solar eruptions, with the so-called pseudo-streamers, and with numerous coronal jets. We have recently developed a series of numerical experiments that model magnetic reconnection in such configurations in order to study and explain the properties of jet-like features. Our model uses our state-of-the-art adaptive-mesh MHD solver ARMS. Energy is injected in the system by line-tied motion of the magnetic field lines in a corona-like configuration. We observe that, in the MHD framework, two reconnection modes eventually appear in the course of the evolution of the system. A very impulsive one, associated with a highly dynamic and fully 3D current sheet, is associated with the energetic generation of a jet. Before and after the generation of the jet, a quasi-steady reconnection mode, more similar to the standard 2D Sweet-Parker model, presents a lower global reconnection rate. We show that the geometry of the magnetic configuration influences the trigger of one or the other mode. We argue that this result carries important implications for the observed link between observational features such as solar jets, solar plumes, and the emission of coronal bright points.

  11. Large-scale Magnetic Structure Formation in 3D-MHD Turbulence

    CERN Document Server

    Malapaka, Shiva Kumar

    2013-01-01

    The inverse cascade of magnetic helicity in 3D-MHD turbulence is believed to be one of the processes responsible for large scale magnetic structure formation in astrophysical systems. In this work we present an exhaustive set of high resolution direct numerical simulations (DNS) of both forced and decaying 3D-MHD turbulence, to understand this structure formation process. It is first shown that an inverse cascade of magnetic helicity in small-scale driven turbulence does not necessarily generate coherent large-scale magnetic structures. The observed large-scale magnetic field, in this case, is severely perturbed by magnetic fluctuations generated by the small-scale forcing. In the decaying case, coherent large-scale structure form similar to those observed astronomically. Based on the numerical results the formation of large-scale magnetic structures in some astrophysical systems, is suggested to be the consequence of an initial forcing which imparts the necessary turbulent energy into the system, which, afte...

  12. Realistic Modeling of Multi-Scale MHD Dynamics of the Solar Atmosphere

    Science.gov (United States)

    Kitiashvili, Irina; Mansour, Nagi N.; Wray, Alan; Couvidat, Sebastian; Yoon, Seokkwan; Kosovichev, Alexander

    2014-01-01

    Realistic 3D radiative MHD simulations open new perspectives for understanding the turbulent dynamics of the solar surface, its coupling to the atmosphere, and the physical mechanisms of generation and transport of non-thermal energy. Traditionally, plasma eruptions and wave phenomena in the solar atmosphere are modeled by prescribing artificial driving mechanisms using magnetic or gas pressure forces that might arise from magnetic field emergence or reconnection instabilities. In contrast, our 'ab initio' simulations provide a realistic description of solar dynamics naturally driven by solar energy flow. By simulating the upper convection zone and the solar atmosphere, we can investigate in detail the physical processes of turbulent magnetoconvection, generation and amplification of magnetic fields, excitation of MHD waves, and plasma eruptions. We present recent simulation results of the multi-scale dynamics of quiet-Sun regions, and energetic effects in the atmosphere and compare with observations. For the comparisons we calculate synthetic spectro-polarimetric data to model observational data of SDO, Hinode, and New Solar Telescope.

  13. Multi-MW Closed Cycle MHD Nuclear Space Power Via Nonequilibrium He/Xe Working Plasma

    Science.gov (United States)

    Litchford, Ron J.; Harada, Nobuhiro

    2011-01-01

    Prospects for a low specific mass multi-megawatt nuclear space power plant were examined assuming closed cycle coupling of a high-temperature fission reactor with magnetohydrodynamic (MHD) energy conversion and utilization of a nonequilibrium helium/xenon frozen inert plasma (FIP). Critical evaluation of performance attributes and specific mass characteristics was based on a comprehensive systems analysis assuming a reactor operating temperature of 1800 K for a range of subsystem mass properties. Total plant efficiency was expected to be 55.2% including plasma pre-ionization power, and the effects of compressor stage number, regenerator efficiency and radiation cooler temperature on plant efficiency were assessed. Optimal specific mass characteristics were found to be dependent on overall power plant scale with 3 kg/kWe being potentially achievable at a net electrical power output of 1-MWe. This figure drops to less than 2 kg/kWe when power output exceeds 3 MWe. Key technical issues include identification of effective methods for non-equilibrium pre-ionization and achievement of frozen inert plasma conditions within the MHD generator channel. A three-phase research and development strategy is proposed encompassing Phase-I Proof of Principle Experiments, a Phase-II Subscale Power Generation Experiment, and a Phase-III Closed-Loop Prototypical Laboratory Demonstration Test.

  14. Dynamics of nonlinear resonant slow MHD waves in twisted flux tubes

    Directory of Open Access Journals (Sweden)

    R. Erdélyi

    2002-01-01

    Full Text Available Nonlinear resonant magnetohydrodynamic (MHD waves are studied in weakly dissipative isotropic plasmas in cylindrical geometry. This geometry is suitable and is needed when one intends to study resonant MHD waves in magnetic flux tubes (e.g. for sunspots, coronal loops, solar plumes, solar wind, the magnetosphere, etc. The resonant behaviour of slow MHD waves is confined in a narrow dissipative layer. Using the method of simplified matched asymptotic expansions inside and outside of the narrow dissipative layer, we generalise the so-called connection formulae obtained in linear MHD for the Eulerian perturbation of the total pressure and for the normal component of the velocity. These connection formulae for resonant MHD waves across the dissipative layer play a similar role as the well-known Rankine-Hugoniot relations connecting solutions at both sides of MHD shock waves. The key results are the nonlinear connection formulae found in dissipative cylindrical MHD which are an important extension of their counterparts obtained in linear ideal MHD (Sakurai et al., 1991, linear dissipative MHD (Goossens et al., 1995; Erdélyi, 1997 and in nonlinear dissipative MHD derived in slab geometry (Ruderman et al., 1997. These generalised connection formulae enable us to connect solutions obtained at both sides of the dissipative layer without solving the MHD equations in the dissipative layer possibly saving a considerable amount of CPU-time when solving the full nonlinear resonant MHD problem.

  15. MHD equilibrium of toroidal fusion plasma with stationary flows; Rownowaga MHD toroidalnej plazmy termojadrowej z przeplywami

    Energy Technology Data Exchange (ETDEWEB)

    Galkowski, A. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1994-12-31

    Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad`s ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs.

  16. Magnetohydrodynamic (MHD) modelling of solar active phenomena via numerical methods

    Science.gov (United States)

    Wu, S. T.

    1988-01-01

    Numerical ideal MHD models for the study of solar active phenomena are summarized. Particular attention is given to the following physical phenomena: (1) local heating of a coronal loop in an isothermal and stratified atmosphere, and (2) the coronal dynamic responses due to magnetic field movement. The results suggest that local heating of a magnetic loop will lead to the enhancement of the density of the neighboring loops through MHD wave compression. It is noted that field lines can be pinched off and may form a self-contained magnetized plasma blob that may move outward into interplanetary space.

  17. Advances in Simulation of Wave Interactions with Extended MHD Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, Donald B [ORNL; D' Azevedo, Eduardo [ORNL; Bateman, Glenn [ORNL; Bernholdt, David E [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, Randall B [ORNL; Breslau, Joshua [ORNL; Elwasif, Wael R [ORNL; Foley, S. [Indiana University; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Klasky, Scott A [ORNL; Kruger, Scott E [ORNL; Ku, Long-Poe [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, David P [ORNL; Schnack, Dalton D [ORNL

    2009-01-01

    The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: (1) recent improvements to the IPS, (2) application of the IPS for very high resolution simulations of ITER scenarios, (3) studies of resistive and ideal MHD stability in tokamak discharges using IPS facilities, and (4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.

  18. Advances in Simulation of Wave Interaction with Extended MHD Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, Donald B [ORNL; Abla, Gheni [ORNL; D' Azevedo, Ed F [ORNL; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, R [Indiana University; Breslau, Joshua [ORNL; Chance, M. [Princeton Plasma Physics Laboratory (PPPL); Chen, J. [Princeton Plasma Physics Laboratory (PPPL); Choi, M. [General Atomics; Elwasif, Wael R [ORNL; Foley, S. [Indiana University; Fu, GuoYong [Princeton Plasma Physics Laboratory (PPPL); Harvey, R. W. [CompX, Del Mar, CA; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Jenkins, T [University of Wisconsin; Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Kruger, Scott [Tech-X Corporation; Ku, Long-Poe [Princeton Plasma Physics Laboratory (PPPL); Lynch, Vickie E [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, D. [General Atomics; Schnack, [University of Wisconsin; Wright, J. [Massachusetts Institute of Technology (MIT)

    2009-01-01

    The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.

  19. Advances in simulation of wave interactions with extended MHD phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, D; D' Azevedo, E; Bernholdt, D E; Berry, L; Elwasif, W; Jaeger, E [Oak Ridge National Laboratory (United States); Abla, G; Choi, M [General Atomics (United States); Bateman, G [Lehigh University (United States); Bonoli, P [Plasma Science and Fusion Center, Massachusetts Institute of Technology (United States); Bramley, R; Foley, S [Indiana University (United States); Breslau, J; Chance, M; Chen, J; Fu, G; Jardin, S [Princeton Plasma Physics Laboratory (United States); Harvey, R [CompX International (United States); Jenkins, T [University of Wisconsin (United States); Keyes, D, E-mail: batchelordb@ornl.go [Columbia University (United States)

    2009-07-01

    The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.

  20. MHD Waves and Coronal Seismology: an overview of recent results

    CERN Document Server

    De Moortel, Ineke

    2012-01-01

    Recent observations have revealed that MHD waves and oscillations are ubiquitous in the solar atmosphere, with a wide range of periods. We give a brief review of some aspects of MHD waves and coronal seismology which have recently been the focus of intense debate or are newly emerging. In particular, we focus on four topics: (i) the current controversy surrounding propagating intensity perturbations along coronal loops, (ii) the interpretation of propagating transverse loop oscillations, (iii) the ongoing search for coronal (torsional) Alfven waves and (iv) the rapidly developing topic of quasi-periodic pulsations (QPP) in solar flares.

  1. Nonlinear Terms of MHD Equations for Homogeneous Magnetized Shear Flow

    CERN Document Server

    Dimitrov, Z D; Hristov, T S; Mishonov, T M

    2011-01-01

    We have derived the full set of MHD equations for incompressible shear flow of a magnetized fluid and considered their solution in the wave-vector space. The linearized equations give the famous amplification of slow magnetosonic waves and describe the magnetorotational instability. The nonlinear terms in our analysis are responsible for the creation of turbulence and self-sustained spectral density of the MHD (Alfven and pseudo-Alfven) waves. Perspectives for numerical simulations of weak turbulence and calculation of the effective viscosity of accretion disks are shortly discussed in k-space.

  2. Relativistic MHD and excision: formulation and initial tests

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, David; Hirschmann, Eric W; Millward, R Steven [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States)

    2006-08-21

    A new algorithm for solving the general relativistic MHD equations is described in this paper. We design our scheme to incorporate black hole excision with smooth boundaries, and to simplify solving the combined Einstein and MHD equations with AMR. The fluid equations are solved using a finite difference convex ENO method. Excision is implemented using overlapping grids. Elliptic and hyperbolic divergence cleaning techniques allow for maximum flexibility in choosing coordinate systems, and we compare both methods for a standard problem. Numerical results of standard test problems are presented in two-dimensional flat space using excision, overlapping grids and elliptic and hyperbolic divergence cleaning.

  3. Relativistic MHD and black hole excision: Formulation and initial tests

    CERN Document Server

    Neilsen, D; Millward, R S; Hirschmann, Eric W; Neilsen, David

    2006-01-01

    A new algorithm for solving the general relativistic MHD equations is described in this paper. We design our scheme to incorporate black hole excision with smooth boundaries, and to simplify solving the combined Einstein and MHD equations with AMR. The fluid equations are solved using a finite difference Convex ENO method. Excision is implemented using overlapping grids. Elliptic and hyperbolic divergence cleaning techniques allow for maximum flexibility in choosing coordinate systems, and we compare both methods for a standard problem. Numerical results of standard test problems are presented in two-dimensional flat space using excision, overlapping grids, and elliptic and hyperbolic divergence cleaning.

  4. Extended MHD Effects in High Energy Density Experiments

    Science.gov (United States)

    Seyler, Charles

    2016-10-01

    The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation

  5. The superconducting MHD-propelled ship YAMATO-1

    Science.gov (United States)

    Sasakawa, Yohei; Takezawa, Setsuo; Sugawara, Yoshinori; Kyotani, Yoshihiro

    1995-04-01

    In 1985 the Ship & Ocean Foundation (SOF) created a committee under the chairmanship of Mr. Yohei Sasakawa, Former President of the Ship & Ocean Foundation, and began researches into superconducting magnetohydrodynamic (MHD) ship propulsion. In 1989 SOF set to construction of a experimental ship on the basis of theoretical and experimental researches pursued until then. The experimental ship named YAMATO-1 became the world's first superconducting MHD-propelled ship on her trial runs in June 1992. This paper describes the outline of the YAMATO-1 and sea trial test results.

  6. Plasma response measurements of external magnetic perturbations using electron cyclotron emission and comparisons to 3D ideal MHD equilibrium

    CERN Document Server

    Willensdorfer, M; Strumberger, E; Suttrop, W; Vanovac, B; Brida, D; Cavedon, M; Classen, I; Dunne, M; Fietz, S; Fischer, R; Kirk, A; Laggner, F M; Liu, Y Q; Odstrcil, T; Ryan, D A; Viezzer, E; Zohm, H; Luhmann, I C

    2016-01-01

    The plasma response from an external n = 2 magnetic perturbation field in ASDEX Upgrade has been measured using mainly electron cyclotron emission (ECE) diagnostics and a rigid rotating field. To interpret ECE and ECE-imaging (ECE-I) measurements accurately, forward modeling of the radiation transport has been combined with ray tracing. The measured data is compared to synthetic ECE data generated from a 3D ideal magnetohydrodynamics (MHD) equilibrium calculated by VMEC. The measured amplitudes of the helical displacement in the midplane are in reasonable agreement with the one from the synthetic VMEC diagnostics. Both exceed the vacuum field calculations and indicate the presence of an amplified kink response at the edge. Although the calculated magnetic structure of this edge kink peaks at poloidal mode numbers larger than the resonant components |m| > |nq|, the displacement measured by ECE-I is almost resonant |m| ~ |nq|. This is expected from ideal MHD in the proximity of rational surfaces. VMEC and MARS-...

  7. Numerical study of the MHD flow characteristics in a three-surface-multi-layered channel with different inlet conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aoyagi, Mitsuhiro, E-mail: mao@karma.qse.tohoku.ac.jp; Ito, Satoshi; Hashizume, Hidetoshi

    2014-10-15

    A 3D MHD flow simulation was conducted to clarify the effects of the inlet flow conditions on the results of the validation experiment carried out previously and on the design window of the first wall using a three-surface-multi-layered channel. MHD pressure drop was largely influenced by the inlet condition. The numerical model with turbulent velocity profile showed qualitatively good agreement with the experimental result. The first wall temperature and pressure distributions obtained by the 3D simulation corresponded well to those obtained by the 2D simulation assuming fully developed flow. This suggested that complicated three-dimensional inlet flow condition generated in the L-shape elbow would not affects the existing design window.

  8. Resonant behavior of MHD waves on magnetic flux tubes. IV - Total resonant absorption and MHD radiating eigenmodes

    Science.gov (United States)

    Goossens, Marcel; Hollweg, Joseph V.

    1993-01-01

    Resonant absorption of MHD waves on a nonuniform flux tube is investigated as a driven problem for a 1D cylindrical equilibrium. The variation of the fractional absorption is studied as a function of the frequency and its relation to the eigenvalue problem of the MHD radiating eigenmodes of the nonuniform flux tube is established. The optimal frequencies producing maximal fractional absorption are determined and the condition for total absorption is obtained. This condition defines an impedance matching and is fulfilled for an equilibrium that is fine tuned with respect to the incoming wave. The variation of the spatial wave solutions with respect to the frequency is explained as due to the variation of the real and imaginary parts of the dispersion relation of the MHD radiating eigenmodes with respect to the real driving frequency.

  9. Review Article: MHD Wave Propagation Near Coronal Null Points of Magnetic Fields

    Science.gov (United States)

    McLaughlin, J. A.; Hood, A. W.; de Moortel, I.

    2011-07-01

    We present a comprehensive review of MHD wave behaviour in the neighbourhood of coronal null points: locations where the magnetic field, and hence the local Alfvén speed, is zero. The behaviour of all three MHD wave modes, i.e. the Alfvén wave and the fast and slow magnetoacoustic waves, has been investigated in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null points, for a variety of assumptions, configurations and geometries. In general, it is found that the fast magnetoacoustic wave behaviour is dictated by the Alfvén-speed profile. In a β=0 plasma, the fast wave is focused towards the null point by a refraction effect and all the wave energy, and thus current density, accumulates close to the null point. Thus, null points will be locations for preferential heating by fast waves. Independently, the Alfvén wave is found to propagate along magnetic fieldlines and is confined to the fieldlines it is generated on. As the wave approaches the null point, it spreads out due to the diverging fieldlines. Eventually, the Alfvén wave accumulates along the separatrices (in 2D) or along the spine or fan-plane (in 3D). Hence, Alfvén wave energy will be preferentially dissipated at these locations. It is clear that the magnetic field plays a fundamental role in the propagation and properties of MHD waves in the neighbourhood of coronal null points. This topic is a fundamental plasma process and results so far have also lead to critical insights into reconnection, mode-coupling, quasi-periodic pulsations and phase-mixing.

  10. Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, James Tharp [Univ. of Wisconsin, Madison, WI (United States)

    1998-09-01

    The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8-20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation.

  11. Analytical and computational investigations of a magnetohydrodynamics (MHD) energy-bypass system for supersonic gas turbine engines to enable hypersonic flight

    Science.gov (United States)

    Benyo, Theresa Louise

    Historically, the National Aeronautics and Space Administration (NASA) has used rocket-powered vehicles as launch vehicles for access to space. A familiar example is the Space Shuttle launch system. These vehicles carry both fuel and oxidizer onboard. If an external oxidizer (such as the Earth's atmosphere) is utilized, the need to carry an onboard oxidizer is eliminated, and future launch vehicles could carry a larger payload into orbit at a fraction of the total fuel expenditure. For this reason, NASA is currently researching the use of air-breathing engines to power the first stage of two-stage-to-orbit hypersonic launch systems. Removing the need to carry an onboard oxidizer leads also to reductions in total vehicle weight at liftoff. This in turn reduces the total mass of propellant required, and thus decreases the cost of carrying a specific payload into orbit or beyond. However, achieving hypersonic flight with air-breathing jet engines has several technical challenges. These challenges, such as the mode transition from supersonic to hypersonic engine operation, are under study in NASA's Fundamental Aeronautics Program. One propulsion concept that is being explored is a magnetohydrodynamic (MHD) energy- bypass generator coupled with an off-the-shelf turbojet/turbofan. It is anticipated that this engine will be capable of operation from takeoff to Mach 7 in a single flowpath without mode transition. The MHD energy bypass consists of an MHD generator placed directly upstream of the engine, and converts a portion of the enthalpy of the inlet flow through the engine into electrical current. This reduction in flow enthalpy corresponds to a reduced Mach number at the turbojet inlet so that the engine stays within its design constraints. Furthermore, the generated electrical current may then be used to power aircraft systems or an MHD accelerator positioned downstream of the turbojet. The MHD accelerator operates in reverse of the MHD generator, re-accelerating the

  12. A new MHD-assisted Stokes inversion technique

    CERN Document Server

    Riethmüller, T L; Barthol, P; Gandorfer, A; Gizon, L; Hirzberger, J; van Noort, M; Rodríguez, J Blanco; Iniesta, J C Del Toro; Suárez, D Orozco; Schmidt, W; Pillet, V Martínez; Knölker, M

    2016-01-01

    We present a new method of Stokes inversion of spectropolarimetric data and evaluate it by taking the example of a SUNRISE/IMaX observation. An archive of synthetic Stokes profiles is obtained by the spectral synthesis of state-of-the-art magnetohydrodynamics (MHD) simulations and a realistic degradation to the level of the observed data. The definition of a merit function allows the archive to be searched for the synthetic Stokes profiles that match the observed profiles best. In contrast to traditional Stokes inversion codes, which solve the Unno-Rachkovsky equations for the polarized radiative transfer numerically and fit the Stokes profiles iteratively, the new technique provides the full set of atmospheric parameters. This gives us the ability to start an MHD simulation that takes the inversion result as initial condition. After a relaxation process of half an hour solar time we obtain physically consistent MHD data sets with a target similar to the observation. The new MHD simulation is used to repeat t...

  13. MHD Energy Bypass Scramjet Performance with Real Gas Effects

    Science.gov (United States)

    Park, Chul; Mehta, Unmeel B.; Bogdanoff, David W.

    2000-01-01

    The theoretical performance of a scramjet propulsion system incorporating an magneto-hydro-dynamic (MHD) energy bypass scheme is calculated. The one-dimensional analysis developed earlier, in which the theoretical performance is calculated neglecting skin friction and using a sudden-freezing approximation for the nozzle flow, is modified to incorporate the method of Van Driest for turbulent skin friction and a finite-rate chemistry calculation in the nozzle. Unlike in the earlier design, in which four ramp compressions occurred in the pitch plane, in the present design the first two ramp compressions occur in the pitch plane and the next two compressions occur in the yaw plane. The results for the simplified design of a spaceliner show that (1) the present design produces higher specific impulses than the earlier design, (2) skin friction substantially reduces thrust and specific impulse, and (3) the specific impulse of the MHD-bypass system is still better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Results suggest that the energy management with MHD principles offers the possibility of improving the performance of the scramjet. The technical issues needing further studies are identified.

  14. CASTOR: Normal-mode analysis of resistive MHD plasmas

    NARCIS (Netherlands)

    Kerner, W.; Goedbloed, J. P.; Huysmans, G. T. A.; Poedts, S.; Schwarz, E.

    1998-01-01

    The CASTOR (complex Alfven spectrum of toroidal plasmas) code computes the entire spectrum of normal-modes in resistive MHD for general tokamak configurations. The applied Galerkin method, in conjunction with a Fourier finite-element discretisation, leads to a large scale eigenvalue problem A (x)

  15. Modified NASA-Lewis Chemical Equilibrium Code for MHD applications

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.

    1979-12-01

    A substantially modified version of the NASA-Lewis Chemical Equilibrium Code has recently been developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. This report describes the effect of the programming details from a user point of view, but does not describe the Code in detail.

  16. MHD discontinuities in solar flares: continuous transitions and plasma heating

    Science.gov (United States)

    Ledentsov, Leonid; Somov, Boris

    The conservation laws on a surface of discontinuity in the ideal magnetohydrodynamics (MHD) allow changing a discontinuity type with gradual (continuous) changes in conditions of plasma. Then there are the so-called transition solutions that satisfy simultaneously two types of discontinuities. We obtain all transition solutions on the basis of a complete system of boundary conditions for the MHD equations. We also found an expression describing a jump of internal energy of the plasma flowing through the discontinuity. It allows, firstly, to construct a generalized scheme of possible transitions between MHD discontinuities, and secondly, to examine the dependence of plasma heating by plasma density and configuration of the magnetic field near the surface of the discontinuity (i.e., by the type of the MHD discontinuity). The problem of the heating of "superhot" plasma (with the electron temperature is greater than 10 keV) in solar flares are discussed. It is shown that the best conditions for heating are carried out in the vicinity of the reconnecting current layer near the areas of reverse currents. Bibl.: B.V.Somov. Plasma Astrophysics, Part II: Reconnection and Flares, Second Edition. (New York: Springer SBM, 2013).

  17. General Description of Ideal Tokamak MHD Instability Ⅱ

    Institute of Scientific and Technical Information of China (English)

    石秉仁

    2002-01-01

    In this subsequent study on general description of ideal tokamak MHD instability,the part Ⅱ, by using a coordinate with rectified magnetic field lines, the eigenmode equationsdescribing the low-mode-number toroidal Alfven modes (TAE and EAE) are derived through afurther expansion of the shear Alfven equation of motion.

  18. Motion stability of a suspended particle in a MHD flow

    Energy Technology Data Exchange (ETDEWEB)

    Shvarts, I.A.

    1977-07-01

    An examination is made of the motion instability of a suspended particle in a plane-parallel laminar flow with a velocity profile U(y,A) where A is certain parameter. An expression was obtained for the critical Reynolds number Re = ..cap alpha../delta/U/delta y/:the coefficient ..cap alpha.. is associated with dimensions and form of the particle. The results of the common theory are used for studying the motion instability of suspended spherical particle in Couette--Hartmann MHD flows. At large Hartmann numbers Re*/Ha was shown to be constant. This agrees well with experimental data on the hydrodynamic stability of the MHD flow itself. A definite correlation also takes place between Re/sub kr/(Ha) of a MHD flow and the Reynolds numbers that determine the stability of suspended particles when the Hartmann numbers are small. Thus, in a number of cases it is possible to examine the hydrodynamic stability of a MHD flow by the motion stability of solid particles introduced into the flow. 8 references, 2 illustrations.

  19. TAE modes and MHD activity in TFTR DT plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, E.; Batha, S.; Bell, M.

    1995-03-01

    The high power deuterium and tritium experiments on TFTR have produced fusion a parameters similar to those expected on ITER. The achieved {beta}{sub {alpha}}/{beta} and the R{triangledown}{beta}{sub {alpha}} in TFRR D-T shots are 1/2 to 1/3 those predicted in the ITER EDA. Studies of the initial TFTR D-T plasmas find no evidence that the presence of the fast fusion {alpha} population has affected the stability of MHD, with the possible exception of Toroidal Alfven Eigenmodes (TAE`s). The initial TFTR DT plasmas had MHD activity similar to that commonly seen in deuterium plasmas. Operation of TFTR at plasma currents of 2.0--2.5 MA has greatly reduced the deleterious effects of MHD commonly observed at lower currents. Even at these higher currents, the performance of TFTR is limited by {beta}-limit disruptions. The effects of MHD on D-T fusion {alpha}`s was similar to effects observed on other fusion products in D only plasmas.

  20. Theoretical and Experimental Study of Radial Velocity Generation for Extending Bandwidth of Magnetohydrodynamic Angular Rate Sensor at Low Frequency

    Directory of Open Access Journals (Sweden)

    Yue Ji

    2015-12-01

    Full Text Available The magnetohydrodynamics angular rate sensor (MHD ARS has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth.

  1. Theoretical and Experimental Study of Radial Velocity Generation for Extending Bandwidth of Magnetohydrodynamic Angular Rate Sensor at Low Frequency.

    Science.gov (United States)

    Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng

    2015-12-15

    The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth.

  2. Theoretical and Experimental Study of Radial Velocity Generation for Extending Bandwidth of Magnetohydrodynamic Angular Rate Sensor at Low Frequency

    Science.gov (United States)

    Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng

    2015-01-01

    The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth. PMID:26694393

  3. Performance and flow characteristics of MHD seawater thruster

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D.

    1990-01-01

    The main goal of the research is to investigate the effects of strong magnetic fields on the electrical and flow fields inside MHD thrusters. The results of this study is important in the assessment of the feasibility of MHD seawater propulsion for the Navy. To accomplish this goal a three-dimensional fluid flow computer model has been developed and applied to study the concept of MHD seawater propulsion. The effects of strong magnetic fields on the current and electric fields inside the MHD thruster and their interaction with the flow fields, particularly those in the boundary layers, have been investigated. The results of the three-dimensional computations indicate that the velocity profiles are flatter over the sidewalls of the thruster walls in comparison to the velocity profiles over the electrode walls. These nonuniformities in the flow fields give rise to nonuniform distribution of the skin friction along the walls of the thrusters, where higher values are predicted over the sidewalls relative to those over the electrode walls. Also, a parametric study has been performed using the three-dimensional MHD flow model to analyze the performance of continuous electrode seawater thrusters under different operating parameters. The effects of these parameters on the fluid flow characteristics, and on the thruster efficiency have been investigated. Those parameters include the magnetic field (10--20 T), thruster diameter, surface roughness, flow velocity, and the electric load factor. The results show also that the thruster performance improves with the strength of the magnetic field and thruster diameter, and the efficiency decreases with the flow velocity and surface roughness.

  4. Review article: MHD wave propagation near coronal null points of magnetic fields

    CERN Document Server

    McLaughlin, J A; De Moortel, I; 10.1007/s11214-010-9654-y

    2010-01-01

    We present a comprehensive review of MHD wave behaviour in the neighbourhood of coronal null points: locations where the magnetic field, and hence the local Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the Alfven wave and the fast and slow magnetoacoustic waves, has been investigated in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null points, for a variety of assumptions, configurations and geometries. In general, it is found that the fast magnetoacoustic wave behaviour is dictated by the Alfven-speed profile. In a $\\beta=0$ plasma, the fast wave is focused towards the null point by a refraction effect and all the wave energy, and thus current density, accumulates close to the null point. Thus, null points will be locations for preferential heating by fast waves. Independently, the Alfven wave is found to propagate along magnetic fieldlines and is confined to the fieldlines it is generated on. As the wave approaches the null point, it spreads out due to the di...

  5. MHD Spectroscopic Study of the Stabilizing Effect of Plasma Flow on the Resistive Wall Mode

    Science.gov (United States)

    Reimerdes, H.; Garofalo, A. M.; Navratil, G. A.; Chu, M. S.; Jackson, G. L.; Jensen, T. H.; La Haye, R. J.; Scoville, J. T.; Strait, E. J.; Edgell, D. H.; Jayakumar, R. J.; Okabayashi, M.

    2003-10-01

    MHD Spectroscopic Study of the Stabilizing Effect of Plasma Flow on the Resistive Wall Mode,* H. Reimerdes, A.M. Garofalo, G.A. Navratil, Columbia U, M.S. Chu, G.L. Jackson, T.H. Jensen, R.J. La Haye, J.T. Scoville, E.J. Strait, GA, D.H. Edgell, FAR-TECH, Inc., R.J. Jayakumar, LLNL, M. Okabayashi, PPPL - Resistive wall mode (RWM) stabilization by plasma rotation has been under study for the last decade. Dissipation caused by an interaction between the quasi-static magnetic perturbation and a near-sonic plasma flow alters the RWM stability [Bondeson, Phys. Rev. Lett. 72, 2709 (1994)]. To probe the RWM stability in DIII-D, we extend the technique of MHD spectroscopy, which was previously applied at frequencies above 10 kHz [Fasoli, et al., Phys. Rev. Lett. 75, 645 (1995)], to frequencies of a few Hz. Internal coils generate a rotating magnetic field, whose spatial structure largely overlaps with the RWM structure. The plasma response, measured as the perturbed field at the wall, is rigid and peaks when the external field rotates at a fraction of the inverse wall time in the direction of the plasma rotation, which is in good agreement with a single mode model [Garofalo, et al., Phys. Plasmas 9, 4573 (2002)]. This measurement is used to determine the contribution of the proposed dissipation mechanisms to the stabilization of the RWM.

  6. Three dimensional MHD Modeling of Vertical Kink Oscillations in an Active Region Plasma Curtain

    CERN Document Server

    Ofman, Leon; Srivastava, Abhishek K

    2015-01-01

    Observations on 2011 August 9 of an X6.9-class flare in active region (AR) 11263 by the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamics Observatory (SDO), were followed by a rare detection of vertical kink oscillations in a large-scale coronal active region plasma curtain in EUV coronal lines. The damped oscillations with periods in the range 8.8-14.9 min were detected and analyzed recently. Our aim is to study the generation and propagation of the MHD oscillations in the plasma curtain taking into account realistic 3D magnetic and density structure of the curtain. We also aim at testing and improving coronal seismology for more accurate determination of the magnetic field than with standard method. We use the observed morphological and dynamical conditions, as well as plasma properties of the coronal curtain based on Differential Emission Measure (DEM) analysis to initialize a 3D MHD model of its vertical and transverse oscillations by implementing the impulsively excited velocity pulse mimick...

  7. MHD Coal-Fired Flow Facility. Quarterly technical progress report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Altstatt, M. C.; Attig, R. C.; Baucum, W. E.

    1980-07-31

    Significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Energy Conversion Facility (ECF), formerly the Research and Development Laboratory, are reported. CFFF Bid Package construction is now virtually complete. The remaining construction effort is being conducted by UTSI. On the quench system, another Task 1 effort, the cyclone was erected on schedule. On Tasks 2 through 6, vitiation heater and nozzle fabrication were completed, an investigation of a fish kill (in no way attributable to CFFF operations) in Woods Reservoir was conducted, major preparation for ambient air quality monitoring was made, a broadband data acquisition system for enabling broadband data to be correlated with all general performance data was selected, a Coriolis effect coal flow meter was installed at the CFFF. On Task 7, an analytical model of the coal flow combustor configuration was prepared, MHD generator testing which, in part, involved continued materials evaluation and the heat transfer characteristics of capped and uncapped electrodes was conducted, agglomerator utilization was studied, and development of a laser velocimeter system was nearly completed.

  8. Nonequilibrium plasma generator (NPG) project - experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Lineberry, J.T.; Wu, Y.C.L.; Lin, B.C. [and others

    1995-12-31

    This paper summarizes research conducted under a DOE MHD SBIR entitled: {open_quotes}A Light Metal Fueled Non-equilibrium Plasma Generator (NPG){close_quotes}. It is a summary paper presenting the idea of the NPG and activities of the NPG SBIR research program along with experimental results from NPG Proof-of-Principle tests. The NPG is an innovative concept for a combustion device that can produce a nonequilibrium plasma. This device bums powdered metal fuel, and it can be used to drive an MHD disk generator pulse power unit or a similar nonequilibrium MHD device or system. The NPG research program was concluded over the past two years under sponsorship of a DOE Phase II SBIR grant. This program focused on addressing fundamental and practical aspects of the NPG concept and its system design. The research included investigation of the physics of the NPG concept through theoretical and experimental studies on the quality of the plasma that it can produce, theoretical evaluations of the nonequilibrium ionization processes in an MHD disk generator driven by an NPG, and experimental validation of the NPG concept in Proof-of-Principle tests. At the conclusion of this research it was determined that the NPG is indeed a viable concept. Results from combustion tests using powdered aluminum fuel reveal that the NPG can produce an extremely hot argon plasma clean enough to support nonequilibrium ionization in an MHD device.

  9. An asynchronous and parallel time-marching method: Application to three-dimensional MHD simulation of solar wind

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    An asynchronous and parallel time-marching method for three-dimensional (3D) time-dependent magnetohydrodynamic (MHD) simulation is used for large-scale solar wind simulation. It uses different local time steps in the corona and the heliosphere according to the local Courant-Friedrichs-Levy (CFL) conditions. The solar wind background with observed solar photospheric magnetic field as input is first presented. The simulation time for the background solar wind by using the asynchronous method is <1/6 of that by using the normal synchronous time-marching method with the same computation precision. Then, we choose the coronal mass ejection (CME) event of 13 November, 2003 as a test case. The time-dependent variations of the pressure and the velocity configured from a CME model at the inner boundary are applied to generate transient structures in order to study the dynamical interaction of a CME with the background solar wind flow between 1 and 230 Rs. This time-marching method is very effective in terms of computation time for large-scale 3D time-dependent numerical MHD problem. In this validation study, we find that this 3D MHD model, with the asynchronous and parallel time-marching method, provides a relatively satisfactory comparison with the ACE spacecraft obser- vations at L1 point.

  10. Magnetohydrodynamic generator electrode

    Science.gov (United States)

    Marchant, David D.; Killpatrick, Don H.; Herman, Harold; Kuczen, Kenneth D.

    1979-01-01

    An improved electrode for use as a current collector in the channel of a magnetohydrodynamid (MHD) generator utilizes an elongated monolithic cap of dense refractory material compliantly mounted to the MHD channel frame for collecting the current. The cap has a central longitudinal channel which contains a first layer of porous refractory ceramic as a high-temperature current leadout from the cap and a second layer of resilient wire mesh in contact with the first layer as a low-temperature current leadout between the first layer and the frame. Also described is a monolithic ceramic insulator compliantly mounted to the frame parallel to the electrode by a plurality of flexible metal strips.

  11. Laboratory Identification of MHD Eruption Criteria in the Solar Corona

    Science.gov (United States)

    Yamada, M.; Myers, C. E.; Ji, H.; Yoo, J.; Fox, W. R., II; Jara-Almonte, J.; Savcheva, A. S.; DeLuca, E. E.

    2015-12-01

    Ideal magnetohydrodynamic (MHD) instabilities such as the kink [1] and torus [2] instabilities are believed to play an important role in driving "storage-and-release" eruptions in the solar corona. These instabilities act on long-lived, arched magnetic flux ropes that are "line-tied" to the solar surface. In spite of numerous observational and computational studies, the conditions under which these instabilities produce an eruption remain a subject of intense debate. In this paper, we use a line-tied, arched flux rope experiment to study storage-and-release eruptions in the laboratory [3]. An in situ array of miniature magnetic probes is used to assess the equilibrium and stability of the laboratory flux ropes. Two major results are reported here: First, a new stability regime is identified where torus-unstable flux ropes fail to erupt. In this "failed torus" regime, the flux rope is torus-unstable but kink-stable. Under these conditions, a dynamic "toroidal field tension force" surges in magnitude and causes the flux rope to contract. This tension force, which is missing from existing eruption models, is the J×B force between self-generated poloidal currents in the flux rope and the toroidal (guide) component of the vacuum field. Secondly, a clear torus instability threshold is observed in the kink-unstable regime. This latter result, which is consistent with existing theoretical [4] and numerical [5] findings, verifies the key role of the torus instability in driving some solar eruptions. This research is supported by DoE Contract No. DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO). [1] Hood & Priest, Geophys. Astrophys. Fluid Dynamics 17, 297 (1981) [2] Kliem & Török, Phys. Rev. Lett. 96, 255002 (2006) [3] Myers, Ph.D. Thesis, Princeton University (2015) [4] Olmedo & Zhang, Astrophys. J. 718, 433 (2010) [5] Török & Kliem, Astrophys. J. 630, L97 (2005)

  12. Turbulent MHD transport coefficients - An attempt at self-consistency

    Science.gov (United States)

    Chen, H.; Montgomery, D.

    1987-01-01

    In this paper, some multiple scale perturbation calculations of turbulent MHD transport coefficients begun in earlier papers are first completed. These generalize 'alpha effect' calculations by treating the velocity field and magnetic field on the same footing. Then the problem of rendering such calculations self-consistent is addressed, generalizing an eddy-viscosity hypothesis similar to that of Heisenberg for the Navier-Stokes case. The method also borrows from Kraichnan's direct interaction approximation. The output is a set of integral equations relating the spectra and the turbulent transport coefficients. Previous 'alpha effect' and 'beta effect' coefficients emerge as limiting cases. A treatment of the inertial range can also be given, consistent with a -5/3 energy spectrum power law. In the Navier-Stokes limit, a value of 1.72 is extracted for the Kolmogorov constant. Further applications to MHD are possible.

  13. Dissipation and Heating in Supersonic Hydrodynamic and MHD Turbulence

    CERN Document Server

    Lemaster, M Nicole

    2008-01-01

    We study energy dissipation and heating by supersonic MHD turbulence in molecular clouds using Athena, a new higher-order Godunov code. We analyze the dependence of the saturation amplitude, energy dissipation characteristics, power spectra, sonic scaling, and indicators of intermittency in the turbulence on factors such as the magnetic field strength, driving scale, energy injection rate, and numerical resolution. While convergence in the energies is reached at moderate resolutions, we find that the power spectra require much higher resolutions that are difficult to obtain. In a 1024^3 hydro run, we find a power law relationship between the velocity dispersion and the spatial scale on which it is measured, while for an MHD run at the same resolution we find no such power law. The time-variability and temperature intermittency in the turbulence both show a dependence on the driving scale, indicating that numerically driving turbulence by an arbitrary mechanism may not allow a realistic representation of these...

  14. Turning the resistive MHD into a stochastic field theory

    Directory of Open Access Journals (Sweden)

    M. Materassi

    2008-08-01

    Full Text Available Classical systems stirred by random forces of given statistics may be described via a path integral formulation in which their degrees of freedom are stochastic variables themselves, undergoing a multiple-history probabilistic evolution. This framework seems to be easily applicable to resistive Magneto-Hydro-Dynamics (MHD. Indeed, MHD equations form a dynamic system of classical variables in which the terms representing the density, the pressure and the conductivity of the plasma are irregular functions of space and time when turbulence occurs. By treating those irregular terms as random stirring forces, it is possible to introduce a Stochastic Field Theory which should represent correctly the impulsive phenomena caused by the spece- and time-irregularity of plasma turbulence. This work is motivated by the recent observational evidences of the crucial role played by stochastic fluctuations in space plasmas.

  15. Turning the resistive MHD into a stochastic field theory

    Science.gov (United States)

    Materassi, M.; Consolini, G.

    2008-08-01

    Classical systems stirred by random forces of given statistics may be described via a path integral formulation in which their degrees of freedom are stochastic variables themselves, undergoing a multiple-history probabilistic evolution. This framework seems to be easily applicable to resistive Magneto-Hydro-Dynamics (MHD). Indeed, MHD equations form a dynamic system of classical variables in which the terms representing the density, the pressure and the conductivity of the plasma are irregular functions of space and time when turbulence occurs. By treating those irregular terms as random stirring forces, it is possible to introduce a Stochastic Field Theory which should represent correctly the impulsive phenomena caused by the spece- and time-irregularity of plasma turbulence. This work is motivated by the recent observational evidences of the crucial role played by stochastic fluctuations in space plasmas.

  16. The complete set of Casimirs in Hall-MHD

    Science.gov (United States)

    Kawazura, Yohei; Hameiri, Eliezer

    2012-03-01

    A procedure to determine all Casimir constants of motion in MHDfootnotetextE. Hameiri, Phy. Plasmas, 11, 3423 (2004). is extended to Hall-MHD. We obtain differential equations for the variational derivatives of all Casimirs which must be satisfied for any dynamically accessible motion of Hall-MHD. In an extension of the more commonly considered model, we also include the electron fluid entropy. The most interesting case, usually true for axisymmetric configurations, is when both the electron and ion entropy functions form families of nested toroidal surfaces. The Casimirs are then three functions of each of the entropies, involving fluxes of certain vector fields and the number of particles contained in each torus. If any of the species loses its nested tori, the number of the associated Casimirs is much larger (but physically less relevant).

  17. Synchrotron radiation of self-collimating relativistic MHD jets

    CERN Document Server

    Porth, Oliver; Meliani, Zakaria; Vaidya, Bhargav

    2011-01-01

    The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow magnetosonic launching surface of the disk up to 6000^2 Schwarzschild radii allowing to reach highly relativistic Lorentz factors. The Poynting dominated disk wind develops into a jet with Lorentz factors of 8 and is collimated to 1 degree. In addition to the disk jet, we evolve a thermally driven spine jet, emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive VLBI radio and (sub-) mm diagnostics such as core shift, polarization structure, intensity maps, spectra and Faraday rotation measure (RM), directly from the Stokes parameters. We also investigate...

  18. Direct numerical simulations of helical dynamo action: MHD and beyond

    Directory of Open Access Journals (Sweden)

    D. O. Gómez

    2004-01-01

    Full Text Available Magnetohydrodynamic dynamo action is often invoked to explain the existence of magnetic fields in several astronomical objects. In this work, we present direct numerical simulations of MHD helical dynamos, to study the exponential growth and saturation of magnetic fields. Simulations are made within the framework of incompressible flows and using periodic boundary conditions. The statistical properties of the flow are studied, and it is found that its helicity displays strong spatial fluctuations. Regions with large kinetic helicity are also strongly concentrated in space, forming elongated structures. In dynamo simulations using these flows, we found that the growth rate and the saturation level of magnetic energy and magnetic helicity reach an asymptotic value as the Reynolds number is increased. Finally, extensions of the MHD theory to include kinetic effects relevant in astrophysical environments are discussed.

  19. Role of Cross Helicity in Cascade Processes of MHD turbulence

    CERN Document Server

    Mizeva, Irina; Frick, Peter; 10.1134/S1028335809020128

    2009-01-01

    The purpose of this work is to investigate the spectral properties of the developed isotropic (non-Alfven) MHD turbulence stationary excited by an external force, which injects the cross helicity into the flow simultaneously with the energy. It is shown that the cross helicity blocks the spectral energy transfer in MHD turbulence and results in energy accumulation in the system. This accumulation proceeds until the vortex intensification compensates the decreasing efficiency of nonlinear interactions. The formula for estimating the average turbulence energy is obtained for the set ratio between the injected helicity and energy. It is remarkable that the turbulence accumulates the injected cross helicity at its low rate injection -- the integral correlation coefficient significantly exceeds the ratio between the injected helicity and the energy. It is shown that the spectrum slope gradually increases from "5/3" to "2" with the cross helicity level.

  20. Investigations on application of multigrid method to MHD equilibrium analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ikuno, Soichiro [Faculty of Engineering Science, School of Engineering, Tokyo Univ. of Technology, Tokyo (Japan)

    2000-06-01

    The potentiality of application for Multi-grid method to MHD equilibrium analysis is investigated. The nonlinear eigenvalue problem often appears when the MHD equilibria are determined by solving the Grad-Shafranov equation numerically. After linearization of the equation, the problem is solved by use of the iterative method. Although the Red-Black SOR method or Gauss-Seidel method is often used for the solution of the linearized equation, it takes much CPU time to solve the problem. The Multi-grid method is compared with the SOR method for the Poisson Problem. The results of computations show that the CPU time required for the Multi-grid method is about 1000 times as small as that for the SOR method. (author)

  1. Striations in molecular clouds: Streamers or MHD waves?

    CERN Document Server

    Tritsis, A

    2016-01-01

    Dust continuum and molecular observations of the low column density parts of molecular clouds have revealed the presence of elongated structures which appear to be well aligned with the magnetic field. These so-called striations are usually assumed to be streams that flow towards or away from denser regions. We perform ideal magnetohydrodynamic (MHD) simulations adopting four models that could account for the formation of such structures. In the first two models striations are created by velocity gradients between ambient, parallel streamlines along magnetic field lines. In the third model striations are formed as a result of a Kelvin-Helmholtz instability perpendicular to field lines. Finally, in the fourth model striations are formed from the nonlinear coupling of MHD waves due to density inhomogeneities. We assess the validity of each scenario by comparing the results from our simulations with previous observational studies and results obtained from the analysis of CO (J = 1 - 0) observations from the Taur...

  2. Protostellar collapse and fragmentation using an MHD GADGET

    CERN Document Server

    Bürzle, Florian; Stasyszyn, Federico; Greif, Thomas; Dolag, Klaus; Klessen, Ralf S; Nielaba, Peter

    2010-01-01

    Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been performed on this subject within the smoothed particle hydrodynamics (SPH) method. This is largely due to the unsatisfactory treatment of non-vanishing divergence of the magnetic field. Recently smoothed particle magnetohydrodynamics (SPMHD) simulations based on Euler potentials have proven to be successful in treating MHD collapse and fragmentation problems, however these methods are known to have some intrinsical difficulties. We have performed SPMHD simulations based on a traditional approach evolving the magnetic field itself using the induction equation. To account for the numerical divergence, we have chosen an approach that subtracts the effects of numerical divergence from the force equation, and additionally we employ artificial magnetic dissipation as a regularization scheme. We apply this realization of SPMHD to a widely known setup, a variation o...

  3. Quasi-isotropic cascade in MHD turbulence with mean field

    CERN Document Server

    Grappin, Roland; Gürcan, Özgür

    2012-01-01

    We propose a phenomenological theory of incompressible magnetohydrodynamic turbulence in the presence of a strong large-scale magnetic field, which establishes a link between the known anisotropic models of strong and weak MHD turbulence We argue that the Iroshnikov-Kraichnan isotropic cascade develops naturally within the plane perpendicular to the mean field, while oblique-parallel cascades with weaker amplitudes can develop, triggered by the perpendicular cascade, with a reduced flux resulting from a quasi-resonance condition. The resulting energy spectrum $E(k_\\parallel,k_\\bot)$ has the same slope in all directions. The ratio between the extents of the inertial range in the parallel and perpendicular directions is equal to $b_{rms}/B_0$. These properties match those found in recent 3D MHD simulations with isotropic forcing reported in [R. Grappin and W.-C. M\\"uller, Phys. Rev. E \\textbf{82}, 26406 (2010)].

  4. Divergence-free MHD Simulations with the HERACLES Code

    Directory of Open Access Journals (Sweden)

    Vides J.

    2013-12-01

    Full Text Available Numerical simulations of the magnetohydrodynamics (MHD equations have played a significant role in plasma research over the years. The need of obtaining physical and stable solutions to these equations has led to the development of several schemes, all requiring to satisfy and preserve the divergence constraint of the magnetic field numerically. In this paper, we aim to show the importance of maintaining this constraint numerically. We investigate in particular the hyperbolic divergence cleaning technique applied to the ideal MHD equations on a collocated grid and compare it to the constrained transport technique that uses a staggered grid to maintain the property. The methods are implemented in the software HERACLES and several numerical tests are presented, where the robustness and accuracy of the different schemes can be directly compared.

  5. MHD rotation of electrically conducting media in crossed fields

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, N.V.

    1978-01-01

    A nonlinear scheme is developed for calculating the hydrodynamic characteristics of MHD flow in a cylindrical vessel of finite dimensions, in an electric field and a magnetic field crossing each other. The incompressible fluid is assumed to have a constant viscosity and electrical conductivity. The solution to the complete system of MHD equations is expanded in a series with respect to the magnetic Reynolds number, for a large hydrodynamic Reynolds number. And rather simple engineering formulas for calculating the velocity field and the pressure field are derived by the Karman-Pohlhausen method of integral relations. The results are compared with experimental data pertaining to a model helium-xenon discharge chamber with distribution of the Lorentz force causing the plasma to rotate as a quasi-solid. 15 references, 5 figures, 1 table.

  6. Exploración del modelo coronal MHD de Uchida

    Science.gov (United States)

    Francile, C.; Castro, J. I.; Flores, M.

    We present an analysis of the MHD model of an isothermal solar corona with radially symmetrical magnetic field and gravity. The solution in the approximation "WKB" was presented by Uchida (1968). The model is ex- plored for different coronal conditions and heights of initial perturbation to study the propagation of coronal waves and reproduce the observed char- acteristics of phenomena such as Moreton waves. Finally we discuss the obtained results. FULL TEXT IN SPANISH

  7. HVEPS Scramjet-Driven MHD Power Demonstration Test Results (Preprint)

    Science.gov (United States)

    2007-06-01

    seeding for the scramjet- driven MHD demonstration test was accomplished by the injection of liquid NaK into the backplate of the UTRC pre-heater... NaK is a eutectic consisting of approximately 80% potassium and 20% sodium. It exists in liquid form at room temperature and has flow properties...quite similar to water. However, there are materials handling safety issues with use of NaK since it is highly caustic alkali metal and burns on

  8. Variable properties of MHD third order fluid with peristalsis

    Science.gov (United States)

    Latif, T.; Alvi, N.; Hussain, Q.; Asghar, S.

    This article addresses the impact of temperature dependent variable properties on peristaltic flow of third order fluid in a symmetric channel. The MHD fluid and viscous dissipation effects are taken into account. Assumptions of long wavelength and low Reynolds number are employed to model the problem. The governing nonlinear coupled equations are solved using perturbation method. Approximate solutions are obtained for the stream function, temperature and pressure gradient. The results are graphically analyzed with respect to various pertinent parameters.

  9. Buoyancy induced MHD transient mass transfer flow with thermal radiation

    Directory of Open Access Journals (Sweden)

    N. Ahmed

    2016-09-01

    Full Text Available The problem of a transient MHD free convective mass transfer flow past an infinite vertical porous plate in presence of thermal radiation is studied. The fluid is considered to be a gray, absorbing-emitting radiating but non-scattered medium. Analytical solutions of the equations governing the flow problem are obtained. The effects of mass transfer, suction, radiation and the applied magnetic field on the flow and transport characteristics are discussed through graphs.

  10. Numerical study of Cosmic Ray Diffusion in MHD turbulence

    OpenAIRE

    Beresnyak, A.; Yan, H.; Lazarian, A.

    2010-01-01

    We study diffusion of Cosmic Rays (CRs) in turbulent magnetic fields using test particle simulations. Electromagnetic fields are produced in direct numerical MHD simulations of turbulence and used as an input for particle tracing, particle feedback on turbulence being ignored. Statistical transport coefficients from the test particle runs are compared with earlier analytical predictions. We find qualitative correspondence between them in various aspects of CR diffusion. In the incompressible ...

  11. The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models

    Science.gov (United States)

    Hesse, Michael; Birn, Joachim

    2011-01-01

    Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.

  12. A three dimensional MHD model of the earth's magnetosphere

    Science.gov (United States)

    Wu, C. C.; Walker, R. J.; Dawson, J. M.

    1981-01-01

    The results of a global MHD calculation of the steady state solar wind interaction with a dipole magnetic field are presented. The computer code used, being much faster than previous codes, makes it possible to increase the number of grid points in the system by an order of magnitude. The resulting model qualitatively reproduces many of the observed features of the quiet time magnetosphere including the bow shock, magnetopause, and plasma sheet.

  13. Intermittency in MHD turbulence and coronal nanoflares modelling

    Directory of Open Access Journals (Sweden)

    P. Veltri

    2005-01-01

    Full Text Available High resolution numerical simulations, solar wind data analysis, and measurements at the edges of laboratory plasma devices have allowed for a huge progress in our understanding of MHD turbulence. The high resolution of solar wind measurements has allowed to characterize the intermittency observed at small scales. We are now able to set up a consistent and convincing view of the main properties of MHD turbulence, which in turn constitutes an extremely efficient tool in understanding the behaviour of turbulent plasmas, like those in solar corona, where in situ observations are not available. Using this knowledge a model to describe injection, due to foot-point motions, storage and dissipation of MHD turbulence in coronal loops, is built where we assume strong longitudinal magnetic field, low beta and high aspect ratio, which allows us to use the set of reduced MHD equations (RMHD. The model is based on a shell technique in the wave vector space orthogonal to the strong magnetic field, while the dependence on the longitudinal coordinate is preserved. Numerical simulations show that injected energy is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. Due to the strong longitudinal magnetic field, dissipative structures propagate along the loop, with the typical speed of the Alfvén waves. The statistical analysis on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics. Moreover the recent observations of non thermal velocity measurements during flare occurrence are well described by the numerical results of the simulation model. All these results naturally emerge from the model dynamical evolution without any need of an ad-hoc hypothesis.

  14. MHD seed recovery and regeneration, Phase II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This final report summarizes the work performed by the Space and Technology Division of the TRW Space and Electronics Group for the U.S. Department of Energy, Pittsburgh Energy Technology Center for the Econoseed process. This process involves the economical recovery and regeneration of potassium seed used in the MHD channel. The contract period of performance extended from 1987 through 1994 and was divided into two phases. The Phase II test results are the subject of this Final Report. However, the Phase I test results are presented in summary form in Section 2.3 of this Final Report. The Econoseed process involves the treatment of the potassium sulfate in spent MHD seed with an aqueous calcium formate solution in a continuously stirred reactor system to solubilize, as potassium formate, the potassium content of the seed and to precipitate and recover the sulfate as calcium sulfate. The slurry product from this reaction is centrifuged to separate the calcium sulfate and insoluble seed constituents from the potassium formate solution. The dilute solids-free potassium formate solution is then concentrated in an evaporator. The concentrated potassium formate product is a liquid which can be recycled as a spray into the MHD channel. Calcium formate is the seed regenerant used in the Econoseed process. Since calcium formate is produced in the United States in relatively small quantities, a new route to the continuous production of large quantities of calcium formate needed to support an MHD power industry was investigated. This route involves the reaction of carbon monoxide gas with lime solids in an aqueous medium.

  15. MHD Advanced Power Train Phase I, Final Report, Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    A. R. Jones

    1985-08-01

    This appendix provides additional data in support of the MHD/Steam Power Plant Analyses reported in report Volume 5. The data is in the form of 3PA/SUMARY computer code printouts. The order of presentation in all four cases is as follows: (1) Overall Performance; (2) Component/Subsystem Information; (3) Plant Cost Accounts Summary; and (4) Plant Costing Details and Cost of Electricity.

  16. MHD Modeling of Differential Rotation in Coronal Holes

    Science.gov (United States)

    Lionello, Roberto; Linker, Jon A.; Mikic, Zoran; Riley, Pete

    2004-01-01

    The photosphere and the magnetic flux therein undergo differential rotation. Coronal holes appear to rotate almost rigidly. Magnetic reconnection has been invoked to reconcile these phenomena. Mechanism relevant to the formation of the slow solar wind. We have used our MHD model in spherical coordinates to study the effect of differential rotation on coronal holes. We have imposed a magnetic flux distribution similar to and applied differential rotation for the equivalent of 5 solar rotations.

  17. Self-excitation of a diagonal MHD channel

    Energy Technology Data Exchange (ETDEWEB)

    Doperchuk, I.I.; Koneyev, S.M.A.

    1982-01-01

    Questions are examined of self-excitation of a diagonal MHD channel. Conditions are obtained for self-excitation using 0-dimensional approximation. An algorithm is presented for calculating the optimal self-exciting diagonal channel with regard for development and separation of the boundary layers, presence of near-electrode drops in voltage. Graphs are presented for the transitional regimes of channel operation with intermediate point of connection of the excitation winding.

  18. Model problem of MHD flow in a lithium blanket

    Energy Technology Data Exchange (ETDEWEB)

    Cherepanov, V.Y.

    1978-01-01

    A model problem is considered for a feasibility study concerning controlled MHD flow in the blanket of a Tokamak nuclear reactor. The fundamental equations for the steady flow of an incompressible viscous fluid in a uniform transverse magnetic field are solved in rectangular coordinates, in the zero-induction approximation and with negligible induced currents. A numerical solution obtained for a set of appropriate boundary constraints establishes the conditions under which no stagnation zones will be formed.

  19. Small scale magnetosphere: Laboratory experiment, physical model and Hall MHD simulation

    CERN Document Server

    Shaikhislamov, I F; Zakharov, Yu P; Boyarintsev, E L; Melekhov, A V; Posukh, V G; Ponomarenko, A G

    2011-01-01

    A problem of magnetosphere formation on ion inertia scale around weakly magnetized bodies is investigated by means of laboratory experiment, analytical analysis and 2.5D Hall MHD simulation. Experimental evidence of specific magnetic field generated by the Hall term is presented. Direct comparison of regimes with small and large ion inertia length revealed striking differences in measured magnetopause position and plasma stand off distance. Analytical model is presented, which explains such basic features of mini-magnetosphere observed in previous kinetic simulations as disappearance of bow shock and plasma stopping at Stoermer particle limit instead of pressure balance distance. Numerical simulation is found to be in a good agreement with experiments and analytical model. It gives detailed spatial structure of Hall field and reveals that while ions penetrate deep inside mini-magnetosphere electrons overflow around it along magnetopause boundary.

  20. Analysis of Design Variables of Annular Linear Induction Electromagnetic Pump using an MHD Model

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jae Sik; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    The generated force is affected by lots of factors including electrical input, hydrodynamic flow, geometrical shape, and so on. These factors, which are the design variables of an ALIP, should be suitably analyzed to optimally design an ALIP. Analysis on the developed pressure and efficiency of the ALIP according to the change of design variables is required for the ALIP satisfying requirements. In this study, the design variables of the ALIP are analyzed by using ideal MHD analysis model. Electromagnetic force and efficiency are derived by analyzing the main design variables such as pump core length, inner core diameter, flow gap and turns of coils. The developed pressure and efficiency of the ALIP were derived and analyzed on the change of the main variables such as pump core length, inner core diameter, flow gap, and turns of coils of the ALIP.

  1. Role of electric fields in the MHD evolution of the kink instability

    Science.gov (United States)

    Lapenta, Giovanni; Skender, Marina

    2017-02-01

    The discovery (Bonfiglio et al 2005 Phys. Rev. Lett. 94 145001) of electrostatic fields playing a crucial role in establishing plasma motion in the flux conversion and dynamo processes in reversed field pinches is revisited. In order to further elucidate the role of the electrostatic fields, a flux rope configuration susceptible to the kink instability is numerically studied with an MHD code. Simulated nonlinear evolution of the kink instability is found to confirm the crucial role of the electrostatic fields. A new insight is gained on the special function of the electrostatic fields: they lead the plasma towards the reconnection site at the mode resonant surface. Without this step the plasma column could not relax to its nonlinear state, since no other agent is present to perform this role. While the inductive field generated directly by the kink instability is the dominant flow driver, the electrostatic field is found to allow the motion in the vicinity of the reconnection region.

  2. Parsec-scale Faraday Rotation Measures from General Relativistic MHD Simulations of Active Galactic Nuclei Jets

    CERN Document Server

    Broderick, Avery E

    2010-01-01

    For the first time it has become possible to compare global 3D general relativistic magnetohydrodynamic (GRMHD) jet formation simulations directly to very-long baseline interferometric multi-frequency polarization observations of the pc-scale structure of active galactic nucleus (AGN) jets. Unlike the jet emission, which requires post hoc modeling of the non-thermal electrons, the Faraday rotation measures (RMs) depend primarily upon simulated quantities and thus provide a robust way in which to confront simulations with observations. We compute RM distributions of 3D global GRMHD jet formation simulations, with which we explore the dependence upon model and observational parameters, emphasizing the signatures of structures generic to the theory of MHD jets. With typical parameters, we find that it is possible to reproduce the observed magnitudes and many of the structures found in AGN jet RMs, including the presence of transverse RM gradients. In our simulations the RMs are generated within a smooth extensio...

  3. Multidimensional MHD Model Studies of the Ionospheres of Venus and Mars

    Science.gov (United States)

    Nagy, Andrew

    1998-01-01

    Continuing efforts have been made towards an increased understanding of the solar wind interaction and ionospheric processes at Venus and Mars. This work centered on a systematic development of a new generation of three dimensional magnetohydrodynamic (MHD) numerical code, which models the interaction processes of the solar wind with non-magnetic planets, such as Venus and Mars. We have also worked on a number of different, more specific and discrete studies, as various opportunities arose. We have developed new numerical codes for magnetospheric and cometary studies. As a first step in this process we built an axisymmetric model in which the solar wind interacts with a hard, perfectly conducting sphere. Even that model provided, in certain respects, significant improvements over previous ones.

  4. Morphology and dynamics of solar prominences from 3D MHD simulations

    CERN Document Server

    Terradas, J; Luna, M; Oliver, R; Ballester, J L

    2014-01-01

    In this paper we present a numerical study of the time evolution of solar prominences embedded in sheared magnetic arcades. The prominence is represented by a density enhancement in a background stratified atmosphere and is connected to the photosphere through the magnetic field. By solving the ideal magnetohydrodynamic (MHD) equations in three dimensions we study the dynamics for a range of parameters representative of real prominences. Depending on the parameters considered, we find prominences that are suspended above the photosphere, i.e., detached prominences, but also configurations resembling curtain or hedgerow prominences whose material continuously connects to the photosphere. The plasma$-\\beta$ is an important parameter that determines the shape of the structure. In many cases magnetic Rayleigh-Taylor (MRT) instabilities and oscillatory phenomena develop. Fingers and plumes are generated, affecting the whole prominence body and producing vertical structures in an essentially horizontal magnetic fie...

  5. MHD stagnation point flow by a permeable stretching cylinder with Soret-Dufour effects

    Institute of Scientific and Technical Information of China (English)

    M Ramzan; M Farooq; T Hayat; A Alsaedi; J Cao

    2015-01-01

    Combined effects of Soret (thermal-diffusion) and Dufour (diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorption and chemical reaction. The laws of conservation of mass, momentum, energy and concentration are found to lead to the mathematical development of the problem. Suitable transformations were used to convert the nonlinear partial differential equations into the ordinary differential equations. The series solutions of boundary layer equations through momentum, energy and concentration equations were obtained. Convergence of the developed series solutions was discussed via plots and numerical values. The behaviors of different physical parameters on the velocity components, temperature and concentration were obtained. Numerical values of Nusselt number, skin friction and Sherwood number with different parameters were computed and analyzed. It is found that Dufour and Soret numbers result in the enhancement of temperature and concentration distributions, respectively.

  6. Dynamos and MHD theory of turbulence suppression

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Akira [Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Itoh, Sanae-I [Research Institute for Applied Mechanics, Kyushu University, 87, Kasuga 810- 8580 (Japan); Itoh, Kimitaka [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yokoi, Nobumitsu [Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2004-03-01

    Characteristics of electrically conducting media are reviewed from the macroscopic viewpoint based on mean-field magnetohydrodynamics, while being compared using the methodology and knowledge in fluid mechanics. The themes covered in this review range from the mechanism of generating stellar magnetic fields (dynamo) to transport properties in fusion. The primary concern here is to see the characteristics common to these apparently different phenomena, within the framework of the mean-field theory. Owing to the intrinsic limitation of the approach, the present discussions are limited more or less to specific aspects of phenomena. They are supplemented with reference to theoretical, numerical, and observational approaches intrinsic to each theme. In the description of dynamo phenomena, emphasis is laid on the cross helicity dynamo. Features common to stellar magnetic-field generation and the rotational-motion drive in toroidal plasmas are illustrated on this basis. (topical review)

  7. MHD-flow in slotted channels with conducting walls

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, I.A.; Kirillov, I.R. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Reed, C.B. [Argonne National Lab., Chicago, IL (United States)

    1994-07-01

    A review of experimental results is presented for magnetohydrodynamic (MHD) flow in rectangular channels with conducting walls and high aspect ratios (longer side parallel to the applied magnetic field), which are called slotted channels. The slotted channel concept was conceived at Efremov Institute as a method for reducing MHD pressure drop in liquid metal cooled blanket design. The experiments conducted by the authors were aimed at studying both fully developed MHD-flow, and the effect of a magnetic field on the hydrodynamics of 3-D flows in slotted channels. Tests were carried out on five models of the slotted geometry. A good agreement between test and theoretical results for the pressure drop in slotted channels was demonstrated. Application of a {open_quotes}one-electrode movable probe{close_quotes} for velocity measurement permitted measurement of the M-shape velocity profiles in the slotted channels. Suppression of 3-D inertial effects in slotted channels of complex geometry was demonstrated based on potential distribution data.

  8. Linear MHD stability studies with the STARWALL code

    CERN Document Server

    Merkel, P

    2015-01-01

    The STARWALL/CAS3D/OPTIM code package is a powerful tool to study the linear MHD stability of 3D, ideal equilibria in the presence of multiply-connected ideal and/or resistive conducting structures, and their feedback stabilization by external currents. Robust feedback stabilization of resistive wall modes can be modelled with the OPTIM code. Resistive MHD studies are possible combining STARWALL with the linear, resistive 2D CASTOR code as well as nonlinear MHD simulations combining STARWALL with the JOREK code. In the present paper, a detailed description of the STARWALL code is given and some of its applications are presented to demonstrate the methods used. Conducting structures are treated in the thin wall approximation and depending on their complexity they are discretized by a spectral method or by triangular finite elements. As an example, a configuration is considered consisting of an ideal plasma surrounded by a vacuum domain containing a resistive wall and bounded by an external wall. Ideal linear M...

  9. MHD performance demonstration experiment, October 1, 1080-September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, G. L.; Christenson, L. S.; Felderman, E. J.; Lowry, R. L.; Bordenet, E. J.

    1981-12-01

    The Arnold Engineering Development Center (AEDC) has been under contract with the Department of Energy (DOE) since December 1973 to conduct a magnetohydrodynamic (MHD) High Performance Demonstration Experiment (HPDE). The objective of this experimental research is to demonstrate the attainment of MHD performance on a sufficiently large scale to verify that projected commercial MHD objectives are possible. This report describes the testing of the system under power-producing conditions during the period from October 1, 1980 to September 30, 1981. Experimental results have been obtained with the channel configured in the Faraday mode. Test conditions were selected to produce low supersonic velocity along the entire channel length. Tests have been conducted at magnetic fields up to 4.1 Tesla (T) (70% of design). Up to 30.5 MW of power has been produced to date (60% of design) for an enthalpy extraction of approximately 11%. The high Hall voltage transient, observed during the previous series of tests has been reduced. The reduction is mostly probably due to the fuel and seed being introduced simultaneously. The replacement of the ATJ graphite caps on the electrode walls with pyrolytic graphite caps has resulted in significantly higher surface temperature. As a result, the voltage drop is some 60% of the cold wall voltage drop during the previous series of tests. However, the absolute value of the present voltage drop is still greater than the original design predictions. Test results indicate, however, that the overall enthalpy extraction objective can be achieved.

  10. MHD magnet technology development program summary, September 1982

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references.

  11. Spectral slope and Kolmogorov constant of MHD turbulence.

    Science.gov (United States)

    Beresnyak, A

    2011-02-18

    The spectral slope of strong MHD turbulence has recently been a matter of controversy. While the Goldreich-Sridhar model predicts a -5/3 slope, shallower slopes have been observed in numerics. We argue that earlier numerics were affected by driving due to a diffuse locality of energy transfer. Our highest-resolution simulation (3072(2)×1024) exhibited the asymptotic -5/3 scaling. We also discover that the dynamic alignment, proposed in models with -3/2 slope, saturates and cannot modify the asymptotic, high Reynolds number slope. From the observed -5/3 scaling we measure the Kolmogorov constant C(KA)=3.27±0.07 for Alfvénic turbulence and C(K)=4.2±0.2 for full MHD turbulence, which is higher than the hydrodynamic value of 1.64. This larger C(K) indicates inefficient energy transfer in MHD turbulence, which is in agreement with diffuse locality.

  12. Roles of initial current carrier in the distribution of field-aligned current in 3-D Hall MHD simulations

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A three-dimensional (3-D) Hall MHD simulation is carried out to study the roles of initial current carrier in the topology of magnetic field, the generation and distribu- tion of field aligned currents (FACs), and the appearance of Alfvén waves. Consid- ering the contribution of ions to the initial current, the topology of the obtained magnetic field turns to be more complex. In some cases, it is found that not only the traditional By quadrupole structure but also a reversal By quadrupole structure appears in the simulation box. This can explain the observational features near the diffusion region, which are inconsistent with the Hall MHD theory with the total ini- tial current carried by electrons. Several other interesting features are also emerged. First, motions of electrons and ions are decoupled from each other in the small plasma region (Hall effect region) with a scale less than or comparable with the ion inertial length or ion skin depth di=c/ωp. In the non-Hall effect region, the global magnetic structure is shifted in +y direction under the influence of ions with initial y directional motion. However, in the Hall effect region, magnetic field lines are bent in ?y direction, mainly controlled by the motion of electrons, then By is generated. Second, FACs emerge as a result of the appearance of By. Compared with the prior Hall MHD simulation results, the generated FACs shift in +y direction, and hence the dawn-dusk symmetry is broken. Third, the Walén relation in our simulations is consistent with the Walén relation in Hall plasma, thus the presence of Alfvén wave is confirmed.

  13. CFFF low mass flow DCW generator operation

    Science.gov (United States)

    Lineberry, J. T.; Galanga, F. L.; Frazier, J. W.

    1986-01-01

    A summary of testing of the low mass flow diagonal conducting sidewall MHD generator in the CFFF is given. These summaries include details of the powered generator tests conducted during the 1985 LMF4 test series. A presentation of experimental generator electrical data collected during these tests is included. The quality of these data is discussed and a review of representative data presentations is made as a means of identifying phenomena associated with coal-fired MHD generators. Unique characteristics of coal slag effects upon electrical performance are seen in the voltage profiles and power characteristics for the generator. Fundamental theoretical analyses of the generator are used to qualify the levels of generator performance that were demonstrated during testing. These analyses are directed at isolating possible sources that have caused performance deficiencies and anomalies seen in the test data.

  14. FEMHD: An adaptive finite element method for MHD and edge modelling

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, H.R.

    1995-07-01

    This paper describes the code FEMHD, an adaptive finite element MHD code, which is applied in a number of different manners to model MHD behavior and edge plasma phenomena on a diverted tokamak. The code uses an unstructured triangular mesh in 2D and wedge shaped mesh elements in 3D. The code has been adapted to look at neutral and charged particle dynamics in the plasma scrape off region, and into a full MHD-particle code.

  15. A 3rd Order WENO GLM-MHD Scheme for Magnetic Reconnection

    Institute of Scientific and Technical Information of China (English)

    FENG Xueshang; ZHOU Yufen; HU Yanqi

    2006-01-01

    A new numerical scheme of 3rd order Weighted Essentially Non-Oscillatory (WENO)type for 2.5D mixed GLM-MHD in Cartesian coordinates is proposed. The MHD equations are modified by combining the arguments as by Dellar and Dedner et al to couple the divergence constraint with the evolution equations using a Generalized Lagrange Multiplier (GLM). Moreover, the magnetohydrodynamic part of the GLM-MHD system is still in conservation form. Meanwhile, this method is very easy to add to an existing code since the underlying MHD solver does not have to be modified. To show the validation and capacity of its application to MHD problem modelling,interaction between a magnetosonic shock and a denser cloud and magnetic reconnection problems are used to verify this new MHD code. The numerical tests for 2D Orszag and Tang's MHD vortex,interaction between a magnetosonic shock and a denser cloud and magnetic reconnection problems show that the third order WENO MHD solvers are robust and yield reliable results by the new mixed GLM or the mixed EGLM correction here even if it can not be shown that how the divergence errors are transported as well as damped as done for one dimensional ideal MHD by Dedner et al.

  16. Preliminary Analysis of Liquid Metal MHD Pressure Drop in the Blanket for the FDS

    Institute of Scientific and Technical Information of China (English)

    王红艳; 吴宜灿; 何晓雄

    2002-01-01

    Preliminary analysis and calculation of liquid metal Li17Pb83 magnetohydrodynamic (MHD) pressure drop in the blanket for the FDS have been presented to evaluate the significance of MHD effects on the thermal-hydraulic design of the blanket. To decrease the liquid metal MHD pressure drop, Al2O3 is applied as an electronically insulated coating onto the inner surface of the ducts. The requirement for the insulated coating to reduce the additional leakage pressure drop caused by coating imperfections has been analyzed. Finally, the total liquid metal MHD pressure drop and magnetic pump power in the FDS blanket have been given.

  17. Magnetic reconnection: from MHD to QED

    Science.gov (United States)

    Bulanov, S. V.

    2017-01-01

    The paper examines the prospects of using laser plasmas for studying novel regimes of the magnetic field line reconnection and charged particle acceleration. Basic features of plasma dynamics in the three-dimensional configurations relevant to the formation of current sheets in a plasma are addressed by analyzing exact self-similar solutions of the magneto-hydrodynamics and electron magneto-hydrodynamics equations. Then the magnetic field annihilation in the ultrarelativistic limit is considered, when the opposite polarity magnetic field is generated in collisionless plasma by multiple laser pulses, in the regime with a dominant contribution of the displacement current exciting a strong large-scale electric field. This field leads to the conversion of the magnetic energy into the kinetic energy of accelerated particles inside a thin current sheet. Charged particle acceleration during magnetic field reconnection is discussed when radiation friction and quantum electrodynamics effects become dominant.

  18. Magnetic reconnection: from MHD to QED

    CERN Document Server

    Bulanov, S V

    2016-01-01

    The paper examines the prospects of using laser plasmas for studying novel regimes of the magnetic field line reconnection and charged particle acceleration. Basic features of plasma dynamics in the three-dimensional configurations relevant to the formation of current sheets in a plasma are addressed by analyzing exact self-similar solutions of the magneto-hydrodynamics and electron magneto-hydrodynamics equations. Then the magnetic field annihilation in the ultrarelativistic limit is considered, when the opposite polarity magnetic field is generated in collisionless plasma by multiple laser pulses, in the regime with a dominant contribution of the displacement current exciting a strong large-scale electric field. This field leads to the conversion of the magnetic energy into the kinetic energy of accelerated particles inside a thin current sheet. Charged particle acceleration during magnetic field reconnection is discussed when radiation friction and quantum electrodynamics effects become dominant.

  19. EDITORIAL: 15th Workshop on MHD Stability Control: 3D Magnetic Field Effects in MHD Control 15th Workshop on MHD Stability Control: 3D Magnetic Field Effects in MHD Control

    Science.gov (United States)

    Buttery, Richard

    2011-08-01

    This annual workshop on MHD Stability Control has been held since 1996 with a focus on understanding and developing control of MHD instabilities for future fusion reactors. The workshop generally covers a wide range of stability topics: from disruptions, to tearing modes, error fields, ELMs, resistive wall modes (RWMs) and ideal MHD. It spans many device types, particularly tokamaks, stellarators and reversed field pinches, to pull out commonalities in the physics and improve understanding. In 2010 the workshop was held on 15-17 November at the University of Wisconsin in Madison and was combined with the annual US-Japan MHD Workshop. The theme was `3D Magnetic Field Effects in MHD Control', with a focus on multidisciplinary sessions exploring issues of plasma response to 3D fields, the manifestation of such fields in the plasma, and how they influence stability. This has been a topic of renewed interest, with utilisation of 3D fields for ELM control now planned in ITER, and a focus on the application of such fields for error field correction, disruption avoidance, and RWM control. Key issues included the physics of the interaction, types of coils and harmonic spectra needed to control instabilities, and subsidiary effects such as braking (or rotating) the plasma. More generally, a wider range of issues were discussed including RWM physics, tearing mode physics, disruption mitigation, ballooning stability, the snowflake divertor concept, and the line tied pinch! A novel innovation to the meeting was a panel discussion session, this year on Neoclassical Toroidal Viscosity, which ran well; more will be tried next year. In this special section of Plasma Physics and Controlled Fusion we present several of the invited and contributed papers from the 2010 workshop, which have been subject to the normal refereeing procedures of the journal. These papers give a sense of the exceptional quality of the presentations at this workshop, all of which may be found at http://fusion.gat.com/conferences/mhd

  20. Open cycle vapor compression heat pump

    Science.gov (United States)

    Sakhuja, R.; Becker, F. E.

    1980-07-01

    A compressor test facility was built incorporating a screw compressor modified for steam service. The compressor was tested over a wide range of operating conditions with experimental results showing excellent agreement with predicted performance. The compressor operation with wet steam and water injection was completely satisfactory, demonstrating its suitability for use in a steam heat pump system.

  1. Ideal MHD beta-limits of poloidally asymmetric equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.

    1981-05-01

    The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in ..beta../sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is ..beta../sub critical/ approx. = 6.5%.

  2. Achieving Fast Reconnection in Resistive MHD Models via Turbulent Means

    CERN Document Server

    Lapenta, Giovanni

    2011-01-01

    Astrophysical fluids are generally turbulent and this preexisting turbulence must be taken into account for the models of magnetic reconnection which are attepmted to be applied to astrophysical, solar or heliospheric environments. In addition, reconnection itself induces turbulence which provides an important feedback on the reconnection process. In this paper we discuss both theoretical model and numerical evidence that magnetic reconnection gets fast in the approximation of resistive MHD. We consider the relation between the Lazarian & Vishniac turbulent reconnection theory and Lapenta's numerical experiments testifying of the spontaneous onset of turbulent reconnection in systems which are initially laminar.

  3. Unified Description of Tokamak Ideal MHD Instabilities(I)

    Institute of Scientific and Technical Information of China (English)

    石秉仁

    2002-01-01

    By using a coordinate system associated with magnetic surfaces,a unified eigenmode equation for describing the tokamak ideal MHD instabilities is derived in the shear-Alfven approximation.Based on this equation having a general operator form,the eigen-mode equation governing the large-scale perturbation (such as the kink mode,the low-n ballooning mode and the Alfven mode) and small-scale perturbation(such as the high-n ballooning mode,the local mode) can be further deduced.In the first part of the present study,the small-scale perturbation is discussed in detail.

  4. Unified Description of Tokamak Ideal MHD Instabilities (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    石秉仁

    2002-01-01

    By using a coordinate system associated with magnetic surfaces, a unified eigen mode equation for describing the tokamak ideal MHD instabilities is derived in the shear-Alfven approximation. Based on this equation having a general operator form, the eigen-mode equation governing the large-scale perturbation (such as the kink mode, the low-n ballooning mode and the Alfven mode) and small-scale perturbation (such as the high-n ballooning mode, the local mode)can be further deduced. In the first part of the present study, the small-scale perturbation is discussed in detail.

  5. Asymmetric and Moving-Frame Approaches to MHD Equations

    Institute of Scientific and Technical Information of China (English)

    Bin Tao CAO

    2012-01-01

    The magnetohydrodynamic (MHD) equations of incompressible viscous fluids with finite electrical conductivity describe the motion of viscous electrically conducting fluids in a magnetic field.In this paper,we find eight families of solutions of these equations by Xu's asymmetric and moving frame methods.A family of singular solutions may reflect basic characteristics of vortices.The other solutions are globally analytic with respect to the spacial variables.Our solutions may help engineers to develop more effective algorithms to find physical numeric solutions to practical models.

  6. 3D MHD simulation of polarized emission in SN 1006

    CERN Document Server

    Schneiter, E M; Reynoso, E M; Esquivel, A; De Colle, F

    2015-01-01

    We use three dimensional magnetohydrodynamic (MHD) simulations to model the supernova remnant SN 1006. From our numerical results, we have carried out a polarization study, obtaining synthetic maps of the polarized intensity, the Stokes parameter $Q$, and the polar-referenced angle, which can be compared with observational results. Synthetic maps were computed considering two possible particle acceleration mechanisms: quasi-parallel and quasi-perpendicular. The comparison of synthetic maps of the Stokes parameter $Q$ maps with observations proves to be a valuable tool to discern unambiguously which mechanism is taking place in the remnant of SN 1006, giving strong support to the quasi-parallel model.

  7. Porting a Hall MHD Code to a Graphic Processing Unit

    Science.gov (United States)

    Dorelli, John C.

    2011-01-01

    We present our experience porting a Hall MHD code to a Graphics Processing Unit (GPU). The code is a 2nd order accurate MUSCL-Hancock scheme which makes use of an HLL Riemann solver to compute numerical fluxes and second-order finite differences to compute the Hall contribution to the electric field. The divergence of the magnetic field is controlled with Dedner?s hyperbolic divergence cleaning method. Preliminary benchmark tests indicate a speedup (relative to a single Nehalem core) of 58x for a double precision calculation. We discuss scaling issues which arise when distributing work across multiple GPUs in a CPU-GPU cluster.

  8. Are "EIT Waves" Fast-Mode MHD Waves?

    CERN Document Server

    Wills-Davey, M J; Stenflo, J O

    2007-01-01

    We examine the nature of large-scale, coronal, propagating wave fronts (``EIT waves'') and find they are incongruous with solutions using fast-mode MHD plane-wave theory. Specifically, we consider the following properties: non-dispersive single pulse manifestions, observed velocities below the local Alfven speed, and different pulses which travel at any number of constant velocities, rather than at the ``predicted'' fast-mode speed. We discuss the possibility of a soliton-like explanation for these phenomena, and show how it is consistent with the above-mentioned aspects.

  9. Using MHD Models for Context for Multispacecraft Missions

    Science.gov (United States)

    Reiff, P. H.; Sazykin, S. Y.; Webster, J.; Daou, A.; Welling, D. T.; Giles, B. L.; Pollock, C.

    2016-12-01

    The use of global MHD models such as BATS-R-US to provide context to data from widely spaced multispacecraft mission platforms is gaining in popularity and in effectiveness. Examples are shown, primarily from the Magnetospheric Multiscale Mission (MMS) program compared to BATS-R-US. We present several examples of large-scale magnetospheric configuration changes such as tail dipolarization events and reconfigurations after a sector boundary crossing which are made much more easily understood by placing the spacecraft in the model fields. In general, the models can reproduce the large-scale changes observed by the various spacecraft but sometimes miss small-scale or rapid time changes.

  10. MHD-effects in a turbulent medium of nonuniform density

    Energy Technology Data Exchange (ETDEWEB)

    Vaynshteyn, S.I.

    1978-01-01

    Turbulence in a medium of nonuniform density, such as the convective solar layer, is analyzed with the assumption that Del rho = rho lambda (exponential stratification). Considered are first the simplest case of a quasi-isotropic turbulence, then addition of a scalar factor such as the temperature, and finally anisotropic turbulence. The magnetic field and MHD-effects are then calculated without diffusion, and with two-dimensional turbulence as a special case. Also the values of the essential parameters in this problem are estimated. 7 references.

  11. The analysis of the influence of the ferromagnetic rod in an annular magnetohydrodynamic (MHD pump

    Directory of Open Access Journals (Sweden)

    Bergoug Nassima

    2012-01-01

    Full Text Available This paper deals with the 2D modelisation of an annular induction magnetohydrodynamic (MHD pump using finite volume method in cylindrical coordinates and taking into consideration the saturation of the ferromagnetic material. The influence of the ferromagnetic rod on the different characteristics, in the channel of the MHD pump was studied in the paper.

  12. The Effect of Equilibrium Current Profiles on MHD Instabilities in Tokamaks%The Effect of Equilibrium Current Profiles on MHD Instabilities in Tokamaks

    Institute of Scientific and Technical Information of China (English)

    李莉; 刘悦; 许欣洋; 夏新念

    2012-01-01

    A cylindrical model of linear MHD instabilities in tokamaks is presented. In the model, the cylindrical plasma is surrounded by a vacuum which is divided into inner and outer vacuum areas by a conducting wall. Linearized resistivity MHD equations with plasma viscosity are adopted to describe our model, and the equations are solved numerically as an initial value problem. Some of the results are used as benchmark tests for the code, and then a series of equilibrium current profiles are used to simulate the bootstrap current profiles in actual experiments with a bump on tail. Thus the effects of these kinds of profiles on MHD instabilities in tokamaks are revealed. From the analysis of the numerical results, it is found that more plasma can be confined when the center of the current bump is closer to the plasma surface, and a higher and narrower current bump has a better stabilizing effect on the MHD instabilities.

  13. Simulated annealing for three-dimensional low-beta reduced MHD equilibria in cylindrical geometry

    CERN Document Server

    Furukawa, M

    2016-01-01

    Simulated annealing (SA) is applied for three-dimensional (3D) equilibrium calculation of ideal, low-beta reduced MHD in cylindrical geometry. The SA is based on the theory of Hamiltonian mechanics. The dynamical equation of the original system, low-beta reduced MHD in this study, is modified so that the energy changes monotonically while preserving the Casimir invariants in the artificial dynamics. An equilibrium of the system is given by an extremum of the energy, therefore SA can be used as a method for calculating ideal MHD equilibrium. Previous studies demonstrated that the SA succeeds to lead to various MHD equilibria in two dimensional rectangular domain. In this paper, the theory is applied to 3D equilibrium of ideal, low-beta reduced MHD. An example of equilibrium with magnetic islands, obtained as a lower energy state, is shown. Several versions of the artificial dynamics are developed that can effect smoothing.

  14. Formation and collimation of relativistic MHD jets - simulations and radio maps

    CERN Document Server

    Fendt, Christian; Sheikhnezami, Somayeh

    2013-01-01

    We present results of magnetohydrodynamic (MHD) simulations of jet formation and propagation, discussing a variety of astrophysical setups. In the first approach we consider simulations of relativistic MHD jet formation, considering jets launched from the surface of a Keplerian disk, demonstrating numerically - for the first time - the self-collimating ability of relativistic MHD jets. We obtain Lorentz factors up to about 10 while acquiring a high degree of collimation of about 1 degree. We then present synchrotron maps calculated from the intrinsic jet structure derived from the MHD jet formation simulation. We finally present (non-relativistic) MHD simulations of jet lauching, treating the transition between accretion and ejection. These setups include a physical magnetic diffusivity which is essential for loading the accretion material onto the outflow. We find relatively high mass fluxes in the outflow, of the order of 20-40 % of the accretion rate.

  15. Damping of MHD turbulence in partially ionized plasma: implications for cosmic ray propagation

    CERN Document Server

    Xu, Siyao; Lazarian, A

    2015-01-01

    We study the damping from neutral-ion collisions of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in partially ionized medium. We start from the linear analysis of MHD waves applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and cutoff boundary of linear MHD waves is investigated. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and solar chromosphere. As a significant astrophysical utility, we introduce damping effects to propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.

  16. Instabilities of MHD Waves Produced by Coupling of Rotation and Gradient of Magnetic Field and its Possible Application in the Galactic Central Region

    CERN Document Server

    Das, Ipsita

    2008-01-01

    An analysis of MHD wave propagating in a gravitating and rotating medium permeated by non-uniform magnetic field has been done. It has been found that the Gradient of Magnetic Field when coupled with Rotation becomes capable to generate few instabilities (Temporal or Spatial) leading to the damping or amplification of MHD waves. The Jean's criterion is not sufficient for stability always. Rather, the waves will suffer instability unless their wave length (frequency) is less (greater) than certain critical values. Otherwise, those will smoothly propagate outward. Out of different scenarioes depending on the direction of the magnetic field, its gradient, rotation and wave propagation three important Special Cases have been discussed and different stability criteria have been derived. Finally, using the above theory we have obtained the stability/instability criteria for the waves moving parallel and perpendicular to the galactic plane in the Core and Periphery of the Central Region of Galaxy (C.R.G.) due to the...

  17. Final Report: "Large-Eddy Simulation of Anisotropic MHD Turbulence"

    Energy Technology Data Exchange (ETDEWEB)

    Zikanov, Oleg

    2008-06-23

    To acquire better understanding of turbulence in flows of liquid metals and other electrically conducting fluids in the presence of steady magnetic fields and to develop an accurate and physically adequate LES (large-eddy simulation) model for such flows. The scientific objectives formulated in the project proposal have been fully completed. Several new directions were initiated and advanced in the course of work. Particular achievements include a detailed study of transformation of turbulence caused by the imposed magnetic field, development of an LES model that accurately reproduces this transformation, and solution of several fundamental questions of the interaction between the magnetic field and fluid flows. Eight papers have been published in respected peer-reviewed journals, with two more papers currently undergoing review, and one in preparation for submission. A post-doctoral researcher and a graduate student have been trained in the areas of MHD, turbulence research, and computational methods. Close collaboration ties have been established with the MHD research centers in Germany and Belgium.

  18. On the characterization of magnetic reconnection in global MHD simulations

    Directory of Open Access Journals (Sweden)

    T. V. Laitinen

    2006-11-01

    Full Text Available The conventional definition of reconnection rate as the electric field parallel to an x-line is problematic in global MHD simulations for several reasons: the x-line itself may be hard to find in a non-trivial geometry such as at the magnetopause, and the lack of realistic resistivity modelling leaves us without reliable non-convective electric field. In this article we describe reconnection characterization methods that avoid those problems and are practical to apply in global MHD simulations. We propose that the reconnection separator line can be identified as the region where magnetic field lines of different topological properties meet, rather than by local considerations. The global convection associated with reconnection is then quantified by calculating the transfer of mass, energy or magnetic field across the boundary of closed and open field line regions. The extent of the diffusion region is determined from the destruction of electromagnetic energy, given by the divergence of the Poynting vector. Integrals of this energy conversion provide a way to estimate the total reconnection efficiency.

  19. MHD Wind Models in X-Ray Binaries and AGN

    Science.gov (United States)

    Behar, Ehud; Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris R.; Tombesi, Francesco; Contopoulos, Ioannis

    2017-08-01

    Self-similar magnetohydrodynamic (MHD) wind models that can explain both the kinematics and the ionization structure of outflows from accretion sources will be presented.The X-ray absorption-line properties of these outflows are diverse, their velocity ranging from 0.001c to 0.1c, and their ionization ranging from neutral to fully ionized.We will show how the velocity structure and density profile of the wind can be tightly constrained, by finding the scaling of the magnetic flux with the distance from the center that best matches observations, and with no other priors.It will be demonstrated that the same basic MHD wind structure that successfully accounts for the X-ray absorber properties of outflows from supermassive black holes, also reproduces the high-resolution X-ray spectrum of the accreting stellar-mass black hole GRO J1655-40 for a series of ions between ~1A and ~12A.These results support both the magnetic nature of these winds, as well as the universal nature of magnetic outflows across all black hole sizes.

  20. Intensity contrast from MHD simulations and from HINODE observations

    CERN Document Server

    Afram, N; Solanki, S K; Schuessler, M; Lagg, A; Voegler, A

    2010-01-01

    Changes in the solar surface area covered by small-scale magnetic elements are thought to cause long-term changes in the solar spectral irradiance, which are important for determining the impact on Earth's climate. To study the effect of small-scale magnetic elements on total and spectral irradiance, we derive their contrasts from 3-D MHD simulations of the solar atmosphere. Such calculations are necessary since measurements of small-scale flux tube contrasts are confined to a few wavelengths and suffer from scattered light and instrument defocus, even for space observations. To test the contrast calculations, we compare rms contrasts from simulations with those obtained with the broad-band filter imager mounted on the Solar Optical Telescope (SOT) onboard the Hinode satellite and also analyse centre-to-limb variations (CLV). The 3-D MHD simulations include the interaction between convection and magnetic flux tubes. They have been run with non-grey radiative transfer using the MURaM code. Simulations have an ...

  1. AN MHD AVALANCHE IN A MULTI-THREADED CORONAL LOOP

    Energy Technology Data Exchange (ETDEWEB)

    Hood, A. W.; Cargill, P. J.; Tam, K. V. [School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife, KY16 9SS (United Kingdom); Browning, P. K., E-mail: awh@st-andrews.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2016-01-20

    For the first time, we demonstrate how an MHD avalanche might occur in a multithreaded coronal loop. Considering 23 non-potential magnetic threads within a loop, we use 3D MHD simulations to show that only one thread needs to be unstable in order to start an avalanche even when the others are below marginal stability. This has significant implications for coronal heating in that it provides for energy dissipation with a trigger mechanism. The instability of the unstable thread follows the evolution determined in many earlier investigations. However, once one stable thread is disrupted, it coalesces with a neighboring thread and this process disrupts other nearby threads. Coalescence with these disrupted threads then occurs leading to the disruption of yet more threads as the avalanche develops. Magnetic energy is released in discrete bursts as the surrounding stable threads are disrupted. The volume integrated heating, as a function of time, shows short spikes suggesting that the temporal form of the heating is more like that of nanoflares than of constant heating.

  2. MHD and Gyro-kinetic Stability of JET Pedestals

    CERN Document Server

    Saarelma, S; Dickinson, D; Frassinetti, L; Leyland, M J; Roach, C M; contributors, EFDA-JET

    2013-01-01

    The pedestal profile measurements in high triangularity JET plasmas show that with low fuelling the pedestal width decreases during the ELM cycle and with high fuelling it stays constant. In the low fuelling case the pedestal pressure gradient keeps increasing until the ELM crash and in the low fuelling case it reaches a saturation during the ELM cycle. An edge stability analysis using MHD and gyro-kinetic codes finds that at the end of the ELM cycle both JET plasmas become limited by finite-n peeling-ballooning modes and during the ELM cycle the steep pressure gradient region of the pedestal is both infinite-n ideal MHD ballooning mode and kinetic ballooning mode stable due to high bootstrap current. This indicates that during the ELM cycle the pedestal pressure gradient is not limited by kinetic ballooning modes. Any pedestal model based on pressure gradient being limited by kinetic ballooning modes needs to amended when predicting pedestals with high bootstrap current. Unstable micro-tearing modes are foun...

  3. MHD simulation studies of z-pinch shear flow stabilization

    Science.gov (United States)

    Paraschiv, I.; Bauer, B. S.; Sotnikov, V. I.; Makhin, V.; Siemon, R. E.

    2003-10-01

    The development of the m=0 instability in a z-pinch in the presence of sheared plasma flows is investigated with the aid of a two-dimensional magnetohydrodynamic (MHD) simulation code (MHRDR). The linear growth rates are compared to the results obtained by solving the ideal MHD linearized equations [1] and to the results obtained using a 3D hybrid simulation code [2]. The instability development is followed into the nonlinear regime where its growth and saturation are examined. [1] V.I. Sotnikov, I. Paraschiv, V. Makhin, B.S. Bauer, J.-N. Leboeuf, and J.M. Dawson, "Linear analysis of sheared flow stabilization of global magnetohydrodynamic instabilities based on the Hall fluid mode", Phys. Plasmas 9, 913 (2002). [2] V.I. Sotnikov, V. Makhin, B.S. Bauer, P. Hellinger, P. Travnicek, V. Fiala, J.-N. Leboeuf, "Hybrid Simulations of Current-Carrying Instabilities in Z-pinch Plasmas with Sheared Axial Flow", AIP Conference Proceedings, Volume 651, Dense Z-Pinches: 5th International Conference on Dense Z-Pinches, edited by J. Davis et al., page 396, June 2002.

  4. Coupled simulation of kinetic pedestal growth and MHD ELM crash

    Energy Technology Data Exchange (ETDEWEB)

    Park, G [Courant Institute of Mathematical Sciences, New York University (United States); Cummings, J [California Institute of Technology (United States); Chang, C S [Courant Institute of Mathematical Sciences, New York University (United States); Podhorszki, N [Univ. California at Davis (United States); Klasky, S [ORNL (United States); Ku, S [Courant Institute of Mathematical Sciences, New York University (United States); Pankin, A [Lehigh Univ. (United States); Samtaney, R [Princeton Plasma Physics Laboratory (United States); Shoshani, A [LBNL (United States); Snyder, P [General Atomics (United States); Strauss, H [Courant Institute of Mathematical Sciences, New York University (United States); Sugiyama, L [MIT (United States)

    2007-07-15

    Edge pedestal height and the accompanying ELM crash are critical elements of ITER physics yet to be understood and predicted through high performance computing. An entirely self-consistent first principles simulation is being pursued as a long term research goal, and the plan is planned for completion in time for ITER operation. However, a proof-of-principle work has already been established using a computational tool that employs the best first principles physics available at the present time. A kinetic edge equilibrium code XGC0, which can simulate the neoclassically dominant pedestal growth from neutral ionization (using a phenomenological residual turbulence diffusion motion superposed upon the neoclassical particle motion) is coupled to an extended MHD code M3D, which can perform the nonlinear ELM crash. The stability boundary of the pedestal is checked by an ideal MHD linear peeling-ballooning code, which has been validated against many experimental data sets for the large scale (type I) ELMs onset boundary. The coupling workflow and scientific results to be enabled by it are described.

  5. MHD (magnetohydrodynamic) undersea propulsion: A novel concept with renewed interest

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D.; Geyer, H.K. (Argonne National Lab., IL (USA)); Roy, G.D. (Office of Naval Research, Arlington, VA (USA))

    1990-01-01

    This paper discusses the reasons for the national and international renewed interest in the concept of MHD seawater propulsion. The main advantages of this concept are presented, together with some of the technical challenges that need to be overcome to achieve reliability, performance, and stealth. The paper discusses in more detail some of the technical issues and loss mechanisms influencing the thruster performance in terms of its electrical efficiency. Among the issues discussed are the jet losses and nozzle efficiency. Ohmic losses and frictional losses inside the thruster. Also discussed are the electrical end losses caused by the fringing magnetic field near the end of the electrodes. It has been shown that the frictional and end losses can have strong adverse effects on the thruster performance. Furthermore, a parametric study has been performed to investigate the effects of several parameters on the performance of the MHD thrusters. Those parameters include the magnetic field, thruster diameter, all roughness, flow velocity, and electrical load factor. The results of the parametric study indicate that the thruster efficiency increases with the strength of the magnetic field and thruster diameter, and decreases with the wall roughness and the flow velocity. 8 refs., 8 figs.

  6. Sunspot Modeling: From Simplified Models to Radiative MHD Simulations

    Directory of Open Access Journals (Sweden)

    Rolf Schlichenmaier

    2011-09-01

    Full Text Available We review our current understanding of sunspots from the scales of their fine structure to their large scale (global structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, "gaps", convective rolls, which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow. In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here overturning convection is the central element responsible for energy transport, filamentation leading to fine-structure and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.

  7. MHD modeling of dense plasma focus electrode shape variation

    Science.gov (United States)

    McLean, Harry; Hartman, Charles; Schmidt, Andrea; Tang, Vincent; Link, Anthony; Ellsworth, Jen; Reisman, David

    2013-10-01

    The dense plasma focus (DPF) is a very simple device physically, but results to date indicate that very extensive physics is needed to understand the details of operation, especially during the final pinch where kinetic effects become very important. Nevertheless, the overall effects of electrode geometry, electrode size, and drive circuit parameters can be informed efficiently using MHD fluid codes, especially in the run-down phase before the final pinch. These kinds of results can then guide subsequent, more detailed fully kinetic modeling efforts. We report on resistive 2-d MHD modeling results applying the TRAC-II code to the DPF with an emphasis on varying anode and cathode shape. Drive circuit variations are handled in the code using a self-consistent circuit model for the external capacitor bank since the device impedance is strongly coupled to the internal plasma physics. Electrode shape is characterized by the ratio of inner diameter to outer diameter, length to diameter, and various parameterizations for tapering. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Vientos estelares MHD en campos magnéticos difusivos

    Science.gov (United States)

    Rotstein, N.

    This article generalizes the analytic class of magnetohydrodynamic (MHD) solutions introduced by Low and Tsinganos (1986) for rotating, axisymmetric, steady stellar outflows embedded in partially open magnetic fields. The goal of this work is to analyze the case of finite conductivity plasmas, that is, diffusive fields, partially because the traditional infinite conductivity treatment (see, for example, Trussoni & Tsinganos, 1993; Rotstein & Ferro Fontán, 1995) leads to a vanishing equatorial velocity of the wind. This treatment introduces a new class of solutions basically because now surfaces of constant mass flux do not necessarily coincide with surfaces of constant magnetic flux. Say in other words, under the finite conductivity assumption velocity field is not necessarily parallel to magnetic field up to a rigid rotation of each individual flux surface, that is, magnetic and velocity fields are now decoupled. Nevertheless, the inclusion of diffusive fields and rotation still poses a mathematical formidable problem. For this reason some idealizations are needed in order to keep the treatment in an amenable level. But unlike the infinite conductivity analysis we can not, in this case, prescribe the magnetic field configuration, but to autoconsistently solve it as an unknown of the problem. On the other hand, we do not need now to fix the location of any singular ``point" (corresponding to the surfaces where the flow matches the velocity of three MHD modes) because magnetic and velocity fields are precisely decoupled. In a first step, some simple although plausible flux distributions are analyzed, as well as the thermodynamics of the problem.

  9. Kinetic effects of energetic particles on resistive MHD stability.

    Science.gov (United States)

    Takahashi, R; Brennan, D P; Kim, C C

    2009-04-03

    We show that the kinetic effects of energetic particles can play a crucial role in the stability of the m/n=2/1 tearing mode in tokamaks (e.g., JET, JT-60U, and DIII-D), where the fraction of energetic particle beta(frac) is high. Using model equilibria based on DIII-D experimental reconstructions, the nonideal MHD linear stability of cases unstable to the 2/1 mode is investigated including a deltaf particle-in-cell model for the energetic particles coupled to the nonlinear 3D resistive MHD code NIMROD [C. C. Kim et al., Phys. Plasmas 15, 072507 (2008)10.1063/1.2949704]. It is observed that energetic particles have significant damping and stabilizing effects at experimentally relevant beta, beta(frac), and S, and excite a real frequency of the 2/1 mode. Extrapolation of the results is discussed for implications to JET and ITER, where the effects are projected to be significant.

  10. An unsplit, cell-centered Godunov method for ideal MHD

    Energy Technology Data Exchange (ETDEWEB)

    Crockett, Robert K.; Colella, Phillip; Fisher, Robert T.; Klein, Richard I.; McKee, Christopher F.

    2003-08-29

    We present a second-order Godunov algorithm for multidimensional, ideal MHD. Our algorithm is based on the unsplit formulation of Colella (J. Comput. Phys. vol. 87, 1990), with all of the primary dependent variables centered at the same location. To properly represent the divergence-free condition of the magnetic fields, we apply a discrete projection to the intermediate values of the field at cell faces, and apply a filter to the primary dependent variables at the end of each time step. We test the method against a suite of linear and nonlinear tests to ascertain accuracy and stability of the scheme under a variety of conditions. The test suite includes rotated planar linear waves, MHD shock tube problems, low-beta flux tubes, and a magnetized rotor problem. For all of these cases, we observe that the algorithm is second-order accurate for smooth solutions, converges to the correct weak solution for problems involving shocks, and exhibits no evidence of instability or loss of accuracy due to the possible presence of non-solenoidal fields.

  11. An Unsplit, Cell-Centered Godunov Method for Ideal MHD

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, R; Crockett, R; Colella, P; Klein, R; McKee, C

    2003-10-16

    We present a second-order Godunov algorithm for multidimensional, ideal MHD. Our algorithm is based on the unsplit formulation of Colella, with all of the primary dependent variables centered at the same location. To properly represent the divergence-free condition of the magnetic fields, we apply a discrete projection to the intermediate values of the field at cell faces, and apply a filter to the primary dependent variables at the end of each time step. We apply the method to a suite of linear and nonlinear tests to ascertain accuracy and stability of the scheme under a variety of conditions. The test suite includes rotated planar linear waves, MHD shock tube problems, and low-beta flux tubes. For all of these cases, we observe that the algorithm is second-order accurate for smooth solutions, converges to the correct weak solution for problems involving shocks, and exhibits no evidence of instability or loss of accuracy due to the possible presence of non-solenoidal fields.

  12. Initial Active MHD Spectroscopy Experiments on Alcator C-MOD

    Science.gov (United States)

    Schmittdiel, D. A.; Snipes, J. A.; Granetz, R. S.; Parker, R. R.; Wolfe, S. M.; Fasoli, A.

    2002-11-01

    The Active MHD Spectroscopy system is a new diagnostic on C-MOD that will be used to study low frequency MHD modes and TAE's present at high B_tor, n_e, and Te ˜= T_i. The present system consists of two antennas, power amplifiers, and an impedance matching network. Each antenna is 15 × 25 cm with five turns, an inductance of ˜10 μH, and is covered by boron nitride tiles. The two antennas are placed at the same toroidal location, symmetrically above and below the midplane. Each antenna is driven by a ˜1 kW power amplifier in the range of 1 kHz - 1 MHz with an expected antenna current ˜10 A, which will produce a vacuum field of ˜0.5 G at the q = 1.5 surface. This diagnostic is designed to excite high n ( ˜20) stable TAE's and initial results regarding their frequency, mode structure, and damping rate will be presented. Evolution of these modes could also provide information on the q profile to compare with MSE measurements, which will be important for planned lower hybrid current drive operation in 2003.

  13. MHD Simulation of the Inner-Heliospheric Magnetic Field

    CERN Document Server

    Wiengarten, T; Fichtner, H; Cameron, R; Jiang, J; Kissmann, R; Scherer, K; 10.1029/2012JA018089

    2013-01-01

    Maps of the radial magnetic field at a heliocentric distance of ten solar radii are used as boundary conditions in the MHD code CRONOS to simulate a 3D inner-heliospheric solar wind emanating from the rotating Sun out to 1 AU. The input data for the magnetic field are the result of solar surface flux transport modelling using observational data of sunspot groups coupled with a current sheet source surface model. Amongst several advancements, this allows for higher angular resolution than that of comparable observational data from synoptic magnetograms. The required initial conditions for the other MHD quantities are obtained following an empirical approach using an inverse relation between flux tube expansion and radial solar wind speed. The computations are performed for representative solar minimum and maximum conditions, and the corresponding state of the solar wind up to the Earths orbit is obtained. After a successful comparison of the latter with observational data, they can be used to drive outer-helio...

  14. Two-fluid MHD Regime of Drift Wave Instability

    Science.gov (United States)

    Yang, Shang-Chuan; Zhu, Ping; Xie, Jin-Lin; Liu, Wan-Dong

    2015-11-01

    Drift wave instabilities contribute to the formation of edge turbulence and zonal flows, and thus are believed to play essential roles in the anomalous transport processes in tokamaks. Whereas drift waves are generally assumed to be local and electrostatic, experiments have often found regimes where the spatial scales and the magnetic components of drift waves approach those of magnetohydrodynamic (MHD) processes. In this work we study such a drift wave regime in a cylindrical magnetized plasma using a full two-fluid MHD model implemented in the NIMROD code. The linear dependency of growth rates on resistivity and the dispersion relation found in the NIMROD calculations qualitatively agree with theoretical analysis. As the azimuthal mode number increases, the drift modes become highly localized radially; however, unlike the conventional local approximation, the radial profile of the drift mode tends to shift toward the edge away from the center of the density gradient slope, suggesting the inhomogeneity of two-fluid effects. Supported by National Natural Science Foundation of China Grant 11275200 and National Magnetic Confinement Fusion Science Program of China Grant 2014GB124002.

  15. Flow stabilization of the ideal MHD resistive wall mode^1

    Science.gov (United States)

    Smith, S. P.; Jardin, S. C.; Freidberg, J. P.; Guazzotto, L.

    2009-05-01

    We demonstrate for the first time in a numerical calculation that for a typical circular cylindrical equilibrium, the ideal MHD resistive wall mode (RWM) can be completely stabilized by bulk equilibrium plasma flow, V, for a window of wall locations without introducing additional dissipation into the system. The stabilization is due to a resonance between the RWM and the Doppler shifted ideal MHD sound continuum. Our numerical approach introduces^2 u=φξ+ iV .∇ξ and the perturbed wall current^3 as variables, such that the eigenvalue, φ, only appears linearly in the linearized stability equations, which allows for the use of standard eigenvalue solvers. The wall current is related to the plasma displacement at the boundary by a Green's function. With the introduction of the resistive wall, we find that it is essential that the finite element grid be highly localized around the resonance radius where the parallel displacement, ξ, becomes singular. We present numerical convergence studies demonstrating that this singular behavior can be approached in a limiting sense. We also report on progress toward extending this calculation to an axisymmetric toroidal geometry. ^1Work supported by a DOE FES fellowship through ORISE and ORAU. ^2L.Guazzotto, J.P Freidberg, and R. Betti, Phys.Plasmas 15, 072503 (2008). ^3S.P. Smith and S. C. Jardin, Phys. Plasmas 15, 080701 (2008).

  16. Fully implicit adaptive mesh refinement algorithm for reduced MHD

    Science.gov (United States)

    Philip, Bobby; Pernice, Michael; Chacon, Luis

    2006-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)

  17. Magnetohydrodynamic generators in power generation. Citations from the NTIS data base

    Science.gov (United States)

    Reed, W. E.

    1980-06-01

    The citations include research on performance, costs, efficiency, and design of MHD generators and their use in fusion and fission reactors, and fossil fueled plants. This updated bibliography contains 272 abstracts, 40 of which are new entries to the previous edition.

  18. Experimental Two-Phase Liquid-Metal Magnetohydrodynamic Generator Program

    Science.gov (United States)

    1979-04-01

    efficiencies in excess of 0.8 are attainable. Initial measurements of local flow parameters in a NaK -nitrogen two-phase liquid - metal MHD generator...hot liquid metals . Thus, the concept of using surface-active aaents in MHD generators can be evaluated more rapidly and inexpensively with NaK , the...describe this aggregation of bchbles as a foam. When the Ba- NaK solution was transferred, helium was blown under the surface of the liquid metal with the

  19. Unsteady MHD Mixed Convection Flow of a Micropolar Fluid Over a Vertical Wedge

    Science.gov (United States)

    Roy, N. C.; Gorla, R. S. R.

    2017-05-01

    An analysis is presented to investigate the unsteady magnetohydrodynamic (MHD) mixed convection boundary-layer flow of a micropolar fluid over a vertical wedge in the presence of thermal radiation and heat generation or absorption. The free-stream velocity and surface temperature are assumed to be oscillating in magnitude but not in the direction of the oncoming flow velocity. The governing equations have been solved by two distinct methods, namely, the finite difference method for the entire frequency range, and the series solution for low frequency range and the asymptotic series expansion method for the high frequency range. Numerical solutions provide a good agreement with the series solutions. The amplitudes of skin friction and couple stress coefficients are found to be strongly dependent on the Richardson number and the vortex viscosity parameter. The Prandtl number, the conduction-radiation parameter, the surface temperature parameter and the pressure gradient parameter significantly affect the amplitudes of skin friction, couple stress and surface heat transfer rates. However, the amplitudes of skin friction coefficient are considerably affected by the magnetic field parameter, whereas the amplitudes of heat transfer rate are appreciably changed with the heat generation or absorption parameter. In addition, results are presented for the transient skin friction, couple stress and heat transfer rate with the variations of the Richardson number, the vortex viscosity parameter, the pressure gradient parameter and the magnetic field parameter.

  20. Two-dimensional coupled fluid and electrodynamic calculations for a MHD DCW channel with slag layers

    Science.gov (United States)

    Liu, B. L.

    1982-01-01

    A fully coupled, two dimensional numerical method of modeling linear, coal-fired MHD generators is developed for the case of a plasma flow bounded by a slag layer on the channel walls. The governing partial differential equations for the plasma flow, slag layer and electrodynamics are presented and their coupling discussed. An iterative, numerical procedure employing non-uniform computational meshes and appropriate tridiagonal matrix solution schemes for the equations is presented. The method permits the investigation of the mutual plasma flow-slag layer development for prescribed wall temperatures, electrode geometry, slag properties and channel loading. In particular, the slag layer-plasma interface properties which require prior specification in an uncoupled analysis comprise part of the solution in the present approach. Results are presented for a short diagonally connected generator channel and include contour plots of the electric potential and current stream function as well as transverse and axial profiles of pertinent plasma properties. The results indicate that a thin electrode slag layer can be maintained in the presence of reasonable current density levels.

  1. Three-Dimensional Multiscale MHD Model of Cometary Plasma Environments

    Science.gov (United States)

    Gombosi, Tamas I.; DeZeeuw, Darren L.; Haberli, Roman M.; Powell, Kenneth G.

    1996-01-01

    First results of a three-dimensional multiscale MHD model of the interaction of an expanding cometary atmosphere with the magnetized solar wind are presented. The model starts with a supersonic and super-Alfvenic solar wind far upstream of the comet (25 Gm upstream of the nucleus) with arbitrary interplanetary magnetic field orientation. The solar wind is continuously mass loaded with cometary ions originating from a 10-km size nucleus. The effects of photoionization, electron impact ionization, recombination, and ion-neutral frictional drag are taken into account in the model. The governing equations are solved on an adaptively refined unstructured Cartesian grid using our new multiscale upwind scalar conservation laws-type numerical technique (MUSCL). We have named this the multiscale adaptive upwind scheme for MHD (MAUS-MHD). The combination of the adaptive refinement with the MUSCL-scheme allows the entire cometary atmosphere to be modeled, while still resolving both the shock and the diamagnetic cavity of the comet. The main findings are the following: (1) Mass loading decelerates the solar wind flow upstream of the weak cometary shock wave (M approximately equals 2, M(sub A) approximately equals 2), which forms at a subsolar standoff distance of about 0.35 Gm. (2) A cometary plasma cavity is formed at around 3 x 10(exp 3) km from the nucleus. Inside this cavity the plasma expands outward due to the frictional interaction between ions and neutrals. On the nightside this plasma cavity considerably narrows and a relatively fast and dense cometary plasma beam is ejected into the tail. (3) Inside the plasma cavity a teardrop-shaped inner shock is formed, which is terminated by a Mach disk on the nightside. Only the region inside the inner shock is the 'true' diamagnetic cavity. (4) The model predicts four distinct current systems in the inner coma: the density peak current, the cavity boundary current, the inner shock current, and finally the cross-tail current

  2. MHD Mixed Convection Flow from a Vertical Plate Embedded in a Saturated Porous Medium with Melting and Heat Source or Sink

    Directory of Open Access Journals (Sweden)

    M.V.D.N.S.Madhavi

    2017-03-01

    Full Text Available We analysed in this paper the problem of MHD mixed convection flow from a vertical plate embedded in a saturated porous medium in the presence of melting, thermal dispersion, radiation and heat absorption or generation effects for aiding and opposing external flows. Similarity solution for the governing equations is obtained for the flow equations in steady state. The equations are numerically solved by Runge-Kutta fourth order method coupled with shooting technique. The effect of melting and heat absorption or generation under different parametric conditions on velocity, temperature and heat transfer was analyzed for both aiding and opposing flows

  3. Generation and evolution of interplanetary slow shocks

    Directory of Open Access Journals (Sweden)

    C.-C. Wu

    Full Text Available It is well known that most MHD shocks observed within 1 AU are MHD fast shocks. Only a very limited number of MHD slow shocks are observed within 1 AU. In order to understand why there are only a few MHD slow shocks observed within 1 AU, we use a one-dimensional, time-dependent MHD code with an adaptive grid to study the generation and evolution of interplanetary slow shocks (ISS in the solar wind. Results show that a negative, nearly square-wave perturbation will generate a pair of slow shocks (a forward and a reverse slow shock. In addition, the forward and the reverse slow shocks can pass through each other without destroying their characteristics, but the propagating speeds for both shocks are decreased. A positive, square-wave perturbation will generate both slow and fast shocks. When a forward slow shock (FSS propagates behind a forward fast shock (FFS, the former experiences a decreasing Mach number. In addition, the FSS always disappears within a distance of 150R (where R is one solar radius from the Sun when there is a forward fast shock (with Mach number ≥1.7 propagating in front of the FSS. In all tests that we have performed, we have not discovered that the FSS (or reverse slow shock evolves into a FFS (or reverse fast shock. Thus, we do not confirm the FSS-FFS evolution as suggested by Whang (1987.

  4. Non-twist map bifurcation of drift-lines and drift-island formation in saturated 3D MHD equilibria

    Science.gov (United States)

    Pfefferle, David; Cooper, Wilfred A.; Graves, Jonathan P.

    2015-11-01

    Based on non-canonical perturbation theory, guiding-centre drift equations are identified as perturbed magnetic field-line equations. The topology of passing-particle orbits, called drift-lines, is completely determined by the magnetic configuration. In axisymmetric tokamak fields, drift-lines lie on shifted flux-surfaces, called drift-surfaces. Field-lines and drift-lines are subject to island structures at rational surfaces only when a non-axisymmetric component is added. The picture is different in the case of 3D saturated MHD equilibrium like the helical core associated with a non-resonant internal kink mode. In assuming nested flux-surfaces, these bifurcated states, expected for a reversed q-profile with qmin close yet above unity and conveniently obtained in VMEC, feature integrable field-lines. The helical drift-lines however become resonant with the axisymmetric component in the region of qmin and spontaneously generate drift-islands. Due to the locally reversed sheared q-profile, the drift-island structure follows the bifurcation/reconnection mechanism of non-twist maps. This result provides a theoretical interpretation of NBI fast ion helical hot-spots in Long-Lived Modes as well as snake-like impurity density accumulation in internal MHD activity.

  5. Analysis on MHD Stability of Free Surface Jet flow in a Gradient Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    许增裕; 康伟山; 潘传杰

    2004-01-01

    The simplified modeling for analysis on MHD stability of free surface jet flow in a gradient magnetic fields is based on the theoretical and experimental results on channel liquid metal MHD flow, especially, the results of MHD flow velocity distribution in cross-section of channels (rectangular duct and circular pipe), and the expected results from the modeling are well agreed with the recent experimental data obtained. It is the first modeling which can efficiently explain the experimental results of liquid-metal free surface jet flow.

  6. Magnetohydrodynamic (MHD) nuclear weapons effects on submarine cable systems. Volume 1. Experiments and analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    This report presents a study of the nuclear weapons magnetohydrodynamic (MHD) effects on submarine communications cables. The study consisted of the analysis and interpretation of currently available data on submarine cable systems TAT-4, TAT-6, and TAT-7. The primary result of the study is that decrease of the effective resistivity with frequency over the available experimental range, coupled with the model results, leads to quite small effective resistivities at the MHD characteristic frequencies, and hence small earth potential differences. Thus, it appears that submarine cable systems are less susceptible to an MHD threat than their land-based counter-parts.

  7. A Numerical Study of Resistivity and Hall Effects for a Compressible MHD Model

    Science.gov (United States)

    Yee, H. C.; Sjogreen, B.

    2005-01-01

    The effect of resistive, Hall, and viscous terms on the flow structure compared with compressible ideal MHD is studied numerically for a one-fluid non-ideal MHD model. The goal of the present study is to shed some light on the emerging area of non-ideal MHD modeling and simulation. Numerical experiments are performed on a hypersonic blunt body flow with future application to plasma aerodynamics flow control in reentry vehicles. Numerical experiments are also performed on a magnetized time-developing mixing layer with possible application to magnetic/turbulence mixing.

  8. MHD Simulations of Core Collapse Supernovae with Cosmos++

    CERN Document Server

    Akiyama, Shizuka

    2010-01-01

    We performed 2D, axisymmetric, MHD simulations with Cosmos++ in order to examine the growth of the magnetorotational instability (MRI) in core--collapse supernovae. We have initialized a non--rotating 15 solar mass progenitor, infused with differential rotation and poloidal magnetic fields. The collapse of the iron core is simulated with the Shen EOS, and the parametric Ye and entropy evolution. The wavelength of the unstable mode in the post--collapse environment is expected to be only ~ 200 m. In order to achieve the fine spatial resolution requirement, we employed remapping technique after the iron core has collapsed and bounced. The MRI unstable region appears near the equator and angular momentum and entropy are transported outward. Higher resolution remap run display more vigorous overturns and stronger transport of angular momentum and entropy. Our results are in agreement with the earlier work by Akiyama et al. (2003) and Obergaulinger et al. (2009).

  9. MHD Simulations of the Plasma Flow in the Magnetic Nozzle

    Science.gov (United States)

    Smith, T. E. R.; Keidar, M.; Sankaran, K.; olzin, K. A.

    2013-01-01

    The magnetohydrodynamic (MHD) flow of plasma through a magnetic nozzle is simulated by solving the governing equations for the plasma flow in the presence of an static magnetic field representing the applied nozzle. This work will numerically investigate the flow and behavior of the plasma as the inlet plasma conditions and magnetic nozzle field strength are varied. The MHD simulations are useful for addressing issues such as plasma detachment and to can be used to gain insight into the physical processes present in plasma flows found in thrusters that use magnetic nozzles. In the model, the MHD equations for a plasma, with separate temperatures calculated for the electrons and ions, are integrated over a finite cell volume with flux through each face computed for each of the conserved variables (mass, momentum, magnetic flux, energy) [1]. Stokes theorem is used to convert the area integrals over the faces of each cell into line integrals around the boundaries of each face. The state of the plasma is described using models of the ionization level, ratio of specific heats, thermal conductivity, and plasma resistivity. Anisotropies in current conduction due to Hall effect are included, and the system is closed using a real-gas equation of state to describe the relationship between the plasma density, temperature, and pressure.A separate magnetostatic solver is used to calculate the applied magnetic field, which is assumed constant for these calculations. The total magnetic field is obtained through superposition of the solution for the applied magnetic field and the self-consistently computed induced magnetic fields that arise as the flowing plasma reacts to the presence of the applied field. A solution for the applied magnetic field is represented in Fig. 1 (from Ref. [2]), exhibiting the classic converging-diverging field pattern. Previous research was able to demonstrate effects such as back-emf at a super-Alfvenic flow, which significantly alters the shape of the

  10. Poynting Flux-Conserving Boundary Conditions for Global MHD Models

    Science.gov (United States)

    Xi, S.; Lotko, W.; Zhang, B.; Brambles, O.; Lyon, J.; Merkin, V. G.; Wiltberger, M. J.

    2014-12-01

    Poynting Flux-conserving boundary conditions that conserve low-frequency, magnetic field-aligned, electromagnetic energy flux across the low-altitude (or inner) boundary in global magnetospheric magnetohydrodynamics (MHD) models is presented. This method involves the mapping of both the potential from the ionosphere and the perpendicular magnetic field from the inner magnetosphere to the ghost cells of the computational domain. The single fluid Lyon-Fedder-Mobarry (LFM) model is used to verify this method. The comparisons of simulations using the standard hardwall boundary conditions of the LFM model and the flux-conserving boundary conditions show that the method reported here improves the transparency of the boundary for the flow of low-frequency (essentially DC) electromagnetic energy flux along field lines. As a consequence, the field-aligned DC Poynting flux just above the boundary is very nearly equal to the ionospheric Joule heating, as it should be if electromagnetic energy is conserved.

  11. Non-Radial Oscillations in an Axisymmetric MHD Incompressible Fluid

    Indian Academy of Sciences (India)

    A. Satya Narayanan

    2000-09-01

    It is well known from Helioseismology that the Sun exhibits oscillations on a global scale, most of which are non-radial in nature. These oscillations help us to get a clear picture of the internal structure of the Sun as has been demonstrated by the theoretical and observational (such as GONG) studies. In this study we formulate the linearised equations of motion for non-radial oscillations by perturbing the MHD equilibrium solution for an axisymmetric incompressible fluid. The fluid motion and the magnetic field are expressed as scalars , , and , respectively. In deriving the exact solution for the equilibrium state, we neglect the contribution due to meridional circulation. The perturbed quantities *, *, *, * are written in terms of orthogonal polynomials. A special case of the above formulation and its stability is discussed.

  12. The SOL width and the MHD interchange instability in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, W. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Pogutse, O. [Kurchatov institute, Moscow (Russian Federation)

    1994-07-01

    Instabilities in the SOL plasma can strongly influence the SOL plasma behaviour and in particular the SOL width. The SOL stability analysis shows that there exists a critical ratio of the thermal energy and the magnetic energy. If the SOL beta is greater than this critical value, the magnetic field cannot prevent the plasma displacement and a strong MHD instability in the SOL occurs. In the opposite case only slower resistive instabilities can develop. A theoretical investigation of the SOL plasma stability is presented for JET single-null and double-null divertor configurations. The dependence of the stability threshold on the SOL beta and on the sheath resistance is established. Applying a simple mixing length argument gives the scaling of the SOL width. 5 refs., 2 figs.

  13. Newest insights from MHD numerical modeling of Pulsar Wind Nebulae

    Science.gov (United States)

    Olmi, B.; Del Zanna, L.; Amato, E.; Bucciantini, N.; Bandiera, R.

    2016-06-01

    Numerical MHD models are considered very successful in accounting for many of the observed properties of Pulsar Wind Nebulae (PWNe), especially those concerning the high energy emission morphology and the inner nebula dynamics. Although PWNe are known to be among the most powerful accelerators in nature, producing particles up to PeV energies, the mechanisms responsible of such an efficient acceleration are still a deep mystery. Indeed, these processes take place in one of the most hostile environment for particle acceleration: the relativistic and highly magnetized termination shock of the pulsar wind. The newest results from numerical simulations of the Crab Nebula, the PWN prototype, will be presented, with special attention to the problem of particle acceleration. In particular it will be shown how a multi-wavelengths analysis of the wisps properties can be used to constrain the particle acceleration mechanisms working at the Crab's termination shock, by identifying the particle acceleration site at the shock front.

  14. Viscous, resistive MHD stability computed by spectral techniques

    Science.gov (United States)

    Dahlburg, R. B.; Zang, T. A.; Montgomery, D.; Hussaini, M. Y.

    1983-01-01

    Expansions in Chebyshev polynomials are used to study the linear stability of one dimensional magnetohydrodynamic (MHD) quasi-equilibria, in the presence of finite resistivity and viscosity. The method is modeled on the one used by Orszag in accurate computation of solutions of the Orr-Sommerfeld equation. Two Reynolds like numbers involving Alfven speeds, length scales, kinematic viscosity, and magnetic diffusivity govern the stability boundaries, which are determined by the geometric mean of the two Reynolds like numbers. Marginal stability curves, growth rates versus Reynolds like numbers, and growth rates versus parallel wave numbers are exhibited. A numerical result which appears general is that instability was found to be associated with inflection points in the current profile, though no general analytical proof has emerged. It is possible that nonlinear subcritical three dimensional instabilities may exist, similar to those in Poiseuille and Couette flow.

  15. MHD Remote Numerical Simulations: Evolution of Coronal Mass Ejections

    CERN Document Server

    Hernandez-Cervantes, L; Gonzalez-Ponce, A R

    2008-01-01

    Coronal mass ejections (CMEs) are solar eruptions into interplanetary space of as much as a few billion tons of plasma, with embedded magnetic fields from the Sun's corona. These perturbations play a very important role in solar--terrestrial relations, in particular in the spaceweather. In this work we present some preliminary results of the software development at the Universidad Nacional Autonoma de Mexico to perform Remote MHD Numerical Simulations. This is done to study the evolution of the CMEs in the interplanetary medium through a Web-based interface and the results are store into a database. The new astrophysical computational tool is called the Mexican Virtual Solar Observatory (MVSO) and is aimed to create theoretical models that may be helpful in the interpretation of observational solar data.

  16. New tests for a singularity of ideal MHD

    CERN Document Server

    Kerr, R M; Kerr, Robert M.; Brandenburg, Axel

    2000-01-01

    Analysis using new calculations with 3 times the resolution of the earlier linked magnetic flux tubes confirms the transition from singular to saturated growth rate reported by Grauer and Marliani \\cite{GrauerMar99} for the incompressible cases is confirmed. However, all of the secondary tests point to a transition back to stronger growth rate at a different location at late times. Similar problems in ideal hydrodynamics are discussed, pointing out that initial negative results eventually led to better initial conditions that did show evidence for a singularity of Euler. Whether singular or near-singular growth in ideal MHD is eventually shown, this study could have bearing on fast magnetic reconnection, high energy particle production and coronal heating.

  17. 3D MHD disruptions simulations of tokamaks plasmas

    Science.gov (United States)

    Paccagnella, Roberto; Strauss, Hank; Breslau, Joshua

    2008-11-01

    Tokamaks Vertical Displacement Events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model, implemented in the M3D code [1], is completed with the presence of a 2D homogeneous wall with finite resistivity. This allows the study of the relatively slowly growing magneto-hydro-dynamical perturbation, the resistive wall mode (RWM), which is, in this work, the main drive of the disruptions. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given. [1] W. Park, E.V. Belova, G.Y. Fu, X.Z. Tang, H.R. Strauss, L.E. Sugiyama, Phys. Plasmas 6 (1999) 1796.

  18. Structure and computation of two-dimensional incompressible extended MHD

    CERN Document Server

    Grasso, D; Abdelhamid, H M; Morrison, P J

    2016-01-01

    A comprehensive study of a reduced version of Lust's equations, the extended magnetohydrodynamic (XMHD) model obtained from the two-fluid theory for electrons and ions with the enforcement of quasineutrality, is given. Starting from the Hamiltonian structure of the fully three-dimensional theory, a Hamiltonian two-dimensional incompressible four-field model is derived. In this way energy conservation along with four families of Casimir invariants are naturally obtained. The construction facilitates various limits leading to the Hamiltonian forms of Hall, inertial, and ideal MHD, with their conserved energies and Casimir invariants. Basic linear theory of the four-field model is treated, and the growth rate for collisionless reconnection is obtained. Results from nonlinear simulations of collisionless tearing are presented and interpreted using, in particular normal fields, a product of the Hamiltonian theory that gives rise to simplified equations of motion.

  19. Numerical study for MHD peristaltic flow in a rotating frame.

    Science.gov (United States)

    Hayat, T; Zahir, Hina; Tanveer, Anum; Alsaedi, A

    2016-12-01

    The aim of present investigation is to model and analyze the magnetohydrodynamic (MHD) peristaltic transport of Prandtl fluid in a channel with flexible walls. The whole system consisting of fluid and channel are in a rotating frame of reference with uniform angular velocity. Viscous dissipation in thermal equation is not ignored. The channel boundaries satisfy the convective conditions in terms of temperature. The arising complicated problems are reduced in solvable form using large wavelength and small Reynolds number assumptions. Numerical solution for axial and secondary velocities, temperature and heat transfer coefficient are presented. Main emphasis is given to the outcome of rotation and material parameters of Prandtl fluid on the physical quantities of interest.

  20. Structure and computation of two-dimensional incompressible extended MHD

    Science.gov (United States)

    Grasso, D.; Tassi, E.; Abdelhamid, H. M.; Morrison, P. J.

    2017-01-01

    A comprehensive study of the extended magnetohydrodynamic model obtained from the two-fluid theory for electrons and ions with the enforcement of quasineutrality is given. Starting from the Hamiltonian structure of the fully three-dimensional theory, a Hamiltonian two-dimensional incompressible four-field model is derived. In this way, the energy conservation along with four families of Casimir invariants is naturally obtained. The construction facilitates various limits leading to the Hamiltonian forms of Hall, inertial, and ideal MHD, with their conserved energies and Casimir invariants. Basic linear theory of the four-field model is treated, and the growth rate for collisionless reconnection is obtained. Results from nonlinear simulations of collisionless tearing are presented and interpreted using, in particular, normal fields, a product of the Hamiltonian theory that gives rise to simplified equations of motion.