WorldWideScience

Sample records for open-circuit voltage decay

  1. Lifetime measurements by open circuit voltage decay in GaAs and InP diodes

    International Nuclear Information System (INIS)

    Bhimnathwala, H.G.; Tyagi, S.D.; Bothra, S.; Ghandhi, S.K.; Borrego, J.M.

    1990-01-01

    Minority carrier lifetimes in the base of solar cells made in GaAs and InP are measured by open circuit voltage decay method. This paper describes the measurement technique and the conditions under which the minority carrier lifetimes can be measured. Minority carrier lifetimes ranging from 1.6 to 34 ns in InP of different doping concentrations are measured. A minority carrier lifetime of 6 ns was measured in n-type GaAs which agrees well with the lifetime of 5.7 ns measured by transient microwave reflection

  2. Open circuit voltage-decay behavior in amorphous p-i-n solar due to injection

    Science.gov (United States)

    Smrity, Manu; Dhariwal, S. R.

    2018-05-01

    The paper deals with the basic recombination processes at the dangling bond and the band tail states at various levels of injection, expressed in terms of short-circuit current density and their role in the behavior of amorphous solar cells. As the level of injection increases the fill factor decreases whereas the open circuit voltage increases very slowly, showing a saturation tendency. Calculations have been done for two values of tail state densities and shows that with an increase in tail state densities both, the fill factor and open circuit voltage decreases, results an overall degradation of the solar cell.

  3. A high open-circuit voltage gallium nitride betavoltaic microbattery

    International Nuclear Information System (INIS)

    Cheng, Zaijun; Chen, Xuyuan; San, Haisheng; Feng, Zhihong; Liu, Bo

    2012-01-01

    A high open-circuit voltage betavoltaic microbattery based on a gallium nitride (GaN) p–i–n homojunction is demonstrated. As a beta-absorbing layer, the low electron concentration of the n-type GaN layer is achieved by the process of Fe compensation doping. Under the irradiation of a planar solid 63 Ni source with activity of 0.5 mCi, the open-circuit voltage of the fabricated microbattery with 2 × 2 mm 2 area reaches as much as 1.64 V, which is the record value reported for betavoltaic batteries with 63 Ni source, the short-circuit current was measured as 568 pA and the conversion effective of 0.98% was obtained. The experimental results suggest that GaN is a high-potential candidate for developing the betavoltaic microbattery. (paper)

  4. Symmetry-Breaking Charge Transfer in a Zinc Chlorodipyrrin Acceptor for High Open Circuit Voltage Organic Photovoltaics

    KAUST Repository

    Bartynski, Andrew N.; Gruber, Mark; Das, Saptaparna; Rangan, Sylvie; Mollinger, Sonya; Trinh, Cong; Bradforth, Stephen E.; Vandewal, Koen; Salleo, Alberto; Bartynski, Robert A.; Bruetting, Wolfgang; Thompson, Mark E.

    2015-01-01

    © 2015 American Chemical Society. Low open-circuit voltages significantly limit the power conversion efficiency of organic photovoltaic devices. Typical strategies to enhance the open-circuit voltage involve tuning the HOMO and LUMO positions

  5. Polymer solar cells with enhanced open-circuit voltage and efficiency

    Science.gov (United States)

    Chen, Hsiang-Yu; Hou, Jianhui; Zhang, Shaoqing; Liang, Yongye; Yang, Guanwen; Yang, Yang; Yu, Luping; Wu, Yue; Li, Gang

    2009-11-01

    Following the development of the bulk heterojunction structure, recent years have seen a dramatic improvement in the efficiency of polymer solar cells. Maximizing the open-circuit voltage in a low-bandgap polymer is one of the critical factors towards enabling high-efficiency solar cells. Study of the relation between open-circuit voltage and the energy levels of the donor/acceptor in bulk heterojunction polymer solar cells has stimulated interest in modifying the open-circuit voltage by tuning the energy levels of polymers. Here, we show that the open-circuit voltage of polymer solar cells constructed based on the structure of a low-bandgap polymer, PBDTTT, can be tuned, step by step, using different functional groups, to achieve values as high as 0.76 V. This increased open-circuit voltage combined with a high short-circuit current density results in a polymer solar cell with a power conversion efficiency as high as 6.77%, as certified by the National Renewable Energy Laboratory.

  6. Elucidating the interplay between dark current coupling and open circuit voltage in organic photovoltaics

    KAUST Repository

    Erwin, Patrick; Thompson, Mark E.

    2011-01-01

    made with the structure indium tin oxide/copper phthalocyanine (200 Å)/PDI (200 Å)/bathocuproine (100 Å)/aluminum (1000 Å). We found that PDIs with larger substituents produced higher open circuit voltages (VOC's) despite the donor acceptor interface

  7. Battery open-circuit voltage estimation by a method of statistical analysis

    NARCIS (Netherlands)

    Snihir, Iryna; Rey, William; Verbitskiy, Evgeny; Belfadhel-Ayeb, Afifa; Notten, Peter H.L.

    2006-01-01

    The basic task of a battery management system (BMS) is the optimal utilization of the stored energy and minimization of degradation effects. It is critical for a BMS that the state-of-charge (SoC) be accurately determined. Open-circuit voltage (OCV) is directly related to the state-of-charge of the

  8. The open-circuit voltage in microcrystalline silicon solar cells of different degrees of crystallinity

    International Nuclear Information System (INIS)

    Nath, Madhumita; Roca i Cabarrocas, P.; Johnson, E.V.; Abramov, A.; Chatterjee, P.

    2008-01-01

    We have used a detailed electrical-optical computer model (ASDMP) in conjunction with the experimental characterization of microcrystalline silicon thin-film solar cells of different degrees of crystallinity (but having identical P- and N-layers) to understand the observed decrease of the open-circuit voltage with increasing crystalline fraction. In order to model all aspects of the experimental current density-voltage and quantum efficiency characteristics of cells having low (∼ 75%) and high (over 90%) crystalline fraction, we had to assume both a higher mobility gap defect density and a lower band gap for the more crystallized material. The former fact is widely known to bring down the open-circuit voltage. Our calculations also reveal that the proximity of the quasi-Fermi levels to the energy bands in the cell based on highly crystallized (and assumed to have a lower band gap) microcrystalline silicon results in higher free and trapped carrier densities in this device. The trapped hole population is particularly high at and close to the P/I interface on account of the higher inherent defect density in this region and the fact that the hole quasi-Fermi level is close to the valence band edge here. This fact results in a strong interface field, a collapse of the field in the volume, and hence a lower open-circuit voltage. Thus a combination of higher mobility gap defects and a lower band gap is probably the reason for the lower open-circuit voltage in cells based on highly crystallized microcrystalline silicon

  9. Demonstration of a High Open-Circuit Voltage GaN Betavoltaic Microbattery

    International Nuclear Information System (INIS)

    Cheng Zai-Jun; San Hai-Sheng; Chen Xu-Yuan; Liu Bo; Feng Zhi-Hong

    2011-01-01

    A high open-circuit voltage betavoltaic microbattery based on a GaN p-i-n diode is demonstrated. Under the irradiation of a 4×4 mm 2 planar solid 63 Ni source with an activity of 2 mCi, the open-circuit voltage V oc of the fabricated single 2×2mm 2 cell reaches as high as 1.62 V, the short-circuit current density J sc is measured to be 16nA/cm 2 . The microbattery has a fill factor of 55%, and the energy conversion efficiency of beta radiation into electricity reaches to 1.13%. The results suggest that GaN is a highly promising potential candidate for long-life betavoltaic microbatteries used as power supplies for microelectromechanical system devices. (cross-disciplinary physics and related areas of science and technology)

  10. Driving CZTS to the SQ Limit: Solving the Open Circuit Voltage Problem

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Richard A. [IBM Research, Yorktown, NY (United States). Thomas J. Watson Research Center; McCandless, Brian E. [Univ. of Delaware, Newark, DE (United States); Kummel, Andrew C. [Univ. of California, San Diego, CA (United States); Gordon, Roy G. [Harvard Univ., Cambridge, MA (United States)

    2016-12-15

    A key objective of this 3 year research effort was to reduce the open circuit voltage (Voc) deficit, defined as the difference between the absorber band gap and the measured Voc to below 475mV from values at the beginning of this work of 630-730mV. To achieve this reduction, along with the attendant goals of higher Voc and efficiency, detailed studies into the fundamental understanding of existing limitations were undertaken.

  11. The effect of a defective BSF layer on solar cell open circuit voltage. [Back Surface Field

    Science.gov (United States)

    Weizer, V. G.

    1985-01-01

    A straightforward analysis of special limiting cases has permitted the determination of the range of possible open circuit voltage losses due to a defective BSF (back surface field) layer. An important result of the analysis is the finding that it is possible to have a fully effective BSF region, regardless of the spatial distribution of the defective areas, as long as the total defective area is reduced below certain limits. Distributed defects were found to be much more harmful than lumped defects.

  12. Thermocleavable Materials for Polymer Solar Cells with High Open Circuit Voltage-A Comparative Study

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Gevorgyan, Suren; Jørgensen, Mikkel

    2009-01-01

    The search for polymer solar cells giving a high open circuit voltage was conducted through a comparative study of four types of bulk-heterojunction solar cells employing different photoactive layers. As electron donors the thermo-cleavable polymer poly-(3-(2-methylhexyloxycarbonyl)dithiophene) (P3......MHOCT) and unsubstituted polythiophene (PT) were used, the latter of which results from thermo cleaving the former at 310 °C. As reference, P3HT solar cells were built in parallel. As electron acceptors, either PCBM or bis-[60]PCBM were used. In excess of 300 solar cells were produced under as identical...... conditions as possible, varying only the material combination of the photo active layer. It was observed that on replacing PCBM with bis[60]PCBM, the open circuit voltage on average increased by 100 mV for P3MHOCT and 200 mV for PT solar cells. Open circuit voltages approaching 1 V were observed for the PT:bis...

  13. Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages

    KAUST Repository

    Baran, D.; Kirchartz, T.; Wheeler, S.; Dimitrov, S.; Abdelsamie, Maged; Gorman, J.; Ashraf, Raja; Holliday, S.; Wadsworth, A.; Gasparini, N.; Kaienburg, P.; Yan, H.; Amassian, Aram; Brabec, C. J.; Durrant, J. R.; McCulloch, Iain

    2016-01-01

    of high recombination losses, which empirically limit the open-circuit voltage (Voc) to typically less than 1 V. Here we show that this empirical limit can be overcome using non-fullerene acceptors blended with the low band gap polymer PffBT4T-2DT leading

  14. Effect of recombination on the open-circuit voltage of a silicon solar cell

    Science.gov (United States)

    Von Roos, O.; Landsberg, P. T.

    1985-01-01

    A theoretical study of the influence of band-band Auger, band-trap Auger, and the ordinary Shockley-Read-Hall mechanism for carrier recombination on the open-circuit voltage VOC of a solar cell is presented. Under reasonable assumptions for the magnitude of rate constants and realistic values for trap densities, surface recombination velocities and band-gap narrowing, the maximum VOC for typical back surface field solar cells is found to lie in the range between 0.61 and 0.72 V independent of base width.

  15. Single-nanowire, low-bandgap hot carrier solar cells with tunable open-circuit voltage

    Science.gov (United States)

    Limpert, Steven; Burke, Adam; Chen, I.-Ju; Anttu, Nicklas; Lehmann, Sebastian; Fahlvik, Sofia; Bremner, Stephen; Conibeer, Gavin; Thelander, Claes; Pistol, Mats-Erik; Linke, Heiner

    2017-10-01

    Compared to traditional pn-junction photovoltaics, hot carrier solar cells offer potentially higher efficiency by extracting work from the kinetic energy of photogenerated ‘hot carriers’ before they cool to the lattice temperature. Hot carrier solar cells have been demonstrated in high-bandgap ferroelectric insulators and GaAs/AlGaAs heterostructures, but so far not in low-bandgap materials, where the potential efficiency gain is highest. Recently, a high open-circuit voltage was demonstrated in an illuminated wurtzite InAs nanowire with a low bandgap of 0.39 eV, and was interpreted in terms of a photothermoelectric effect. Here, we point out that this device is a hot carrier solar cell and discuss its performance in those terms. In the demonstrated devices, InP heterostructures are used as energy filters in order to thermoelectrically harvest the energy of hot electrons photogenerated in InAs absorber segments. The obtained photovoltage depends on the heterostructure design of the energy filter and is therefore tunable. By using a high-resistance, thermionic barrier, an open-circuit voltage is obtained that is in excess of the Shockley-Queisser limit. These results provide generalizable insight into how to realize high voltage hot carrier solar cells in low-bandgap materials, and therefore are a step towards the demonstration of higher efficiency hot carrier solar cells.

  16. Electrothermal Feedback and Absorption-Induced Open-Circuit-Voltage Turnover in Solar Cells

    Science.gov (United States)

    Ullbrich, Sascha; Fischer, Axel; Tang, Zheng; Ávila, Jorge; Bolink, Henk J.; Reineke, Sebastian; Vandewal, Koen

    2018-05-01

    Solar panels easily heat up upon intense solar radiation due to excess energy dissipation of the absorbed photons or by nonradiative recombination of charge carriers. Still, photoinduced self-heating is often ignored when characterizing lab-sized samples. For light-intensity-dependent measurements of the open-circuit voltage (Suns-VO C ), allowing us to characterize the recombination mechanism, sample heating is often not considered, although almost 100% of the absorbed energy is converted into heat. Here, we show that the frequently observed stagnation or even decrease in VOC at increasingly high light intensities can be explained by considering an effective electrothermal feedback between the recombination current and the open-circuit voltage. Our analytical model fully explains the experimental data for various solar-cell technologies, comprising conventional inorganic semiconductors as well as organic and perovskite materials. Furthermore, the model can be exploited to determine the ideality factor, the effective gap, and the temperature rise from a single Suns-VOC measurement at ambient conditions.

  17. Safety of wet welding with increased open circuit voltages up to 150 V d.c

    International Nuclear Information System (INIS)

    Schmidt, K.; Kozig, G.; Ross, J.A.S.; Green, H.L.

    1991-01-01

    An experimental test programme was performed to demonstrate that wet welding with open circuit voltages up to 150 V d.c. would not result in dangerous situations for the diver induced by electric shock. Sea water, fresh water, different types of diving suits and some worst case situations, resulting from a disregard of good working practice were considered to be test parameters. In sea water a diver will not be endangered by corresponding electric potentials if good working practice is adopted. This was demonstrated even for worst case conditions, e.g. water leakage into the dry suit, accidental positioning to the diver between torch and work piece (stretched arm) and partial removal of coating from the welding rod. The fresh water tests demonstrated higher voltages on the diver but well below accepted threshold limit values. The term 'fresh water' should be critically considered, however, the test results relate only to the water conductivity studied. (orig.) With 30 figs [de

  18. Open circuit voltage durability study and model of catalyst coated membranes at different humidification levels

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Sumit; Fowler, Michael W.; Simon, Leonardo C. [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario (Canada); Abouatallah, Rami; Beydokhti, Natasha [Hydrogenics Corporation, 5985 McLaughlin Road, Mississauga, Ontario (Canada)

    2010-11-01

    Fuel cell material durability is an area of extensive research today. Chemical degradation of the ionomer membrane is one important degradation mechanism leading to overall failure of fuel cells. This study examined the effects of relative humidity on the chemical degradation of the membrane during open circuit voltage testing. Five Gore trademark PRIMEA {sup registered} series 5510 catalyst coated membranes were degraded at 100%, 75%, 50%, and 20% RH. Open circuit potential and cumulative fluoride release were monitored over time. Additionally scanning electron microscopy images were taken at end of the test. The results showed that with decreasing RH fluoride release rate increased as did performance degradation. This was attributed to an increase in gas crossover with a decrease in RH. Further, it is also shown that interruptions in testing may heavily influence cumulative fluoride release measurements where frequent stoppages in testing will cause fluoride release to be underestimated. SEM analysis shows that degradation occurred in the ionomer layer close to the cathode catalyst. A chemical degradation model of the ionomer membrane was used to model the results. The model was able to predict fluoride release trends, including the effects of interruptions, showing that changes in gas crossover with RH could explain the experimental results. (author)

  19. Correlation between the Open-Circuit Voltage and Charge Transfer State Energy in Organic Photovoltaic Cells.

    Science.gov (United States)

    Zou, Yunlong; Holmes, Russell J

    2015-08-26

    In order to further improve the performance of organic photovoltaic cells (OPVs), it is essential to better understand the factors that limit the open-circuit voltage (VOC). Previous work has sought to correlate the value of VOC in donor-acceptor (D-A) OPVs to the interface energy level offset (EDA). In this work, measurements of electroluminescence are used to extract the charge transfer (CT) state energy for multiple small molecule D-A pairings. The CT state as measured from electroluminescence is found to show better correlation to the maximum VOC than EDA. The difference between EDA and the CT state energy is attributed to the Coulombic binding energy of the CT state. This correlation is demonstrated explicitly by inserting an insulating spacer layer between the donor and acceptor materials, reducing the binding energy of the CT state and increasing the measured VOC. These results demonstrate a direct correlation between maximum VOC and CT state energy.

  20. Stacking Orientation Mediation of Pentacene and Derivatives for High Open-Circuit Voltage Organic Solar Cells.

    Science.gov (United States)

    Chou, Chi-Ta; Lin, Chien-Hung; Tai, Yian; Liu, Chin-Hsin J; Chen, Li-Chyong; Chen, Kuei-Hsien

    2012-05-03

    In this Letter, we investigated the effect of the molecular stacking orientation on the open circuit voltage (VOC) of pentacene-based organic solar cells. Two functionalized pentacenes, namely, 6,13-diphenyl-pentacene (DP-penta) and 6,13-dibiphenyl-4-yl-pentacene (DB-penta), were utilized. Different molecular stacking orientations of the pentacene derivatives from the pristine pentacene were identified by angle-dependent near-edge X-ray absorption fine structure measurements. It is concluded that pentacene molecules stand up on the substrate surface, while both functionalized pentacenes lie down. A significant increase of the VOC from 0.28 to 0.83 V can be achieved upon the utilization of functionalized pentacene, owing to the modulation of molecular stacking orientation, which induced a vacuum-level shift.

  1. Elucidating the interplay between dark current coupling and open circuit voltage in organic photovoltaics

    KAUST Repository

    Erwin, Patrick

    2011-01-01

    A short series of alkyl substituted perylenediimides (PDIs) with varying steric bulk are used to demonstrate the relationship between molecular structure, materials properties, and performance characteristics in organic photovoltaics. Devices were made with the structure indium tin oxide/copper phthalocyanine (200 Å)/PDI (200 Å)/bathocuproine (100 Å)/aluminum (1000 Å). We found that PDIs with larger substituents produced higher open circuit voltages (VOC\\'s) despite the donor acceptor interface gap (Δ EDA) remaining unchanged. Additionally, series resistance was increased simultaneously with VOC the effect of reducing short circuit current, making the addition of steric bulk a tradeoff that needs to be balanced to optimize power conversion efficiency. © 2011 American Institute of Physics.

  2. An Adaptive Estimation Scheme for Open-Circuit Voltage of Power Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Yun Zhang

    2013-01-01

    Full Text Available Open-circuit voltage (OCV is one of the most important parameters in determining state of charge (SoC of power battery. The direct measurement of it is costly and time consuming. This paper describes an adaptive scheme that can be used to derive OCV of the power battery. The scheme only uses the measurable input (terminal current and the measurable output (terminal voltage signals of the battery system and is simple enough to enable online implement. Firstly an equivalent circuit model is employed to describe the polarization characteristic and the dynamic behavior of the lithium-ion battery; the state-space representation of the electrical performance for the battery is obtained based on the equivalent circuit model. Then the implementation procedure of the adaptive scheme is given; also the asymptotic convergence of the observer error and the boundedness of all the parameter estimates are proven. Finally, experiments are carried out, and the effectiveness of the adaptive estimation scheme is validated by the experimental results.

  3. Origin of Reduced Open-Circuit Voltage in Highly Efficient Small-Molecule-Based Solar Cells upon Solvent Vapor Annealing.

    Science.gov (United States)

    Deng, Wanyuan; Gao, Ke; Yan, Jun; Liang, Quanbin; Xie, Yuan; He, Zhicai; Wu, Hongbin; Peng, Xiaobin; Cao, Yong

    2018-03-07

    In this study, we demonstrate that remarkably reduced open-circuit voltage in highly efficient organic solar cells (OSCs) from a blend of phenyl-C 61 -butyric acid methyl ester and a recently developed conjugated small molecule (DPPEZnP-THD) upon solvent vapor annealing (SVA) is due to two independent sources: increased radiative recombination and increased nonradiative recombination. Through the measurements of electroluminescence due to the emission of the charge-transfer state and photovoltaic external quantum efficiency measurement, we can quantify that the open-circuit voltage losses in a device with SVA due to the radiative recombination and nonradiative recombination are 0.23 and 0.31 V, respectively, which are 0.04 and 0.07 V higher than those of the as-cast device. Despite of the reduced open-circuit voltage, the device with SVA exhibited enhanced dissociation of charge-transfer excitons, leading to an improved short-circuit current density and a remarkable power conversion efficiency (PCE) of 9.41%, one of the best for solution-processed OSCs based on small-molecule donor materials. Our study also clearly shows that removing the nonradiative recombination pathways and/or suppressing energetic disorder in the active layer would result in more long-lived charge carriers and enhanced open-circuit voltage, which are prerequisites for further improving the PCE.

  4. Interface Modification of Dye-sensitized Solar Cells with Pivalic Acid to Enhance the Open-circuit Voltage

    KAUST Repository

    Li, Xin

    2009-01-01

    Pivalic acid (PVA) was used as a new coadsorbent to dye-sensitized solar cells (DSCs) to modify the interface between the TiO2 films and electrolyte. The addition of PVA improved the light-to-electricity conversion efficiency of devices by 8% by enhancing the open-circuit voltage. Copyright © 2009 The Chemical Society of Japan.

  5. Ultra high open circuit voltage (>1 V) of poly-3-hexylthiophene based organic solar cells with concentrated light

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Madsen, Morten Vesterager; Krebs, Frederik C

    2013-01-01

    to 2000 solar intensities of these photoactive blends. Comparison of solar cells based on five different fullerene derivatives shows that at both short circuit and open circuit conditions, recombination remains unchanged up to 50 suns. Determination of Voc at 2000 suns demonstrated that the same......One approach to increasing polymer solar cell efficiency is to blend poly-(3-hexyl-thiophene) with poorly electron accepting fullerene derivatives to obtain higher open circuit voltage (Voc). In this letter concentrated light is used to study the electrical properties of cell operation at up...

  6. Symmetry-Breaking Charge Transfer in a Zinc Chlorodipyrrin Acceptor for High Open Circuit Voltage Organic Photovoltaics

    KAUST Repository

    Bartynski, Andrew N.

    2015-04-29

    © 2015 American Chemical Society. Low open-circuit voltages significantly limit the power conversion efficiency of organic photovoltaic devices. Typical strategies to enhance the open-circuit voltage involve tuning the HOMO and LUMO positions of the donor (D) and acceptor (A), respectively, to increase the interfacial energy gap or to tailor the donor or acceptor structure at the D/A interface. Here, we present an alternative approach to improve the open-circuit voltage through the use of a zinc chlorodipyrrin, ZCl [bis(dodecachloro-5-mesityldipyrrinato)zinc], as an acceptor, which undergoes symmetry-breaking charge transfer (CT) at the donor/acceptor interface. DBP/ZCl cells exhibit open-circuit voltages of 1.33 V compared to 0.88 V for analogous tetraphenyldibenzoperyflanthrene (DBP)/C60-based devices. Charge transfer state energies measured by Fourier-transform photocurrent spectroscopy and electroluminescence show that C60 forms a CT state of 1.45 ± 0.05 eV in a DBP/C60-based organic photovoltaic device, while ZCl as acceptor gives a CT state energy of 1.70 ± 0.05 eV in the corresponding device structure. In the ZCl device this results in an energetic loss between ECT and qVOC of 0.37 eV, substantially less than the 0.6 eV typically observed for organic systems and equal to the recombination losses seen in high-efficiency Si and GaAs devices. The substantial increase in open-circuit voltage and reduction in recombination losses for devices utilizing ZCl demonstrate the great promise of symmetry-breaking charge transfer in organic photovoltaic devices.

  7. Molecular understanding of the open-circuit voltage of polymer: Fullerene solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Shunsuke; Orimo, Akiko; Benten, Hiroaki; Ito, Shinzaburo [Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto (Japan); Ohkita, Hideo [Japan Science and Technology Agency (JST), PRESTO, Saitama (Japan); Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto (Japan)

    2012-02-15

    The origin of open-circuit voltage (V{sub OC}) was studied for polymer solar cells based on a blend of poly(3-hexylthiophene) (P3HT) and seven fullerene derivatives with different LUMO energy levels and side chains. The temperature dependence of J-V characteristics was analyzed by an equivalent circuit model. As a result, V{sub OC} increased with the decrease in the saturation current density J{sub 0} of the device. Furthermore, J{sub 0} was dependent on the activation energy E{sub A} for J{sub 0}, which is related to the HOMO-LUMO energy gap between P3HT and fullerene. Interestingly, the pre-exponential term J{sub 00} for J{sub 0} was larger for pristine fullerenes than for substituted fullerene derivatives, suggesting that the electronic coupling between molecules also has substantial impact on V{sub OC}. This is probably because the recombination is non-diffusion-limited reaction depending on electron transfer at the P3HT/fullerene interface. In summary, the origin of V{sub OC} is ascribed not only to the relative HOMO-LUMO energy gap but also to the electronic couplings between fullerene/fullerene and polymer/fullerene. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Experimental investigation of open circuit voltage during start-up process of HT-PEMFC

    International Nuclear Information System (INIS)

    Abdul Rasheed, Raj Kamal; Chan, Siew Hwa

    2015-01-01

    Highlights: • OCV reduces non-linearly with temperature under constant power input. • The reduction gradient of OCV is observed to be non-linear with time. • Nernst equation is less accurate for HT-PEMFC start-up models. - Abstract: This paper investigates the open circuit voltage (OCV) during the warm-up process of a high temperature proton exchange membrane fuel cell (HT-PEMFC) from 140 °C to the desired temperature of 180 °C, where the temperature increases with time. The heating strategy involves the external heating of the fuel cell with constant heat input rate. The commonly used Nernst equation, to predict the OCV of the fuel cell, is usually used in transient start-up models. Thus, this papers highlights the limitations of using the Nernst equation where the temperature increases transiently with time. A polybenzimidazole-based HTPEM single cell was set up and the OCV was measured under constant heating power supplied by an external source. A parametric study was done by varying the external heating power and the effect on the OCV was observed. The results showed that the OCV reduces non-linearly with respect to temperature, when the fuel cell is subjected to a constant heating power. This behaviour is clearly in contrast with the Nernst equation, which considers the temperature as steady state. For effective comparison, the OCV was also measured under steady state temperatures, showing an almost constant reduction gradient of ∼ −2.3×10 −4 V/°C. However, the behaviour under a constant heating power show curvilinear reduction of the OCV as the temperature increases. In addition, as the external heating power is increased, the degree of curvature of the OCV profile is greater. Thus, the results clearly indicate that the accuracy of using the Nernst equation in transient thermal start-up models can be improved, by considering a non linear behaviour, as shown in this paper.

  9. The effect of diffusion induced lattice stress on the open-circuit voltage in silicon solar cells

    Science.gov (United States)

    Weizer, V. G.; Godlewski, M. P.

    1984-01-01

    It is demonstrated that diffusion induced stresses in low resistivity silicon solar cells can significantly reduce both the open-circuit voltage and collection efficiency. The degradation mechanism involves stress induced changes in both the minority carrier mobility and the diffusion length. Thermal recovery characteristics indicate that the stresses are relieved at higher temperatures by divacancy flow (silicon self diffusion). The level of residual stress in as-fabricated cells was found to be negligible in the cells tested.

  10. Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells.

    Science.gov (United States)

    De Marco, Nicholas; Zhou, Huanping; Chen, Qi; Sun, Pengyu; Liu, Zonghao; Meng, Lei; Yao, En-Ping; Liu, Yongsheng; Schiffer, Andy; Yang, Yang

    2016-02-10

    Hybrid perovskites have shown astonishing power conversion efficiencies owed to their remarkable absorber characteristics including long carrier lifetimes, and a relatively substantial defect tolerance for solution-processed polycrystalline films. However, nonradiative charge carrier recombination at grain boundaries limits open circuit voltages and consequent performance improvements of perovskite solar cells. Here we address such recombination pathways and demonstrate a passivation effect through guanidinium-based additives to achieve extraordinarily enhanced carrier lifetimes and higher obtainable open circuit voltages. Time-resolved photoluminescence measurements yield carrier lifetimes in guanidinium-based films an order of magnitude greater than pure-methylammonium counterparts, giving rise to higher device open circuit voltages and power conversion efficiencies exceeding 17%. A reduction in defect activation energy of over 30% calculated via admittance spectroscopy and confocal fluorescence intensity mapping indicates successful passivation of recombination/trap centers at grain boundaries. We speculate that guanidinium ions serve to suppress formation of iodide vacancies and passivate under-coordinated iodine species at grain boundaries and within the bulk through their hydrogen bonding capability. These results present a simple method for suppressing nonradiative carrier loss in hybrid perovskites to further improve performances toward highly efficient solar cells.

  11. Effect of nano-imprinting on open-circuit voltage of organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Emah, J.B.; Curry, R.J.; Silva, S.R.P. [Surrey Univ., Guildford (United Kingdom). Advanced Technology Inst.

    2010-07-01

    The open-circuit voltage (V{sub oc}) of solar cells with non-Ohmic contacts are determined by the work function difference of the electrodes. For Ohmic contacts the V{sub oc} is governed by the LUMO and HOMO levels of the acceptor and donor, respectively, which pin the Fermi levels of the cathode and anode. We present a case where the V{sub oc} of a single layer device using poly (3-hexylthiopene-2,5-diyl) (P3HT) as the photoactive material between a nanoimprinted poly poly (3,4-ethylenedioxythiophene) poly (styrene sulfonate)(PEDOT:PSS) and Al electrode decreases due to patterning. The reverse is shown to be the case when [6,6]-phenyl-C{sub 61}-butyric acid ester (PCBM) is introduced to form a bulk heterojunction (BHJ). In both scenarios, there is an increase in the short-circuit current, attributed to an extended optical path length within the photoactive layer and enhanced charge extraction through the increased surface area. The patterned BHJ devices show a 28% and 40% increase in the power conversion efficiency when imprinted with 727 nm and 340 nm periodic patterns respectively. ATR-FTIR investigations of the interfacial PEDOT:PSS film following patterning reveals the presence of PDMS residue which is supported by consideration of the effect on single layer P3HT and P3HT:PCBM blend device performance. UPS measurements demonstrate a reduction in the work function of the interfacial PEDOT:OSS layer by {proportional_to}0.5 eV following nanoimprinting which may originate from chemical modification by the PDMS residue or interfacial dipole formation. XPS spectrum of the imprinted PEDOT:PSS also shows a chemical shift in the 0(1s) core-level towards higher binding energy signifying interaction of the PDMS stamp residue with the PSS dominated surface of PEDOT:PSS. This led to significant improvement in the V{sub oc} and ultimately, the PCE. (orig.)

  12. Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages

    KAUST Repository

    Baran, D.

    2016-11-09

    Optimization of the energy levels at the donor-acceptor interface of organic solar cells has driven their efficiencies to above 10%. However, further improvements towards efficiencies comparable with inorganic solar cells remain challenging because of high recombination losses, which empirically limit the open-circuit voltage (Voc) to typically less than 1 V. Here we show that this empirical limit can be overcome using non-fullerene acceptors blended with the low band gap polymer PffBT4T-2DT leading to efficiencies approaching 10% (9.95%). We achieve Voc up to 1.12 V, which corresponds to a loss of only Eg/q - Voc = 0.5 ± 0.01 V between the optical bandgap Eg of the polymer and Voc. This high Voc is shown to be associated with the achievement of remarkably low non-geminate and non-radiative recombination losses in these devices. Suppression of non-radiative recombination implies high external electroluminescence quantum efficiencies which are orders of magnitude higher than those of equivalent devices employing fullerene acceptors. Using the balance between reduced recombination losses and good photocurrent generation efficiencies achieved experimentally as a baseline for simulations of the efficiency potential of organic solar cells, we estimate that efficiencies of up to 20% are achievable if band gaps and fill factors are further optimized. © The Royal Society of Chemistry 2016.

  13. Re-evaluating the role of sterics and electronic coupling in determining the open-circuit voltage of organic solar cells

    KAUST Repository

    Graham, Kenneth; Erwin, Patrick; Nordlund, Dennis; Vandewal, Koen; Li, Ruipeng; Ngongang Ndjawa, Guy Olivier; Hoke, Eric T.; Salleo, Alberto; Thompson, Mark E.; McGehee, Michael D.; Amassian, Aram

    2013-01-01

    The effects of sterics and molecular orientation on the open-circuit voltage and absorbance properties of charge-transfer states are explored in model bilayer organic photovoltaics. It is shown that the open-circuit voltage correlates linearly with the charge-transfer state energy and is not significantly influenced by electronic coupling. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Re-evaluating the role of sterics and electronic coupling in determining the open-circuit voltage of organic solar cells

    KAUST Repository

    Graham, Kenneth

    2013-07-30

    The effects of sterics and molecular orientation on the open-circuit voltage and absorbance properties of charge-transfer states are explored in model bilayer organic photovoltaics. It is shown that the open-circuit voltage correlates linearly with the charge-transfer state energy and is not significantly influenced by electronic coupling. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Correlation between LUMO offset of donor/acceptor molecules to an open circuit voltage in bulk heterojunction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mola, Genene Tessema, E-mail: mola@ukzn.ac.za [School of. Chemistry and Physics, University of Kwazulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville 3209 (South Africa); Abera, Newayemedhin [Addis Ababa University, Department of Physics, P.O. BOX 1176, Addis Ababa (Ethiopia)

    2014-07-15

    The correlation between the open circuit voltage and the LUMO offset of the donor and acceptor polymers in the bulkheterojunction solar cell was studied for three different thiophene derivatives. The HOMO levels of all the polymers in this investigation were chosen to be similar which results in close values of ΔE{sub DA}=E{sub HOMO}{sup D}−E{sub LUMO}{sup A}. However, the measured V{sub oc} was found to be increasing with decreasing value of the LUMO offset that exists between the donor polymer and fullerene.

  16. Study on Factors for Accurate Open Circuit Voltage Characterizations in Mn-Type Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Natthawuth Somakettarin

    2017-03-01

    Full Text Available Open circuit voltage (OCV of lithium batteries has been of interest since the battery management system (BMS requires an accurate knowledge of the voltage characteristics of any Li-ion batteries. This article presents an OCV characteristic for lithium manganese oxide (LMO batteries under several experimental operating conditions, and discusses factors for accurate OCV determination. A test system is developed for OCV characterization based on the OCV pulse test method. Various factors for the OCV behavior, such as resting period, step-size of the pulse test, testing current amplitude, hysteresis phenomena, and terminal voltage relationship, are investigated and evaluated. To this end, a general OCV model based on state of charge (SOC tracking is developed and validated with satisfactory results.

  17. Interface band gap narrowing behind open circuit voltage losses in Cu2ZnSnS4 solar cells

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Palsgaard, Mattias Lau Nøhr; Gunst, Tue

    2017-01-01

    We present evidence that bandgap narrowing at the heterointerface may be a major cause of the large open circuit voltage deficit of Cu2ZnSnS4/CdS solar cells. Bandgap narrowing is caused by surface states that extend the Cu2ZnSnS4valence band into the forbidden gap. Those surface states...... are consistently found in Cu2ZnSnS4, but not in Cu2ZnSnSe4, by first-principles calculations. They do not simply arise from defects at surfaces but are an intrinsic feature of Cu2ZnSnS4 surfaces. By including those states in a device model, the outcome of previously published temperature-dependent open circuit...... voltage measurements on Cu2ZnSnS4 solar cells can be reproduced quantitatively without necessarily assuming a cliff-like conduction band offset with the CdS buffer layer. Our first-principles calculations indicate that Zn-based alternative buffer layers are advantageous due to the ability of...

  18. Development of Thin Film Amorphous Silicon Tandem Junction Based Photocathodes Providing High Open-Circuit Voltages for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    F. Urbain

    2014-01-01

    Full Text Available Hydrogenated amorphous silicon thin film tandem solar cells (a-Si:H/a-Si:H have been developed with focus on high open-circuit voltages for the direct application as photocathodes in photoelectrochemical water splitting devices. By temperature variation during deposition of the intrinsic a-Si:H absorber layers the band gap energy of a-Si:H absorber layers, correlating with the hydrogen content of the material, can be adjusted and combined in a way that a-Si:H/a-Si:H tandem solar cells provide open-circuit voltages up to 1.87 V. The applicability of the tandem solar cells as photocathodes was investigated in a photoelectrochemical cell (PEC measurement set-up. With platinum as a catalyst, the a-Si:H/a-Si:H based photocathodes exhibit a high photocurrent onset potential of 1.76 V versus the reversible hydrogen electrode (RHE and a photocurrent of 5.3 mA/cm2 at 0 V versus RHE (under halogen lamp illumination. Our results provide evidence that a direct application of thin film silicon based photocathodes fulfills the main thermodynamic requirements to generate hydrogen. Furthermore, the presented approach may provide an efficient and low-cost route to solar hydrogen production.

  19. Energy-level alignment and open-circuit voltage at graphene/polymer interfaces: theory and experiment

    Science.gov (United States)

    Noori, Keian; Konios, Dimitrios; Stylianakis, Minas M.; Kymakis, Emmanuel; Giustino, Feliciano

    2016-03-01

    Functionalized graphene promises to become a key component of novel solar cell architectures, owing to its versatile ability to act either as transparent conductor, electron acceptor, or buffer layer. In spite of this promise, the solar energy conversion efficiency of graphene-based devices falls short of the performance of competing solution-processable photovoltaic technologies. Here we address the question of the maximum achievable open-circuit voltage of all-organic graphene: polymer solar cells using a combined theoretical/experimental approach, going from the atomic scale level to the device level. Our calculations on very large atomistic models of the graphene/polymer interface indicate that the ideal open-circuit voltage approaches one volt, and that epoxide functional groups can have a dramatic effect on the photovoltage. Our predictions are confirmed by direct measurements on complete devices where we control the concentration of functional groups via chemical reduction. Our findings indicate that the selective removal of epoxide groups and the use of ultradisperse polymers are key to achieving graphene solar cells with improved energy conversion efficiency.

  20. Prediction Model and Principle of End-of-Life Threshold for Lithium Ion Batteries Based on Open Circuit Voltage Drifts

    International Nuclear Information System (INIS)

    Cui, Yingzhi; Yang, Jie; Du, Chunyu; Zuo, Pengjian; Gao, Yunzhi; Cheng, Xinqun; Ma, Yulin; Yin, Geping

    2017-01-01

    Highlights: •Open circuit voltage evolution over ageing of lithium ion batteries is deciphered. •The mechanism responsible for the end-of-life (EOL) threshold is elaborated. •A new prediction model of EOL threshold with improved accuracy is developed. •This EOL prediction model is promising for the applications in electric vehicles. -- Abstract: The end-of-life (EOL) of a lithium ion battery (LIB) is defined as the time point when the LIB can no longer provide sufficient power or energy to accomplish its intended function. Generally, the EOL occurs abruptly when the degradation of a LIB reaches the threshold. Therefore, current prediction methods of EOL by extrapolating the early degradation behavior often result in significant errors. To address this problem, this paper analyzes the reason for the EOL threshold of a LIB with shallow depth of discharge. It is found that the sudden appearance of EOL threshold results from the drift of open circuit voltage (OCV) at the end of both shallow depth and full discharges. Further, a new EOL threshold prediction model with highly improved accuracy is developed based on the OCV drifts and their evolution mechanism, which can effectively avoid the misjudgment of EOL threshold. The accuracy of this EOL threshold prediction model is verified by comparing with experimental results. The EOL threshold prediction model can be applied to other battery chemistry systems and its possible application in electric vehicles is finally discussed.

  1. Comparative Study of Online Open Circuit Voltage Estimation Techniques for State of Charge Estimation of Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Hicham Chaoui

    2017-04-01

    Full Text Available Online estimation techniques are extensively used to determine the parameters of various uncertain dynamic systems. In this paper, online estimation of the open-circuit voltage (OCV of lithium-ion batteries is proposed by two different adaptive filtering methods (i.e., recursive least square, RLS, and least mean square, LMS, along with an adaptive observer. The proposed techniques use the battery’s terminal voltage and current to estimate the OCV, which is correlated to the state of charge (SOC. Experimental results highlight the effectiveness of the proposed methods in online estimation at different charge/discharge conditions and temperatures. The comparative study illustrates the advantages and limitations of each online estimation method.

  2. Enhancing the open-circuit voltage of dye-sensitized solar cells: coadsorbents and alternative redox couples[Dissertation 4066

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.

    2008-04-15

    In February 2008, the oil price easily exceeded US dollar 100 per barrel due to the weak US dollar and the imbalance between the increasing demands and deficient supplies. People are paying more and more attention to seek for alternative energy sources that would suffice the modern society in the following high-oil-price era. The work in this thesis is associated with some fundamental research in one of the solutions to the energy shortage, photovoltaics. Particularly, the dye-sensitized solar cell was taken as the system where the effects of coadsorbents and alternative couples to the classic iodide/iodine redox were studied and rationalized. The first chapter was a general introduction to the photovoltaics and dye-sensitized solar cells, such as the operating principles and the characteristics of the dye cell. In Chapter 2, we specified all the experimental issues, including the chemicals, materials, film preparation, characterization techniques and data analysis. A short part was also dedicated to the basics of the photovoltaics. We studied the electronic effect of the scattering particles in our devices in Chapter 3. These particles were of 400 nm in diameter and always put on top of the nanotransparent layer to increase the light harvesting of the devices. It was found that the particles gave a small dark current but under illumination, they made a significant contribution to the total photocurrent. Photovoltage and photocurrent transient decay measurements performed under bias illumination showed that the density of electronic states of the light scattering layer was two times smaller than that of a transparent nanoparticle layer. From Chapter 4 to Chapter 7, we systematically studied the function of the coadsorbents. Application of an {omega}-guannidino carboxylic acid was found to increase the open-circuit voltage of the device by 50 mV. Coadsorbents with similar structures were then employed with an amphiphilic ruthenium sensitizer, Z-907, to scrutinize

  3. Enhanced Open-Circuit Voltage in Colloidal Quantum Dot Photovoltaics via Reactivity-Controlled Solution-Phase Ligand Exchange

    KAUST Repository

    Jo, Jea Woong; Kim, Younghoon; Choi, Jongmin; de Arquer, F. Pelayo Garcí a; Walters, Grant; Sun, Bin; Ouellette, Olivier; Kim, Junghwan; Proppe, Andrew H.; Quintero-Bermudez, Rafael; Fan, James; Xu, Jixian; Tan, Chih Shan; Voznyy, Oleksandr; Sargent, Edward H.

    2017-01-01

    The energy disorder that arises from colloidal quantum dot (CQD) polydispersity limits the open-circuit voltage (VOC) and efficiency of CQD photovoltaics. This energy broadening is significantly deteriorated today during CQD ligand exchange and film assembly. Here, a new solution-phase ligand exchange that, via judicious incorporation of reactivity-engineered additives, provides improved monodispersity in final CQD films is reported. It has been found that increasing the concentration of the less reactive species prevents CQD fusion and etching. As a result, CQD solar cells with a VOC of 0.7 V (vs 0.61 V for the control) for CQD films with exciton peak at 1.28 eV and a power conversion efficiency of 10.9% (vs 10.1% for the control) is achieved.

  4. Enhanced Open-Circuit Voltage in Colloidal Quantum Dot Photovoltaics via Reactivity-Controlled Solution-Phase Ligand Exchange

    KAUST Repository

    Jo, Jea Woong

    2017-10-09

    The energy disorder that arises from colloidal quantum dot (CQD) polydispersity limits the open-circuit voltage (VOC) and efficiency of CQD photovoltaics. This energy broadening is significantly deteriorated today during CQD ligand exchange and film assembly. Here, a new solution-phase ligand exchange that, via judicious incorporation of reactivity-engineered additives, provides improved monodispersity in final CQD films is reported. It has been found that increasing the concentration of the less reactive species prevents CQD fusion and etching. As a result, CQD solar cells with a VOC of 0.7 V (vs 0.61 V for the control) for CQD films with exciton peak at 1.28 eV and a power conversion efficiency of 10.9% (vs 10.1% for the control) is achieved.

  5. Influence of a MoOx interlayer on the open-circuit voltage in organic photovoltaic cells

    Science.gov (United States)

    Zou, Yunlong; Holmes, Russell J.

    2013-07-01

    Metal-oxides have been used as interlayers at the anode-organic interface in organic photovoltaic cells (OPVs) to increase the open-circuit voltage (VOC). We examine the role of MoOx in determining the maximum VOC in a planar heterojunction OPV and find that the interlayer strongly affects the temperature dependence of VOC. Boron subphthalocyanine chloride (SubPc)-C60 OPVs that contain no interlayer show a maximum VOC of 1.2 V at low temperature, while those with MoOx show no saturation, reaching VOC > 1.4 V. We propose that the MoOx-SubPc interface forms a Schottky junction that provides an additional contribution to VOC at low temperature.

  6. Enhanced Open-Circuit Voltage in Visible Quantum Dot Photovoltaics by Engineering of Carrier-Collecting Electrodes

    KAUST Repository

    Wang, Xihua

    2011-10-26

    Colloidal quantum dots (CQDs) enable multijunction solar cells using a single material programmed using the quantum size effect. Here we report the systematic engineering of 1.6 eV PbS CQD solar cells, optimal as the front cell responsible for visible-wavelength harvesting in tandem photovoltaics. We rationally optimize each of the device\\'s collecting electrodes-the heterointerface with electron-accepting TiO2 and the deep-work-function hole-collecting MoO3 for ohmic contact-for maximum efficiency. We report an open-circuit voltage of 0.70 V, the highest observed in a colloidal quantum dot solar cell operating at room temperature. We report an AM1.5 solar power conversion efficiency of 3.5%, the highest observed in >1.5 eV bandgap CQD PV device. © 2011 American Chemical Society.

  7. The importance of band tail recombination on current collection and open-circuit voltage in CZTSSe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Moore, James E. [Naval Research Laboratory, Washington, DC 20375 (United States); Purdue University, West Lafayette, Indiana 47907 (United States); Hages, Charles J. [Purdue University, West Lafayette, Indiana 47907 (United States); Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Agrawal, Rakesh; Lundstrom, Mark S.; Gray, Jeffery L. [Purdue University, West Lafayette, Indiana 47907 (United States)

    2016-07-11

    Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) solar cells typically exhibit high short-circuit current density (J{sub sc}), but have reduced cell efficiencies relative to other thin film technologies due to a deficit in the open-circuit voltage (V{sub oc}), which prevent these devices from becoming commercially competitive. Recent research has attributed the low V{sub oc} in CZTSSe devices to small scale disorder that creates band tail states within the absorber band gap, but the physical processes responsible for this V{sub oc} reduction have not been elucidated. In this paper, we show that carrier recombination through non-mobile band tail states has a strong voltage dependence and is a significant performance-limiting factor, and including these effects in simulation allows us to simultaneously explain the V{sub oc} deficit, reduced fill factor, and voltage-dependent quantum efficiency with a self-consistent set of material parameters. Comparisons of numerical simulations to measured data show that reasonable values for the band tail parameters (characteristic energy, capture rate) can account for the observed low V{sub oc}, high J{sub sc}, and voltage dependent collection efficiency. These results provide additional evidence that the presence of band tail states accounts for the low efficiencies of CZTSSe solar cells and further demonstrates that recombination through non-mobile band tail states is the dominant efficiency limiting mechanism.

  8. Microstructural and Electronic Origins of Open-Circuit Voltage Tuning in Organic Solar Cells Based on Ternary Blends

    KAUST Repository

    Mollinger, Sonya A.

    2015-09-22

    © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Organic ternary heterojunction photovoltaic blends are sometimes observed to undergo a gradual evolution in open-circuit voltage (Voc) with increasing amounts of a second donor or an acceptor. The Voc is strongly correlated with the energy of the charge transfer state in the blend, but this value depends on both local and mesoscopic orders. In this work, the behavior of Voc in the presence of a wide range of interfacial electronic states is investigated. The key charge transfer state interfaces responsible for Voc in several model systems with varying morphology are identified. Systems consisting of one donor with two fullerene molecules and of one acceptor with a donor polymer of varying regio-regularity are used. The effects from the changing energetic disorder in the material and from the variation due to a law of simple mixtures are quantified. It has been found that populating the higher-energy charge transfer states is not responsible for the observed change in Voc upon the addition of a third component. Aggregating polymers and miscible fullerenes are compared, and it has been concluded that in both cases charge delocalization, aggregation, and local polarization effects shift the lowest-energy charge transfer state distribution. The open-circuit voltage evolution and charge transfer state interfaces in ternary organic photovoltaic blends are investigated using several model systems. The changes in subgap spectra from energetic disorder and increased population of higher energy states are analyzed and the lowest charge transfer state distribution is observed to shift due to local aggregation and delocalization effects.

  9. Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zheng, Fangdan; Xing, Yinjiao; Jiang, Jiuchun; Sun, Bingxiang; Kim, Jonghoon; Pecht, Michael

    2016-01-01

    Highlights: • Two common tests for observing battery open circuit voltage performance are compared. • The temperature dependency of the OCV-SOC relationship is investigated. • Two estimators are evaluated in terms of accuracy and robustness for estimating battery SOC. • The incremental OCV test is better to predetermine the OCV-SOCs for SOC online estimation. - Abstract: Battery state of charge (SOC) estimation is a crucial function of battery management systems (BMSs), since accurate estimated SOC is critical to ensure the safety and reliability of electric vehicles. A widely used technique for SOC estimation is based on online inference of battery open circuit voltage (OCV). Low-current OCV and incremental OCV tests are two common methods to observe the OCV-SOC relationship, which is an important element of the SOC estimation technique. In this paper, two OCV tests are run at three different temperatures and based on which, two SOC estimators are compared and evaluated in terms of tracking accuracy, convergence time, and robustness for online estimating battery SOC. The temperature dependency of the OCV-SOC relationship is investigated and its influence on SOC estimation results is discussed. In addition, four dynamic tests are presented, one for estimator parameter identification and the other three for estimator performance evaluation. The comparison results show that estimator 2 (based on the incremental OCV test) has higher tracking accuracy and is more robust against varied loading conditions and different initial values of SOC than estimator 1 (based on the low-current OCV test) with regard to ambient temperature. Therefore, the incremental OCV test is recommended for predetermining the OCV-SOCs for battery SOC online estimation in BMSs.

  10. Microstructural and Electronic Origins of Open-Circuit Voltage Tuning in Organic Solar Cells Based on Ternary Blends

    KAUST Repository

    Mollinger, Sonya A.; Vandewal, Koen; Salleo, Alberto

    2015-01-01

    © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Organic ternary heterojunction photovoltaic blends are sometimes observed to undergo a gradual evolution in open-circuit voltage (Voc) with increasing amounts of a second donor or an acceptor. The Voc is strongly correlated with the energy of the charge transfer state in the blend, but this value depends on both local and mesoscopic orders. In this work, the behavior of Voc in the presence of a wide range of interfacial electronic states is investigated. The key charge transfer state interfaces responsible for Voc in several model systems with varying morphology are identified. Systems consisting of one donor with two fullerene molecules and of one acceptor with a donor polymer of varying regio-regularity are used. The effects from the changing energetic disorder in the material and from the variation due to a law of simple mixtures are quantified. It has been found that populating the higher-energy charge transfer states is not responsible for the observed change in Voc upon the addition of a third component. Aggregating polymers and miscible fullerenes are compared, and it has been concluded that in both cases charge delocalization, aggregation, and local polarization effects shift the lowest-energy charge transfer state distribution. The open-circuit voltage evolution and charge transfer state interfaces in ternary organic photovoltaic blends are investigated using several model systems. The changes in subgap spectra from energetic disorder and increased population of higher energy states are analyzed and the lowest charge transfer state distribution is observed to shift due to local aggregation and delocalization effects.

  11. Effect of solar-cell junction geometry on open-circuit voltage

    Science.gov (United States)

    Weizer, V. G.; Godlewski, M. P.

    1985-01-01

    Simple analytical models have been found that adequately describe the voltage behavior of both the stripe junction and dot junction grating cells as a function of junction area. While the voltage in the former case is found to be insensitive to junction area reduction, significant voltage increases are shown to be possible for the dot junction cell. With regard to cells in which the junction area has been increased in a quest for better performance, it was found that (1) texturation does not affect the average saturation current density J0, indicating that the texturation process is equivalent to a simple extension of junction area by a factor of square root of 3 and (2) the vertical junction cell geometry produces a sizable decrease in J0 that, unfortunately, is more than offset by the effects of attendant areal increases.

  12. Numerical Study on Open-Circuit Voltage of Single Layer Organic Solar Cells with Schottky Contacts: Effects of Molecular Energy Levels, Temperature and Thickness

    International Nuclear Information System (INIS)

    Rong-Hua, Li; Ying-Quan, Peng; Chao-Zhu, Ma; Run-Sheng, Wang; Hong-Wei, Xie; Ying, Wang; Wei-Min, Meng

    2010-01-01

    We numerically investigate the effects of the exciton generation rate G, temperature T, the active layer thickness d and the position of LUMO level E L related to the cathode work function W c at a given energy gap on the open-circuit voltage V oc of single layer organic solar cells with Schottky contact. It is demonstrated that open-circuit voltage increases concomitantly with the decreasing cathode work function W c for given anode work functions and exciton generation rates. In the case of given cathode and anode work functions, the open-circuit voltage first increases with the exciton generation rate and then reaches a saturation value, which equals to the built-in voltage. Additionally, it is worth noting that a significant improvement to V oc could be made by selecting an organic material which has a relative high LUMO level (low |E L | value). However, V oc decreases as the temperature increases, and the decreasing rate reduces with the enhancement of exciton generation rate. Our study also shows that it is of no benefit to improve the open-circuit voltage by increasing the device thickness because of an enhanced charge recombination in thicker devices. (cross-disciplinary physics and related areas of science and technology)

  13. Recombination in polymer:Fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V

    KAUST Repository

    Hoke, Eric T.

    2012-09-14

    Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC 61 BM. These devices achieve open-circuit voltages ( V oc ) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. V oc \\'s above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage-dependent, steady state and time-resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of -0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with V oc values above 1.0 V and that non-fullerene acceptor materials with large optical gaps ( > 1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of V oc exceeding 1.0 V. © 2013 WILEY-VCH Verlag GmbH and Co.

  14. Recombination in polymer:Fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V

    KAUST Repository

    Hoke, Eric T.; Vandewal, Koen; Bartelt, Jonathan A.; Mateker, William R.; Douglas, Jessica D.; Noriega, Rodrigo; Graham, Kenneth; Frechet, Jean; Salleo, Alberto; McGehee, Michael D.

    2012-01-01

    Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC 61 BM. These devices achieve open-circuit voltages ( V oc ) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. V oc 's above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage-dependent, steady state and time-resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of -0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with V oc values above 1.0 V and that non-fullerene acceptor materials with large optical gaps ( > 1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of V oc exceeding 1.0 V. © 2013 WILEY-VCH Verlag GmbH and Co.

  15. Formation of a p-n heterojunction on GaP photocathodes for H-2 production providing an open-circuit voltage of 710 mV

    DEFF Research Database (Denmark)

    Malizia, Mauro; Seger, Brian; Chorkendorff, Ib

    2014-01-01

    Photocatalytic water splitting for the sustainable production of hydrogen using a two-photon tandem device requires careful optimization of the semiconductors used as photon absorbers. In this work we show how the open-circuit voltage of photocathodes for the hydrogen evolution reaction based on ...

  16. Current Matching in Multifold DBP/C70 Organic Solar Cells With Open-Circuit Voltages of up to 6.44 V

    DEFF Research Database (Denmark)

    Ahmadpour, Mehrad; Liu, Yiming; Rubahn, Horst-Günter

    2017-01-01

    In this paper, we demonstrate a novel method for achieving high open-circuit voltages (Voc) in organic solar cells based on tetraphenyldibenzoperiflanthen (DBP) as donor and fullerene (C70) as acceptor molecules, by fabrication of multifold bilayer single cells stacked on top of each other...

  17. Molecular design of novel fullerene-based acceptors for enhancing the open circuit voltage in polymer solar cells

    Science.gov (United States)

    Tajbakhsh, Mahmood; Kariminasab, Mohaddeseh; Ganji, Masoud Darvish; Alinezhad, Heshmatollah

    2017-12-01

    Organic solar cells, especially bulk hetero-junction polymer solar cells (PSCs), are the most successful structures for applications in renewable energy. The dramatic improvement in the performance of PSCs has increased demand for new conjugated polymer donors and fullerene derivative acceptors. In the present study, quantum chemical calculations were performed for several representative fullerene derivatives in order to determine their frontier orbital energy levels and electronic structures, thereby helping to enhance their performance in PSC devices. We found correlations between the theoretical lowest unoccupied molecular orbital levels and electrophilicity index of various fullerenes with the experimental open circuit voltage of photovoltaic devices according to the poly(3-hexylthiophene) (P3HT):fullerene blend. The correlations between the structure and descriptors may facilitate screening of the best fullerene acceptor for the P3HT donor. Thus, we considered fullerenes with new functional groups and we predicted the output factors for the corresponding P3HT:fullerene blend devices. The results showed that fullerene derivatives based on thieno-o-quinodimethane-C60 with a methoxy group will have enhanced photovoltaic properties. Our results may facilitate the design of new fullerenes and the development of favorable acceptors for use in photovoltaic applications.

  18. Study of the Contributions of Donor and Acceptor Photoexcitations to Open Circuit Voltage in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Douglas Yeboah

    2017-10-01

    Full Text Available One of the key parameters in determining the power conversion efficiency (PCE of bulk heterojunction (BHJ organic solar cells (OSCs is the open circuit voltage . The processes of exciting the donor and acceptor materials individually in a BHJ OSC are investigated and are found to produce two different expressions for . Using the contributions of electron and hole quasi-Fermi levels and charge carrier concentrations, the two different expressions are derived as functions of the energetics of the donor and acceptor materials and the photo-generated charge carrier concentrations, and calculated for a set of donor-acceptor blends. The simultaneous excitation of both the donor and acceptor materials is also considered and the corresponding , which is different from the above two, is derived. The calculated from the photoexcitation of the donor is found to be somewhat comparable with that obtained from the photoexcitation of the acceptor in most combinations of the donor and acceptor materials considered here. It is also found that the calculated from the simultaneous excitations of donor and acceptor in BHJ OSCs is also comparable with the other two . All three thus derived produce similar results and agree reasonably well with the measured values. All three depend linearly on the concentration of the photoexcited charge carriers and hence incident light intensity, which agrees with experimental results. The outcomes of this study are expected to help in finding materials that may produce higher and hence enhanced PCE in BHJ OSCs.

  19. Simultaneous improvement in short circuit current, open circuit voltage, and fill factor of polymer solar cells through ternary strategy.

    Science.gov (United States)

    An, Qiaoshi; Zhang, Fujun; Li, Lingliang; Wang, Jian; Sun, Qianqian; Zhang, Jian; Tang, Weihua; Deng, Zhenbo

    2015-02-18

    We present a smart strategy to simultaneously increase the short circuit current (Jsc), the open circuit voltage (Voc), and the fill factor (FF) of polymer solar cells (PSCs). A two-dimensional conjugated small molecule photovoltaic material (SMPV1), as the second electron donor, was doped into the blend system of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C71-butyric acid methyl (PC71BM) to form ternary PSCs. The ternary PSCs with 5 wt % SMPV1 doping ratio in donors achieve 4.06% champion power conversion efficiency (PCE), corresponding to about 21.2% enhancement compared with the 3.35% PCE of P3HT:PC71BM-based PSCs. The underlying mechanism on performance improvement of ternary PSCs can be summarized as (i) harvesting more photons in the longer wavelength region to increase Jsc; (ii) obtaining the lower mixed highest occupied molecular orbital (HOMO) energy level by incorporating SMPV1 to increase Voc; (iii) forming the better charge carrier transport channels through the cascade energy level structure and optimizing phase separation of donor/acceptor materials to increase Jsc and FF.

  20. Trifluoromethyl-Substituted Large Band-Gap Polytriphenylamines for Polymer Solar Cells with High Open-Circuit Voltages

    Directory of Open Access Journals (Sweden)

    Shuwang Yi

    2018-01-01

    Full Text Available Two large band-gap polymers (PTPACF and PTPA2CF based on polytriphenylamine derivatives with the introduction of electron-withdrawing trifluoromethyl groups were designed and prepared by Suzuki polycondensation reaction. The chemical structures, thermal, optical and electrochemical properties were characterized in detail. From the UV-visible absorption spectra, the PTPACF and PTPA2CF showed the optical band gaps of 2.01 and 2.07 eV, respectively. The cyclic voltammetry (CV measurement displayed the deep highest occupied molecular orbital (HOMO energy levels of −5.33 and −5.38 eV for PTPACF and PTPA2CF, respectively. The hole mobilities, determined by field-effect transistor characterization, were 2.5 × 10−3 and 1.1 × 10−3 cm2 V−1 S−1 for PTPACF and PTPA2CF, respectively. The polymer solar cells (PSCs were tested under the conventional device structure of ITO/PEDOT:PSS/polymer:PC71BM/PFN/Al. All of the PSCs showed the high open circuit voltages (Vocs with the values approaching 1 V. The PTPACF and PTPA2CF based PSCs gave the power conversion efficiencies (PCEs of 3.24% and 2.40%, respectively. Hence, it is a reliable methodology to develop high-performance large band-gap polymer donors with high Vocs through the feasible side-chain modification.

  1. Unraveling the High Open Circuit Voltage and High Performance of Integrated Perovskite/Organic Bulk-Heterojunction Solar Cells.

    Science.gov (United States)

    Dong, Shiqi; Liu, Yongsheng; Hong, Ziruo; Yao, Enping; Sun, Pengyu; Meng, Lei; Lin, Yuze; Huang, Jinsong; Li, Gang; Yang, Yang

    2017-08-09

    We have demonstrated high-performance integrated perovskite/bulk-heterojunction (BHJ) solar cells due to the low carrier recombination velocity, high open circuit voltage (V OC ), and increased light absorption ability in near-infrared (NIR) region of integrated devices. In particular, we find that the V OC of the integrated devices is dominated by (or pinned to) the perovskite cells, not the organic photovoltaic cells. A Quasi-Fermi Level Pinning Model was proposed to understand the working mechanism and the origin of the V OC of the integrated perovskite/BHJ solar cell, which following that of the perovskite solar cell and is much higher than that of the low bandgap polymer based organic BHJ solar cell. Evidence for the model was enhanced by examining the charge carrier behavior and photovoltaic behavior of the integrated devices under illumination of monochromatic light-emitting diodes at different characteristic wavelength. This finding shall pave an interesting possibility for integrated photovoltaic devices to harvest low energy photons in NIR region and further improve the current density without sacrificing V OC , thus providing new opportunities and significant implications for future industry applications of this kind of integrated solar cells.

  2. Diphenylphenoxy-Thiophene-PDI Dimers as Acceptors for OPV Applications with Open Circuit Voltage Approaching 1 Volt

    Directory of Open Access Journals (Sweden)

    Caterina Stenta

    2018-03-01

    Full Text Available Two new perylenediimides (PDIs have been developed for use as electron acceptors in solution-processed bulk heterojunction solar cells. The compounds were designed to exhibit maximal solubility in organic solvents, and reduced aggregation in the solid state. In order to achieve this, diphenylphenoxy groups were used to functionalize a monomeric PDI core, and two PDI dimers were bridged with either one or two thiophene units. In photovoltaic devices prepared using PDI dimers and a monomer in conjunction with PTB7, it was found that the formation of crystalline domains in either the acceptor or donor was completely suppressed. Atomic force microscopy, X-ray diffraction, charge carrier mobility measurements and recombination kinetics studies all suggest that the lack of crystallinity in the active layer induces a significant drop in electron mobility. Significant surface recombination losses associated with a lack of segregation in the material were also identified as a significant loss mechanism. Finally, the monomeric PDI was found to have sub-optimum LUMO energy matching the cathode contact, thus limiting charge carrier extraction. Despite these setbacks, all PDIs produced high open circuit voltages, reaching almost 1 V in one particular case.

  3. Improved open-circuit voltage in Cu(In,Ga)Se2 solar cells with high work function transparent electrodes

    International Nuclear Information System (INIS)

    Jäger, Timo; Romanyuk, Yaroslav E.; Bissig, Benjamin; Pianezzi, Fabian; Nishiwaki, Shiro; Reinhard, Patrick; Steinhauser, Jérôme; Tiwari, Ayodhya N.; Schwenk, Johannes

    2015-01-01

    Hydrogenated indium oxide (IOH) is implemented as transparent front contact in Cu(In,Ga)Se 2 (CIGS) solar cells, leading to an open circuit voltage V OC enhanced by ∼20 mV as compared to reference devices with ZnO:Al (AZO) electrodes. This effect is reproducible in a wide range of contact sheet resistances corresponding to various IOH thicknesses. We present the detailed electrical characterization of glass/Mo/CIGS/CdS/intrinsic ZnO (i-ZnO)/transparent conductive oxide (TCO) with different IOH/AZO ratios in the front TCO contact in order to identify possible reasons for the enhanced V OC . Temperature and illumination intensity-dependent current-voltage measurements indicate that the dominant recombination path does not change when AZO is replaced by IOH, and it is mainly limited to recombination in the space charge region and at the junction interface of the solar cell. The main finding is that the introduction of even a 5 nm-thin IOH layer at the i-ZnO/TCO interface already results in a step-like increase in V OC . Two possible explanations are proposed and verified by one-dimensional simulations using the SCAPS software. First, a higher work function of IOH as compared to AZO is simulated to yield an V OC increase by 21 mV. Second, a lower defect density in the i-ZnO layer as a result of the reduced sputter damage during milder sputter-deposition of IOH can also add to a maximum enhanced V OC of 25 mV. Our results demonstrate that the proper choice of the front TCO contact can reduce the parasitic recombination and boost the efficiency of CIGS cells with improved corrosion stability

  4. Planar Perovskite Solar Cells with High Open-Circuit Voltage Containing a Supramolecular Iron Complex as Hole Transport Material Dopant.

    Science.gov (United States)

    Saygili, Yasemin; Turren-Cruz, Silver-Hamill; Olthof, Selina; Saes, Bartholomeus Wilhelmus Henricus; Pehlivan, Ilknur Bayrak; Saliba, Michael; Meerholz, Klaus; Edvinsson, Tomas; Zakeeruddin, Shaik M; Grätzel, Michael; Correa-Baena, Juan-Pablo; Hagfeldt, Anders; Freitag, Marina; Tress, Wolfgang

    2018-04-26

    In perovskite solar cells (PSCs), the most commonly used hole transport material (HTM) is spiro-OMeTAD, which is typically doped by metalorganic complexes, for example, based on Co, to improve charge transport properties and thereby enhance the photovoltaic performance of the device. In this study, we report a new hemicage-structured iron complex, 1,3,5-tris(5'-methyl-2,2'-bipyridin-5-yl)ethylbenzene Fe(III)-tris(bis(trifluoromethylsulfonyl)imide), as a p-type dopant for spiro-OMeTAD. The formal redox potential of this compound was measured as 1.29 V vs. the standard hydrogen electrode, which is slightly (20 mV) more positive than that of the commercial cobalt dopant FK209. Photoelectron spectroscopy measurements confirm that the iron complex acts as an efficient p-dopant, as evidenced in an increase of the spiro-OMeTAD work function. When fabricating planar PSCs with the HTM spiro-OMeTAD doped by 5 mol % of the iron complex, a power conversion efficiency of 19.5 % (AM 1.5G, 100 mW cm -2 ) is achieved, compared to 19.3 % for reference devices with FK209. Open circuit voltages exceeding 1.2 V at 1 sun and reaching 1.27 V at 3 suns indicate that recombination at the perovskite/HTM interface is low when employing this iron complex. This work contributes to recent endeavors to reduce recombination losses in perovskite solar cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Influence of MoOx interlayer on the maximum achievable open-circuit voltage in organic photovoltaic cells

    Science.gov (United States)

    Zou, Yunlong; Holmes, Russell

    2013-03-01

    Transition metal oxides including molybdenum oxide (MoOx) are characterized by large work functions and deep energy levels relative to the organic semiconductors used in photovoltaic cells (OPVs). These materials have been used in OPVs as interlayers between the indium-tin-oxide anode and the active layers to increase the open-circuit voltage (VOC) and power conversion efficiency. We examine the role of MoOx in determining the maximum achievable VOC in planar heterojunction OPVs based on the donor-acceptor pairing of boron subphthalocyanine chloride (SubPc) and C60. While causing minor changes in VOC at room temperature, the inclusion of MoOx significantly changes the temperature dependence of VOC. Devices containing no interlayer show a maximum VOC\\ of 1.2 V, while devices containing MoOx show no saturation in VOC, reaching a value of >1.4 V at 110 K. We propose that the MoOx-SubPc interface forms a dissociating Schottky junction that provides an additional contribution to VOC at low temperature. Separate measurements of photoluminescence confirm that excitons in SubPc can be quenched by MoOx. Charge transfer at this interface is by hole extraction from SubPc to MoOx, and this mechanism favors donors with a deep highest occupied molecular orbital (HOMO) energy level. Consistent with this expectation, the temperature dependence of VOC for devices constructed using a donor with a shallower HOMO level, e.g. copper phthalocyanine, is independent of the presence of MoOx.

  6. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures

    International Nuclear Information System (INIS)

    Xing, Yinjiao; He, Wei; Pecht, Michael; Tsui, Kwok Leung

    2014-01-01

    Highlights: • An offline OCV–SOC–temperature table was established to infer battery SOC. • A temperature-based model was developed to estimate SOC at different temperatures. • The algorithm for SOC estimation was verified by dynamic current load. • The robustness of the approach was validated by different initial SOC values. - Abstract: Ambient temperature is a significant factor that influences the accuracy of battery SOC estimation, which is critical for remaining driving range prediction of electric vehicles (EVs) and optimal charge/discharge control of batteries. A widely used method to estimate SOC is based on an online inference of open-circuit voltage (OCV). However, the fact that the OCV–SOC is dependent on ambient temperature can result in errors in battery SOC estimation. To address this problem, this paper presents an SOC estimation approach based on a temperature-based model incorporated with an OCV–SOC–temperature table. The unscented Kalman filtering (UKF) was applied to tune the model parameters at each sampling step to cope with various uncertainties arising from the operation environment, cell-to-cell variation, and modeling inaccuracy. Two dynamic tests, the dynamic stress test (DST) and the federal urban driving schedule (FUDS), were used to test batteries at different temperatures. Then, DST was used to identify the model parameters while FUDS was used to validate the performance of the SOC estimation. The estimation was made covering the major working range from 25% to 85% SOC. The results indicated that our method can provide accurate SOC estimation with smaller root mean squared errors than the method that does not take into account ambient temperature. Thus, our approach is effective and accurate when battery operates at different ambient temperatures. Since the developed method takes into account the temperature factor as well as the complexity of the model, it could be effectively applied in battery management systems for

  7. Building mechanism for a high open-circuit voltage in an all-solution-processed tandem polymer solar cell.

    Science.gov (United States)

    Kong, Jaemin; Lee, Jongjin; Kim, Geunjin; Kang, Hongkyu; Choi, Youna; Lee, Kwanghee

    2012-08-14

    Additional post-processing techniques, such as post-thermal annealing and UV illumination, were found to be required to obtain desirable values of the cell parameters in a tandem polymer solar cell incorporated with solution-processed basic n-type titanium sub-oxide (TiO(x))/acidic p-type poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) interlayers. Subsequent to the fabrication of the tandem polymer solar cells, the open-circuit voltage (V(OC)) of the cells exhibited half of the expected value. Only after the application of the post-treatments, the V(OC) of a tandem cell increased from the initial half-cell value (∼0.6 V) to its full-cell value (∼1.2 V). The selective light-biased incident photon-to-current efficiency (IPCE) measurements indicated that the initial V(OC) originated from the back subcell and that the application of the post-processing treatments revived the front subcell, such that the net photocurrent of the tandem cell was finally governed by a recombination process of holes from the back subcell and electrons from the front subcell. Based on our experimental results, we suggest that a V(OC) enhancement could be ascribed to two types of subsequent junction formations at the interface between the TiO(x) and PEDOT:PSS interlayers: an 'ion-mediated dipole junction', resulting from the electro-kinetic migration of cationic ions in the interlayers during post-thermal annealing in the presence of a low-work-function metal cathode, and a 'photoinduced Schottky junction', formed by increasing the charge carrier density in the n-type TiO(x) interlayer during UV illumination process. The two junctions separately contributed to the formation of a recombination junction through which the electrons in TiO(x) and the holes in PEDOT:PSS were able to recombine without substantial voltage drops.

  8. Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives

    KAUST Repository

    Ko, Sangwon

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone-due to an increase in the polymer ionization potential-while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2′:5′,2′′- terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C 71-butyric acid methyl ester (PC 71BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current. © 2012 American

  9. Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives.

    Science.gov (United States)

    Ko, Sangwon; Hoke, Eric T; Pandey, Laxman; Hong, Sanghyun; Mondal, Rajib; Risko, Chad; Yi, Yuanping; Noriega, Rodrigo; McGehee, Michael D; Brédas, Jean-Luc; Salleo, Alberto; Bao, Zhenan

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone--due to an increase in the polymer ionization potential--while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2':5',2''-terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current.

  10. Polypyrrole: FeOx·ZnO nanoparticle solar cells with breakthrough open-circuit voltage prepared from relatively stable liquid dispersions

    KAUST Repository

    Zong, Baoyu

    2014-01-01

    Organic hybrid solar cells with a large open-circuit voltage, up to above that of 1.5 V standard battery voltage, were demonstrated using blends of polypyrrole: Fe2O3·ZnO nanoparticles as active-layers. The cell active-layers were readily coated in open air from relatively stable liquid dark-color polypyrrole-based dispersions, which were synthesized using appropriate surfactants during the in situ polymerization of pyrrole with FeCl3 or both H2O2 and FeCl3 as the oxidizers. The performance of the cells depends largely on the synthesized blend phase, which is determined by the surfactants, oxidizers, as well as the reactant ratio. Only the solar cells fabricated from the stable dispersions can produce both a high open-circuit voltage (>1.0 V) and short-circuit current (up to 7.5 mA cm-2) due to the relatively uniform porous network nanomorphology and higher shunt to series resistance ratio of the active-layers. The cells also display a relatively high power-conversion efficiency of up to ∼3.8%. This journal is

  11. An open circuit voltage equation enabling separation of cathode and anode polarization resistances of ceria electrolyte based solid oxide fuel cells

    Science.gov (United States)

    Zhang, Yanxiang; Chen, Yu; Yan, Mufu

    2017-07-01

    The open circuit voltage (OCV) of solid oxide fuel cells is generally overestimated by the Nernst equation and the Wagner equation, due to the polarization losses at electrodes. Considering both the electronic conduction of electrolyte and the electrode polarization losses, we express the OCV as an implicit function of the characteristic oxygen pressure of electrolyte (p* [atm], at which the electronic and ionic conductivities are the same), and the relative polarization resistance of electrodes (rc = Rc/Ri and ra = Ra/Ri, where Ri/c/a [Ωcm2] denotes the ionic resistance of electrolyte, and the polarization resistances of cathode and anode, respectively). This equation approaches to the Wagner equation when the electrodes are highly active (rc and ra → 0), and approaches to the Nernst equation when the electrolyte is a purely ionic conductor (p* → 0). For the fuel cells whose OCV is well below the prediction of the Wagner equation, for example with thin doped ceria electrolyte, it is demonstrated that the combination of OCV and impedance spectroscopy measurements allows the determination of p*, Rc and Ra. This equation can serve as a simple yet powerful tool to study the internal losses in the cell under open circuit condition.

  12. Achieving 12.8% Efficiency by Simultaneously Improving Open-Circuit Voltage and Short-Circuit Current Density in Tandem Organic Solar Cells.

    Science.gov (United States)

    Qin, Yunpeng; Chen, Yu; Cui, Yong; Zhang, Shaoqing; Yao, Huifeng; Huang, Jiang; Li, Wanning; Zheng, Zhong; Hou, Jianhui

    2017-06-01

    Tandem organic solar cells (TOSCs), which integrate multiple organic photovoltaic layers with complementary absorption in series, have been proved to be a strong contender in organic photovoltaic depending on their advantages in harvesting a greater part of the solar spectrum and more efficient photon utilization than traditional single-junction organic solar cells. However, simultaneously improving open circuit voltage (V oc ) and short current density (J sc ) is a still particularly tricky issue for highly efficient TOSCs. In this work, by employing the low-bandgap nonfullerene acceptor, IEICO, into the rear cell to extend absorption, and meanwhile introducing PBDD4T-2F into the front cell for improving V oc , an impressive efficiency of 12.8% has been achieved in well-designed TOSC. This result is also one of the highest efficiencies reported in state-of-the-art organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of dislocations on the open-circuit voltage, short-circuit current and efficiency of heteroepitaxial indium phosphide solar cells

    Science.gov (United States)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Excellent radiation resistance of indium phosphide solar cells makes them a promising candidate for space power applications, but the present high cost of starting substrates may inhibit their large scale use. Thin film indium phosphide cells grown on Si or GaAs substrates have exhibited low efficiencies, because of the generation and propagation of large number of dislocations. Dislocation densities were calculated and its influence on the open circuit voltage, short circuit current, and efficiency of heteroepitaxial indium phosphide cells was studied using the PC-1D. Dislocations act as predominant recombination centers and are required to be controlled by proper transition layers and improved growth techniques. It is shown that heteroepitaxial grown cells could achieve efficiencies in excess of 18 percent AMO by controlling the number of dislocations. The effect of emitter thickness and surface recombination velocity on the cell performance parameters vs. dislocation density is also studied.

  14. Relationship between open-circuit voltage in Cu(In,Ga)Se2 solar cell and peak position of (220/204) preferred orientation near its absorber surface

    International Nuclear Information System (INIS)

    Chantana, J.; Minemoto, T.; Watanabe, T.; Teraji, S.; Kawamura, K.

    2013-01-01

    Cu(In,Ga)Se 2 (CIGS) absorbers with various Ga/III, Ga/(In+Ga), profiles are prepared by the so-called “multi-layer precursor method” using multi-layer co-evaporation of material sources. It is revealed that open-circuit voltage (V OC ) of CIGS solar cell is primarily dependent on averaged Ga/III near the surface of its absorber. This averaged Ga/III is well predicted by peak position of (220/204) preferred orientation of CIGS film near its surface investigated by glancing-incidence X-ray diffraction with 0.1° incident angle. Finally, the peak position of (220/204) preferred orientation is proposed as a measure of V OC before solar cell fabrication

  15. Detection Method for Soft Internal Short Circuit in Lithium-Ion Battery Pack by Extracting Open Circuit Voltage of Faulted Cell

    Directory of Open Access Journals (Sweden)

    Minhwan Seo

    2018-06-01

    Full Text Available Early detection of internal short circuit which is main cause of thermal runaway in a lithium-ion battery is necessary to ensure battery safety for users. As a promising fault index, internal short circuit resistance can directly represent degree of the fault because it describes self-discharge phenomenon caused by the internal short circuit clearly. However, when voltages of individual cells in a lithium-ion battery pack are not provided, the effect of internal short circuit in the battery pack is not readily observed in whole terminal voltage of the pack, leading to difficulty in estimating accurate internal short circuit resistance. In this paper, estimating the resistance with the whole terminal voltages and the load currents of the pack, a detection method for the soft internal short circuit in the pack is proposed. Open circuit voltage of a faulted cell in the pack is extracted to reflect the self-discharge phenomenon obviously; this process yields accurate estimates of the resistance. The proposed method is verified with various soft short conditions in both simulations and experiments. The error of estimated resistance does not exceed 31.2% in the experiment, thereby enabling the battery management system to detect the internal short circuit early.

  16. Improve the open-circuit voltage of ZnO solar cells with inserting ZnS layers by two ways

    International Nuclear Information System (INIS)

    Sun, Yunfei; Yang, Jinghai; Yang, Lili; Cao, Jian; Gao, Ming; Zhang, Zhiqiang; Wang, Zhe; Song, Hang

    2013-01-01

    ZnS NPs layers were deposited on ZnO NRs by two different ways. One is spin coating; the other is successive ionic layer adsorption and reaction (SILAR) method. The ZnO NRs/ZnS NPs composites were verified by X-ray diffraction, X-ray photoelectron spectroscopy, and UV–visible spectrophotometer; their morphologies and thicknesses were examined by scanning electron microscopic and transmission electron microscopic images. The CdS quantum dot sensitized solar cells (QDSSCs) were constructed using ZnO NRs/ZnS NPs composites as photoanode and their photovoltaic characteristic was studied by J–V curves. The results indicated that the way of SILAR is more beneficial for retarding the back transfer of electrons to CdS and electrolyte than spin coating method. The open-circuit voltage increased to 0.59 V by introducing a ZnS layer through SILAR method. When ZnS NPs layer was deposited for 10 times on ZnO NRs, the conversion efficiency of QDSSC shows ∼3.3 folds increments of as-synthesized ZnO solar cell. - Graphical abstract: When ZnO nanorods were deposited by ZnS for 10 times, the conversion efficiency of QDSSC shows ∼3.3 folds increments of as-synthesized ZnO solar cell. Highlights: ► ZnS layers were deposited with two different ways. ► The way of SILAR is more beneficial for retarding the back transfer of electrons. ► The open-circuit voltage increased to 0.59 V by introducing a ZnS layer through SILAR method

  17. Improve the open-circuit voltage of ZnO solar cells with inserting ZnS layers by two ways

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yunfei [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Yang, Jinghai, E-mail: jhyang1@jlnu.edu.cn [Institute of Condensed State Physics, Jilin Normal University, Siping 136000 (China); Yang, Lili; Cao, Jian [Institute of Condensed State Physics, Jilin Normal University, Siping 136000 (China); Gao, Ming [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Institute of Condensed State Physics, Jilin Normal University, Siping 136000 (China); Zhang, Zhiqiang; Wang, Zhe [Institute of Condensed State Physics, Jilin Normal University, Siping 136000 (China); Song, Hang [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2013-04-15

    ZnS NPs layers were deposited on ZnO NRs by two different ways. One is spin coating; the other is successive ionic layer adsorption and reaction (SILAR) method. The ZnO NRs/ZnS NPs composites were verified by X-ray diffraction, X-ray photoelectron spectroscopy, and UV–visible spectrophotometer; their morphologies and thicknesses were examined by scanning electron microscopic and transmission electron microscopic images. The CdS quantum dot sensitized solar cells (QDSSCs) were constructed using ZnO NRs/ZnS NPs composites as photoanode and their photovoltaic characteristic was studied by J–V curves. The results indicated that the way of SILAR is more beneficial for retarding the back transfer of electrons to CdS and electrolyte than spin coating method. The open-circuit voltage increased to 0.59 V by introducing a ZnS layer through SILAR method. When ZnS NPs layer was deposited for 10 times on ZnO NRs, the conversion efficiency of QDSSC shows ∼3.3 folds increments of as-synthesized ZnO solar cell. - Graphical abstract: When ZnO nanorods were deposited by ZnS for 10 times, the conversion efficiency of QDSSC shows ∼3.3 folds increments of as-synthesized ZnO solar cell. Highlights: ► ZnS layers were deposited with two different ways. ► The way of SILAR is more beneficial for retarding the back transfer of electrons. ► The open-circuit voltage increased to 0.59 V by introducing a ZnS layer through SILAR method.

  18. Investigation of the open-circuit voltage in wide-bandgap InGaP-host InP quantum dot intermediate-band solar cells

    Science.gov (United States)

    Aihara, Taketo; Tayagaki, Takeshi; Nagato, Yuki; Okano, Yoshinobu; Sugaya, Takeyoshi

    2018-04-01

    To analyze the open-circuit voltage (V oc) in intermediate-band solar cells, we investigated the current-voltage characteristics in wide-bandgap InGaP-based InP quantum dot (QD) solar cells. From the temperature dependence of the current-voltage curves, we show that the V oc in InP QD solar cells increases with decreasing temperature. We use a simple diode model to extract V oc at the zero-temperature limit, V 0, and the temperature coefficient C of the solar cells. Our results show that, while the C of InP QD solar cells is slightly larger than that of the reference InGaP solar cells, V 0 significantly decreases and coincides with the bandgap energy of the InP QDs rather than that of the InGaP host. This V 0 indicates that the V oc reduction in the InP QD solar cells is primarily caused by the breaking of the Fermi energy separation between the QDs and the host semiconductor in intermediate-band solar cells, rather than by enhanced carrier recombination.

  19. Measurement of the open-circuit voltage of individual subcells in a dual-junction solar cell

    Czech Academy of Sciences Publication Activity Database

    Holovský, Jakub; Bonnet-Eymard, M.; Bugnon, G.; Cuony, P.; Despeisse, M.; Ballif, C.

    2012-01-01

    Roč. 2, č. 2 (2012), s. 164-168 ISSN 2156-3381 R&D Projects: GA MŠk(CZ) 7E09057 EU Projects: European Commission(XE) 214134 - N2P Institutional research plan: CEZ:AV0Z10100521 Keywords : current-voltage characteristics * photovoltaic cells * solar energy Subject RIV: BM - Solid Matter Physics ; Magnetism

  20. Measurement of the open circuit voltage of individual sub-cells in a dual-junction solar cell

    Czech Academy of Sciences Publication Activity Database

    Holovský, Jakub; Bonnet-Eymard, M.; Bugnon, G.; Cuony, P.; Despeisse, M.; Ballif, C.

    2012-01-01

    Roč. 2, č. 2 (2012), s. 164-168 ISSN 2156-3381 R&D Projects: GA MŠk(CZ) 7E09057 EU Projects: European Commission(XE) 214134 - N2P Institutional research plan: CEZ:AV0Z10100521 Keywords : current-voltage characteristics * photovoltaic cells * solar energy Subject RIV: BM - Solid Matter Physics ; Magnetism http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6150992

  1. An Experimental Determination of the Quasi-Rest Potential of Copper Indium Disulfide Utilizing the Novel Open-Circuit Voltage Transient

    Science.gov (United States)

    Newell, Michael Jason

    Environmental sustainability requires resource management that takes future generations into account. The present generation has witnessed changes across the planet, unprecedented in human history and disrupting communities and cities around the world, due to shifting global climate. This is primarily the result of fossil fuels, which powered modern civilization but dramatically increased levels of CO2 and other greenhouse gases, and may be the least sustainable aspect of human civilization. Chapter 1 justifies the research from an environmental perspective and provides initial research parameters. Thin film photovoltaic (PV) modules are reported the most sustainable among energy production technologies currently available. Electrodeposited PV layers offer significant improvement to sustainability metrics over current thin film production methods, at reduced cost, but have rarely been demonstrated on an industrial scale. Quasi-rest potential (QRP) ultimately led to large-scale, electrodeposited thin film CdTe modules. An in-situ material characterization technique that allows adjustment of the deposition voltage (Vdep) to match the exact experimental conditions, QRP enabled precise control of deposit stoichiometry and crystallinity. Chapter 2 discusses theory and literature regarding QRP, and introduces the open-circuit voltage transient (Voc T), developed by the present research for analyzing QRP as a function of both Vdep and time. VocT data from a CdTe ethylene glycol bath matches details and speculations from the literature. Although predicted to have wide applicability, experimental QRP data have never been published for compounds unrelated to CdTe. Chapter 3 discusses VocTs performed in pursuit of electrodeposited CuInS2, demonstrating functionality as a QRP scan in a variety of ethylene glycol solutions. Stoichiometries of deposited films were improved by using the V ocT to determine appropriate plating voltages. VocTs enabled QRP, in-situ rest potential (EM

  2. Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells

    Science.gov (United States)

    Rand, Barry P.; Burk, Diana P.; Forrest, Stephen R.

    2007-03-01

    Organic semiconductor heterojunction (HJ) energy level offsets are modeled using a combination of Marcus theory for electron transfer, and generalized Shockley theory of the dark current density vs voltage (J-V) characteristics. This model is used to fit the J-V characteristics of several donor-acceptor combinations commonly used in thin film organic photovoltaic cells. In combination with measurements of the energetics of donor-acceptor junctions, the model predicts tradeoffs between the junction open-circuit voltage (VOC) and short-circuit current density (JSC) . The VOC is found to increase with light intensity and inversely with temperature for 14 donor-acceptor HJ materials pairs. In particular, we find that VOC reaches a maximum at low temperature (˜175K) for many of the heterojunctions studied. The maximum value of VOC is a function of the difference between the donor ionization potential and acceptor electron affinity, minus the binding energy of the dissociated, geminate electron-hole pair: a general relationship that has implications on the charge transfer mechanism at organic heterojunctions. The fundamental understanding provided by this model leads us to infer that the maximum power conversion efficiency of double heterostructure organic photovoltaic cells can be as high as 12%. When combined with mixed layers to increase photocurrent and stacked cells to increase VOC , efficiencies approaching 16% are within reach.

  3. Electron-deficient N-alkyloyl derivatives of thieno[3,4-c]pyrrole-4,6-dione yield efficient polymer solar cells with open-circuit voltages > 1 v

    KAUST Repository

    Warnan, Julien; Cabanetos, Clement; Bude, Romain; El Labban, Abdulrahman; LI, LIANG; Beaujuge, Pierre

    2014-01-01

    Poly(benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymer donors yield some of the highest open-circuit voltages (V OC, ca. 0.9 V) and fill factors (FF, ca. 70%) in conventional bulk-heterojunction (BHJ) solar cells

  4. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles

    International Nuclear Information System (INIS)

    He, Hongwen; Zhang, Xiaowei; Xiong, Rui; Xu, Yongli; Guo, Hongqiang

    2012-01-01

    This paper presents a method to estimate the state-of-charge (SOC) of a lithium-ion battery, based on an online identification of its open-circuit voltage (OCV), according to the battery’s intrinsic relationship between the SOC and the OCV for application in electric vehicles. Firstly an equivalent circuit model with n RC networks is employed modeling the polarization characteristic and the dynamic behavior of the lithium-ion battery, the corresponding equations are built to describe its electric behavior and a recursive function is deduced for the online identification of the OCV, which is implemented by a recursive least squares (RLS) algorithm with an optimal forgetting factor. The models with different RC networks are evaluated based on the terminal voltage comparisons between the model-based simulation and the experiment. Then the OCV-SOC lookup table is built based on the experimental data performed by a linear interpolation of the battery voltages at the same SOC during two consecutive discharge and charge cycles. Finally a verifying experiment is carried out based on nine Urban Dynamometer Driving Schedules. It indicates that the proposed method can ensure an acceptable accuracy of SOC estimation for online application with a maximum error being less than 5.0%. -- Highlights: ► An equivalent circuit model with n RC networks is built for lithium-ion batteries. ► A recursive function is deduced for the online estimation of the model parameters like OCV and R O . ► The relationship between SOC and OCV is built with a linear interpolation method by experiments. ► The experiments show the online model-based SOC estimation is reasonable with enough accuracy.

  5. Open-Circuit Voltage in Organic Solar Cells: The Impacts of Donor Semicrystallinity and Coexistence of Multiple Interfacial Charge-Transfer Bands

    KAUST Repository

    Ngongang Ndjawa, Guy Olivier; Graham, Kenneth; Mollinger, Sonya; Wu, Di M.; Hanifi, David; Prasanna, Rohit; Rose, Bradley Daniel; Dey, Sukumar; Yu, Liyang; Bredas, Jean-Luc; McGehee, Michael D.; Salleo, Alberto; Amassian, Aram

    2017-01-01

    In organic solar cells (OSCs), the energy of the charge-transfer (CT) complexes at the donor-acceptor interface, E , determines the maximum open-circuit voltage (V ). The coexistence of phases with different degrees of order in the donor or the acceptor, as in blends of semi-crystalline donors and fullerenes in bulk heterojunction layers, influences the distribution of CT states and the V enormously. Yet, the question of how structural heterogeneities alter CT states and the V is seldom addressed systematically. In this work, we combine experimental measurements of vacuum-deposited rubrene/C bilayer OSCs, with varying microstructure and texture, with density functional theory calculations to determine how relative molecular orientations and extents of structural order influence E and V . We find that varying the microstructure of rubrene gives rise to CT bands with varying energies. The CT band that originates from crystalline rubrene lies up to ≈0.4 eV lower in energy compared to the one that arises from amorphous rubrene. These low-lying CT states contribute strongly to V losses and result mainly from hole delocalization in aggregated rubrene. This work points to the importance of realizing interfacial structural control that prevents the formation of low E configurations and maximizes V .

  6. Fine Tuning of Open-Circuit Voltage by Chlorination in Thieno[3,4- b ]thiophene–Benzodithiophene Terpolymers toward Enhanced Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Shiwei; Wang, Huan; Mo, Daize; Chao, Pengjie; Yang, Zhen; Li, Longji; Tian, Leilei; Chen, Wei [Materials; Institute; He, Feng

    2017-06-22

    A new family of thieno[3,4-b]thiophene benzodithiophene terpolymers (PBTClx) have been designed and synthesized, in which the chlorine/fluorine content has been adjusted and optimized. As the content of chlorine is increased in polymers, the twist angle between the donor and acceptor is increased, which leads to a diminishment in the planarity and conjugation. As a result, the UV vis absorption is continuous blue-shifted, and the band gap increases from 1.57 to 2.04 eV when the chlorinated moieties increased from 0 to 100%. The highest occupied molecular orbital (HOMO) levels of those polymers are decreased by increasing the content of chlorinated moiety, which opens a window to constantly modify the V-oc values and eventually meets a balance point for optimized solar energy conversion. The highest power conversion efficiency of 8.31% is obtained by using PBTCl25 as the donor and PC71BM as the acceptor in polymer solar cells (PSCs), in which the Voc increased from 0.79 to 0.82 V after 25% chlorinated monomer involved in copolymerization. Herein, the chlorine replacement could be a good method to further pump the solar conversion by increasing the open circuit voltage without reducing other factors of the polymer solar cells.

  7. Simultaneous Increase in Open-Circuit Voltage and Efficiency of Fullerene-Free Solar Cells through Chlorinated Thieno[3,4- b ]thiophene Polymer Donor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huan [Department; Chao, Pengjie [Department; Chen, Hui [Department; Mu, Zhao [Department; Chen, Wei [Materials; Institute; He, Feng [Department

    2017-08-09

    The chlorinated polymer, PBTCl, has been found to be an efficient donor in nonfullerene polymer solar cells (PSCs), which showed a blue-shifted absorbance compared to that of its fluorine analogue (PTB7-th) and resulted in more complementary light absorption with a nonfullerene acceptor, such as ITIC. Meanwhile, chlorine substitution lowered the HOMO level of PBTCl, which increased the open-circuit voltage of the corresponding polymer-based devices. The 2D GIWAXS analysis illustrated that the PBTCl/ITIC blend film exhibited a “face-on” orientation and scattering features of both PBTCl and ITIC, suggesting that the blend of PBTCl and ITIC was phase-separated and formed individual crystalline domains of the donor and acceptor, which promoted charge transfer in the bicontinuous film and eventually elevated the solar energy conversion efficiency. The PBTCl-based nonfullerene PSC exhibited a maximum PCE of 7.57% with a Voc of 0.91 V, which was an approximately 13% increasing in the PCE compared to that of the fluorine-analogue-based device.

  8. Finding the lost open-circuit voltage in polymer solar cells by UV-ozone treatment of the nickel acetate anode buffer layer.

    Science.gov (United States)

    Wang, Fuzhi; Sun, Gang; Li, Cong; Liu, Jiyan; Hu, Siqian; Zheng, Hua; Tan, Zhan'ao; Li, Yongfang

    2014-06-25

    Efficient polymer solar cells (PSCs) with enhanced open-circuit voltage (Voc) are fabricated by introducing solution-processed and UV-ozone (UVO)-treated nickel acetate (O-NiAc) as an anode buffer layer. According to X-ray photoelectron spectroscopy data, NiAc partially decomposed to NiOOH during the UVO treatment. NiOOH is a dipole species, which leads to an increase in the work function (as confirmed by ultraviolet photoemission spectroscopy), thus benefitting the formation of ohmic contact between the anode and photoactive layer and leading to increased Voc. In addition, the UVO treatment improves the wettability between the substrate and solvent of the active layer, which facilitates the formation of an upper photoactive layer with better morphology. Further, the O-NiAc layer can decrease the series resistance (Rs) and increase the parallel resistance (Rp) of the devices, inducing enhanced Voc in comparison with the as-prepared NiAc-buffered control devices without UVO treatment. For PSCs based on the P3HT:PCBM system, Voc increases from 0.50 to 0.60 V after the NiAc buffer layer undergoes UVO treatment. Similarly, in the P3HT:ICBA system, the Voc value of the device with a UVO-treated NiAc buffer layer increases from 0.78 to 0.88 V, showing an enhanced power conversion efficiency of 6.64%.

  9. Open-Circuit Voltage in Organic Solar Cells: The Impacts of Donor Semicrystallinity and Coexistence of Multiple Interfacial Charge-Transfer Bands

    KAUST Repository

    Ngongang Ndjawa, Guy Olivier

    2017-01-16

    In organic solar cells (OSCs), the energy of the charge-transfer (CT) complexes at the donor-acceptor interface, E , determines the maximum open-circuit voltage (V ). The coexistence of phases with different degrees of order in the donor or the acceptor, as in blends of semi-crystalline donors and fullerenes in bulk heterojunction layers, influences the distribution of CT states and the V enormously. Yet, the question of how structural heterogeneities alter CT states and the V is seldom addressed systematically. In this work, we combine experimental measurements of vacuum-deposited rubrene/C bilayer OSCs, with varying microstructure and texture, with density functional theory calculations to determine how relative molecular orientations and extents of structural order influence E and V . We find that varying the microstructure of rubrene gives rise to CT bands with varying energies. The CT band that originates from crystalline rubrene lies up to ≈0.4 eV lower in energy compared to the one that arises from amorphous rubrene. These low-lying CT states contribute strongly to V losses and result mainly from hole delocalization in aggregated rubrene. This work points to the importance of realizing interfacial structural control that prevents the formation of low E configurations and maximizes V .

  10. Leakage Current Induced by Energetic Disorder in Organic Bulk Heterojunction Solar Cells: Comprehending the Ultrahigh Loss of Open-Circuit Voltage at Low Temperatures

    Science.gov (United States)

    Yang, Wenchao; Luo, Yongsong; Guo, Pengfei; Sun, Haibin; Yao, Yao

    2017-04-01

    The open-circuit voltage (Voc ) of organic solar cells generally approaches its maximum obtainable values as the temperature decreases. However, recent experiments have revealed that the Voc may suffer from an ultrahigh loss at low temperatures. In order to verify this explanation and investigate the impacts of energetic disorder on the temperature-dependent behaviors of the Voc in general, we calculate the Voc-T plots with the drift-diffusion method under various device working parameters. With the disorder being incorporated into the device model by considering the disorder-suppressed (temperature-dependent) charge-carrier mobilities, it is found that the ultrahigh Voc losses cannot be reproduced under the Onsager-Braun-type charge generation rate. With the charge generation rate being constant or weakly dependent on temperature, for nonselective contacts, the Voc reduces drastically at low temperatures, while for selective contacts, the Voc increases monotonically with decreasing temperature. With higher carrier mobilities or smaller device thicknesses, the ultrahigh loss occurs at lower temperatures. The mechanism is that, since the disorder-suppressed charge mobilities give rise to both low charge-extraction efficiency and small bimolecular recombination rate, plenty of charge carriers can be extracted from the wrong electrode and can form a large leakage current, which counteracts the majority-carrier current and reduces the Voc at low temperatures. Our results thus highlight the essential role of charge-carrier kinetics, except for the charge-filling effect, on dominating the disorder-induced Voc losses.

  11. Online Estimation of Model Parameters and State of Charge of LiFePO4 Batteries Using a Novel Open-Circuit Voltage at Various Ambient Temperatures

    Directory of Open Access Journals (Sweden)

    Fei Feng

    2015-04-01

    Full Text Available This study describes an online estimation of the model parameters and state of charge (SOC of lithium iron phosphate batteries in electric vehicles. A widely used SOC estimator is based on the dynamic battery model with predeterminate parameters. However, model parameter variances that follow with their varied operation temperatures can result in errors in estimating battery SOC. To address this problem, a battery online parameter estimator is presented based on an equivalent circuit model using an adaptive joint extended Kalman filter algorithm. Simulations based on actual data are established to verify accuracy and stability in the regression of model parameters. Experiments are also performed to prove that the proposed estimator exhibits good reliability and adaptability under different loading profiles with various temperatures. In addition, open-circuit voltage (OCV is used to estimate SOC in the proposed algorithm. However, the OCV based on the proposed online identification includes a part of concentration polarization and hysteresis, which is defined as parametric identification-based OCV (OCVPI. Considering the temperature factor, a novel OCV–SOC relationship map is established by using OCVPI under various temperatures. Finally, a validating experiment is conducted based on the consecutive loading profiles. Results indicate that our method is effective and adaptable when a battery operates at different ambient temperatures.

  12. An Open-Circuit Voltage and Power Conversion Efficiency Study of Fullerene Ternary Organic Solar Cells Based on Oligomer/Oligomer and Oligomer/Polymer.

    Science.gov (United States)

    Zhang, Guichuan; Zhou, Cheng; Sun, Chen; Jia, Xiaoe; Xu, Baomin; Ying, Lei; Huang, Fei; Cao, Yong

    2017-07-01

    Variations in the open-circuit voltage (V oc ) of ternary organic solar cells are systematically investigated. The initial study of these devices consists of two electron-donating oligomers, S2 (two units) and S7 (seven units), and the electron-accepting [6,6]-phenyl C71 butyric acid methyl ester (PC 71 BM) and reveals that the V oc is continuously tunable due to the changing energy of the charge transfer state (E ct ) of the active layers. Further investigation suggests that V oc is also continuously tunable upon change in E ct in a ternary blend system that consists of S2 and its corresponding polymer (P11):PC 71 BM. It is interesting to note that higher power conversion efficiencies can be obtained for both S2:S7:PC 71 BM and S2:P11:PC 71 BM ternary systems compared with their binary systems, which can be ascribed to an improved V oc due to the higher E ct and an improved fill factor due to the improved film morphology upon the incorporation of S2. These findings provide a new guideline for the future design of conjugated polymers for achieving higher performance of ternary organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Improved open-circuit voltage in Cu(In,Ga)Se{sub 2} solar cells with high work function transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jäger, Timo, E-mail: timo.jaeger@empa.ch; Romanyuk, Yaroslav E.; Bissig, Benjamin; Pianezzi, Fabian; Nishiwaki, Shiro; Reinhard, Patrick; Steinhauser, Jérôme; Tiwari, Ayodhya N. [Empa—Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Thin Films and Photovoltaics, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Schwenk, Johannes [Empa—Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Nanoscale Materials Science, Überlandstrasse 129, 8600 Dübendorf (Switzerland)

    2015-06-14

    Hydrogenated indium oxide (IOH) is implemented as transparent front contact in Cu(In,Ga)Se{sub 2} (CIGS) solar cells, leading to an open circuit voltage V{sub OC} enhanced by ∼20 mV as compared to reference devices with ZnO:Al (AZO) electrodes. This effect is reproducible in a wide range of contact sheet resistances corresponding to various IOH thicknesses. We present the detailed electrical characterization of glass/Mo/CIGS/CdS/intrinsic ZnO (i-ZnO)/transparent conductive oxide (TCO) with different IOH/AZO ratios in the front TCO contact in order to identify possible reasons for the enhanced V{sub OC}. Temperature and illumination intensity-dependent current-voltage measurements indicate that the dominant recombination path does not change when AZO is replaced by IOH, and it is mainly limited to recombination in the space charge region and at the junction interface of the solar cell. The main finding is that the introduction of even a 5 nm-thin IOH layer at the i-ZnO/TCO interface already results in a step-like increase in V{sub OC}. Two possible explanations are proposed and verified by one-dimensional simulations using the SCAPS software. First, a higher work function of IOH as compared to AZO is simulated to yield an V{sub OC} increase by 21 mV. Second, a lower defect density in the i-ZnO layer as a result of the reduced sputter damage during milder sputter-deposition of IOH can also add to a maximum enhanced V{sub OC} of 25 mV. Our results demonstrate that the proper choice of the front TCO contact can reduce the parasitic recombination and boost the efficiency of CIGS cells with improved corrosion stability.

  14. Thieno[3,4-c]Pyrrole-4,6-Dione-Based Polymer Acceptors for High Open-Circuit Voltage All-Polymer Solar Cells

    KAUST Repository

    Liu, Shengjian

    2017-04-20

    While polymer acceptors are promising fullerene alternatives in the fabrication of efficient bulk heterojunction (BHJ) solar cells, the range of efficient material systems relevant to the “all-polymer” BHJ concept remains narrow, and currently limits the perspectives to meet the 10% efficiency threshold in all-polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4-c]pyrrole-4,6-dione (TPD) and 3,4-difluorothiophene ([2F]T) motifs, and their BHJ solar cell performance pattern with a low-bandgap polymer donor commonly used with fullerenes (PBDT-TS1; taken as a model system). In this material set, the introduction of a third electron-deficient motif, namely 2,1,3-benzothiadiazole (BT), is shown to (i) significantly narrow the optical gap (Eopt) of the corresponding polymer (by ≈0.2 eV) and (ii) improve the electron mobility of the polymer by over two orders of magnitude in BHJ solar cells. In turn, the narrow-gap P2TPDBT[2F]T analog (Eopt = 1.7 eV) used as fullerene alternative yields high open-circuit voltages (VOC) of ≈1.0 V, notable short-circuit current values (JSC) of ≈11.0 mA cm−2, and power conversion efficiencies (PCEs) nearing 5% in all-polymer BHJ solar cells. P2TPDBT[2F]T paves the way to a new, promising class of polymer acceptor candidates.

  15. Probing the Energy Level Alignment and the Correlation with Open-Circuit Voltage in Solution-Processed Polymeric Bulk Heterojunction Photovoltaic Devices.

    Science.gov (United States)

    Yang, Qing-Dan; Li, Ho-Wa; Cheng, Yuanhang; Guan, Zhiqiang; Liu, Taili; Ng, Tsz-Wai; Lee, Chun-Sing; Tsang, Sai-Wing

    2016-03-23

    Energy level alignment at the organic donor and acceptor interface is a key to determine the photovoltaic performance in organic solar cells, but direct probing of such energy alignment is still challenging especially for solution-processed bulk heterojunction (BHJ) thin films. Here we report a systematic investigation on probing the energy level alignment with different approaches in five commonly used polymer:[6,6]-phenyl-C71-butyric acid methyl ester (PCBM) BHJ systems. We find that by tuning the weight ratio of polymer to PCBM the electronic features from both polymer and PCBM can be obtained by photoemission spectroscopy. Using this approach, we find that some of the BHJ blends simply follow vacuum level alignment, but others show strong energy level shifting as a result of Fermi level pinning. Independently, by measuring the temperature-dependent open-circuit voltage (VOC), we find that the effective energy gap (Eeff), the energy difference between the highest occupied molecular orbital of the polymer donor (EHOMO-D) and lowest unoccupied molecular orbital of the PCBM acceptor (ELUMO-A), obtained by photoemission spectroscopy in all polymer:PCBM blends has an excellent agreement with the extrapolated VOC at 0 K. Consequently, the photovoltage loss of various organic BHJ photovoltaic devices at room temperature is in a range of 0.3-0.6 V. It is believed that the demonstrated direct measurement approach of the energy level alignment in solution-processed organic BHJ will bring deeper insight into the origin of the VOC and the corresponding photovoltage loss mechanism in organic photovoltaic cells.

  16. Enhancement of open-circuit voltage on organic photovoltaic devices by Al-doped TiO{sub 2} modifying layer produced by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Valaski, R.; Arantes, C.; Senna, C.A.; Carôzo, Victor; Achete, C.A. [Materials Metrology Division, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Xerém, Duque de Caxias 25250-020, RJ (Brazil); Cremona, M., E-mail: cremona@fis.puc-rio.br [Materials Metrology Division, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Xerém, Duque de Caxias 25250-020, RJ (Brazil); Physics Department, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22453-970, RJ (Brazil)

    2014-12-01

    Sol–gel method has shown several advantages for oxide synthesis, such as lower cost production, coating large areas, lower processing temperatures and ease insertion of doping materials. Therefore, it is attractive for production of intermediate and electrode modifying layers in organic optoelectronic devices. Herein, spin-coated aluminum-doped titanium dioxide (AlTiO{sub 2}) thin films were produced by sol–gel method onto glass and fluorine-doped tin oxide (FTO) substrates, using different Al-dopant concentrations and post-done annealing temperatures. Electrical measurements were performed in order to investigate the improvement of the TiO{sub 2} resistivity. Additionally, structural, compositional, morphological, optical and electrical properties of the optimal AlTiO{sub 2} modifying layers onto FTO substrates were probed by different techniques, and compared with those obtained from the undoped thin films produced under similar conditions. Organic photovoltaic devices (OPVs) with the structure FTO/AlTiO{sub 2}(30 nm)/C{sub 60}(50 nm)/CuPc(50 nm)/Al with an Al concentration of 0.03 M in AlTiO{sub 2} layer were produced. The insertion of AlTiO{sub 2} thin films improved the short-circuit current density (J{sub sc}) as well as the open circuit voltage (V{sub oc}) in comparison with non-modified electrode FTO based devices. This behavior is discussed in terms of induced interface phenomena as dipole formation induced by Al. - Highlights: • Easy and cheap solution-process for AlTiO{sub 2} modification of FTO electrode for OPVs • Electrical, structural and optical characterization of TiO{sub 2} layers with Al-dopant • Improvement of Voc and Jsc of inverted OPVs with AlTiO{sub 2} modified electrode.

  17. Enhancement of open-circuit voltage on organic photovoltaic devices by Al-doped TiO2 modifying layer produced by sol–gel method

    International Nuclear Information System (INIS)

    Valaski, R.; Arantes, C.; Senna, C.A.; Carôzo, Victor; Achete, C.A.; Cremona, M.

    2014-01-01

    Sol–gel method has shown several advantages for oxide synthesis, such as lower cost production, coating large areas, lower processing temperatures and ease insertion of doping materials. Therefore, it is attractive for production of intermediate and electrode modifying layers in organic optoelectronic devices. Herein, spin-coated aluminum-doped titanium dioxide (AlTiO 2 ) thin films were produced by sol–gel method onto glass and fluorine-doped tin oxide (FTO) substrates, using different Al-dopant concentrations and post-done annealing temperatures. Electrical measurements were performed in order to investigate the improvement of the TiO 2 resistivity. Additionally, structural, compositional, morphological, optical and electrical properties of the optimal AlTiO 2 modifying layers onto FTO substrates were probed by different techniques, and compared with those obtained from the undoped thin films produced under similar conditions. Organic photovoltaic devices (OPVs) with the structure FTO/AlTiO 2 (30 nm)/C 60 (50 nm)/CuPc(50 nm)/Al with an Al concentration of 0.03 M in AlTiO 2 layer were produced. The insertion of AlTiO 2 thin films improved the short-circuit current density (J sc ) as well as the open circuit voltage (V oc ) in comparison with non-modified electrode FTO based devices. This behavior is discussed in terms of induced interface phenomena as dipole formation induced by Al. - Highlights: • Easy and cheap solution-process for AlTiO 2 modification of FTO electrode for OPVs • Electrical, structural and optical characterization of TiO 2 layers with Al-dopant • Improvement of Voc and Jsc of inverted OPVs with AlTiO 2 modified electrode

  18. A novel modeling methodology of open circuit voltage hysteresis for LiFePO4 batteries based on an adaptive discrete Preisach model

    International Nuclear Information System (INIS)

    Zhu, Letao; Sun, Zechang; Dai, Haifeng; Wei, Xuezhe

    2015-01-01

    Highlights: • An adaptive discrete Preisach model (ADPM) of OCV–SOC hysteresis is proposed. • The measured current is used to adjust the weight vector in the proposed ADPM. • A deformation algorithm of ADPM is developed for the accidental current errors. • The performance of ADPM under uncertainty of measured current is investigated. • The performance of ADPM under uncertainty of OCV is investigated. - Abstract: The relationship of open circuit voltage (OCV) versus state of charge (SOC) is critical for many techniques such as accurate battery modeling and reliable SOC estimation. However, the hysteresis existing in OCV–SOC curves of lithium-ion batteries complicates this relationship especially for lithium iron phosphate (LiFePO 4 ) batteries which exhibit a very flat OCV–SOC hysteretic feature. This paper aims at modeling the OCV–SOC hysteresis for LiFePO 4 batteries. The modeling approach is a novel adaptive discrete Preisach model (ADPM) based on the classic Preisach model and the least mean square (LMS) theory. To enhance the performance, the ADPM uses the measured current at each time step to adjust the weight vector. This method significantly decreases the errors (<1%) between the model predicted SOC and the true SOC acquired from experiments. A deformation algorithm of ADPM is further proposed to guarantee the performance even when large errors appear in the measured current. For further applications of the proposed ADPM such as SOC estimation, the robust performance of ADPM is also discussed when considering OCV input errors and measurement current errors. The results show that the maximum SOC calculation errors are about 6% and 5% respectively against uncertain OCV input and measured current which indicate the enormous potential of ADPM in battery management systems

  19. Enhancement of open-circuit voltage and the fill factor in CdTe nanocrystal solar cells by using interface materials

    International Nuclear Information System (INIS)

    Zhu, Jiaoyan; Yang, Yuehua; Gao, Yuping; Qin, Donghuan; Wu, Hongbin; Huang, Wenbo; Hou, Lintao

    2014-01-01

    Interface states influence the operation of nanocrystal (NC) solar cell carrier transport, recombination and energetic mechanisms. In a typical CdTe NC solar cell with a normal structure of a ITO/p-CdTe NCs/n-acceptor (or without)/Al configuration, the contact between the ITO and CdTe is a non-ohm contact due to a different work function (for an ITO, the value is ∼4.7 eV, while for CdTe NCs, the value is ∼5.3 eV), which results in an energetic barrier at the ITO/CdTe interface and decreases the performance of the NC solar cells. This work investigates how interface materials (including Au, MoO x and C 60 ) affect the performance of NC solar cells. It is found that devices with interface materials have shown higher V oc than those without interface materials. For the case in which we used Au as an interface, we obtained a high open-circuit voltage of 0.65 V, coupled with a high fill factor (62%); this resulted in a higher energy conversion efficiency (ECE) of 5.3%, which showed a 30% increase in the ECE compared with those without the interlayer. The capacitance measurements indicate that the increased V oc in the case in which Au was used as the interface is likely due to good ohm contact between the Au’s and the CdTe NCs’ thin film, which decreases the energetic barrier at the ITO/CdTe interface. (paper)

  20. Efficient Planar Structured Perovskite Solar Cells with Enhanced Open-Circuit Voltage and Suppressed Charge Recombination Based on a Slow Grown Perovskite Layer from Lead Acetate Precursor.

    Science.gov (United States)

    Li, Cong; Guo, Qiang; Wang, Zhibin; Bai, Yiming; Liu, Lin; Wang, Fuzhi; Zhou, Erjun; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao

    2017-12-06

    For planar structured organic-inorganic hybrid perovskite solar cells (PerSCs) with the poly(3,4-ethylenedioxythiophene:polystyrene sulfonate) (PEDOT:PSS) hole transport layer, the open-circuit voltage (V oc ) of the device is limited to be about 1.0 V, resulting in inferior performance in comparison with TiO 2 -based planar counterparts. Therefore, increasing V oc of the PEDOT:PSS-based planar device is an important way to enhance the efficiency of the PerSCs. Herein, we demonstrate a novel approach for perovskite film formation and the film is formed by slow growth from lead acetate precursor via a one-step spin-coating process without the thermal annealing (TA) process. Because the perovskite layer grows slowly and naturally, high-quality perovskite film can be achieved with larger crystalline particles, less defects, and smoother surface morphology. Ultraviolet absorption, X-ray diffraction, scanning electron microscopy, steady-state fluorescence spectroscopy (photoluminescence), and time-resolved fluorescence spectroscopy are used to clarify the crystallinity, morphology, and internal defects of perovskite thin films. The power conversion efficiency of p-i-n PerSCs based on slow-grown film (16.33%) shows greatly enhanced performance compared to that of the control device based on traditional thermally annealed perovskite film (14.33%). Furthermore, the V oc of the slow-growing device reaches 1.12 V, which is 0.1 V higher than that of the TA device. These findings indicate that slow growth of the perovskite layer from lead acetate precursor is a promising approach to achieve high-quality perovskite film for high-performance PerSCs.

  1. High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control.

    Science.gov (United States)

    Choi, Hyekyoung; Song, Jung Hoon; Jang, Jihoon; Mai, Xuan Dung; Kim, Sungwoo; Jeong, Sohee

    2015-11-07

    We fabricated heterojunction solar cells with PbSe/PbS core shell quantum dots and studied the precisely controlled PbS shell thickness dependency in terms of optical properties, electronic structure, and solar cell performances. When the PbS shell thickness increases, the short circuit current density (JSC) increases from 6.4 to 11.8 mA cm(-2) and the fill factor (FF) enhances from 30 to 49% while the open circuit voltage (VOC) remains unchanged at 0.46 V even with the decreased effective band gap. We found that the Fermi level and the valence band maximum level remain unchanged in both the PbSe core and PbSe/PbS core/shell with a less than 1 nm thick PbS shell as probed via ultraviolet photoelectron spectroscopy (UPS). The PbS shell reduces their surface trap density as confirmed by relative quantum yield measurements. Consequently, PbS shell formation on the PbSe core mitigates the trade-off relationship between the open circuit voltage and the short circuit current density. Finally, under the optimized conditions, the PbSe core with a 0.9 nm thick shell yielded a power conversion efficiency of 6.5% under AM 1.5.

  2. Relationship between open-circuit voltage in Cu(In,Ga)Se{sub 2} solar cell and peak position of (220/204) preferred orientation near its absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Chantana, J., E-mail: jakapan@fc.ritsumei.ac.jp; Minemoto, T. [Department of Electrical and Electronic Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Watanabe, T.; Teraji, S.; Kawamura, K. [Environment and Energy Research Center, Nitto Denko Corporation, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-11-25

    Cu(In,Ga)Se{sub 2} (CIGS) absorbers with various Ga/III, Ga/(In+Ga), profiles are prepared by the so-called “multi-layer precursor method” using multi-layer co-evaporation of material sources. It is revealed that open-circuit voltage (V{sub OC}) of CIGS solar cell is primarily dependent on averaged Ga/III near the surface of its absorber. This averaged Ga/III is well predicted by peak position of (220/204) preferred orientation of CIGS film near its surface investigated by glancing-incidence X-ray diffraction with 0.1° incident angle. Finally, the peak position of (220/204) preferred orientation is proposed as a measure of V{sub OC} before solar cell fabrication.

  3. Design and flight performance evaluation of the Mariners 6, 7, and 9 short-circuit current, open-circuit voltage transducers

    Science.gov (United States)

    Patterson, R. E.

    1973-01-01

    The purpose of the short-circuit voltage transducer is to provide engineering data to aid the evaluation of array performance during flight. The design, fabrication, calibration, and in-flight performance of the transducers onboard the Mariner 6, 7 and 9 spacecrafts are described. No significant differences were observed in the in-flight electrical performance of the three transducers. The transducers did experience significant losses due to coverslides or adhesive darkening, increased surface reflection, or spectral shifts within coverslide assembly. Mariner 6, 7 and 9 transducers showed non-cell current degradations of 3-1/2%, 3%, and 4%, respectively at Mars encounter and 6%, 3%, and 4-12%, respectively at end of mission. Mariner 9 solar Array Test 2 showed 3-12% current degradation while the transducer showed 4-12% degradation.

  4. Electron-deficient N-alkyloyl derivatives of thieno[3,4-c]pyrrole-4,6-dione yield efficient polymer solar cells with open-circuit voltages > 1 v

    KAUST Repository

    Warnan, Julien

    2014-05-13

    Poly(benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymer donors yield some of the highest open-circuit voltages (V OC, ca. 0.9 V) and fill factors (FF, ca. 70%) in conventional bulk-heterojunction (BHJ) solar cells with PCBM acceptors. Recent work has shown that the incorporation of ring substituents into the side chains of the BDT motifs in PBDTTPD can induce subtle variations in material properties, resulting in an increase of the BHJ device VOC to ∼1 V. In this contribution, we report on the synthesis of N-alkyloyl-substituted TPD motifs (TPD(CO)) and show that the electron-deficient motifs can further lower both the polymer LUMO and HOMO levels, yielding device VOC > 1 V (up to ca. 1.1 V) in BHJ solar cells with PCBM. Despite the high VOC achieved (i.e., low polymer HOMO), BHJ devices cast from TPD(CO)-based polymer donors can reach power conversion efficiencies (PCEs) of up to 6.7%, making these promising systems for use in the high-band-gap cell of tandem solar cells. © 2014 American Chemical Society.

  5. Effects of the charge-transfer reorganization energy on the open-circuit voltage in small-molecular bilayer organic photovoltaic devices: comparison of the influence of deposition rates of the donor.

    Science.gov (United States)

    Lee, Chih-Chien; Su, Wei-Cheng; Chang, Wen-Chang

    2016-05-14

    The theoretical maximum of open-circuit voltage (VOC) of organic photovoltaic (OPV) devices has yet to be determined, and its origin remains debated. Here, we demonstrate that VOC of small-molecule OPV devices can be improved by controlling the deposition rate of a donor without changing the interfacial energy gap at the donor/acceptor interface. The measurement of external quantum efficiency and electroluminescence spectra facilitates the observation of the existence of charge transfer (CT) states. A simplified approach by reusing the reciprocity relationship for obtaining the properties of the CT states is proposed without introducing complex techniques. We compare experimental and fitting results and propose that reorganization energy is the primary factor in determining VOC instead of either the CT energy or electronic coupling term in bilayer OPV devices. Atomic force microscopy images indicate a weak molecular aggregation when a higher deposition rate is used. The results of temperature-dependent measurements suggest the importance of molecular stacking for the CT properties.

  6. Dependence of open-circuit voltage of SnO2-nSi solar cells; SnO2-nSi taiyo denchi no sanka ondo menhoi izonsei

    Energy Technology Data Exchange (ETDEWEB)

    Shinoda, S; Shimizu, A; Yano, K; Kasuga, M [Yamanashi University, Yamanashi (Japan). Faculty of Engineering

    1997-11-25

    Although metal(or semiconductor)-semiconductor solar cells, SnO2-nSi solar cell for example, are superior in cost and efficiency, its barrier height and open-circuit voltage V(oc) are lower than those of p-n junctions. To improve these defects, study was made on the dependence of V(oc) on oxidation temperature and surface orientation using various solar cells prepared from (100)Si and (111)Si under various oxidation conditions. As a result, the density of surface states increases with a decrease in oxidation temperature of Si substrates, resulting in an increase in diode factor and V(oc). In this case, since oxide films are extremely thin and contribution of non-terminated bonds is large in the initial oxidation stage, the quantity of dangling bonds is larger in (100) plane than (111) plane, resulting in an increase in diode factor and V(oc). Since the surface energy level (the degree of electrons dominated by acceptor-like surface state from this level to the top of a valence band) of (100) Si is lower than that of (111) Si, the effective barrier height and V(oc) increase. 28 refs., 6 figs., 2 tabs.

  7. Rational Design of High-Performance Wide-Bandgap (≈2 eV) Polymer Semiconductors as Electron Donors in Organic Photovoltaics Exhibiting High Open Circuit Voltages (≈1 V).

    Science.gov (United States)

    Chochos, Christos L; Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos

    2017-01-01

    Systematic optimization of the chemical structure of wide-bandgap (≈2.0 eV) "donor-acceptor" copolymers consisting of indacenodithiophene or indacenodithieno[3,2-b]thiophene as the electron-rich unit and thieno[3,4-c]pyrrole-4,6-dione as the electron-deficient moiety in terms of alkyl side chain engineering and distance of the electron-rich and electron-deficient monomers within the repeat unit of the polymer chain results in high-performance electron donor materials for organic photovoltaics. Specifically, preliminary results demonstrate extremely high open circuit voltages (V oc s) of ≈1.0 V, reasonable short circuit current density (J sc ) of around 11 mA cm -2 , and moderate fill factors resulting in efficiencies close to 6%. All the devices are fabricated in an inverted architecture with the photoactive layer processed by doctor blade equipment, showing the compatibility with roll-to-roll large-scale manufacturing processes. From the correlation of the chemical structure-optoelectronic properties-photovoltaic performance, a rational guide toward further optimization of the chemical structure in this family of copolymers, has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Photovoltaic Small Molecules of TPA(FxBT-T-Cz)3: Tuning Open-Circuit Voltage over 1.0 V for Their Organic Solar Cells by Increasing Fluorine Substitution.

    Science.gov (United States)

    Wang, Qiong; Duan, Linrui; Tao, Qiang; Peng, Wenhong; Chen, Jianhua; Tan, Hua; Yang, Renqiang; Zhu, Weiguo

    2016-11-09

    To simultaneously improve both open-circuit voltage (V oc ) and short-circuit current density (J sc ) for organic solar cells, a novel D(A-π-Ar) 3 type of photovoltaic small molecules of TPA(F x BT-T-3Cz) 3 was designed and synthesized, which contain central triphenylamine (TPA), terminal carbazole (Cz), armed fluorine-substituted benzothiadiazole (F x BT, where x = 1 or 2), and bridged thiophene (T) units. A narrowed ultraviolet-visible absorption and a decreasing highest occupied molecular orbital energy level were observed from TPA(F 1 BT-T-3Cz) 3 to TPA(F 2 BT-T-3Cz) 3 with increasing fluorine substitution. However, the TPA(F 2 BT-T-3Cz) 3 /PC 71 BM-based solar devices showed a rising V oc of 1.01 V and an enhanced J sc of 10.84 mA cm -2 as well as a comparable power conversion efficiency of 4.81% in comparison to the TPA(F 1 BT-T-3Cz) 3 /PC 71 BM-based devices. Furthermore, in comparison to the parent TPA(BT-T-3Cz) 3 molecule without fluorine substitution, the fluorine-substituted TPA(F x BT-T-3Cz) 3 molecules exhibited significantly incremental V oc and J sc values in their bulk heterojunction organic solar cells, owing to fluorine incorporation in the electron-deficient benzothiadiazole unit.

  9. Protection Scheme for Modular Multilevel Converters under Diode Open-Circuit Faults

    DEFF Research Database (Denmark)

    Deng, Fujin; Zhu, Rongwu; Liu, Dong

    2018-01-01

    devices. The diode open-circuit fault in the submodule (SM) is an important issue for the MMC, which would affect the performance of the MMC and disrupt the operation of the MMC. This paper analyzes the impact of diode open-circuit failures in the SMs on the performance of the MMC and proposes...... a protection scheme for the MMC under diode open-circuit faults. The proposed protection scheme not only can effectively eliminate the possible caused high voltage due to the diode open-circuit fault but also can quickly detect the faulty SMs, which effectively avoids the destruction and protects the MMC....... The proposed protection scheme is verified with a downscale MMC prototype in the laboratory. The results confirm the effectiveness of the proposed protection scheme for the MMC under diode open-circuit faults....

  10. Analysis of the photo voltage decay /PVD/ method for measuring minority carrier lifetimes in P-N junction solar cells

    Science.gov (United States)

    Von Roos, O.

    1981-01-01

    The photo voltage decay (PVD) method for the measurement of minority carrier lifetimes in P-N junction solar cells with cell thickness comparable to or even less than the minority carrier diffusion length is examined. The method involves the generation of free carriers in the quasi-neutral bulk material by flashes of light and the monitoring of the subsequent decay of the induced open-circuit voltages as the carriers recombine, which is dependent on minority carrier recombination lifetime. It is shown that the voltage versus time curve for an ordinary solar cell (N(+)-P junction) is proportional to the inverse minority carrier lifetime plus a factor expressing the ratio of diffusion length to cell thickness. In the case of an ideal back-surface-field cell (N(+)-P-P(+) junction) however, the slope is directly proportional to the inverse minority carrier lifetime. It is noted that since most BSF cells are not ideal, possessing a sizable back surface recombination velocity, the PVD measurements must be treated with caution and supplemented with other nonstationary methods.

  11. Tester Detects Steady-Short Or Intermittent-Open Circuits

    Science.gov (United States)

    Anderson, Bobby L.

    1990-01-01

    Momentary open circuits or steady short circuits trigger buzzer. Simple, portable, lightweight testing circuit sounds long-duration alarm when it detects steady short circuit or momentary open circuit in coaxial cable or other two-conductor transmission line. Tester sensitive to discontinuities lasting 10 microseconds or longer. Used extensively for detecting intermittent open shorts in accelerometer and extensometer cables. Also used as ordinary buzzer-type continuity checker to detect steady short or open circuits.

  12. Open circuit mouthpiece ventilation: Concise clinical review

    Directory of Open Access Journals (Sweden)

    G. Garuti

    2014-07-01

    Full Text Available In 2013 new “mouthpiece ventilation” modes are being introduced to commercially available portable ventilators. Despite this, there is little knowledge of how to use noninvasive intermittent positive pressure ventilation (NIV as opposed to bi-level positive airway pressure (PAP and both have almost exclusively been reported to have been used via nasal or oro-nasal interfaces rather than via a simple mouthpiece.Non-invasive ventilation is often reported as failing because of airway secretion encumbrance, because of hypercapnia due to inadequate bi-level PAP settings, or poor interface tolerance. The latter can be caused by factors such as excessive pressure on the face from poor fit, excessive oral air leak, anxiety, claustrophobia, and patient-ventilator dys-synchrony. Thus, the interface plays a crucial role in tolerance and effectiveness. Interfaces that cover the nose and/or nose and mouth (oro-nasal are the most commonly used but are more likely to cause skin breakdown and claustrophobia. Most associated drawbacks can be avoided by using mouthpiece NIV. Open-circuit mouthpiece NIV is being used by large populations in some centers for daytime ventilatory support and complements nocturnal NIV via “mask” interfaces for nocturnal ventilatory support. Mouthpiece NIV is also being used for sleep with the mouthpiece fixed in place by a lip-covering flange. Small 15 and 22 mm angled mouthpieces and straw-type mouthpieces are the most commonly used.NIV via mouthpiece is being used as an effective alternative to ventilatory support via tracheostomy tube (TMV and is associated with a reduced risk of pneumonias and other respiratory complications. Its use facilitates “air-stacking” to improve cough, speech, and pulmonary compliance, all of which better maintain quality of life for patients with neuromuscular diseases (NMDs than the invasive alternatives. Considering these benefits and the new availability of mouthpiece

  13. Chemical Detection using Electrically Open Circuits having no Electrical Connections

    Science.gov (United States)

    Woodward, Stanley E.; Olgesby, Donald M.; Taylor, Bryant D.; Shams, Qamar A.

    2008-01-01

    This paper presents investigations to date on chemical detection using a recently developed method for designing, powering and interrogating sensors as electrically open circuits having no electrical connections. In lieu of having each sensor from a closed circuit with multiple electrically connected components, an electrically conductive geometric pattern that is powered using oscillating magnetic fields and capable of storing an electric field and a magnetic field without the need of a closed circuit or electrical connections is used. When electrically active, the patterns respond with their own magnetic field whose frequency, amplitude and bandwidth can be correlated with the magnitude of the physical quantities being measured. Preliminary experimental results of using two different detection approaches will be presented. In one method, a thin film of a reactant is deposited on the surface of the open-circuit sensor. Exposure to a specific targeted reactant shifts the resonant frequency of the sensor. In the second method, a coating of conductive material is placed on a thin non-conductive plastic sheet that is placed over the surface of the sensor. There is no physical contact between the sensor and the electrically conductive material. When the conductive material is exposed to a targeted reactant, a chemical reaction occurs that renders the material non-conductive. The change in the material s electrical resistance within the magnetic field of the sensor alters the sensor s response bandwidth and amplitude, allowing detection of the reaction without having the reactants in physical contact with the sensor.

  14. Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries.

    Science.gov (United States)

    Shi, Ji-Lei; Zhang, Jie-Nan; He, Min; Zhang, Xu-Dong; Yin, Ya-Xia; Li, Hong; Guo, Yu-Guo; Gu, Lin; Wan, Li-Jun

    2016-08-10

    Li-rich layered materials have been considered as the most promising cathode materials for future high-energy-density lithium-ion batteries. However, they suffer from severe voltage decay upon cycling, which hinders their further commercialization. Here, we report a Li-rich layered material 0.5Li2MnO3·0.5LiNi0.8Co0.1Mn0.1O2 with high nickel content, which exhibits much slower voltage decay during long-term cycling compared to conventional Li-rich materials. The voltage decay after 200 cycles is 201 mV. Combining in situ X-ray diffraction (XRD), ex situ XRD, ex situ X-ray photoelectron spectroscopy, and scanning transmission electron microscopy, we demonstrate that nickel ions act as stabilizing ions to inhibit the Jahn-Teller effect of active Mn(3+) ions, improving d-p hybridization and supporting the layered structure as a pillar. In addition, nickel ions can migrate between the transition-metal layer and the interlayer, thus avoiding the formation of spinel-like structures and consequently mitigating the voltage decay. Our results provide a simple and effective avenue for developing Li-rich layered materials with mitigated voltage decay and a long lifespan, thereby promoting their further application in lithium-ion batteries with high energy density.

  15. Detection of Two-Level Inverter Open-Circuit Fault Using a Combined DWT-NN Approach

    Directory of Open Access Journals (Sweden)

    Bilal Djamel Eddine Cherif

    2018-01-01

    Full Text Available Three-phase static converters with voltage structure are widely used in many industrial systems. In order to prevent the propagation of the fault to other components of the system and ensure continuity of service in the event of a failure of the converter, efficient and rapid methods of detection and localization must be implemented. This paper work addresses a diagnostic technique based on the discrete wavelet transform (DWT algorithm and the approach of neural network (NN, for the detection of an inverter IGBT open-circuit switch fault. To illustrate the merits of the technique and validate the results, experimental tests are conducted using a built voltage inverter fed induction motor. The inverter is controlled by the SVM control strategy.

  16. Growth and decay of surface voltage on silver diffused polyimide exposed to 3-15 keV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, S K; Dhole, S D; Bhoraskar, V N [Department of Physics, University of Pune, Pune-411007 (India)

    2007-02-21

    During electron irradiation, the growth in the surface voltage on virgin and silver diffused polyimide sample was studied by varying electron energy from 3 to 15 keV and beam diameter from 3 to 15 mm. At a constant beam current, the surface voltage increased nonlinearly with electron energy but decreased slowly with beam diameter at fixed electron energy. At a surface voltage around saturation or beyond 3 kV, the electron beam was switched off and the decay in the surface voltage was studied for a period of 9 x 10{sup 4} s. The surface analysis revealed that the relative concentrations of carbon increased and that of the oxygen and the nitrogen decreased in the electron irradiated virgin and silver diffused polyimide sample, however in different proportions. Under the identical conditions of electron irradiation, the growth rate of the surface voltage, the post irradiated surface resistivity and the voltage decay constant of the silver diffused polyimide were lower than that of the virgin polyimide. The results of the present study reveal that the resistance of the silver diffused polyimide to keV electrons is higher than that of the virgin polyimide.

  17. Tuning open-circuit voltage in organic solar cells by magnesium modified Alq3

    OpenAIRE

    Chou, Chi-Ta; Lin, Chien-Hung; Wu, Meng-Hsiu; Cheng, Tzu-Wei; Lee, Jiun-Haw; Liu, Chin-Hsin J.; Tai, Yian; Chattopadhyay, Surojit; Wang, Juen-Kai; Chen, Kuei-Hsien; Chen, Li-Chyong

    2011-01-01

    The low molecular weight tris-(8-hydroxyquinoline) aluminum (Alq3) has been incorporated with magnesium (Mg) that altered the nature of its opto-electronic characteristics. The lowering of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) in Mg:Alq3, compared to pure Alq3, creates a stronger field (exceeding the exciton binding energy) at the donor-acceptor junction to dissociate the photo-generated exciton and also provides a low barrier for electro...

  18. Tuning open-circuit voltage in organic solar cells by magnesium modified Alq3

    Science.gov (United States)

    Chou, Chi-Ta; Lin, Chien-Hung; Wu, Meng-Hsiu; Cheng, Tzu-Wei; Lee, Jiun-Haw; Liu, Chin-Hsin J.; Tai, Yian; Chattopadhyay, Surojit; Wang, Juen-Kai; Chen, Kuei-Hsien; Chen, Li-Chyong

    2011-01-01

    The low molecular weight tris-(8-hydroxyquinoline) aluminum (Alq3) has been incorporated with magnesium (Mg) that altered the nature of its opto-electronic characteristics. The lowering of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) in Mg:Alq3, compared to pure Alq3, creates a stronger field (exceeding the exciton binding energy) at the donor-acceptor junction to dissociate the photo-generated exciton and also provides a low barrier for electron transport across the device. In an electron-only device (described in the text), a current enhancement in excess of 103, with respect to pure Alq3, could be observed at 10 V applied bias. Optimized Mg:Alq3 layer, when introduced in the photovoltaic device, improves the power conversion efficiencies significantly to 0.15% compared to the pure Alq3 device. The improvement in the photovoltaic performance has been attributed to the superior exciton dissociation and carrier transport. PMID:22087050

  19. The Fault Detection, Localization, and Tolerant Operation of Modular Multilevel Converters with an Insulated Gate Bipolar Transistor (IGBT Open Circuit Fault

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-04-01

    Full Text Available Reliability is one of the critical issues for a modular multilevel converter (MMC since it consists of a large number of series-connected power electronics submodules (SMs. In this paper, a complete control strategy including fault detection, localization, and tolerant operation is proposed for the MMC under an insulated gate bipolar transistor (IGBT open circuit fault. According to the output characteristics of the SM with the open-circuit fault of IGBT, a fault detection method based on the circulating current and output current observation is used. In order to further precisely locate the position of the faulty SM, a fault localization method based on the SM capacitor voltage observation is developed. After the faulty SM is isolated, the continuous operation of the converter is ensured by adopting the fault-tolerant strategy based on the use of redundant modules. To verify the proposed fault detection, fault localization, and fault-tolerant operation strategies, a 900 kVA MMC system under the conditions of an IGBT open circuit is developed in the Matlab/Simulink platform. The capabilities of rapid detection, precise positioning, and fault-tolerant operation of the investigated detection and control algorithms are also demonstrated.

  20. An unattended device for high-voltage sampling and passive measurement of thoron decay products

    Energy Technology Data Exchange (ETDEWEB)

    Gierl, Stefanie; Meisenberg, Oliver, E-mail: oliver.meisenberg@helmholtz-muenchen.de; Wielunski, Marek; Tschiersch, Jochen [Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Protection, Ingolstädter Landstr. 1, 85764 Neuherberg (Germany); Haninger, Thomas [Helmholtz Zentrum München, German Research Center for Environmental Health, Auswertungsstelle für Strahlendosimeter, Otto-Hahn-Ring 6, 81739 München (Germany)

    2014-02-15

    An integrating measurement device for the concentration of airborne thoron decay products was designed and calibrated. It is suitable for unattended use over up to several months also in inhabited dwellings. The device consists of a hemispheric capacitor with a wire mesh as the outer electrode on ground potential and the sampling substrates as the inner electrode on +7.0 kV. Negatively charged and neutral thoron decay products are accelerated to and deposited on the sampling substrates. As sampling substrates, CR39 solid-state nuclear track detectors are used in order to record the alpha decay of the sampled decay products. Nuclide discrimination is achieved by covering the detectors with aluminum foil of different thickness, which are penetrated only by alpha particles with sufficient energy. Devices of this type were calibrated against working level monitors in a thoron experimental house. The sensitivity was measured as 9.2 tracks per Bq/m{sup 3} × d of thoron decay products. The devices were used over 8 weeks in several houses built of earthen material in southern Germany, where equilibrium equivalent concentrations of 1.4–9.9 Bq/m{sup 3} of thoron decay products were measured.

  1. Solar cell degradation under open circuit condition in out-doors-in desert region

    Directory of Open Access Journals (Sweden)

    M. Boussaid

    Full Text Available The reliability of solar cells is an important parameter in the design of photovoltaic systems and particularly for cost estimation. Solar cell degradation is the result of various operating conditions; temperature is one of most important factors. Installed PV modules in desert regions are subjected to various temperature changes with significant gradient leading to accelerated degradation. In the present work, we demonstrate the influence of open-circuit condition on the degradation of PV modules. The experiment is carried out in the desert region of ADRAR (southern Algeria using two modules IJISEL of single-crystal silicon. A continuous monitoring allows analysis of both performances of modules for duration of 330 days. The module in open-circuit condition reaches higher temperature means than the module in charging condition; therefore, it undergoes a higher degradation. By simulation, we found that the life of a PV module (whose power output is close to 50% in a condition of an open-circuit in the desert region could be reduced to 4 years, and that has a significant impact on economy. Keywords: WEIBULL, Photovoltaic, Degradation, Open-circuit, Single-crystal, Silicon

  2. An open circuit balance respirometer for bioenergetic studies of fish growth

    NARCIS (Netherlands)

    Hogendoorn, H.; Korlaar, van F.; Bosch, H.

    1981-01-01

    A description is given of an open circuit balance respirometer for bioenergetic studies of fish growth using indirect calorimetry. The installation was designed to enable the determination of gas and matter balances of fish, including air breathing species, during prolonged experimental periods.

  3. Electrochemical activation, voltage decay and hysteresis of Li-rich layered cathode probed by various cobalt content

    KAUST Repository

    Wu, Yingqiang

    2018-02-01

    The high capacity of Li-rich layered cathode materials have attracted great attention for the greater energy density lithium ion (Li-ion) batteries, but the understanding of knowledge associated with electrochemical behaviours are still needed to improve their performances further. In this study, different amount of Co content is designed in Li-rich layered compounds (0.5Li2MnO3·0.5LiMn0.5-xNi0.5-xCo2xO2, 0 ≤ x ≤ 0.2), and the stepwise electrochemical activation process is applied to explore the features. We discover that the substitution of Co3+ ions can accelerate the electrochemical activation of Li2MnO3 component, and the Co-doped compound delivers much higher capacities even they suffer an apparent voltage decay comparing to the Co-free one. Besides, a fast metal ions migration exists (e.g., from the metastable tetrahedral site to the lower energy cubic site) in initial dozens of cycles (e.g., 30 cycles at 0.1C); thereafter, they likely return to the original octahedral site, as demonstrated in the voltage decay and hysteresis analysis.

  4. Effects of a parallel resistor on electrical characteristics of a piezoelectric transformer in open-circuit transient state.

    Science.gov (United States)

    Chang, Kuo-Tsai

    2007-01-01

    This paper investigates electrical transient characteristics of a Rosen-type piezoelectric transformer (PT), including maximum voltages, time constants, energy losses and average powers, and their improvements immediately after turning OFF. A parallel resistor connected to both input terminals of the PT is needed to improve the transient characteristics. An equivalent circuit for the PT is first given. Then, an open-circuit voltage, involving a direct current (DC) component and an alternating current (AC) component, and its related energy losses are derived from the equivalent circuit with initial conditions. Moreover, an AC power control system, including a DC-to-AC resonant inverter, a control switch and electronic instruments, is constructed to determine the electrical characteristics of the OFF transient state. Furthermore, the effects of the parallel resistor on the transient characteristics at different parallel resistances are measured. The advantages of adding the parallel resistor also are discussed. From the measured results, the DC time constant is greatly decreased from 9 to 0.04 ms by a 10 k(omega) parallel resistance under open output.

  5. Modular High Voltage Pulse Converter for Short Rise and Decay Times

    NARCIS (Netherlands)

    Mao, S.

    2018-01-01

    This thesis explores a modular HV pulse converter technology with short rise and decay times. A systematic methodology to derive and classify HV architectures based on a modularization level of power building blocks of the HV pulse converter is developed to summarize existing architectures and

  6. Wireless Sensing System Using Open-circuit, Electrically-conductive Spiral-trace Sensor

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2013-01-01

    A wireless sensing system includes a sensor made from an electrical conductor shaped to form an open-circuit, electrically-conductive spiral trace having inductance and capacitance. In the presence of a time-varying magnetic field, the sensor resonates to generate a harmonic response having a frequency, amplitude and bandwidth. A magnetic field response recorder wirelessly transmits the time-varying magnetic field to the sensor and wirelessly detects the sensor's response frequency, amplitude and bandwidth.

  7. A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines

    Science.gov (United States)

    Zhang, Zhen; Xia, Changliang; Yan, Yan; Geng, Qiang; Shi, Tingna

    2017-08-01

    Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff's law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell's equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.

  8. A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Xia, Changliang [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Tianjin Engineering Center of Electric Machine System Design and Control, Tianjin 300387 (China); Yan, Yan, E-mail: yanyan@tju.edu.cn [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Geng, Qiang [Tianjin Engineering Center of Electric Machine System Design and Control, Tianjin 300387 (China); Shi, Tingna [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2017-08-01

    Highlights: • A hybrid analytical model is developed for field calculation of multilayer IPM machines. • The rotor magnetic field is calculated by the magnetic equivalent circuit method. • The field in the stator and air-gap is calculated by subdomain technique. • The magnetic scalar potential on rotor surface is modeled as trapezoidal distribution. - Abstract: Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff’s law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell’s equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.

  9. Detection of Single Pt Nanoparticle Collisions by Open-Circuit Potential Changes at Ag Ultramicroelectrode

    International Nuclear Information System (INIS)

    Mun, Seon Kyu; Shin, Changhwan; Kwon, Seong Jung

    2016-01-01

    Single platinum (Pt) nanoparticle (NP) collisions were investigated with open-circuit potential (OCP) using a silver (Ag) ultramicroelectrode (UME). The Ag UME showed higher sensitivity to single Pt NP detection by the OCP method than gold (Au) UME. The detection of ⁓2 nm radius Pt NP collisions was carried out successfully using Ag UME. The magnitude of the potential step and collision frequency for the single Pt NP collision on Ag UME was investigated and compared with those of the previous work done on Au UME.

  10. Designing an Electro-Hydraulic Control Module for an Open-Circuit Variable Displacement Pump

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2005-01-01

    , in the form of an electric control signal, under varying working conditions, when having access to engine speed and actual pump pressure. The paper presents a model of both the pump and the control module, along with design considerations on which linear controllers are developed for a worst point......This paper deals with the problem of designing an electric control module for a Sauer-Danfoss Series 45 H-frame open circuit axial piston pump. The purpose of the electric control module is to replace the existing hydro-mechanical (LS) regulator, and enable the pump to follow a reference pressure...

  11. Magnetic field effects on the open circuit potential of ferromagnetic electrodes in corroding solutions.

    Science.gov (United States)

    Dass, Amala; Counsil, Joseph A; Gao, Xuerong; Leventis, Nicholas

    2005-06-02

    Magnetic fields shift the open circuit potential (OCP) of ferromagnetic electrodes (Fe, Co, and Ni) in corroding solutions. The OCP changes we observe (a) follow the series Fe>Co>Ni; (b) increase with the magnetic flux density; (c) reach a maximum with disk electrodes approximately 1 mm in diameter; and (d) depend on the orientation of the electrode. We report that when the surface of the electrode is oriented parallel (theta = 90 degrees) or perpendicular (theta = 0 degrees) to the magnetic field, the open circuit potential moves in opposite directions (positive and negative, respectively) with the largest changes occurring when the electrode surface is parallel to the magnetic field. Nonconvective sleeve electrodes produce the same behavior. The overall experimental evidence suggests that the magnetic field changes the OCP by modifying the surface concentrations of the paramagnetic participants in the corrosion process of the ferromagnetic electrode by species in solution; this in turn is accomplished by imposing a field-gradient driven mode of mass transfer upon paramagnetic species in solution (magnetophoresis). Simulations of the magnetic field around the ferromagnetic electrode at the two extreme orientations considered here show that in one case (theta = 90 degrees) field gradients actually repel, while in the other case (theta = 0 degrees) they attract paramagnetic species in the vicinity of the electrode.

  12. Utilization of the heat of mixing in open-circuit throttle refrigerators

    International Nuclear Information System (INIS)

    Zhakharov, N.D.; Anikeev, G.N.; Grezin, A.K.

    1986-01-01

    Open-circuit throttle refrigerators based on gas mixtures operate, as a rule, according to a single-stream scheme. The refrigerating effect is determined by the isothermal throttling effect of the mixture in the cylinder under the conditions at the inlet to the cryogenic unit. The authors use the heat of mixing of the cryogenic mixtures to increase the available refrigerating effect. Data are presented on mixtures of nitrogen and Freon-13; the thermodynamic properties of these compounds have been investigated experimentally over a wide range of parameters. It was found that in the case of correct selection of the scheme and complex optimization of the parameters, two-stream throttle refrigerators exceed the single-stream throttle refrigerators by at least a factor of 1.5 with respect to relative useful energy. With account taken of the design, technological, and operational parameters, that which is most promising is the scheme with mixing of the components in reverse flow

  13. Open Circuit Potential Study of Stainless Steel in Environment Containing Marine Sulphate-Reducing Bacteria

    International Nuclear Information System (INIS)

    Fathul Karim Sahrani; Madzlan Abd. Aziz; Zaharah Ibrahim; Adibah Yahya

    2008-01-01

    The corrosion potential of AISI 304 stainless steel coupons influenced by sulphate-reducing bacteria (SRB) has been studied. Pure colony of SRB was isolated from the Malaysia Marine and Heavy Engineering, Pasir Gudang, Johor. Open circuit potential measurements were carried out in variable types of culturing solutions with SRB1, SRB2, combination of SRB1 and SRB2 and without SRBs inoculated. Results showed that the corrosion potential, E oc increased in the presence of SRBs (in pure and mixed culture) compared to that of control. EDS analysis showed the strong peak of sulphur in coupon containing SRB cultures compared to the control. ESEM data showed that the high density cell of SRBs were associated with corroding sections of surface steel comparing with non-corroding sections for coupons immersed in VMNI medium containing SRBs. (author)

  14. Open circuit potential monitored digital photocorrosion of GaAs/AlGaAs quantum well microstructures

    Science.gov (United States)

    Aithal, Srivatsa; Dubowski, Jan J.

    2018-04-01

    Nanostructuring of semiconductor wafers with an atomic level depth resolution is a challenging task, primarily due to the limited availability of instruments for in situ monitoring of such processes. Conventional digital etching relies on calibration procedures and cumbersome diagnostics applied between or at the end of etching cycles. We have developed a photoluminescence (PL) based process for monitoring in situ digital photocorrosion (DPC) of GaAs/AlGaAs microstructures at rates below 0.2 nm per cycle. In this communication, we demonstrate that DPC of GaAs/AlGaAs microstructures could be monitored with open circuit potential (OCP) measured between the photocorroding surface of a microstructure and an Ag/AgCl reference electrode installed in the sample chamber. The excellent correlation between the position of both PL and OCP maxima indicates that the DPC process could be monitored in situ for materials that do not necessarily exhibit measurable PL emission.

  15. On the Predictions of Carbon Deposition on the Nickel Anode of a SOFC and Its Impact on Open-Circuit Conditions

    KAUST Repository

    Lee, W. Y.

    2012-12-04

    Previous thermodynamic analyses of carbon formation in SOFCs assumed that graphite could be used to represent the properties of carbon formed in the anode. It is generally observed, however, that catalytically grown carbon nanofibers (CNF) are more likely to form in the SOFC anode with nickel catalysts. The energetic and entropic properties of CNF are different from those of graphite.We compare equilibrium results based on thermochemical properties for graphite, to new results based on a previously reported value of an empirically determined Gibbs free energy for carbon fibers grown on a nickel support (with fitted values of H°CNF = 54.46 kJ/mol and S°CNF = 68.90 J/mol/K for a nickel crystal size of 5.4 nm). There is little difference in predictions of carbon formation under open-circuit conditions between the two carbon types for methane mixtures, with graphite predicted to form at lower temperatures than CNF. There is a much bigger difference in predictions for methanol mixtures, especially at low steam-carbon ratios. The differences for propane are even more pronounced, and the improved predictions assuming CNF are in closer agreement with past observations.We show a strong dependence of CNF formation and "coking threshold" on nickel crystallite size, supporting previous reports that the nickel particle size is a dominating parameter for controlling filament growth. If both carbon types are included in the calculations, only the thermodynamically favored form (i.e., the type having the lowest formation energy) exists. Predicted Nernst potentials are more-or-less independent of the carbon type and in agreement with measured open-circuit voltages. © 2012 The Electrochemical Society.

  16. Open-circuit fault detection and tolerant operation for a parallel-connected SAB DC-DC converter

    DEFF Research Database (Denmark)

    Park, Kiwoo; Chen, Zhe

    2014-01-01

    This paper presents an open-circuit fault detection method and its tolerant control strategy for a Parallel-Connected Single Active Bridge (PCSAB) dc-dc converter. The structural and operational characteristics of the PCSAB converter lead to several advantages especially for high power applicatio...

  17. Other origins for the fluorescence modulation of single dye molecules in open-circuit and short-circuit devices.

    Science.gov (United States)

    Teguh, Jefri S; Kurniawan, Michael; Wu, Xiangyang; Sum, Tze Chien; Yeow, Edwin K L

    2013-01-07

    Fluorescence intensity modulation of single Atto647N dye molecules in a short-circuit device and a defective device, caused by damaging an open-circuit device, is due to a variation in the excitation light focus as a result of the formation of an alternating electric current.

  18. 77 FR 37862 - Open-Circuit Self-Contained Breathing Apparatus Remaining Service-Life Indicator Performance...

    Science.gov (United States)

    2012-06-25

    .... Executive Order 13211 (Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution... obstructive pulmonary disease, silicosis, neurological disorders, and cancer. Open-circuit self-contained... result in an annual effect on the economy of $100 million or more. E. Unfunded Mandates Reform Act of...

  19. Photoluminescence and Photoconductivity to Assess Maximum Open-Circuit Voltage and Carrier Transport in Hybrid Perovskites and Other Photovoltaic Materials.

    Science.gov (United States)

    Braly, Ian L; Stoddard, Ryan J; Rajagopal, Adharsh; Jen, Alex K-Y; Hillhouse, Hugh W

    2018-06-06

    Photovoltaic (PV) device development is much more expensive and time consuming than the development of the absorber layer alone. This perspective focuses on two methods that can be used to rapidly assess and develop PV absorber materials independent of device development. The absorber material properties of quasi-Fermi level splitting and carrier diffusion length under steady effective one-Sun illumination are indicators of a material's ability to achieve high VOC and JSC. These two material properties can be rapidly and simultaneously assessed with steady-state absolute intensity photoluminescence and photoconductivity measurements. As a result, these methods are extremely useful for predicting the quality and stability of PV materials prior to PV device development. Here, we summarize the methods, discuss their strengths and weaknesses, and compare photoluminescence and photoconductivity results with device performance for four hybrid perovskite compositions of various bandgaps (1.35 to 1.82 eV), CISe, CIGSe, and CZTSe.

  20. The impact of ultra-thin titania interlayers on open circuit voltage and carrier lifetime in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Moerman, David; Colbert, Adam E.; Ginger, David S., E-mail: ginger@chem.washington.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Kim, Hyungchul; Graham, Samuel, E-mail: sgraham@gatech.edu [School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2016-03-14

    We study the effects of modifying indium tin oxide electrodes with ultrathin titania (TiO{sub 2}) layers grown via plasma-enhanced atomic layer deposition (PE-ALD). We find an optimal thickness of PE-ALD-grown titania by tracking performance, which initially increases, peaks, and eventually decreases with increasing TiO{sub 2} thickness. We use scanning Kelvin probe microscopy (SKPM) to measure both the local work function and its distribution as a function of TiO{sub 2} thickness. We find that the variance in contact potential difference across the surface of the film is related to either the amorphous or anatase TiO{sub 2} form. Finally, we use local SKPM recombination rate experiments, supported by bulk transient photovoltage and charge extraction measurements. We show that the optimum TiO{sub 2} thickness is the one for which the carrier lifetime is the longest and the charge carrier density is the highest, when the TiO{sub 2} is amorphous, in agreement with the device measurements.

  1. The impact of ultra-thin titania interlayers on open circuit voltage and carrier lifetime in thin film solar cells

    International Nuclear Information System (INIS)

    Moerman, David; Colbert, Adam E.; Ginger, David S.; Kim, Hyungchul; Graham, Samuel

    2016-01-01

    We study the effects of modifying indium tin oxide electrodes with ultrathin titania (TiO_2) layers grown via plasma-enhanced atomic layer deposition (PE-ALD). We find an optimal thickness of PE-ALD-grown titania by tracking performance, which initially increases, peaks, and eventually decreases with increasing TiO_2 thickness. We use scanning Kelvin probe microscopy (SKPM) to measure both the local work function and its distribution as a function of TiO_2 thickness. We find that the variance in contact potential difference across the surface of the film is related to either the amorphous or anatase TiO_2 form. Finally, we use local SKPM recombination rate experiments, supported by bulk transient photovoltage and charge extraction measurements. We show that the optimum TiO_2 thickness is the one for which the carrier lifetime is the longest and the charge carrier density is the highest, when the TiO_2 is amorphous, in agreement with the device measurements.

  2. Anthracene-containing wide-band-gap conjugated polymers for high-open-circuit-voltage polymer solar cells.

    Science.gov (United States)

    Gong, Xue; Li, Cuihong; Lu, Zhen; Li, Guangwu; Mei, Qiang; Fang, Tao; Bo, Zhishan

    2013-07-25

    The synthesis, characterization, and photophysical and photovoltaic properties of two anthracene-containing wide-band-gap donor and acceptor (D-A) alternating conjugated polymers (P1 and P2) are described. These two polymers absorb in the range of 300-600 nm with a band gap of about 2.12 eV. Polymer solar cells with P1:PC71 BM as the active layer demonstrate a power conversion efficiency (PCE) of 2.23% with a high Voc of 0.96 V, a Jsc of 4.4 mA cm(-2) , and a comparable fill factor (FF) of 0.53 under simulated solar illumination of AM 1.5 G (100 mW cm(-2) ). In addition, P2:PC71 BM blend-based solar cells exhibit a PCE of 1.42% with a comparable Voc of 0.89 V, a Jsc of 3.0 mA cm(-2) , and an FF of 0.53. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electrochemical Immunoassay Using Open Circuit Potential Detection Labeled by Platinum Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kanokwan Charoenkitamorn

    2018-02-01

    Full Text Available In this work, a simple electrochemical immunoassay based on platinum nanoparticles (PtNPs using open circuit potential (OCP detection was developed. The detection of human chorionic gonadotropin hormone (hCG as a model analyte, was demonstrated by direct electrical detection of PtNPs in hydrazine solution using OCP measurement without any application of either potential or current to the system. Disposable screen-printed carbon electrodes (SPCEs were utilized for the development of our immunosensor, which required a sample volume as small as 2 μL. After preparation of a sandwich-type immunosystem, hydrazine solution was dropped on the electrode’s surface, which was followed immediately by electrical detection using OCP. The change of the OCP signal originated from electrocatalytic oxidation of the hydrazine on PtNPs. Under the optimal conditions of a pH of 6.0 and a hydrazine concentration of 1 mM, a detection limit of 0.28 ng mL−1 and a linearity of 0–10 ng mL−1 were obtained. The PtNP-based OCP method is a simpler electrochemical detection procedure than those obtained from other electrochemical methods and has an acceptable sensitivity and reproducibility. The simplicity of the detection procedure and the cost-effectiveness of the disposable SPCE illustrate the attractive benefits of this sensor. Moreover, it could be applied to a simplified and miniaturized diagnostic system with minimal user manipulation.

  4. Copper and brass aged at open circuit potential in slightly alkaline solutions

    International Nuclear Information System (INIS)

    Procaccini, R.; Vazquez, M.; Cere, S.

    2009-01-01

    Surface oxide films were grown on 99.99% copper and brass (copper-zinc alloy, Cu77Zn21Al2) in 0.1 mol L -1 borax solution at open circuit potential and were characterized using various experimental techniques. The composition of the passive films formed in situ on the different materials was studied using differential reflectance spectroscopy. The thickness of the oxide layers on copper and brass was compared by chronopotentiometric curves and potentiodynamic reductions. The electrical properties of each oxide were analyzed by means of electrochemical impedance spectroscopy. Their influence on the oxygen reduction reaction was also investigated using voltammetry hydrodynamic tools such as the rotating disk electrode. The results show that the incorporation of Zn to Cu in brass changes the composition and the thickness of the surface film. The films grown on brass tend to be thicker but less resistive and Zn compounds incorporate to the film. This is supported by results from reflectance and impedance spectroscopy. The kinetics of oxygen reduction is strongly inhibited on oxidized electrodes, particularly in the case of brass. The global number of exchanged electrons remains close to four and seems to be independent of the presence of surface oxides.

  5. Wireless Open-Circuit In-Plane Strain and Displacement Sensor Requiring No Electrical Connections

    Science.gov (United States)

    Woodard, Stanley E. (Inventor)

    2014-01-01

    A wireless in-plane strain and displacement sensor includes an electrical conductor fixedly coupled to a substrate subject to strain conditions. The electrical conductor is shaped between its ends for storage of an electric field and a magnetic field, and remains electrically unconnected to define an unconnected open-circuit having inductance and capacitance. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. The sensor also includes at least one electrically unconnected electrode having an end and a free portion extending from the end thereof. The end of each electrode is fixedly coupled to the substrate and the free portion thereof remains unencumbered and spaced apart from a portion of the electrical conductor so-shaped. More specifically, at least some of the free portion is disposed at a location lying within the magnetic field response generated by the electrical conductor. A motion guidance structure is slidingly engaged with each electrode's free portion in order to maintain each free portion parallel to the electrical conductor so-shaped.

  6. The Design and Production of the LHCb VELO High Voltage System and Analysis of the Bd ⇒ K*μ+μ- Rare Decay

    CERN Document Server

    Rakotomiaramanana, Barinjaka Mamitiana; Soler, P

    2010-01-01

    LHCb is the dedicated flavour physics experiment of the LHC. The experiment is designed for probing new physics through measurements of CP violation and rare decays. This thesis includes simulation studies of the Bd ⇒ K*μ+μ- decay. The LHCb vertex locator (VELO) is the highest precision tracking detector at the LHC and is used to identify primary and secondary vertices for the identification of the $b$ and $c$ hadrons. The VELO modules contain silicon strip detectors which must be operated under reverse bias voltage. This thesis presents the work performed on the design, production and characterisation of the VELO high voltage system. The VELO operates only 8\\mm~from the LHC beam in a high radiation environment. A future upgrade will require operation at up to 10$^{16}$ n_{eq}cm^{-2}.This thesis presents a characterisation of p-type silicon sensors before and after heavy irradiations. The design of the HV system and the substantial programme of quality assurance tests performed on both the hardware and so...

  7. Open-circuit respirometry: real-time, laboratory-based systems.

    Science.gov (United States)

    Ward, Susan A

    2018-05-04

    This review explores the conceptual and technological factors integral to the development of laboratory-based, automated real-time open-circuit mixing-chamber and breath-by-breath (B × B) gas-exchange systems, together with considerations of assumptions and limitations. Advances in sensor technology, signal analysis, and digital computation led to the emergence of these technologies in the mid-20th century, at a time when investigators were beginning to recognise the interpretational advantages of nonsteady-state physiological-system interrogation in understanding the aetiology of exercise (in)tolerance in health, sport, and disease. Key milestones include the 'Auchincloss' description of an off-line system to estimate alveolar O 2 uptake B × B during exercise. This was followed by the first descriptions of real-time automated O 2 uptake and CO 2 output B × B measurement by Beaver and colleagues and by Linnarsson and Lindborg, and mixing-chamber measurement by Wilmore and colleagues. Challenges to both approaches soon emerged: e.g., the influence of mixing-chamber washout kinetics on mixed-expired gas concentration determination, and B × B alignment of gas-concentration signals with respired flow. The challenging algorithmic and technical refinements required for gas-exchange estimation at the alveolar level have also been extensively explored. In conclusion, while the technology (both hardware and software) underpinning real-time automated gas-exchange measurement has progressively advanced, there are still concerns regarding accuracy especially under the challenging conditions of changing metabolic rate.

  8. The high voltage homopolar generator

    Science.gov (United States)

    Price, J. H.; Gully, J. H.; Driga, M. D.

    1986-11-01

    System and component design features of proposed high voltage homopolar generator (HVHPG) are described. The system is to have an open circuit voltage of 500 V, a peak output current of 500 kA, 3.25 MJ of stored inertial energy and possess an average magnetic-flux density of 5 T. Stator assembly components are discussed, including the stator, mount structure, hydrostatic bearings, main and motoring brushgears and rotor. Planned operational procedures such as monitoring the rotor to full speed and operation with a superconducting field coil are delineated.

  9. Resonant magnetoelectric response of composite cantilevers: Theory of short vs. open circuit operation and layer sequence effects

    Directory of Open Access Journals (Sweden)

    Matthias C. Krantz

    2015-11-01

    Full Text Available The magnetoelectric effect in layered composite cantilevers consisting of strain coupled layers of magnetostrictive (MS, piezoelectric (PE, and substrate materials is investigated for magnetic field excitation at bending resonance. Analytic theories are derived for the transverse magnetoelectric (ME response in short and open circuit operation for three different layer sequences and results presented and discussed for the FeCoBSi-AlN-Si and the FeCoBSi-PZT-Si composite systems. Response optimized PE-MS layer thickness ratios are found to greatly change with operation mode shifting from near equal MS and PE layer thicknesses in the open circuit mode to near vanishing PE layer thicknesses in short circuit operation for all layer sequences. In addition the substrate layer thickness is found to differently affect the open and short circuit ME response producing shifts and reversal between ME response maxima depending on layer sequence. The observed rich ME response behavior for different layer thicknesses, sequences, operating modes, and PE materials can be explained by common neutral plane effects and different elastic compliance effects in short and open circuit operation.

  10. Damage Detection Response Characteristics of Open Circuit Resonant (SansEC) Sensors

    Science.gov (United States)

    Dudley, Kenneth L.; Szatkowski, George N.; Smith, Laura J.; Koppen, Sandra V.; Ely, Jay J.; Nguyen, Truong X.; Wang, Chuantong; Ticatch, Larry A.; Mielnik, John J.

    2013-01-01

    The capability to assess the current or future state of the health of an aircraft to improve safety, availability, and reliability while reducing maintenance costs has been a continuous goal for decades. Many companies, commercial entities, and academic institutions have become interested in Integrated Vehicle Health Management (IVHM) and a growing effort of research into "smart" vehicle sensing systems has emerged. Methods to detect damage to aircraft materials and structures have historically relied on visual inspection during pre-flight or post-flight operations by flight and ground crews. More quantitative non-destructive investigations with various instruments and sensors have traditionally been performed when the aircraft is out of operational service during major scheduled maintenance. Through the use of reliable sensors coupled with data monitoring, data mining, and data analysis techniques, the health state of a vehicle can be detected in-situ. NASA Langley Research Center (LaRC) is developing a composite aircraft skin damage detection method and system based on open circuit SansEC (Sans Electric Connection) sensor technology. Composite materials are increasingly used in modern aircraft for reducing weight, improving fuel efficiency, and enhancing the overall design, performance, and manufacturability of airborne vehicles. Materials such as fiberglass reinforced composites (FRC) and carbon-fiber-reinforced polymers (CFRP) are being used to great advantage in airframes, wings, engine nacelles, turbine blades, fairings, fuselage structures, empennage structures, control surfaces and aircraft skins. SansEC sensor technology is a new technical framework for designing, powering, and interrogating sensors to detect various types of damage in composite materials. The source cause of the in-service damage (lightning strike, impact damage, material fatigue, etc.) to the aircraft composite is not relevant. The sensor will detect damage independent of the cause

  11. Fault-Tolerant Control of ANPC Three-Level Inverter Based on Order-Reduction Optimal Control Strategy under Multi-Device Open-Circuit Fault.

    Science.gov (United States)

    Xu, Shi-Zhou; Wang, Chun-Jie; Lin, Fang-Li; Li, Shi-Xiang

    2017-10-31

    The multi-device open-circuit fault is a common fault of ANPC (Active Neutral-Point Clamped) three-level inverter and effect the operation stability of the whole system. To improve the operation stability, this paper summarized the main solutions currently firstly and analyzed all the possible states of multi-device open-circuit fault. Secondly, an order-reduction optimal control strategy was proposed under multi-device open-circuit fault to realize fault-tolerant control based on the topology and control requirement of ANPC three-level inverter and operation stability. This control strategy can solve the faults with different operation states, and can works in order-reduction state under specific open-circuit faults with specific combined devices, which sacrifices the control quality to obtain the stability priority control. Finally, the simulation and experiment proved the effectiveness of the proposed strategy.

  12. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells

    Science.gov (United States)

    Benduhn, Johannes; Tvingstedt, Kristofer; Piersimoni, Fortunato; Ullbrich, Sascha; Fan, Yeli; Tropiano, Manuel; McGarry, Kathryn A.; Zeika, Olaf; Riede, Moritz K.; Douglas, Christopher J.; Barlow, Stephen; Marder, Seth R.; Neher, Dieter; Spoltore, Donato; Vandewal, Koen

    2017-06-01

    Organic solar cells demonstrate external quantum efficiencies and fill factors approaching those of conventional photovoltaic technologies. However, as compared with the optical gap of the absorber materials, their open-circuit voltage is much lower, largely due to the presence of significant non-radiative recombination. Here, we study a large data set of published and new material combinations and find that non-radiative voltage losses decrease with increasing charge-transfer-state energies. This observation is explained by considering non-radiative charge-transfer-state decay as electron transfer in the Marcus inverted regime, being facilitated by a common skeletal molecular vibrational mode. Our results suggest an intrinsic link between non-radiative voltage losses and electron-vibration coupling, indicating that these losses are unavoidable. Accordingly, the theoretical upper limit for the power conversion efficiency of single-junction organic solar cells would be reduced to about 25.5% and the optimal optical gap increases to 1.45-1.65 eV, that is, 0.2-0.3 eV higher than for technologies with minimized non-radiative voltage losses.

  13. Online Open Circuit Fault Diagnosis for Rail Transit Traction Converter Based on Object-Oriented Colored Petri Net Topology Reasoning

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2016-01-01

    Full Text Available For online open circuit fault diagnosis of the traction converter in rail transit vehicles, conventional approaches depend heavily on component parameters and circuit layouts. For better universality and less parameter sensitivity during the diagnosis, this paper proposes a novel topology analysis approach to diagnose switching device open circuit failures. During the diagnosis, the topology is analyzed with fault reasoning mechanism, which is based on object-oriented Petri net (OOCPN. The OOCPN model takes in digitalized current inputs as fault signatures, and dynamical transitions between discrete switching states of a circuit with broken device are symbolized with the dynamical transitions of colored tokens in OOCPN. Such transitions simulate natural reasoning process of an expert’s brain during diagnosis. The dependence on component parameters and on circuit layouts is finally eliminated by such circuit topology reasoning process. In the last part, the proposed online reasoning and diagnosis process is exemplified with the case of a certain switching device failure in the power circuit of traction converter.

  14. Non-destructive vacuum decay method for pre-filled syringe closure integrity testing compared with dye ingress testing and high-voltage leak detection.

    Science.gov (United States)

    Simonetti, Andrea; Amari, Filippo

    2015-01-01

    In reaction to the limitations of the traditional sterility test methods, in 2008, the U.S. Food and Drug Administration issued the guidance "Container and Closure System Integrity Testing in Lieu of Sterility Testing as a Component of the Stability Protocol for Sterile Products" encouraging sterile drug manufacturers to use properly validated physical methods, apart from conventional microbial challenge testing, to confirm container closure integrity as part of the stability protocol. The case study presented in this article investigated the capability of four container closure integrity testing methods to detect simulated defects of different sizes and types on glass syringes, prefilled both with drug product intended for parenteral administration and sterile water. The drug product was a flu vaccine (Agrippal, Novartis Vaccines, Siena, Italy). Vacuum decay, pharmacopoeial dye ingress test, Novartis specific dye ingress test, and high-voltage leak detection were, in succession, the methods involved in the comparative studies. The case study execution was preceded by the preparation of two independent sets of reference prefilled syringes, classified, respectively, as examples of conforming to closure integrity requirements (negative controls) and as defective (positive controls). Positive controls were, in turn, split in six groups, three of with holes laser-drilled through the prefilled syringe glass barrel, while the other three with capillary tubes embedded in the prefilled syringe plunger. These reference populations were then investigated by means of validated equipment used for container closure integrity testing of prefilled syringe commercial production; data were collected and analyzed to determine the detection rate and the percentage of false results. Results showed that the vacuum decay method had the highest performance in terms of detection sensitivity and also ensured the best reliability and repeatability of measurements. An innovative technical

  15. Crystallographic origin of cycle decay of the high-voltage LiNi0.5Mn1.5O4 spinel lithium-ion battery electrode.

    Science.gov (United States)

    Pang, Wei Kong; Lu, Cheng-Zhang; Liu, Chia-Erh; Peterson, Vanessa K; Lin, Hsiu-Fen; Liao, Shih-Chieh; Chen, Jin-Ming

    2016-06-29

    High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is considered a potential high-power-density positive electrode for lithium-ion batteries, however, it suffers from capacity decay after extended charge-discharge cycling, severely hindering commercial application. Capacity fade is thought to occur through the significant volume change of the LNMO electrode occurring on cycling, and in this work we use operando neutron powder diffraction to compare the structural evolution of the LNMO electrode in an as-assembled 18650-type battery containing a Li4Ti5O12 negative electrode with that in an identical battery following 1000 cycles at high-current. We reveal that the capacity reduction in the battery post cycling is directly proportional to the reduction in the maximum change of the LNMO lattice parameter during its evolution. This is correlated to a corresponding reduction in the MnO6 octahedral distortion in the spinel structure in the cycled battery. Further, we find that the rate of lattice evolution, which reflects the rate of lithium insertion and removal, is ∼9 and ∼10% slower in the cycled than in the as-assembled battery during the Ni(2+)/Ni(3+) and Ni(3+)/Ni(4+) transitions, respectively.

  16. Photoelectrochemical Complexes of Fucoxanthin-Chlorophyll Protein for Bio-Photovoltaic Conversion with a High Open-Circuit Photovoltage.

    Science.gov (United States)

    Zhang, Tianning; Liu, Cheng; Dong, Wenjing; Wang, Wenda; Sun, Yan; Chen, Xin; Yang, Chunhong; Dai, Ning

    2017-12-05

    Open-circuit photovoltage (V oc ) is among the critical parameters for achieving an efficient light-to-charge conversion in existing solar photovoltaic devices. Natural photosynthesis exploits light-harvesting chlorophyll (Chl) protein complexes to transfer sunlight energy efficiently. We describe the exploitation of photosynthetic fucoxanthin-chlorophyll protein (FCP) complexes for realizing photoelectrochemical cells with a high V oc . An antenna-dependent photocurrent response and a V oc up to 0.72 V are observed and demonstrated in the bio-photovoltaic devices fabricated with photosynthetic FCP complexes and TiO 2 nanostructures. Such high V oc is determined by fucoxanthin in FCP complexes, and is rarely found in photoelectrochemical cells with other natural light-harvesting antenna. We think that the FCP-based bio-photovoltaic conversion will provide an opportunity to fabricate environmental benign photoelectrochemical cells with high V oc , and also help improve the understanding of the essential physics behind the light-to-charge conversion in photosynthetic complexes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions

    International Nuclear Information System (INIS)

    Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J.

    2002-01-01

    Electrical impedance spectroscopy (EIS) was applied in order to investigate electrochemical nanocrystalline TiO 2 dye solar cells (DSC). Typically, three characteristic frequency peaks were observed in the spectra. These frequency peaks could be explained by variations of cell parameters and by comparison with intensity-modulated photovoltage spectroscopy (IMVS). It was shown that the low-frequency peak (in the mHz range) corresponds to the Nernstian diffusion within the electrolyte, while the middle-frequency peak (in the 10-100 Hz range) reflects the properties of the photoinjected electrons within the TiO 2 . The high-frequency peak (in the kHz range) corresponds to the charge-transfer at the platinum counter electrode. For a detailed analysis of the spectra, a model was developed which allows the evaluation of EIS spectra, measured under bias illumination and under open-circuit conditions. The influence of cell parameters such as the TiO 2 layer thickness, cell thickness, charge-transfer resistance of the platinum counter electrode, and the lifetime of the photoinjected electrons, on the impedance spectra was studied both experimentally and theoretically. Finally, it is shown that EIS is a measurement method suited well for the investigation of the long-term stability of DSC, as changes of the inner cell parameters can be revealed

  18. Open Circuit Resonant (SansEC) Sensor Technology for Lightning Mitigation and Damage Detection and Diagnosis for Composite Aircraft Applications

    Science.gov (United States)

    Szatkowski, George N.; Dudley, Kenneth L.; Smith, Laura J.; Wang, Chuantong; Ticatch, Larry A.

    2014-01-01

    Traditional methods to protect composite aircraft from lightning strike damage rely on a conductive layer embedded on or within the surface of the aircraft composite skin. This method is effective at preventing major direct effect damage and minimizes indirect effects to aircraft systems from lightning strike attachment, but provides no additional benefit for the added parasitic weight from the conductive layer. When a known lightning strike occurs, the points of attachment and detachment on the aircraft surface are visually inspected and checked for damage by maintenance personnel to ensure continued safe flight operations. A new multi-functional lightning strike protection (LSP) method has been developed to provide aircraft lightning strike protection, damage detection and diagnosis for composite aircraft surfaces. The method incorporates a SansEC sensor array on the aircraft exterior surfaces forming a "Smart skin" surface for aircraft lightning zones certified to withstand strikes up to 100 kiloamperes peak current. SansEC sensors are open-circuit devices comprised of conductive trace spiral patterns sans (without) electrical connections. The SansEC sensor is an electromagnetic resonator having specific resonant parameters (frequency, amplitude, bandwidth & phase) which when electromagnetically coupled with a composite substrate will indicate the electrical impedance of the composite through a change in its resonant response. Any measureable shift in the resonant characteristics can be an indication of damage to the composite caused by a lightning strike or from other means. The SansEC sensor method is intended to diagnose damage for both in-situ health monitoring or ground inspections. In this paper, the theoretical mathematical framework is established for the use of open circuit sensors to perform damage detection and diagnosis on carbon fiber composites. Both computational and experimental analyses were conducted to validate this new method and system for

  19. Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors

    KAUST Repository

    Chehab, Noura A.

    2013-06-18

    A large percentage of organic fuel consumed in a microbial fuel cell (MFC) is lost as a result of oxygen transfer through the cathode. In order to understand how this oxygen transfer affects the microbial community structure, reactors were operated in duplicate using three configurations: closed circuit (CC; with current generation), open circuit (OC; no current generation), and sealed off cathodes (SO; no current, with a solid plate placed across the cathode). Most (98 %) of the chemical oxygen demand (COD) was removed during power production in the CC reactor (maximum of 640 ± 10 mW/m 2), with a low percent of substrate converted to current (coulombic efficiency of 26.5 ± 2.1 %). Sealing the cathode reduced COD removal to 7 %, but with an open cathode, there was nearly as much COD removal by the OC reactor (94.5 %) as the CC reactor. Oxygen transfer into the reactor substantially affected the composition of the microbial communities. Based on analysis of the biofilms using 16S rRNA gene pyrosequencing, microbes most similar to Geobacter were predominant on the anodes in the CC MFC (72 % of sequences), but the most abundant bacteria were Azoarcus (42 to 47 %) in the OC reactor, and Dechloromonas (17 %) in the SO reactor. Hydrogenotrophic methanogens were most predominant, with sequences most similar to Methanobacterium in the CC and SO reactor, and Methanocorpusculum in the OC reactors. These results show that oxygen leakage through the cathode substantially alters the bacterial anode communities, and that hydrogenotrophic methanogens predominate despite high concentrations of acetate. The predominant methanogens in the CC reactor most closely resembled those in the SO reactor, demonstrating that oxygen leakage alters methanogenic as well as general bacterial communities. © 2013 Springer-Verlag Berlin Heidelberg.

  20. Effects of mass airflow rate through an open-circuit gas quantification system when measuring carbon emissions.

    Science.gov (United States)

    Gunter, Stacey A; Bradford, James A; Moffet, Corey A

    2017-01-01

    Methane (CH) and carbon dioxide (CO) represent 11 and 81%, respectively, of all anthropogenic greenhouse gas emissions. Agricultural CH emissions account for approximately 43% of all anthropogenic CH emissions. Most agricultural CH emissions are attributed to enteric fermentation within ruminant livestock; hence, the heightened interest in quantifying and mitigating this source. The automated, open-circuit gas quantification system (GQS; GreenFeed, C-Lock, Inc., Rapid City, SD) evaluated here can be placed in a pasture with grazing cattle and can measure their CH and CO emissions with spot sampling. However, improper management of the GQS can have an erroneous effect on emission estimates. One factor affecting the quality of emission estimates is the airflow rates through the GQS to ensure a complete capture of the breath cloud emitted by the animal. It is hypothesized that at lower airflow rates this cloud will be incompletely captured. To evaluate the effect of airflow rate through the GQS on emission estimates, a data set was evaluated with 758 CO and CH emission estimates with a range in airflows of 10.7 to 36.6 L/s. When airflow through the GQS was between 26.0 and 36.6 L/s, CO and CH emission estimates were not affected ( = 0.14 and 0.05, respectively). When airflow rates were less than 26.0 L/s, CO and CH emission estimates were lower and decreased as airflow rate decreased ( emissions are underestimated. Maintaining mass airflow through a GQS at rates greater than 26 L/s is important for producing high quality CO and CH emission estimates.

  1. Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors

    KAUST Repository

    Chehab, Noura A.; Li, Dong; Amy, Gary L.; Logan, Bruce E.; Saikaly, Pascal

    2013-01-01

    A large percentage of organic fuel consumed in a microbial fuel cell (MFC) is lost as a result of oxygen transfer through the cathode. In order to understand how this oxygen transfer affects the microbial community structure, reactors were operated in duplicate using three configurations: closed circuit (CC; with current generation), open circuit (OC; no current generation), and sealed off cathodes (SO; no current, with a solid plate placed across the cathode). Most (98 %) of the chemical oxygen demand (COD) was removed during power production in the CC reactor (maximum of 640 ± 10 mW/m 2), with a low percent of substrate converted to current (coulombic efficiency of 26.5 ± 2.1 %). Sealing the cathode reduced COD removal to 7 %, but with an open cathode, there was nearly as much COD removal by the OC reactor (94.5 %) as the CC reactor. Oxygen transfer into the reactor substantially affected the composition of the microbial communities. Based on analysis of the biofilms using 16S rRNA gene pyrosequencing, microbes most similar to Geobacter were predominant on the anodes in the CC MFC (72 % of sequences), but the most abundant bacteria were Azoarcus (42 to 47 %) in the OC reactor, and Dechloromonas (17 %) in the SO reactor. Hydrogenotrophic methanogens were most predominant, with sequences most similar to Methanobacterium in the CC and SO reactor, and Methanocorpusculum in the OC reactors. These results show that oxygen leakage through the cathode substantially alters the bacterial anode communities, and that hydrogenotrophic methanogens predominate despite high concentrations of acetate. The predominant methanogens in the CC reactor most closely resembled those in the SO reactor, demonstrating that oxygen leakage alters methanogenic as well as general bacterial communities. © 2013 Springer-Verlag Berlin Heidelberg.

  2. Thermally-induced voltage alteration for integrated circuit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.I. Jr.

    2000-06-20

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing an integrated circuit (IC) either from a device side of the IC or through the IC substrate to locate any open-circuit or short-circuit defects therein. The TIVA apparatus uses constant-current biasing of the IC while scanning a focused laser beam over electrical conductors (i.e. a patterned metallization) in the IC to produce localized heating of the conductors. This localized heating produces a thermoelectric potential due to the Seebeck effect in any conductors with open-circuit defects and a resistance change in any conductors with short-circuit defects, both of which alter the power demand by the IC and thereby change the voltage of a source or power supply providing the constant-current biasing. By measuring the change in the supply voltage and the position of the focused and scanned laser beam over time, any open-circuit or short-circuit defects in the IC can be located and imaged. The TIVA apparatus can be formed in part from a scanning optical microscope, and has applications for qualification testing or failure analysis of ICs.

  3. Thieno[3,4-c]Pyrrole-4,6-Dione-Based Polymer Acceptors for High Open-Circuit Voltage All-Polymer Solar Cells

    KAUST Repository

    Liu, Shengjian; Song, Xin; Thomas, Simil; Kan, Zhipeng; Cruciani, Federico; Laquai, Fré dé ric; Bredas, Jean-Luc; Beaujuge, Pierre

    2017-01-01

    limits the perspectives to meet the 10% efficiency threshold in all-polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4-c]pyrrole-4,6-dione (TPD) and 3,4-difluorothiophene ([2F]T) motifs, and their BHJ solar cell

  4. Strategies to reduce the open-circuit voltage deficit in Cu2ZnSn(S,Se)4 thin film solar cells

    Science.gov (United States)

    Kim, Jekyung; Shin, Byungha

    2017-09-01

    Cu2ZnSn(S,Se)4 thin film solar cell has attracted significant attention in thin film solar cell technologies considering its low-cost, non-toxicity, and earth-abundance. However, the highest efficiency still remains at 12.6%, far below the theoretical efficiency of Shockley-Queisser (SQ) limit of around 30%. The limitation behind such shortcoming in the device performance was reported to stem primarily from a high V oc deficit compared to other thin film solar cell technologies such as CdTe or Cu(In,Ga)Se2 (CIGS), whose origins are attributed to the prevalence of band tailing from cation disordering as well as to the high recombination at the interfaces. In this report, systematic studies on the causes of a high V oc deficit and associated remarkable approaches to achieve high V oc have been reviewed, provided with a guidance on the future direction of CZTSSe research in resolving the high V oc deficit issue. [Figure not available: see fulltext.

  5. Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives

    KAUST Repository

    Ko, Sangwon; Hoke, Eric T.; Pandey, Laxman; Hong, Sanghyun; Mondal, Rajib; Risko, Chad; Yi, Yuanping; Noriega, Rodrigo; McGehee, Michael D.; Bré das, Jean-Luc; Salleo, Alberto; Bao, Zhenan

    2012-01-01

    and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone-due to an increase in the polymer ionization potential-while the short-circuit current decreased

  6. Polypyrrole: FeOx·ZnO nanoparticle solar cells with breakthrough open-circuit voltage prepared from relatively stable liquid dispersions

    KAUST Repository

    Zong, Baoyu; Ho, Pin; Zhang, Zhiguo; Ng, Gingmeng; Yao, Kui; Guo, Zaibing

    2014-01-01

    in open air from relatively stable liquid dark-color polypyrrole-based dispersions, which were synthesized using appropriate surfactants during the in situ polymerization of pyrrole with FeCl3 or both H2O2 and FeCl3 as the oxidizers. The performance

  7. High voltage engineering fundamentals

    CERN Document Server

    Kuffel, E; Hammond, P

    1984-01-01

    Provides a comprehensive treatment of high voltage engineering fundamentals at the introductory and intermediate levels. It covers: techniques used for generation and measurement of high direct, alternating and surge voltages for general application in industrial testing and selected special examples found in basic research; analytical and numerical calculation of electrostatic fields in simple practical insulation system; basic ionisation and decay processes in gases and breakdown mechanisms of gaseous, liquid and solid dielectrics; partial discharges and modern discharge detectors; and over

  8. Subcell Light Current-Voltage Characterization of Irradiated Multijunction Solar Cell

    Directory of Open Access Journals (Sweden)

    Walker Don

    2017-01-01

    Full Text Available The degradation of individual subcell J-V parameters, such as short circuit current, open circuit voltage, fill factor, and power of a GaInP/GaInAs/Ge triple junction solar cell by 1 MeV electrons were derived utilizing the spectral reciprocity relation between electroluminescence and external quantum efficiency. After exposure to a fluence of 1 × 1015 1 MeV electrons, it was observed that up to 67% of the voltage loss is from the middle, GaInAs subcell. Also, the dark saturation current of the Ge and GaInAs subcells increased but a simultaneous decrease in ideality factor caused a reduction of the open circuit voltage. The reduced ideality factor further indicates a change in the primary recombination mechanism.

  9. In situ monitoring the effects of a magnetic field on the open-circuit corrosion states of iron in acidic and neutral solutions

    International Nuclear Information System (INIS)

    Lu Zhanpeng; Yang Wu

    2008-01-01

    The effects of a 0.4 T horizontal magnetic field (HMF) on the open-circuit corrosion states of iron in static aqueous solutions are studied by in situ monitoring the responses of two electrochemical parameters to the applied magnetic field, i.e. the open-circuit potential (OCP) and the current under potentiostatic polarization. The applied magnetic field makes the OCP shift in the noble direction. Withdrawing the magnetic field causes a negative shift of the OCP in acidic solutions, but it does not cause any significant change of OCP in neutral solutions. Imposing a magnetic field induces a cathodic current for iron that was previously potentiostatically polarized at the OCP without magnetic field. Withdrawing the magnetic field induces an anodic current for iron that was previously potentiostatically polarized at the OCP with the magnetic field. The magnetic field effect is more significant in the acid solutions than in the salt solutions. The magnetic field effects on the oxygen reduction and on the activation-controlled iron dissolution reaction are found to be insignificant. The magnetic field effect on the hydrogen reduction reaction on iron in acidic solutions is demonstrated. Results show the possibility that a magnetic field would affect the hydrogen evolution by enhancing the electron-transfer process that has been categorized in the classical electrochemistry kinetics to be the rate-determining process. The memory effect of the magnetic field on the electrochemical reaction is identified and discussed

  10. A robust predictive current controller for healthy and open-circuit faulty conditions of five-phase BLDC drives applicable for wind generators and electric vehicles

    International Nuclear Information System (INIS)

    Salehi Arashloo, Ramin; Salehifar, Mehdi; Romeral, Luis; Sala, Vicent

    2015-01-01

    Highlights: • Model predictive deadbeat control of generator stator phase currents. • Fault tolerant control of five-phase BLDC generator. • Control of stator phase currents under normal and open-circuit faulty conditions. • MATLAB simulation and experimental verification of proposed control method. • Verification of robustness and fast respond of proposed controlling method. - Abstract: Fault tolerant control of five-phase brushless direct current (BLDC) machines is gaining more importance in high-safety applications such as offshore wind generators and automotive industries. In many applications, traditional controllers (such as PI controllers) are used to control the stator currents under faulty conditions. These controllers have good performance with dc signals. However, in the case of missing one or two of the phases, appropriate reference currents of these machines have oscillatory dynamics both in phase- and synchronous-reference frames. Non-constant nature of these reference values requires the implication of fast current controllers. In this paper, model predictive deadbeat controllers are proposed to control the stator currents of five-phase BLDC machines under normal and faulty conditions. Open circuit fault is considered for both one and two stator phases, and the behaviour of proposed controlling method is evaluated. This evaluation is generally focused on first, sensitivity of proposed controlling method and second, its speed in following reference current values under transient states. Proposed method is simulated and is verified experimentally on a five-phase BLDC drive

  11. Low voltage initiation of damaging arcs between electrical contacts

    International Nuclear Information System (INIS)

    Cuthrell, R.E.

    1975-07-01

    Metallic arcs were found to precede the firm contacting of electrical contacts which were closed without bounce. When the open-circuit voltages were below the ionization potential, the initiation of these arcs was found to depend on the presence of asperities on the surfaces and on asperity contracting, melting, and pinching off by magnetic forces. The arc is thought to be initiated inductively when the molten metallic asperity contact is pinched off, and the electrode damage is similar to that produced by the arcing of opening contacts. Arcing could not be produced for exceptionally smooth surfaces, or, for rough surfaces when the open-circuit potential was below the melting voltages of the electrode metals. In order to prevent damage to contact surfaces by melting or arcing, it is suggested that test potentials be limited to below the melting voltages, that the current be limited, the test circuits be designed to prevent inductively generated high voltage transients, and the contact surfaces be very smooth. In order to facilitate arc initiation in arc welding applications, it is suggested that the surfaces of electrodes and work pieces be roughened. (U.S.)

  12. Subnanometer Ga 2 O 3 Tunnelling Layer by Atomic Layer Deposition to Achieve 1.1 V Open-Circuit Potential in Dye-Sensitized Solar Cells

    KAUST Repository

    Chandiran, Aravind Kumar

    2012-08-08

    Herein, we present the first use of a gallium oxide tunnelling layer to significantly reduce electron recombination in dye-sensitized solar cells (DSC). The subnanometer coating is achieved using atomic layer deposition (ALD) and leading to a new DSC record open-circuit potential of 1.1 V with state-of-the-art organic D-π-A sensitizer and cobalt redox mediator. After ALD of only a few angstroms of Ga 2O 3, the electron back reaction is reduced by more than an order of magnitude, while charge collection efficiency and fill factor are increased by 30% and 15%, respectively. The photogenerated exciton separation processes of electron injection into the TiO 2 conduction band and the hole injection into the electrolyte are characterized in detail. © 2012 American Chemical Society.

  13. Subnanometer Ga2O3 tunnelling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells.

    Science.gov (United States)

    Chandiran, Aravind Kumar; Tetreault, Nicolas; Humphry-Baker, Robin; Kessler, Florian; Baranoff, Etienne; Yi, Chenyi; Nazeeruddin, Mohammad Khaja; Grätzel, Michael

    2012-08-08

    Herein, we present the first use of a gallium oxide tunnelling layer to significantly reduce electron recombination in dye-sensitized solar cells (DSC). The subnanometer coating is achieved using atomic layer deposition (ALD) and leading to a new DSC record open-circuit potential of 1.1 V with state-of-the-art organic D-π-A sensitizer and cobalt redox mediator. After ALD of only a few angstroms of Ga(2)O(3), the electron back reaction is reduced by more than an order of magnitude, while charge collection efficiency and fill factor are increased by 30% and 15%, respectively. The photogenerated exciton separation processes of electron injection into the TiO(2) conduction band and the hole injection into the electrolyte are characterized in detail.

  14. Open circuit V-I characteristics of a coreless ironless electric generator for low density wind power generation

    Science.gov (United States)

    Razali, Akhtar; Rahman, Fadhlur; Azlan, Syaiful; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    Cogging is an attraction of magnetism between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator. The presence of cog in the generator is seen somehow restricted the application of the generator in an application where low rotational torque is required. Cog torque requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator. This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. The concept is then fabricated and experimentally validated to qualify its no-load characteristics. The rotational torque and power output are measured and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 416VAC at rotational speed of 1762 RPM. Torque required to rotate the generator was at 2Nm for various rotational speed. The generator has shown 30% lesser rotational torque compared to the conventional ironcore type generator due to the absent of cogging torque in the system. Lesser rotational torque required to rotate has made this type of generator has a potential to be used for low wind density wind turbine application.

  15. Induced Voltage in an Open Wire

    Science.gov (United States)

    Morawetz, K.; Gilbert, M.; Trupp, A.

    2017-07-01

    A puzzle arising from Faraday's law has been considered and solved concerning the question which voltage will be induced in an open wire with a time-varying homogeneous magnetic field. In contrast to closed wires where the voltage is determined by the time variance of the magnetic field and the enclosed area, in an open wire we have to integrate the electric field along the wire. It is found that the longitudinal electric field with respect to the wave vector contributes with 1/3 and the transverse field with 2/3 to the induced voltage. In order to find the electric fields the sources of the magnetic fields are necessary to know. The representation of a spatially homogeneous and time-varying magnetic field implies unavoidably a certain symmetry point or symmetry line which depend on the geometry of the source. As a consequence the induced voltage of an open wire is found to be the area covered with respect to this symmetry line or point perpendicular to the magnetic field. This in turn allows to find the symmetry points of a magnetic field source by measuring the voltage of an open wire placed with different angles in the magnetic field. We present exactly solvable models of the Maxwell equations for a symmetry point and for a symmetry line, respectively. The results are applicable to open circuit problems like corrosion and for astrophysical applications.

  16. Efficiency Evaluation of Five-Phase Outer-Rotor Fault-Tolerant BLDC Drives under Healthy and Open-Circuit Faulty Conditions

    Directory of Open Access Journals (Sweden)

    ARASHLOO, R. S.

    2014-05-01

    Full Text Available Fault tolerant motor drives are an interesting subject for many applications such as automotive industries and wind power generation. Among different configurations of these systems, five-phase BLDC drives are gaining more importance which is because of their compactness and high efficiency. Due to replacement of field windings by permanent magnets in their rotor structure, the main sources of power losses in these drives are iron (core losses, copper (winding losses, and inverter unit (semiconductor losses. Although low amplitude of power losses in five-phase BLDC drives is an important aspect for many applications, but their efficiency under faulty conditions is not considered in previous studies. In this paper, the efficiency of an outer-rotor five phase BLDC drive is evaluated under normal and different faulty conditions. Open-circuit fault is considered for one, two adjacent and two non-adjacent faulty phases. Iron core losses are calculated via FEM simulations in Flux-Cedrat software, and moreover, inverter losses and winding copper losses are simulated in MATLAB� environment. Experimental evaluations are conducted to evaluate the efficiency of the entire BLDC drive which verifies the theoretical developments.

  17. Simultaneous NOx and hydrocarbon emissions control for lean-burn engines using low-temperature solid oxide fuel cell at open circuit.

    Science.gov (United States)

    Huang, Ta-Jen; Hsu, Sheng-Hsiang; Wu, Chung-Ying

    2012-02-21

    The high fuel efficiency of lean-burn engines is associated with high temperature and excess oxygen during combustion and thus is associated with high-concentration NO(x) emission. This work reveals that very high concentration of NO(x) in the exhaust can be reduced and hydrocarbons (HCs) can be simultaneously oxidized using a low-temperature solid oxide fuel cell (SOFC). An SOFC unit is constructed with Ni-YSZ as the anode, YSZ as the electrolyte, and La(0.6)Sr(0.4)CoO(3) (LSC)-Ce(0.9)Gd(0.1)O(1.95) as the cathode, with or without adding vanadium to LSC. SOFC operation at 450 °C and open circuit can effectively treat NO(x) over the cathode at a very high concentration in the simulated exhaust. Higher NO(x) concentration up to 5000 ppm can result in a larger NO(x) to N(2) rate. Moreover, a higher oxygen concentration promotes NO conversion. Complete oxidation of HCs can be achieved by adding silver to the LSC current collecting layer. The SOFC-based emissions control system can treat NO(x) and HCs simultaneously, and can be operated without consuming the anode fuel (a reductant) at near the engine exhaust temperature to eliminate the need for reductant refilling and extra heating.

  18. Possible central nervous system oxygen toxicity seizures among US recreational air or enriched air nitrox open circuit diving fatalities 2004-2013.

    Science.gov (United States)

    Buzzacott, P; Denoble, P J

    2017-01-01

    The first diver certification programme for recreational 'enriched air nitrox' (EAN) diving was released in 1985. Concerns were expressed that many EAN divers might suffer central nervous system (CNS) oxygen toxicity seizures and drown. US fatalities on open-circuit scuba occurring between 2004-2013, where the breathing gas was either air or EAN, were identified. Causes of death and preceding circumstances were examined by a medical examiner experienced in diving autopsies. Case notes were searched for witnessed seizures at elevated partial pressures of oxygen. The dataset comprised 344 air divers (86%) and 55 divers breathing EAN (14%). EAN divers' fatal dives were deeper than air divers' (28 msw vs 18 msw, p < 0.0001). Despite this, of the 249 cases where a cause of death was established, only three EAN divers were considered to have possibly died following CNS oxygen toxicity seizures at depth (ppO2 132, 142 and 193 kPa). The analysis of recreational diving fatalities in the US over 10 years found just one death likely from CNS oxygen toxicity among EAN divers. A further two possible, although unlikely, cases were also found. Fears of commonplace CNS oxygen toxicity seizures while EAN diving have not apparently been realized.

  19. Suppression of the high-frequency disturbances in low-voltage circuits caused by disconnector operation in high-voltage open-air substations

    Energy Technology Data Exchange (ETDEWEB)

    Savic, M.S.

    1986-07-01

    The switching off and on of small capacitive currents charging busbar capacitances, connection conductors and open circuit breakers with disconnectors causes high-frequency transients in high-voltage networks. In low voltage circuits, these transient processes induce dangerous overvoltages for the electronic equipment in the substation. A modified construction of the disconnector with a damping resistor was investigated. Digital simulation of the transient process in a high-voltage network during the arcing period between the disconnector contacts with and without damping resistor were performed. A significant decrease of the arcing duration and the decrease of the electromagnetic field magnitude in the vicinity of the operating disconnector were noticed. In the low voltage circuit protected with the surge arrester, the overvoltage magnitude was not affected by the damping resistor due to the arrester protection effect.

  20. Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes

    International Nuclear Information System (INIS)

    Guan, Mingjie; Wang, Kunpeng; Xu, Dazheng; Liao, Wei-Hsin

    2017-01-01

    Highlights: • A thermoelectric energy harvesting system for wireless sensor nodes is designed. • An ultra-low voltage self-startup is implemented. • Maximum power point tracking and low power designs are applied for high efficiency. • Efficiency of 44.2–75.4% is obtained with open-circuit voltage of 84–400 mV. • System efficiency is higher than the commercial BQ25504 converter. - Abstract: A thermoelectric energy harvesting system designed to harvest tens of microwatts to several milliwatts from low-voltage thermoelectric generators is presented in this paper. The proposed system is based-on a two-stage boost scheme with self-startup ability. A maximum power point tracking technique based on the open-circuit voltage is adopted in the boost converter for high efficiency. Experimental results indicate that the proposed system can harvest thermoelectric energy and run a microcontroller unit and a wireless sensor node under low input voltage and power with high efficiency. The harvest system and wireless sensor node can be self-powered with minimum thermoelectric open-circuit voltage as 62 mV and input power of 84 μW. With a self-startup scheme, the proposed system can self-start with a 20 mV input voltage. Low power designs are applied in the system to reduce the quiescent dissipation power. It results in better performance considering the conversion efficiency and self-startup ability compared to commercial boost systems used for thermal energy harvesting.

  1. High voltage wide range marx generator design and construction

    International Nuclear Information System (INIS)

    Thompson, J.E.

    1976-01-01

    A wide range, long pulse, Marx generator has been designed and constructed for the purpose of exciting a thermionic electron gun utilized for quasi-cw gas laser medium ionization. The Marx generator has been specifically designed to operate over a voltage range variable from 100 kV to 200 kV into a resistive load of between 83 kΩ and open circuit. This wide operating range, both in voltage and load impedance, was obtained using interstage coupling capacitors to assure overvoltage and subsequent breakdown of the three element spark gap switches used. This paper will discuss the motivation and specific application for the Marx generator and will present the relevant design procedure with particular emphasis on the interstage coupling and triggering techniques employed. Experimental data regarding the measured Marx generator performance will also be presented

  2. Radioactive Decay

    Science.gov (United States)

    Radioactive decay is the emission of energy in the form of ionizing radiation. Example decay chains illustrate how radioactive atoms can go through many transformations as they become stable and no longer radioactive.

  3. The effect of Cr buffer layer thickness on voltage generation of thin-film thermoelectric modules

    International Nuclear Information System (INIS)

    Mizoshiri, Mizue; Mikami, Masashi; Ozaki, Kimihiro

    2013-01-01

    The effect of Cr buffer layer thickness on the open-circuit voltage generated by thin-film thermoelectric modules of Bi 0.5 Sb 1.5 Te 3 (p-type) and Bi 2 Te 2.7 Se 0.3 (n-type) materials was investigated. A Cr buffer layer, whose thickness generally needs to be optimized to improve adhesion depending on the substrate surface condition, such as roughness, was deposited between thermoelectric thin films and glass substrates. When the Cr buffer layer was 1 nm thick, the Seebeck coefficients and electrical conductivity of 1 µm thermoelectric thin films with the buffer layers were approximately equal to those of the thermoelectric films without the buffer layers. When the thickness of the Cr buffer layer was 1 µm, the same as the thermoelectric films, the Seebeck coefficients of the bilayer films were reduced by an electrical current flowing inside the Cr buffer layer and the generation of Cr 2 Te 3 . The open-circuit voltage of the thin-film thermoelectric modules decreased with an increase in the thickness of the Cr buffer layer, which was primarily induced by the electrical current flow. The reduction caused by the Cr 2 Te 3 generation was less than 10% of the total voltage generation of the modules without the Cr buffer layers. The voltage generation of thin-film thermoelectric modules could be controlled by the Cr buffer layer thickness. (paper)

  4. Weak decays

    International Nuclear Information System (INIS)

    Wojcicki, S.

    1978-11-01

    Lectures are given on weak decays from a phenomenological point of view, emphasizing new results and ideas and the relation of recent results to the new standard theoretical model. The general framework within which the weak decay is viewed and relevant fundamental questions, weak decays of noncharmed hadrons, decays of muons and the tau, and the decays of charmed particles are covered. Limitation is made to the discussion of those topics that either have received recent experimental attention or are relevant to the new physics. (JFP) 178 references

  5. 'Stutter timing' for charge decay time measurement

    International Nuclear Information System (INIS)

    Chubb, John; Harbour, John; Pavey, Ian

    2011-01-01

    The paper describes the approach of 'stutter timing' that has been developed to improve the accuracy of measuring charge decay times in the presence of noise in compact and portable charge decay test instrumentation. The approach involves starting and stopping the timing clock as the noisy signal rises above and falls below the target threshold voltage level.

  6. Tau decays

    International Nuclear Information System (INIS)

    Golutvin, A.

    1994-09-01

    The most recent experimental results of τ physics are reviewed. The covered topics include precision measurements of semihadronic τ decay and their impact on tau branching ratio budget, the current status of the tau consistency test, a determination of Michel parameters and τ neutrino helicity, and upper limits on lepton-number violating τ decays. (orig.)

  7. Decay tank

    International Nuclear Information System (INIS)

    Matsumura, Seiichi; Tagishi, Akinori; Sakata, Yuji; Kontani, Koji; Sudo, Yukio; Kaminaga, Masanori; Kameyama, Iwao; Ando, Koei; Ishiki, Masahiko.

    1990-01-01

    The present invention concerns an decay tank for decaying a radioactivity concentration of a fluid containing radioactive material. The inside of an decay tank body is partitioned by partitioning plates to form a flow channel. A porous plate is attached at the portion above the end of the partitioning plate, that is, a portion where the flow is just turned. A part of the porous plate has a slit-like opening on the side close to the partitioning plate, that is, the inner side of the flow at the turning portion thereof. Accordingly, the primary coolants passed through the pool type nuclear reactor and flown into the decay tank are flow caused to uniformly over the entire part of the tank without causing swirling. Since a distribution in a staying time is thus decreased, the effect of decaying 16 N as radioactive nuclides in the primary coolants is increased even in a limited volume of the tank. (I.N.)

  8. Serially Connected Micro Amorphous Silicon Solar Cells for Compact High-Voltage Sources

    Directory of Open Access Journals (Sweden)

    Jiyoon Nam

    2016-01-01

    Full Text Available We demonstrate a compact amorphous silicon (a-Si solar module to be used as high-voltage power supply. In comparison with the organic solar module, the main advantages of the a-Si solar module are its compatibility with photolithography techniques and relatively high power conversion efficiency. The open circuit voltage of a-Si solar cells can be easily controlled by serially interconnecting a-Si solar cells. Moreover, the a-Si solar module can be easily patterned by photolithography in any desired shapes with high areal densities. Using the photolithographic technique, we fabricate a compact a-Si solar module with noticeable photovoltaic characteristics as compared with the reported values for high-voltage power supplies.

  9. Balancing High Open Circuit Voltage over 1.0 V and High Short Circuit Current in Benzodithiophene-Based Polymer Solar Cells with Low Energy Loss: A Synergistic Effect of Fluorination and Alkylthiolation

    DEFF Research Database (Denmark)

    Du, Zhengkun; Bao, Xichang; Li, Yonghai

    2018-01-01

    Based on the most recently significant progress within the last one year in organic photovoltaic research from either alkylthiolation or fluorination on benzo[1,2-b: 4,5-b'] dithiophene moiety for high efficiency polymer solar cells (PSCs), two novel simultaneously fluorinated and alkylthiolated ...

  10. Phenothiazine-based small-molecule organic solar cells with power conversion efficiency over 7% and open circuit voltage of about 1.0 V using solvent vapor annealing.

    Science.gov (United States)

    Rout, Yogajivan; Misra, Rajneesh; Singhal, Rahul; Biswas, Subhayan; Sharma, Ganesh D

    2018-02-28

    We have used two unsymmetrical small molecules, named phenothiazine 1 and 2 with a D-A-D-π-D configuration, where phenothiazine is used as a central unit, triphenylamine is used as a terminal unit and TCBD and cyclohexa-2,5-diene-1,4-diylidene-expanded TCBD are used as an acceptor between the phenothiazine and triphenylamine units, as a small molecule donor along with PC 71 BM as an acceptor for solution processed bulk heterojunction solar cells. The variation of acceptors in the phenothiazine derivatives makes an exciting change in the photophysical and electrochemical properties, hole mobility and therefore photovoltaic performance. The optimized device based on phenothiazine 2 exhibited a high power conversion efficiency of 7.35% (J sc = 11.98 mA cm -2 , V oc = 0.99 V and FF = 0.62), while the device based on phenothiazine 1 showed a low PCE of 4.81% (J sc = 8.73 mA cm -2 , V oc = 0.95 V and FF = 0.58) after solvent vapour annealing (SVA) treatment. The higher value of power conversion efficiency of the 2 based devices irrespective of the processing conditions may be related to the broader absorption and lower band gap of 2 as compared to 1. The improvement in the SVA treated active layer may be related to the enhanced crystallinity, molecular ordering and aggregation and shorter π-π stacking distance of the small molecule donors.

  11. Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity

    KAUST Repository

    Heumueller, Thomas

    2014-08-01

    In order to commercialize polymer solar cells, the fast initial performance losses present in many high efficiency materials will have to be managed. This burn-in degradation is caused by light-induced traps and its characteristics depend on which polymer is used. We show that the light-induced traps are in the bulk of the active layer and we find a direct correlation between their presence and the open-circuit voltage loss in devices made with amorphous polymers. Solar cells made with crystalline polymers do not show characteristic open circuit voltage losses, even though light-induced traps are also present in these devices. This indicates that crystalline materials are more resistant against the influence of traps on device performance. Recent work on crystalline materials has shown there is an energetic driving force for charge carriers to leave amorphous, mixed regions of bulk heterojunctions, and charges are dominantly transported in pure, ordered phases. This energetic landscape allows efficient charge generation as well as extraction and also may benefit the stability against light-induced traps. This journal is © the Partner Organisations 2014.

  12. B decays

    CERN Document Server

    Stone, Sheldon

    1992-01-01

    The study of b quarks has now reached a stage where it is useful to review what has been learned so far and also to look at the implications of future studies. The most important observations thus far - measurement of the "B" lifetime, B 0 - B 0 mixing, and the observation of b? u transitions, as well as more mundane results on hadronic and semileptonic transitions - are described in detail by experimentalists who have been closely involved with the measurements. Theoretical progress in understanding b quark decays, including the mechanisms of hadronic and semileptonic decays, are described. S

  13. B decays

    CERN Document Server

    Stone, Sheldon

    1994-01-01

    This book reviews the study of b quarks and also looks at the implications of future studies. The most important observations thus far - including measurement of the ""B"" lifetime and observations of b -> u transitions - as well as the more mundane results of hadronic and semileptonic transitions are described in detail by experimentalists who have been closely involved with the measurements. Theoretical progress in understanding b quark decays, including the mechanisms of hadronic and semileptonic decays, are described. Synthesizing the experimental and theoretical information, the authors d

  14. Voltage regulating circuit

    NARCIS (Netherlands)

    2005-01-01

    A voltage regulating circuit comprising a rectifier (2) for receiving an AC voltage (Vmains) and for generating a rectified AC voltage (vrec), and a capacitor (3) connected in parallel with said rectified AC voltage for providing a DC voltage (VDC) over a load (5), characterized by a unidirectional

  15. Cell voltage versus electrode potential range in aqueous supercapacitors

    Science.gov (United States)

    Dai, Zengxin; Peng, Chuang; Chae, Jung Hoon; Ng, Kok Chiang; Chen, George Z.

    2015-01-01

    Supercapacitors with aqueous electrolytes and nanostructured composite electrodes are attractive because of their high charging-discharging speed, long cycle life, low environmental impact and wide commercial affordability. However, the energy capacity of aqueous supercapacitors is limited by the electrochemical window of water. In this paper, a recently reported engineering strategy is further developed and demonstrated to correlate the maximum charging voltage of a supercapacitor with the capacitive potential ranges and the capacitance ratio of the two electrodes. Beyond the maximum charging voltage, a supercapacitor may still operate, but at the expense of a reduced cycle life. In addition, it is shown that the supercapacitor performance is strongly affected by the initial and zero charge potentials of the electrodes. Further, the differences are highlighted and elaborated between freshly prepared, aged under open circuit conditions, and cycled electrodes of composites of conducting polymers and carbon nanotubes. The first voltammetric charging-discharging cycle has an electrode conditioning effect to change the electrodes from their initial potentials to the potential of zero voltage, and reduce the irreversibility. PMID:25897670

  16. Open Circuit Potential Changes upon Protonation/Deprotonation of ω-Functionalized Alkanethiols on Au: Determination of Surface pK {sub 1/2} in Aqueous and Non-Aqueous System

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Ryul; Park, Kyung Soon; Jang, Jae Won; Hwang, Seong Pil [Korea Univ., Sejong (Korea, Republic of)

    2016-09-15

    The controlled assembly of functional nanomaterials has been drawing significant interest for making devices by integration of nanomaterials. The building blocks of functional nanomaterials might be confined spatially on the chemically patterned surface through both covalent and non-covalent bonds. Potentiometric measurement is affordable technique for various researchers because it requires only voltmeter and reference electrode. Moreover, it can be applied to various polar solvent such as methanol and ethanol. The open circuit potential (OCP) is measured indicating the potential difference between reference electrode and working electrode. The potential of working electrode might be affected by redox chemical reaction and charge state/separation. Our results provide the simple and affordable method to investigate pK {sub 1/2} of thin film both in aqueous phase and in non-aqueous phase, which has significant role in colloidal chemistry, nanochemistry, surface chemistry, electrochemistry, and others.

  17. Proton decay theory

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1983-01-01

    Topics include minimal SU(5) predictions, gauge boson mediated proton decay, uncertainties in tau/sub p/, Higgs scalar effects, proton decay via Higgs scalars, supersymmetric SU(5), dimension 5 operators and proton decay, and Higgs scalars and proton decay

  18. High voltage systems

    International Nuclear Information System (INIS)

    Martin, M.

    1991-01-01

    Industrial processes usually require electrical power. This power is used to drive motors, to heat materials, or in electrochemical processes. Often the power requirements of a plant require the electric power to be delivered at high voltage. In this paper high voltage is considered any voltage over 600 V. This voltage could be as high as 138,000 V for some very large facilities. The characteristics of this voltage and the enormous amounts of power being transmitted necessitate special safety considerations. Safety must be considered during the four activities associated with a high voltage electrical system. These activities are: Design; Installation; Operation; and Maintenance

  19. Voltage regulator for generator

    Energy Technology Data Exchange (ETDEWEB)

    Naoi, K

    1989-01-17

    It is an object of this invention to provide a voltage regulator for a generator charging a battery, wherein even if the ambient temperature at the voltage regulator rises abnormally high, possible thermal breakage of the semiconductor elements constituting the voltage regulator can be avoided. A feature of this invention is that the semiconductor elements can be protected from thermal breakage, even at an abnormal ambient temperature rise at the voltage regulator for the battery charging generator, by controlling a maximum conduction ratio of a power transistor in the voltage regulator in accordance with the temperature at the voltage regulator. This is achieved through a switching device connected in series to the field coil of the generator and adapted to be controlled in accordance with an output voltage of the generator and the ambient temperature at the voltage regulator. 6 figs.

  20. Automatic voltage imbalance detector

    Science.gov (United States)

    Bobbett, Ronald E.; McCormick, J. Byron; Kerwin, William J.

    1984-01-01

    A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  1. An improved low-voltage ride-through performance of DFIG based wind plant using stator dynamic composite fault current limiter.

    Science.gov (United States)

    Gayen, P K; Chatterjee, D; Goswami, S K

    2016-05-01

    In this paper, an enhanced low-voltage ride-through (LVRT) performance of a grid connected doubly fed induction generator (DFIG) has been presented with the usage of stator dynamic composite fault current limiter (SDCFCL). This protection circuit comprises of a suitable series resistor-inductor combination and parallel bidirectional semiconductor switch. The SDCFCL facilitates double benefits such as reduction of rotor induced open circuit voltage due to increased value of stator total inductance and concurrent increase of rotor impedance. Both effects will limit rotor circuit over current and over voltage situation more secured way in comparison to the conventional scheme like the dynamic rotor current limiter (RCL) during any type of fault situation. The proposed concept is validated through the simulation study of the grid integrated 2.0MW DFIG. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Technological Aspects: High Voltage

    International Nuclear Information System (INIS)

    Faircloth, D C

    2013-01-01

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered. (author)

  3. Technological Aspects: High Voltage

    CERN Document Server

    Faircloth, D.C.

    2013-12-16

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered.

  4. Stray voltage mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, B.; Piercy, R.; Dick, P. [Kinetrics Inc., Toronto, ON (Canada). Transmission and Distribution Technologies

    2008-04-09

    This report discussed issues related to farm stray voltage and evaluated mitigation strategies and costs for limiting voltage to farms. A 3-phase, 3-wire system with no neutral ground was used throughout North America before the 1930s. Transformers were connected phase to phase without any electrical connection between the primary and secondary sides of the transformers. Distribution voltage levels were then increased and multi-grounded neutral wires were added. The earth now forms a parallel return path for the neutral current that allows part of the neutral current to flow continuously through the earth. The arrangement is responsible for causing stray voltage. Stray voltage causes uneven milk production, increased incidences of mastitis, and can create a reluctance to drink water amongst cows when stray voltages are present. Off-farm sources of stray voltage include phase unbalances, undersized neutral wire, and high resistance splices on the neutral wire. Mitigation strategies for reducing stray voltage include phase balancing; conversion from single to 3-phase; increasing distribution voltage levels, and changing pole configurations. 22 refs., 5 tabs., 13 figs.

  5. High voltage engineering

    CERN Document Server

    Rizk, Farouk AM

    2014-01-01

    Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond. Presenting information critical to the design, selec

  6. High voltage test techniques

    CERN Document Server

    Kind, Dieter

    2001-01-01

    The second edition of High Voltage Test Techniques has been completely revised. The present revision takes into account the latest international developments in High Voltage and Measurement technology, making it an essential reference for engineers in the testing field.High Voltage Technology belongs to the traditional area of Electrical Engineering. However, this is not to say that the area has stood still. New insulating materials, computing methods and voltage levels repeatedly pose new problems or open up methods of solution; electromagnetic compatibility (EMC) or components and systems al

  7. Short communication: Use of a portable, automated, open-circuit gas quantification system and the sulfur hexafluoride tracer technique for measuring enteric methane emissions in Holstein cows fed ad libitum or restricted.

    Science.gov (United States)

    Dorich, C D; Varner, R K; Pereira, A B D; Martineau, R; Soder, K J; Brito, A F

    2015-04-01

    The objective of this study was to measure enteric CH4 emissions using a new portable automated open-circuit gas quantification system (GQS) and the sulfur hexafluoride tracer technique (SF6) in midlactation Holstein cows housed in a tiestall barn. Sixteen cows averaging 176 ± 34 d in milk, 40.7 ± 6.1 kg of milk yield, and 685 ± 49 kg of body weight were randomly assigned to 1 out of 2 treatments according to a crossover design. Treatments were (1) ad libitum (adjusted daily to yield 10% orts) and (2) restricted feed intake [set to restrict feed by 10% of baseline dry matter intake (DMI)]. Each experimental period lasted 22d, with 14 d for treatment adaptation and 8d for data and sample collection. A common diet was fed to the cows as a total mixed ration and contained 40.4% corn silage, 11.2% grass-legume haylage, and 48.4% concentrate on a dry matter basis. Spot 5-min measurements using the GQS were taken twice daily with a 12-h interval between sampling and sampling times advanced 2h daily to account for diurnal variation in CH4 emissions. Canisters for the SF6 method were sampled twice daily before milking with 4 local background gas canisters inside the barn analyzed for background gas concentrations. Enteric CH4 emissions were not affected by treatments and averaged 472 and 458 g/d (standard error of the mean = 18 g/d) for ad libitum and restricted intake treatments, respectively (data not shown). The GQS appears to be a reliable method because of the relatively low coefficients of variation (ranging from 14.1 to 22.4%) for CH4 emissions and a moderate relationship (coefficient of determination = 0.42) between CH4 emissions and DMI. The SF6 resulted in large coefficients of variation (ranging from 16.0 to 111%) for CH4 emissions and a poor relationship (coefficient of determination = 0.17) between CH4 emissions and DMI, likely because of limited barn ventilation and high background gas concentration. Research with improved barn ventilation systems or

  8. A Low-Power and Low-Voltage Power Management Strategy for On-Chip Micro Solar Cells

    Directory of Open Access Journals (Sweden)

    Ismail Cevik

    2015-01-01

    Full Text Available Fundamental characteristics of on-chip micro solar cell (MSC structures were investigated in this study. Several MSC structures using different layers in three different CMOS processes were designed and fabricated. Effects of PN junction structure and process technology on solar cell performance were measured. Parameters for low-power and low-voltage implementation of power management strategy and boost converter based circuits utilizing fractional voltage maximum power point tracking (FVMPPT algorithm were determined. The FVMPPT algorithm works based on the fraction between the maximum power point operation voltage and the open circuit voltage of the solar cell structure. This ratio is typically between 0.72 and 0.78 for commercially available poly crystalline silicon solar cells that produce several watts of power under typical daylight illumination. Measurements showed that the fractional voltage ratio is much higher and fairly constant between 0.82 and 0.85 for on-chip mono crystalline silicon micro solar cell structures that produce micro watts of power. Mono crystalline silicon solar cell structures were observed to result in better power fill factor (PFF that is higher than 74% indicating a higher energy harvesting efficiency.

  9. Important parameters affecting the cell voltage of aqueous electrical double-layer capacitors

    Science.gov (United States)

    Wu, Tzu-Ho; Hsu, Chun-Tsung; Hu, Chi-Chang; Hardwick, Laurence J.

    2013-11-01

    This study discusses and demonstrates how the open-circuit potential and charges stored in the working potential window on positive and negative electrodes affect the cell voltage of carbon-based electrical double-layer capacitors (EDLCs) in aqueous electrolytes. An EDLC consisting of two activated carbon electrodes is employed as the model system for identifying these key parameters although the potential window of water decomposition can be simply determined by voltammetric methods. First, the capacitive performances of an EDLC with the same charge on positive and negative electrodes are evaluated by cyclic voltammetric, charge-discharge, electrochemical impedance spectroscopic (EIS) analyses, and inductance-capacitance-resistance meter (LCR meter). The principles for obtaining the highest acceptable cell voltage of such symmetric ECs with excellent reversibility and capacitor-like behaviour are proposed. Aqueous charge-balanced EDLCs can be operated as high as 2.0 V with high energy efficiency (about 90%) and only 4% capacitance loss after the 600-cycle stability checking. The necessity of charge balance (but not capacitance balance) for positive and negative electrodes is substantiated from the lower acceptable cell voltage of charge-unbalanced EDLCs.

  10. Origin of Non-Radiative Voltage Losses in Fullerene-Based Organic Solar Cells

    Science.gov (United States)

    Benduhn, Johannes; Tvingstedt, Kristofer; Piersimoni, Fortunato; Ullbrich, Sascha; Neher, Dieter; Spoltore, Donato; Vandewal, Koen

    The open-circuit voltage of organic solar cells (OSCs) is low as compared to the optical gap of the absorber molecules, indicating high energy losses per absorbed photon. These voltage losses arise only partly due to necessity of an electron transfer event to dissociate the excitons. A large part of these voltage losses is due to recombination of photo-generated charge carriers, including inevitable radiative recombination. In this work, we study the non-radiative recombination losses and we find that they increase when the energy difference between charge transfer (CT) state and ground state decreases. This behavior is in agreement with the \\x9Denergy gap law for non-radiative transition\\x9D, which implies that internal conversion from CT state to ground state is facilitated by skeletal molecular vibrations. This intrinsic loss mechanism, which until now has not been thoroughly considered for OSCs, is different in its nature as compared to the commonly considered inorganic photovoltaic loss mechanisms of defect, surface, and Auger recombination. As a consequence, the theoretical upper limit for the power conversion efficiency of a single junction OSC reduces by 25% as compared to the Shockley-Queisser limit for an optimal optical gap of the main absorber between (1.45-1.65) eV.

  11. Dental Caries (Tooth Decay)

    Science.gov (United States)

    ... Materials Contact Us Home Research Data & Statistics Dental Caries (Tooth Decay) Dental caries (tooth decay) remains the most prevalent chronic disease ... adults, even though it is largely preventable. Although caries has significantly decreased for most Americans over the ...

  12. Dental Caries (Tooth Decay)

    Science.gov (United States)

    ... Contact Us Home Research Data & Statistics Share Dental Caries (Tooth Decay) Dental caries (tooth decay) remains the most prevalent chronic disease ... adults, even though it is largely preventable. Although caries has significantly decreased for most Americans over the ...

  13. based dynamic voltage restorer

    African Journals Online (AJOL)

    HOD

    operation due to presence of increased use of nonlinear loads (computers, microcontrollers ... simulations of a dynamic voltage restorer (DVR) was achieved using MATLAB/Simulink. ..... using Discrete PWM generator, then the IGBT inverter.

  14. MODEL RADIOACTIVE RADON DECAY

    Directory of Open Access Journals (Sweden)

    R.I. Parovik

    2012-06-01

    Full Text Available In a model of radioactive decay of radon in the sample (222Rn. The model assumes that the probability of the decay of radon and its half-life depends on the fractal properties of the geological environment. The dependencies of the decay parameters of the fractal dimension of the medium.

  15. Low-voltage gyrotrons

    International Nuclear Information System (INIS)

    Glyavin, M. Yu.; Zavolskiy, N. A.; Sedov, A. S.; Nusinovich, G. S.

    2013-01-01

    For a long time, the gyrotrons were primarily developed for electron cyclotron heating and current drive of plasmas in controlled fusion reactors where a multi-megawatt, quasi-continuous millimeter-wave power is required. In addition to this important application, there are other applications (and their number increases with time) which do not require a very high power level, but such issues as the ability to operate at low voltages and have compact devices are very important. For example, gyrotrons are of interest for a dynamic nuclear polarization, which improves the sensitivity of the nuclear magnetic resonance spectroscopy. In this paper, some issues important for operation of gyrotrons driven by low-voltage electron beams are analyzed. An emphasis is made on the efficiency of low-voltage gyrotron operation at the fundamental and higher cyclotron harmonics. These efficiencies calculated with the account for ohmic losses were, first, determined in the framework of the generalized gyrotron theory based on the cold-cavity approximation. Then, more accurate, self-consistent calculations for the fundamental and second harmonic low-voltage sub-THz gyrotron designs were carried out. Results of these calculations are presented and discussed. It is shown that operation of the fundamental and second harmonic gyrotrons with noticeable efficiencies is possible even at voltages as low as 5–10 kV. Even the third harmonic gyrotrons can operate at voltages about 15 kV, albeit with rather low efficiency (1%–2% in the submillimeter wavelength region).

  16. Current-voltage analysis of the record-efficiency CuGaSe2 solar cell: Application of the current separation method and the interface recombination model

    International Nuclear Information System (INIS)

    Saad, M.; Kasis, A.

    2011-01-01

    Current-voltage (j-V) characteristics of the record-efficiency CuGaSe 2 solar cell measured under several illumination levels are analyzed using a two-diode equation for a more accurate description of cell behavior. The contribution of each diode to the total cell j-V characteristic under illumination was estimated using the current separation method presented recently. This is performed in an effort to identify the distinctive features of this record-efficiency cell which have led to the up-to-date highest open circuit voltage of V o c = 946 mV and fill factor of FF = 66.5% for CuGaSe 2 solar cells. Furthermore, the interface recombination component of the cell current under illumination is quantitatively discussed applying the interface recombination model presented earlier. (author)

  17. Estimation of visibility of phase contrast with extraction voltages for field emission gun electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xing, E-mail: xmeng101@gmail.com

    2017-02-15

    Estimation was made for visibility of phase contrast with varying extraction voltages. The resulting decay rates of visibility show that images with low image contrast from cryo EM will be seriously impacted with high extraction voltages. - Highlights: • Cryo EM • Phase contrast • Extraction votage.

  18. Power System Stability Using Decentralized Under Frequency and Voltage Load Shedding

    DEFF Research Database (Denmark)

    Hoseinzadeh, Bakhtyar; Silva, Filipe Faria Da; Bak, Claus Leth

    2014-01-01

    information to shed the loads with higher voltage decay first. Therefore, this approach deals with coordination of voltage and frequency information instead of independent methods. Numerical simulations which are carried out in DigSilent PowerFactory software confirm the efficiency of proposed methodology...

  19. Device for monitoring cell voltage

    Science.gov (United States)

    Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  20. Photorechargeable High Voltage Redox Battery Enabled by Ta3 N5 and GaN/Si Dual-Photoelectrode.

    Science.gov (United States)

    Cheng, Qingmei; Fan, Weiqiang; He, Yumin; Ma, Peiyan; Vanka, Srinivas; Fan, Shizhao; Mi, Zetian; Wang, Dunwei

    2017-07-01

    Solar rechargeable battery combines the advantages of photoelectrochemical devices and batteries and has emerged as an attractive alternative to artificial photosynthesis for large-scale solar energy harvesting and storage. Due to the low photovoltages by the photoelectrodes, however, most previous demonstrations of unassisted photocharge have been realized on systems with low open circuit potentials (5 mA cm -2 ). The photoelectrode system makes it possible to operate a 1.2 V alkaline anthraquinone/ferrocyanide redox battery with a high ideal solar-to-chemical conversion efficiency of 3.0% without externally applied potentials. Importantly, the photocharged battery is successfully discharged with a high voltage output. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. High frequency breakdown voltage

    International Nuclear Information System (INIS)

    Chu, Thanh Duy.

    1992-03-01

    This report contains information about the effect of frequency on the breakdown voltage of an air gap at standard pressure and temperature, 76 mm Hg and O degrees C, respectively. The frequencies of interest are 47 MHz and 60 MHz. Additionally, the breakdown in vacuum is briefly considered. The breakdown mechanism is explained on the basis of collision and ionization. The presence of the positive ions produced by ionization enhances the field in the gap, and thus determines the breakdown. When a low-frequency voltage is applied across the gap, the breakdown mechanism is the same as that caused by the DC or static voltage. However, when the frequency exceeds the first critical value f c , the positive ions are trapped in the gap, increasing the field considerably. This makes the breakdown occur earlier; in other words, the breakdown voltage is lowered. As the frequency increases two decades or more, the second critical frequency, f ce , is reached. This time the electrons start being trapped in the gap. Those electrons that travel multiple times across the gap before reaching the positive electrode result in an enormous number of electrons and positive ions being present in the gap. The result is a further decrease of the breakdown voltage. However, increasing the frequency does not decrease the breakdown voltage correspondingly. In fact, the associated breakdown field intensity is almost constant (about 29 kV/cm).The reason is that the recombination rate increases and counterbalances the production rate, thus reducing the effect of the positive ions' concentration in the gap. The theory of collision and ionization does not apply to the breakdown in vacuum. It seems that the breakdown in vacuum is primarily determined by the irregularities on the surfaces of the electrodes. Therefore, the effect of frequency on the breakdown, if any, is of secondary importance

  2. SYMPOSIUM: Rare decays

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-04-15

    Late last year, a symposium entitled 'Rare Decays' attracted 115 participants to a hotel in Vancouver, Canada. These participants were particle physicists interested in checking conventional selection rules to look for clues of possible new behaviour outside today's accepted 'Standard Model'. For physicists, 'rare decays' include processes that have so far not been seen, explicitly forbidden by the rules of the Standard Model, or processes highly suppressed because the decay is dominated by an easier route, or includes processes resulting from multiple transitions.

  3. Effective Majorana neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Lucia [Instituto de Fisica, Facultad de Ingenieria,Universidad de la Republica, Montevideo (Uruguay); Romero, Ismael; Peressutti, Javier; Sampayo, Oscar A. [Universidad Nacional de Mar del Plata, Departamento de Fisica, Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR) CONICET, UNMDP, Mar del Plata (Argentina)

    2016-08-15

    We study the decay of heavy sterile Majorana neutrinos according to the interactions obtained from an effective general theory. We describe the two- and three-body decays for a wide range of neutrino masses. The results obtained and presented in this work could be useful for the study of the production and detection of these particles in a variety of high energy physics experiments and astrophysical observations. We show in different figures the dominant branching ratios and the total decay width. (orig.)

  4. Axigluon decays of toponium

    International Nuclear Information System (INIS)

    Faustov, R.N.; Vasilevskaya, I.G.

    1990-01-01

    Chiral-colour model predicts the existence of axigluons which is an octet of massive axial-vector gauge bosons. In this respect toponium decays into axigluons and gluons are of interest. The following toponium decays are considered: θ → Ag, θ → AAg, θ → ggg → AAg. The width of toponium S-state decays is calculated under various possible values of axigluon mass

  5. Decay of 143La

    International Nuclear Information System (INIS)

    Blachot, J.; Dousson, S.; Monnand, E.; Schussler, F.

    1976-01-01

    The decay of 143 La has been investigated. Sources have been obtained from 2 isotope separators (ISERE, OSIRIS). 12 gamma rays, with the most intense at 620keV representing only 1.4% of decay, have been attributed to the 143 La decay. A level scheme has been found and compared with the one deduced from (d,p) and (n,γ) reactions on 142 Ce [fr

  6. Digital voltage discriminator

    International Nuclear Information System (INIS)

    Zhou Zhicheng

    1992-01-01

    A digital voltage discriminator is described, which is synthesized by digital comparator and ADC. The threshold is program controllable with high stability. Digital region of confusion is approximately equal to 1.5 LSB. This discriminator has a single channel analyzer function model with channel width of 1.5 LSB

  7. High-voltage picoamperemeter

    Energy Technology Data Exchange (ETDEWEB)

    Bugl, Andrea; Ball, Markus; Boehmer, Michael; Doerheim, Sverre; Hoenle, Andreas; Konorov, Igor [Technische Universitaet Muenchen, Garching (Germany); Ketzer, Bernhard [Technische Universitaet Muenchen, Garching (Germany); Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany)

    2014-07-01

    Current measurements in the nano- and picoampere region on high voltage are an important tool to understand charge transfer processes in micropattern gas detectors like the Gas Electron Multiplier (GEM). They are currently used to e.g. optimize the field configuration in a multi-GEM stack to be used in the ALICE TPC after the upgrade of the experiment during the 2nd long shutdown of the LHC. Devices which allow measurements down to 1pA at high voltage up to 6 kV have been developed at TU Muenchen. They are based on analog current measurements via the voltage drop over a switchable shunt. A microcontroller collects 128 digital ADC values and calculates their mean and standard deviation. This information is sent with a wireless transmitting unit to a computer and stored in a root file. A nearly unlimited number of devices can be operated simultaneously and read out by a single receiver. The results can also be displayed on a LCD directly at the device. Battery operation and the wireless readout are important to protect the user from any contact to high voltage. The principle of the device is explained, and systematic studies of their properties are shown.

  8. Geomagnetism and Induced Voltage

    Science.gov (United States)

    Abdul-Razzaq, W.; Biller, R. D.

    2010-01-01

    Introductory physics laboratories have seen an influx of "conceptual integrated science" over time in their classrooms with elements of other sciences such as chemistry, biology, Earth science, and astronomy. We describe a laboratory to introduce this development, as it attracts attention to the voltage induced in the human brain as it…

  9. Mitigation of Unbalanced Voltage Sags and Voltage Unbalance in CIGRE Low Voltage Distribution Network

    DEFF Research Database (Denmark)

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Any problem with voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM) etc. can be used to mitigate the voltage problems in the distribution system...... to unbalanced faults. The compensation of unbalanced voltage sags and voltage unbalance in the CIGRE distribution network is done by using the four STATCOM compensators already existing in the test grid. The simulations are carried out in DIgSILENT power factory software version 15.0........ The voltage problems dealt with in this paper are to show how to mitigate unbalanced voltage sags and voltage unbalance in the CIGRE Low Voltage (LV) test network and net-works like this. The voltage unbalances, for the tested cases in the CIGRE LV test network are mainly due to single phase loads and due...

  10. Fault diagnosis and fault-tolerant finite control set-model predictive control of a multiphase voltage-source inverter supplying BLDC motor.

    Science.gov (United States)

    Salehifar, Mehdi; Moreno-Equilaz, Manuel

    2016-01-01

    Due to its fault tolerance, a multiphase brushless direct current (BLDC) motor can meet high reliability demand for application in electric vehicles. The voltage-source inverter (VSI) supplying the motor is subjected to open circuit faults. Therefore, it is necessary to design a fault-tolerant (FT) control algorithm with an embedded fault diagnosis (FD) block. In this paper, finite control set-model predictive control (FCS-MPC) is developed to implement the fault-tolerant control algorithm of a five-phase BLDC motor. The developed control method is fast, simple, and flexible. A FD method based on available information from the control block is proposed; this method is simple, robust to common transients in motor and able to localize multiple open circuit faults. The proposed FD and FT control algorithm are embedded in a five-phase BLDC motor drive. In order to validate the theory presented, simulation and experimental results are conducted on a five-phase two-level VSI supplying a five-phase BLDC motor. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Mitigation of Voltage Sags in CIGRE Low Voltage Distribution Network

    DEFF Research Database (Denmark)

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Any problem in voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM), Dynamic Voltage Restorer (DVR) etc. are commonly used for the mitigation of voltage p....... The compensation of voltage sags in the different parts of CIGRE distribution network is done by using the four STATCOM compensators already existing in the test grid. The simulations are carried out in DIgSILENT power factory software version 15.0.......Any problem in voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM), Dynamic Voltage Restorer (DVR) etc. are commonly used for the mitigation of voltage...... problems in the distribution system. The voltage problems dealt with in this paper are to show how to mitigate voltage sags in the CIGRE Low Voltage (LV) test network and networks like this. The voltage sags, for the tested cases in the CIGRE LV test network are mainly due to three phase faults...

  12. 'Stutter timing' for charge decay time measurement

    Energy Technology Data Exchange (ETDEWEB)

    Chubb, John [Infostatic, 2 Monica Drive, Pittville, Cheltenham, GL50 4NQ (United Kingdom); Harbour, John [Hawthorne Technical Design, The Hawthornes, Startley, Chippenham, SN15 5HG,UK (United Kingdom); Pavey, Ian, E-mail: jchubb@infostatic.co.uk [Chilworth Technology Ltd, Beta House, Southampton Science Park, Southampton, SO16 7NS (United Kingdom)

    2011-06-23

    The paper describes the approach of 'stutter timing' that has been developed to improve the accuracy of measuring charge decay times in the presence of noise in compact and portable charge decay test instrumentation. The approach involves starting and stopping the timing clock as the noisy signal rises above and falls below the target threshold voltage level.

  13. Enhanced control of DFIG wind turbine based on stator flux decay compensation

    DEFF Research Database (Denmark)

    Zhu, Rongwu; Deng, Fujin; Chen, Zhe

    2016-01-01

    For the doubly-fed induction generator (DFIG)- based wind energy conversion system (WECS), the decaying flux and negative flux are the main reasons to cause the DFIG rotor overcurrent, during grid faults. The stator decaying flux characteristics versus the depth and instant of the stator voltage...

  14. Induced nuclear beta decay

    International Nuclear Information System (INIS)

    Reiss, H.R.

    1986-01-01

    Certain nuclear beta decay transitions normally inhibited by angular momentum or parity considerations can be induced to occur by the application of an electromagnetic field. Such decays can be useful in the controlled production of power, and in fission waste disposal

  15. B decays to baryons

    Indian Academy of Sciences (India)

    We note that two-body decays to baryons are suppressed relative to three- and four-body decays. In most of these analyses, the invariant baryon–antibaryon mass shows an enhancement near the threshold. We propose a phenomenological interpretation of this quite common feature of hadronization to baryons.

  16. Multiple preequilibrium decay processes

    International Nuclear Information System (INIS)

    Blann, M.

    1987-11-01

    Several treatments of multiple preequilibrium decay are reviewed with emphasis on the exciton and hybrid models. We show the expected behavior of this decay mode as a function of incident nucleon energy. The algorithms used in the hybrid model treatment are reviewed, and comparisons are made between predictions of the hybrid model and a broad range of experimental results. 24 refs., 20 figs

  17. Aspects of B decays

    International Nuclear Information System (INIS)

    Faller, Sven

    2011-01-01

    B-meson decays are a good probe for testing the flavour sector of the standard model of particle physics. The standard model describes at present all experimental data satisfactorily, although some ''tensions'' exist, i.e. two to three sigma deviations from the predictions, in particular in B decays. The arguments against the standard model are thus purely theoretical. These tensions between experimental data and theoretical predictions provide an extension of the standard model by new physics contributions. Within the flavour sector main theoretical uncertainties are related to the hadronic matrix elements. For exclusive semileptonic anti B → D (*) l anti ν decays QCD sum rule techniques, which are suitable for studying hadronic matrix elements, however, with substantial, but estimable hadronic uncertainties, are used. The exploration of new physics effects in B-meson decays is done in an twofold way. In exclusive semileptonic anti B → D (*) l anti ν decays the effect of additional right-handed vector as well as left- and right-handed scalar and tensor hadronic current structures in the decay rates and the form factors are studied at the non-recoil point. As a second approach one studied the non-leptonic B 0 s →J/ψφ and B 0 →J/ψK S,L decays discussing CP violating effects in the time-dependent decay amplitudes by considering new physics phase in the B 0 - anti B 0 mixing phase. (orig.)

  18. Decay of hypernuclei

    International Nuclear Information System (INIS)

    Bando, H.

    1985-01-01

    The pionic and non-mesonic decays of hypernuclei are discussed. In the first part, various decay processes which could be useful to obtain information of hypernuclear structure are discussed. The experimental data concerning the pionic and non-mesonic decays are discussed in the second part. As the experimental data, there are only few lifetime data and some crude data on the non-mesonic to π decay ratio. In the third and the fourth parts, some theoretical analyses are made on the pionic and the nonmesonic decays. DDHF calculation was performed for Λ and N systems by using Skyrme type ΛN and NN effective interactions. A suppression factor of the order of 10 -3 for A nearly equal 100 was obtained. (Aoki, K.)

  19. Rare Decays at LHCb

    CERN Document Server

    Belyaev, Ivan

    2006-01-01

    Rare loop-induced decays are sensitive to New Physics in many Standard Model extensions. In this paper we discuss the reconstruction of the radiative penguin decays $B^0_d \\to K^{*0} \\gamma, B^0_s \\to \\phi \\gamma , B^0_d \\to \\omega \\gamma, \\Lambda_b \\to \\Lambda \\gamma$, the electroweak penguin decays $B^0_d \\to K^{*0} \\mu^+ \\mu^-, B^+_u \\to K^+ \\mu^+ \\mu^-$, the gluonic penguin decays $B^0_d \\to \\phi K^0_S, B^0_s \\to \\phi \\phi$, and the decay $B^0_s \\to \\mu^+\\mu^-$ at LHCb. The selection criteria, evaluated efficiencies, expected annual yields and $B/S$ estimates are presented.

  20. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.; Abdelghany, Mohamed A.; Elsayed, Mohannad Yomn; Elshurafa, Amro M; Salama, Khaled N.

    2014-01-01

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  1. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.

    2014-10-09

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  2. High Voltage Seismic Generator

    Science.gov (United States)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  3. Increased voltage photovoltaic cell

    Science.gov (United States)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  4. Suppressing voltage transients in high voltage power supplies

    International Nuclear Information System (INIS)

    Lickel, K.F.; Stonebank, R.

    1979-01-01

    A high voltage power supply for an X-ray tubes includes voltage adjusting means, a high voltage transformer, switch means connected to make and interrupt the primary current of the transformer, and over-voltage suppression means to suppress the voltage transient produced when the current is switched on. In order to reduce the power losses in the suppression means, an impedance is connected in the transformer primary circuit on operation of the switch means and is subsequently short-circuited by a switch controlled by a timer after a period which is automatically adjusted to the duration of the transient overvoltage. (U.K.)

  5. Charm Decays at BABAR

    International Nuclear Information System (INIS)

    Charles, M.

    2004-01-01

    The results of several studies of charmed mesons and baryons at BABAR are presented. First, searches for the rare decays D 0 → l + l - are presented and new upper limits on these processes are established. Second, a measurement of the branching fraction of the isospin-violating hadronic decay D* s (2112) + → D s + π 0 relative to the radiative decay D* s (2112) + → D s + γ is made. Third, the decays of D* sJ (2317) + and D sJ (2460) + mesons are studied and ratios of branching fractions are measured. Fourth, Cabibbo-suppressed decays of the Λ c + are examined and their branching fractions measured relative to Cabibbo-allowed modes. Fifth, the Χ c 0 is studied through its decays to Χ - π + and (Omega) - K + ; in addition to measuring the ratio of branching fractions for Χ c 0 produced from the c(bar c) continuum, the uncorrected momentum spectrum is measured, providing clear confirmation of Χ c 0 production in B decays

  6. Iconic decay in schizophrenia.

    Science.gov (United States)

    Hahn, Britta; Kappenman, Emily S; Robinson, Benjamin M; Fuller, Rebecca L; Luck, Steven J; Gold, James M

    2011-09-01

    Working memory impairment is considered a core deficit in schizophrenia, but the precise nature of this deficit has not been determined. Multiple lines of evidence implicate deficits at the encoding stage. During encoding, information is held in a precategorical sensory store termed iconic memory, a literal image of the stimulus with high capacity but rapid decay. Pathologically increased iconic decay could reduce the number of items that can be transferred into working memory before the information is lost and could thus contribute to the working memory deficit seen in the illness. The current study used a partial report procedure to test the hypothesis that patients with schizophrenia (n = 37) display faster iconic memory decay than matched healthy control participants (n = 28). Six letters, arranged in a circle, were presented for 50 ms. Following a variable delay of 0-1000 ms, a central arrow cue indicated the item to be reported. In both patients and control subjects, recall accuracy decreased with increasing cue delay, reflecting decay of the iconic representation of the stimulus array. Patients displayed impaired memory performance across all cue delays, consistent with an impairment in working memory, but the rate of iconic memory decay did not differ between patients and controls. This provides clear evidence against faster loss of iconic memory representations in schizophrenia, ruling out iconic decay as an underlying source of the working memory impairment in this population. Thus, iconic decay rate can be added to a growing list of unimpaired cognitive building blocks in schizophrenia.

  7. Benchmarking of Voltage Sag Generators

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2012-01-01

    The increased penetration of renewable energy systems, like photovoltaic and wind power systems, rises the concern about the power quality and stability of the utility grid. Some regulations for Low Voltage Ride-Through (LVRT) for medium voltage or high voltage applications, are coming into force...

  8. Charge-pump voltage converter

    Science.gov (United States)

    Brainard, John P [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  9. Transient voltage sharing in series-coupled high voltage switches

    Directory of Open Access Journals (Sweden)

    Editorial Office

    1992-07-01

    Full Text Available For switching voltages in excess of the maximum blocking voltage of a switching element (for example, thyristor, MOSFET or bipolar transistor such elements are often coupled in series - and additional circuitry has to be provided to ensure equal voltage sharing. Between each such series element and system ground there is a certain parasitic capacitance that may draw a significant current during high-speed voltage transients. The "open" switch is modelled as a ladder network. Analy­sis reveals an exponential progression in the distribution of the applied voltage across the elements. Overstressing thus oc­curs in some of the elements at levels of the total voltage that are significantly below the design value. This difficulty is overcome by grading the voltage sharing circuitry, coupled in parallel with each element, in a prescribed manner, as set out here.

  10. Weak radiative hyperon decays

    International Nuclear Information System (INIS)

    Roberts, B.L.; Booth, E.C.; Gall, K.P.; McIntyre, E.K.; Miller, J.P.; Whitehouse, D.A.; Bassalleck, B.; Hall, J.R.; Larson, K.D.; Wolfe, D.M.; Fickinger, W.J.; Robinson, D.K.; Hallin, A.L.; Hasinoff, M.D.; Measday, D.F.; Noble, A.J.; Waltham, C.E.; Hessey, N.P.; Lowe, J.; Horvath, D.; Salomon, M.

    1990-01-01

    New measurements of the Σ + and Λ weak radiative decays are discussed. The hyperons were produced at rest by the reaction K - p → Yπ where Y = Σ + or Λ. The monoenergetic pion was used to tag the hyperon production, and the branching ratios were determined from the relative amplitudes of Σ + → pγ to Σ + → pπ 0 and Λ → nγ to Λ → nπ 0 . The photons from weak radiative decays and from π 0 decays were detected with modular NaI arrays. (orig.)

  11. SYMPOSIUM: Rare decays

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Late last year, a symposium entitled 'Rare Decays' attracted 115 participants to a hotel in Vancouver, Canada. These participants were particle physicists interested in checking conventional selection rules to look for clues of possible new behaviour outside today's accepted 'Standard Model'. For physicists, 'rare decays' include processes that have so far not been seen, explicitly forbidden by the rules of the Standard Model, or processes highly suppressed because the decay is dominated by an easier route, or includes processes resulting from multiple transitions

  12. Coordinated Voltage Control of Distributed PV Inverters for Voltage Regulation in Low Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Nainar, Karthikeyan; Pokhrel, Basanta Raj; Pillai, Jayakrishnan Radhakrishna

    2017-01-01

    This paper reviews and analyzes the existing voltage control methods of distributed solar PV inverters to improve the voltage regulation and thereby the hosting capacity of a low-voltage distribution network. A novel coordinated voltage control method is proposed based on voltage sensitivity...... optimization. The proposed method is used to calculate the voltage bands and droop settings of PV inverters at each node by the supervisory controller. The local controller of each PV inverter implements the volt/var control and if necessary, the active power curtailment as per the received settings and based...... on measured local voltages. The advantage of the proposed method is that the calculated reactive power and active power droop settings enable fair contribution of the PV inverters at each node to the voltage regulation. Simulation studies are conducted using DigSilent Power factory software on a simplified...

  13. Influence of Ambient Humidity on the Voltage Response of Ionic Polymer-Metal Composite Sensor.

    Science.gov (United States)

    Zhu, Zicai; Horiuchi, Tetsuya; Kruusamäe, Karl; Chang, Longfei; Asaka, Kinji

    2016-03-31

    Electrical potential based on ion migration exists not only in natural systems but also in ionic polymer materials. In order to investigate the influence of ambient humidity on voltage response, classical Au-Nafion IPMC was chosen as the reference sample. Voltage response under a bending deformation was measured in two ways: first, continuous measurement of voltage response in the process of absorption and desorption of water to study the tendency of voltage variation at all water states; second, measurements at multiple fixed ambient humidity levels to characterize the process of voltage response quantitatively. Ambient humidity influences the voltage response mainly by varying water content in ionic polymer. Under a step bending, the amplitude of initial voltage peak first increases and then decreases as the ambient humidity and the inherent water content decrease. This tendency is explained semiquantitatively by mass storage capacity related to the stretchable state of the Nafion polymer network. Following the initial peak, the voltage shows a slow decay to a steady state, which is first characterized in this paper. The relative voltage decay during the steady state always decreases as the ambient humidity is lowered. It is ascribed to progressive increase of the ratio between the water molecules in the cation hydration shell to the free water. Under sinusoidal mechanical bending excitation in the range of 0.1-10 Hz, the voltage magnitude increases with frequency at high ambient humidity but decreases with frequency at low ambient humidity. The relationship is mainly controlled by the voltage decay effect and the response speed.

  14. Gigantic transverse voltage induced via off-diagonal thermoelectric effect in CaxCoO2 thin films

    Science.gov (United States)

    Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Adachi, Hideaki; Yamada, Yuka

    2010-07-01

    Gigantic transverse voltages exceeding several tens volt have been observed in CaxCoO2 thin films with tilted c-axis orientation upon illumination of nanosecond laser pulses. The voltage signals were highly anisotropic within the film surface showing close relation with the c-axis tilt direction. The magnitude and the decay time of the voltage strongly depended on the film thickness. These results confirm that the large laser-induced voltage originates from a phenomenon termed the off-diagonal thermoelectric effect, by which a film out-of-plane temperature gradient leads to generation of a film in-plane voltage.

  15. Sensing voltage across lipid membranes

    Science.gov (United States)

    Swartz, Kenton J.

    2009-01-01

    The detection of electrical potentials across lipid bilayers by specialized membrane proteins is required for many fundamental cellular processes such as the generation and propagation of nerve impulses. These membrane proteins possess modular voltage-sensing domains, a notable example being the S1-S4 domains of voltage-activated ion channels. Ground-breaking structural studies on these domains explain how voltage sensors are designed and reveal important interactions with the surrounding lipid membrane. Although further structures are needed to fully understand the conformational changes that occur during voltage sensing, the available data help to frame several key concepts that are fundamental to the mechanism of voltage sensing. PMID:19092925

  16. Teleportation via decay

    Indian Academy of Sciences (India)

    therefore normally plays a negative role in quantum information processing [1]. ... of a decay be used in a fruitful way for quantum information process- ing? ..... The model independent portions of the analysis of communication through a noisy.

  17. Decay of Hoyle state

    Indian Academy of Sciences (India)

    2014-11-02

    Nov 2, 2014 ... T K RANA, C BHATTACHARYA, S KUNDU, ... of various direct 3α decay mechanisms of the Hoyle state. ... Pramana – J. Phys., Vol. ... FMD predicts a compact triangle shape and LEFT predicts a bent arm chain structure,.

  18. RARE KAON DECAYS

    International Nuclear Information System (INIS)

    LITTENBERG, L.

    2005-01-01

    Lepton flavor violation (LFV) experiments have probed sensitivities corresponding to mass scales of well over 100 TeV, making life difficult for models predicting accessible LFV in kaon decay and discouraging new dedicated experiments of this type

  19. Neutrinoless double beta decay

    Indian Academy of Sciences (India)

    2012-10-06

    Oct 6, 2012 ... Anyhow, the 'multi-isotope' ansatz is needed to compensate for matrix element ... The neccessary half-life requirement to touch this ... site energy depositions (like double beta decay) and multiple site interactions (most of.

  20. Cavities/Tooth Decay

    Science.gov (United States)

    ... milk, ice cream, honey, sugar, soda, dried fruit, cake, cookies, hard candy and mints, dry cereal, and ... teeth can wear down and gums may recede, making teeth more vulnerable to root decay. Older adults ...

  1. Inflaton decay in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Endo, M.; Takahashi, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yanagida, T.T. [Tokyo Univ. (Japan). Dept. of Physics]|[Tokyo Univ. (Japan). Research Center for the Early Universe

    2007-06-15

    We discuss inflaton decay in supergravity, taking account of the gravitational effects. It is shown that, if the inflaton has a nonzero vacuum expectation value, it generically couples to any matter fields that appear in the superpotential at the tree level, and to any gauge sectors through anomalies in the supergravity. Through these processes, the inflaton generically decays into the supersymmetry breaking sector, producing many gravitinos. The inflaton also directly decays into a pair of the gravitinos. We derive constraints on both inflation models and supersymmetry breaking scenarios for avoiding overproduction of the gravitinos. Furthermore, the inflaton naturally decays into the visible sector via the top Yukawa coupling and SU(3){sub C} gauge interactions. (orig.)

  2. Inflaton decay in supergravity

    International Nuclear Information System (INIS)

    Endo, M.; Takahashi, F.; Yanagida, T.T.; Tokyo Univ.

    2007-06-01

    We discuss inflaton decay in supergravity, taking account of the gravitational effects. It is shown that, if the inflaton has a nonzero vacuum expectation value, it generically couples to any matter fields that appear in the superpotential at the tree level, and to any gauge sectors through anomalies in the supergravity. Through these processes, the inflaton generically decays into the supersymmetry breaking sector, producing many gravitinos. The inflaton also directly decays into a pair of the gravitinos. We derive constraints on both inflation models and supersymmetry breaking scenarios for avoiding overproduction of the gravitinos. Furthermore, the inflaton naturally decays into the visible sector via the top Yukawa coupling and SU(3) C gauge interactions. (orig.)

  3. Double beta decay: experiments

    International Nuclear Information System (INIS)

    Fiorini, Ettore

    2006-01-01

    The results obtained so far and those of the running experiments on neutrinoless double beta decay are reviewed. The plans for second generation experiments, the techniques to be adopted and the expected sensitivities are compared and discussed

  4. Streamer chamber: pion decay

    CERN Multimedia

    1992-01-01

    The real particles produced in the decay of a positive pion can be seen in this image from a streamer chamber. Streamer chambers consist of a gas chamber through which a strong pulsed electric field is passed, creating sparks as a charged particle passes through it. A magnetic field is added to cause the decay products to follow curved paths so that their charge and momentum can be measured.

  5. Aspects of B decays

    Energy Technology Data Exchange (ETDEWEB)

    Faller, Sven

    2011-03-04

    B-meson decays are a good probe for testing the flavour sector of the standard model of particle physics. The standard model describes at present all experimental data satisfactorily, although some ''tensions'' exist, i.e. two to three sigma deviations from the predictions, in particular in B decays. The arguments against the standard model are thus purely theoretical. These tensions between experimental data and theoretical predictions provide an extension of the standard model by new physics contributions. Within the flavour sector main theoretical uncertainties are related to the hadronic matrix elements. For exclusive semileptonic anti B {yields} D{sup (*)}l anti {nu} decays QCD sum rule techniques, which are suitable for studying hadronic matrix elements, however, with substantial, but estimable hadronic uncertainties, are used. The exploration of new physics effects in B-meson decays is done in an twofold way. In exclusive semileptonic anti B {yields} D{sup (*)}l anti {nu} decays the effect of additional right-handed vector as well as left- and right-handed scalar and tensor hadronic current structures in the decay rates and the form factors are studied at the non-recoil point. As a second approach one studied the non-leptonic B{sup 0}{sub s}{yields}J/{psi}{phi} and B{sup 0}{yields}J/{psi}K{sub S,L} decays discussing CP violating effects in the time-dependent decay amplitudes by considering new physics phase in the B{sup 0}- anti B{sup 0} mixing phase. (orig.)

  6. Tau decays into kaons

    International Nuclear Information System (INIS)

    Finkemeier, M.; Mirkes, E.

    1995-04-01

    Predictions for semi-leptonic decay rates of the τ lepton into two meson final states and three meson final states are derived. The hadronic matrix elements are expressed in terms of form factors, which can be predicted by chiral Lagrangians supplemented by informations about all possible low-lying resonances in the different channels. Isospin symmetry relations among the different final states are carefully taken into account. The calculated brancing ratios are compared with measured decay rates where data are available

  7. Iconic Decay in Schizophrenia

    OpenAIRE

    Hahn, Britta; Kappenman, Emily S.; Robinson, Benjamin M.; Fuller, Rebecca L.; Luck, Steven J.; Gold, James M.

    2010-01-01

    Working memory impairment is considered a core deficit in schizophrenia, but the precise nature of this deficit has not been determined. Multiple lines of evidence implicate deficits at the encoding stage. During encoding, information is held in a precategorical sensory store termed iconic memory, a literal image of the stimulus with high capacity but rapid decay. Pathologically increased iconic decay could reduce the number of items that can be transferred into working memory before the info...

  8. Annihilation decays of bottomonium

    International Nuclear Information System (INIS)

    Monteiro, Antony Prakash; Bhat, Manjunath; D'Souza, Praveen P.; Vijaya Kumar, K.B.

    2016-01-01

    The bound state of a bottom quark b and its anti quark b-bar known as bottomonium was first seen in the spectrum of μμ"- pairs produced in 400 GeV proton-nucleus collisions at Fermilab. It was discovered as spin triplet states ϒ(1S), ϒ(2S) and ϒ(3S) by E288 collaboration at Fermilab. We have calculated annihilation decay widths of bottomonium states. The calculated decay widths are presented

  9. Rare psi decays

    International Nuclear Information System (INIS)

    Partridge, R.

    1986-01-01

    Slightly more than ten years have passed since the psi was discovered, yet the study of psi decays continues to be an active and fruitful area of research. One reason for such longevity is that each successive experiment has increased their sensitivity over previous experiments either by improving detection efficiency or by increasing statistics. This has allowed the observation and, in some cases, detailed studies of rare psi decays. Branching ratios of ≅10-/sup 4/ are now routinely studied, while certain decay channels are beginning to show interesting effects at the 10-/sup 5/ level. Future experiments at the Beijing Electron Positron Collider (BEPC) have the potential for increasing sensitivities by one or two orders of magnitude, thus enabling many interesting studies impossible with current data samples. The author first examines the extent to which psi decays can be used to study electroweak phenomena. The remainder of this work is devoted to the more traditional task of using the psi to study quarks, gluons, and the properties of the strong interaction. Of particular interest is the study of radioactive psi decays, where a number of new particles have been discovered. Recent results regarding two of these particles, the θ(1700) and iota(1450), are discussed, as well as a study of the quark content of the eta and eta' using decays of the psi to vector-pseudoscalar final states

  10. Decays of supernova neutrinos

    International Nuclear Information System (INIS)

    Lindner, Manfred; Ohlsson, Tommy; Winter, Walter

    2002-01-01

    Supernova neutrinos could be well-suited for probing neutrino decay, since decay may be observed even for very small decay rates or coupling constants. We will introduce an effective operator framework for the combined description of neutrino decay and neutrino oscillations for supernova neutrinos, which can especially take into account two properties: one is the radially symmetric neutrino flux, allowing a decay product to be re-directed towards the observer even if the parent neutrino had a different original direction of propagation. The other is decoherence because of the long baselines for coherently produced neutrinos. We will demonstrate how to use this effective theory to calculate the time-dependent fluxes at the detector. In addition, we will show the implications of a Majoron-like decay model. As a result, we will demonstrate that for certain parameter values one may observe some effects which could also mimic signals similar to the ones expected from supernova models, making it in general harder to separate neutrino and supernova properties

  11. Rare and forbidden decays

    CERN Document Server

    Trampetic, Josip

    2002-01-01

    In these lectures I first cover radiative and semileptonic B decays, including the QCD corrections for the quark subprocesses. The exclusive modes and the evaluation of the hadronic matrix elements, i.e. the relevant hadronic form factors, are the second step. Small effects due to the long-distance, spectator contributions, etc. are discussed next. The second section we started with non-leptonic decays, typically $B \\to \\pi\\pi, K\\pi, \\rho\\pi,...$ We describe in more detail our prediction for decays dominated by the $b\\to s \\eta_c$ transition. Reports on the most recent experimental results are given at the end of each subsection. In the second part of the lectures I discuss decays forbidden by the Lorentz and gauge invariance, and due to the violation of the angular moment conservation, generally called the Standard Model-forbiden decays. However, the non-commutative QED and/or non-commutative Standard Model (NCSM), developed in a series of works in the last few years allow some of those decay modes. These ar...

  12. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions.

    Directory of Open Access Journals (Sweden)

    Uhna Sung

    Full Text Available FRET (Förster Resonance Energy Transfer-based protein voltage sensors can be useful for monitoring neuronal activity in vivo because the ratio of signals between the donor and acceptor pair reduces common sources of noise such as heart beat artifacts. We improved the performance of FRET based genetically encoded Fluorescent Protein (FP voltage sensors by optimizing the location of donor and acceptor FPs flanking the voltage sensitive domain of the Ciona intestinalis voltage sensitive phosphatase. First, we created 39 different "Nabi1" constructs by positioning the donor FP, UKG, at 8 different locations downstream of the voltage-sensing domain and the acceptor FP, mKO, at 6 positions upstream. Several of these combinations resulted in large voltage dependent signals and relatively fast kinetics. Nabi1 probes responded with signal size up to 11% ΔF/F for a 100 mV depolarization and fast response time constants both for signal activation (~2 ms and signal decay (~3 ms. We improved expression in neuronal cells by replacing the mKO and UKG FRET pair with Clover (donor FP and mRuby2 (acceptor FP to create Nabi2 probes. Nabi2 probes also had large signals and relatively fast time constants in HEK293 cells. In primary neuronal culture, a Nabi2 probe was able to differentiate individual action potentials at 45 Hz.

  13. Heat-pump performance: voltage dip/sag, under-voltage and over-voltage

    Directory of Open Access Journals (Sweden)

    William J.B. Heffernan

    2014-12-01

    Full Text Available Reverse cycle air-source heat-pumps are an increasingly significant load in New Zealand and in many other countries. This has raised concern over the impact wide-spread use of heat-pumps may have on the grid. The characteristics of the loads connected to the power system are changing because of heat-pumps. Their performance during under-voltage events such as voltage dips has the potential to compound the event and possibly cause voltage collapse. In this study, results from testing six heat-pumps are presented to assess their performance at various voltages and hence their impact on voltage stability.

  14. RICH High Voltages & PDF Analysis @ LHCb

    CERN Multimedia

    Fanchini, E

    2009-01-01

    In the LHCb experiment an important issue is the identification of the hadrons of the final states of the B mesons decays. Two RICH subdetectors are devoted to this task, and the Hybrid Photon Detectors (HPDs) are the photodetectors used to detect Cherenkov light. In this poster there is a description of how the very high voltage (-18 KV) supply stability used to power the HPDs is monitored. It is also presented the basics of a study which can be done with the first collision data: the analysis of the dimuons from the Drell-Yan process. This process is well known and the acceptance of the LHCb detector in terms of pseudorapidity will be very useful to improve the knowledge of the proton structure functions or, alternatively, try to estimate the luminosity from it.

  15. Neutron decay, semileptonic hyperon decay and the Cabibbo model

    International Nuclear Information System (INIS)

    Siebert, H.W.

    1989-01-01

    The decay rates and formfactor ratios of neutron decay and semileptonic hyperon decays are compared in the framework of the Cabibbo model. The results indicate SU(3) symmetry breaking. The Kobayashi-Maskawa matrix element V us determined from these decays is in good agreement with the value determined from K→πeν decays, and with unitarity of the KM-matrix. (orig.)

  16. CP violation in B decay

    OpenAIRE

    Yamamoto, Hitoshi

    2001-01-01

    We review the physics of CP violation in B decays. After introducing the CKM matrix and how it causes CP violation, we cover three types of CP violation that can occur in B decays: CP violation in mixing, CP violation by mixing-decay interference, and CP violation in decay.

  17. Radioactive decay and labeled compounds

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter on radioactive decay and labeled compounds has numerous intext equations and worked, sample problems. Topics covered include the following: terms and mathematics of radioactive decay; examples of calculations; graphs of decay equations; radioactivity or activity; activity measurements; activity decay; half-life determinations; labeled compounds. A 20 problem set is also included. 1 ref., 4 figs., 1 tab

  18. Strength loss in decayed wood

    Science.gov (United States)

    Rebecca E. Ibach; Patricia K. Lebow

    2014-01-01

    Wood is a durable engineering material when used in an appropriate manner, but it is susceptible to biological decay when a log, sawn product, or final product is not stored, handled, or designed properly. Even before the biological decay of wood becomes visually apparent, the decay can cause the wood to become structurally unsound. The progression of decay to that...

  19. High voltage isolation transformer

    Science.gov (United States)

    Clatterbuck, C. H.; Ruitberg, A. P. (Inventor)

    1985-01-01

    A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.

  20. Sigma beta decay

    International Nuclear Information System (INIS)

    Newman, D.E.

    1975-01-01

    Describes an experiment to measure beta decays of the sigma particle. Sigmas produced by stopping a K - beam in a liquid hydrogen target decayed in the following reactions: Kp → Σπ; Σ → Neν. The electron and pion were detected by wire spark chambers in a magnetic spectrometer and by plastic scintillators, and were differentiated by a threshold gas Cherenkov counter. The neutron was detected by liquid scintillation counters. The data (n = 3) shell electrons or the highly excited electrons decay first. Instead, it is suggested that when there are two to five electrons in highly excited states immediately after a heavy ion--atom collision the first transitions to occur will be among highly excited Rydberg states in a cascade down to the 4s, 4p, and 3d-subshells. If one of the long lived states becomes occupied by electrons promoted during the collision or by electrons falling from higher levels, it will not decay until after the valence shell decays. LMM rates calculated to test the methods used are compared to previous works. The mixing coefficients are given in terms of the states 4s4p, 45sp+-, and 5s5p. The applicability of Cooper, Fano, and Prats' discussion of the energies and transition rates of doubly excited states is considered

  1. Pulse-voltage fast generator

    International Nuclear Information System (INIS)

    Valeev, R.I.; Nikiforov, M.G.; Kharchenko, A.F.

    1988-01-01

    The design is described and the test results of a four-channel pulse-voltage generator with maximum output voltage 200 kV are presented. The measurement results of generator triggering time depending on the value and polarity of the triggering voltage pulse for different triggering circuits are presented. The tests have shown stable triggering of all four channels of the generator in the range up to 40 % from selfbreakdown voltage. The generator triggering delay in the given range is <25 ns, asynchronism in channel triggering is <±1 ns

  2. Voltage Dependence of Supercapacitor Capacitance

    Directory of Open Access Journals (Sweden)

    Szewczyk Arkadiusz

    2016-09-01

    Full Text Available Electronic Double-Layer Capacitors (EDLC, called Supercapacitors (SC, are electronic devices that are capable to store a relatively high amount of energy in a small volume comparing to other types of capacitors. They are composed of an activated carbon layer and electrolyte solution. The charge is stored on electrodes, forming the Helmholtz layer, and in electrolyte. The capacitance of supercapacitor is voltage- dependent. We propose an experimental method, based on monitoring of charging and discharging a supercapacitor, which enables to evaluate the charge in an SC structure as well as the Capacitance-Voltage (C-V dependence. The measurement setup, method and experimental results of charging/discharging commercially available supercapacitors in various voltage and current conditions are presented. The total charge stored in an SC structure is proportional to the square of voltage at SC electrodes while the charge on electrodes increases linearly with the voltage on SC electrodes. The Helmholtz capacitance increases linearly with the voltage bias while a sublinear increase of total capacitance was found. The voltage on SC increases after the discharge of electrodes due to diffusion of charges from the electrolyte to the electrodes. We have found that the recovery voltage value is linearly proportional to the initial bias voltage value.

  3. Beta and muon decays

    International Nuclear Information System (INIS)

    Galindo, A.; Pascual, P.

    1967-01-01

    These notes represent a series of lectures delivered by the authors in the Junta de Energia Nuclear, during the Spring term of 1965. They were devoted to graduate students interested in the Theory of Elementary Particles. Special emphasis was focussed into the computational problems. Chapter I is a review of basic principles (Dirac equation, transition probabilities, final state interactions.) which will be needed later. In Chapter II the four-fermion punctual Interaction is discussed, Chapter III is devoted to the study of beta-decay; the main emphasis is given to the deduction of the formulae corresponding to electron-antineutrino correlation, electron energy spectrum, lifetimes, asymmetry of electrons emitted from polarized nuclei, electron and neutrino polarization and time reversal invariance in beta decay. In Chapter IV we deal with the decay of polarized muons with radiative corrections. Chapter V is devoted to an introduction to C.V.C. theory. (Author)

  4. Decay of superdeformed bands

    International Nuclear Information System (INIS)

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-01-01

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in 194 Hg. 42 refs., 5 figs

  5. Beta and muon decays

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, A; Pascual, P

    1967-07-01

    These notes represent a series of lectures delivered by the authors in the Junta de Energia Nuclear, during the Spring term of 1965. They were devoted to graduate students interested in the Theory of Elementary Particles. Special emphasis was focussed into the computational problems. Chapter I is a review of basic principles (Dirac equation, transition probabilities, final state interactions.) which will be needed later. In Chapter II the four-fermion punctual Interaction is discussed, Chapter III is devoted to the study of beta-decay; the main emphasis is given to the deduction of the formulae corresponding to electron-antineutrino correlation, electron energy spectrum, lifetimes, asymmetry of electrons emitted from polarized nuclei, electron and neutrino polarization and time reversal invariance in beta decay. In Chapter IV we deal with the decay of polarized muons with radiative corrections. Chapter V is devoted to an introduction to C.V.C. theory. (Author)

  6. Suppressed Charmed B Decay

    Energy Technology Data Exchange (ETDEWEB)

    Snoek, Hella Leonie [Vrije Univ., Amsterdam (Netherlands)

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  7. Weak interactions: muon decay

    International Nuclear Information System (INIS)

    Sachs, A.M.; Sirlin, A.

    1975-01-01

    The traditional theory of the dominant mode of muon decay is presented, a survey of the experiments which have measured the observable features of the decay is given, and those things which can be learned about the parameters and nature of the theory from the experimental results are indicated. The following aspects of the theory of muon decay are presented first: general four-fermion theory, two-component theory of the neutrino, V--A theory, two-component and V--A theories vs general four-fermion theory, intermediate-boson hypothesis, radiative corrections, radiative corrections in the intermediate-boson theory, and endpoint singularities and corrections of order α 2 . Experiments on muon lifetime, isotropic electron spectrum, total asymmetry and energy dependence of asymmetry of electrons from polarized muons, and electron polarization are described, and a summary of experimental results is given. 7 figures, 2 tables, 109 references

  8. Biophysical characterization of the fluorescent protein voltage probe VSFP2.3 based on the voltage-sensing domain of Ci-VSP.

    Science.gov (United States)

    Lundby, Alicia; Akemann, Walther; Knöpfel, Thomas

    2010-11-01

    A voltage sensitive phosphatase was discovered in the ascidian Ciona intestinalis. The phosphatase, Ci-VSP, contains a voltage-sensing domain homologous to those known from voltage-gated ion channels, but unlike ion channels, the voltage-sensing domain of Ci-VSP can reside in the cell membrane as a monomer. We fused the voltage-sensing domain of Ci-VSP to a pair of fluorescent reporter proteins to generate a genetically encodable voltage-sensing fluorescent probe, VSFP2.3. VSFP2.3 is a fluorescent voltage probe that reports changes in membrane potential as a FRET (fluorescence resonance energy transfer) signal. Here we report sensing current measurements from VSFP2.3, and show that VSFP2.3 carries 1.2 e sensing charges, which are displaced within 1.5 ms. The sensing currents become faster at higher temperatures, and the voltage dependence of the decay time constants is temperature dependent. Neutralization of an arginine in S4, previously suggested to be a sensing charge, and measuring associated sensing currents indicate that this charge is likely to reside at the membrane-aqueous interface rather than within the membrane electric field. The data presented give us insights into the voltage-sensing mechanism of Ci-VSP, which will allow us to further improve the sensitivity and kinetics of the family of VSFP proteins.

  9. Temporary over voltages in the high voltage networks

    International Nuclear Information System (INIS)

    Vukelja, Petar; Naumov, Radomir; Mrvic, Jovan; Minovski, Risto

    2001-01-01

    The paper treats the temporary over voltages that may arise in the high voltage networks as a result of: ground faults, loss of load, loss of one or two phases and switching operation. Based on the analysis, the measures for their limitation are proposed. (Original)

  10. Sequential decay of Reggeons

    International Nuclear Information System (INIS)

    Yoshida, Toshihiro

    1981-01-01

    Probabilities of meson production in the sequential decay of Reggeons, which are formed from the projectile and the target in the hadron-hadron to Reggeon-Reggeon processes, are investigated. It is assumed that pair creation of heavy quarks and simultaneous creation of two antiquark-quark pairs are negligible. The leading-order terms with respect to ratio of creation probabilities of anti s s to anti u u (anti d d) are calculated. The production cross sections in the target fragmentation region are given in terms of probabilities in the initial decay of the Reggeons and an effect of manyparticle production. (author)

  11. Do protons decay

    International Nuclear Information System (INIS)

    Litchfield, P.J.

    1984-09-01

    The experimental status of proton decay is reviewed after the Leipzig International conference, July 1984. A brief comparative description of the currently active experiments is given. From the overall samples of contained events it can be concluded that the experiments are working well and broadly agree with each other. The candidates for proton decay from each experiment are examined. Although several experiments report candidates at a higher rate than expected from background calculations, the validity of these calculations is still open to doubt. (author)

  12. 103Pd decay

    International Nuclear Information System (INIS)

    Belyavenko, V.S.; Borozenets, G.P.; Vishnevskij, I.N.; Zheltonozhskij, V.A.

    1986-01-01

    103 Pd decay in different chemical states has been investigated. The change of the partial half-life period equal to 0.67±0.15% has been detected. The γ-spectrum has been measured to a high precision. The new data have been obtained on population probabilities of 103 Rh excited states and the total energy of decay for 103 Pd has been determined to a high precision (543.0±0.8). The values of log ft have been determined

  13. Decay of 99Mo

    International Nuclear Information System (INIS)

    Dickens, J.K.; Love, T.A.

    1976-01-01

    Relative intensities for K x-rays and gamma rays emanating from 99 Mo in equilibrium with its 99 Tc* daughter have been measured using several Ge photon detectors. Combining these intensities with an evaluated set of electron-conversion coefficients has provided a set of absolute intensities for the observed gamma rays. The absolute intensity for the dominant 140.5-keV gamma ray in 99 Tc was determined to be 90.7 +- 0.6/100 99 Mo disintegrations for 99 Mo decay in equilibrium with decay of the 99 Tc* daughter

  14. Supersymmetry in Z' decays

    International Nuclear Information System (INIS)

    Corcella, G.

    2014-01-01

    I study the phenomenology of new heavy neutral gauge bosons Z', predicted by Grand Unification Theories-driven U(1)' gauge groups and by the sequential standard model. BSM (Beyond Standard Model) decays into supersymmetric final states are accounted for, besides the SM (Standard Model) modes usually investigated. I give an estimate of the number of supersymmetric events in Z' decays possibly expected at LHC, as well as of the product of the Z' cross section times the branching fraction into electron and muon pairs. (author)

  15. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells

    Science.gov (United States)

    Akkerman, Quinten A.; Gandini, Marina; di Stasio, Francesco; Rastogi, Prachi; Palazon, Francisco; Bertoni, Giovanni; Ball, James M.; Prato, Mirko; Petrozza, Annamaria; Manna, Liberato

    2016-12-01

    Lead halide perovskite semiconductors have recently gained wide interest following their successful embodiment in solid-state photovoltaic devices with impressive power-conversion efficiencies, while offering a relatively simple and low-cost processability. Although the primary optoelectronic properties of these materials have already met the requirement for high-efficiency optoelectronic technologies, industrial scale-up requires more robust processing methods, as well as solvents that are less toxic than the ones that have been commonly used so successfully on the lab-scale. Here we report a fast, room-temperature synthesis of inks based on CsPbBr3 perovskite nanocrystals using short, low-boiling-point ligands and environmentally friendly solvents. Requiring no lengthy post-synthesis treatments, the inks are directly used to fabricate films of high optoelectronic quality, exhibiting photoluminescence quantum yields higher than 30% and an amplified spontaneous emission threshold as low as 1.5 μJ cm-2. Finally, we demonstrate the fabrication of perovskite nanocrystal-based solar cells, with open-circuit voltages as high as 1.5 V.

  16. Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition.

    Science.gov (United States)

    Yao, Maoqing; Cong, Sen; Arab, Shermin; Huang, Ningfeng; Povinelli, Michelle L; Cronin, Stephen B; Dapkus, P Daniel; Zhou, Chongwu

    2015-11-11

    Multijunction solar cells provide us a viable approach to achieve efficiencies higher than the Shockley-Queisser limit. Due to their unique optical, electrical, and crystallographic features, semiconductor nanowires are good candidates to achieve monolithic integration of solar cell materials that are not lattice-matched. Here, we report the first realization of nanowire-on-Si tandem cells with the observation of voltage addition of the GaAs nanowire top cell and the Si bottom cell with an open circuit voltage of 0.956 V and an efficiency of 11.4%. Our simulation showed that the current-matching condition plays an important role in the overall efficiency. Furthermore, we characterized GaAs nanowire arrays grown on lattice-mismatched Si substrates and estimated the carrier density using photoluminescence. A low-resistance connecting junction was obtained using n(+)-GaAs/p(+)-Si heterojunction. Finally, we demonstrated tandem solar cells based on top GaAs nanowire array solar cells grown on bottom planar Si solar cells. The reported nanowire-on-Si tandem cell opens up great opportunities for high-efficiency, low-cost multijunction solar cells.

  17. Computer controlled high voltage system

    Energy Technology Data Exchange (ETDEWEB)

    Kunov, B; Georgiev, G; Dimitrov, L [and others

    1996-12-31

    A multichannel computer controlled high-voltage power supply system is developed. The basic technical parameters of the system are: output voltage -100-3000 V, output current - 0-3 mA, maximum number of channels in one crate - 78. 3 refs.

  18. A Voltage Quality Detection Method

    DEFF Research Database (Denmark)

    Chen, Zhe; Wei, Mu

    2008-01-01

    This paper presents a voltage quality detection method based on a phase-locked loop (PLL) technique. The technique can detect the voltage magnitude and phase angle of each individual phase under both normal and fault power system conditions. The proposed method has the potential to evaluate various...

  19. Triton beta decay

    International Nuclear Information System (INIS)

    Saito, T.Y.; Wu, Y.; Ishikawa, S.; Sasakawa, T.

    1990-01-01

    Triton β-decay has been calculated using wave functions for 3 He and 3 H obtained from (Coulomb-modified) Faddeev equations for various interactions. We get a value for the Gamow-Teller matrix element of √3 (0.962±0.002) without regards to two- or three-nucleon inteactions. This value agrees with the experimental value. (orig.)

  20. Unparticles and muon decay

    International Nuclear Information System (INIS)

    Choudhury, Debajyoti; Ghosh, Dilip Kumar; Mamta

    2008-01-01

    Recently Georgi has discussed the possible existence of 'Unparticles' describable by operators having non-integral scaling dimensions. With the interaction of these with the Standard Model particles being constrained only by gauge and Lorentz symmetries, it affords a new source for lepton flavour violation. Current and future muon decay experiments are shown to be very sensitive to such scenarios

  1. Unparticles and muon decay

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Debajyoti [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Ghosh, Dilip Kumar [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)], E-mail: dkghosh@physics.du.ac.in; Mamta [Department of Physics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110 007 (India)

    2008-01-03

    Recently Georgi has discussed the possible existence of 'Unparticles' describable by operators having non-integral scaling dimensions. With the interaction of these with the Standard Model particles being constrained only by gauge and Lorentz symmetries, it affords a new source for lepton flavour violation. Current and future muon decay experiments are shown to be very sensitive to such scenarios.

  2. Gluons in quarkonium decay

    International Nuclear Information System (INIS)

    Koller, K.; Walsh, T.

    1978-03-01

    We discuss what can be learned of the 3 S 1 quarkonium decay QantiQ → 3 gluoans QantiQ → γ + 2 gluons. The former is a way to find gluon jets and test QCD. The latter also allows us to measure gluoan + gluon → hadrons and look for pure gluonic resonances (glueballs). (orig.) [de

  3. Symmetry violating kaon decays

    International Nuclear Information System (INIS)

    Herczeg, P.

    1979-01-01

    An analysis of the muon number violating decay modes of the K-mesons is given. Subsequently, some new developments in the field of CP-violation are reviewed and the question of time-reversal invariance and the status of CPT-invariance are briefly considered. 42 references

  4. Double Beta Decay Experiments

    International Nuclear Information System (INIS)

    Piepke, A.

    2005-01-01

    The experimental observation of neutrino oscillations and thus neutrino mass and mixing gives a first hint at new particle physics. The absolute values of the neutrino mass and the properties of neutrinos under CP-conjugation remain unknown. The experimental investigation of the nuclear double beta decay is one of the key techniques for solving these open problems

  5. On the proton decay

    International Nuclear Information System (INIS)

    Fonda, L.; Ghirardi, G.C.; Weber, T.

    1983-07-01

    The problem of the proton decay is considered taking into account that in actual experiments there is an interaction of the proton with its environment which could imply an increase of its theoretical lifetime. It is seen that, by application of the time-energy uncertainty relation, no prolongation of the lifetime is obtained in this case. (author)

  6. Cosmology with decaying particles

    International Nuclear Information System (INIS)

    Turner, M.S.

    1984-09-01

    We consider a cosmological model in which an unstable massive relic particle species (denoted by X) has an initial mass density relative to baryons β -1 identically equal rho/sub X//rho/sub B/ >> 1, and then decays recently (redshift z less than or equal to 1000) into particles which are still relativistic today (denoted by R). We write down and solve the coupled equations for the cosmic scale factor a(t), the energy density in the various components (rho/sub X/, rho/sub R/, rho/sub B/), and the growth of linear density perturbations (delta rho/rho). The solutions form a one parameter (β) family of solutions; physically β -1 approx. = (Ω/sub R//Ω/sub NR/) x (1 + z/sub D/) = (ratio today of energy density of relativistic to nonrelativistic particles) x (1 + redshift of (decay)). We discuss the observational implications of such a cosmological model and compare our results to earlier results computed in the simultaneous decay approximation. In an appendix we briefly consider the case where one of the decay products of the X is massive and becomes nonrelativistic by the present epoch. 21 references

  7. Cosmology with decaying particles

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S.

    1984-09-01

    We consider a cosmological model in which an unstable massive relic particle species (denoted by X) has an initial mass density relative to baryons ..beta../sup -1/ identically equal rho/sub X//rho/sub B/ >> 1, and then decays recently (redshift z less than or equal to 1000) into particles which are still relativistic today (denoted by R). We write down and solve the coupled equations for the cosmic scale factor a(t), the energy density in the various components (rho/sub X/, rho/sub R/, rho/sub B/), and the growth of linear density perturbations (delta rho/rho). The solutions form a one parameter (..beta..) family of solutions; physically ..beta../sup -1/ approx. = (..cap omega../sub R//..cap omega../sub NR/) x (1 + z/sub D/) = (ratio today of energy density of relativistic to nonrelativistic particles) x (1 + redshift of (decay)). We discuss the observational implications of such a cosmological model and compare our results to earlier results computed in the simultaneous decay approximation. In an appendix we briefly consider the case where one of the decay products of the X is massive and becomes nonrelativistic by the present epoch. 21 references.

  8. Classification of decays involving variable decay chains with convolutional architectures

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Vidyo contribution We present a technique to perform classification of decays that exhibit decay chains involving a variable number of particles, which include a broad class of $B$ meson decays sensitive to new physics. The utility of such decays as a probe of the Standard Model is dependent upon accurate determination of the decay rate, which is challenged by the combinatorial background arising in high-multiplicity decay modes. In our model, each particle in the decay event is represented as a fixed-dimensional vector of feature attributes, forming an $n \\times k$ representation of the event, where $n$ is the number of particles in the event and $k$ is the dimensionality of the feature vector. A convolutional architecture is used to capture dependencies between the embedded particle representations and perform the final classification. The proposed model performs outperforms standard machine learning approaches based on Monte Carlo studies across a range of variable final-state decays with the Belle II det...

  9. Voltage Controlled Dynamic Demand Response

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Future power system is expected to be characterized by increased penetration of intermittent sources. Random and rapid fluctuations in demands together with intermittency in generation impose new challenges for power balancing in the existing system. Conventional techniques of balancing by large...... central or dispersed generations might not be sufficient for future scenario. One of the effective methods to cope with this scenario is to enable demand response. This paper proposes a dynamic voltage regulation based demand response technique to be applied in low voltage (LV) distribution feeders....... An adaptive dynamic model has been developed to determine composite voltage dependency of an aggregated load on feeder level. Following the demand dispatch or control signal, optimum voltage setting at the LV substation is determined based on the voltage dependency of the load. Furthermore, a new technique...

  10. Transient voltage oscillations in coils

    International Nuclear Information System (INIS)

    Chowdhuri, P.

    1985-01-01

    Magnet coils may be excited into internal voltage oscillations by transient voltages. Such oscillations may electrically stress the magnet's dielectric components to many times its normal stress. This may precipitate a dielectric failure, and the attendant prolonged loss of service and costly repair work. Therefore, it is important to know the natural frequencies of oscillations of a magnet during the design stage, and to determine whether the expected switching transient voltages can excite the magnet into high-voltage internal oscillations. The series capacitance of a winding significantly affects its natural frequencies. However, the series capacitance is difficult to calculate, because it may comprise complex capacitance network, consisting of intra- and inter-coil turn-to-turn capacitances of the coil sections. A method of calculating the series capacitance of a winding is proposed. This method is rigorous but simple to execute. The time-varying transient voltages along the winding are also calculated

  11. A utility piezoelectric energy harvester with low frequency and high-output voltage: Theoretical model, experimental verification and energy storage

    Directory of Open Access Journals (Sweden)

    Guangyi Zhang

    2016-09-01

    Full Text Available In this paper, a utility piezoelectric energy harvester with low frequency and high-output voltage is presented. Firstly, the harvester’s three theoretical models are presented, namely the static model, the quasi static model and the dynamic vibration model. By analyzing the influence of the mass ratio of the mass block to the beam on output characteristics of the harvester, we compare the quasi static model and the dynamic vibration model and then define their applicable ranges. Secondly, simulation and experiments are done to verify the models, using the harvester with PZT-5H piezoelectric material, which are proved to be consistent with each other. The experimental results show that the output open-circuit voltage and the output power can reach up to 86.36V and 27.5mW respectively. The experiments are conducted when this harvester system is excited by the first modal frequency (58.90Hz with the acceleration 10m/s2. In this low frequency vibration case, it is easy to capture the energy in the daily environment. In addition, LTC 3588-1 chip (Linear Technology Corporation is used as the medium energy circuit to transfer charges from the PZT-5H electrode to the 0.22F 5V super capacitor and ML621 rechargeable button battery. For this super-capacitor, it takes about 100min for the capacitor voltage to rise from 0V to 3.6V. For this button battery, it takes about 200min to increase the battery voltage from 2.5V to 3.48V.

  12. Rare B decays at LEP

    CERN Document Server

    Kluit, P M

    2001-01-01

    The results of the LEP experiments for rare B decays will be reviewed, covering hadronic final states, radiative and other rare decays and results for the inclusive charmless branching ratio. (8 refs).

  13. JNDC FP decay data file

    International Nuclear Information System (INIS)

    Yamamoto, Tohru; Akiyama, Masatsugu

    1981-02-01

    The decay data file for fission product nuclides (FP DECAY DATA FILE) has been prepared for summation calculation of the decay heat of fission products. The average energies released in β- and γ-transitions have been calculated with computer code PROFP. The calculated results and necessary information have been arranged in tabular form together with the estimated results for 470 nuclides of which decay data are not available experimentally. (author)

  14. Visible neutrino decay at DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Coloma, Pilar [Fermilab; Peres, Orlando G. [ICTP, Trieste

    2017-05-09

    If the heaviest neutrino mass eigenstate is unstable, its decay modes could include lighter neutrino eigenstates. In this case part of the decay products could be visible, as they would interact at neutrino detectors via mixing. At neutrino oscillation experiments, a characteristic signature of such \\emph{visible neutrino decay} would be an apparent excess of events at low energies. We focus on a simple phenomenological model in which the heaviest neutrino decays as $\

  15. LOFT voltage insertion calibaration program

    International Nuclear Information System (INIS)

    Tillitt, D.N.; Miyasaki, F.S.

    1975-08-01

    The Loss-of-Fluid Test (LOFT) Facility is an experimental facility built around a ''scaled'' version of a large pressurized water reactor (LPWR). Part of this facility is the Data Acquisition and Visual Display System (DAVDS) as defined by the LOFT System Design Document SDD 1.4.2C. The DAVDS has a 702 data channel recording capability of which 548 are recorded digitally. The DAVDS also contains a Voltage Insertion Calibration Subsystem used to inject precise and known voltage steps into the recording systems. The computer program that controls the Voltage Insertion Calibration Subsystem is presented. 7 references. (auth)

  16. Power-MOSFET Voltage Regulator

    Science.gov (United States)

    Miller, W. N.; Gray, O. E.

    1982-01-01

    Ninety-six parallel MOSFET devices with two-stage feedback circuit form a high-current dc voltage regulator that also acts as fully-on solid-state switch when fuel-cell out-put falls below regulated voltage. Ripple voltage is less than 20 mV, transient recovery time is less than 50 ms. Parallel MOSFET's act as high-current dc regulator and switch. Regulator can be used wherever large direct currents must be controlled. Can be applied to inverters, industrial furnaces photovoltaic solar generators, dc motors, and electric autos.

  17. Character of decay instability

    International Nuclear Information System (INIS)

    Polovin, R.V.; Demutskii, V.P.

    1981-01-01

    If the initial wave is unstable in the upper half plane Im ω>0 and there are no branch points of the quasiwave number, or if waves traveling in the same direction coalesce at a branch point, the instability is convective. On the other hand, if a branch point k(ω) does exist in the upper half-plane Im ω>0, and not all the waves that merge at this point travel in the same direction, the instability is absolute. A Green's function that describes the evolution of the perturbations of the initial wave in space and in time is constructed. The growth rates of the decay instability of the harmonics are determined. The produced waves are richer in harmonics than the initial waves. It is shown that the decay instability of an Alfven wave is absolute

  18. Decay of 57Ni

    International Nuclear Information System (INIS)

    Santos Scardino, A.M. dos.

    1987-01-01

    The decay of 57 Ni to 57 Co was studied by gamma ray spectroscopy using both singles and coincidence spectra. The sources were obtained with the 58 Ni (Y,n) 57 Ni reaction. Natural metallic nickel was irradiated in the bremsstrahluhng beam of the linear accelerator of the Instituto de Fisica da Universidade de Sao Paulo with 30 MeV electrons. The singles espectra were taken with 104 cc HPGe detector and the coincidences espectra with 27 and 53cc Ge(Li) and 104 cc. HPGe detectors. The energies of transitions that follow the 57 Ni decay were measured using 56 Co as standard (which was obtained by (Y,np) reaction in 58 Ni) and taking into account the cascade cross-over relations. (author) [pt

  19. Electroweak penguin B decays

    CERN Document Server

    Nikodem, Thomas

    2016-01-01

    Flavour Changing Neutral Currents (FCNC) are sensitive probes for physics beyond the Standard Model (SM), so-called New Physics. An example of a FCNC is the $b \\to s$ quark transition described by the electroweak penguin Feynman diagram shown in Figure 1. In the SM such FCNC are only allowed with a loop structure (as e:g: shown in the figure) and not by tree level processes. In the loops heavy particles appear virtually and do not need to be on shell. Therefore also not yet discovered heavy particles with up to a mass $\\mathcal{O}$(TeV) could virtually contribute significantly to observables. Several recent measurements of electroweak penguin B decays exhibit interesting tensions with SM predictions, most prominently in the angular observable $P'_5$ 5 of the decay $B^0 \\to K^{*0} \\mu^+ \\mu^1$[1], which triggered a lot of discussion in the theory community [2]-[14].

  20. Decay /sup 133/Ba

    Energy Technology Data Exchange (ETDEWEB)

    Singh, K; Hasiza, M L; Grewal, B S; Sahota, H S

    1982-07-01

    The relative gamma ray intensities of transitions in the decay of /sup 133/Ba have been measured using an intrinsic Ge detector. The electron capture branching ratios have been determined for 81, 161, 384 and 437 keV levels. The attenuation effect of long half-life of 81 keV levels has been studied in solid and liquid media. The electron capture decay has been investigated by changing the concentration of ethylene-diamine-tetraacetic acid (EDTA) environment. The 5/2/sup +/ yields 5/2/sup +/ 79.67 keV transition has an E0 to E2 intensity qsub(k)sup(2) <= 0.31. 10 refs., 4 figures.

  1. Hypernuclear weak decay puzzle

    International Nuclear Information System (INIS)

    Barbero, C.; Horvat, D.; Narancic, Z.; Krmpotic, F.; Kuo, T.T.S.; Tadic, D.

    2002-01-01

    A general shell model formalism for the nonmesonic weak decay of the hypernuclei has been developed. It involves a partial wave expansion of the emitted nucleon waves, preserves naturally the antisymmetrization between the escaping particles and the residual core, and contains as a particular case the weak Λ-core coupling formalism. The extreme particle-hole model and the quasiparticle Tamm-Dancoff approximation are explicitly worked out. It is shown that the nuclear structure manifests itself basically through the Pauli principle, and a very simple expression is derived for the neutron- and proton-induced decays rates Γ n and Γ p , which does not involve the spectroscopic factors. We use the standard strangeness-changing weak ΛN→NN transition potential which comprises the exchange of the complete pseudoscalar and vector meson octets (π,η,K,ρ,ω,K * ), taking into account some important parity-violating transition operators that are systematically omitted in the literature. The interplay between different mesons in the decay of Λ 12 C is carefully analyzed. With the commonly used parametrization in the one-meson-exchange model (OMEM), the calculated rate Γ NM =Γ n +Γ p is of the order of the free Λ decay rate Γ 0 (Γ NM th congruent with Γ 0 ) and is consistent with experiments. Yet the measurements of Γ n/p =Γ n /Γ p and of Γ p are not well accounted for by the theory (Γ n/p th p th > or approx. 0.60Γ 0 ). It is suggested that, unless additional degrees of freedom are incorporated, the OMEM parameters should be radically modified

  2. Meson radiative decays

    International Nuclear Information System (INIS)

    Edwards, B.J.; Kamal, A.N.

    1979-04-01

    The status of decays of the kind V → Pγ and P → Vγviewed with special emphasis on the work done by the authors in this field. The low experimental value of GAMMA(rho → πγ) remains the outstanding problem. The lastest preliminary numbers from a Fermi Laboratory experiment go in the right direction but not far enough. 15 references

  3. Decay of 83Sr

    International Nuclear Information System (INIS)

    Yu Xiaohan; Shi Shuanghui; Gu Jiahui

    1997-01-01

    The decay of 83 Sr was reinvestigated using γ singles and γ-γ-t coincidence measurement. A new level scheme of Rb, which contains 41 excited levels and about 180 transitions, is constructed. 19 new levels were added to the old level scheme and 8 formerly adopted levels were denied. A new data set of branching ratio, log(ft) value and spin parity was obtained

  4. MULTIFLUID MAGNETOHYDRODYNAMIC TURBULENT DECAY

    International Nuclear Information System (INIS)

    Downes, T. P.; O'Sullivan, S.

    2011-01-01

    It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation that occurs within them. Non-ideal magnetohydrodynamic (MHD) effects are known to influence the nature of this turbulence. We present the results of a suite of 512 3 resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity, and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingly we find that, at least at these resolutions, the majority of the physics of multifluid turbulence can be captured by simply introducing fixed (in time and space) resistive terms into the induction equation without the need for a full multifluid MHD treatment. The velocity dispersion is also examined and, in common with previously published results, it is found not to be power law in nature.

  5. 152Eu decay

    International Nuclear Information System (INIS)

    Artamonova, K.P.; Vinogradov, V.M.; Grigor'ev, E.P.; Zolotavin, A.V.; Makarov, V.M.; Sergeev, V.O.; Usynko, T.M.

    1978-01-01

    The purpose of this paper is the measurement of the relative intensities of the most intensive conversion lines of 152 Eu, the determination of as reliable as possible magnitudes of the intensities of γ-quanta using all the available data on γ-radiation of 152 Eu, the measurement of the interval conversion coefficients (ICC) for the most intensive γ-transitions, the determination of the probabilities of the 152 Eu β-decays to the 152 Sm and 152 Gd levels. The conversion lines of the most intensive γ-transitions in the 152 Eu decay are studied and the corresponding ICC are measured on the beta-spectrometers of π√2 and UMB type. The balance for the γ-transitions in the 152 Sm and 152 Gd daughter nuclei are presented. This balance is used to determine the absolute intensities of γ-rays (in terms of the percentage of the 152 Eu decays) and the probabilities of β-transitions to the levels of daughter nuclei. More accurate data on γ-rays and conversion electrons obtained can be used for the calibration of gamma and beta spectrometers

  6. Modular High Voltage Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-18

    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  7. RADIATIVE PENGUIN DECAYS FROM BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Eigen, Gerald

    2003-08-28

    Electroweak penguin decays provide a promising hunting ground for Physics beyond the Standard Model (SM). The decay B {yields} X{sub s}{gamma}, which proceeds through an electromagnetic penguin loop, already provides stringent constraints on the supersymmetric (SUSY) parameter space. The present data samples of {approx}1 x 10{sup 8} B{bar B} events allow to explore radiative penguin decays with branching fractions of the order of 10{sup -6} or less. In this brief report they discuss a study of B {yields} K*{ell}{sup +}{ell}{sup -} decay modes and a search for B {yields} {rho}({omega}){gamma} decays.

  8. Shannon entropy and particle decays

    Science.gov (United States)

    Carrasco Millán, Pedro; García-Ferrero, M. Ángeles; Llanes-Estrada, Felipe J.; Porras Riojano, Ana; Sánchez García, Esteban M.

    2018-05-01

    We deploy Shannon's information entropy to the distribution of branching fractions in a particle decay. This serves to quantify how important a given new reported decay channel is, from the point of view of the information that it adds to the already known ones. Because the entropy is additive, one can subdivide the set of channels and discuss, for example, how much information the discovery of a new decay branching would add; or subdivide the decay distribution down to the level of individual quantum states (which can be quickly counted by the phase space). We illustrate the concept with some examples of experimentally known particle decay distributions.

  9. Reliability criteria for voltage stability

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Carson W; Silverstein, Brian L [Bonneville Power Administration, Portland, OR (United States)

    1994-12-31

    In face of costs pressures, there is need to allocate scare resources more effectively in order to achieve voltage stability. This naturally leads to development of probabilistic criteria and notions of rick management. In this paper it is presented a discussion about criteria for long term voltage stability limited to the case in which the time frames are topically several minutes. (author) 14 refs., 1 fig.

  10. High voltage distributions in RPCs

    International Nuclear Information System (INIS)

    Inoue, Y.; Muranishi, Y.; Nakamura, M.; Nakano, E.; Takahashi, T.; Teramoto, Y.

    1996-01-01

    High voltage distributions on the inner surfaces of RPCs electrodes were calculated by using a two-dimensional resistor network model. The calculated result shows that the surface resistivity of the electrodes should be high, compared to their volume resistivity, to get a uniform high voltage over the surface. Our model predicts that the rate capabilities of RPCs should be inversely proportional to the thickness of the electrodes if the ratio of surface-to-volume resistivity is low. (orig.)

  11. Column: Factors Affecting Data Decay

    Directory of Open Access Journals (Sweden)

    Kevin Fairbanks

    2012-06-01

    Full Text Available In nuclear physics, the phrase decay rate is used to denote the rate that atoms and other particles spontaneously decompose. Uranium-235 famously decays into a variety of daughter isotopes including Thorium and Neptunium, which themselves decay to others. Decay rates are widely observed and wildly different depending on many factors, both internal and external. U-235 has a half-life of 703,800,000 years, for example, while free neutrons have a half-life of 611 seconds and neutrons in an atomic nucleus are stable.We posit that data in computer systems also experiences some kind of statistical decay process and thus also has a discernible decay rate. Like atomic decay, data decay fluctuates wildly. But unlike atomic decay, data decay rates are the result of so many different interplaying processes that we currently do not understand them well enough to come up with quantifiable numbers. Nevertheless, we believe that it is useful to discuss some of the factors that impact the data decay rate, for these factors frequently determine whether useful data about a subject can be recovered by forensic investigation.(see PDF for full column

  12. Transient photoluminescence decay investigations of LPE GaAs heteroface solar cells

    International Nuclear Information System (INIS)

    Wettling, W.; Ehrhardt, A.; Brett, A.; Lutz, F.

    1990-01-01

    The transient photoluminescence decay (PLD) is investigated as a technique for the quality control of GaAs solar cells. An analytic expression for the PL intensity is derived from the time dependent continuity equation for minority carrier concentration in the emitter by the Fourier transform method. On both sides of the emitter, i.e. at the interface to the window layer and to the space charge region, surface recombination velocities that can vary between 0 and ∞ are allowed as boundary conditions. Experiments were performed using a mode-locked and cavity dumped laser as excitation source and an optical sampling oscilloscope as detector for the transient PL. PLD from GaAs wafers and solar cells was measured with time resolution of down to 20 ps for various intensities of laser excitation and (for the cells) under open-circuit and short-circuit condition. The results are discussed in respect to the theory together with a model of local internal boundary conditions at the junction near the exciting laser beam

  13. Rare B decays at LHCb

    CERN Document Server

    Puig Navarro, Albert

    2017-01-01

    Rare decays are flavour changing neutral current processes that allow sensitive searches for phenomena beyond the Standard Model (SM). In the SM, rare decays are loop-suppressed and new particles in SM extensions can give significant contributions. The very rare decay $B^0_s\\to\\mu^+\\mu^-$ in addition helicity suppressed and constitutes a powerful probe for new (pseudo) scalar particles. Of particular interest are furthermore tests of lepton universality in rare $b\\to s\\ell^+\\ell^-$ decays. The LHCb experiment is designed for the study of b-hadron decays and ideally suited for the analysis of rare decays due to its high trigger efficiency, as well as excellent tracking and particle identification performance. Recent results from the LHCb experiment in the area of rare decays are presented, including tests of lepton universality and searches for lepton flavour violation.

  14. B decays to open charm

    CERN Document Server

    AUTHOR|(CDS)2073670

    2016-01-01

    Studies of $B$ meson decays to states involving open charm mesons in data recorded by the LHCb experiment have resulted in first observations of several new decay modes, including $B_s^{0} \\rightarrow D_s^{*\\mp} K^{\\pm}$, $B_s^{0} \\rightarrow \\overline{D}^{0} K_S^{0}$ and $B^{+} \\rightarrow D^{+} K^{+} \\pi^{-}$ decays. An upper limit has been placed on the branching fraction of $B_s^{0} \\rightarrow \\overline{D}^{0} f_0(980)$ decays. Measurements of other branching fractions, such as those of $B_s^{0} \\rightarrow D_s^{(*)+} D_s^{(*)-}$ decays, are the most precise to date. Additionally, amplitude analyses of $B^{0} \\rightarrow \\overline{D}^{0} \\pi^{+} \\pi^{-}$ and $B^{0} \\rightarrow \\overline{D}^{0} K^{+} \\pi^{-}$ decays have been performed, alongside the first $CP$ violation analysis using the Dalitz plot of $B^{0} \\rightarrow D K^{+} \\pi^{-}$ decays.

  15. Macroeconomic Assessment of Voltage Sags

    Directory of Open Access Journals (Sweden)

    Sinan Küfeoğlu

    2016-12-01

    Full Text Available The electric power sector has changed dramatically since the 1980s. Electricity customers are now demanding uninterrupted and high quality service from both utilities and authorities. By becoming more and more dependent on the voltage sensitive electronic equipment, the industry sector is the one which is affected the most by voltage disturbances. Voltage sags are one of the most crucial problems for these customers. The utilities, on the other hand, conduct cost-benefit analyses before going through new investment projects. At this point, understanding the costs of voltage sags become imperative for planning purposes. The characteristics of electric power consumption and hence the susceptibility against voltage sags differ considerably among different industry subsectors. Therefore, a model that will address the estimation of worth of electric power reliability for a large number of customer groups is necessary. This paper introduces a macroeconomic model to calculate Customer Voltage Sag Costs (CVSCs for the industry sector customers. The proposed model makes use of analytical data such as value added, annual energy consumption, working hours, and average outage durations and provides a straightforward, credible, and easy to follow methodology for the estimation of CVSCs.

  16. A matter of quantum voltages

    Energy Technology Data Exchange (ETDEWEB)

    Sellner, Bernhard; Kathmann, Shawn M., E-mail: Shawn.Kathmann@pnnl.gov [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V{sub o}) – the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V{sub o} from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V{sub o} for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V{sub o} as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms.

  17. Decay of 36K

    International Nuclear Information System (INIS)

    Fritts, M.J.

    1976-01-01

    36 K was produced via the 36 Ar(p, n) 36 K reaction. Measurement of 27 β + delayed γ rays associated with the decay of 36 K implied 10 new β + branches to energy levels in 36 Ar. Branching ratios and logft values are calculated for the β + branches. Restrictions on spin and parity assignments for the 36 Ar levels are given, as well as branching ratios for γ transitions from these levels. The half-life of 36 K is determined to be 344 +- 3 msec

  18. η decays at Saclay

    International Nuclear Information System (INIS)

    Mayer, B.

    1991-01-01

    A facility dedicated to the production of η mesons has been installed at the Saturne synchrotron with the purpose of investigating rare decays of this meson. The η are produced by the pd → 3 Heη reaction near threshold and tagged by the detection of 3 He in a magnetic spectrometer (SPES2). A rate of 10 5 /s tagged η can be achieved. In the first experiment, η → μ + μ - , the μ will be detected in range telescopes. Magnetic spectrometers for lepton detection are considered for future experiments

  19. Mitigation of voltage sags in the distribution system with dynamic voltage restorer

    International Nuclear Information System (INIS)

    Viglas, D.; Belan, A.

    2012-01-01

    Dynamic voltage restorer is a custom power device that is used to improve voltage sags or swells in electrical distribution system. The components of the Dynamic Voltage Restorer consist of injection transformers, voltage source inverter, passive filters and energy storage. The main function of the Dynamic voltage restorer is used to inject three phase voltage in series and in synchronism with the grid voltages in order to compensate voltage disturbances. This article deals with mitigation of voltage sags caused by three-phase short circuit. Dynamic voltage restorer is modelled in MATLAB/Simulink. (Authors)

  20. Rare decays and CP asymmetries in charged B decays

    International Nuclear Information System (INIS)

    Deshpande, N.G.

    1991-01-01

    The theory of loop induced rare decays and the rate asymmetry due to CP violation in charged B Decays in reviewed. After considering b → sγ and b → se + e - decays, the asymmetries for pure penguin process are estimated first. A larger asymmetry can result in those modes where a tree diagram and a penguin diagram interfere, however these estimates are necessarily model dependent. Estimates of Cabbibo suppressed penguins are also considered

  1. Pulsed radiation decay logging

    International Nuclear Information System (INIS)

    Mills, W.R. Jr.

    1983-01-01

    There are provided new and improved well logging processes and systems wherein the detection of secondary radiation is accomplished during a plurality of time windows in a manner to accurately characterize the decay rate of the secondary radiation. The system comprises a well logging tool having a primary pulsed radiation source which emits repetitive time-spaced bursts of primary radiation and detector means for detecting secondary radiation resulting from the primary radiation and producing output signals in response to the detected radiation. A plurality of measuring channels are provided, each of which produces a count rate function representative of signals received from the detector means during successive time windows occurring between the primary radiation bursts. The logging system further comprises means responsive to the measuring channels for producing a plurality of functions representative of the ratios of the radiation count rates measured during adjacent pairs of the time windows. Comparator means function to compare the ratio functions and select at least one of the ratio functions to generate a signal representative of the decay rate of the secondary radiation

  2. Evaluation of Commercially Available Open Circuit Scuba Regulators

    Science.gov (United States)

    1987-08-01

    port. The second stage hit the same as that used on the X-2. :4 .- .. *,4 4 Figure 47. TABATA TR-100 The TABATA TR-100 first stage, constructed of...130 44. SPORTSWAYS X-3 ................ .. o. . k.. ...... , ........ C-133 45 . TABATA TR-100 ............................................ C-136 46...1-50 46. SPORTSWAYS X-3 ................................................... 1-51 47. TABATA TR-100 ..... ....................... s

  3. Efficiency of a variable displacement open circuit floating cup pump

    NARCIS (Netherlands)

    Vael, G.E.M.; Achten, P.A.J.; Brink, van den T.L.

    2009-01-01

    The Floating Cup Displacement principle is a relatively new axial piston displacement principle for hydrostatic pumps, motors and transformers. Since its origin in 2001, it has been mainly applied in fixed displacement pump prototypes. At the SICFP’05, a design for a variable displacement open

  4. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages

    Science.gov (United States)

    Zhang, Cheng; Lin, Haofan; Zhang, Shuai; Xie, Qin; Ren, Chengyan; Shao, Tao

    2017-10-01

    In this paper, deposition by non-thermal plasma is used as a surface modification technique to change the surface characteristics of epoxy resin exposed to DC and nanosecond-pulse voltages. The corresponding surface characteristics in both cases of DC and nanosecond-pulse voltages before and after the modification are compared and investigated. The measurement of the surface potential provides the surface charge distribution, which is used to show the accumulation and dissipation process of the surface charges. Morphology observations, chemical composition and electrical parameters measurements are used to evaluate the treatment effects. The experimental results show that, before the plasma treatment, the accumulated surface charges in the case of the DC voltage are more than that in the case of the nanosecond-pulse voltage. Moreover, the decay rate of the surface charges for the DC voltage is higher than that for the nanosecond-pulse voltage. However, the decay rate is no more than 41% after 1800 s for both types of voltages. After the plasma treatment, the maximum surface potentials decrease to 57.33% and 32.57% of their values before treatment for the DC and nanosecond-pulse voltages, respectively, indicating a decrease in the accumulated surface charges. The decay rate exceeds 90% for both types of voltages. These changes are mainly attributed to a change in the surface nanostructure, an increase in conductivity, and a decrease in the depth of energy level.

  5. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages

    International Nuclear Information System (INIS)

    Zhang, Cheng; Lin, Haofan; Zhang, Shuai; Ren, Chengyan; Shao, Tao; Xie, Qin

    2017-01-01

    In this paper, deposition by non-thermal plasma is used as a surface modification technique to change the surface characteristics of epoxy resin exposed to DC and nanosecond-pulse voltages. The corresponding surface characteristics in both cases of DC and nanosecond-pulse voltages before and after the modification are compared and investigated. The measurement of the surface potential provides the surface charge distribution, which is used to show the accumulation and dissipation process of the surface charges. Morphology observations, chemical composition and electrical parameters measurements are used to evaluate the treatment effects. The experimental results show that, before the plasma treatment, the accumulated surface charges in the case of the DC voltage are more than that in the case of the nanosecond-pulse voltage. Moreover, the decay rate of the surface charges for the DC voltage is higher than that for the nanosecond-pulse voltage. However, the decay rate is no more than 41% after 1800 s for both types of voltages. After the plasma treatment, the maximum surface potentials decrease to 57.33% and 32.57% of their values before treatment for the DC and nanosecond-pulse voltages, respectively, indicating a decrease in the accumulated surface charges. The decay rate exceeds 90% for both types of voltages. These changes are mainly attributed to a change in the surface nanostructure, an increase in conductivity, and a decrease in the depth of energy level. (paper)

  6. Low-Energy Real-Time OS Using Voltage Scheduling Algorithm for Variable Voltage Processors

    OpenAIRE

    Okuma, Takanori; Yasuura, Hiroto

    2001-01-01

    This paper presents a real-time OS based on $ mu $ITRON using proposed voltage scheduling algorithm for variable voltage processors which can vary supply voltage dynamically. The proposed voltage scheduling algorithms assign voltage level for each task dynamically in order to minimize energy consumption under timing constraints. Using the presented real-time OS, running tasks with low supply voltage leads to drastic energy reduction. In addition, the presented voltage scheduling algorithm is ...

  7. Development of a New Cascade Voltage-Doubler for Voltage Multiplication

    OpenAIRE

    Toudeshki, Arash; Mariun, Norman; Hizam, Hashim; Abdul Wahab, Noor Izzri

    2014-01-01

    For more than eight decades, cascade voltage-doubler circuits are used as a method to produce DC output voltage higher than the input voltage. In this paper, the topological developments of cascade voltage-doublers are reviewed. A new circuit configuration for cascade voltage-doubler is presented. This circuit can produce a higher value of the DC output voltage and better output quality compared to the conventional cascade voltage-doubler circuits, with the same number of stages.

  8. Search for proton decay: introduction

    International Nuclear Information System (INIS)

    Goldhaber, M.

    1984-01-01

    In interpreting contained events observed in various proton decay detectors one can sometimes postulate, though usually not unambiguously, a potential decay mode of the proton, called a candidate. It is called a candidate, because for any individual event it is not possible to exclude the possibility that it is instead due to cosmic ray background, chiefly atmospheric neutrinos. Some consistency checks are proposed which could help establish proton decay, if it does occur in the presently accessible lifetime window

  9. Rare beauty and charm decays

    International Nuclear Information System (INIS)

    Blake, T.

    2016-01-01

    Rare beauty and charm decays can provide powerful probes of physics beyond the Standard Model. These proceedings summarise the latest measurements of rare beauty and charm decays from the LHCb experiment at the end of Run 1 of the LHC. Whilst the majority of the measurements are consistent with SM predictions, small differences are seen in the rate and angular distribution of b → sℓ"+ℓ"− decay processes.

  10. Cavity Voltage Phase Modulation MD

    CERN Document Server

    Mastoridis, Themistoklis; Molendijk, John; Timko, Helga; CERN. Geneva. ATS Department

    2016-01-01

    The LHC RF/LLRF system is currently configured for extremely stable RF voltage to minimize transient beam loading effects. The present scheme cannot be extended beyond nominal beam current since the demanded power would exceed the peak klystron power and lead to saturation. A new scheme has therefore been proposed: for beam currents above nominal (and possibly earlier), the cavity phase modulation by the beam will not be corrected (transient beam loading), but the strong RF feedback and One-Turn Delay feedback will still be active for loop and beam stability in physics. To achieve this, the voltage set point will be adapted for each bunch. The goal of this MD was to test a new algorithm that would adjust the voltage set point to achieve the cavity phase modulation that would minimize klystron forward power.

  11. Weak decays of heavy quarks

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1978-08-01

    The properties that may help to identify the two additional quark flavors that are expected to be discovered. These properties are lifetime, branching ratios, selection rules, and lepton decay spectra. It is also noted that CP violation may manifest itself more strongly in heavy particle decays than elsewhere providing a new probe of its origin. The theoretical progress in the understanding of nonleptonic transitions among lighter quarks, nonleptonic K and hyperon decay amplitudes, omega minus and charmed particle decay predictions, and lastly the Kobayashi--Maskawa model for the weak coupling of heavy quarks together with the details of its implications for topology and bottomology are treated. 48 references

  12. Statistical decay of giant resonances

    International Nuclear Information System (INIS)

    Dias, H.; Teruya, N.; Wolynec, E.

    1986-01-01

    Statistical calculations to predict the neutron spectrum resulting from the decay of Giant Resonances are discussed. The dependence of the resutls on the optical potential parametrization and on the level density of the residual nucleus is assessed. A Hauser-Feshbach calculation is performed for the decay of the monople giant resonance in 208 Pb using the experimental levels of 207 Pb from a recent compilation. The calculated statistical decay is in excelent agreement with recent experimental data, showing that the decay of this resonance is dominantly statistical, as predicted by continuum RPA calculations. (Author) [pt

  13. Statistical decay of giant resonances

    International Nuclear Information System (INIS)

    Dias, H.; Teruya, N.; Wolynec, E.

    1986-02-01

    Statistical calculations to predict the neutron spectrum resulting from the decay of Giant Resonances are discussed. The dependence of the results on the optical potential parametrization and on the level density of the residual nucleus is assessed. A Hauser-Feshbach calculation is performed for the decay of the monopole giant resonance in 208 Pb using the experimental levels of 207 Pb from a recent compilation. The calculated statistical decay is in excellent agreement with recent experimental data, showing that decay of this resonance is dominantly statistical, as predicted by continuum RPA calculations. (Author) [pt

  14. Is Radioactive Decay Really Exponential?

    OpenAIRE

    Aston, Philip J.

    2012-01-01

    Radioactive decay of an unstable isotope is widely believed to be exponential. This view is supported by experiments on rapidly decaying isotopes but is more difficult to verify for slowly decaying isotopes. The decay of 14C can be calibrated over a period of 12,550 years by comparing radiocarbon dates with dates obtained from dendrochronology. It is well known that this approach shows that radiocarbon dates of over 3,000 years are in error, which is generally attributed to past variation in ...

  15. Design of shielded voltage divider for impulse voltage measurement

    International Nuclear Information System (INIS)

    Kato, Shohei; Kouno, Teruya; Maruyama, Yoshio; Kikuchi, Koji.

    1976-01-01

    The dividers used for the study of the insulation and electric discharge phenomena in high voltage equipments have the problems of the change of response characteristics owing to adjacent bodies and of induced noise. To improve the characteristics, the enclosed type divider shielded with metal has been investigated, and the divider of excellent response has been obtained by adopting the frequency-separating divider system, which is divided into two parts, resistance divider (lower frequency region) and capacitance divider (higher frequency region), for avoiding to degrade the response. Theoretical analysis was carried out in the cases that residual inductance can be neglected or can not be neglected in the small capacitance divider, and that the connecting wires are added. Next, the structure of the divider and the design of the electric field for the divider manufactured on the basis of the theory are described. The response characteristics were measured. The results show that 1 MV impulse voltage can be measured within the response time of 10 ns. Though this divider aims at the impulse voltage, the duration time of which is about that of standard lightning impulse, in view of the heat capacity because of the input resistance of 10.5 kΩ, it is expected that the divider can be applied to the voltage of longer duration time by increasing the input resistance in future. (Wakatsuki, Y.)

  16. Unbalanced Voltage Compensation in Low Voltage Residential AC Grids

    DEFF Research Database (Denmark)

    Trintis, Ionut; Douglass, Philip; Munk-Nielsen, Stig

    2016-01-01

    This paper describes the design and test of a control algorithm for active front-end rectifiers that draw power from a residential AC grid to feed heat pump loads. The control algorithm is able to control the phase to neutral or phase to phase RMS voltages at the point of common coupling...

  17. Resilient architecture design for voltage variation

    CERN Document Server

    Reddi, Vijay Janapa

    2013-01-01

    Shrinking feature size and diminishing supply voltage are making circuits sensitive to supply voltage fluctuations within the microprocessor, caused by normal workload activity changes. If left unattended, voltage fluctuations can lead to timing violations or even transistor lifetime issues that degrade processor robustness. Mechanisms that learn to tolerate, avoid, and eliminate voltage fluctuations based on program and microarchitectural events can help steer the processor clear of danger, thus enabling tighter voltage margins that improve performance or lower power consumption. We describe

  18. CP violation in K decays and rare decays

    International Nuclear Information System (INIS)

    Buchalla, G.

    1996-12-01

    The present status of CP violation in decays of neutral kaons is reviewed. In addition selected rare decays of both K and B mesons are discussed. The emphasis is in particular on observables that can be reliably calculated and thus offer the possibility of clean tests of standard model flavor physics. 105 refs

  19. Magnetically induced vacuum decay

    International Nuclear Information System (INIS)

    Xue Shesheng

    2003-01-01

    We study the fermionic vacuum energy of vacua with and without application of an external magnetic field. The energetic difference of two vacua leads to the vacuum decaying and the vacuum energy being released. In the context of quantum field theories, we discuss why and how the vacuum energy can be released by spontaneous photon emission and/or paramagnetically screening the external magnetic field. In addition, we quantitatively compute the vacuum energy released, the paramagnetic screening effect, and the rate and spectrum of spontaneous photon emission. The possibilities of experimentally detecting such an effect of vacuum-energy release and that this effect accounts for the anomalous x-ray pulsar are discussed

  20. Voltage Weak DC Distribution Grids

    NARCIS (Netherlands)

    Hailu, T.G.; Mackay, L.J.; Ramirez Elizondo, L.M.; Ferreira, J.A.

    2017-01-01

    This paper describes the behavior of voltage weak DC distribution systems. These systems have relatively small system capacitance. The size of system capacitance, which stores energy, has a considerable effect on the value of fault currents, control complexity, and system reliability. A number of

  1. Nonlinear electrokinetics at large voltages

    Energy Technology Data Exchange (ETDEWEB)

    Bazant, Martin Z [Department of Chemical Engineering and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Sabri Kilic, Mustafa; Ajdari, Armand [Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Storey, Brian D [Franklin W Olin College of Engineering, Needham, MA 02492 (United States)], E-mail: bazant@mit.edu

    2009-07-15

    The classical theory of electrokinetic phenomena assumes a dilute solution of point-like ions in chemical equilibrium with a surface whose double-layer voltage is of order the thermal voltage, k{sub B}T/e=25 mV. In nonlinear 'induced-charge' electrokinetic phenomena, such as ac electro-osmosis, several volts {approx}100k{sub B}T/e are applied to the double layer, and the theory breaks down and cannot explain many observed features. We argue that, under such a large voltage, counterions 'condense' near the surface, even for dilute bulk solutions. Based on simple models, we predict that the double-layer capacitance decreases and the electro-osmotic mobility saturates at large voltages, due to steric repulsion and increased viscosity of the condensed layer, respectively. The former suffices to explain observed high-frequency flow reversal in ac electro-osmosis; the latter leads to a salt concentration dependence of induced-charge flows comparable to experiments, although a complete theory is still lacking.

  2. High voltage power network construction

    CERN Document Server

    Harker, Keith

    2018-01-01

    This book examines the key requirements, considerations, complexities and constraints relevant to the task of high voltage power network construction, from design, finance, contracts and project management to installation and commissioning, with the aim of providing an overview of the holistic end to end construction task in a single volume.

  3. Voltage control of ferromagnetic resonance

    Directory of Open Access Journals (Sweden)

    Ziyao Zhou

    2016-06-01

    Full Text Available Voltage control of magnetism in multiferroics, where the ferromagnetism and ferroelectricity are simultaneously exhibiting, is of great importance to achieve compact, fast and energy efficient voltage controllable magnetic/microwave devices. Particularly, these devices are widely used in radar, aircraft, cell phones and satellites, where volume, response time and energy consumption is critical. Researchers realized electric field tuning of magnetic properties like magnetization, magnetic anisotropy and permeability in varied multiferroic heterostructures such as bulk, thin films and nanostructure by different magnetoelectric (ME coupling mechanism: strain/stress, interfacial charge, spin–electromagnetic (EM coupling and exchange coupling, etc. In this review, we focus on voltage control of ferromagnetic resonance (FMR in multiferroics. ME coupling-induced FMR change is critical in microwave devices, where the electric field tuning of magnetic effective anisotropic field determines the tunability of the performance of microwave devices. Experimentally, FMR measurement technique is also an important method to determine the small effective magnetic field change in small amount of magnetic material precisely due to its high sensitivity and to reveal the deep science of multiferroics, especially, voltage control of magnetism in novel mechanisms like interfacial charge, spin–EM coupling and exchange coupling.

  4. High voltage MOSFET switching circuit

    Science.gov (United States)

    McEwan, Thomas E.

    1994-01-01

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET.

  5. Weak decays of new particles

    International Nuclear Information System (INIS)

    Kalmus, G.

    1982-10-01

    The present experimental situation in tau-lepton, B-meson and charmed particle decays is reviewed. Special attention is paid to new lifetime measurements and in the case of B-meson decays to the rate of b → u compared to b → c. Results are compared with theoretical expectations. (author)

  6. On the Muon Decay Parameters

    CERN Document Server

    Chizhov, M V

    1996-01-01

    Predictions for the muon decay spectrum are usually derived from the derivative-free Hamiltonian. However, it is not the most general form of the possible interactions. Additional simple terms with derivatives can be introduced. In this work the distortion of the standard energy and angular distribution of the electrons in polarized muon decay caused by these terms is presented.

  7. Welding the CNGS decay tube

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    3.6 km of welds were required for the 1 km long CERN Neutrinos to Gran Sasso (CNGS) decay tube, in which particles produced in the collision with a proton and a graphite target will decay into muons and muon neutrinos. Four highly skilled welders performed this delicate task.

  8. Polarization in heavy quark decays

    Energy Technology Data Exchange (ETDEWEB)

    Alimujiang, K.

    2006-07-01

    In this thesis I concentrate on the angular correlations in top quark decays and their next.to.leading order (NLO) QCD corrections. I also discuss the leading.order (LO) angular correlations in unpolarized and polarized hyperon decays. In the first part of the thesis I calculate the angular correlation between the top quark spin and the momentum of decay products in the rest frame decay of a polarized top quark into a charged Higgs boson and a bottom quark in Two-Higgs-Doublet-Models: t({up_arrow}) {yields} b + H{sup +}. I provide closed form formulae for the O({alpha}{sub s}) radiative corrections to the unpolarized and the polar correlation functions for m{sub b}{ne}0 and m{sub b}=0. In the second part I concentrate on the semileptonic rest frame decay of a polarized top quark into a bottom quark and a lepton pair: t({up_arrow}){yields}X{sub b}+l{sup +}+{nu}{sub l}. I present closed form expressions for the O({alpha}{sub s}) radiative corrections to the unpolarized part and the polar and azimuthal correlations for m{sub b}{ne}0 and m{sub b}=0. In the last part I turn to the angular distribution in semileptonic hyperon decays. Using the helicity method I derive complete formulas for the leading order joint angular decay distributions occurring in semileptonic hyperon decays including lepton mass and polarization effects. (orig.)

  9. Decay of the Bottom mesons

    International Nuclear Information System (INIS)

    Duong Van Phi; Duong Anh Duc

    1992-12-01

    The channels of the decay of Bottom mesons are deduced from a selection rule and the Lagrangians which are formed on the LxO(4) invariance and the principle of minimal structure. The estimation of the corresponding decay probabilities are considered. (author). 21 refs

  10. Experimental status of B decays

    International Nuclear Information System (INIS)

    Horwitz, N.

    1987-01-01

    This paper reviews the status of a number of current B-meson decay topics. Topics reviewed are: B reconstruction, penguins and rare decay modes, is there a charm deficit?, V ub /V bc , new limit on FCNC. Results are presented

  11. Tau decays: A theoretical perspective

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1992-11-01

    Theoretical predictions for various tau decay rates are reviewed. Effects of electroweak radiative corrections are described. Implications for precision tests of the standard model and ''new physics'' searches are discussed. A perspective on the tau decay puzzle and 1-prong problem is given

  12. Soudan 2 nucleon decay experiment

    International Nuclear Information System (INIS)

    Thron, J.L.

    1986-01-01

    The Soudan 2 nucleon decay experiment consists of a 1.1 Kton fine grained iron tracking calorimeter. It has a very isotropic detection structure which along with its flexible trigger will allow detection of multiparticle and neutrino proton decay modes. The detector has now entered its construction stage

  13. Particle decay in inflationary cosmology

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Vega, H.J. de

    2004-01-01

    We investigate the relaxation and decay of a particle during inflation by implementing the dynamical renormalization group. This investigation allows us to give a meaningful definition for the decay rate in an expanding universe. As a prelude to a more general scenario, the method is applied here to study the decay of a particle in de Sitter inflation via a trilinear coupling to massless conformally coupled particles, both for wavelengths much larger and much smaller than the Hubble radius. For superhorizon modes we find that the decay is of the form η Γ 1 with η being conformal time and we give an explicit expression for Γ 1 to leading order in the coupling which has a noteworthy interpretation in terms of the Hawking temperature of de Sitter space-time. We show that if the mass M of the decaying field is << H then the decay rate during inflation is enhanced over the Minkowski space-time result by a factor 2H/πM. For wavelengths much smaller than the Hubble radius we find that the decay law is e with C(η) the scale factor and α determined by the strength of the trilinear coupling. In all cases we find a substantial enhancement in the decay law as compared to Minkowski space-time. These results suggest potential implications for the spectrum of scalar density fluctuations as well as non-Gaussianities

  14. Voltage linear transformation circuit design

    Science.gov (United States)

    Sanchez, Lucas R. W.; Jin, Moon-Seob; Scott, R. Phillip; Luder, Ryan J.; Hart, Michael

    2017-09-01

    Many engineering projects require automated control of analog voltages over a specified range. We have developed a computer interface comprising custom hardware and MATLAB code to provide real-time control of a Thorlabs adaptive optics (AO) kit. The hardware interface includes an op amp cascade to linearly shift and scale a voltage range. With easy modifications, any linear transformation can be accommodated. In AO applications, the design is suitable to drive a range of different types of deformable and fast steering mirrors (FSM's). Our original motivation and application was to control an Optics in Motion (OIM) FSM which requires the customer to devise a unique interface to supply voltages to the mirror controller to set the mirror's angular deflection. The FSM is in an optical servo loop with a wave front sensor (WFS), which controls the dynamic behavior of the mirror's deflection. The code acquires wavefront data from the WFS and fits a plane, which is subsequently converted into its corresponding angular deflection. The FSM provides +/-3° optical angular deflection for a +/-10 V voltage swing. Voltages are applied to the mirror via a National Instruments digital-to-analog converter (DAC) followed by an op amp cascade circuit. This system has been integrated into our Thorlabs AO testbed which currently runs at 11 Hz, but with planned software upgrades, the system update rate is expected to improve to 500 Hz. To show that the FSM subsystem is ready for this speed, we conducted two different PID tuning runs at different step commands. Once 500 Hz is achieved, we plan to make the code and method for our interface solution freely available to the community.

  15. Ultra-Rare B Decays

    International Nuclear Information System (INIS)

    Grinstein, Benjamin

    2004-01-01

    A good place to look for deviations from the Standard Model is in decay modes of B mesons, like purely leptonic decays B → lv, for which a very long Standard Model lifetime is due to an accidental suppression of the decay amplitude. For other rare decay modes involving no hadrons in the final state (e.g., B → γl+l-, B → γlvl and B → vv-barγ) new results on QCD factorization in exclusive processes show that all the decay rates are given in terms of a single universal form factor. Hence, trustworthy relations between different processes can be used to test the Standard Model of electroweak interactions. Sometimes, surprisingly, a large energy expansion may allow computation when a hadron is in the final state. An example is B → πl+l- which can be used to settle the ambiguity in α from a measurement of sin2α from CP asymmetries

  16. Double Beta Decay

    International Nuclear Information System (INIS)

    Fiorini, Ettore

    2008-01-01

    The importance of neutrinoless Double Beta Decay (DBD) is stressed in view of the recent results of experiments on neutrino oscillations which indicate that the difference between the squared masses of two neutrinos of different flavours is finite [For a recent review including neutrino properties and recent results see: Review of Particle Physics, J. of Phys. G: Nuclear and Particle Physics 33, 1]. As a consequence the mass of at least one neutrino has to be different from zero and it becomes imperative to determine its absolute value. The various experimental techniques to search for DBD are discussed together with the difficult problems of the evaluation of the corresponding nuclear matrix elements. The upper limits on neutrino mass coming from the results of the various experiments are reported together with the indication for a non zero value by one of them not confirmed so far. The two presently running experiments on neutrinoless DBD are briefly described together with the already approved or designed second generation searches aiming to reach the values on the absolute neutrino mass indicated by the results on neutrino oscillations

  17. β-decay properties in the Cs decay chain

    Science.gov (United States)

    Benzoni, G.; Lică, R.; Borge, M. J. G.; Fraile, L. M.; IDS Collaboration

    2018-02-01

    The study of the decay of neutron-rich Cs isotopes has two main objectives: on one side β decay is a perfect tool to access the low-spin structures in the daughter Ba nuclei, where the evolution of octupole deformed shapes can be followed, while, on the other hand, the study of the gross properties of these decays, in terms of decay rates and branching to delayed-neutron emission, are fundamental inputs for the modelling of the r-process in the Rare-Earth Elements peak. Results obtained at CERN-ISOLDE are discussed within this framework and compared to existing data and predictions from state-of-the-art nuclear models.

  18. Analyzing randomly occurring voltage breakdowns

    International Nuclear Information System (INIS)

    Wiltshire, C.W.

    1977-01-01

    During acceptance testing of high-vacuum neutron tubes, 40% of the tubes failed after experiencing high-voltage breakdowns during the aging process. Use of a digitizer in place of an oscilloscope revealed two types of breakdowns, only one of which affected acceptance testing. This information allowed redesign of the aging sequence to prevent tube damage and improve yield and quality of the final product

  19. Advances in high voltage engineering

    CERN Document Server

    Haddad, A

    2005-01-01

    This book addresses the very latest research and development issues in high voltage technology and is intended as a reference source for researchers and students in the field, specifically covering developments throughout the past decade. This unique blend of expert authors and comprehensive subject coverage means that this book is ideally suited as a reference source for engineers and academics in the field for years to come.

  20. Dispersion Decay and Scattering Theory

    CERN Document Server

    Komech, Alexander

    2012-01-01

    A simplified, yet rigorous treatment of scattering theory methods and their applications Dispersion Decay and Scattering Theory provides thorough, easy-to-understand guidance on the application of scattering theory methods to modern problems in mathematics, quantum physics, and mathematical physics. Introducing spectral methods with applications to dispersion time-decay and scattering theory, this book presents, for the first time, the Agmon-Jensen-Kato spectral theory for the Schr?dinger equation, extending the theory to the Klein-Gordon equation. The dispersion decay plays a crucial role i

  1. Charm counting in b decays

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Carrido, L; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Bauer, C; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, A M; Walsh, J; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    The inclusive production of charmed particles in Z -> bb decays has been measured from the yield of D^0, D^+, D^+_s and Lambda_{c}^+ decays in a sample of qq events with high b purity collected with the ALEPH detector from 1992 to 1995. From these measurements, adding the charmonia production rate and an estimate of the charmed strange baryon contribution, the average number of charm quarks per b decay is determined to be n_c = 1.230 \\pm 0.036 \\pm 0.038 \\pm 0.053 where the uncertainties are due to statistics, systematic effects and branching ratios, respectively.

  2. Charm counting in b decays

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rizzo, G.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Giehl, I.; Greene, A. M.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Bauer, C.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Choi, Y.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, A. M.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    The inclusive production of charmed particles in Z → b overlineb decays has been measured from the yield of D0, D+, Ds+ and Λc+ decays in a sample of q overlineq events with high b purity collected with the ALEPH detector from 1992 to 1995. From these measurements, adding the charmonia production rate and an estimate of the charmed strange baryon contribution, the average number of charm quarks per b decay is determined to be nc = 1.230 ± 0.036 ± 0.038 ± 0.053, where the uncertainties are due to statistics, systematic effects and branching ratios, respectively.

  3. Inflaton decay through supergravity effects

    International Nuclear Information System (INIS)

    Endo, M.; Takahashi, F.; Kawasaki, M.; Yanagida, T.T.; Tokyo Univ.

    2006-07-01

    We point out that supergravity effects enable the inflaton to decay into all matter fields, including the visible and the supersymmetry breaking sectors, once the inflaton acquires a non-vanishing vacuum expectation value. The new decay processes have great impacts on cosmology; the reheating temperature is bounded below; the gravitinos are produced by the inflaton decay in a broad class of the dynamical supersymmetry breaking models. We derive the bounds on the inflaton mass and the vacuum expectation value, which severely constrain high-scale inflations such as the hybrid and chaotic inflation models. (orig.)

  4. Flavor mixing and charm decay

    International Nuclear Information System (INIS)

    Chau Wang, L.C.

    1980-01-01

    The results of mixing matrix determination and their implications on heavy quark decays are given. The decays of charm mesons D 0 , D + , F + into two pseudoscalar mesons are discussed in the framework of SU(3) symmetry. The charm decays are also discussed in terms of quark diagrams. It is demonstrated that the differences observed in the lifetimes of D 0 and D + , and in the branching ratios B(D 0 → K - K + ) and B(D 0 → π - π + ) can be easily incorporated. 3 figures

  5. Decays of the b quark

    International Nuclear Information System (INIS)

    Thorndike, E.H.; Poling, R.A.

    1988-01-01

    Recent experimental results on the decay of b-flavored hadrons are reviewed. Substantial progress has been made in the study of exclusive and inclusive B-meson decays, as well as in the theoretical understanding of these processes. The two most prominent developments are the continuing failure to observe evidence of decays of the b quark to a u quark rather than a c quark, and the surprisingly high level of B 0 -anti B 0 mixing which has recently been reported by the ARGUS collaboration. Notwithstanding these results, we conclude that the health of the Standard Model is excellent. (orig.)

  6. High-voltage CMOS detectors

    International Nuclear Information System (INIS)

    Ehrler, F.; Blanco, R.; Leys, R.; Perić, I.

    2016-01-01

    High-voltage CMOS (HVCMOS) pixel sensors are depleted active pixel sensors implemented in standard commercial CMOS processes. The sensor element is the n-well/p-substrate diode. The sensor electronics are entirely placed inside the n-well which is at the same time used as the charge collection electrode. High voltage is used to deplete the part of the substrate around the n-well. HVCMOS sensors allow implementation of complex in-pixel electronics. This, together with fast signal collection, allows a good time resolution, which is required for particle tracking in high energy physics. HVCMOS sensors will be used in Mu3e experiment at PSI and are considered as an option for both ATLAS and CLIC (CERN). Radiation tolerance and time walk compensation have been tested and results are presented. - Highlights: • High-voltage CMOS sensors will be used in Mu3e experiment at PSI (Switzerland). • HVCMOS sensors are considered as an option for ATLAS (LHC/CERN) and CLIC (CERN). • Efficiency of more than 95% (99%) has been measured with (un-)irradiated chips. • The time resolution measured in the beam tests is nearly 100 ns. • We plan to improve time resolution and efficiency by using high-resistive substrate.

  7. Low voltage electron beam accelerators

    International Nuclear Information System (INIS)

    Ochi, Masafumi

    2003-01-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  8. High-voltage CMOS detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ehrler, F., E-mail: felix.ehrler@student.kit.edu; Blanco, R.; Leys, R.; Perić, I.

    2016-07-11

    High-voltage CMOS (HVCMOS) pixel sensors are depleted active pixel sensors implemented in standard commercial CMOS processes. The sensor element is the n-well/p-substrate diode. The sensor electronics are entirely placed inside the n-well which is at the same time used as the charge collection electrode. High voltage is used to deplete the part of the substrate around the n-well. HVCMOS sensors allow implementation of complex in-pixel electronics. This, together with fast signal collection, allows a good time resolution, which is required for particle tracking in high energy physics. HVCMOS sensors will be used in Mu3e experiment at PSI and are considered as an option for both ATLAS and CLIC (CERN). Radiation tolerance and time walk compensation have been tested and results are presented. - Highlights: • High-voltage CMOS sensors will be used in Mu3e experiment at PSI (Switzerland). • HVCMOS sensors are considered as an option for ATLAS (LHC/CERN) and CLIC (CERN). • Efficiency of more than 95% (99%) has been measured with (un-)irradiated chips. • The time resolution measured in the beam tests is nearly 100 ns. • We plan to improve time resolution and efficiency by using high-resistive substrate.

  9. Low voltage electron beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Masafumi [Iwasaki Electric Co., Ltd., Tokyo (Japan)

    2003-02-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  10. Light-voltage conversion apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Fujioka, Yoshiki

    1987-09-19

    In a light-voltage conversion unit, when input signal is applied, the output signal to the control circuit has quick rise-up time and slow breaking time. In order to improve this, a short-circuit transistor is placed at the diode, and this transistor is forced ON, when an output signal to the control circuit is lowered down to a constant voltage, to short-circuit between the output terminals. This, however, has a demerit of high power consumption by a transistor. In this invention, by connecting a light-emitting element which gets ON at the first transition and a light-emitting element which gets ON at the last transition, placing a light receiving element in front of each light-emitting element, when an input signal is applied; thus a load is driven only with ON signal of each light-emitting element, eliminating the delay in the last transition. All of these give a quick responsive light-voltage conversion without unnecessary power consumption. (5 figs)

  11. Three-body decays: structure, decay mechanism and fragment properties

    International Nuclear Information System (INIS)

    Alvarez-Rodriguez, R.; Jensen, A.S.; Fedorov, D.V.; Fynbo, H.O.U.; Kirsebom, O.S.; Garrido, E.

    2009-01-01

    We discuss the three-body decay mechanisms of many-body resonances. R-matrix sequential description is compared with full Faddeev computation. The role of the angular momentum and boson symmetries is also studied. As an illustration we show the computed ?-particle energy distribution after the decay of 12 C(1 + ) resonance at 12.7 MeV. This article is based on the presentation by R. Alvarez-Rodriguez at the Fifth Workshop on Critical Stability, Erice, Sicily. (author)

  12. [Development of residual voltage testing equipment].

    Science.gov (United States)

    Zeng, Xiaohui; Wu, Mingjun; Cao, Li; He, Jinyi; Deng, Zhensheng

    2014-07-01

    For the existing measurement methods of residual voltage which can't turn the power off at peak voltage exactly and simultaneously display waveforms, a new residual voltage detection method is put forward in this paper. First, the zero point of the power supply is detected with zero cross detection circuit and is inputted to a single-chip microcomputer in the form of pulse signal. Secend, when the zero point delays to the peak voltage, the single-chip microcomputer sends control signal to power off the relay. At last, the waveform of the residual voltage is displayed on a principal computer or oscilloscope. The experimental results show that the device designed in this paper can turn the power off at peak voltage and is able to accurately display the voltage waveform immediately after power off and the standard deviation of the residual voltage is less than 0.2 V at exactly one second and later.

  13. RARE DECAYS INCLUDING PENGUINS

    Energy Technology Data Exchange (ETDEWEB)

    Eigen, G

    2003-12-04

    The authors present a preliminary measurement of the exclusive charmless semileptonic B decays, B {yields} {rho}{ell}{nu}, and the extraction of the CKM parameters V{sub ub}. IN a data sample of 55 x 10{sup 6} B{bar B} events they measure a branching fraction of {Beta}(B {yields} {rho}{ell}{nu}) = (3.39 {+-} 0.44{sub stat} {+-} 0.52{sub sys} {+-} 0.60{sub th}) x 10{sup -4} yielding |V{sub ub}| = (3.69 {+-} 0.23{sub stat} {+-} 0.27{sub sys -0.59th}{sup +0.40}) x 10{sup -3}. Next, they report on a preliminary study of the radiative penguin modes B {yields} K{ell}{sup +}{ell}{sup -} and B {yields} K*{ell}{sup +}{ell}{sup -}. In a data sample of 84 x 10{sup 6} B{bar B} events they observe a significant signal (4.4{sigma}) in B {yields} K{ell}{sup +}{ell}{sup -}, yielding a branching fraction of {Beta}(B {yields} K{ell}{sup +}{ell}{sup -}) = (0.78{sub -0.20-0.18}{sup +0.24+0.11}) x 10{sup -6}. In B {yields} K*{ell}{sup +}{ell}{sup -} the observed yield is not yet significant (2.8{sigma}), yielding an upper limit of the branching fraction of {Beta}(B {yields} K*{ell}{sup +}{ell}{sup -}) 3.0 x 10{sup -6} {at} 90% confidence level. Finally, they summarize preliminary results of searches for B {yields} {rho}({omega}){gamma}, B{sup +} {yields} K{sup +} {nu}{bar {nu}} and B{sup 0} {yields} {ell}{sup +}{ell}{sup -}.

  14. Radiative Leptonic B Decays

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Edward Tann [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2007-01-01

    We present the results of a search for B+ meson decays into γℓ+v, where ℓ = e,μ. We use a sample of 232 million B$\\bar{B}$ meson pairs recorded at the Υ(4S) resonance with the BABAR detector at the PEP-II B factory. We measure a partial branching fraction Δβ in a restricted region of phase space that reduces the effect of theoretical uncertainties, requiring the lepton energy to be in the range 1.875 and 2.850 GeV, the photon energy to be in the range 0.45 and 2.35 GeV, and the cosine of the angle between the lepton and photon momenta to be less than -0.36, with all quantities computed in the Υ(4S) center-of-mass frame. We find Δβ(B+ → γℓ+v) = (-0.31.5+1.3(statistical) -0.6+0.6(systematic) ± 0.1(theoretical)) x 10-6, under the assumption of lepton universality. Interpreted as a 90% confidence-level Bayesian upper limit, the result corresponds to 1.7 x 10-6 for a prior at in amplitude, and 2.3 x 10-6 for a prior at in branching fraction.

  15. Symmetric voltage-controlled variable resistance

    Science.gov (United States)

    Vanelli, J. C.

    1978-01-01

    Feedback network makes resistance of field-effect transistor (FET) same for current flowing in either direction. It combines control voltage with source and load voltages to give symmetric current/voltage characteristics. Since circuit produces same magnitude output voltage for current flowing in either direction, it introduces no offset in presense of altering polarity signals. It is therefore ideal for sensor and effector circuits in servocontrol systems.

  16. Ultra Low-Voltage Energy Harvesting

    Science.gov (United States)

    2013-09-01

    if in a solar battery charger the level of illumination were to drop due to cloud cover, the diode would prevent discharging of the battery when...the source voltage becomes lower than battery voltage. The drawback of a simple circuit like this is that once the source voltage is lower than the...longer charged when the battery voltage is above the OV setting. Figure 13. Block diagram of BQ25504 circuit . (From [10]) 18 THIS PAGE

  17. Voltage Quality of Grid Connected Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Sun, Tao

    2004-01-01

    Grid connected wind turbines may cause quality problems, such as voltage variation and flicker. This paper discusses the voltage variation and flicker emission of grid connected wind turbines with doubly-fed induction generators. A method to compensate flicker by using a voltage source converter...

  18. Manufacturing technology for practical Josephson voltage normals

    International Nuclear Information System (INIS)

    Kohlmann, Johannes; Kieler, Oliver

    2016-01-01

    In this contribution we present the manufacturing technology for the fabrication of integrated superconducting Josephson serial circuits for voltage normals. First we summarize some foundations for Josephson voltage normals and sketch the concept and the setup of the circuits, before we describe the manufacturing technology form modern practical Josephson voltage normals.

  19. 49 CFR 234.221 - Lamp voltage.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lamp voltage. 234.221 Section 234.221 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Maintenance Standards § 234.221 Lamp voltage. The voltage at each lamp shall be...

  20. Bootstrapped Low-Voltage Analog Switches

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1999-01-01

    Novel low-voltage constant-impedance analog switch circuits are proposed. The switch element is a single MOSFET, and constant-impedance operation is obtained using simple circuits to adjust the gate and bulk voltages relative to the switched signal. Low-voltage (1-volt) operation is made feasible...

  1. Family symmetries and proton decay

    International Nuclear Information System (INIS)

    Murayama, Hitoshi; Kaplan, D.B.

    1994-01-01

    The proton decay modes p → K 0 e + and p → K 0 μ + may be visible in certain supersymmetric theories, and if seen would provide evidence for new flavor physics at extremely short distances. These decay modes can arise from the dimension five operator (Q 1 Q 1 Q 2 L 1,2 ), where Q i and L i are i th generation quark and lepton superfields respectively. Such an operator is not generated at observable levels due to gauge or Higgs boson exchange in a minimal GUT. However in theories that explain the fermion mass hierarchy, it may be generated at the Planck scale with a strength such that the decays p → K 0 ell + are both compatible with the proton lifetime and visible at Super-Kamiokande. Observable proton decay can even occur in theories without unification

  2. Weak Decays of Charmed Particles

    Energy Technology Data Exchange (ETDEWEB)

    Turcotte, Marc Gilles [McGill Univ., Montreal, QC (Canada)

    1986-05-01

    The lifetimes of charmed particles produced in interactions of high energy neutrinos with nucleons have been measured using a combination of a very high resolution emulsion-based vertex detector and a spectrometer allowing full kinematical reconstruction of the decays.

  3. CP violation in K decays

    International Nuclear Information System (INIS)

    Gilman, F.J.

    1989-05-01

    Recent theoretical and experimental progress on the manifestation of CP violation in K decays, and toward understanding whether CP violation originates in a phase, or phases, in the weak mixing matrix of quarks is reviewed. 23 refs., 10 figs

  4. The decay of hot nuclei

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs

  5. Nucleon decay in Soudan 2

    International Nuclear Information System (INIS)

    Goodman, M. C.

    1999-01-01

    The Soudan 2 detector is used to search for evidence of nucleon decay. Particular emphasis is put on searches for modes with multiple-charged particles in the final state, and for modes suggested by super-symmetric theories

  6. Rare KL decays at Fermilab

    International Nuclear Information System (INIS)

    Schnetzer, St.

    1997-01-01

    Recent results and the future prospects for rare K L decay at Fermilab are described. A summary of all rare decay results from E799 Phase I (the 1991 run) are presented. Three new results: K L → e + e - μ + μ - , K L → π 0 μe, and π 0 → e + e - e + e - are discussed in detail. Improvements for KTeV (the 1996-1997 run) are discussed and the expected sensitivities listed. Finally, the KAMI program for rare decays with the Main Injector (2000 and beyond) is presented with emphasis on a search for the decay K L → π 0 νν-bar at O(10 -12 ) single-event-sensitivity. (author)

  7. CP violation in B decays

    International Nuclear Information System (INIS)

    Kayser, B.

    1990-01-01

    The study of CP-violating effects in B decays will be a good test of whether CP violation is caused by the known weak interaction. If this is its origin, then large, cleanly-predicted CP-violating effects are expected in certain neutral B decays to hadronic CP eigenstates. The phenomenology of CP violation in the B system is reviewed, and the genesis of these large effects is explained. In this it is shown that large, cleanly-predicted effects are also expected in some decays to states which are not CP eigenstates. The combined study of the latter decays and those to CP eigenstates may make it possible to obtain a statistically-significant CP-violating signal with fewer B mesons that would otherwise be required

  8. Improved Control Strategy for DFIG-based Wind Energy Conversion System during Grid Voltage Disturbances

    DEFF Research Database (Denmark)

    Zhu, Rongwu

    electromagnetic torque during grid faults. Therefore, the virtual damping flux based strategy not only can help the DFIG achieve the LVRT requirement, but also can reduce the mechanical stress on the drive train. On the other hand, on the basis of the decaying characteristic of the stator flux, the passive...... flux based active damping strategy and the stator series resistance based passive damping strategy can help the DFIG to fulfill the LVRT requirement, and improve the DFIG performances. Besides the previous active and passive damping strategies, the modified power converter and DFIG configurations...... of the stator voltage can cause the transient stator flux, and then the transient stator flux may be enlarged due to the effects of the initial value. The amplitude of the transient flux is determined by both the instant and depth of stator voltage variation, and the decaying characteristic of the transient...

  9. Voltage generators of high voltage high power accelerators

    International Nuclear Information System (INIS)

    Svinin, M.P.

    1981-01-01

    High voltage electron accelerators are widely used in modern radiation installations for industrial purposes. In the near future further increasing of their power may be effected, which enables to raise the efficiency of the radiation processes known and to master new power-consuming production in industry. Improvement of HV generators by increasing their power and efficiency is one of many scientific and engineering aspects the successful solution of which provides further development of these accelerators and their technical parameters. The subject is discussed in detail. (author)

  10. Beta decay of 22O

    International Nuclear Information System (INIS)

    Hubert, F.; Dufour, J.P.; Moral, R. Del; Fleury, A.; Jean, D.; Pravikoff, M.S.; Geissel, H.; Schmidt, K.H.; Hanelt, E.

    1991-01-01

    22 O nuclei were produced as fragments of a 60 MeV/n 40 Ar beam interacting with a thick Be target. They were selected from all the produced nuclei with the LISE separator. γ spectra in coincidence with the β decay were measured. Partial decay scheme of 22 O is given. Similarities between experiments and calculations are discussed. (G.P.) 10 refs.; 3 figs

  11. The law of radioactive decay

    International Nuclear Information System (INIS)

    Bouyrie, G

    2004-01-01

    This article deals with the law of radioactive decay (Rutherford-Sody's law) and the way to explain it to high-school or grammar-school students. The mathematical content of the law is recalled and its experimental validation is proposed through the study of the decay of a population of radon-220 atoms. The analysis of the experimental data is made easier by using software such as Generis, Regressi or even Excel

  12. The beta decay of hyperons

    International Nuclear Information System (INIS)

    Bohm, A.; Garcia, A.; Instituto Politecnico Nacional, Mexico City. Escuela Superior de Fisica y Matematicas); Kielanowski, P.; Texas Univ., Austin; Instituto Politecnico Nacional, Mexico City. Centro de Investigacion y de Estudios Avanzados)

    1985-01-01

    This book is an introduction to the physics of the semileptonic decay of hyperons. After a general introduction and a description of the experimental results the Cabibbo theory is introduced for the theoretical description of these results. Then radiative and other corrections are discussed. Finally this decay is considered in the framework of broken SU(3). This book applies to graduate students and other ''non-specialists'' who want to get some insight into the physics of weak interactions. (HSI)

  13. Hadronic τ decays and QCD

    International Nuclear Information System (INIS)

    Davier, M.

    1999-12-01

    Hadronic decays of the τ lepton provide a clean source to study hadron dynamics in an energy regime dominated by resonances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonperturbative contributions. Strange decays yield a determination of the strange quark mass. (author)

  14. Study of charmonium rare decays

    International Nuclear Information System (INIS)

    Brient, J.C.

    1986-09-01

    This thesis presents the study of rare decays of charmonium states formed in the interaction of an antiproton beam with an hydrogen gas jet target. Electromagnetic final states are used to sign the charmonium state formation (e + e - , e + e - + Χ, γγ). The selection of events used a two arms non magnetic spectrometer, with a charged track system, a threshold Cerenkov counter to tag the electron (positron), and an e.m. calorimeter. Energy scan technic have been used to observe the resonant formation through the excitation curves. Parameters of the states (mass, total and partial widths) are extracted from these curves using a statistical analysis. Two types of decays have been studied in this thesis: 1 P 1 charmonium state decay to the ψ (signed by its e + e - decay). In the energy scan around the center of gravity of the P charmonium states, we observe a cluster of 5 events, in a narrow mass range. This cluster correspond to a 2.7 σ signal. The most probable interpretation of this signal is given by a narrow resonance, with a mass of 3526. MeV. Due to the properties (mass, width and decay) of this signal, this could be interpreted as the 1 P 1 charmonium state. 2 photons decay of the η c and Χ 2 . 22 γγ events are observed, 15 in the η c region, and 7 in the Χ 2 region. This sample is interpreted as a direct observation of η c and Χ 2 decay into γγ. Parameters of these decays, (γγ partial width), are extracted using a maximum likekihood analysis. Theoretical models of charmonium explain correctly the properties of the charmonium, including the results presented in this thesis. 57 refs [fr

  15. Polarization bremsstrahlung in α decay

    International Nuclear Information System (INIS)

    Amusia, M. Ya.; Zon, B. A.; Kretinin, I. Yu.

    2007-01-01

    A mechanism of formation of electromagnetic radiation that accompanies α decay and is associated with the emission of photons by electrons of atomic shells due to the scattering of α particles by these atoms (polarization bremsstrahlung) is proposed. It is shown that, when the photon energy is no higher than the energy of K electrons of an atom, polarization bremsstrahlung makes a significant contribution to the bremsstrahlung in α decay

  16. Parametric decay of the curvaton

    International Nuclear Information System (INIS)

    Enqvist, K; Nurmi, S; Rigopoulos, G I

    2008-01-01

    We argue that the curvaton decay takes place most naturally by way of a broad parametric resonance. The mechanism is analogous to resonant inflaton decay but does not require any tuning of the curvaton coupling strength to other scalar fields. For low scale inflation and a correspondingly low mass scale for the curvaton, we speculate on observable consequences including the possibility of stochastic gravitational waves

  17. Beta decay and rhenium cosmochronology

    International Nuclear Information System (INIS)

    Ashktorab, K.

    1992-01-01

    Among the problems which limit the use of the 187 Re/ 187 Os isobaric pair as a cosmochronometer for the age of the galaxy and the universe are the uncertainties in the partial half-lives of the continuum and bound state decays of 187 Re. While the total half-life of the decay is well established, the partial half-life for the continuum decay is uncertain, and several measurements are not compatible. A high temperature quartz proportional counter was used in this work to remeasure the continuum β - decay of 187 Re. The β endpoint energy for the decay of neutral 187 Re to singly ionized 187 Os of 2.75 ± 0.06 keV agrees with the earlier results. The corresponding half-life of (45 ± 3) x 10 9 years improves and agrees with the earlier measurement of Payne and Drever and refutes other measurements. Based on the new half-life for the continuum decay and a total half-life of (43.5 ± 1.3) x 10 9 years reported by Linder et al., the branching ratio for the bound state decay into discrete atomic states is estimated to be (3 ± 6)% in agreement with the most recent calculated theoretical branching ratio of approximately 1%. Anomalies in beta spectra reported by J.J. Simpson and others have been attributed to a 17 keV heavy-neutrino admixture. If confirmed, the implications from the existence of such a neutrino for particle and astrophysics would be significant. A multiwire open-quotes wall-lessclose quotes stainless steel proportional counter has been used in the present work to investigate the spectral shape of the β decay of 63 Ni. No anomalies in the spectral shape were observed which could be attributed to the presence of 17 keV heavy neutrino

  18. Hadronic {tau} decays and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Davier, M

    1999-12-01

    Hadronic decays of the {tau} lepton provide a clean source to study hadron dynamics in an energy regime dominated by resonances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonperturbative contributions. Strange decays yield a determination of the strange quark mass. (author)

  19. $\\Upsilon$ production in Z Decays

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Boucham, A; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dorne, I; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hong, S J; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sassowsky, M; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1997-01-01

    We have searched for evidence of Upsilon production in 3.5 million hadronic Z decays collected by the L3 detector at LEP in 1991-1995. No signals are observed for the decay chain Z -> Upsilon X; Upsilon -> l+l- (l= e, mu), therefore upper limits at the 95% confidence level are set on the following Z branching fractions: BR (Z -> Upsilon(1S) X) Upsilon(2S) X) Upsilon(3S) X) < 9.4 x 10**-5.

  20. Neutrinoless Double Beta Decay Experiments

    International Nuclear Information System (INIS)

    Garfagnini, A.

    2014-08-01

    Neutrinoless double beta decay is the only process known so far able to test the neutrino intrinsic nature: its experimental observation would imply that the lepton number is violated by two units and prove that neutrinos have a Majorana mass components, being their own anti-particle. While several experiments searching for such a rare decay have been per- formed in the past, a new generation of experiments using different isotopes and techniques have recently released their results or are taking data and will provide new limits, should no signal be observed, in the next few years to come. The present contribution reviews the latest public results on double beta decay searches and gives an overview on the expected sensitivities of the experiments in construction which will be able to set stronger limits in the near future. EXO and KamLAND-Zen experiments are based on the decay of Xe 136 , GERDA and MAJORANA experiments are based on the decay of Ge 76 , and the CUORE experiment is based on the decay of Te 130

  1. a Search for Nucleon Decay with Multiple Muon Decays

    Science.gov (United States)

    Phillips, Thomas James

    A search was made for nucleon decays which result in multiple delayed muon decays using the HPW (Harvard -Purdue-Wisconsin) water Cerenkov detector. The HPW detector consists of 680 metric tons of purified water instrumented with 704 five-inch photomultiplier tubes. The phototubes are situated on a volume array with a lattice spacing of approximately one meter, and the inside walls of the detector are lined with mirrors. This combination of mirrors and a volume array of phototubes gives the HPW detector a low trigger energy threshold and a high muon decay detection efficiency. The detector is surrounded by wire chambers to provide an active shield, and is located at a depth of 1500 meters-of-water-equivalent in the Silver King Mine in Park City, Utah. The entire HPW data set, consisting of 17.2 million events collec- ted during 282 live days between May 1983 and October 1984, was analyzed. No contained events with multiple muon decays were found in a 180 ton fiducial volume. This is consistent with the background rate from neutrino interactions, which is expected to be 0.7 (+OR-) 0.2 events. The calculated lower lifetime limit for the decay mode p (--->) (mu)('+)(mu)('+)(mu)('-) is: (tau)/B.R. = 1 x 10('31) years (90% C.L.). Limits are calculated for ten other proton decay modes and five bound neutron decay modes, most of which are around 4 x 10('30) years (90% C.L.). No previous studies have reported results from direct searches for eight of these modes.

  2. Voltage Management in Unbalanced Low Voltage Networks Using a Decoupled Phase-Tap-Changer Transformer

    DEFF Research Database (Denmark)

    Coppo, Massimiliano; Turri, Roberto; Marinelli, Mattia

    2014-01-01

    The paper studies a medium voltage-low voltage transformer with a decoupled on load tap changer capability on each phase. The overall objective is the evaluation of the potential benefits on a low voltage network of such possibility. A realistic Danish low voltage network is used for the analysis...

  3. 76 FR 70721 - Voltage Coordination on High Voltage Grids; Notice of Staff Workshop

    Science.gov (United States)

    2011-11-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD12-5-000] Voltage Coordination on High Voltage Grids; Notice of Staff Workshop Take notice that the Federal Energy Regulatory Commission will hold a Workshop on Voltage Coordination on High Voltage Grids on Thursday, December 1, 2011...

  4. Piezo Voltage Controlled Planar Hall Effect Devices.

    Science.gov (United States)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  5. Radon decay product removal unit as adpated for use with a lamp

    International Nuclear Information System (INIS)

    Moeller, D.W.; Rudnick, S.N.

    1993-01-01

    A radon decay product remover is described for use in a walled living enclosure having an airspace with radon decay products therein, comprising: (a) a threaded male adapter for insertion into a light bulb socket so as to connect the radon decay product remover to an A.C. electrical power supply; (b) an ion generator in the remover and coupled through the adapter to the A.C. power supply, the ion generator having an A.C. to D.C. converter, including a rectifier for rectifying the A.C. power to produce high voltage D.C. power which is coupled to an electrode for creating ions that are distributed in the airspace, resulting in an electric field gradient such that the electrical potential decreases from its maximum voltage at the electrode to essentially zero voltage at the room surfaces causing migration of ions and charged airborne radon decay products toward the boundaries of the airspace of the living enclosure where they deposit on surfaces and are thereby removed from the airspace, (c) a female socket for insertion of a light bulb, the female socket being electrically coupled to the A.C. power supply through the adapator

  6. Capacitor Voltages Measurement and Balancing in Flying Capacitor Multilevel Converters Utilizing a Single Voltage Sensor

    DEFF Research Database (Denmark)

    Farivar, Glen; Ghias, Amer M. Y. M.; Hredzak, Branislav

    2017-01-01

    This paper proposes a new method for measuring capacitor voltages in multilevel flying capacitor (FC) converters that requires only one voltage sensor per phase leg. Multiple dc voltage sensors traditionally used to measure the capacitor voltages are replaced with a single voltage sensor at the ac...... side of the phase leg. The proposed method is subsequently used to balance the capacitor voltages using only the measured ac voltage. The operation of the proposed measurement and balancing method is independent of the number of the converter levels. Experimental results presented for a five-level FC...

  7. Voltage-Gated Calcium Channels

    Science.gov (United States)

    Zamponi, Gerald Werner

    Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.

  8. Beyond voltage-gated ion channels: Voltage-operated membrane proteins and cellular processes.

    Science.gov (United States)

    Zhang, Jianping; Chen, Xingjuan; Xue, Yucong; Gamper, Nikita; Zhang, Xuan

    2018-04-18

    Voltage-gated ion channels were believed to be the only voltage-sensitive proteins in excitable (and some non-excitable) cells for a long time. Emerging evidence indicates that the voltage-operated model is shared by some other transmembrane proteins expressed in both excitable and non-excitable cells. In this review, we summarize current knowledge about voltage-operated proteins, which are not classic voltage-gated ion channels as well as the voltage-dependent processes in cells for which single voltage-sensitive proteins have yet to be identified. Particularly, we will focus on the following. (1) Voltage-sensitive phosphoinositide phosphatases (VSP) with four transmembrane segments homologous to the voltage sensor domain (VSD) of voltage-gated ion channels; VSPs are the first family of proteins, other than the voltage-gated ion channels, for which there is sufficient evidence for the existence of the VSD domain; (2) Voltage-gated proton channels comprising of a single voltage-sensing domain and lacking an identified pore domain; (3) G protein coupled receptors (GPCRs) that mediate the depolarization-evoked potentiation of Ca 2+ mobilization; (4) Plasma membrane (PM) depolarization-induced but Ca 2+ -independent exocytosis in neurons. (5) Voltage-dependent metabolism of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P 2 , PIP 2 ) in the PM. These recent discoveries expand our understanding of voltage-operated processes within cellular membranes. © 2018 Wiley Periodicals, Inc.

  9. In-trap decay spectroscopy for {beta}{beta} decays

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Thomas

    2011-01-18

    The presented work describes the implementation of a new technique to measure electron-capture (EC) branching ratios (BRs) of intermediate nuclei in {beta}{beta} decays. This technique has been developed at TRIUMF in Vancouver, Canada. It facilitates one of TRIUMF's Ion Traps for Atomic and Nuclear science (TITAN), the Electron Beam Ion Trap (EBIT) that is used as a spectroscopy Penning trap. Radioactive ions, produced at the radioactive isotope facility ISAC, are injected and stored in the spectroscopy Penning trap while their decays are observed. A key feature of this technique is the use of a strong magnetic field, required for trapping. It radially confines electrons from {beta} decays along the trap axis while X-rays, following an EC, are emitted isotropically. This provides spatial separation of X-ray and {beta} detection with almost no {beta}-induced background at the X-ray detector, allowing weak EC branches to be measured. Furthermore, the combination of several traps allows one to isobarically clean the sample prior to the in-trap decay spectroscopy measurement. This technique has been developed to measure ECBRs of transition nuclei in {beta}{beta} decays. Detailed knowledge of these electron capture branches is crucial for a better understanding of the underlying nuclear physics in {beta}{beta} decays. These branches are typically of the order of 10{sup -5} and therefore difficult to measure. Conventional measurements suffer from isobaric contamination and a dominating {beta} background at theX-ray detector. Additionally, X-rays are attenuated by the material where the radioactive sample is implanted. To overcome these limitations, the technique of in-trap decay spectroscopy has been developed. In this work, the EBIT was connected to the TITAN beam line and has been commissioned. Using the developed beam diagnostics, ions were injected into the Penning trap and systematic studies on injection and storage optimization were performed. Furthermore, Ge

  10. In-trap decay spectroscopy for ββ decays

    International Nuclear Information System (INIS)

    Brunner, Thomas

    2011-01-01

    The presented work describes the implementation of a new technique to measure electron-capture (EC) branching ratios (BRs) of intermediate nuclei in ββ decays. This technique has been developed at TRIUMF in Vancouver, Canada. It facilitates one of TRIUMF's Ion Traps for Atomic and Nuclear science (TITAN), the Electron Beam Ion Trap (EBIT) that is used as a spectroscopy Penning trap. Radioactive ions, produced at the radioactive isotope facility ISAC, are injected and stored in the spectroscopy Penning trap while their decays are observed. A key feature of this technique is the use of a strong magnetic field, required for trapping. It radially confines electrons from β decays along the trap axis while X-rays, following an EC, are emitted isotropically. This provides spatial separation of X-ray and β detection with almost no β-induced background at the X-ray detector, allowing weak EC branches to be measured. Furthermore, the combination of several traps allows one to isobarically clean the sample prior to the in-trap decay spectroscopy measurement. This technique has been developed to measure ECBRs of transition nuclei in ββ decays. Detailed knowledge of these electron capture branches is crucial for a better understanding of the underlying nuclear physics in ββ decays. These branches are typically of the order of 10 -5 and therefore difficult to measure. Conventional measurements suffer from isobaric contamination and a dominating β background at theX-ray detector. Additionally, X-rays are attenuated by the material where the radioactive sample is implanted. To overcome these limitations, the technique of in-trap decay spectroscopy has been developed. In this work, the EBIT was connected to the TITAN beam line and has been commissioned. Using the developed beam diagnostics, ions were injected into the Penning trap and systematic studies on injection and storage optimization were performed. Furthermore, Ge detectors, for the detection of X-rays, were

  11. Observability of Low Voltage grids

    DEFF Research Database (Denmark)

    Martin-Loeches, Ruben Sánchez; Iov, Florin; Kemal, Mohammed Seifu

    2017-01-01

    Low Voltage (LV) distribution power grids are experiencing a transformation from a passive to a more active role due to the increasing penetration of distributed generation, heat pumps and electrical vehicles. The first step towards a smarter operation of LV electrical systems is to provide grid ...... an updated state of the art on DSSE-AMI based, adaptive data collection techniques and database management system types. Moreover, the ongoing Danish RemoteGRID project is presented as a realistic case study.......Low Voltage (LV) distribution power grids are experiencing a transformation from a passive to a more active role due to the increasing penetration of distributed generation, heat pumps and electrical vehicles. The first step towards a smarter operation of LV electrical systems is to provide grid....... It becomes unrealistic to provide near real time full observability of the LV grid by applying Distribution System State Estimation (DSSE) utilizing the classical data collection and storage/preprocessing techniques. This paper investigates up-todate the observability problem in LV grids by providing...

  12. Rare B decays, rare τ decays, and grand unification

    International Nuclear Information System (INIS)

    Sher, M.; Yuan, Y.

    1991-01-01

    In multi-Higgs-boson extensions of the standard model, tree-level flavor-changing neutral currents exist naturally, unless suppressed by some symmetry. For a given rate, the exchanged scalar or pseudoscalar mass is very sensitive to the flavor-changing coupling between the first two generations. Since the Yukawa couplings of the first two generations are unknown and certainly very small, bounds which rely on some assumed value of this flavor-changing coupling are quite dubious. One might expect the size (and reliability) of the Yukawa couplings involving the third generation to be greater. In this paper, we consider processes involving τ's and B's, and determine the bounds on the flavor-changing couplings which involve third-generation fields. The strongest bound in the quark sector comes from B-bar B mixing and in the lepton sector, surprisingly, from μ→eγ. It is then noted that the flavor-changing couplings in the quark sector are related to those in the lepton sector in many grand unified theories, and one can ask whether an analysis of rare τ decays or rare B decays will provide the strongest constraints. We show that rare B decays provide the strongest bounds, and that no useful information can be obtained from rare τ decays. It is also noted that the most promising decay modes are B→Kμτ and B s →μτ, and we urge experimenters to look for rare decay modes of the B in which a τ is in the final state

  13. CRBRP decay heat removal systems

    International Nuclear Information System (INIS)

    Hottel, R.E.; Louison, R.; Boardman, C.E.; Kiley, M.J.

    1977-01-01

    The Decay Heat Removal Systems for the Clinch River Breeder Reactor Plant (CRBRP) are designed to adequately remove sensible and decay heat from the reactor following normal shutdown, operational occurrences, and postulated accidents on both a short term and a long term basis. The Decay Heat Removal Systems are composed of the Main Heat Transport System, the Main Condenser and Feedwater System, the Steam Generator Auxiliary Heat Removal System (SGAHRS), and the Direct Heat Removal Service (DHRS). The overall design of the CRBRP Decay Heat Removal Systems and the operation under normal and off-normal conditions is examined. The redundancies of the system design, such as the four decay heat removal paths, the emergency diesel power supplies, and the auxiliary feedwater pumps, and the diversities of the design such as forced circulation/natural circulation and AC Power/DC Power are presented. In addition to overall design and system capabilities, the detailed designs for the Protected Air Cooled Condensers (PACC) and the Air Blast Heat Exchangers (ABHX) are presented

  14. Vacancy decay in endohedral atoms

    International Nuclear Information System (INIS)

    Amusia, M. Ya.; Baltenkov, A. S.

    2006-01-01

    It is demonstrated that the fullerene shell dramatically affects the radiative and Auger vacancy decay of an endohedral atom A-C 60 . The collectivized electrons of the C 60 shell add new possibilities for radiative and nonradiative decays similar to that in ordinary atoms where the vacancies in the initial and final state almost always belong to different subshells. It is shown that the smallness of the atomic shell radii as compared to that of the fullerene shell provides an opportunity to derive the simple formulas for the probabilities of the electron transitions. It is shown that the radiative and Auger (or Koster-Kronig) widths of the vacancy decay due to electron transition in the atom A in A-C 60 acquire an additional factor that can be expressed via the polarizability of the C 60 at transition energy. It is demonstrated that due to an opening of the nonradiative decay channel for vacancies in subvalent subshells the decay probability increases by five to six orders of magnitude

  15. Fine structure of cluster decays

    International Nuclear Information System (INIS)

    Dumitrescu, O.

    1993-07-01

    Within the one level R-matrix approach the hindrance factors of the radioactive decays in which are emitted α and 14 C - nuclei are calculated. The generalization to radioactive decays in which are emitted heavier clusters such as e.g. 20 O, 24 Ne, 25 Ne, 28 Mg. 30 Mg, 32 Si and 34 Si is straightforward. The interior wave functions are supposed to be given by the shell model with effective residual interactions (e.g. the large scale shell model code-OXBASH - in the Michigan State University version for nearly spherical nuclei or by the enlarged superfluid model - ESM - recently proposed for deformed nuclei). The exterior wave functions are calculated from a cluster - nucleus double - folding model potential obtained with the M3Y interaction. As examples of the cluster decay fine structure we analyzed the particular cases of α - decay of 241 Am and 14 C -decay of 233 Ra. Good agreement with the experimental data is obtained. (author). 78 refs, 2 figs, 6 tabs

  16. Decay and Transmutation of Nuclides

    CERN Document Server

    Aarnio, Pertti A

    1999-01-01

    We present a computer code DeTra which solves analytically the Bateman equations governing the decay, build-up and transmutation of radionuclides. The complexity of the chains and the number of nuclides are not limited. The nuclide production terms considered include transmutation of the nuclides inside the chain, external production, and fission. Time dependent calculations are possible since all the production terms can be re-defined for each irradiation step. The number of irradiation steps and output times is unlimited. DeTra is thus able to solve any decay and transmutation problem as long as the nuclear data i.e. decay data and production rates, or cross sections, are known.

  17. The search for proton decay

    International Nuclear Information System (INIS)

    Haines, T.; Kaneyuki, K.; McGrew, C.; Mohapatra, R.; Peterson, E.; Cline, D.B.

    1994-01-01

    The conservation of the quantum number called baryon number, like lepton (or family) number, is an empirical fact even though there are very good reasons to expect otherwise. Experimentalists have been searching for baryon number violating decays of the proton and neutron for decades now without success. Theorists have evolved deep understanding of the relationship between the natural forces in the development of various Grand Unified Theories (GUTs) that nearly universally predict baryon number violating proton decay, or related phenomena like n-bar n oscillations. With this in mind, the Proton Decay Working Group reviewed the current experimental and theoretical status of the search for baryon number violation with an eye to the advancement in the next decade

  18. Particle creation during vacuum decay

    International Nuclear Information System (INIS)

    Rubakov, V.A.

    1984-01-01

    The hamiltonian approach is developed with regard to the problem of particle creation during the tunneling process, leading to the decay of the false vacuum in quantum field theory. It is shown that, to the lowest order in (h/2π), the particle creation is described by the euclidean Schroedinger equation in an external field of a bounce. A technique for solving this equation is developed in an analogy to the Bogoliubov transformation technique, in the theory of particle creation in the presence of classical background fields. The technique is illustrated by two examples, namely, the particle creation during homogeneous vacuum decay and during the tunneling process leading to the materialization of the thin-wall bubble of a new vacuum in the metastable one. The curious phenomenon of intensive particle annihilation during vacuum decay is discussed and explicitly illustrated within the former example. The non-unitary extension of the Bogoliubov u, v transformations is described in the appendix. (orig.)

  19. Cusp effects in meson decays

    Directory of Open Access Journals (Sweden)

    Kubis B.

    2010-04-01

    Full Text Available The pion mass difference generates a pronounced cusp in the π0 π0 invariant mass distribution of K+ → π0 π0 π+ decays. As originally pointed out by Cabibbo, an accurate measurement of the cusp may allow one to pin down the S-wave pion–pion scattering lengths to high precision. We present the non-relativistic effective field theory framework that permits to determine the structure of this cusp in a straightforward manner, including the effects of radiative corrections. Applications of the same formalism to other decay channels, in particular η and η′ decays, are also discussed.

  20. Observable signatures of inflaton decays

    Energy Technology Data Exchange (ETDEWEB)

    Battefeld, Diana; Battefeld, Thorsten [Institute for Astrophysics, University of Goettingen, Friedrich Hund Platz 1, D-37077 Gottingen (Germany); Giblin, John T. Jr.; Pease, Evan K., E-mail: dbattefe@astro.physik.uni-goettingen.de, E-mail: tbattefe@astro.physik.uni-goettingen.de, E-mail: giblinj@kenyon.edu, E-mail: peasee@kenyon.edu [Department of Physics, Kenyon College, Gambier, OH 43022, U.S.A (United States)

    2011-02-01

    We numerically compute features in the power-spectrum that originate from the decay of fields during inflation. Using a simple, phenomenological, multi-field setup, we increase the number of fields from a few to thousands. Whenever a field decays, its associated potential energy is transferred into radiation, causing a jump in the equation of state parameter and mode mixing at the perturbed level. We observe discrete steps in the power-spectrum if the number of fields is low, in agreement with analytic arguments in the literature. These features become increasingly smeared out once many fields decay within a given Hubble time. In this regime we confirm the validity of the analytic approach to staggered inflation, which is based on a coarse-graining procedure. Our numerical approach bridges the aforementioned analytic treatments, and can be used in more complicated scenarios.

  1. B decays, an introductory survey

    International Nuclear Information System (INIS)

    Le Yaouanc, A.; Oliver, L.; Pene, O.; Raynal, J.C.

    1994-01-01

    Some basic important theoretical tools which are currently used in b physics are overviewed. Heavy Quark Symmetry and its consequences for heavy to heavy and heavy to light semi-leptonic decays, as well as for leptonic decays, are briefly summarised. It is stressed that symmetry must be completed with dynamical calculations. A critical discussion of the nearest pole dominance (VMD) assumption is performed. Parton model and its higher twist corrections are discussed on the example of lifetimes. Finally, non-leptonic decays are considered via the example of the exclusive calculation of ΔΓ in the B s -B s -bar system. The popular factorization assumption is discussed and seems to be rather good. (author). 19 refs

  2. Heavy quark spectroscopy and decay

    International Nuclear Information System (INIS)

    Schindler, R.H.

    1987-01-01

    The understanding of q anti q systems containing heavy, charmed, and bottom quarks has progressed rapidly in recent years, through steady improvements in experimental techniques for production and detection of their decays. These lectures are meant to be an experimentalist's review of the subject. In the first of two lectures, the existing data on the spectroscopy of the bound c anti c and b anti b systems will be discussed. Emphasis is placed on comparisons with the theoretical models. The second lecture covers the rapidly changing subject of the decays of heavy mesons (c anti q and b anti q), and their excited states. In combination, the spectroscopy and decays of heavy quarks are shown to provide interesting insights into both the strong and electroweak interactions of the heavy quarks. 103 refs., 39 figs

  3. Mirror decay of $^{75}$Sr

    CERN Document Server

    Huikari, J; Algora, A; Cederkäll, J; Courtin, S; Dessagne, P; Fraile-Prieto, L M; Franchoo, S; Fynbo, H O U; Huang Wan Xia; Jokinen, A; Knipper, A; Maréchal, F; Miehé, C; Nácher, E; Peräjärvi, K; Poirier, E; Weissman, L; Äystö, J

    2003-01-01

    The beta -decay of /sup 75/Sr to its mirror nucleus /sup 75/Rb was studied at the ISOLDE PSB facility at CERN by means of beta -delayed gamma and proton spectroscopy. The decay Q-value and beta -delayed gamma intensity were measured for the first time. These results, 10.60+or-0.22 MeV and 4.5/sub -0.7//sup +1.9/%, together with accurate measurements of the beta -decay half-life and beta -delayed proton branching ratio yielded the Gamow-Teller strength 0.35+or-0.05 for the mirror transition. Implications of the results on studies of deformation effects and on the path of the rapid proton capture process are discussed. (24 refs).

  4. Power conditioning using dynamic voltage restorers under different voltage sag types.

    Science.gov (United States)

    Saeed, Ahmed M; Abdel Aleem, Shady H E; Ibrahim, Ahmed M; Balci, Murat E; El-Zahab, Essam E A

    2016-01-01

    Voltage sags can be symmetrical or unsymmetrical depending on the causes of the sag. At the present time, one of the most common procedures for mitigating voltage sags is by the use of dynamic voltage restorers (DVRs). By definition, a DVR is a controlled voltage source inserted between the network and a sensitive load through a booster transformer injecting voltage into the network in order to correct any disturbance affecting a sensitive load voltage. In this paper, modelling of DVR for voltage correction using MatLab software is presented. The performance of the device under different voltage sag types is described, where the voltage sag types are introduced using the different types of short-circuit faults included in the environment of the MatLab/Simulink package. The robustness of the proposed device is evaluated using the common voltage sag indices, while taking into account voltage and current unbalance percentages, where maintaining the total harmonic distortion percentage of the load voltage within a specified range is desired. Finally, several simulation results are shown in order to highlight that the DVR is capable of effective correction of the voltage sag while minimizing the grid voltage unbalance and distortion, regardless of the fault type.

  5. Decays of the vector glueball

    Science.gov (United States)

    Giacosa, Francesco; Sammet, Julia; Janowski, Stanislaus

    2017-06-01

    We calculate two- and three-body decays of the (lightest) vector glueball into (pseudo)scalar, (axial-)vector, as well as pseudovector and excited vector mesons in the framework of a model of QCD. While absolute values of widths cannot be predicted because the corresponding coupling constants are unknown, some interesting branching ratios can be evaluated by setting the mass of the yet hypothetical vector glueball to 3.8 GeV as predicted by quenched lattice QCD. We find that the decay mode ω π π should be one of the largest (both through the decay chain O →b1π →ω π π and through the direct coupling O →ω π π ). Similarly, the (direct and indirect) decay into π K K*(892 ) is sizable. Moreover, the decays into ρ π and K*(892 )K are, although subleading, possible and could play a role in explaining the ρ π puzzle of the charmonium state ψ (2 S ) thanks to a (small) mixing with the vector glueball. The vector glueball can be directly formed at the ongoing BESIII experiment as well as at the future PANDA experiment at the FAIR facility. If the width is sufficiently small (≲100 MeV ) it should not escape future detection. It should be stressed that the employed model is based on some inputs and simplifying assumptions: the value of glueball mass (at present, the quenched lattice value is used), the lack of mixing of the glueball with other quarkonium states, and the use of few interaction terms. It then represents a first step toward the identification of the main decay channels of the vector glueball, but shall be improved when corresponding experimental candidates and/or new lattice results will be available.

  6. Beta decay of 22O

    International Nuclear Information System (INIS)

    Hubert, F.; Dufour, J.P.; Moral, R. del; Fleury, A.; Jean, D.; Pravikoff, M.S.; Delagrange, H.; Geissel, H.; Schmidt, K.H.; Hanelt, E.

    1989-01-01

    The beta-gamma spectroscopic study of 22 O is presented. This nucleus, produced as a projectile-like fragment from the interaction of a 60 MeV/n 40 Ar beam with a Be target, has been separated by the LISE spectrometer. Several gamma rays from 22 O decay have been observed, from which a half-life of (2.25±0.15) s has been determined. Accurate excitation energies have been deduced for several states in 22 F. A partial beta decay scheme of 22 O has been established. Experimental results have been compared with shell model calculations. (orig.)

  7. β decay of Na32

    Science.gov (United States)

    Mattoon, C. M.; Sarazin, F.; Hackman, G.; Cunningham, E. S.; Austin, R. A. E.; Ball, G. C.; Chakrawarthy, R. S.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Koopmans, K. A.; Leslie, J. R.; Phillips, A. A.; Schumaker, M. A.; Scraggs, H. C.; Schwarzenberg, J.; Smith, M. B.; Svensson, C. E.; Waddington, J. C.; Walker, P. M.; Washbrook, B.; Zganjar, E.

    2007-01-01

    The β-decay of Na32 has been studied using β-γ coincidences. New transitions and levels are tentatively placed in the level scheme of Mg32 from an analysis of γ-γ and β-γ-γ coincidences. The observation of the indirect feeding of the 2321 keV state in Mg32 removes some restrictions previously placed on the spin assignment for this state. No evidence of a state at 2117 keV in Mg32 is found. Previously unobserved weak transitions up to 5.4 MeV were recorded but could not be placed in the decay scheme of Na32.

  8. Search for neutrinoless τ decays

    International Nuclear Information System (INIS)

    Albrecht, H.; Ehrlichmann, H.; Hamacher, T.; Krueger, A.; Nau, A.; Nippe, A.; Nowak, S.; Reidenbach, M.; Schaefer, M.; Schroeder, H.; Schulz, H.D.; Walter, M.; Wurth, R.; Appuhn, R.D.; Hast, C.; Herrera, G.; Kolanoski, H.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Toepfer, D.; Walther, A.; Wegener, D.; Britton, D.I.; Charlesworth, C.E.K.; Edwards, K.W.; Hyatt, E.R.F.; Kapitza, H.; Krieger, P.; MacFarlane, D.B.; Patel, P.M.; Prentice, J.D.; Saull, P.R.B.; Seidel, S.C.; Tzamariudaki, K.; Van de Water, R.G.; Yoon, T.S.; Ressing, D.; Schmidtler, M.; Schneider, M.; Schubert, K.R.; Strahl, K.; Waldi, R.; Weseler, S.

    1992-01-01

    Upper limits on branching ratios for six neutrinoless leptonic, 16 semileptonic, two radiative-leptonic, two radiative-hadronic and three purely hadronic τ decays have been determined. The results improve over previously published ones by about a factor of two. For the first time the lepton and baryon number violating decays τ - →anti pγ, τ - →anti pπ 0 and τ - →anti pη have been investigated. The 90% confidence level (CL) limits for the corresponding branching ratios amount to 2.9x10 -4 , 6.6x10 -4 and 1.3x10 -3 respectively. (orig.)

  9. The 49K beta decay

    International Nuclear Information System (INIS)

    Hansen, P.G.; Huck, A.; Klotz, G.; Knipper, A.; Miehe, C.; Walter, G.; Jonson, B.; Mattsson, S.; Ravn, H.L.; Kratz, K.L.

    1981-01-01

    The decay of 49 K has been studied through neutron and gamma spectroscopy techniques. The 49 K activity was formed by 600 MeV proton fragmentation reactions in a uranium carbide target. The observed β-strength, in addition to the general behaviour expected from the gross theory of β-decay, displays two resonances centered at about 6.5 MeV and 9.5 MeV in 49 Ca. This structure is discussed in simple shell-model terms. (orig.)

  10. Chiral quarks and proton decay

    International Nuclear Information System (INIS)

    Chadha, S.; Daniel, M.; Gounaris, G.J.; Murphy, A.J.

    1984-04-01

    The authors calculate the hadronic matrix elements of baryon decay operators using a chiral effective Lagrangian with quarks, gluons and Goldstone boson fields. The cases where the ΔB=1 operators arise from supersymmetric SU(5) GUT as well as the minimal SU(5) GUT model are studied. In each model the results depend on two parameters. In particular there is a range of values for the two parameters, where the dominant decay modes in the minimal SU(5) GUT are: p→etae + and n→π - e + . (author)

  11. Hadronic B decays at LHCb

    International Nuclear Information System (INIS)

    Latham, T.E.

    2014-01-01

    We present recent results from the analysis of hadronic decays of B s 0 mesons at LHCb detector. The analyses use the data sample collected in 2011, which correspond to an integrated luminosity of 1.0 fb -1 . A large variety of different decays are being studied in order to probe for signs of physics beyond the Standard Model. The statistics available in the 2011 data sample already allow sophisticated analysis techniques, such as the Dalitz-plot analysis and the angular analysis to be employed

  12. High voltage load resistor array

    Science.gov (United States)

    Lehmann, Monty Ray [Smithfield, VA

    2005-01-18

    A high voltage resistor comprising an array of a plurality of parallel electrically connected resistor elements each containing a resistive solution, attached at each end thereof to an end plate, and about the circumference of each of the end plates, a corona reduction ring. Each of the resistor elements comprises an insulating tube having an electrode inserted into each end thereof and held in position by one or more hose clamps about the outer periphery of the insulating tube. According to a preferred embodiment, the electrode is fabricated from stainless steel and has a mushroom shape at one end, that inserted into the tube, and a flat end for engagement with the end plates that provides connection of the resistor array and with a load.

  13. Theoretical analysis of magnetic sensor output voltage

    International Nuclear Information System (INIS)

    Liu Haishun; Dun Chaochao; Dou Linming; Yang Weiming

    2011-01-01

    The output voltage is an important parameter to determine the stress state in magnetic stress measurement, the relationship between the output voltage and the difference in the principal stresses was investigated by a comprehensive application of magnetic circuit theory, magnetization theory, stress analysis as well as the law of electromagnetic induction, and a corresponding quantitative equation was derived. It is drawn that the output voltage is proportional to the difference in the principal stresses, and related to the angle between the principal stress and the direction of the sensor. This investigation provides a theoretical basis for the principle stresses measurement by output voltage. - Research highlights: → A comprehensive investigation of magnetic stress signal. → Derived a quantitative equation about output voltage and the principal stresses. → The output voltage is proportional to the difference of the principal stresses. → Provide a theoretical basis for the principle stresses measurement.

  14. Voltage-Controlled Floating Resistor Using DDCC

    Directory of Open Access Journals (Sweden)

    M. Kumngern

    2011-04-01

    Full Text Available This paper presents a new simple configuration to realize the voltage-controlled floating resistor, which is suitable for integrated circuit implementation. The proposed resistor is composed of three main components: MOS transistor operating in the non-saturation region, DDCC, and MOS voltage divider. The MOS transistor operating in the non-saturation region is used to configure a floating linear resistor. The DDCC and the MOS transistor voltage divider are used for canceling the nonlinear component term of MOS transistor in the non-saturation region to obtain a linear current/voltage relationship. The DDCC is employed to provide a simple summer of the circuit. This circuit offers an ease for realizing the voltage divider circuit and the temperature effect that includes in term of threshold voltage can be compensated. The proposed configuration employs only 16 MOS transistors. The performances of the proposed circuit are simulated with PSPICE to confirm the presented theory.

  15. Spectrum analysis of a voltage source converter due to semiconductor voltage drops

    DEFF Research Database (Denmark)

    Rasmussen, Tonny Wederberg; Eltouki, Mustafa

    2017-01-01

    It is known that power electronic voltage source converters are non-ideal. This paper presents a state-of-the-art review on the effect of semiconductor voltage drop on the output voltage spectrum, using single-phase H-bridge two-level converter topology with natural sampled pulse width modulation....... The paper describes the analysis of output voltage spectrum, when the semiconductor voltage drop is added. The results of the analysis of the spectral contribution including and excluding semiconductor voltage drop reveal a good agreement between the theoretical results, simulations and laboratory...

  16. Distributed Monitoring of Voltage Collapse Sensitivity Indices

    OpenAIRE

    Simpson-Porco, John W.; Bullo, Francesco

    2016-01-01

    The assessment of voltage stability margins is a promising direction for wide-area monitoring systems. Accurate monitoring architectures for long-term voltage instability are typically centralized and lack scalability, while completely decentralized approaches relying on local measurements tend towards inaccuracy. Here we present distributed linear algorithms for the online computation of voltage collapse sensitivity indices. The computations are collectively performed by processors embedded ...

  17. High voltage investigations for ITER coils

    International Nuclear Information System (INIS)

    Fink, S.; Fietz, W.H.

    2006-01-01

    The superconducting ITER magnets will be excited with high voltage during operation and fast discharge. Because the coils are complex systems the internal voltage distribution can differ to a large extent from the ideal linear voltage distribution. In case of fast excitations internal voltages between conductor and radial plate of a TF coil can be even higher than the terminal voltage of 3.5 kV to ground which appears during a fast discharge without a fault. Hence the determination of the transient voltage distribution is important for a proper insulation co-ordination and will provide a necessary basis for the verification of the individual insulation design and the choice of test voltages and waveforms. Especially the extent of internal overvoltages in case of failures, e. g. malfunction of discharge units and / or arcing is of special interest. Transient calculations for the ITER TF coil system have been performed for fast discharge and fault scenarios to define test voltages for ITER TF. The conductor and radial plate insulation of the ITER TF Model Coil were exposed at room temperature to test voltages derived from the results from these calculations. Breakdown appeared during the highest AC voltage step. A fault scenario for the TF fast discharge system is presented where one fault triggers a second fault, leading to considerable voltage stress. In addition a FEM model of Poloidal Field Coil 3 for the determination of the parameters of a detailed network model is presented in order to prepare detailed investigations of the transient voltage behaviour of the PF coils. (author)

  18. The supply voltage apparatus of the CUORE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Arnaboldi, C.; Baú, A.; Carniti, P.; Cassina, L.; Giachero, A.; Gotti, C.; Maino, M.; Passerini, A. [INFN, Sezione di Milano Bicocca - Istituto Nazionale di Fisica Nucleare, Piazza della Scienza 3 Milano (Italy); Università di Milano Bicocca - Dipartimento di Fisica, Piazza della Scienza 3 Milano (Italy); Pessina, G., E-mail: Pessina@mib.infn.it [INFN, Sezione di Milano Bicocca - Istituto Nazionale di Fisica Nucleare, Piazza della Scienza 3 Milano (Italy); Università di Milano Bicocca - Dipartimento di Fisica, Piazza della Scienza 3 Milano (Italy)

    2016-07-11

    The Electronics system of experiments for the study of rare decays, such as the neutrino-less double beta decay, must be very stable over very long expected runs. We introduce our solution for the power supply of such an experiment, CUORE. In this case the power supply chain consists of a series of ACDCs, followed by DCDCs and then Linear Regulators. We emphasize here our approach to the DCDC regulation system that was designed with a complete rejection of the switching noise, across 100 MHz bandwidth. In the experimental layout the DCDC will be located far from the very front-end, with long connecting cables (10 m). We introduced our very simple and safe solution to prevent huge over-voltages, due to the energy stored in the inductance of the cables, generated after the release of accidental short circuits, so avoiding destructive effects. Some micro-controllers are present on every board and take care of the DCDC operation. These micro-controllers are managed from the control room, via CAN BUS protocol coupled via optical fibres. CUORE is an array of 1000 cryogenic detectors that will need 30 of our DCDCs.

  19. The supply voltage apparatus of the CUORE experiment

    Science.gov (United States)

    Arnaboldi, C.; Baú, A.; Carniti, P.; Cassina, L.; Giachero, A.; Gotti, C.; Maino, M.; Passerini, A.; Pessina, G.

    2016-07-01

    The Electronics system of experiments for the study of rare decays, such as the neutrino-less double beta decay, must be very stable over very long expected runs. We introduce our solution for the power supply of such an experiment, CUORE. In this case the power supply chain consists of a series of ACDCs, followed by DCDCs and then Linear Regulators. We emphasize here our approach to the DCDC regulation system that was designed with a complete rejection of the switching noise, across 100 MHz bandwidth. In the experimental layout the DCDC will be located far from the very front-end, with long connecting cables (10 m). We introduced our very simple and safe solution to prevent huge over-voltages, due to the energy stored in the inductance of the cables, generated after the release of accidental short circuits, so avoiding destructive effects. Some micro-controllers are present on every board and take care of the DCDC operation. These micro-controllers are managed from the control room, via CAN BUS protocol coupled via optical fibres. CUORE is an array of 1000 cryogenic detectors that will need 30 of our DCDCs.

  20. The supply voltage apparatus of the CUORE experiment

    International Nuclear Information System (INIS)

    Arnaboldi, C.; Baú, A.; Carniti, P.; Cassina, L.; Giachero, A.; Gotti, C.; Maino, M.; Passerini, A.; Pessina, G.

    2016-01-01

    The Electronics system of experiments for the study of rare decays, such as the neutrino-less double beta decay, must be very stable over very long expected runs. We introduce our solution for the power supply of such an experiment, CUORE. In this case the power supply chain consists of a series of ACDCs, followed by DCDCs and then Linear Regulators. We emphasize here our approach to the DCDC regulation system that was designed with a complete rejection of the switching noise, across 100 MHz bandwidth. In the experimental layout the DCDC will be located far from the very front-end, with long connecting cables (10 m). We introduced our very simple and safe solution to prevent huge over-voltages, due to the energy stored in the inductance of the cables, generated after the release of accidental short circuits, so avoiding destructive effects. Some micro-controllers are present on every board and take care of the DCDC operation. These micro-controllers are managed from the control room, via CAN BUS protocol coupled via optical fibres. CUORE is an array of 1000 cryogenic detectors that will need 30 of our DCDCs.

  1. Maximum permissible voltage of YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: zhiyong.hong@sjtu.edu.cn [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)

    2014-06-15

    Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  2. Microprocessor-controlled, programmable ramp voltage generator

    International Nuclear Information System (INIS)

    Hopwood, J.

    1978-11-01

    A special-purpose voltage generator has been developed for driving the quadrupole mass filter of a residual gas analyzer. The generator is microprocessor-controlled with desired ramping parameters programmed by setting front-panel digital thumb switches. The start voltage, stop voltage, and time of each excursion are selectable. A maximum of five start-stop levels may be pre-selected for each program. The ramp voltage is 0 to 10 volts with sweep times from 0.1 to 999.99 seconds

  3. Low-Voltage Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Bidari, E.; Keskin, M.; Maloberti, F.

    1999-01-01

    Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications.......Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications....

  4. The Monte-Carlo code DECAY to simulate the decay of baryon and meson resonances

    International Nuclear Information System (INIS)

    Haenssgen, K.; Ritter, S.

    1983-01-01

    The code DECAY simulates the decay of unpolarized baryon and meson resonances in the laboratory frame. DECAY treats some resonances among these all baryon resonances of the spin 3/2 + decuplet and all meson resonances of the spin 1 - nonet. A given resonance decays via two or three particle decay steps until all decay products are stable particles. Program summary and code description are given. (author)

  5. Voltage-dependent gating in a "voltage sensor-less" ion channel.

    Directory of Open Access Journals (Sweden)

    Harley T Kurata

    2010-02-01

    Full Text Available The voltage sensitivity of voltage-gated cation channels is primarily attributed to conformational changes of a four transmembrane segment voltage-sensing domain, conserved across many levels of biological complexity. We have identified a remarkable point mutation that confers significant voltage dependence to Kir6.2, a ligand-gated channel that lacks any canonical voltage-sensing domain. Similar to voltage-dependent Kv channels, the Kir6.2[L157E] mutant exhibits time-dependent activation upon membrane depolarization, resulting in an outwardly rectifying current-voltage relationship. This voltage dependence is convergent with the intrinsic ligand-dependent gating mechanisms of Kir6.2, since increasing the membrane PIP2 content saturates Po and eliminates voltage dependence, whereas voltage activation is more dramatic when channel Po is reduced by application of ATP or poly-lysine. These experiments thus demonstrate an inherent voltage dependence of gating in a "ligand-gated" K+ channel, and thereby provide a new view of voltage-dependent gating mechanisms in ion channels. Most interestingly, the voltage- and ligand-dependent gating of Kir6.2[L157E] is highly sensitive to intracellular [K+], indicating an interaction between ion permeation and gating. While these two key features of channel function are classically dealt with separately, the results provide a framework for understanding their interaction, which is likely to be a general, if latent, feature of the superfamily of cation channels.

  6. Review of tau lepton decays

    International Nuclear Information System (INIS)

    Stoker, D.P.

    1991-07-01

    Measurements of the τ decay modes are reviewed and compared with the predictions of the Standard Model. While the agreement is generally good, the status of the ''1-prong puzzle'' remains controversial and a discrepancy between the measured leptonic branching fractions and the τ lifetime persists. Prospects for precision measurements at a Tau-Charm Factory are also reviewed. 20 refs., 2 tabs

  7. Why measure radon decay products?

    International Nuclear Information System (INIS)

    Rolle, R.; Lettner, H.

    1997-01-01

    Combined development in spectrometry, instrumentation and ventilation modelling with its dependence on short- and long-term weather fluctuations renders possible a new, economical metrology for radon decay products. Short-term measurements can, with few restrictions, be converted to annual exposures of an accuracy superior to that from conventional medium-term Rn gas measurements. (orig.) [de

  8. Magnetic monopoles and baryon decay

    International Nuclear Information System (INIS)

    Pak, N.; Panagiotakopoulos, C.; Shafi, Q.

    1982-08-01

    The scattering of a non-relativistic quark from a GUT monopole is affected by the anomalous magnetic moment of the quark. In order that monopole catalysis of baryon decay can occur, it must be assumed that the anomalous magnetic moment decreases sufficiently rapidly below the QCD scale. (author)

  9. Observations of offshore bar decay

    DEFF Research Database (Denmark)

    Aagaard, Troels; Kroon, Aart; Greenwood, Brian

    2010-01-01

    the upper shoreface, and finally a stage of decaying bar form through loss of sediment volume at the outer boundary of the upper shoreface. The phenomenon has been previously documented in the Netherlands, the USA, the Canadian Great Lakes, and in New Zealand, but our present understanding...

  10. On t-quark decay

    International Nuclear Information System (INIS)

    Chizhov, M.V.

    1995-07-01

    An extended electroweak model with second rank antisymmetric tensor field is proposed. The effective interactions resulting from the exchange of these fields have specific dependence on the transfer momentum. This leads to the introduction of new model-independent muon decay parameters (Mod. Phys. Lett. A9 (1994) 2979), which can be measured experimentally in SLAC and TRIUMF. The new tensor interactions can effect the three-particles semileptonic meson decays (Mod. Phys. Lett. A8 (1993) 2753). In this connection it will be interesting to propose new experiments on K + → l + νγ, K + → π 0 l + ν decays in DAΦNE. The K L -K s mass difference sets constraints on the tensor particles masses. The mass of the lightest tensor particle could be less than the t-quark mass. Therefore the lightest tensor particle may give an additional to the W-boson contribution into the t- quark decay with the same signature. (author). 10 refs, 2 figs

  11. Rare pion and kaon decays

    International Nuclear Information System (INIS)

    Bryman, D.

    1983-09-01

    Some rare pion and kaon decays, which provide clues to the generation puzzle, are discussed. The π→ eν/π→μ/ν branching ratio test of universality and the status of searches for K + → π + rho anti rho are reviewed

  12. Beta decay of Cu-56

    NARCIS (Netherlands)

    Borcea, R; Aysto, J; Caurier, E; Dendooven, P; Doring, J; Gierlik, M; Gorska, M; Grawe, H; Hellstrom, M; Janas, Z; Jokinen, A; Karny, M; Kirchner, R; La Commara, M; Langanke, K; Martinez-Pinedo, G; Mayet, P; Nieminen, A; Nowacki, F; Penttila, H; Plochocki, A; Rejmund, M; Roeckl, E; Schlegel, C; Schmidt, K; Schwengner, R; Sawicka, M

    2001-01-01

    The proton-rich isotope Cu-56 was produced at the GSI On-Line Mass Separator by means of the Si-28(S-32, p3n) fusion-evaporation reaction. Its beta -decay properties were studied by detecting beta -delayed gamma rays and protons. A half-Life of 93 +/- 3 ms was determined for Cu-56. Compared to the

  13. Reinvestigation of 56Ni decay

    International Nuclear Information System (INIS)

    Sur, B.; Norman, E.B.; Lesko, K.T.; Browne, E.; Larimer, R.

    1990-01-01

    In a series of experiments, we have reinvestigated the decay of the doubly magic nucleus 56 Ni, which is believed to be copiously produced in supernovae. We have confirmed its previously known decay scheme and half-life, and have searched for several rare decay modes. We establish an upper limit of 5.8x10 -7 for the branching ratio of the second forbidden unique β + decay to the 158-keV level in 56 Co, leading to a lower limit of 2.9x10 4 yr for the half-life of fully ionized 56 Ni nuclei in cosmic rays. We also establish an upper limit of 5.0x10 -3 for the branching ratio of the isospin forbidden Fermi electron capture transition to the 1451-keV level in 56 Co, which in turn leads to an upper limit of 124 keV for the isospin mixing Coulomb matrix element of the 56 Ni ground state

  14. Weak decays of stable particles

    International Nuclear Information System (INIS)

    Brown, R.M.

    1988-09-01

    In this article we review recent advances in the field of weak decays and consider their implications for quantum chromodynamics (the theory of strong interactions) and electroweak theory (the combined theory of electromagnetic and weak interactions), which together form the ''Standard Model'' of elementary particles. (author)

  15. CDF results on B decays

    International Nuclear Information System (INIS)

    Skarha, J.E.

    1995-05-01

    The authors present recent CDF results on B lifetimes, B meson mass measurements, ratios of branching ratios, and rare decays. In addition, they present the first measurement of time-dependent B d mixing at CDF. Several results have been updated and a few new ones included since the workshop

  16. Exotic decay in cerium isotopes

    Indian Academy of Sciences (India)

    Geiger–Nuttall plots were studied for different clusters and are found to be linear. Inclusion of proximity potential will not produce much deviation to linear nature of Geiger–Nuttall plots. It is observed that neutron excess in the parent nuclei slow down the exotic decay process. These findings support the earlier observations ...

  17. Symmetry-violating kaon decays

    International Nuclear Information System (INIS)

    Herczeg, P.

    1979-01-01

    The content of this talk comprises two parts. In the first, an analysis of the muon number violating decay modes of the K-mesons is given. Subsequently, some new developments in the field of CP-violation are reviewed and the question of time-reversal invariance and the status of CPT-invariance are briefly considered. (auth)

  18. Hadronic decays of $W$ bosons

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, III, Richard Paul [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1997-01-01

    We present evidence for hadronic W decays in t$\\bar{t}$ → lepton + neutrino + ≥ 4 jet events using a 109 pb -1 data sample of p$\\bar{p}$ collisions at √s = 1.8 TeV collected with the Collider Detector at Fermilab (CDF).

  19. Constraining neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Dorame, L.; Meloni, D.; Morisi, S.; Peinado, E.; Valle, J.W.F.

    2012-01-01

    A class of discrete flavor-symmetry-based models predicts constrained neutrino mass matrix schemes that lead to specific neutrino mass sum-rules (MSR). We show how these theories may constrain the absolute scale of neutrino mass, leading in most of the cases to a lower bound on the neutrinoless double beta decay effective amplitude.

  20. Alpha decay of 114Ba

    International Nuclear Information System (INIS)

    Mazzocchi, C.; Janas, Z.; Batist, L.; Belleguic, V.; Doering, J.; Kapica, M.; Kirchner, R.; Roeckl, E.; Gierlik, M.; Zylicz, J.; Mahmud, H.; Schmidt, K.; Woods, P.J.

    2003-01-01

    The neutron-deficient isotope 114 Ba was produced in a fusion evaporation reaction at the GSI On-Line Mass Separator. We measured the α-particle energy of 114 Ba, the half-life of its daughter nucleus 110 Xe, and the α-decay branching ratios for 114 Ba, 110 Xe and 106 Te. (orig.)

  1. Superheavy elements and decay properties

    Indian Academy of Sciences (India)

    chains from 294118 and, it can be seen that our predictions on the α decay ... The Coulomb and proximity potential model for deformed nuclei (CPPMDN) .... Here the half-life is in seconds, Q-value is in MeV and Z is the atomic number of the.

  2. Superheavy elements and decay properties

    Indian Academy of Sciences (India)

    2015-08-04

    Aug 4, 2015 ... The decay properties of the isotopes of = 115, 117, 118 and 119 have been extensively investigated, focussing on the newly synthesized isotopes within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The half-lives have also been evaluated using the Viola–Seaborg ...

  3. Detecting decay in wood components

    Science.gov (United States)

    R.J. Ross; X. Wang; B.K. Brashaw

    2005-01-01

    This chapter presents a summary of the Wood and Timber Condition Assessment Manual. It focuses on current inspection techniques for decay detection and provides guidelines on the use of various non-destructive evaluation (NDE) methods in locating and defining areas of deterioration in timber bridge components and other civil structures.

  4. Excitation of voltage oscillations in an induction voltage adder

    Directory of Open Access Journals (Sweden)

    Nichelle Bruner

    2009-07-01

    Full Text Available The induction voltage adder is an accelerator architecture used in recent designs of pulsed-power driven x-ray radiographic systems such as Sandia National Laboratories’ Radiographic Integrated Test Stand (RITS, the Atomic Weapons Establishment’s planned Hydrus Facility, and the Naval Research Laboratory’s Mercury. Each of these designs relies on magnetic insulation to prevent electron loss across the anode-cathode gap in the vicinity of the adder as well as in the coaxial transmission line. Particle-in-cell simulations of the RITS adder and transmission line show that, as magnetic insulation is being established during a pulse, some electron loss occurs across the gap. Sufficient delay in the cavity pulse timings provides an opportunity for high-momentum electrons to deeply penetrate the cavities of the adder cells where they can excite radio-frequency resonances. These oscillations may be amplified in subsequent gaps, resulting in oscillations in the output power. The specific modes supported by the RITS-6 accelerator and details of the mechanism by which they are excited are presented in this paper.

  5. Multiple photon emission in heavy particle decays

    International Nuclear Information System (INIS)

    Asakimori, K.; Burnett, T.H.; Cherry, M.L.

    1994-03-01

    Cosmic ray interactions, at energies above 1 TeV/nucleon, in emulsion chambers flown on high altitude balloons have yielded two events showing apparent decays of a heavy particle into one charged particle and four photons. The photons converted into electron pairs very close to the decay vertex. Attempts to explain this decay topology with known particle decays are presented. Unless both events represent a b → u transition, which is statistically unlikely, then other known decay modes for charmed or bottom particles do not account satisfactorily for these observations. This could indicate, possibly, a new decay channel. (author). 7 refs, 6 figs, 2 tabs

  6. ]thiophene-Based Nonfullerene Acceptor with High Crystallinity Exhibiting Single Junction Solar Cell Efficiencies Greater than 13% with Low Voltage Losses

    KAUST Repository

    Fei, Zhuping

    2018-01-10

    A new synthetic route, to prepare an alkylated indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor (C8-ITIC), is reported. Compared to the reported ITIC with phenylalkyl side chains, the new acceptor C8-ITIC exhibits a reduction in the optical band gap, higher absorptivity, and an increased propensity to crystallize. Accordingly, blends with the donor polymer PBDB-T exhibit a power conversion efficiency (PCE) up to 12.4%. Further improvements in efficiency are found upon backbone fluorination of the donor polymer to afford the novel material PFBDB-T. The resulting blend with C8-ITIC shows an impressive PCE up to 13.2% as a result of the higher open-circuit voltage. Electroluminescence studies demonstrate that backbone fluorination reduces the energy loss of the blends, with PFBDB-T/C8-ITIC-based cells exhibiting a small energy loss of 0.6 eV combined with a high JSC of 19.6 mA cm-2 .

  7. ]thiophene-Based Nonfullerene Acceptor with High Crystallinity Exhibiting Single Junction Solar Cell Efficiencies Greater than 13% with Low Voltage Losses

    KAUST Repository

    Fei, Zhuping; Eisner, Flurin D.; Jiao, Xuechen; Azzouzi, Mohammed; Rö hr, Jason A.; Han, Yang; Shahid, Munazza; Chesman, Anthony S. R.; Easton, Christopher D.; McNeill, Christopher R.; Anthopoulos, Thomas D.; Nelson, Jenny; Heeney, Martin

    2018-01-01

    A new synthetic route, to prepare an alkylated indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor (C8-ITIC), is reported. Compared to the reported ITIC with phenylalkyl side chains, the new acceptor C8-ITIC exhibits a reduction in the optical band gap, higher absorptivity, and an increased propensity to crystallize. Accordingly, blends with the donor polymer PBDB-T exhibit a power conversion efficiency (PCE) up to 12.4%. Further improvements in efficiency are found upon backbone fluorination of the donor polymer to afford the novel material PFBDB-T. The resulting blend with C8-ITIC shows an impressive PCE up to 13.2% as a result of the higher open-circuit voltage. Electroluminescence studies demonstrate that backbone fluorination reduces the energy loss of the blends, with PFBDB-T/C8-ITIC-based cells exhibiting a small energy loss of 0.6 eV combined with a high JSC of 19.6 mA cm-2 .

  8. Mapping of Residues Forming the Voltage Sensor of the Voltage-Dependent Anion-Selective Channel

    Science.gov (United States)

    Thomas, Lorie; Blachly-Dyson, Elizabeth; Colombini, Marco; Forte, Michael

    1993-06-01

    Voltage-gated ion-channel proteins contain "voltage-sensing" domains that drive the conformational transitions between open and closed states in response to changes in transmembrane voltage. We have used site-directed mutagenesis to identify residues affecting the voltage sensitivity of a mitochondrial channel, the voltage-dependent anion-selective channel (VDAC). Although charge changes at many sites had no effect, at other sites substitutions that increased positive charge also increased the steepness of voltage dependance and substitutions that decreased positive charge decreased voltage dependance by an appropriate amount. In contrast to the plasma membrane K^+ and Na^+ channels, these residues are distributed over large parts of the VDAC protein. These results have been used to define the conformational transitions that accompany voltage gating of an ion channel. This gating mechanism requires the movement of large portions of the VDAC protein through the membrane.

  9. Voltage and capacity stability of the Hubble telescope nickel-hydrogen battery

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, H. [Communications Satellite Corp., Clarksburg, MD (United States). COMSAT Labs.; Wajsgras, H. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Rao, G.M. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1996-01-01

    The power system of the Ubble Space Telescope includes two orbital replacement units, each containing three nickel-hydrogen (Ni-H{sub 2}) batteries of 88 Ah capacity. Since launch in April 1990, the batteries have completed 23 000 charge and discharge cycles and continue to meet the power demands of the satellite. The voltage, capacity, and pressure characteristics of all six batteries were analyzed to determine the state of health of the battery and to identify any signs of performance degradation. The battery pressures have changed to varying degrees. The end-of-charge pressure for battery 4 increased by 96 psi, while that for battery 3 decreased by 37 psi. The voltages of the individual cells show a decay rate of 0.69 mV per 1000 cycles, and the capacity of the batteries has apparently decreased, possibly due to the system being operated at a lower stage of charge. Autonomous battery operation involving charge termination at a preselected voltage continues to restore the energy dissipated during each orbit. The accumulated data on voltages and recharge ratios can be used to design new temperature-compensated voltage levels for similar missions that employ Ni-H{sub 2} batteries. (orig.)

  10. Voltage stability in low voltage microgrids in aspects of active and reactive power demand

    Directory of Open Access Journals (Sweden)

    Parol Mirosław

    2016-03-01

    Full Text Available Low voltage microgrids are autonomous subsystems, in which generation, storage and power and electrical energy consumption appear. In the paper the main attention has been paid to the voltage stability issue in low voltage microgrid for different variants of its operation. In the introduction a notion of microgrid has been presented, and also the issue of influence of active and reactive power balance on node voltage level has been described. Then description of voltage stability issue has been presented. The conditions of voltage stability and indicators used to determine voltage stability margin in the microgrid have been described. Description of the low voltage test microgrid, as well as research methodology along with definition of considered variants of its operation have been presented further. The results of exemplary calculations carried out for the daily changes in node load of the active and reactive power, i.e. the voltage and the voltage stability margin indexes in nodes have been presented. Furthermore, the changes of voltage stability margin indexes depending on the variant of the microgrid operation have been presented. Summary and formulation of conclusions related to the issue of voltage stability in microgrids have been included at the end of the paper.

  11. Influence of current limitation on voltage stability with voltage sourced converter HVDC

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Jóhannsson, Hjörtur; Hansen, Anca Daniela

    2013-01-01

    A first study of voltage stability with relevant amount of Voltage Sourced Converter based High Voltage Direct Current (VSC-HVDC) transmission is presented, with particular focus on the converters’ behaviour when reaching their rated current. The detrimental effect of entering the current...

  12. Voltage-Sensitive Load Controllers for Voltage Regulation and Increased Load Factor in Distribution Systems

    DEFF Research Database (Denmark)

    Douglass, Philip James; Garcia-Valle, Rodrigo; Østergaard, Jacob

    2014-01-01

    This paper presents a novel controller design for controlling appliances based on local measurements of voltage. The controller finds the normalized voltage deviation accounting for the sensitivity of voltage measurements to appliance state. The controller produces a signal indicating desired pow...

  13. On-site voltage measurement with capacitive sensors on high voltage systems

    NARCIS (Netherlands)

    Wu, L.; Wouters, P.A.A.F.; Heesch, van E.J.M.; Steennis, E.F.

    2011-01-01

    In Extra/High-Voltage (EHV/HV) power systems, over-voltages occur e.g. due to transients or resonances. At places where no conventional voltage measurement devices can be installed, on-site measurement of these occurrences requires preferably non intrusive sensors, which can be installed with little

  14. 76 FR 72203 - Voltage Coordination on High Voltage Grids; Notice of Reliability Workshop Agenda

    Science.gov (United States)

    2011-11-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD12-5-000] Voltage Coordination on High Voltage Grids; Notice of Reliability Workshop Agenda As announced in the Notice of Staff..., from 9 a.m. to 4:30 p.m. to explore the interaction between voltage control, reliability, and economic...

  15. Modeling and Simulation of Low Voltage Arcs

    NARCIS (Netherlands)

    Ghezzi, L.; Balestrero, A.

    2010-01-01

    Modeling and Simulation of Low Voltage Arcs is an attempt to improve the physical understanding, mathematical modeling and numerical simulation of the electric arcs that are found during current interruptions in low voltage circuit breakers. An empirical description is gained by refined electrical

  16. Reduced Voltage Scaling in Clock Distribution Networks

    Directory of Open Access Journals (Sweden)

    Khader Mohammad

    2009-01-01

    Full Text Available We propose a novel circuit technique to generate a reduced voltage swing (RVS signals for active power reduction on main buses and clocks. This is achieved without performance degradation, without extra power supply requirement, and with minimum area overhead. The technique stops the discharge path on the net that is swinging low at a certain voltage value. It reduces active power on the target net by as much as 33% compared to traditional full swing signaling. The logic 0 voltage value is programmable through control bits. If desired, the reduced-swing mode can also be disabled. The approach assumes that the logic 0 voltage value is always less than the threshold voltage of the nMOS receivers, which eliminate the need of the low to high voltage translation. The reduced noise margin and the increased leakage on the receiver transistors using this approach have been addressed through the selective usage of multithreshold voltage (MTV devices and the programmability of the low voltage value.

  17. The LMF triaxial MITL voltage adder system

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Smith, D.L.; Bennett, L.F.; Lockner, T.R.; Olson, R.E.; Poukey, J.W.

    1992-01-01

    The light-ion microfusion driver design consists of multiple accelerating modules fired in coincidence and sequentially in order to provide the desired ion energy, power pulse shape and energy deposition uniformity on an Inertial Confinement Fusion (ICF) target. The basic energy source is a number of Marx generators which, through the appropriate pulse power conditioning, provide the necessary voltage pulse wave form to the accelerating gaps or feeds of each module. The cavity gaps are inductively isolated, and the voltage addition occurs in the center conductor of the voltage adder which is the positive electrode while the electrons of the sheath flow closer to the outer cylinder which is the magnetically insulated cathode electrode. Each module powers a separate two-stage extraction diode which provides a low divergence ion beam. In order to provide the two separate voltage pulses required by the diode, a triaxial adder system is designed for each module. The voltage addition occurs in two separate MITLs. The center hollow cylinder (anode) of the second MITL also serves as the outer cathode electrode for the extension of the first voltage adder MITL. The voltage of the second stage is about twice that of the first stage. The cavities are connected in series to form the outer cylinder of each module. The accelerating modules are positioned radially in a symmetrical way around the fusion chamber. A preliminary conceptual design of the LMF modules with emphasis on the voltage adders and extension MITLs will be presented and discussed

  18. Time isolation high-voltage impulse generator

    International Nuclear Information System (INIS)

    Chodorow, A.M.

    1975-01-01

    Lewis' high-voltage impulse generator is analyzed in greater detail, demonstrating that voltage between adjacent nodes can be equalized by proper selection of parasitic impedances. This permits improved TEM mode propagation to a matched load, with more faithful source waveform preservation

  19. High-voltage engineering and testing

    CERN Document Server

    Ryan, Hugh M

    2013-01-01

    This 3rd edition of High Voltage Engineering Testing describes strategic developments in the field and reflects on how they can best be managed. All the key components of high voltage and distribution systems are covered including electric power networks, UHV and HV. Distribution systems including HVDC and power electronic systems are also considered.

  20. Improving transition voltage spectroscopy of molecular junctions

    DEFF Research Database (Denmark)

    Markussen, Troels; Chen, Jingzhe; Thygesen, Kristian Sommer

    2011-01-01

    Transition voltage spectroscopy (TVS) is a promising spectroscopic tool for molecular junctions. The principles in TVS is to find the minimum on a Fowler-Nordheim plot where ln(I/V2) is plotted against 1/V and relate the voltage at the minimum Vmin to the closest molecular level. Importantly, Vmin...