WorldWideScience

Sample records for oogenesis

  1. Unscrambling butterfly oogenesis.

    Science.gov (United States)

    Carter, Jean-Michel; Baker, Simon C; Pink, Ryan; Carter, David R F; Collins, Aiden; Tomlin, Jeremie; Gibbs, Melanie; Breuker, Casper J

    2013-04-26

    Butterflies are popular model organisms to study physiological mechanisms underlying variability in oogenesis and egg provisioning in response to environmental conditions. Nothing is known, however, about; the developmental mechanisms governing butterfly oogenesis, how polarity in the oocyte is established, or which particular maternal effect genes regulate early embryogenesis. To gain insights into these developmental mechanisms and to identify the conserved and divergent aspects of butterfly oogenesis, we analysed a de novo ovarian transcriptome of the Speckled Wood butterfly Pararge aegeria (L.), and compared the results with known model organisms such as Drosophila melanogaster and Bombyx mori. A total of 17306 contigs were annotated, with 30% possibly novel or highly divergent sequences observed. Pararge aegeria females expressed 74.5% of the genes that are known to be essential for D. melanogaster oogenesis. We discuss the genes involved in all aspects of oogenesis, including vitellogenesis and choriogenesis, plus those implicated in hormonal control of oogenesis and transgenerational hormonal effects in great detail. Compared to other insects, a number of significant differences were observed in; the genes involved in stem cell maintenance and differentiation in the germarium, establishment of oocyte polarity, and in several aspects of maternal regulation of zygotic development. This study provides valuable resources to investigate a number of divergent aspects of butterfly oogenesis requiring further research. In order to fully unscramble butterfly oogenesis, we also now also have the resources to investigate expression patterns of oogenesis genes under a range of environmental conditions, and to establish their function.

  2. Oogenesis

    Directory of Open Access Journals (Sweden)

    Manuela Monti

    2013-03-01

    Full Text Available I started flipping through the pages of this book when the expression “Ab Ovo” came to my mind. Ab Ovo, the beginning, the origin, the egg. This reminded me that the idea of correlating the origin of each human being with an egg characterized the human beliefs of the seventeenth century until Francesco Redi, inspired by the study of Iliad, wonders why Achilles asks his mother Thetis how to conserve the lifeless body of his beloved Patroclus. How the goddess can satisfy her son’s request if the spontaneous generation of flies and butterflies from the dead body corresponds to reality? Only by covering Patroclus’ body preventing flies and butterflies from laying their eggs on a dead flesh, is the correct answer!...

  3. OOGENESIS AND OVARIAN HISTOLOGY OF THE AMERICAN ALLIGATOR ALLIGATOR MISSISSIPPIENSIS

    Science.gov (United States)

    Although folliculogenesis and oogenesis have been observed in numerous reptiles, these phenomena have not been described in detail in a crocodilian. Oogenesis and histological features of the adult ovary of Alligator mississippiensis are described. Using a complex process, the ov...

  4. Select aspects of oogenesis and folliculogenesis

    Directory of Open Access Journals (Sweden)

    Cezary Grygoruk

    2013-08-01

    Full Text Available The processes of oogenesis and folliculogenesis begin very early in foetal life and are continued until the end of the reproductive period. Despite the numerous research conducted, the mechanism which initiates the growth of primary follicles has not been fully elucidated. The process of oocyte maturation begins after the recruitment of the primary follicle and continues until ovulation. This involves synthesis and accumulation of an appropriate number and kind of compounds and redistribution of cellular organelles inside the oocyte, which are necessary for the processes of fertilization and early embryonic development. The complexity and multi-functionality of these mechanisms and the factors which take part in the process of oogenesis indicate a necessity to conduct further research concerning this issue. A more thorough understanding of the processes of oogenesis and folliculogenesis will allow in time to develop more effective methods of treatment for a range of gynaecological, oncological, and endocrinological disorders.

  5. Ultrastructure of Oogenesis in Dryopteris crassirhizoma Nakai

    Institute of Scientific and Technical Information of China (English)

    Wen-Mei BAO; Qun HE; Quan-Xi WANG; Guo-Wei TIAN; Jian-Guo CAO

    2005-01-01

    The ultrastructure of oogenesis in Dryopteris crassirhizoma Nakai has been investigated using transmission electron microscopy. The nucleus in the young egg is rounded with an uneven outline. As it develops, it becomes amoeboid and extends nuclear protrusions that are not only sac-like nuclear evaginations like those often seen in the oogenesis of other ferns, but also mushroom-like and finger-like, with an opening at their end allowing the nucleolus material to flow out from the openings. This has not been observed previously. The nuclear protrusions differ from Dryopteris filix-mas (L.) Schott. in the absence of sheets of nuclear membrane in the form of a closed ring. As the egg matures, the nucleus transforms into a tuber-like structure with a smooth surface, lying transversely in the egg cell. In the immature egg, vesicles almost encircle the nucleus twice and are most remarkable. In the maturing egg, the vesicles are distributed at the periphery, except for at the top of the egg, and affect the formation of the separation cavity and extra egg membrane. Simultaneously, vesicles from the venter canal cell move to the egg and take part in the formation of separation cavity and extra egg membrane. In the mature egg, a large number of small vesicles containing fragments of lamellae or osmiophilic material emerge from the cytoplasm. The origin of these vesicles is obscure. Irregular plastids containing a cylindrical starch grain dedifferentiated progressively.Mitochondria seem to have been undeveloped during the process, but return to normal at later stages of oogenesis. There is a high frequency of ribosomes in the mature egg. Microtubules, rarely seen in the eggs ofD. filix-mas (L.) Schott. and Pteridium aquilinum (L.) Kuhn, have been observed inside the plasmalemma of the maturing egg in D. crassirhizoma.

  6. Fascin regulates nuclear actin during Drosophila oogenesis.

    Science.gov (United States)

    Kelpsch, Daniel J; Groen, Christopher M; Fagan, Tiffany N; Sudhir, Sweta; Tootle, Tina L

    2016-10-01

    Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5-9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved.

  7. The Expression of vasa Gene during Zebrafish (Danio rerio) Oogenesis

    Institute of Scientific and Technical Information of China (English)

    XIANG Fang; ZHEN Yan; ZHENG Wen-xuan; DENG Feng-jiao; WANG Xiao-kai; ZHANG Xi-yuan

    2004-01-01

    vasa gene expression pattern during oogenesis of zebrafish was examined using in situ hybridization and fluorescent quantitative RT-PCR. During zebrafish oogensis, vasa mRNA is expressed strongly and uniformly distributed in the cytoplasm in stage Ⅱ oocytes, followed by a distribution among vacuome in stage Ⅲ. Later in stage Ⅳ and Ⅴ, vasa mRNA is enriched at the cortex and finally localized at the cortex. The fluorescent quantitative RT-PCR shows that the quantity of vasa mRNA decreases from stage Ⅱ to stage Ⅲ, but remains relatively invariable from stage Ⅲ to stage Ⅴ. The observed differences in vasa mRNA expression in the different stages of zebrafish oogenesis suggest that vasa gene plays an important role during oogenesis.

  8. [Spontaneous chromosome aberrations in the oogenesis of laboratory rats].

    Science.gov (United States)

    Dyban, A P; Chebotar', N A

    1975-08-01

    Cytological preparations were made by Tarkovsky's method from 2335 rat oocytes obtained after an induced superodulation. The chromosomes could be counted exactly in 861 oocytes. In 797 oocytes (92.7%) euploidy (metaphase II with 21 chromosomes) and in 64 oocytes (7.5%) aneuploidy was found. 60 oocytes were hypoploid, but only 4 oocytes (0.4%) were hyperploid (with 22 chromosomes). Hypoploidy can often be due to the presence of artefacts. Probably the rate of spontaneous aneuploidy in rat oogenesis is about 0.8%, this being significantly lower than the rate of spontaneous aneuploidy in mice oogenesis.

  9. Prostaglandins temporally regulate cytoplasmic actin bundle formation during Drosophila oogenesis

    OpenAIRE

    Spracklen, Andrew J.; Kelpsch, Daniel J.; Chen, Xiang; Spracklen, Cassandra N.; Tootle, Tina L.

    2014-01-01

    Prostaglandins (PGs)—lipid signals produced downstream of cyclooxygenase (COX) enzymes—regulate actin dynamics in cell culture and platelets, but their roles during development are largely unknown. Here we define a new role for Pxt, the Drosophila COX-like enzyme, in regulating the actin cytoskeleton—temporal restriction of actin remodeling during oogenesis. PGs are required for actin filament bundle formation during stage 10B (S10B). In addition, loss of Pxt results in extensive early actin ...

  10. Oogenesis in the viviparous matrotrophic lizard Mabuya brachypoda.

    Science.gov (United States)

    Hernández-Franyutti, Arlette; Uribe Aranzábal, Mari Carmen; Guillette, Louis J

    2005-08-01

    Oogenesis in the lizard Mabuya brachypoda is seasonal, with oogenesis initiated during May-June and ovulation occurring during July-August. This species ovulates an egg that is microlecithal, having very small yolk stores. The preovulatory oocyte attains a maximum diameter of 0.9-1.3 mm. Two elongated germinal beds, formed by germinal epithelia containing oogonia, early oocytes, and somatic cells, are found on the dorsal surface of each ovary. Although microlecithal eggs are ovulated in this species, oogenesis is characterized by both previtellogenic and vitellogenic stages. During early previtellogenesis, the nucleus of the oocyte contains lampbrush chromosomes, whereas the ooplasm stains lightly with a perinuclear yolk nucleus. During late previtellogenesis the ooplasm displays basophilic staining with fine granular material composed of irregularly distributed bundles of thin fibers. A well-defined zona pellucida is also observed. The granulosa, initially composed of a single layer of squamous cells during early previtellogenesis, becomes multilayered and polymorphic. As with other squamate reptiles, the granulosa at this stage is formed by three cell types: small, intermediate, and large or pyriform cells. As vitellogenesis progresses the oocyte displays abundant vacuoles and small, but scarce, yolk platelets at the periphery of the oocyte. The zona pellucida attains its maximum thickness during late oogenesis, a period when the granulosa is again reduced to a single layer of squamous cells. The vitellogenic process observed in M. brachypoda corresponds with the earliest vitellogenic stages seen in other viviparous lizard species with larger oocytes. The various species of the genus Mabuya provided us with important models to understand a major transition in the evolution of viviparity, the development of a microlecithal egg.

  11. Lin-28 regulates oogenesis and muscle formation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Vassilis Stratoulias

    Full Text Available Understanding the control of stem cell (SC differentiation is important to comprehend developmental processes as well as to develop clinical applications. Lin28 is a conserved molecule that is involved in SC maintenance and differentiation by regulating let-7 miRNA maturation. However, little is known about the in vivo function of Lin28. Here, we report critical roles for lin-28 during oogenesis. We found that let-7 maturation was increased in lin-28 null mutant fly ovaries. We showed that lin-28 null mutant female flies displayed reduced fecundity, due to defects in egg chamber formation. More specifically, we demonstrated that in mutant ovaries, the egg chambers fuse during early oogenesis resulting in abnormal late egg chambers. We also showed that this phenotype is the combined result of impaired germline SC differentiation and follicle SC differentiation. We suggest a model in which these multiple oogenesis defects result from a misregulation of the ecdysone signaling network, through the fine-tuning of Abrupt and Fasciclin2 expression. Our results give a better understanding of the evolutionarily conserved role of lin-28 on GSC maintenance and differentiation.

  12. Asymmetric Localization of CK2α During Xenopus Oogenesis.

    Science.gov (United States)

    Imbrie, Gregory A; Wu, Hao; Seldin, David C; Dominguez, Isabel

    2012-05-05

    The establishment of the dorso-ventral axis is a fundamental process that occurs after fertilization. Dorsal axis specification in frogs starts immediately after fertilization, and depends upon activation of Wnt/β-catenin signaling. The protein kinase CK2α can modulate Wnt/β-catenin signaling and is necessary for dorsal axis specification in Xenopus laevis. Our previous experiments show that CK2α transcripts and protein are animally localized in embryos, overlapping the region where Wnt/β-catenin signaling is activated. Here we determined whether the animal localization of CK2α in the embryo is preceded by its localization in the oocyte. We found that CK2α transcripts were detected from stage I, their levels increased during oogenesis, and were animally localized as early as stage III. CK2α transcripts were translated during oogenesis and CK2α protein was localized to the animal hemisphere of stage VI oocytes. We cloned the CK2α 3'UTR and showed that the 2.8 kb CK2α transcript containing the 3'UTR was enriched during oogenesis. By injecting ectopic mRNAs, we demonstrated that both the coding and 3'UTR regions were necessary for proper CK2α transcript localization. This is the first report showing the involvement of coding and 3'UTR regions in animal transcript localization. Our findings demonstrate the pre-localization of CK2α transcript and thus, CK2α protein, in the oocyte. This may help restrict CK2α expression in preparation for dorsal axis specification.

  13. [Studies of oogenesis in Bufo arenarum (author's transl)].

    Science.gov (United States)

    Valdez Toledo, C L; Pisanó, A

    1980-01-01

    Based on a series of macroscopic and histological observations, during an annual cycle, the main stages of oogenesis in Bufo arenarum (Hensel) have been recognized, pointing out the most significant features. The analysis has established five characteristic stages which permit the individualization of the maturation stage of the oocyte in the ovary. All the information obtained has provided the possibility of drawing up a synthetic table so that the oogenetic stages of this amphibian species, very much used in Argentine experimentation, could be easily recognized.

  14. Prostaglandins temporally regulate cytoplasmic actin bundle formation during Drosophila oogenesis.

    Science.gov (United States)

    Spracklen, Andrew J; Kelpsch, Daniel J; Chen, Xiang; Spracklen, Cassandra N; Tootle, Tina L

    2014-02-01

    Prostaglandins (PGs)--lipid signals produced downstream of cyclooxygenase (COX) enzymes--regulate actin dynamics in cell culture and platelets, but their roles during development are largely unknown. Here we define a new role for Pxt, the Drosophila COX-like enzyme, in regulating the actin cytoskeleton--temporal restriction of actin remodeling during oogenesis. PGs are required for actin filament bundle formation during stage 10B (S10B). In addition, loss of Pxt results in extensive early actin remodeling, including actin filaments and aggregates, within the posterior nurse cells of S9 follicles; wild-type follicles exhibit similar structures at a low frequency. Hu li tai shao (Hts-RC) and Villin (Quail), an actin bundler, localize to all early actin structures, whereas Enabled (Ena), an actin elongation factor, preferentially localizes to those in pxt mutants. Reduced Ena levels strongly suppress early actin remodeling in pxt mutants. Furthermore, loss of Pxt results in reduced Ena localization to the sites of bundle formation during S10B. Together these data lead to a model in which PGs temporally regulate actin remodeling during Drosophila oogenesis by controlling Ena localization/activity, such that in S9, PG signaling inhibits, whereas at S10B, it promotes Ena-dependent actin remodeling.

  15. Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8

    Science.gov (United States)

    Pangas, Stephanie A.; Choi, Youngsok; Ballow, Daniel J.; Zhao, Yangu; Westphal, Heiner; Matzuk, Martin M.; Rajkovic, Aleksandar

    2006-01-01

    Mammalian oogenesis requires oocyte-specific transcriptional regulators. The full complement of oocyte-specific transcription factors is unknown. Here, we describe the finding that Sohlh1, a spermatogenesis and oogenesis basic helix–loop–helix transcription factor in females, is preferentially expressed in oocytes and required for oogenesis. Sohlh1 disruption perturbs follicular formation in part by causing down-regulation of two genes that are known to disrupt folliculogenesis: newborn ovary homeobox gene (Nobox) and factor in the germ-line alpha (Figla). In addition, we show that Lhx8 is downstream of Sohlh1 and critical in fertility. Thus, Sohlh1 and Lhx8 are two germ cell-specific, critical regulators of oogenesis. PMID:16690745

  16. Postnatal oogenesis in humans: a review of recent findings

    Directory of Open Access Journals (Sweden)

    Virant-Klun I

    2015-03-01

    Full Text Available Irma Virant-Klun Department of Obstetrics and Gynaecology, University Medical Center Ljubljana, Ljubljana, Slovenia Abstract: In spite of generally accepted dogma that the total number of follicles and oocytes is established in human ovaries during the fetal period of life rather than forming de novo in adult ovaries, some new evidence in the field challenges this understanding. Several studies have shown that different populations of stem cells, such as germinal stem cells and small round stem cells with diameters of 2 to 4 µm, that resembled very small embryonic-like stem cells and expressed several genes related to primordial germ cells, pluripotency, and germinal lineage are present in adult human ovaries and originate in ovarian surface epithelium. These small stem cells were pushed into the germinal direction of development and formed primitive oocyte-like cells in vitro. Moreover, oocyte-like cells were also formed in vitro from embryonic stem cells and induced pluripotent stem cells. This indicates that postnatal oogenesis is not excluded. It is further supported by the occurrence of mesenchymal stem cells that can restore the function of sterilized ovaries and lead to the formation of new follicles and oocytes in animal models. Both oogenesis in vitro and transplantation of stem cell-derived “oocytes” into the ovarian niche to direct their natural maturation represent a big challenge for reproductive biomedicine in the treatment of female infertility in the future and needs to be explored and interpreted with caution, but it is still very important for clinical practice in the field of reproductive medicine. Keywords: human, follicle, oocyte, stem cells

  17. The Behavior of Chromosomes During Parthenogenetic Oogenesis in Marmorkrebs Procambarus fallax f. virginalis.

    Science.gov (United States)

    Kato, Miku; Hiruta, Chizue; Tochinai, Shin

    2016-08-01

    Parthenogenetic oogenesis varies among and even within species. Based on cytological mechanisms, it can largely be divided into apomixis (ameiotic parthenogenesis) producing genetically identical progeny, and automixis (meiotic parthenogenesis) producing genetically non-identical progeny. Polyploidy is common in parthenogenetic species, although the association between parthenogenesis and polyploidy throughout evolution is poorly understood. Marmorkrebs, or the marbled crayfish, was first identified as a parthenogenetic decapod and was tentatively named as Procambarus fallax f. virginalis. Previous studies revealed that Marmorkrebs is triploid and produces genetically identical offspring, suggesting that apomixis occurs during parthenogenetic oogenesis. However, the behavior of chromosomes during the process of oogenesis is still not well characterized. In this study, we observed parthenogenetic oogenesis around the time of ovulation in P. fallax f. virginalis by histology and immunohistochemistry. During oogenesis, the chromosomes were separated into two groups and behaved independently from each other, and one complete division corresponding to mitosis (the second meiosis-like division) was observed. This suggests that parthenogenetic oogenesis in Marmorkrebs exhibits gonomery, a phenomenon commonly found in apomictic parthenogenesis in polyploid animals.

  18. Drosophila phosphopantothenoylcysteine synthetase is required for tissue morphogenesis during oogenesis

    Directory of Open Access Journals (Sweden)

    Kampinga Harm H

    2008-08-01

    Full Text Available Abstract Background Coenzyme A (CoA is an essential metabolite, synthesized from vitamin B5 by the subsequent action of five enzymes: PANK, PPCS, PPCDC, PPAT and DPCK. Mutations in Drosophila dPPCS disrupt female fecundity and in this study we analyzed the female sterile phenotype of dPPCS mutants in detail. Results We demonstrate that dPPCS is required for various processes that occur during oogenesis including chorion patterning. Our analysis demonstrates that a mutation in dPPCS disrupts the organization of the somatic and germ line cells, affects F-actin organization and results in abnormal PtdIns(4,5P2 localization. Improper cell organization coincides with aberrant localization of the membrane molecules Gurken (Grk and Notch, whose activities are required for specification of the follicle cells that pattern the eggshell. Mutations in dPPCS also induce alterations in scutellar patterning and cause wing vein abnormalities. Interestingly, mutations in dPANK and dPPAT-DPCK result in similar patterning defects. Conclusion Together, our results demonstrate that de novo CoA biosynthesis is required for proper tissue morphogenesis.

  19. Ultrastructural studies on the nematode Xiphinema diversicaudatum: Oogenesis and fertilization.

    Science.gov (United States)

    Bleve-Zacheo, T; Melillo, M T; Zacheo, G

    1993-06-01

    Oogenesis and fertilization in longidorid nematodes has been examined for the first time at electron microscope level in Xiphinema diversicaudatum. Oogonia in the germinative zone of the ovary are irregularly shaped and lie adjacent to each other or separated by processes of the epithelial cells of the ovary. Developing oocytes pass in single file up to the growth zone and fibrogranular formation occurs around their nucleus. The perinuclear deposits remain until the oocyte is fully grown. Oocytes increase rapidly in volume because of the production of secretory granules. Three types of granules are recognizable. Type 1 granules are spherical, amorphous in structure and delimited by a lighter area, probably consisting of lipoprotein. Type 2 granules, electron lucent, arranged in groups, are lipid inclusions. Type 3 are dense spheres and may represent yolk bodies. The two last are then utilized by the developing embryo. Mature oocytes assume a smooth, cylindrical configuration as they traverse the oviduct. A cone of fertilization seems to be formed at the distal pole of the oocyte, where the sperm penetrates. The sperm totally penetrates the oocyte, through an invagination formed at the oocyte surface. The oocyte continues to undergo two unequal cytoplasmic divisions, resulting in the formation of a female pronucleus and two polar bodies. Under the stimulus of fertilization, a new egg cell membrane is produced, the first one becoming the vitelline envelope.

  20. Cytoskeletal organization of bee ovarian follicles during oogenesis.

    Science.gov (United States)

    Patrício, Karina; da Cruz-Landim, Carminda; Machado-Santelli, Gláucia Maria

    2011-01-01

    The germ cells in the germarium of the bee meroistic polytrophic ovarian cysts remain interconnected by cytoplasmic bridges as a result of incomplete cell division. These intercellular bridges form a distribution pathway for the substances that initially determine which of the cystocytes will become oocyte and later conduct the products synthesized by the nurse cells to the oocyte. In the present work, the presence and distribution of cytoskeleton components, actin and tubulin were studied in ovaries of queens of Apis mellifera and Scaptotrigona postica, two eusocial species, using antibody against α- and β-tubulin and FITC-phalloidin, aiming to shed light on the role of these cytoskeleton elements in oogenesis. The immunofluorescent preparations were analyzed by laser scanning confocal microscopy. F-actin was detected in the intercellular bridges of both species. The tubulin distribution in cell cytoplasm of A. mellifera and S. postica also displayed similar pattern. The role of these elements in the oogenetic events responsible for both cell support and motility is discussed.

  1. Souffle/Spastizin controls secretory vesicle maturation during zebrafish oogenesis.

    Directory of Open Access Journals (Sweden)

    Palsamy Kanagaraj

    2014-06-01

    Full Text Available During oogenesis, the egg prepares for fertilization and early embryogenesis. As a consequence, vesicle transport is very active during vitellogenesis, and oocytes are an outstanding system to study regulators of membrane trafficking. Here, we combine zebrafish genetics and the oocyte model to identify the molecular lesion underlying the zebrafish souffle (suf mutation. We demonstrate that suf encodes the homolog of the Hereditary Spastic Paraplegia (HSP gene SPASTIZIN (SPG15. We show that in zebrafish oocytes suf mutants accumulate Rab11b-positive vesicles, but trafficking of recycling endosomes is not affected. Instead, we detect Suf/Spastizin on cortical granules, which undergo regulated secretion. We demonstrate genetically that Suf is essential for granule maturation into secretion competent dense-core vesicles describing a novel role for Suf in vesicle maturation. Interestingly, in suf mutants immature, secretory precursors accumulate, because they fail to pinch-off Clathrin-coated buds. Moreover, pharmacological inhibition of the abscission regulator Dynamin leads to an accumulation of immature secretory granules and mimics the suf phenotype. Our results identify a novel regulator of secretory vesicle formation in the zebrafish oocyte. In addition, we describe an uncharacterized cellular mechanism for Suf/Spastizin activity during secretion, which raises the possibility of novel therapeutic avenues for HSP research.

  2. emc has a role in dorsal appendage fate formation in Drosophila oogenesis.

    Science.gov (United States)

    Papadia, Sofia; Tzolovsky, George; Zhao, Debiao; Leaper, Kevin; Clyde, Dorothy; Taylor, Paul; Asscher, Eva; Kirk, Graeme; Bownes, Mary

    2005-09-01

    extramacrochaetae (emc) functions during many developmental processes in Drosophila, such as sensory organ formation, sex determination, wing vein differentiation, regulation of eye photoreceptor differentiation, cell proliferation and development of the Malpighian tubules, trachea and muscles in the embryo. It encodes a Helix-Loop-Helix transcription factor that negatively regulates bHLH proteins. We show here that emc mRNA and protein are present throughout oogenesis in a dynamic expression pattern and that emc is involved in the regulation of chorionic appendage formation during late oogenesis. Expression of sense and antisense emc constructs as well as emc follicle cell clones leads to eggs with shorter, thicker dorsal appendages that are closer together at base than in the wild type. We demonstrate that emc lies downstream of fs(1)K10, gurken and EGFR in the Grk/EGFR signalling pathway and that it participates in controlling Broad-Complex expression at late stages of oogenesis.

  3. Coordinate regulation of DNA methyltransferase expression during oogenesis

    Directory of Open Access Journals (Sweden)

    Bestor Timothy H

    2007-04-01

    Full Text Available Abstract Background Normal mammalian development requires the action of DNA methyltransferases (DNMTs for the establishment and maintenance of DNA methylation within repeat elements and imprinted genes. Here we report the expression dynamics of Dnmt3a and Dnmt3b, as well as a regulator of DNA methylation, Dnmt3L, in isolated female germ cells. Results Our results indicate that these enzymes are coordinately regulated and that their expression peaks during the stage of postnatal oocyte development when maternal methylation imprints are established. We find that Dnmt3a, Dnmt3b, Dnmt3L and Dnmt1o transcript accumulation is related to oocyte diameter. Furthermore, DNMT3L deficient 15 dpp oocytes have aberrantly methylated Snrpn, Peg3 and Igf2r DMRs, but normal IAP and LINE-1 methylation levels, thereby highlighting a male germ cell specific role for DNMT3L in the establishment of DNA methylation at repeat elements. Finally, real-time RT-PCR analysis indicates that the depletion of either DNMT3L or DNMT1o in growing oocytes results in the increased expression of the de novo methyltransferase Dnmt3b, suggesting a potential compensation mechanism by this enzyme for the loss of one of the other DNA methyltransferases. Conclusion Together these results provide a better understanding of the developmental regulation of Dnmt3a, Dnmt3b and Dnmt3L at the time of de novo methylation during oogenesis and demonstrate that the involvement of DNMT3L in retrotransposon silencing is restricted to the male germ line. This in turn suggests the existence of other factors in the oocyte that direct DNA methylation to transposons.

  4. DEHP impairs zebrafish reproduction by affecting critical factors in oogenesis.

    Directory of Open Access Journals (Sweden)

    Oliana Carnevali

    Full Text Available Public concerns on phthalates distributions in the environment have been increasing since they can cause liver cancer, structural abnormalities and reduce sperm counts in male reproductive system. However, few data are actually available on the effects of Di-(2-ethylhexyl-phthalate (DEHP in female reproductive system. The aim of this study was to assess the impacts of DEHP on zebrafish oogenesis and embryo production. Female Danio rerio were exposed to environmentally relevant doses of DEHP and a significant decrease in ovulation and embryo production was observed. The effects of DEHP on several key regulators of oocyte maturation and ovulation including bone morphogenetic protein-15 (BMP15, luteinizing hormone receptor (LHR, membrane progesterone receptors (mPRs and cyclooxygenase (COX-2 (ptgs2 were determined by real time PCR. The expressions of BMP15 and mPR proteins were further determined by Western analyses to strengthen molecular findings. Moreover, plasma vitellogenin (vtg titers were assayed by an ELISA procedure to determine the estrogenic effects of DEHP and its effects on oocyte growth. A significant reduction of fecundity in fish exposed to DEHP was observed. The reduced reproductive capacity was associated with an increase in ovarian BMP15 levels. This rise, in turn, was concomitant with a significant reduction in LHR and mPRbeta levels. Finally, ptgs2 expression, the final trigger of ovulation, was also decreased by DEHP. By an in vitro maturation assay, the inhibitory effect of DEHP on germinal vesicle breakdown was further confirmed. In conclusion, DEHP affecting signals involved in oocyte growth (vtg, maturation (BMP15, LHR, mPRs, and ovulation (ptgs2, deeply impairs ovarian functions with serious consequences on embryo production. Since there is a significant genetic similarity between D.rerio and humans, the harmful effects observed at oocyte level may be relevant for further molecular studies on humans.

  5. Spatio-temporal requirements for transposable element piRNA-mediated silencing during Drosophila oogenesis.

    Science.gov (United States)

    Dufourt, Jérémy; Dennis, Cynthia; Boivin, Antoine; Gueguen, Nathalie; Théron, Emmanuelle; Goriaux, Coline; Pouchin, Pierre; Ronsseray, Stéphane; Brasset, Emilie; Vaury, Chantal

    2014-02-01

    During Drosophila oogenesis, transposable element (TE) repression involves the Piwi-interacting RNA (piRNA) pathway which ensures genome integrity for the next generation. We developed a transgenic model to study repression of the Idefix retrotransposon in the germline. Using a candidate gene KD-approach, we identified differences in the spatio-temporal requirements of the piRNA pathway components for piRNA-mediated silencing. Some of them (Aub, Vasa, Spn-E) are necessary in very early stages of oogenesis within the germarium and appear to be less important for efficient TE silencing thereafter. Others (Piwi, Ago3, Mael) are required at all stages of oogenesis. Moreover, during early oogenesis, in the dividing cysts within the germarium, Idefix anti-sense transgenes escape host control, and this is associated with very low piwi expression. Silencing of P-element-based transgenes is also strongly weakened in these cysts. This region, termed the 'Piwiless pocket' or Pilp, may ensure that new TE insertions occur and are transmitted to the next generation, thereby contributing to genome dynamics. In contrast, piRNA-mediated silencing is strong in germline stem cells in which TE mobilization is tightly repressed ensuring the continued production of viable germline cysts.

  6. The annual cycle of oogenesis in the shanny, Lipophrys pholis (Pisces: Blenniidae

    Directory of Open Access Journals (Sweden)

    Filipa Ferreira

    2011-11-01

    Full Text Available Lipophrys pholis has been shown to be responsive to a variety of environmental contaminants, some of them able to impair reproduction. Description of the normal cycle of oogenesis of this newly proposed sentinel species is important since this data may function as a baseline for comparison in ecotoxicological studies, among other applications. Based on histological observations, L. pholis ovarian development in adult is asynchronous, and 7 ovarian germ cells can be described (oogonia, early and late perinuclear oocytes, cortical-alveolar oocytes, early vitellogenic oocytes, vitellogenic oocytes and spawning oocytes. Using a stereological approach together with the morphologic characteristics of ovarian cells, the ovarian cycle of L. pholis was divided into 3 maturation stages: early oogenesis (May; mid-oogenesis (September, and spawning (November to January. Ovarian cell proportions and gonadosomatic index confirmed that the reproductive period of L. pholis near the southern limit of distribution of the species occurs during cold-water periods, between November and May. The collected data will help to fill some of the gaps in information that still exist on L. pholis oogenesis, thus allowing a better integration of this species as a sentinel for the detection of contaminants in European coastal waters.

  7. Notch pathway regulates female germ cell meiosis progression and early oogenesis events in fetal mouse.

    Science.gov (United States)

    Feng, Yan-Min; Liang, Gui-Jin; Pan, Bo; Qin, Xun-Si; Zhang, Xi-Feng; Chen, Chun-Lei; Li, Lan; Cheng, Shun-Feng; De Felici, Massimo; Shen, Wei

    2014-01-01

    A critical process of early oogenesis is the entry of mitotic oogonia into meiosis, a cell cycle switch regulated by a complex gene regulatory network. Although Notch pathway is involved in numerous important aspects of oogenesis in invertebrate species, whether it plays roles in early oogenesis events in mammals is unknown. Therefore, the rationale of the present study was to investigate the roles of Notch signaling in crucial processes of early oogenesis, such as meiosis entry and early oocyte growth. Notch receptors and ligands were localized in mouse embryonic female gonads and 2 Notch inhibitors, namely DAPT and L-685,458, were used to attenuate its signaling in an in vitro culture system of ovarian tissues from 12.5 days post coitum (dpc) fetus. The results demonstrated that the expression of Stra8, a master gene for germ cell meiosis, and its stimulation by retinoic acid (RA) were reduced after suppression of Notch signaling, and the other meiotic genes, Dazl, Dmc1, and Rec8, were abolished or markedly decreased. Furthermore, RNAi of Notch1 also markedly inhibited the expression of Stra8 and SCP3 in cultured female germ cells. The increased methylation status of CpG islands within the Stra8 promoter of the oocytes was observed in the presence of DAPT, indicating that Notch signaling is probably necessary for maintaining the epigenetic state of this gene in a way suitable for RA stimulation. Furthermore, in the presence of Notch inhibitors, progression of oocytes through meiosis I was markedly delayed. At later culture periods, the rate of oocyte growth was decreased, which impaired subsequent primordial follicle assembly in cultured ovarian tissues. Taken together, these results suggested new roles of the Notch signaling pathway in female germ cell meiosis progression and early oogenesis events in mammals.

  8. The lack of autophagy triggers precocious activation of Notch signaling during Drosophila oogenesis

    Directory of Open Access Journals (Sweden)

    Barth Julia MI

    2012-12-01

    Full Text Available Abstract Background The proper balance of autophagy, a lysosome-mediated degradation process, is indispensable for oogenesis in Drosophila. We recently demonstrated that egg development depends on autophagy in the somatic follicle cells (FC, but not in the germline cells (GCs. However, the lack of autophagy only affects oogenesis when FCs are autophagy-deficient but GCs are wild type, indicating that a dysfunctional signaling between soma and germline may be responsible for the oogenesis defects. Thus, autophagy could play an essential role in modulating signal transduction pathways during egg development. Results Here, we provide further evidence for the necessity of autophagy during oogenesis and demonstrate that autophagy is especially required in subsets of FCs. Generation of autophagy-deficient FCs leads to a wide range of phenotypes that are similar to mutants with defects in the classical cell-cell signaling pathways in the ovary. Interestingly, we observe that loss of autophagy leads to a precocious activation of the Notch pathway in the FCs as monitored by the expression of Cut and Hindsight, two downstream effectors of Notch signaling. Conclusion Our findings point to an unexpected function for autophagy in the modulation of the Notch signaling pathway during Drosophila oogenesis and suggest a function for autophagy in proper receptor activation. Egg development is affected by an imbalance of autophagy between signal sending (germline and signal receiving cell (FC, thus the lack of autophagy in the germline is likely to decrease the amount of active ligand and accordingly compensates for increased signaling in autophagy-defective follicle cells.

  9. High-dose irradiation induces cell cycle arrest, apoptosis, and developmental defects during Drosophila oogenesis.

    Directory of Open Access Journals (Sweden)

    Hee Jin Shim

    Full Text Available Ionizing radiation (IR treatment induces a DNA damage response, including cell cycle arrest, DNA repair, and apoptosis in metazoan somatic cells. Because little has been reported in germline cells, we performed a temporal analysis of the DNA damage response utilizing Drosophila oogenesis as a model system. Oogenesis in the adult Drosophila female begins with the generation of 16-cell cyst by four mitotic divisions of a cystoblast derived from the germline stem cells. We found that high-dose irradiation induced S and G2 arrests in these mitotically dividing germline cells in a grp/Chk1- and mnk/Chk2-dependent manner. However, the upstream kinase mei-41, Drosophila ATR ortholog, was required for the S-phase checkpoint but not for the G2 arrest. As in somatic cells, mnk/Chk2 and dp53 were required for the major cell death observed in early oogenesis when oocyte selection and meiotic recombination occurs. Similar to the unscheduled DNA double-strand breaks (DSBs generated from defective repair during meiotic recombination, IR-induced DSBs produced developmental defects affecting the spherical morphology of meiotic chromosomes and dorsal-ventral patterning. Moreover, various morphological abnormalities in the ovary were detected after irradiation. Most of the IR-induced defects observed in oogenesis were reversible and were restored between 24 and 96 h after irradiation. These defects in oogenesis severely reduced daily egg production and the hatch rate of the embryos of irradiated female. In summary, irradiated germline cells induced DSBs, cell cycle arrest, apoptosis, and developmental defects resulting in reduction of egg production and defective embryogenesis.

  10. Direct interaction between two actin nucleators is required in Drosophila oogenesis

    OpenAIRE

    Quinlan, Margot E.

    2013-01-01

    Controlled actin assembly is crucial to a wide variety of cellular processes, including polarity establishment during early development. The recently discovered actin mesh, a structure that traverses the Drosophila oocyte during mid-oogenesis, is essential for proper establishment of the major body axes. Genetic experiments indicate that at least two proteins, Spire (Spir) and Cappuccino (Capu), are required to build this mesh. The spire and cappuccino genetic loci were first identified as ma...

  11. Rasputin functions as a positive regulator of orb in Drosophila oogenesis.

    Science.gov (United States)

    Costa, Alexandre; Pazman, Cecilia; Sinsimer, Kristina S; Wong, Li Chin; McLeod, Ian; Yates, John; Haynes, Susan; Schedl, Paul

    2013-01-01

    The determination of cell fate and the establishment of polarity axes during Drosophila oogenesis depend upon pathways that localize mRNAs within the egg chamber and control their on-site translation. One factor that plays a central role in regulating on-site translation of mRNAs is Orb. Orb is a founding member of the conserved CPEB family of RNA-binding proteins. These proteins bind to target sequences in 3' UTRs and regulate mRNA translation by modulating poly(A) tail length. In addition to controlling the translation of axis-determining mRNAs like grk, fs(1)K10, and osk, Orb protein autoregulates its own synthesis by binding to orb mRNA and activating its translation. We have previously shown that Rasputin (Rin), the Drosophila homologue of Ras-GAP SH3 Binding Protein (G3BP), associates with Orb in a messenger ribonucleoprotein (mRNP) complex. Rin is an evolutionarily conserved RNA-binding protein believed to function as a link between Ras signaling and RNA metabolism. Here we show that Orb and Rin form a complex in the female germline. Characterization of a new rin allele shows that rin is essential for oogenesis. Co-localization studies suggest that Orb and Rin form a complex in the oocyte at different stages of oogenesis. This is supported by genetic and biochemical analyses showing that rin functions as a positive regulator in the orb autoregulatory pathway by increasing Orb protein expression. Tandem Mass Spectrometry analysis shows that several canonical stress granule proteins are associated with the Orb-Rin complex suggesting that a conserved mRNP complex regulates localized translation during oogenesis in Drosophila.

  12. Rasputin functions as a positive regulator of orb in Drosophila oogenesis.

    Directory of Open Access Journals (Sweden)

    Alexandre Costa

    Full Text Available The determination of cell fate and the establishment of polarity axes during Drosophila oogenesis depend upon pathways that localize mRNAs within the egg chamber and control their on-site translation. One factor that plays a central role in regulating on-site translation of mRNAs is Orb. Orb is a founding member of the conserved CPEB family of RNA-binding proteins. These proteins bind to target sequences in 3' UTRs and regulate mRNA translation by modulating poly(A tail length. In addition to controlling the translation of axis-determining mRNAs like grk, fs(1K10, and osk, Orb protein autoregulates its own synthesis by binding to orb mRNA and activating its translation. We have previously shown that Rasputin (Rin, the Drosophila homologue of Ras-GAP SH3 Binding Protein (G3BP, associates with Orb in a messenger ribonucleoprotein (mRNP complex. Rin is an evolutionarily conserved RNA-binding protein believed to function as a link between Ras signaling and RNA metabolism. Here we show that Orb and Rin form a complex in the female germline. Characterization of a new rin allele shows that rin is essential for oogenesis. Co-localization studies suggest that Orb and Rin form a complex in the oocyte at different stages of oogenesis. This is supported by genetic and biochemical analyses showing that rin functions as a positive regulator in the orb autoregulatory pathway by increasing Orb protein expression. Tandem Mass Spectrometry analysis shows that several canonical stress granule proteins are associated with the Orb-Rin complex suggesting that a conserved mRNP complex regulates localized translation during oogenesis in Drosophila.

  13. Separase phosphosite mutation leads to genome instability and primordial germ cell depletion during oogenesis.

    Directory of Open Access Journals (Sweden)

    Juan Xu

    Full Text Available To ensure equal chromosome segregation and the stability of the genome during cell division, Separase is strictly regulated primarily by Securin binding and inhibitory phosphorylation. By generating a mouse model that contained a mutation to the inhibitory phosphosite of Separase, we demonstrated that mice of both sexes are infertile. We showed that Separase deregulation leads to chromosome mis-segregation, genome instability, and eventually apoptosis of primordial germ cells (PGCs during embryonic oogenesis. Although the PGCs of mutant male mice were completely depleted, a population of PGCs from mutant females survived Separase deregulation. The surviving PGCs completed oogenesis but produced deficient initial follicles. These results indicate a sexual dimorphism effect on PGCs from Separase deregulation, which may be correlated with a gender-specific discrepancy of Securin. Our results reveal that Separase phospho-regulation is critical for genome stability in oogenesis. Furthermore, we provided the first evidence of a pre-zygotic mitotic chromosome segregation error resulting from Separase deregulation, whose sex-specific differences may be a reason for the sexual dimorphism of aneuploidy in gametogenesis.

  14. Cytological features of oogenesis and their evolutionary significance in the fern Osmunda japonica.

    Science.gov (United States)

    Cao, Jian-Guo; Dai, Xiao-Fei; Wang, Quan-Xi

    2012-03-01

    The development of the egg and canal cells in the fern Osmunda japonica Thunb. was studied during oogenesis by transmission electron microscopy. The mature egg possesses no fertilization pore and no typical egg envelope. In addition, an extra wall formed around the canal cells during oogenesis and apparently blocked protoplasmic connections between the egg and the canal cells. The periodic acid Schiff (PAS) reaction revealed that the extra wall was most likely composed of polysaccharides. Maturation of the egg was accompanied by the formation of a separation cavity above the egg and by some changes in the morphology of the nucleus and cytoplasmic organelles. The chromatin of the nucleus becomes condensed and the upper surface of the nucleus becomes closely associated with the plasmalemma. Amyloplasts in the egg cytoplasm were numerous and conspicuous, with most in close proximity to the nucleus. Finally, the cytoplasm on one side of the egg became vesiculated and the overlying plasmalemma was easily disrupted. These cytological features of the egg and the canal cells during oogenesis in O. japonica are markedly different from those of the leptosporangiate ferns and suggest a significant evolutionary divergence in reproductive cellular features between Osmundaceae and leptosporangiate ferns.

  15. Sexual and asexual oogenesis require the expression of unique and shared sets of genes in the insect Acyrthosiphon pisum

    Directory of Open Access Journals (Sweden)

    Gallot Aurore

    2012-02-01

    Full Text Available Abstract Background Although sexual reproduction is dominant within eukaryotes, asexual reproduction is widespread and has evolved independently as a derived trait in almost all major taxa. How asexuality evolved in sexual organisms is unclear. Aphids, such as Acyrthosiphon pisum, alternate between asexual and sexual reproductive means, as the production of parthenogenetic viviparous females or sexual oviparous females and males varies in response to seasonal photoperiodism. Consequently, sexual and asexual development in aphids can be analyzed simultaneously in genetically identical individuals. Results We compared the transcriptomes of aphid embryos in the stages of development during which the trajectory of oogenesis is determined for producing sexual or asexual gametes. This study design aimed at identifying genes involved in the onset of the divergent mechanisms that result in the sexual or asexual phenotype. We detected 33 genes that were differentially transcribed in sexual and asexual embryos. Functional annotation by gene ontology (GO showed a biological signature of oogenesis, cell cycle regulation, epigenetic regulation and RNA maturation. In situ hybridizations demonstrated that 16 of the differentially-transcribed genes were specifically expressed in germ cells and/or oocytes of asexual and/or sexual ovaries, and therefore may contribute to aphid oogenesis. We categorized these 16 genes by their transcription patterns in the two types of ovaries; they were: i expressed during sexual and asexual oogenesis; ii expressed during sexual and asexual oogenesis but with different localizations; or iii expressed only during sexual or asexual oogenesis. Conclusions Our results show that asexual and sexual oogenesis in aphids share common genetic programs but diverge by adapting specificities in their respective gene expression profiles in germ cells and oocytes.

  16. BIOAKUMULASI LOGAM BERAT DAN PENGARUHNYA TERHADAP OOGENESIS KERANG HIJAU (Perna viridis

    Directory of Open Access Journals (Sweden)

    Jalius Jalius

    2016-12-01

    The Jakarta, Banten, and Lada Bays have been polluted by the heavy metals. The study was conducted to identify the  heavy metals (Pb, Cd, Cr, and Hg bio accucumulation in gonads and its  effects on oogenesis of green mussels (Perna viridis. The data collected were the number of oogenium, primary oocytes, secondary oocytes, diameter, square, and volume of follicle lumens on stage-III oogenesis. The content of heavy metal was analyzed by Atoms Absorbent Spectrophotometer (AAS. The results indicated that the gonad of green mussels originated from Jakarta bay have been bioaccumulated by heavy metal. The gonad of green mussel contained Pb (600.33±544.83 ppb, Cd (32.273±28.091 ppb, Cr (527.36±461 ppb, dan Hg (0.0222±0.0264 pbb. Cd and Pb have been found in gonads originated from Banten and Lada Bay while no Cr and Hg were detected. The concentration of Cd and Pb were 6.937 ppb, 0.021 mg/L (Banten Bay dan 6.069 ppb, and 0.018 mg/L (Lada Bay respectively. The green mussels female Jakarta Bay originated showed a strong correlation of Cr with developing of oogenia cells (r= 0.69, and secondary oocytes (r= 0.57. All heavy metals influenced the development of secondary oocytes (Pb, r= 0.75; Cd, r= 0.57; Cr, r= 0.57; Hg, r= 0.74, square (Pb, r= 0.76; Cd, r= 0.71; Cr, r= 0.57; Hg, r= 0.70, and volume of follicle lumen (Pb, r= 0.78; Cd, r= 0.74; Cr, r= 0.66; Hg, r= 0.58. Cadmium (Cd had effect to the number of female sex cells (r= 0.63. Therefore, the heavy metals influenced oogenesis process of green mussel at Jakarta Bay.

  17. Microcystin-LR impairs zebrafish reproduction by affecting oogenesis and endocrine system.

    Science.gov (United States)

    Zhao, Yanyan; Xie, Liqiang; Yan, Yunjun

    2015-02-01

    Previous studies have shown that microcystins (MCs) are able to exert negative effects on the reproductive system of fish. However, few data are actually available on the effects of MC-LR on the reproductive system of female fish. In the present study, female zebrafish were exposed to 2, 10, and 50 μg L(-1) of MC-LR for 21 d, and its effects on oogenesis, sex hormones, transcription of genes on the hypothalamic-pituitary-gonad (HPG) axis, and reproduction were investigated for the first time. It was observed that egg production significantly declined at ⩾ 10 μg L(-1) MC-LR. MC-LR exposure to zebrafish increased the concentrations of 17β-estradiol (E2) and vitellogenin (VTG) at 10 μg L(-1) level, whereas concentrations of E2, VTG and testosterone declined at 50 μg L(-1) MC-LR. The transcriptions of steroidogenic pathway gene (cyp19a, cyp19b, 17βhsd, cyp17 and hmgra) changed as well after the exposure and corresponded well with the alterations of hormone levels. A number of intra- and extra-ovarian factors, such as gnrh3, gnrhr1, fshβ, fshr, lhr, bmp15, mrpβ, ptgs2 and vtg1 which regulate oogenesis, were significantly changed with a different dose-related effect. Moreover, MC-LR exposure to female zebrafish resulted in decreased fertilization and hatching rates, and may suggest the possibility of trans-generational effects of MC-LR exposure. The results demonstrate that MC-LR could modulate endocrine function and oogenesis, eventually leading to disruption of reproductive performance in female zebrafish. These data suggest there is a risk for aquatic population living in MC polluted areas.

  18. A developmental stage-specific switch from DAZL to BOLL occurs during fetal oogenesis in humans, but not mice.

    Directory of Open Access Journals (Sweden)

    Jing He

    Full Text Available The Deleted in Azoospermia gene family encodes three germ cell-specific RNA-binding proteins (DAZ, DAZL and BOLL that are essential for gametogenesis in diverse species. Targeted disruption of Boll in mice causes male-specific spermiogenic defects, but females are apparently fertile. Overexpression of human BOLL promotes the derivation of germ cell-like cells from genetically female (XX, but not male (XY human ES cells however, suggesting a functional role for BOLL in regulating female gametogenesis in humans. Whether BOLL is expressed during oogenesis in mammals also remains unclear. We have therefore investigated the expression of BOLL during fetal oogenesis in humans and mice. We demonstrate that BOLL protein is expressed in the germ cells of the human fetal ovary, at a later developmental stage than, and almost mutually-exclusive to, the expression of DAZL. Strikingly, BOLL is downregulated, and DAZL re-expressed, as primordial follicles form, revealing BOLL expression to be restricted to a narrow window during fetal oogenesis. By quantifying the extent of co-expression of DAZL and BOLL with markers of meiosis, we show that this window likely corresponds to the later stages of meiotic prophase I. Finally, we demonstrate that Boll is also transiently expressed during oogenesis in the fetal mouse ovary, but is simultaneously co-expressed within the same germ cells as Dazl. These data reveal significant similarities and differences between the expression of BOLL homologues during oogenesis in humans and mice, and raise questions as to the validity of the Boll(-/- mouse as a model for understanding BOLL function during human oogenesis.

  19. Chemosterilant (apholate)-induced ultrastructural changes during oogenesis in Aedes aegypti

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, G.; Rai, K.S.

    1975-01-01

    The effect of chemosterilant, apholate, on oogenesis has been studied in Aedes aegypti. Treatment of larvae to 20 ppM of the chemical induced ultrastructural changes in the presumptive and primary follicles of the adult ovary. These changes comprised condensation of chromatin, disruption of nuclear envelope and extensive degeneration as evidenced by numerous myelin figures and residual bodies. In some primary follicles, where cellular degeneration was restricted to epithelial cells, no arrest in development was observed. However, in comparison with controls, these follicles also were retarded. Larval treatment with 30 ppM apholate completely suppressed ovariolar development. High incidence of autophagy was observed in tissues at both dose levels.

  20. The arrest gene is required for germline cyst formation during Drosophila oogenesis.

    Science.gov (United States)

    Parisi, M J; Deng, W; Wang, Z; Lin, H

    2001-04-01

    In Drosophila, oogenesis is initiated when a germline stem cell produces a differentiating daughter cell called the cystoblast. The cystoblast undergoes four rounds of synchronous divisions with incomplete cytokinesis to generate a syncytial cyst of 16 interconnected cystocytes, in which one cystocyte differentiates into an oocyte. Strong mutations of the arrest (aret) gene disrupt cyst formation and cause the production of clusters of ill-differentiated germline cells that retain cellular and molecular characteristics of cystoblasts. These mutant germ cells express high levels of BAM-C and SXL proteins in the cytoplasm but do not accumulate markers for advanced cystocytes or differentiating oocytes, such as the nuclear localization of SXL or the accumulation of osk mRNA, orb mRNA, and cytoplasmic dynein. However, the mutant germ cells do not contain spectrosomes, the cytoplasmic structure that objectifies the divisional asymmetry of the cystoblast. The aret mutant germ cells undergo active mitosis with complete cytokinesis. Their mitosis is accompanied by massive necrosis, so that the number of germ cells in a stem cell-derived cluster ranges from one to greater than 70. These defects of aret mutants reveal a novel function of aret as the first gene with a defined function in the cystoblast to cyst transition during early oogenesis.

  1. Ultrastructural changes of the midgut epithelium in Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada: Eutardigrada) during oogenesis.

    Science.gov (United States)

    Rost-Roszkowska, Magdalena M; Poprawa, Izabela; Wójtowicz, Maria; Kaczmarek, Lukasz

    2011-04-01

    The midgut epithelium of Isohypsibius granulifer granulifer (Eutardigrada) is composed of columnar digestive cells. At its anterior end, a group of cells with cytoplasm which differs from the cytoplasm of digestive cells is present. Probably, those cells respond to crescent-like cells (midgut regenerative cells) described for some tardigrade species. Their mitotic divisions have not been observed. We analyzed the ultrastructure of midgut digestive cells in relation to five different stages of oogenesis (previtellogenesis, beginning of the vitellogenesis, vitellogenesis--early choriogenesis, vitellogenesis--middle choriogenesis, late choriogenesis). In the midgut epithelium cells, the gradual accumulation of glycogen granules, lipid droplets and structures of varying electron density occurs. During vitellogenesis and choriogenesis, in the cytoplasm of midgut cells we observed the increasing number of organelles which are responsible for the intensive synthesis of lipids, proteins and saccharides such as cisterns of endoplasmic reticulum and Golgi complexes. At the end of oogenesis, autophagy also intensifies in midgut epithelial cells, which is probably caused by the great amount of reserve material. Midgut epithelium of analyzed species takes part in the yolk precursor synthesis.

  2. The impact of Zearalenone on the meiotic progression and primordial follicle assembly during early oogenesis.

    Science.gov (United States)

    Liu, Ke-Han; Sun, Xiao-Feng; Feng, Yan-Zhong; Cheng, Shun-Feng; Li, Bo; Li, Ya-Peng; Shen, Wei; Li, Lan

    2017-08-15

    Zearalenone (ZEA) is a mycotoxin produced by fusarium graminearum. It can cause abnormal reproductive function by acting as an environmental estrogen. Research has traditionally focused on acute and chronic injury on mammalian reproductive capacity after ZEA treatment. Little research has been done studying the effects of ZEA exposure on early oogenesis. In this study, we investigate the effects of ZEA exposure on meiotic entry, DNA double-strand breaks (DSBs), and primordial follicle assembly during murine early oogenesis. The results show that ZEA exposure significantly decreased the percentage of diplotene stage germ cells, and made more germ cells remain at zygotene or pachytene stages. Moreover, the mRNA expression level of meiosis-related genes was significantly reduced after ZEA treatment. ZEA exposure significantly increased DNA-DSBs at the diplotene stage. Meanwhile, DNA damage repair genes such as RAD51 and BRCA1 were activated. Furthermore, maternal exposure to ZEA significantly decreased the number of primordial follicles in newborn mouse ovaries. In conclusion, ZEA exposure impairs mouse female germ cell meiotic progression, DNA-DSBs, and primordial follicle assembly. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Direct interaction between two actin nucleators is required in Drosophila oogenesis.

    Science.gov (United States)

    Quinlan, Margot E

    2013-11-01

    Controlled actin assembly is crucial to a wide variety of cellular processes, including polarity establishment during early development. The recently discovered actin mesh, a structure that traverses the Drosophila oocyte during mid-oogenesis, is essential for proper establishment of the major body axes. Genetic experiments indicate that at least two proteins, Spire (Spir) and Cappuccino (Capu), are required to build this mesh. The spire and cappuccino genetic loci were first identified as maternal effect genes in Drosophila. Mutation in either locus results in the same phenotypes, including absence of the mesh, linking them functionally. Both proteins nucleate actin filaments. Spir and Capu also interact directly with each other in vitro, suggesting a novel synergistic mode of regulating actin. In order to understand how and why proteins with similar biochemical activity would be required in the same biological pathway, genetic experiments were designed to test whether a direct interaction between Spir and Capu is required during oogenesis. Indeed, data in this study indicate that Spir and Capu must interact directly with one another and then separate to function properly. Furthermore, these actin regulators are controlled by a combination of mechanisms, including interaction with one another, functional inhibition and regulation of their protein levels. Finally, this work demonstrates for the first time in a multicellular organism that the ability of a formin to assemble actin filaments is required for a specific structure.

  4. Maternal factors and the evolution of developmental mode: evolution of oogenesis in Heliocidaris erythrogramma.

    Science.gov (United States)

    Byrne, M; Villinski, J T; Cisternas, P; Siegel, R K; Popodi, E; Raff, R A

    1999-05-01

    Evolutionary change in developmental mode in sea urchins is closely tied to an increase in maternal provisioning. We examined the oogenic modifications involved in production of a large egg by comparison of oogenesis in congeneric sea urchins with markedly different sized oocytes and divergent modes of development. Heliocidaris tuberculata has small eggs (95 microm diameter) and the ancestral mode of development through feeding larvae, whereas H. erythrogramma has large eggs (430 microm diameter) and highly modified non-feeding lecithotrophic larvae. Production of a large egg in H. erythrogramma involved both conserved and divergent mechanisms. The pattern and level of vitellogenin gene expression is similar in the two species. Vitellogenin processing is also similar with the gonads of both species incorporating yolk protein from coelomic and hemal stores into nutritive cells with subsequent transfer of this protein into yolk granules in the developing vitellogenic oocyte. Immunocytology of the eggs of both Heliocidaris species indicates they incorporate similar levels of yolk protein. However, H. erythrogramma has evolved a highly divergent second phase of oogenesis characterised by massive deposition of non-vitellogenic material including additional maternal protein and lipid. Maternal provisioning in H. erythrogramma exhibits recapitulation of the ancestral vitellogenic program followed by a novel oogenic phase with hypertrophy of the lipogenic program being a major contributor to the increase in egg size.

  5. Bisphenol A exposure in utero disrupts early oogenesis in the mouse.

    Directory of Open Access Journals (Sweden)

    Martha Susiarjo

    2007-01-01

    Full Text Available Estrogen plays an essential role in the growth and maturation of the mammalian oocyte, and recent studies suggest that it also influences follicle formation in the neonatal ovary. In the course of studies designed to assess the effect of the estrogenic chemical bisphenol A (BPA on mammalian oogenesis, we uncovered an estrogenic effect at an even earlier stage of oocyte development--at the onset of meiosis in the fetal ovary. Pregnant mice were treated with low, environmentally relevant doses of BPA during mid-gestation to assess the effect of BPA on the developing ovary. Oocytes from exposed female fetuses displayed gross aberrations in meiotic prophase, including synaptic defects and increased levels of recombination. In the mature female, these aberrations were translated into an increase in aneuploid eggs and embryos. Surprisingly, we observed the same constellation of meiotic defects in fetal ovaries of mice homozygous for a targeted disruption of ERbeta, one of the two known estrogen receptors. This, coupled with the finding that BPA exposure elicited no additional effects in ERbeta null females, suggests that BPA exerts its effect on the early oocyte by interfering with the actions of ERbeta. Together, our results show that BPA can influence early meiotic events and, importantly, indicate that the oocyte itself may be directly responsive to estrogen during early oogenesis. This raises concern that brief exposures during fetal development to substances that mimic or antagonize the effects of estrogen may adversely influence oocyte development in the exposed female fetus.

  6. Conserved requirement for DEAD-box RNA helicase Gemin3 in Drosophila oogenesis

    Directory of Open Access Journals (Sweden)

    Cauchi Ruben J

    2012-02-01

    Full Text Available Abstract Background DEAD-box RNA helicase Gemin3 is an essential protein since its deficiency is lethal in both vertebrates and invertebrates. In addition to playing a role in transcriptional regulation and RNA silencing, as a core member of the SMN (survival of motor neurons complex, Gemin3 is required for the biogenesis of spliceosomal snRNPs (small nuclear ribonucleoproteins, and axonal mRNA metabolism. Studies in the mouse and C. elegans revealed that loss of Gemin3 function has a negative impact on ovarian physiology and development. Findings This work reports on the generation and characterisation of gemin3 mutant germline clones in Drosophila adult females. Gemin3 was found to be required for the completion of oogenesis and its loss led to egg polarity defects, oocyte mislocalisation, and abnormal chromosome morphology. Canonical Cajal bodies were absent in the majority of gemin3 mutant egg chambers and histone locus bodies displayed an atypical morphology. snRNP distribution was perturbed so that on gemin3 loss, snRNP cytoplasmic aggregates (U bodies were only visible in wild type. Conclusions These findings establish a conserved requirement for Gemin3 in Drosophila oogenesis. Furthermore, in view of the similarity to the phenotypes described previously in smn mutant germ cells, the present results confirm the close functional relationship between SMN and Gemin3 on a cellular level.

  7. Differential expression of the two Drosophila fos/kayak transcripts during oogenesis and embryogenesis.

    Science.gov (United States)

    Souid, Sami; Yanicostas, Constantin

    2003-05-01

    The Dfos/kayak gene encodes a bZIP protein, DFos, required in a large variety of differentiation and morphogenetic processes throughout Drosophila development. The recent availability of an expressed sequence tag (EST) sequence led us to identify a novel kay mRNA encoding a deduced DFos isoform showing a specific NH(2)-terminal region. To gain further insight into the function and the regulation of this gene, we have investigated the expression pattern of the two kay mRNA isoforms, kay-RA and kay-RB, during oogenesis and embryogenesis by whole-mount in situ hybridization. Results show that, although the two kay RNA isoforms display fully distinct patterns of transcription during oogenesis, they show partially overlapping expression profiles in embryos. These data reveal a previously unsuspected level of complexity in the regulation of the expression of the kay gene. In addition, they suggest a possible requirement for this gene in the invagination processes during early gastrula stages.

  8. Oral magnetite nanoparticles disturb the development of Drosophila melanogaster from oogenesis to adult emergence.

    Science.gov (United States)

    Chen, Hanqing; Wang, Bing; Feng, Weiyue; Du, Wei; Ouyang, Hong; Chai, Zhifang; Bi, Xiaolin

    2015-05-01

    The potential impacts of nanomaterials (NMs) on fetal development have attracted great concerns because of the increased potential exposure to NMs during pregnancy. Drosophila melanogaster oogenesis and developmental transitions may provide an attractive system to study the biological and environmental effects of NMs on the embryonic development. In this study, the effects of three types of magnetite (Fe3O4) nanoparticles (MNPs): UN-MNPs (pristine), CA-MNPs (citric acid modified) and APTS-MNPs (3-aminopropyltriethoxylsilane coated) on the development of Drosophila at 300 and 600 μg/g dosage were studied. The uptake of MNPs by female and male flies caused obvious reduction in the female fecundity, and the developmental delay at the egg-pupae and pupae-adult transitions, especially in those treated by the positive APTS-MNPs. Further investigation demonstrates that the parental uptake of MNPs disturbs the oogenesis period, induces ovarian defect, reduces the length of eggs, decreases the number of nurse cells and delays egg chamber development, which may contribute to the decrease of fecundity of female Drosophila and the development delay of their offspring. Using the synchrotron radiation-based micro-X-ray fluorescence (SR-μXRF), the dyshomeostasis of trace elements such as Fe, Ca and Cu along the anterior-posterior axis of the fertilized eggs was found, which may be an important reason for the development delay of Drosophila.

  9. Early development of Drosophila embryos requires Smc5/6 function during oogenesis.

    Science.gov (United States)

    Tran, Martin; Tsarouhas, Vasilios; Kegel, Andreas

    2016-07-15

    Mutations in structural maintenance of chromosomes (Smc) proteins are frequently associated with chromosomal abnormalities commonly observed in developmental disorders. However, the role of Smc proteins in development still remains elusive. To investigate Smc5/6 function during early embryogenesis we examined smc5 and smc6 mutants of the fruit fly Drosophila melanogaster using a combination of reverse genetics and microscopy approaches. Smc5/6 exhibited a maternally contributed function in maintaining chromosome stability during early embryo development, which manifested as female subfertility in its absence. Loss of Smc5/6 caused an arrest and a considerable delay in embryo development accompanied by fragmented nuclei and increased anaphase-bridge formation, respectively. Surprisingly, early embryonic arrest was attributable to the absence of Smc5/6 during oogenesis, which resulted in insufficient repair of pre-meiotic and meiotic DNA double-strand breaks. Thus, our findings contribute to the understanding of Smc proteins in higher eukaryotic development by highlighting a maternal function in chromosome maintenance and a link between oogenesis and early embryogenesis.

  10. Expression of hunchback during oogenesis and embryogenesis in Locusta migratoria manilensis (Meyen).

    Science.gov (United States)

    He, ZhengBo; Cao, YueQing; Chen, Bin; Li, TingJing

    2011-02-01

    hb (hunchback) is a contributing factor in anteroposterior axial patterning of insects. Although the hb function in Locusta migratoria manilensis has been investigated, its expression pattern remains unknown. Here, the mouse polyclonal antibody was produced against Hb fusion protein, and then its expression pattern during oogenesis and embryogenesis of L. migratoria manilensis was examined by immunohistochemical staining. Hb protein was detected in the oocyte nucleus which was positioned centrally within the developing oocyte. The oocyte nucleus gradually moved to the posterior end of the egg along with the oocyte maturing. In freshly laid eggs, Hb formed gradient at the posterior end of the egg, and then hb was expressed as a band in the middle of the blastodisc. As the blastodisc differentiated into the head and trunk, the expression region became wide, which would develop into spatial gnathal and thoracic segments. With abdominal segmentation, the expression domain in the gnathal and thoracic region became faint and eventually faded out, while the Hb expression domain appeared at the posterior growth zone in a discontinuous expression manner. The hb expression pattern of L. migratoria manilensis is greatly similar to that of other locusts, such as Schistocerca americana and another L. migratoria. Compared with other insects, hb expression is conserved in the gnathal and thoracic domains, while divergent in oogenesis and abdomen.

  11. Coordination of cellular differentiation, polarity, mitosis and meiosis - New findings from early vertebrate oogenesis.

    Science.gov (United States)

    Elkouby, Yaniv M; Mullins, Mary C

    2017-10-15

    A mechanistic dissection of early oocyte differentiation in vertebrates is key to advancing our knowledge of germline development, reproductive biology, the regulation of meiosis, and all of their associated disorders. Recent advances in the field include breakthroughs in the identification of germline stem cells in Medaka, in the cellular architecture of the germline cyst in mice, in a mechanistic dissection of chromosomal pairing and bouquet formation in meiosis in mice, in tracing oocyte symmetry breaking to the chromosomal bouquet of meiosis in zebrafish, and in the biology of the Balbiani body, a universal oocyte granule. Many of the major events in early oogenesis are universally conserved, and some are co-opted for species-specific needs. The chromosomal events of meiosis are of tremendous consequence to gamete formation and have been extensively studied. New light is now being shed on other aspects of early oocyte differentiation, which were traditionally considered outside the scope of meiosis, and their coordination with meiotic events. The emerging theme is of meiosis as a common groundwork for coordinating multifaceted processes of oocyte differentiation. In an accompanying manuscript we describe methods that allowed for investigations in the zebrafish ovary to contribute to these breakthroughs. Here, we review these advances mostly from the zebrafish and mouse. We discuss oogenesis concepts across established model organisms, and construct an inclusive paradigm for early oocyte differentiation in vertebrates. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Early development of Drosophila embryos requires Smc5/6 function during oogenesis

    Directory of Open Access Journals (Sweden)

    Martin Tran

    2016-07-01

    Full Text Available Mutations in structural maintenance of chromosomes (Smc proteins are frequently associated with chromosomal abnormalities commonly observed in developmental disorders. However, the role of Smc proteins in development still remains elusive. To investigate Smc5/6 function during early embryogenesis we examined smc5 and smc6 mutants of the fruit fly Drosophila melanogaster using a combination of reverse genetics and microscopy approaches. Smc5/6 exhibited a maternally contributed function in maintaining chromosome stability during early embryo development, which manifested as female subfertility in its absence. Loss of Smc5/6 caused an arrest and a considerable delay in embryo development accompanied by fragmented nuclei and increased anaphase-bridge formation, respectively. Surprisingly, early embryonic arrest was attributable to the absence of Smc5/6 during oogenesis, which resulted in insufficient repair of pre-meiotic and meiotic DNA double-strand breaks. Thus, our findings contribute to the understanding of Smc proteins in higher eukaryotic development by highlighting a maternal function in chromosome maintenance and a link between oogenesis and early embryogenesis.

  13. An ultrastructural study of oogenesis in the polychaete Nephtys hombergi Savigny

    Science.gov (United States)

    Bentley, M. G.

    1989-06-01

    The polychaete Nephtys hombergi has an annual cycle of reproduction. Ovaries were fixed for electron microscopy during the gametogenic phase from September to March, and during the breeding and post-breeding periol. Oogenesis takes place entirely within the ovary, the integrity of which is maintained by a network of simple follicle cells. Previtellogenic oocytes have close contacts with the peri-vasal cells which surround the genital blood capillaries. These contacts are lost as the oocytes enter vitellogenesis. The vitellogenic oocytes have a cytology typical of oocytes which are thought to undergo autosynthetic production of protein yolk. Biochemical studies would be required to establish whether heterosynthesis of yolk also occurs. As the oocytes proceed through vitellogenesis, cortical material is laid down near the periphery of the oocyte and a microvillous surface is developed. When the microvillous surface is complete the oocytes, by then hormone independent, are ovulated from the ovary and are ready to be spawned.

  14. New Understandings on Folliculogenesis/Oogenesis Regulation in Mouse as Revealed by Conditional Knockout

    Institute of Scientific and Technical Information of China (English)

    Meng-Wen Hu; Zhen-Bo Wang; Heide Schatten; Qing-Yuan Sun

    2012-01-01

    In comparison to conventional knockout technology and in vitro research methods,conditional gene knockout has remarkable advantages.In the past decade,especially during the past five years,conditional knockout approaches have been used to study the regulation of folliculogenesis,follicle growth,oocyte maturation and other major reproductive events.In this review,we summarize the recent findings about folliculogenesis/oogenesis regulation,including the functions of four signaling cascades or glycoprotein domains that have been extensively studied by conditional gene deletion.Several other still fragmented areas of related work are introduced which are awaiting clarification.We have also discussed the future potential of this technology in clarifying gene functions in reproductive biology.

  15. No evidence for neo-oogenesis may link to ovarian senescence in adult monkey.

    Science.gov (United States)

    Yuan, Jihong; Zhang, Dongdong; Wang, Lei; Liu, Mengyuan; Mao, Jian; Yin, Yu; Ye, Xiaoying; Liu, Na; Han, Jihong; Gao, Yingdai; Cheng, Tao; Keefe, David L; Liu, Lin

    2013-11-01

    Female germline or oogonial stem cells transiently residing in fetal ovaries are analogous to the spermatogonial stem cells or germline stem cells (GSCs) in adult testes where GSCs and meiosis continuously renew. Oocytes can be generated in vitro from embryonic stem cells and induced pluripotent stem cells, but the existence of GSCs and neo-oogenesis in adult mammalian ovaries is less clear. Preliminary findings of GSCs and neo-oogenesis in mice and humans have not been consistently reproducible. Monkeys provide the most relevant model of human ovarian biology. We searched for GSCs and neo-meiosis in ovaries of adult monkeys at various ages, and compared them with GSCs from adult monkey testis, which are characterized by cytoplasmic staining for the germ cell marker DAZL and nuclear expression of the proliferative markers PCNA and KI67, and pluripotency-associated genes LIN28 and SOX2, and lack of nuclear LAMIN A, a marker for cell differentiation. Early meiocytes undergo homologous pairing at prophase I distinguished by synaptonemal complex lateral filaments with telomere perinuclear distribution. By exhaustive searching using comprehensive experimental approaches, we show that proliferative GSCs and neo-meiocytes by these specific criteria were undetectable in adult mouse and monkey ovaries. However, we found proliferative nongermline somatic stem cells that do not express LAMIN A and germ cell markers in the adult ovaries, notably in the cortex and granulosa cells of growing follicles. These data support the paradigm that adult ovaries do not undergo germ cell renewal, which may contribute significantly to ovarian senescence that occurs with age.

  16. Zinc deficiency reduces fertility in C. elegans hermaphrodites and disrupts oogenesis and meiotic progression.

    Science.gov (United States)

    Hester, James; Hanna-Rose, Wendy; Diaz, Francisco

    2017-01-01

    Zinc is necessary for successful gametogenesis in mammals; however the role of zinc in the gonad function of non-mammalian species has not been investigated. The genetic tractability, short generation time, and hermaphroditic reproduction of the nematode C. elegans offer distinct advantages for the study of impaired gametogenesis as a result of zinc deficiency. However the phenotypic reproductive effects arising from zinc restriction have not been established in this model. We therefore examined the effect of zinc deficiency on C. elegans reproduction by exposing worms to the zinc chelator N,N,N',N'-tetrakis (2-pyridylmethyl)ethane-1,2-diamine (TPEN). Treatment began at the early larval stage and continued until reproductive senescence. TPEN treatment reduced the total number of progeny produced by C. elegans hermaphrodites compared with control subjects, with the largest difference in output observed 48h after larval stage 4. At this time-point, zinc deficient worms displayed fewer embryos in the uterus and disorganized oocyte development when observed under DIC microscopy. DAPI staining revealed impaired oogenesis and chromosome dynamics with an expanded region of pachytene stage oocytes extending into the proximal arm of the gonad. This phenotype was not seen in control or zinc-rescue subjects. This study demonstrates that reproduction in C. elegans is sensitive to environmental perturbations in zinc, indicating that this is a good model for future studies in zinc-mediated subfertility. Aberrant oocyte development and disruption of the pachytene-diplotene transition indicate that oogenesis in particular is affected by zinc deficiency in this model. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Differences in the relative timing of developmental events during oogenesis in lower dipterans (Nematocera) reveal the autonomy of follicular cells' differentiation program.

    Science.gov (United States)

    Mazurkiewicz-Kania, Marta; Jędrzejowska, Izabela; Kubrakiewicz, Janusz

    2012-01-01

    Although the ovaries of Nematocera are of the same meroistic-polytrophic type, they show significant differences in the activity of germ cells (oocytes, nurse cells) and their relative contribution to ribosome synthesis and storage during oogenesis. These different activities result in the different growth rate of the germ cells and may determine the life span of the nurse cells. Comparative analysis revealed that with reference to germ cell activity, two basic types of oogenesis in Nematocera can be distinguished. In the Tinearia type, the nurse cells grow considerably and are active until advanced stages of oogenesis, whereas the oocyte is transcriptionally inert. Conversely, in the Tipula type of oogenesis, the oocyte nucleus contains transcriptionally active multiple nucleoli, while nurse cells probably do not contribute to ribosome synthesis, remain relatively small and degenerate early in oogenesis. We studied and compared the process of somatic follicular cell differentiation in nematoceran species representing both types of oogenesis. Our observations indicate that morphogenesis of the follicular cells is at least partly independent of the nurse cell activity, while the execution of their differentiation does not require direct contacts between the follicular cells and the oocyte.

  18. RNA-binding proteins in human oogenesis: Balancing differentiation and self-renewal in the female fetal germline

    Directory of Open Access Journals (Sweden)

    Roseanne Rosario

    2017-05-01

    Full Text Available Primordial germ cells undergo three significant processes on their path to becoming primary oocytes: the initiation of meiosis, the formation and breakdown of germ cell nests, and the assembly of single oocytes into primordial follicles. However at the onset of meiosis, the germ cell becomes transcriptionally silenced. Consequently translational control of pre-stored mRNAs plays a central role in coordinating gene expression throughout the remainder of oogenesis; RNA binding proteins are key to this regulation. In this review we examine the role of exemplars of such proteins, namely LIN28, DAZL, BOLL and FMRP, and highlight how their roles during germ cell development are critical to oogenesis and the establishment of the primordial follicle pool.

  19. Morphological irregularities and features of resistance to apoptosis in the dcp-1/pita double mutated egg chambers during Drosophila oogenesis.

    Science.gov (United States)

    Nezis, Ioannis P; Stravopodis, Dimitrios J; Papassideri, Issidora S; Stergiopoulos, Costas; Margaritis, Lukas H

    2005-01-01

    In the present study, we demonstrate the most novel characteristic morphological features of Drosophila egg chambers lacking both dcp-1 and pita functions in the germline cells. Dcp-1 is an effector caspase and it has been previously shown to play an important role during Drosophila oogenesis [McCall and Steller, 1998 : Science 279 : 230-234; Laundrie et al., 2003 : Genetics 165 : 1881-1888; Peterson et al., 2003 : Dev Biol 260 : 113-123]. The completion of sequencing and annotation of the Drosophila genome has revealed that the dcp-1 gene is nested within an intron of another distinct gene, called pita, a member of the C2H2 zinc finger protein family that regulates transcriptional initiation. The dcp-1(-/-)/pita(-/-) nurse cells exhibit euchromatic nuclei (delay of apoptosis) during the late stages of oogenesis, as revealed by conventional light and electron microscopy. The phalloidin-FITC staining discloses significant defects in actin cytoskeleton arrangement. The actin bundles fail to organize properly and the distribution of actin filaments in the ring canals is changed compared to the wild type. The oocyte and the chorion structures have been also modified. The oocyte nucleus is out of position and the chorion appears to contain irregular foldings, while the respiratory filaments obtain an altered morphology. The dcp-1(-/-)/pita(-/-) egg chambers do not exhibit the rare events of spontaneously induced apoptosis, observed for the wild type flies, during mid-oogenesis. Interestingly, the mutated egg chambers are protected by staurosporine-induced apoptosis in a percentage of 40%, strongly suggesting the essential role of dcp-1 and/or pita during mid-oogenesis.

  20. The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Francesco Baldini

    2013-10-01

    Full Text Available Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male-female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria.

  1. Optional Endoreplication and Selective Elimination of Parental Genomes during Oogenesis in Diploid and Triploid Hybrid European Water Frogs.

    Science.gov (United States)

    Dedukh, Dmitry; Litvinchuk, Spartak; Rosanov, Juriy; Mazepa, Glib; Saifitdinova, Alsu; Shabanov, Dmitry; Krasikova, Alla

    2015-01-01

    Incompatibilities between parental genomes decrease viability of interspecific hybrids; however, deviations from canonical gametogenesis such as genome endoreplication and elimination can rescue hybrid organisms. To evaluate frequency and regularity of genome elimination and endoreplication during gametogenesis in hybrid animals with different ploidy, we examined genome composition in oocytes of di- and triploid hybrid frogs of the Pelophylax esculentus complex. Obtained results allowed us to suggest that during oogenesis the endoreplication involves all genomes occurring before the selective genome elimination. We accepted the hypothesis that only elimination of one copied genome occurs premeiotically in most of triploid hybrid females. At the same time, we rejected the hypothesis stating that the genome of parental species hybrid frogs co-exist with is always eliminated during oogenesis in diploid hybrids. Diploid hybrid frogs demonstrate an enlarged frequency of deviations in oogenesis comparatively to triploid hybrids. Typical for hybrid frogs deviations in gametogenesis increase variability of produced gametes and provide a mechanism for appearance of different forms of hybrids.

  2. The Interaction between a Sexually Transferred Steroid Hormone and a Female Protein Regulates Oogenesis in the Malaria Mosquito Anopheles gambiae

    Science.gov (United States)

    Baldini, Francesco; Gabrieli, Paolo; South, Adam; Valim, Clarissa; Mancini, Francesca; Catteruccia, Flaminia

    2013-01-01

    Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E) transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO) protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male–female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria. PMID:24204210

  3. Oogenesis in summer females of the rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), in southern Zhejiang, China

    Institute of Scientific and Technical Information of China (English)

    SHI Sheng-wei; JIANG Ming-xing; SHANG Han-wu; LV Hui-ping; CHENG Jia-an

    2007-01-01

    The rice water weevil, Lissorhoptrus oryzophilus Kuschel, has two generations in southern Zhejiang, China. To determine oogenesis in first-generation females (summer females) and its relations to temperature, females were collected from a rice field in early and mid-July and reared on young rice plants at 28, 31 and 34 ℃ in the laboratory. Percentage of females having oocytes, number of oocytes of different stages (stage-Ⅰ, from early previtellogenesis to middle vitellogenesis; stage-Ⅱ, late vitellogenesis; and mature-oocyte stage), and length of ovarioles were determined every 10 d of feeding. At each temperature,oogenesis took place in over 40% of females after 20~40 d of feeding, but only 0.0~3.3 stage-Ⅰ, 0.0~0.8 stage-Ⅱ and 0.0~1.1 mature oocytes were observed at each observation date. Temperature had significant effect on number of stage-Ⅰ oocytes but not on number of stage-Ⅱ and mature oocytes in early July females; temperature had no significant effect on number of oocytes of either stage in mid-July females. Conclusively, in southern Zhejiang, summer L. oryzophilus females have great potential to become reproductive on rice, but their oogenesis activity is very low, with the overall procedures little affected by temperature.

  4. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis.

    Science.gov (United States)

    Spracklen, Andrew J; Fagan, Tiffany N; Lovander, Kaylee E; Tootle, Tina L

    2014-09-15

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools--Utrophin, Lifeact, and F-tractin--for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling tool

  5. Effects of GSM-like radiofrequency irradiation during the oogenesis and spermiogenesis of Xenopus laevis.

    Science.gov (United States)

    Boga, Ayper; Emre, Mustafa; Sertdemir, Yasar; Uncu, İbrahim; Binokay, Secil; Demirhan, Osman

    2016-07-01

    We aimed to evaluate the effect of GSM-like radiofrequency electromagnetic radiation (RF-EMR) on the oogenesis, and spermiogenesis of Xenopus laevis, and so the development of the embryos obtained from Normal Females+Normal Males (i.e. "N(F)+N(M)"); Normal Females+RF-exposed Males (i.e. "N(F)+RF(M)"); RF-exposed Female+Normal Male (i.e. "RF(F)+N(M)"); and RF-exposed Female+RF-exposed Male (i.e. "RF(F)+RF(M)". Various, assessments were performed to determine potential teratogenic effects and mortality, body growth and behavior on first generation embryos. After exposing adults frogs of both sexes to 900MHz RF-EMR (at 1.0W/kg) for 8h a day over a 5-week period, the embryos' specific energy absorption rate (SAR) was calculated. In our present study (control group; 2.2% abnormal, 0.0% dead); with the N(F)+RF(M) combination, the long-term exposure of adult males to GSM-like radiation at 900MHz (RF: 2W) for 5 week/8h/day resulted in normal, abnormal and dead embryo ratios of 88.3%, 3.3% and 8.3%, respectively (p<0.001). In the RF(F)+N(M) combination, long-term exposure (5 week/8h/day) of adult females led to normal, abnormal and dead embryo ratios of 76.7%, 11.7%, and 11.7%, respectively (p<0.001). And in the RF(F)+RF(M) combination, long-term exposure (5 week/8h/day) of both adult males and females led to normal, abnormal and dead embryo ratios of 73.3%, 11.7%, and 15%, respectively (p<0.001). With the exception RF(F)+RF(M) group (p<0.001), no significant changes were observed on body growth (lengths) in comparison to the control group. It was also observed that the offspring of female adult Xenopus exposed to RF-EMR during oogenesis exhibited a more aggressive behavior compared to the control group. Cell phones radiation can thus lead to detrimental effects in humans' male and female reproductive cells.

  6. Exposure effects of levonorgestrel on oogenesis in the fathead minnow (Pimephales promelas).

    Science.gov (United States)

    Frankel, Tyler; Yonkos, Lance; Frankel, Jack

    2017-07-06

    The synthetic progestin levonorgestrel is commonly utilized in human oral contraceptives. It enters the environment as a component of wastewater treatment plant effluent, and has been measured at low ng/L concentrations in surface waters. It has been shown to activate fish androgen receptors, causing the physical masculinization of females, changes in reproductive behavior, and decreases in fecundity. In the present study, the effects of levonorgestrel exposure on early-stage oogenesis in the fathead minnow (Pimephales promelas) was examined. Adult females were exposed to 0, 10, or 100 ng/L levonorgestrel for 14 d using a flow-through exposure system. The ovaries from each female were then removed via dissection and weighed for gonadosomatic index (GSI) calculations, and oocytes from one lobe preserved in Serra's fixative. Total numbers of late-stage vitellogenic oocytes exhibiting a germinal vesicle were then quantified. In a second exposure, blood plasma samples were collected from adult females and analyzed for vitellogenin concentrations using enzyme-linked immunosorbent assay. Females exposed to both concentrations of levonorgestrel developed male secondary sexual characteristics in a dose-dependent manner, and ovaries contained significantly fewer late stage oocytes. Exposure to 100 ng/L of levonorgestrel resulted in decreased GSI and blood plasma vitellogenin concentrations. The results suggest that female exposure to levonorgestrel alone may have profound effects on reproduction in progestin-contaminated environments. Environ Toxicol Chem 2017;9999:1-6. © 2017 SETAC. © 2017 SETAC.

  7. Capping protein beta is required for actin cytoskeleton organisation and cell migration during Drosophila oogenesis.

    Science.gov (United States)

    Ogienko, Anna A; Karagodin, Dmitry A; Lashina, Valentina V; Baiborodin, Sergey I; Omelina, Eugeniya S; Baricheva, Elina M

    2013-02-01

    Capping protein (CP) is a well-characterised actin-binding protein important for regulation of actin filament (AF) assembly. CP caps the barbed end of AFs, inhibiting the addition and loss of actin monomers. In Drosophila melanogaster, the gene encoding CP β-subunit is named capping protein beta (cpb; see Hopmann et al. [1996] J Cell Biol 133: 1293-305). The cpb level is reduced in the Drosophila bristle actin cytoskeleton and becomes disorganised with abnormal morphology. A reduced level of the CP protein in ovary results in disruption of oocyte determination, and disturbance of nurse cell (NC) cortical integrity and dumping. We describe novel defects appearing in cpb mutants during oogenesis, in which cpb plays an important role in border and centripetal follicle cell migration, ring canal development and cytoplasmic AF formation. The number of long cytoplasmic AFs was dramatically reduced in cpb hypomorphs and abnormal actin aggregates was seen on the inner side of NC membranes. A hypothesis to explain the formation of abnormal short-cut cytoplasmic AFs and actin aggregates in the cpb mutant NCs was proffered, along with a discussion of the reasons for 'dumpless' phenotype formation in the mutants.

  8. Effect of Camphor on Pituitary-Gonadal Hormonal Axis and Oogenesis in Adult Female Rats

    Directory of Open Access Journals (Sweden)

    Habibollah Johari

    2013-06-01

    Full Text Available Background & Objective: Camphor stimulates the nervous system and the circulatory system, reduces lactation, and prevents conception and embryo embedding. We investigated the effects of camphor on the pituitary-gonadal hormonal axis and concentration of steroidal hormones.   Materials & Methods: The parameters investigated were concentrations of LH, FSH, estrogen, progesterone, and testosterone. Forty adult female rats at a mean weight of 180 ± 20 grams were divided into five groups. Camphor solution was prepared in olive oil at 25, 50, and 100 mg/kg doses, and 0.2 cc injections were done intraperitoneally every day for 2 weeks. The control group received no injection. The sham group received olive oil (as solvent of camphor and treatment groups of 1, 2, and 3 received doses of 25, 50, and 100 mg/kg. The treatment groups were sacrificed one day after the last injection, and their hearts were dissected and blood samples were obtained. The concentrations of the hormones were measured by the ELISA test, and the results were evaluated via the t-test, ANOVA, and Duncan.   Results: The results showed a significant decrease in the concentrations of testosterone and progesterone (p value < 0.05 and a significant increase in the concentrations of LH and FSH (p value <0.05.   Conclusion: Camphor augmented oogenesis via effecting a rise in the concentrations of LH and FSH in our rats.

  9. Bone marrow derived cells and alternative pathways of oogenesis in adult rodents.

    Science.gov (United States)

    Bukovsky, Antonin; Ayala, Maria E; Dominguez, Roberto; Svetlikova, Marta; Selleck-White, Rachel

    2007-09-15

    Oocyte generation in adult mouse ovaries by putative germ cells (PGCs) in bone marrow and peripheral blood has recently been proposed. It, however, remains unclear whether in laboratory rodents the PGCs reside in BM or the BM cells stimulate oogenesis from ovarian stem cells. We utilized immunoperoxidase staining to localize PGCs, oocytes, and BM derived cells in ovaries of adult (age 45-60 days) control and neonatally estrogenized rat females. In controls, BM derived cells accompanied emergence of PGCs from the ovarian surface epithelium (OSE) cells. The PGCs divided symmetrically, separated, and formed primordial follicles. A proportion (50%) of adult neonatally estrogenized rats lacked OSE. They exhibited occurrence of numerous BM derived cells and appearance of PGC precursors in the medulla. In juxtaposed deep ovarian cortex the emerging PGCs exhibited distinct pseudopodia and apparently migrated toward the mid cortex, where numerous primordial follicles were found. These observations indicate that BM derived cells accompany origination of PGCs from the OSE stem cells in normal adult rat females and from the medullary precursors in the adult neonatally estrogenized rats lacking OSE. An alternative origin of PGCs from the medullary region may explain why ovaries with destructed OSE are still capable of forming new primordial follicles.

  10. Germ cell cluster organization and oogenesis in the tardigrade Dactylobiotus parthenogeneticus Bertolani, 1982 (Eutardigrada, Murrayidae).

    Science.gov (United States)

    Poprawa, Izabela; Hyra, Marta; Rost-Roszkowska, Magdalena Maria

    2015-07-01

    Germ cell cluster organization and the process of oogenesis in Dactylobiotus parthenogeneticus have been described using transmission electron microscopy and light microscopy. The reproductive system of D. parthenogeneticus is composed of a single, sac-like, meroistic ovary and a single oviduct that opens into the cloaca. Two zones can be distinguished in the ovary: a small germarium that is filled with oogonia and a vitellarium that is filled with germ cell clusters. The germ cell cluster, which has the form of a modified rosette, consists of eight cells that are interconnected by stable cytoplasmic bridges. The cell that has the highest number of stable cytoplasmic bridges (four bridges) finally develops into the oocyte, while the remaining cells become trophocytes. Vitellogenesis of a mixed type occurs in D. parthenogeneticus. One part of the yolk material is produced inside the oocyte (autosynthesis), while the second part is synthesized in the trophocytes and transported to the oocyte through the cytoplasmic bridges. The eggs are covered with two envelopes: a thin vitelline envelope and a three-layered chorion. The surface of the chorion forms small conical processes, the shape of which is characteristic for the species that was examined. In our paper, we present the first report on the rosette type of germ cell clusters in Parachela.

  11. The fine structure of mitochondria and the mitochondrial cloud during oogenesis on the sea anemone Actinia.

    Science.gov (United States)

    Larkman, A U

    1984-01-01

    The appearance and arrangement of the mitochondria during all stages of oocyte growth in the sea anemone Actinia fragacea (Cnidaria: Anthozoa) have been examined by electron microscopy. In small oocytes, the mitochondria are generally squat, with a dense matrix and numerous cristae, although a proportion may show an unusual arrangement of prismatic cristae. During early oogenesis, the mitochondria tend to be arranged in aggregates rather than randomly scattered, and may be associated with nuage material. With the onset of vitellogenesis, a large mitochondrial aggregate forms next to the nucleus. During early vitellogenesis this aggregate enlarges and comes to resemble the mitochondrial clouds found in some amphibian oocytes. Within the cloud, many mitochondria appear to be highly elongate and irregular in shape. The cloud begins to fragment and disperse midway through vitellogenesis at about the time when cortical granules appear. In fully grown oocytes, some mitochondria may have a much less dense matrix and fewer cristae than the remainder, which may be related to their state of activity.

  12. Oogenesis and spawn formation in the invasive lionfish, Pterois miles and Pterois volitans

    Directory of Open Access Journals (Sweden)

    James A. Morris, Jr

    2011-02-01

    Full Text Available The Indo-Pacific lionfish, Pterois miles and P. volitans, have recently invaded the U.S. east coast and the Caribbean and pose a significant threat to native reef fish communities. Few studies have documented reproduction in pteroines from the Indo-Pacific. This study provides a description of oogenesis and spawn formation in P. miles and P. volitans collected from offshore waters of North Carolina, U.S.A and the Bahamas. Using histological and laboratory observations, we found no differences in reproductive biology between P. miles and P. volitans. These lionfish spawn buoyant eggs that are encased in a hollow mass of mucus produced by specialized secretory cells of the ovarian wall complex. Oocytes develop on highly vascularized peduncles with all oocyte stages present in the ovary of spawning females and the most mature oocytes placed terminally, near the ovarian lumen. Given these ovarian characteristics, these lionfish are asynchronous, indeterminate batch spawners and are thus capable of sustained reproduction throughout the year when conditions are suitable. This mode of reproduction could have contributed to the recent and rapid establishment of these lionfish in the northwestern Atlantic and Caribbean.

  13. Argonaute 1 is indispensable for juvenile hormone mediated oogenesis in the migratory locust, Locusta migratoria.

    Science.gov (United States)

    Song, Jiasheng; Guo, Wei; Jiang, Feng; Kang, Le; Zhou, Shutang

    2013-09-01

    Juvenile hormone (JH) is the primary hormone controlling vitellogenesis and oocyte maturation in the migratory locust Locusta migratoria, an evolutionarily primitive insect species with panoistic ovaries. However, molecular mechanisms of locust oogenesis remain unclear and the role of microRNA (miRNA) in JH mediated locust vitellogenesis and oocyte maturation has not been explored. Using miRNA sequencing and quantification with small RNA libraries derived from fat bodies of JH-deprived versus JH analog-exposed female adult locusts, we have identified 83 JH up-regulated and 60 JH down-regulated miRNAs. QRT-PCR validation has confirmed that transcription of selected miRNAs responded to JH administration and correlated with changes in endogenous hemolymph JH titers. Depletion of Argonaute 1 (Ago1), a key regulator of miRNA biogenesis and function by RNAi in female adult locusts dramatically decreased the expression of vitellogenin (Vg) and severely impaired follicular epithelium development, terminal oocyte maturation and ovarian growth. Our data indicate that Ago1 and Ago1-dependent miRNAs play a crucial role in locust vitellogenesis and egg production.

  14. Ultrastructure of oogenesis of two oviparous demosponges: Axinella damicornis and Raspaciona aculeata (Porifera).

    Science.gov (United States)

    Riesgo, Ana; Maldonado, Manuel

    2009-02-01

    We investigated the cytology of the oogenic cycle in two oviparous demosponges, Axinella damicornis and Raspaciona aculeata, during 2 consecutive years both by light and electron microscopy. Oocytes of both species were similar in their basic morphological features but differences were noticed in time required to complete oocyte maturation and mechanisms of acquisition of nutritional reserves. The oogenic cycle of A. damicornis extended for 7-8 months in autumn-spring, while that of R. aculeata did it for 3-5 months in summer-autumn. Yolk of A. damicornis was predominantly formed by autosynthesis. Oocytes endocytosed bacteria individually and stored them in groups in large vesicles. Bacteria were digested and lipidic material was added to the vesicles to produce a peculiar granular yolk hitherto unknown in sponges. Scarce cells carrying heterogeneous inclusions were observed in the perioocytic space, and were interpreted as putative nurse cells. Such cells were presumably releasing lipid granules to the perioocytic space. In contrast, large numbers of nurse cells were found surrounding the oocytes of R. aculeata. They transported both lipid granules and heterogeneous yolk bodies to the oocytes. R. aculeata also produced some of their yolk by autosynthesis. The involvement of nurse cells in the vitellogenesis of R. aculeata shortened the oocyte maturation, whereas a largely autosynthetic vitellogenesis in A. damicornis prolonged the duration of oogenesis.

  15. Drosophila tensin plays an essential role in cell migration and planar polarity formation during oogenesis by mediating integrin-dependent extracellular signals to actin organization.

    Science.gov (United States)

    Cha, In Jun; Lee, Jang Ho; Cho, Kyoung Sang; Lee, Sung Bae

    2017-03-11

    Oogenesis in Drosophila involves very dynamic cellular changes such as cell migration and polarity formation inside an ovary during short period. Previous studies identified a number of membrane-bound receptors directly receiving certain types of extracellular inputs as well as intracellular signalings to be involved in the regulation of these dynamic cellular changes. However, yet our understanding on exactly how these receptor-mediated extracellular inputs lead to dynamic cellular changes remains largely unclear. Here, we identified Drosophila tensin encoded by blistery (by) as a novel regulator of cell migration and planar polarity formation and characterized the genetic interaction between tensin and integrin during oogenesis. Eggs from by mutant showed decreased hatching rate and morphological abnormality, a round-shape, compared to the wild-type eggs. Further analyses revealed that obvious cellular defects such as defective border cell migration and planar polarity formation might be primarily associated with the decreased hatching rate and the round-shape phenotype of by mutant eggs, respectively. Moreover, by mutation also induced marked defects in F-actin organization closely associated with both cell migration and planar polarity formation during oogenesis of Drosophila. Notably, all these defective phenotypes observed in by mutant eggs became much severer by reduced level of integrin, indicative of a close functional association between integrin and tensin during oogenesis. Collectively, our findings suggest that tensin acts as a crucial regulator of dynamic cellular changes during oogenesis by bridging integrin-dependent extracellular signals to intracellular cytoskeletal organization.

  16. The current status of evidence for and against postnatal oogenesis in mammals: a case of ovarian optimism versus pessimism?

    Science.gov (United States)

    Tilly, Jonathan L; Niikura, Yuichi; Rueda, Bo R

    2009-01-01

    Whether or not oogenesis continues in the ovaries of mammalian females during postnatal life was heavily debated from the late 1800s through the mid-1900s. However, in 1951 Lord Solomon Zuckerman published what many consider to be a landmark paper summarizing his personal views of data existing at the time for and against the possibility of postnatal oogenesis. In Zuckerman's opinion, none of the evidence he considered was inconsistent with Waldeyer's initial proposal in 1870 that female mammals cease production of oocytes at or shortly after birth. This conclusion rapidly became dogma, and remained essentially unchallenged until just recently, despite the fact that Zuckerman did not offer a single experiment proving that adult female mammals are incapable of oogenesis. Instead, 20 years later he reemphasized that his conclusion was based solely on an absence of data he felt would be inconsistent with the idea of a nonrenewable oocyte pool provided at birth. However, in the immortal words of Carl Sagan, an "absence of evidence is not evidence of absence." Indeed, building on the efforts of a few scientists who continued to question this dogma after Zuckerman's treatise in 1951, we reported several data sets in 2004 that were very much inconsistent with the widely held belief that germ cell production in female mammals ceases at birth. Perhaps not surprisingly, given the magnitude of the paradigm shift being proposed, this work reignited a vigorous debate that first began more than a century ago. Our purpose here is to review the experimental evidence offered in recent studies arguing support for and against the possibility that adult mammalian females replenish their oocyte reserve. "Never discourage anyone who continually makes progress, no matter how slow."-Plato (427-347 BC).

  17. The insulator protein Suppressor of Hairy wing is required for proper ring canal development during oogenesis in Drosophila.

    Science.gov (United States)

    Hsu, Shih-Jui; Plata, Maria P; Ernest, Ben; Asgarifar, Saghi; Labrador, Mariano

    2015-07-01

    Chromatin insulators orchestrate gene transcription during embryo development and cell differentiation by stabilizing interactions between distant genomic sites. Mutations in genes encoding insulator proteins are generally lethal, making in vivo functional analyses of insulator proteins difficult. In Drosophila, however, mutations in the gene encoding the Suppressor of Hairy wing insulator protein [Su(Hw)] are viable and female sterile, providing an opportunity to study insulator function during oocyte development. Whereas previous reports suggest that the function of Su(Hw) in oogenesis is independent of its insulator activity, many aspects of the role of Su(Hw) in Drosophila oogenesis remain unexplored. Here we show that mutations in su(Hw) result in smaller ring canal lumens and smaller outer ring diameters, which likely obstruct molecular and vesicle passage from nurse cells to the oocyte. Fluorescence microscopy reveals that lack of Su(Hw) leads to excess accumulation of Kelch (Kel) and Filament-actin (F-actin) proteins in the ring canal structures of developing egg chambers. Furthermore, we found that misexpression of the Src oncogene at 64B (Src64B) may cause ring canal development defects as microarray analysis and real-time RT-PCR revealed there is a three fold decrease in Src64B expression in su(Hw) mutant ovaries. Restoration of Src64B expression in su(Hw) mutant female germ cells rescued the ring phenotype but did not restore fertility. We conclude that loss of su(Hw) affects expression of many oogenesis related genes and down-regulates Src64B, resulting in ring canal defects potentially contributing to obstruction of molecular flow and an eventual failure of egg chamber organization.

  18. Btk29A-mediated tyrosine phosphorylation of armadillo/β-catenin promotes ring canal growth in Drosophila oogenesis.

    Science.gov (United States)

    Hamada-Kawaguchi, Noriko; Nishida, Yasuyoshi; Yamamoto, Daisuke

    2015-01-01

    Drosophila Btk29A is the ortholog of mammalian Btk, a Tec family nonreceptor tyrosine kinase whose deficit causes X-linked agammaglobulinemia in humans. The Btk29AficP mutation induces multiple abnormalities in oogenesis, including the growth arrest of ring canals, large intercellular bridges that allow the flow of cytoplasm carrying maternal products essential for embryonic development from the nurse cells to the oocyte during oogenesis. In this study, inactivation of Parcas, a negative regulator of Btk29A, was found to promote Btk29A accumulation on ring canals with a concomitant increase in the ring canal diameter, counteracting the Btk29AficP mutation. This mutation markedly reduced the accumulation of phosphotyrosine on ring canals and in the regions of cell-cell contact, where adhesion-supporting proteins such as DE-cadherin and β-catenin ortholog Armadillo (Arm) are located. Our previous in vitro and in vivo analyses revealed that Btk29A directly phosphorylates Arm, leading to its release from DE-cadherin. In the present experiments, immunohistological analysis revealed that phosphorylation at tyrosine 150 (Y150) and Y667 of Arm was diminished in Btk29AficP mutant ring canals. Overexpression of an Arm mutant with unphosphorylatable Y150 inhibited ring canal growth. Thus Btk29A-induced Y150 phosphorylation is necessary for the normal growth of ring canals. We suggest that the dissociation of tyrosine-phosphorylated Arm from DE-cadherin allows dynamic actin to reorganize, leading to ring canal expansion and cell shape changes during the course of oogenesis.

  19. Btk29A-mediated tyrosine phosphorylation of armadillo/β-catenin promotes ring canal growth in Drosophila oogenesis.

    Directory of Open Access Journals (Sweden)

    Noriko Hamada-Kawaguchi

    Full Text Available Drosophila Btk29A is the ortholog of mammalian Btk, a Tec family nonreceptor tyrosine kinase whose deficit causes X-linked agammaglobulinemia in humans. The Btk29AficP mutation induces multiple abnormalities in oogenesis, including the growth arrest of ring canals, large intercellular bridges that allow the flow of cytoplasm carrying maternal products essential for embryonic development from the nurse cells to the oocyte during oogenesis. In this study, inactivation of Parcas, a negative regulator of Btk29A, was found to promote Btk29A accumulation on ring canals with a concomitant increase in the ring canal diameter, counteracting the Btk29AficP mutation. This mutation markedly reduced the accumulation of phosphotyrosine on ring canals and in the regions of cell-cell contact, where adhesion-supporting proteins such as DE-cadherin and β-catenin ortholog Armadillo (Arm are located. Our previous in vitro and in vivo analyses revealed that Btk29A directly phosphorylates Arm, leading to its release from DE-cadherin. In the present experiments, immunohistological analysis revealed that phosphorylation at tyrosine 150 (Y150 and Y667 of Arm was diminished in Btk29AficP mutant ring canals. Overexpression of an Arm mutant with unphosphorylatable Y150 inhibited ring canal growth. Thus Btk29A-induced Y150 phosphorylation is necessary for the normal growth of ring canals. We suggest that the dissociation of tyrosine-phosphorylated Arm from DE-cadherin allows dynamic actin to reorganize, leading to ring canal expansion and cell shape changes during the course of oogenesis.

  20. Pak3 regulates apical-basal polarity in migrating border cells during Drosophila oogenesis.

    Science.gov (United States)

    Felix, Martina; Chayengia, Mrinal; Ghosh, Ritabrata; Sharma, Aditi; Prasad, Mohit

    2015-11-01

    Group cell migration is a highly coordinated process that is involved in a number of physiological events such as morphogenesis, wound healing and tumor metastasis. Unlike single cells, collectively moving cells are physically attached to each other and retain some degree of apical-basal polarity during the migratory phase. Although much is known about direction sensing, how polarity is regulated in multicellular movement remains unclear. Here we report the role of the protein kinase Pak3 in maintaining apical-basal polarity in migrating border cell clusters during Drosophila oogenesis. Pak3 is enriched in border cells and downregulation of its function impedes border cell movement. Time-lapse imaging suggests that Pak3 affects protrusive behavior of the border cell cluster, specifically regulating the stability and directionality of protrusions. Pak3 functions downstream of guidance receptor signaling to regulate the level and distribution of F-actin in migrating border cells. We also provide evidence that Pak3 genetically interacts with the lateral polarity marker Scribble and that it regulates JNK signaling in the moving border cells. Since Pak3 depletion results in mislocalization of several apical-basal polarity markers and overexpression of Jra rescues the polarity of the Pak3-depleted cluster, we propose that Pak3 functions through JNK signaling to modulate apical-basal polarity of the migrating border cell cluster. We also observe loss of apical-basal polarity in Rac1-depleted border cell clusters, suggesting that guidance receptor signaling functions through Rac GTPase and Pak3 to regulate the overall polarity of the cluster and mediate efficient collective movement of the border cells to the oocyte boundary.

  1. Adenine Nucleotide Translocase 4 Is Expressed Within Embryonic Ovaries and Dispensable During Oogenesis

    Science.gov (United States)

    Lim, Chae Ho; Brower, Jeffrey V.; Resnick, James L.; Oh, S. Paul

    2015-01-01

    Adenine nucleotide translocase (Ant) facilitates the exchange of adenosine triphosphate across the mitochondrial inner membrane and plays a critical role for bioenergetics in eukaryotes. Mice have 3 Ant paralogs, Ant1 (Slc25a4), Ant2 (Slc25a5), and Ant4 (Slc25a31), which are expressed in a tissue-dependent manner. We previously identified that Ant4 was expressed exclusively in testicular germ cells in adult mice and essential for spermatogenesis and subsequently male fertility. Further investigation into the process of spermatogenesis revealed that Ant4 was particularly highly expressed during meiotic prophase I and indispensable for normal progression of leptotene spermatocytes to the stages thereafter. In contrast, the expression and roles of Ant4 in female germ cells have not previously been elucidated. Here, we demonstrate that the Ant4 gene is expressed during embryonic ovarian development during which meiotic prophase I occurs. We confirmed embryonic ovary-specific Ant4 expression using a bacterial artificial chromosome transgene. In contrast to male, however, Ant4 null female mice were fertile although the litter size was slightly decreased. They showed apparently normal ovarian development which was morphologically indistinguishable from the control animals. These data indicate that Ant4 is a meiosis-specific gene expressed during both male and female gametogenesis however indispensable only during spermatogenesis and not oogenesis. The differential effects of Ant4 depletion within the processes of male and female gametogenesis may be explained by meiosis-specific inactivation of the X-linked Ant2 gene in male, a somatic paralog of the Ant4 gene. PMID:25031318

  2. Two distinct Staufen isoforms in Xenopus are vegetally localized during oogenesis.

    Science.gov (United States)

    Allison, Rachel; Czaplinski, Kevin; Git, Anna; Adegbenro, Elizabeth; Stennard, Fiona; Houliston, Evelyn; Standart, Nancy

    2004-11-01

    Localization of mRNA is an important way of generating early asymmetries in the developing embryo. In Drosophila, Staufen is intimately involved in the localization of maternally inherited mRNAs critical for cell fate determination in the embryo. We show that double-stranded RNA-binding Staufen proteins are present in the oocytes of a vertebrate, Xenopus, and are localized to the vegetal cytoplasm, a region where important mRNAs including VegT and Vg1 mRNA become localized. We identified two Staufen isoforms named XStau1 and XStau2, where XStau1 was found to be the principal Staufen protein in oocytes, eggs, and embryos, the levels of both proteins peaking during mid-oogenesis. In adults, Xenopus Staufens are principally expressed in ovary and testis. XStau1 was detectable throughout the oocyte cytoplasm by immunofluorescence and was concentrated in the vegetal cortical region from stage II onward. It showed partial codistribution with subcortical endoplasmic reticulum (ER), raising the possibility that Staufen may anchor mRNAs to specific ER-rich domains. We further showed that XStau proteins are transiently phosphorylated by the MAPK pathway during meiotic maturation, a period during which RNAs such as Vg1 RNA are released from their tight localization at the vegetal cortex. These findings provide evidence that Staufen proteins are involved in targeting and/or anchoring of maternal determinants to the vegetal cortex of the oocyte in Xenopus. The Xenopus oocyte should thus provide a valuable system to dissect the role of Staufen proteins in RNA localization and vertebrate development.

  3. Reinterpretation of evidence advanced for neo-oogenesis in mammals, in terms of a finite oocyte reserve.

    Science.gov (United States)

    Notarianni, Elena

    2011-01-06

    The central tenet of ovarian biology, that the oocyte reserve in adult female mammals is finite, has been challenged over recent years by proponents of neo-oogenesis, who claim that germline stem cells exist in the ovarian surface epithelium or the bone marrow. Currently opinion is divided over these claims, and further scrutiny of the evidence advanced in support of the neo-oogenesis hypothesis is warranted - especially in view of the enormous implications for female fertility and health. This article contributes arguments against the hypothesis, providing alternative explanations for key observations, based on published data. Specifically, DNA synthesis in germ cells in the postnatal mouse ovary is attributed to mitochondrial genome replication, and to DNA repair in oocytes lagging in meiotic progression. Lines purported to consist of germline stem cells are identified as ovarian epithelium or as oogonia, from which cultures have been derived previously. Effects of ovotoxic treatments are found to negate claims for the existence of germline stem cells. And arguments are presented for the misidentification of ovarian somatic cells as de novo oocytes. These clarifications, if correct, undermine the concept that germline stem cells supplement the oocyte quota in the postnatal ovary; and instead comply with the theory of a fixed, unregenerated reserve. It is proposed that acceptance of the neo-oogenesis hypothesis is erroneous, and may effectively impede research in areas of ovarian biology. To illustrate, a novel explanation that is consistent with orthodox theory is provided for the observed restoration of fertility in chemotherapy-treated female mice following bone marrow transplantation, otherwise interpreted by proponents of neo-oogenesis as involving stimulation of endogenous germline stem cells. Instead, it is proposed that the chemotherapeutic regimens induce autoimmunity to ovarian antigens, and that the haematopoietic chimaerism produced by bone marrow

  4. Occurrence and ultrastructural characterization of "nuage" during oogenesis and early spermatogenesis of Piaractus mesopotamicus Holmberg, 1887 (Teleostei

    Directory of Open Access Journals (Sweden)

    F. C. Abdalla

    Full Text Available We investigated the occurrence and ultrastructurally characterized electrondense nuclear material (nuage released from the nucleus during oogenesis and early spermatogenesis of Piaractus mesopotamicus, a fish from Pantanal Matogrossense (Brazil having a seasonal reproductive cycle. The female germ cells presented two instances of nuclear material extrusion: in the oogonia and in the oocyte in the perinucleolar phase. In males, material with similar morphology and behavior occurred in the spematogonia. In all cases, this material was associated to mitochondria. The possible function of this material is discussed.

  5. A Soluble Pyrophosphatase Is Essential to Oogenesis and Is Required for Polyphosphate Metabolism in the Red Flour Beetle (Tribolium castaneum

    Directory of Open Access Journals (Sweden)

    Klébea Carvalho

    2015-03-01

    Full Text Available Polyphosphates have been found in all cell types examined to date and play diverse roles depending on the cell type. In eukaryotic organisms, polyphosphates have been mainly investigated in mammalian cells with few studies on insects. Some studies have demonstrated that a pyrophosphatase regulates polyphosphate metabolism, and most of them were performed on trypanosomatids. Here, we investigated the effects of sPPase gene knocked down in oogenesis and polyphosphate metabolism in the red flour beetle (Tribolium castaneum. A single sPPase gene was identified in insect genome and is maternally provided at the mRNA level and not restricted to any embryonic or extraembryonic region during embryogenesis. After injection of Tc-sPPase dsRNA, female survival was reduced to 15% of the control (dsNeo RNA, and egg laying was completely impaired. The morphological analysis by nuclear DAPI staining of the ovarioles in Tc-sPPase dsRNA-injected females showed that the ovariole number is diminished, degenerated oocytes can be observed, and germarium is reduced. The polyphosphate level was increased in cytoplasmic and nuclear fractions in Tc-sPPase RNAi; Concomitantly, the exopolyphosphatase activity decreased in both fractions. Altogether, these data suggest a role for sPPase in the regulation on polyphosphate metabolism in insects and provide evidence that Tc-sPPase is essential to oogenesis.

  6. Ovary organization and oogenesis in the tardigrade Macrobiotus polonicus Pilato, Kaczmarek, Michalczyk & Lisi, 2003 (Eutardigrada, Macrobiotidae): ultrastructural and histochemical analysis.

    Science.gov (United States)

    Poprawa, Izabela; Schlechte-Wełnicz, Weronika; Hyra, Marta

    2015-05-01

    The female reproductive system, the process of oogenesis, and the morphology of the egg capsule of Macrobiotus polonicus were analyzed using transmission and scanning electron microscopy and histochemical methods. The female reproductive system of Macrobiotus polonicus consists of a single ovary and a single oviduct that opens into the cloaca. The seminal receptacle filled with sperm cells is present. The ovary is divided into two parts: a germarium that is filled with oogonia and a vitellarium that is filled with branched clusters of the germ cells. Meroistic oogenesis occurs in the species that was examined. The yolk material is synthesized by the oocyte (autosynthesis) and by the trophocytes and is transported to the oocyte through cytoplasmic bridges. The process of the formation of the egg envelopes starts in the late vitellogenesis. The egg capsule is composed of two envelopes-the vitelline envelope and the three-layered chorion. The vitelline envelope is of the primary type while the chorion is of a secondary type. The surface of the chorion is covered with conical processes that terminate with a strongly indented terminal disc.

  7. Comparative Proteomic Profiling Reveals Molecular Characteristics Associated with Oogenesis and Oocyte Maturation during Ovarian Development of Bactrocera dorsalis (Hendel)

    Science.gov (United States)

    Li, Ran; Zhang, Meng-Yi; Liu, Yu-Wei; Zhang, Zheng; Smagghe, Guy; Wang, Jin-Jun

    2017-01-01

    Time-dependent expression of proteins in ovary is important to understand oogenesis in insects. Here, we profiled the proteomes of developing ovaries from Bactrocera dorsalis (Hendel) to obtain information about ovarian development with particular emphasis on differentially expressed proteins (DEPs) involved in oogenesis. A total of 4838 proteins were identified with an average peptide number of 8.15 and sequence coverage of 20.79%. Quantitative proteomic analysis showed that a total of 612 and 196 proteins were differentially expressed in developing and mature ovaries, respectively. Furthermore, 153, 196 and 59 potential target proteins were highly expressed in early, vitellogenic and mature ovaries and most tested DEPs had the similar trends consistent with the respective transcriptional profiles. These proteins were abundantly expressed in pre-vitellogenic and vitellogenic stages, including tropomyosin, vitellogenin, eukaryotic translation initiation factor, heat shock protein, importin protein, vitelline membrane protein, and chorion protein. Several hormone and signal pathway related proteins were also identified during ovarian development including piRNA, notch, insulin, juvenile, and ecdysone hormone signal pathways. This is the first report of a global ovary proteome of a tephritid fruit fly, and may contribute to understanding the complicate processes of ovarian development and exploring the potentially novel pest control targets. PMID:28665301

  8. A Soluble Pyrophosphatase Is Essential to Oogenesis and Is Required for Polyphosphate Metabolism in the Red Flour Beetle (Tribolium castaneum)

    Science.gov (United States)

    Carvalho, Klébea; Ribeiro, Lupis; Moraes, Jorge; da Silva, José Roberto; Costa, Evenilton P.; Souza-Menezes, Jackson; Logullo, Carlos; Nunes da Fonseca, Rodrigo; Campos, Eldo

    2015-01-01

    Polyphosphates have been found in all cell types examined to date and play diverse roles depending on the cell type. In eukaryotic organisms, polyphosphates have been mainly investigated in mammalian cells with few studies on insects. Some studies have demonstrated that a pyrophosphatase regulates polyphosphate metabolism, and most of them were performed on trypanosomatids. Here, we investigated the effects of sPPase gene knocked down in oogenesis and polyphosphate metabolism in the red flour beetle (Tribolium castaneum) A single sPPase gene was identified in insect genome and is maternally provided at the mRNA level and not restricted to any embryonic or extraembryonic region during embryogenesis. After injection of Tc-sPPase dsRNA, female survival was reduced to 15% of the control (dsNeo RNA), and egg laying was completely impaired. The morphological analysis by nuclear DAPI staining of the ovarioles in Tc-sPPase dsRNA-injected females showed that the ovariole number is diminished, degenerated oocytes can be observed, and germarium is reduced. The polyphosphate level was increased in cytoplasmic and nuclear fractions in Tc-sPPase RNAi; Concomitantly, the exopolyphosphatase activity decreased in both fractions. Altogether, these data suggest a role for sPPase in the regulation on polyphosphate metabolism in insects and provide evidence that Tc-sPPase is essential to oogenesis. PMID:25811926

  9. Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis.

    Science.gov (United States)

    Hou, Ying-Chen Claire; Chittaranjan, Suganthi; Barbosa, Sharon González; McCall, Kimberly; Gorski, Sharon M

    2008-09-22

    A complex relationship exists between autophagy and apoptosis, but the regulatory mechanisms underlying their interactions are largely unknown. We conducted a systematic study of Drosophila melanogaster cell death-related genes to determine their requirement in the regulation of starvation-induced autophagy. We discovered that six cell death genes--death caspase-1 (Dcp-1), hid, Bruce, Buffy, debcl, and p53-as well as Ras-Raf-mitogen activated protein kinase signaling pathway components had a role in autophagy regulation in D. melanogaster cultured cells. During D. melanogaster oogenesis, we found that autophagy is induced at two nutrient status checkpoints: germarium and mid-oogenesis. At these two stages, the effector caspase Dcp-1 and the inhibitor of apoptosis protein Bruce function to regulate both autophagy and starvation-induced cell death. Mutations in Atg1 and Atg7 resulted in reduced DNA fragmentation in degenerating midstage egg chambers but did not appear to affect nuclear condensation, which indicates that autophagy contributes in part to cell death in the ovary. Our study provides new insights into the molecular mechanisms that coordinately regulate autophagic and apoptotic events in vivo.

  10. Oogenesis: From Oogonia to Ovulation in the Flagfish, Jordanella floridae Goode and Bean, 1879 (Teleostei: Cyprinodontidae).

    Science.gov (United States)

    Uribe, Mari Carmen; Grier, Harry J; García-Alarcón, Adriana; Parenti, Lynne R

    2016-10-01

    We provide histological details of the development of oocytes in the cyprinodontid flagfish, Jordanella floridae. There are six stages of oogenesis: Oogonial proliferation, chromatin nucleolus, primary growth (previtellogenesis [PG]), secondary growth (vitellogenesis), oocyte maturation and ovulation. The ovarian lamellae are lined by a germinal epithelium composed of epithelial cells and scattered oogonia. During primary growth, the development of cortical alveoli and oil droplets, are initiated simultaneously. During secondary growth, yolk globules coalesce into a fluid mass. The full-grown oocyte contains a large globule of fluid yolk. The germinal vesicle is at the animal pole, and the cortical alveoli and oil droplets are located at the periphery. The disposition of oil droplets at the vegetal pole of the germinal vesicle during late secondary growth stage is a unique characteristic. The follicular cell layer is composed initially of a single layer of squamous cells during early PG which become columnar during early vitellogenesis. During primary and secondary growth stages, filaments develop among the follicular cells and also around the micropyle. The filaments are seen extending from the zona pellucida after ovulation. During ovulation, a space is evident between the oocyte and the zona pellucida. Asynchronous spawning activity is confirmed by the observation that, after ovulation, the ovarian lamellae contain follicles in both primary and secondary growth stages; in contrast, when the seasonal activity of oogenesis and spawning ends, after ovulation, the ovarian lamellae contain only follicles in the primary growth stage. J. Morphol. 277:1339-1354, 2016. © 2016 Wiley Periodicals, Inc.

  11. The nucleoporin Seh1 forms a complex with Mio and serves an essential tissue-specific function in Drosophila oogenesis.

    Science.gov (United States)

    Senger, Stefania; Csokmay, John; Akbar, Tanveer; Tanveer, Akbar; Jones, Takako Iida; Sengupta, Prabuddha; Lilly, Mary A

    2011-05-01

    The nuclear pore complex (NPC) mediates the transport of macromolecules between the nucleus and cytoplasm. Recent evidence indicates that structural nucleoporins, the building blocks of the NPC, have a variety of unanticipated cellular functions. Here, we report an unexpected tissue-specific requirement for the structural nucleoporin Seh1 during Drosophila oogenesis. Seh1 is a component of the Nup107-160 complex, the major structural subcomplex of the NPC. We demonstrate that Seh1 associates with the product of the missing oocyte (mio) gene. In Drosophila, mio regulates nuclear architecture and meiotic progression in early ovarian cysts. Like mio, seh1 has a crucial germline function during oogenesis. In both mio and seh1 mutant ovaries, a fraction of oocytes fail to maintain the meiotic cycle and develop as pseudo-nurse cells. Moreover, the accumulation of Mio protein is greatly diminished in the seh1 mutant background. Surprisingly, our characterization of a seh1 null allele indicates that, although required in the female germline, seh1 is dispensable for the development of somatic tissues. Our work represents the first examination of seh1 function within the context of a multicellular organism. In summary, our studies demonstrate that Mio is a novel interacting partner of the conserved nucleoporin Seh1 and add to the growing body of evidence that structural nucleoporins can have novel tissue-specific roles.

  12. Differential expression and characterization analysis of a new gene with WD domains in fish oogenesis

    Institute of Scientific and Technical Information of China (English)

    WEN; Jianjun(

    2001-01-01

    [1]Nagahama. N., Molecular biology of oocyte maturation in fish. in Perspectives in Comparative Endocrinology (eds. Davey.K. G.. Peter, R. E.. Tobe, S. S.), Ottawa: National Research Council of Canada, 1994. 193-198.[2]Selman. K.. Wallace, R. A., Sarka, A., Stages of oocyte development in the zebrafish, Brachydanio. rerio, J. Morphol..1993. 218: 203-224.[3]Tyler. C. R., Sumpter, J. P., Oocyte growth and development in teleosts. Rev. Fish Biol. Fisheries, 1996,6:287-318.[4]Nagahama, Y.. Yoshikuni, M., Tokumoto. T. et al., Regulation of oocyte growth and maturation in fish, Curr. Top. Dev.Biol., 1995.30: 104-145.[5]Amanai. K., Suzuki, Y., Ohtaki, T., Involvement of a maternally transcribed lectin gene in the early development of Bombyx mori, Rouxs-Arch. Dev. Biol., 1994, 203: 397-401.[6]Hales, K. H., Meredith. J. E., Storti, R. V., Transcriptional and posttranscriptional regulation of maternal and zygotic cytoskeletal tropomyosin messenger RNA during Drosophila development correlates with specific morphogenic events. Dev.Biol., 1994, 165: 639-653.[7]Buccione, R., Schroeder. A. C., Epigg, J. J., Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol. Reprod., 1990, 43: 543-547.[8]Eppigg. J. J., Growth and development of mammalian oocytes in vitro, Arch Pathol. Lab. Med., 1992, 116: 379-382.[9]Hainaut. P., Kowalski, A., Giorgetti, S. et al.. Insulin and insulin-like growth-factor-I (IGF-I) receptors in Xenopus laevis oocytes. Biochem. J., 1991, 273: 673-678.[10]Hainaut, P., Kowalski, A. L., Marchand-Brustel, Y., Effects of insulin and insulin-like growth-factor-I (IGF-I) and progesterone on glucose and amino acid uptake in Xenopus laevis oocytes, Mol. Cell. Endocrinol., 1991, 75:133-139.[11]Hardie. L. J., Ling, K. J., Daniels, G. D. et al., Isolation of the first piscine transforming growth factor- β: analysis reveals tissue specific expression and a potential regulatory sequence in rainbow

  13. The Effect of Epinephrine On The Development of oogenesis Of Mice (Mus Musculus Strain of Japanese

    Directory of Open Access Journals (Sweden)

    Sri Utami

    2012-01-01

    Full Text Available When stress persists continuously and repeatedly, it will automatically increase the epinephrine in the body in which excessive consequently can provide interference on various body systems. In the event of physical stressors can affect the frequency and amplitude of pulsatile gonadotropin-releasing hormone (GnRH. It is important for the secretion of follicle-stimulating hormone (FSH and luteinizing hormone (LH. Additionally stressors can also activate the sympathetic nervous system. If the increase is excessive pulsation can reduce and stop the secretion of follicle-stimulating hormone (FSH and luteinizing hormone (LH. Decrease in Follicle-stimulating hormone (FSH and luteinizing hormone (LH will inhibit the growth of ovarian follicles and decrease the synthesis of estrogen and progesterone in the ovaries. Decreased synthesis of estrogen and progesterone can cause a decrease in the number of ovarian follicles (Speroff, 1994.The study population was female mice derived from laboratory Biomedic Andalas University in Padang. Mice used were 2-3 months old, weighing an average of 25-35 grams. The Effect of Epinephrine on the Development of Oogenesis of Mice (mus musculus Strain of Japanese, is the growth of primary follicles in which a decline in the number of primary follicles ranging from provision of 0.002 mg / ml, epinephrine administration lowered formation of secondary follicles at a concentration of 0.004 mg / ml and above but no decrease in concentration of 0.002 mg / ml, epinephrine administration lowered formation of tertiary follicles at a concentration of 0.004 mg / ml, 0.006 mg / ml, 0.008 mg / ml and 0.01 mg / ml and no decrease in concentration of 0.002 mg / ml, epinephrine administration did not reduce the formation of follicle de Graaf and administration of epinephrine significantly reduce the formation of the corpus luteum at a concentration of 0.004 mg / ml, 0.006 mg / ml, 0.008 mg / ml and 0.01 mg / ml and no decrease in

  14. A Gap Junction Protein, Inx2, Modulates Calcium Flux to Specify Border Cell Fate during Drosophila oogenesis

    Science.gov (United States)

    Ghosh, Ritabrata; Deshpande, Girish

    2017-01-01

    Intercellular communication mediated by gap junction (GJ) proteins is indispensable during embryogenesis, tissue regeneration and wound healing. Here we report functional analysis of a gap junction protein, Innexin 2 (Inx2), in cell type specification during Drosophila oogenesis. Our data reveal a novel involvement of Inx2 in the specification of Border Cells (BCs), a migratory cell type, whose identity is determined by the cell autonomous STAT activity. We show that Inx2 influences BC fate specification by modulating STAT activity via Domeless receptor endocytosis. Furthermore, detailed experimental analysis has uncovered that Inx2 also regulates a calcium flux that transmits across the follicle cells. We propose that Inx2 mediated calcium flux in the follicle cells stimulates endocytosis by altering Dynamin (Shibire) distribution which is in turn critical for careful calibration of STAT activation and, thus for BC specification. Together our data provide unprecedented molecular insights into how gap junction proteins can regulate cell-type specification. PMID:28114410

  15. Role of Scrib and Dlg in anterior-posterior patterning of the follicular epithelium during Drosophila oogenesis

    Directory of Open Access Journals (Sweden)

    Yu Lingzhu

    2009-12-01

    Full Text Available Abstract Background Proper patterning of the follicle cell epithelium over the egg chamber is essential for the Drosophila egg development. Differentiation of the epithelium into several distinct cell types along the anterior-posterior axis requires coordinated activities of multiple signaling pathways. Previously, we reported that lethal(2giant larvae (lgl, a Drosophila tumor suppressor gene, is required in the follicle cells for the posterior follicle cell (PFC fate induction at mid-oogenesis. Here we explore the role of another two tumor suppressor genes, scribble (scrib and discs large (dlg, in the epithelial patterning. Results We found that removal of scrib or dlg function from the follicle cells at posterior terminal of the egg chamber causes a complete loss of the PFC fate. Aberrant specification and differentiation of the PFCs in the mosaic clones can be ascribed to defects in coordinated activation of the EGFR, JAK and Notch signaling pathways in the multilayered cells. Meanwhile, the clonal analysis revealed that loss-of-function mutations in scrib/dlg at the anterior domains result in a partially penetrant phenotype of defective induction of the stretched and centripetal cell fate, whereas specification of the border cell fate can still occur in the most anterior region of the mutant clones. Further, we showed that scrib genetically interacts with dlg in regulating posterior patterning of the epithelium. Conclusion In this study we provide evidence that scrib and dlg function differentially in anterior and posterior patterning of the follicular epithelium at oogenesis. Further genetic analysis indicates that scrib and dlg act in a common pathway to regulate PFC fate induction. This study may open another window for elucidating role of scrib/dlg in controlling epithelial polarity and cell proliferation during development.

  16. Promotion of oogenesis and embryogenesis in the C. elegans gonad by EFL-1/DPL-1 (E2F) does not require LIN-35 (pRB).

    Science.gov (United States)

    Chi, Woo; Reinke, Valerie

    2006-08-01

    In Caenorhabditis elegans, EFL-1 (E2F), DPL-1 (DP) and LIN-35 (pRb) act coordinately in somatic tissues to inhibit ectopic cell division, probably by repressing the expression of target genes. EFL-1, DPL-1 and LIN-35 are also present in the germline, but do not always act together. Strong loss-of-function mutations in either efl-1 or dpl-1 cause defects in oogenesis that result in sterility, while lin-35 mutants are fertile with reduced broods. Microarray-based expression profiling of dissected gonads from efl-1, dpl-1 and lin-35 mutants reveals that EFL-1 and DPL-1 promote expression of an extensively overlapping set of target genes, consistent with the expectation that these two proteins function as a heterodimer. Regulatory regions upstream of many of these target genes have a canonical E2F-binding site, suggesting that their regulation by EFL-1/DPL-1 is direct. Many EFL-1/DPL-1 responsive genes encode proteins required for oogenesis and early embryogenesis, rather than cell cycle components. By contrast, LIN-35 appears to function primarily as a repressor of gene expression in the germline, and the genes that it acts on are for the most part distinct from those regulated by EFL-1 and/or DPL-1. Thus, in vivo, C. elegans E2F directly promotes oogenesis and embryogenesis through the activation of a tissue-specific transcriptional program that does not require LIN-35.

  17. Response to the Dorsal Anterior Gradient of EGFR Signaling in Drosophila Oogenesis Is Prepatterned by Earlier Posterior EGFR Activation

    Directory of Open Access Journals (Sweden)

    Mariana Fregoso Lomas

    2013-08-01

    Full Text Available Spatially restricted epidermal growth factor receptor (EGFR activity plays a central role in patterning the follicular epithelium of the Drosophila ovary. In midoogenesis, localized EGFR activation is achieved by the graded dorsal anterior localization of its ligand, Gurken. Graded EGFR activity determines multiple dorsal anterior fates along the dorsal-ventral axis but cannot explain the sharp posterior limit of this domain. Here, we show that posterior follicle cells express the T-box transcription factors Midline and H15, which render cells unable to adopt a dorsal anterior fate in response to EGFR activation. The posterior expression of Midline and H15 is itself induced in early oogenesis by posteriorly localized EGFR signaling, defining a feedback loop in which early induction of Mid and H15 confers a molecular memory that fundamentally alters the outcome of later EGFR signaling. Spatial regulation of the EGFR pathway thus occurs both through localization of the ligand and through localized regulation of the cellular response.

  18. Study of oestrus cycle periodicity and oogenesis of adult albino rats:Response to hyperprolactinaemia induced by haloperidol

    Institute of Scientific and Technical Information of China (English)

    Savita Kuldip Kumar; Pal Abhishek; Sahu Pratap Kumar; Tiwari Prashant

    2013-01-01

    Objective: To investigate the possible effect of hyperprolactinaemia induced by HPL on oogenesis in female albino rats. Methods: The oestrus cycle of each rat was observed daily for 16 days at a regular interval of 24 hours including Sunday. Animals from each group were scarified 24 hr after last treatment (on 17th day) following the ethical procedure for histopathological examination ovaries were separated. Results: In our study we found that prolactin treatment at the dioestrous phase increased the number of apoptotic cells and significant changes in volume of corpus luteum and the number of steriodogenic cell per corpus luteum decreased and therefore resultant synthesis of oestrogen decreased. So, haloperidol possesses antioestrogenic activity which may be attributed to high serum prolactin levels induced by haloperidol in experimental animals. Conclusion: In this study intraperitoneall administration of haloperidol at doses of 1, 2 and 5 mg/kg/day for 16 days significantly produced hyperprolactinaemia in female albino rats as compared to control. Hyperprolactinaemia produced by haloperidol causes significant increase in periodicity of dioestrous phase and decreased the other phase significantly in a dose dependent manner.

  19. Ameliorative Effect of Grape Seed Proanthocyanidin Extract on Cadmium-Induced Meiosis Inhibition During Oogenesis in Chicken Embryos.

    Science.gov (United States)

    Hou, Fuyin; Xiao, Min; Li, Jian; Cook, Devin W; Zeng, Weidong; Zhang, Caiqiao; Mi, Yuling

    2016-04-01

    Cadmium (Cd) is an environmental endocrine disruptor that has toxic effects on the female reproductive system. Here the ameliorative effect of grape seed proanthocyanidin extract (GSPE) on Cd-induced meiosis inhibition during oogenesis was explored. As compared with controls, chicken embryos exposed to Cd (3 µg/egg) displayed a changed oocyte morphology, decreased number of meiotic germ cells, and decreased expression of the meiotic marker protein γH2AX. Real time RT-PCR also revealed a significant down-regulation in the mRNA expressions of various meiosis-specific markers (Stra8, Spo11, Scp3, and Dmc1) together with those of Raldh2, a retinoic acid (RA) synthetase, and of the receptors (RARα and RARβ). In addition, exposure to Cd increased the production of H2 O2 and malondialdehyde in the ovaries and caused a corresponding reduction in glutathione and superoxide dismutase. Simultaneous supplementation of GSPE (150 µg/egg) markedly alleviated the aforementioned Cd-induced embryotoxic effects by upregulating meiosis-related proteins and gene expressions and restoring the antioxidative level. Collectively, the findings provided novel insights into the underlying mechanism of Cd-induced meiosis inhibition and indicated that GSPE might potentially ameliorate related reproductive disorders. © 2016 Wiley Periodicals, Inc.

  20. Comparison of Oogenesis and Sex Steroid Profiles between Twice and Once Annually Spawning of Rainbow Trout Females (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Francisco Estay

    2012-01-01

    Full Text Available This study compares the gonadosomatic index (GSI, oocyte growth (OG, gonadal histology, and plasma level concentrations of sex hormones (estradiol-17β (E2 and vitellogenin (V of twice-spawning (T-SP and once-spawning (O-SP females of rainbow trout throughout the additional and the normal reproductive cycle, respectively. In T-SP, the GSI values rapidly increase from May to November, in contrast to O-SP, which showed low and constant GSI values (1.19 to 14.5 and 1.19 to 0.63, resp.. T-SP exhibited a marked increase of OG in the same period, reaching a maximum diameter of 4,900 ± 141.42 μm, in contrast to O-SP, which presented a slow OG. The gonadal histology of T-SP agreed with the general pattern of ovogenesis observed for O-SP (vitellogenesis, ovulation, and recrudescence; however, this process was nonsynchronous between the two breeder groups. Plasma steroid levels showed significant variation during oogenesis, which agreed with the GSI, OG, and gonadal histology patterns. The level of E2 increased to a maximum value of 26.2 ng/mL and 36.0 ng/mL in O-SP and T-SP, respectively, one or two months before the spawning event where vitellogenesis was fully active. The V concentrations followed a pattern similar to those of E2.

  1. Comparison of oogenesis and sex steroid profiles between twice and once annually spawning of rainbow trout females (Oncorhynchus mykiss).

    Science.gov (United States)

    Estay, Francisco; Colihueque, Nelson; Araneda, Cristian

    2012-01-01

    This study compares the gonadosomatic index (GSI), oocyte growth (OG), gonadal histology, and plasma level concentrations of sex hormones (estradiol-17β (E2) and vitellogenin (V)) of twice-spawning (T-SP) and once-spawning (O-SP) females of rainbow trout throughout the additional and the normal reproductive cycle, respectively. In T-SP, the GSI values rapidly increase from May to November, in contrast to O-SP, which showed low and constant GSI values (1.19 to 14.5 and 1.19 to 0.63, resp.). T-SP exhibited a marked increase of OG in the same period, reaching a maximum diameter of 4,900 ± 141.42 μm, in contrast to O-SP, which presented a slow OG. The gonadal histology of T-SP agreed with the general pattern of ovogenesis observed for O-SP (vitellogenesis, ovulation, and recrudescence); however, this process was nonsynchronous between the two breeder groups. Plasma steroid levels showed significant variation during oogenesis, which agreed with the GSI, OG, and gonadal histology patterns. The level of E2 increased to a maximum value of 26.2 ng/mL and 36.0 ng/mL in O-SP and T-SP, respectively, one or two months before the spawning event where vitellogenesis was fully active. The V concentrations followed a pattern similar to those of E2.

  2. Changes in large-scale chromatin structure and function during oogenesis: a journey in company with follicular cells.

    Science.gov (United States)

    Luciano, Alberto M; Franciosi, Federica; Dieci, Cecilia; Lodde, Valentina

    2014-09-01

    The mammalian oocyte nucleus or germinal vesicle (GV) exhibits characteristic chromatin configurations, which are subject to dynamic modifications through oogenesis. Aim of this review is to highlight how changes in chromatin configurations are related to both functional and structural modifications occurring in the oocyte nuclear and cytoplasmic compartments. During the long phase of meiotic arrest at the diplotene stage, the chromatin enclosed within the GV is subjected to several levels of regulation. Morphologically, the chromosomes lose their individuality and form a loose chromatin mass. The decondensed configuration of chromatin then undergoes profound rearrangements during the final stages of oocyte growth that are tightly associated with the acquisition of meiotic and developmental competence. Functionally, the discrete stages of chromatin condensation are characterized by different level of transcriptional activity, DNA methylation and covalent histone modifications. Interestingly, the program of chromatin rearrangement is not completely intrinsic to the oocyte, but follicular cells exert their regulatory actions through gap junction mediated communications and intracellular messenger dependent mechanism(s). With this in mind and since oocyte growth mostly relies on the bidirectional interaction with the follicular cells, a connection between cumulus cells gene expression profile and oocyte developmental competence, according to chromatin configuration is proposed. This analysis can help in identifying candidate genes involved in the process of oocyte developmental competence acquisition and in providing non-invasive biomarkers of oocyte health status that can have important implications in treating human infertility as well as managing breeding schemes in domestic mammals.

  3. Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis

    Science.gov (United States)

    Shravage, Bhupendra V.; Sagona, Antonia P.; Lamark, Trond; Bjørkøy, Geir; Johansen, Terje; Rusten, Tor Erik; Brech, Andreas; Baehrecke, Eric H.

    2010-01-01

    Autophagy is an evolutionarily conserved pathway responsible for degradation of cytoplasmic material via the lysosome. Although autophagy has been reported to contribute to cell death, the underlying mechanisms remain largely unknown. In this study, we show that autophagy controls DNA fragmentation during late oogenesis in Drosophila melanogaster. Inhibition of autophagy by genetically removing the function of the autophagy genes atg1, atg13, and vps34 resulted in late stage egg chambers that contained persisting nurse cell nuclei without fragmented DNA and attenuation of caspase-3 cleavage. The Drosophila inhibitor of apoptosis (IAP) dBruce was found to colocalize with the autophagic marker GFP-Atg8a and accumulated in autophagy mutants. Nurse cells lacking Atg1 or Vps34 in addition to dBruce contained persisting nurse cell nuclei with fragmented DNA. This indicates that autophagic degradation of dBruce controls DNA fragmentation in nurse cells. Our results reveal autophagic degradation of an IAP as a novel mechanism of triggering cell death and thereby provide a mechanistic link between autophagy and cell death. PMID:20713604

  4. A network of PUF proteins and Ras signaling promote mRNA repression and oogenesis in C. elegans.

    Science.gov (United States)

    Hubstenberger, Arnaud; Cameron, Cristiana; Shtofman, Rebecca; Gutman, Shiri; Evans, Thomas C

    2012-06-15

    Cell differentiation requires integration of gene expression controls with dynamic changes in cell morphology, function, and control. Post-transcriptional mRNA regulation and signaling systems are important to this process but their mechanisms and connections are unclear. During C. elegans oogenesis, we find that two groups of PUF RNA binding proteins (RNABPs), PUF-3/11 and PUF-5/6/7, control different specific aspects of oocyte formation. PUF-3/11 limits oocyte growth, while PUF-5/6/7 promotes oocyte organization and formation. These two PUF groups repress mRNA translation through overlapping but distinct sets of 3' untranslated regions (3'UTRs). Several PUF-dependent mRNAs encode other mRNA regulators suggesting both PUF groups control developmental patterning of mRNA regulation circuits. Furthermore, we find that the Ras-MapKinase/ERK pathway functions with PUF-5/6/7 to repress specific mRNAs and control oocyte organization and growth. These results suggest that diversification of PUF proteins and their integration with Ras-MAPK signaling modulates oocyte differentiation. Together with other studies, these findings suggest positive and negative interactions between the Ras-MAPK system and PUF RNA-binding proteins likely occur at multiple levels. Changes in these interactions over time can influence spatiotemporal patterning of tissue development.

  5. Mammalian sperm-egg fusion: the development of rat oolemma fusibility during oogenesis involves the appearance of binding sites for sperm protein "DE".

    Science.gov (United States)

    Cohen, D J; Munuce, M J; Cuasnicú, P S

    1996-07-01

    Rat epididymal protein DE mediates gamete fusion through complementary sites localized on the egg surface. To investigate whether these egg components are involved in the development of rat oolemma fusibility, both the presence of DE-binding components and the ability of the oolemma to fuse with sperm during oogenesis were examined. Localization of DE-complementary sites by indirect immunofluorescence revealed the absence of fluorescent labeling on growing oocytes with a diameter 50 microns. This localization of oolemma components changed progressively to a patchy distribution during maturation. Whereas sperm incorporation was observed only in maturing oocytes, the development of the Hoechst transfer technique to evaluate membrane fusion revealed that germinal vesicle oocytes with a diameter > 50 microns were already competent to fuse with sperm. The involvement of the DE-complementary sites in the oolemma fusibility of these oocytes was confirmed by the fact that the presence of DE during gamete coincubation significantly (p rat oolemma occurs during the growth period and involves the appearance of DE-binding components on the oocyte surface. This study provides novel information on the molecular mechanism by which the mammalian egg plasma membrane becomes competent to fuse with sperm during oogenesis.

  6. Gene expression analysis of parthenogenetic embryonic development of the pea aphid, Acyrthosiphon pisum, suggests that aphid parthenogenesis evolved from meiotic oogenesis.

    Directory of Open Access Journals (Sweden)

    Dayalan G Srinivasan

    Full Text Available Aphids exhibit a form of phenotypic plasticity, called polyphenism, in which genetically identical females reproduce sexually during one part of the life cycle and asexually (via parthenogenesis during the remainder of the life cycle. The molecular basis for aphid parthenogenesis is unknown. Cytological observations of aphid parthenogenesis suggest that asexual oogenesis evolved either through a modification of meiosis or from a mitotic process. As a test of these alternatives, we assessed the expression levels and expression patterns of canonical meiotic recombination and germline genes in the sexual and asexual ovaries of the pea aphid, Acyrthosiphon pisum. We observed expression of all meiosis genes in similar patterns in asexual and sexual ovaries, with the exception that some genes encoding Argonaute-family members were not expressed in sexual ovaries. In addition, we observed that asexual aphid tissues accumulated unspliced transcripts of Spo11, whereas sexual aphid tissues accumulated primarily spliced transcripts. In situ hybridization revealed Spo11 transcript in sexual germ cells and undetectable levels of Spo11 transcript in asexual germ cells. We also found that an obligately asexual strain of pea aphid produced little spliced Spo11 transcript. Together, these results suggest that parthenogenetic oogenesis evolved from a meiosis-like, and not a mitosis-like, process and that the aphid reproductive polyphenism may involve a modification of Spo11 gene activity.

  7. Mitotic arrest of female germ cells during prenatal oogenesis. A colcemid-like, non-apoptotic cell death.

    Science.gov (United States)

    Wartenberg, H; Ihmer, A; Schwarz, S; Miething, A; Viebahn, C

    2001-11-01

    The sequence of events and a possible reason for germ cell death during oogenesis in the prenatal ovary were studied in rat and mouse embryos. ED 14-22 rat and ED 14-16 mouse embryos were studied using semithin sections for light microscopy and serial ultrathin sections for electron microscopy. In addition, the rat material was 3H-thymidine labelled for historadioautography and cytospin preparations of freshly obtained gonads were immunohistochemically analysed. During the transition from the proliferating oogonial stage to the meiotic prophase about 16% of the postmitotic oocytes do not pass the initial meiotic checkpoint on ED 18/19 in the rat (ED 15/16 in the mouse). These germ cells first show structural signs of mitosis; the diploid number of 'super-condensed' chromosomes are globally formed and are concentrated in the center of the cell. Although the germ cells show all morphological signs of living cells they never have mitotic spindles; the micro-tubulus-organisation-centres (MTOCs) are found peripherally and become concentrated, forming a single centrosomal body (acentriolar MTOC) as detected by immunohistochemistry for the centrosomal protein MPM2 and gamma-tubulin. EM studies show 25 nm tubule-like profiles within the MTOC bodies. The centrioles frequently lie separate from the MTOC material or are not present at all; the germ cells are apparently arrested in a prophase- or metaphase-like stage when they have reached the postmitotic G2/preleptotenal transition and are unable to enter meiosis. Forty-eight to 72 h after the first mitotically arrested germ cells are found, degeneration is seen in these germ cells. This second event, the germ cell death proper, shows neither criteria of apoptosis (cell shrinkage, marginal condensation of chromatin, DNA fragmentation) nor signs of necrosis (cell swelling, pycnosis, inflammation). Both arrested pro- and metaphase-like stages are found with signs of cell death and phagocytosis. The morphological signs of

  8. Follicle cell trypsin-like protease HrOvochymase: Its cDNA cloning, localization, and involvement in the late stage of oogenesis in the ascidian Halocynthia roretzi.

    Science.gov (United States)

    Mino, Masako; Sawada, Hitoshi

    2016-04-01

    We previously reported that the sperm trypsin-like protease HrAcrosin and its precursor HrProacrosin participate in fertilization of the ascidian Halocynthia roretzi. The HrProacrosin gene is annotated in the H. roretzi genome database as Harore.CG.MTP2014.S89.g15383; our previously reported sequence of HrProacrosin gene appeared to include four nucleotides inserted near the 3'-end of HrProacrosin, resulting in a frame-shift mutation and a premature termination codon. The gene architecture of HrProacrosin and Harore.CG.MTP2014.S89.g15383 resembles that of Xenopus laevis ovochymase-1/OVCH1 and ovochymase-2/OVCH2, which encode egg extracellular polyproteases. Considering these new observations, we evaluated the cDNA cloning, expression, localization, and function of Harore.CG.MTP2014.S89.g15383, herein designated as HrOvochymase/HrOVCH. We found that HrOVCH cDNA consists of a single open reading frame of 1,575 amino acids, containing a signal peptide, three trypsin-like protease domains, and six CUB domains. HrOVCH was transcribed by the testis and ovary, but the majority of protein exists in ovarian follicle cells surrounding eggs. An anti-HrOVCH antibody inhibited elevation of the vitelline coat at a late stage of oogenesis, during the period when self-sterility is acquired. As trypsin inhibitors are reported to block the acquisition of self-sterility during oogenesis, whereas trypsin induces the acquisition of self-sterility and elevation of the vitelline coat in defolliculated ovarian eggs, we propose that HrOVCH may play a role in the acquisition of self-sterility by late-stage H. roretzi oocytes.

  9. RNA- and single-stranded DNA-binding (SSB) proteins expressed during Drosophila melanogaster oogenesis: a homolog of bacterial and eukaryotic mitochondrial SSBs.

    Science.gov (United States)

    Stroumbakis, N D; Li, Z; Tolias, P P

    1994-06-10

    Little is known about the identity and involvement of single-stranded (ss) DNA-binding (SSB) and RNA-binding proteins in developmental processes that occur during oogenesis in Drosophila melanogaster (Dm). Here, we describe a molecular approach designed to identify such proteins by virtue of their ssDNA-binding activity. We have constructed a directional ovarian cDNA library and conducted expression cloning screens which identified five unique cDNAs that encode proteins capable of binding ssDNA. All five represent previously unreported sequences. The remainder of this paper focuses on one of these cDNAs which encodes a Dm protein displaying significant sequence homology to Escherichia coli ssDNA-binding protein (SSB, involved in DNA replication, repair and recombination), as well as eukaryotic SSBs isolated from the mitochondria (mt) of rats, frogs, humans and yeast. The deduced amino acid (aa) sequence of this 15.6-kDa protein, which we will refer to as Dm mtSSB, displays average identities of 38.3% with eukaryotic mtSSBs and 23.4% with bacterial SSBs. Gel retardation analysis with an affinity-purified GST fusion protein confirms that Dm mtSSB specifically binds ss, but not double stranded DNA. Dm mtSSB is encoded by a nuclear gene whose expression appears to be developmentally regulated. It is expressed as a single 600-nucleotide (nt) transcript during oogenesis and embryogenesis. A larger transcript of 1500 nt is prevalent in some later stages of Dm development.

  10. Immunoregulation of follicular renewal, selection, POF, and menopause in vivo, vs. neo-oogenesis in vitro, POF and ovarian infertility treatment, and a clinical trial

    Directory of Open Access Journals (Sweden)

    Bukovsky Antonin

    2012-11-01

    advancing age, due to degenerative changes of the immune system. This causes cessation of oocyte and follicular renewal at 38 +/-2 years of age due to the lack of formation of new granulosa cells. Oocytes in primordial follicles persisting after the end of the prime reproductive period accumulate genetic alterations resulting in an exponentially growing incidence of fetal trisomies and other genetic abnormalities with advanced maternal age. The secondary germ cells also develop in the OSC cultures derived from POF and aging ovaries. In vitro conditions are free of immune mechanisms, which prevent neo-oogenesis in vivo. Such germ cells are capable of differentiating in vitro into functional oocytes. This may provide fresh oocytes and genetically related children to women lacking the ability to produce their own follicular oocytes. Further study of "immune physiology" may help us to better understand ovarian physiology and pathology, including ovarian infertility caused by POF or by a lack of ovarian follicles with functional oocytes in aging ovaries. The observations indicating involvement of immunoregulation in physiological neo-oogenesis and follicular renewal from OSC during the fetal and prime reproductive periods are reviewed as well as immune system and age-independent neo-oogenesis and oocyte maturation in OSC cultures, perimenopausal alteration of homeostasis causing disorders of many tissues, and the first OSC culture clinical trial.

  11. Immunoregulation of follicular renewal, selection, POF, and menopause in vivo, vs. neo-oogenesis in vitro, POF and ovarian infertility treatment, and a clinical trial.

    Science.gov (United States)

    Bukovsky, Antonin; Caudle, Michael R

    2012-11-23

    degenerative changes of the immune system. This causes cessation of oocyte and follicular renewal at 38 +/-2 years of age due to the lack of formation of new granulosa cells. Oocytes in primordial follicles persisting after the end of the prime reproductive period accumulate genetic alterations resulting in an exponentially growing incidence of fetal trisomies and other genetic abnormalities with advanced maternal age. The secondary germ cells also develop in the OSC cultures derived from POF and aging ovaries. In vitro conditions are free of immune mechanisms, which prevent neo-oogenesis in vivo. Such germ cells are capable of differentiating in vitro into functional oocytes. This may provide fresh oocytes and genetically related children to women lacking the ability to produce their own follicular oocytes. Further study of "immune physiology" may help us to better understand ovarian physiology and pathology, including ovarian infertility caused by POF or by a lack of ovarian follicles with functional oocytes in aging ovaries. The observations indicating involvement of immunoregulation in physiological neo-oogenesis and follicular renewal from OSC during the fetal and prime reproductive periods are reviewed as well as immune system and age-independent neo-oogenesis and oocyte maturation in OSC cultures, perimenopausal alteration of homeostasis causing disorders of many tissues, and the first OSC culture clinical trial.

  12. Dynamics and cytochemistry of oogenesis in Astyanax fasciatus (Cuvier (Teleostei, Characiformes, Characidae from Rio Sapucaí, Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    José Antônio Dias Garcia

    2001-12-01

    Full Text Available Oogenesis involves a set of transformations which are undergone by female germ cells These cells change into oogonias and then into mature oocytes. Sexually mature female fish were collected monthly, during one year, from the Sapucaí River, a tributary of the Rio Grande, which is part of the Furnas Reservoir in the state of Minas Gerais. During the several stages of maturation, we observed small round oogonias with a large nucleus, a single nucleolus, and weakly stained cytoplasm with eosinophilic granules. The primary oocytes showed a large basophilic nucleus, with a developed peripheral nucleolus and a reduced cytoplasm. The previtellogenic oocytes presented voluminous cytoplasm and nucleus with several small peripheral nucleoli. The oocytes underwent vitellogenesis with the development of the zona radiata and the follicle cells. Their cytochemical reactions indicated that the two layers of the zona radiata of A. fasciatus contained proteins and polysaccharides. The initially squamous follicle cells, became cuboidal. In mature oocytes, the nucleus moved toward the periphery, next to the micropyle, and the yolk granules formed by proteins, fulfilled the cytoplasm. The clear unstained vesicles are likely to be the cortical alveoli in the perivitelline region.

  13. Arrest of oogenesis in the bug Rhodnius prolixus challenged with the fungus Aspergillus niger is mediated by immune response-derived PGE2.

    Science.gov (United States)

    Medeiros, Marcelo Neves de; Belmonte, Rodrigo; Soares, Bruno César C; Medeiros, Luciano Neves de; Canetti, Cláudio; Freire-de-Lima, Celio G; Maya-Monteiro, Clarissa Menezes; Bozza, Patrícia Torres; Almeida, Igor C; Masuda, Hatisaburo; Kurtenbach, Eleonora; Machado, Ednildo A

    2009-02-01

    In this work we characterized the immune response of the insect Rhodnius prolixus to a direct injection into the hemocoel of the non-entomopathogenic fungus Aspergillus niger, and evaluated its consequences on host oogenesis. These animals were able to respond by mounting effective cellular and humoral responses to this fungus; these responses were shown, however, to have reproductive fitness costs, as the number of eggs laid per female was significantly reduced. The disturbance of egg formation during infectious process correlated with an elevation in the titer of hemolymph prostaglandin E2 48 h post-challenge. Administration of Zymosan A as an immunogenic non-infectious challenge produced similar effects on phenoloxidase and prophenoloxidase activities, oocyte development and prostaglandin E2 titer, precluding the hypothesis of an effect mediated by fungal metabolites in animals challenged with fungus. Ovaries at 48 h post-challenge showed absence of vitellogenic ovarian follicles, and the in vivo administration of prostaglandin E2 or its receptor agonist misoprostol, partially reproduced this phenotype. Together these data led us to hypothesize that immune-derived prostaglandin E2 raised from the insect response to the fungal challenge is involved in disturbing follicle development, contributing to a reduction in host reproductive output and acting as a host-derived adaptive effector to infection.

  14. In vitro activity of 3β-O-tigloylmelianol from Guarea kunthiana A. Juss (Meliaceae) on oogenesis and ecdysis of the cattle tick Rhipicephalus (Boophilus) microplus (Canestrini) (Acari: Ixodidae).

    Science.gov (United States)

    Barbosa, Carolina da Silva; Borges, Lígia Miranda Ferreira; Louly, Carla Cristina Braz; Rocha, Thiago Lopes; de Sabóia-Morais, Simone Maria Teixeira; Miguita, Carlos Henrique; Garcez, Walmir Silva; Garcez, Fernanda Rodriguez

    2016-05-01

    We evaluated the effects of 3β-O-tigloylmelianol from Guarea kunthiana A. Juss (Meliaceae) on oogenesis, as a larvicide and on ecdysis of the larvae and the nymphs of the cattle tick Rhipicephalus (Boophilus) microplus (Canestrini) (Acari: Ixodidae). On the oogenesis' test, 48 engorged females were divided into three groups, evaluated at 24, 48 and 72 h post-treatment. Half of the females were treated with 0.01% 3β-O-tigloylmelianol diluted in distilled water and 5% dimethyl sulfoxide (DMSO), while the other half (controls) were exposed to distilled water and 5% DMSO. After treatment, the ovaries were weighed in order to measure the gonadosomatic index (GSI) and were also subjected to standard histological technical tests. On the larvicide and ecdysis' tests, 3β-O-tigloylmelianol was tested at concentrations of 0.01, 0.005, 0.0025 and 0.00125%. Compared with the controls, there was a reduction of GSI of approximately 50% on the treated group, which started at 48 h post treatment. Overall, the protolimonoid 3β-O-tigloylmelianol has caused a significant reduction in the number of oocytes. It has also caused alteration of the cytoplasmic and germinal vesicle diameters. Morphological changes, such as vacuolization, chorion irregularity which has modified the oocytes' morphology as well as alterations on the yolk's granules were also observed. The compound was not larvicide, however, interfered in the ecdysis of the larvae and the nymphs. This study shows that the protolimonoid 3β-O-tigloylmelianol from G. kunthiana acts on oogenesis and ecdysis of R. (B.) microplus, but not as larvicide, indicating that it acts on the endocrine system of the tick.

  15. The Drosophila IKK-related kinase (Ik2 and Spindle-F proteins are part of a complex that regulates cytoskeleton organization during oogenesis

    Directory of Open Access Journals (Sweden)

    Shaanan Boaz

    2008-09-01

    Full Text Available Abstract Background IkappaB kinases (IKKs regulate the activity of Rel/NF-kappaB transcription factors by targeting their inhibitory partner proteins, IkappaBs, for degradation. The Drosophila genome encodes two members of the IKK family. Whereas the first is a kinase essential for activation of the NF-kappaB pathway, the latter does not act as IkappaB kinase. Instead, recent findings indicate that Ik2 regulates F-actin assembly by mediating the function of nonapoptotic caspases via degradation of DIAP1. Also, it has been suggested that ik2 regulates interactions between the minus ends of the microtubules and the actin-rich cortex in the oocyte. Since spn-F mutants display oocyte defects similar to those of ik2 mutant, we decided to investigate whether Spn-F could be a direct regulatory target of Ik2. Results We found that Ik2 binds physically to Spn-F, biomolecular interaction analysis of Spn-F and Ik2 demonstrating that both proteins bind directly and form a complex. We showed that Ik2 phosphorylates Spn-F and demonstrated that this phosphorylation does not lead to Spn-F degradation. Ik2 is localized to the anterior ring of the oocyte and to punctate structures in the nurse cells together with Spn-F protein, and both proteins are mutually required for their localization. Conclusion We conclude that Ik2 and Spn-F form a complex, which regulates cytoskeleton organization during Drosophila oogenesis and in which Spn-F is the direct regulatory target for Ik2. Interestingly, Ik2 in this complex does not function as a typical IKK in that it does not direct SpnF for degradation following phosphorylation.

  16. Dynamics and cytochemistry of oogenesis in Leporinus striatus Kner (Teleostei, Characiformes, Anostomidae from the Rio Sapucaí, Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    Helena A.S. Chini

    2001-12-01

    Full Text Available Oogenesis involves a sequense of transformations which are undergone by female germ cells. These cells change into oogonias and then into mature oocytes. Sexually mature females were collected monthly, during one year, from the Rio Sapucaí, tributary of the Rio Grande, which is part of the Furnas Reservoir system in the state of Minas Gerais. The observed material showed that oogonias were small spherical cells, had a big spherical nucleus, with a single nucleolus, and weakly stained cytoplasm with eosinophilic granules (FG stained, which indicate their protein content. The primary oocytes showed a big basophilic nucleus, with a large peripheral nucleolus, and several smaller nucleoli. They show a reduced cytoplasmic content. The previtellogenic oocytes presented voluminous cytoplasm and nucleus with several small peripheral nucleoli. The oocytes underwent vitellogenesis with the development of the zona radiata and the follicle cells. The zona radiata had two layers, the outer and the inner, which showed its protein content when stained with CM and FG techniques. TB pH 2.5 and pH 4.0 staining showed that oocytes undergoing vitellogenesis presented weakly stained cytoplasm and peripheral cytoplasmic vesicles. The follicle cells that were squamous became cuboidal. In mature oocytes, the yolk granules that filled the cytoplasm became green and blue when stained with FG and CM techniques, indicating their protein content. The perivitclline region showed rosy stained vesicles (TB pH 2.5 and pH 4.0 spread among the weakly stained peripheral vesicles, which seemed to be the cortical alveoli. The zona radiata cells, CM and FG stained, still showed two layers like the oocytes from the previous stage, but thicker.

  17. Stage and cell-specific expression and intracellular localization of the small heat shock protein Hsp27 during oogenesis and spermatogenesis in the Mediterranean fruit fly, Ceratitis capitata.

    Science.gov (United States)

    Economou, Katerina; Kotsiliti, Elena; Mintzas, Anastassios C

    2017-01-01

    The cell-specific expression and intracellular distribution of the small heat protein Hsp27 was investigated in the ovaries and testes of the Mediterranean fruit fly, Ceratitis capitata (medfly), under both normal and heat shock conditions. For this study, a gfp-hsp27 strain was used to detect the chimeric protein by confocal microscopy. In unstressed ovaries, the protein was expressed throughout egg development in a stage and cell-specific pattern. In germarium, the protein was detected in the cytoplasm of the somatic cells in both unstressed and heat-shocked ovaries. In the early stages of oogenesis of unstressed ovaries, the protein was mainly located in the perinuclear region of the germ cells and in the cytoplasm of the follicle cells, while in later stages (9-10) it was distributed in the cytoplasm of the germ cells. In late stages (12-14), the protein changed localization pattern and was exclusively associated with the nuclei of the somatic cells. In heat shocked ovaries, the protein was mainly located in the nuclei of the somatic cells throughout egg chamber's development. In unstressed testes, the chimeric protein was detected in the nuclei of primary spermatocytes and in the filamentous structures of spermatid bundles, called actin cones. Interestingly, after a heat shock, the protein presented the same cell-specific localization pattern as in unstressed testes. Furthermore, the protein was also detected in the nuclei of the epithelial cells of the deferent duct, the accessory glands and the ejaculatory bulb. Our data suggest that medfly Hsp27 may have cell-specific functions, especially in the nucleus. Moreover, the association of this protein to actin cones during spermatid individualization, suggests a possible role of the protein in the formation and stabilization of actin cones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Oogenesis,Activation and Development in Mammals%哺乳动物卵子发生、激活与发育

    Institute of Scientific and Technical Information of China (English)

    范必勤

    2001-01-01

    The experimental approaches applicable to the study of mammalian eggs and embryos have advanced in recent years to provide unprecedented opportunities for understanding mammalian embryology.Among these significant advances has been the ability to alter the genetic constitution of eggs by pronuclear and nuclear transfer as well as by the introduction of specific cloned genes into eggs and embryos.These techniques can be used in conjunction with the experimental reconstruction of preimplantation embryos to investigate more precisely a number of aspects of mammalian embryology.Recently,some intriguing aspects of development have been uncovered, such as the cloned sheep with somatic cell, role of paternal and maternal genomes in embryogenesis and the developmental totipotency of the first and the second polar body and so on.An understanding of this process will provide the basis for developing genetic and reproductive strategies that can be applied to domestic animals and to humans.The main research achievements on oogenesis and embryogenesis in mammals are described in this review,including the resumption of meiotic division;activation of MⅡ oocyte;development of parthenogenetic,gynogenetic,androgenetic and reconstituted embryos;and the genetic and reproductive potentials of chromosomes within the first and the second polar body.%近年来,应用于研究哺乳动物卵子和胚胎新的实验方法已有重大发展,为深入研究哺乳动物胚胎学提供了前所未有的重要手段。这些技术已用于原核和核的移植以至导入克隆基因,改变卵和胚胎的遗传结构,用于实验重组着床前胚胎研究发育问题。近期的重大进展有如:用体细胞克隆的绵羊,父源和母源基因组在个体发育中的作用和第一与第二极体发育的全能性等。对这些过程的深入了解将为应用于家畜和人类提供发展遗传和生殖潜力的基础。本研究将论述哺乳动物卵子发生和胚胎发

  19. Rainbow trout cytochrome P-450c17 (17 alpha-hydroxylase/17,20-lyase). cDNA cloning, enzymatic properties and temporal pattern of ovarian P-450c17 mRNA expression during oogenesis.

    Science.gov (United States)

    Sakai, N; Tanaka, M; Adachi, S; Miller, W L; Nagahama, Y

    1992-04-13

    A cDNA clone encoding cytochrome P-450c17 (17 alpha-hydroxylase/17,20-lyase) was isolated from a rainbow trout ovarian follicle cDNA library. The cDNA contained an open reading frame of 1,542 nucleotides encoding a protein of 514 amino acid residues. The amino acid sequence of trout P-450c17 shows a much greater homology with chicken P-450c17 than with that of human, bovine and rat. The trout P-450c17 expressed in non-steroidogenic mammalian COS-1 cells showed both 17 alpha-hydroxylase and 17,20-lyase activities. The cDNA only hybridized to a single species of mRNA (2.4 kb) isolated from rainbow trout ovaries; the 2.4 kb transcripts were abundant in trout ovaries during the later stages of oogenesis.

  20. 短额负蝗卵子发生过程中糖复合物的动态分布%Dynamic Distribution of Glycoconjugates During Oogenesis of Atractomorpha sinensis

    Institute of Scientific and Technical Information of China (English)

    吕淑敏; 奚耕思; 赵卓; 唐超智

    2006-01-01

    以生物素标记的凝集素(UEA-I、 SBA、 PNA)为探针, 利用凝集素组织化学方法对短额负蝗(Atractomorpha sinensis)卵子发生过程中滤泡细胞和卵母细胞内糖复合物的分布进行了定位研究. 结果表明, 在卵子发生的各期滤泡细胞和卵母细胞中没有UEA-I受体的表达, SBA和PNA受体以不同的分布模式呈阶段性表达. 两者首次出现于卵母细胞生长期, 随后PNA受体消失, SBA受体大量表达;在卵黄形成期前期SBA受体和重新出现的PNA受体表达于卵黄颗粒形成部位, 卵黄形成期后期两者均为阴性表达;成熟卵子中两种受体又以不同程度重新出现于卵黄膜. 两种受体在滤泡细胞内均大量表达. 提示, N-乙酰半乳糖胺和半乳糖-β-(1,3)半乳糖胺复合物的修饰和变化与卵母细胞的发育、卵黄物质的形成及滤泡细胞的增殖分化密切相关, 卵黄膜上的糖复合物可能与精卵识别有关.%The dynamic distribution of three different glycoconjugates in oocytes and follicle cells during the oogenesis of Atractomorpha sinensis were detected using biotin-labeled Peanut Agglutinin (PNA), Soy Bean Agglutinin (SBA) and Ulex Europaeus Agglutinin I (UEA-I) lectins. The results showed that during oogenesis there was no distribution of the UEA-I receptor. The receptors of PNA and SBA were found to be dependent on developmental stage and present different distribution patterns accordingly. The binding sites of the two lectins indicated the presence of different sugars (PNA for Galβ1,3GalNAc and SBA for GalNAc) and showed considerable variation during oogenesis. PNA and SBA receptors first appeared at the oocyte growth phase, the PNA receptors then disappeared gradually and the SBA receptors exhibited the greatest expression. At the early phase of yolk formation, PNA and SBA receptors were located just at the brim of ooplasm, which was the region of vitellin formation. However at the later phase of yolk formation

  1. 地钱颈卵器发育和卵发生的显微观察及细胞化学研究%Microstructural Observations and Cytochemical Studies on the Archegonial Development and Oogenesis of Marchantia polymorpha

    Institute of Scientific and Technical Information of China (English)

    曹建国; 王戈; 王全喜

    2011-01-01

    对地钱(Marchantia polymorpha)颈卵器发育和卵发生过程进行了显微观察和细胞化学的研究,颈卵器起始于原始细胞,该细胞呈乳突状,经横分裂产生基细胞和顶细胞,顶细胞经3次纵斜向分裂和1次横分裂产生初生细胞,初生细胞是颈卵器内的第一个细胞,经横分裂产生中央细胞和颈沟母细胞,前者产生1个腹沟细胞和1个卵细胞,后者最终产生4个颈沟细胞.颈卵器的成熟表现为颈部显著伸长和腹部膨大,卵细胞成熟时具有不规则的核,细胞质内含有丰富的囊泡和颗粒物,卵细胞周围充满粘性物质,细胞化学研究表明,该粘性物质为多糖,卵细胞质中深染色的颗粒可能为脂类物质,腹沟细胞自产生后就逐渐退化,颈沟细胞的退化迟于腹沟细胞,其数量通常为4个,偶尔可见5个颈沟细胞或具有双核的现象.%The development of archegonium and oogenesis of the hepatica Marchantia poly-morpha were studied using microscopical and cytochemical techniques. The archegonium developed from an initial cell,which formed an apical cell and a basal cell by a transverse division. The apical cell produced an inner primary cell by three oblique vertical divisions and a transverse division. The primary cell formed a central cell and a neck canal mother cell by a transverse division. The central cell formed an egg and a ventral canal cell and the neck canal mother cell finally produced four neck canal cells. Maturation of the archegonium was accompanied by obvious elongation of the neck and swelling of the venter. As the egg matured,the nucleus became more irregular. Numerous vesicles and deep stained granules occurred in the cytoplasm and abundant mucilaginous materials were present around the egg. Cytochemical investigations indicated that the mucilaginous materials may be polysaccharide and the deep stained granules may be lipid in chemical nature. The ventral canal cell degenerated gradually after it formed

  2. Gene expression during oogenesis in the Mozambique tilapia (O. Mossambicus)

    OpenAIRE

    Domingues, Nuno Manuel Cardoso

    2007-01-01

    Dissertação de mest., Biologia Marinha, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2007 Tilapias show a variety of physiological adaptations that allow them to live in different environmental conditions, disturbing local ecosystems where they are introduced by human hand, where they reproduce at faster rates as their cycles are short and constant. They have complex behaviours, with species in the Oreochromis and Sarotherodon genus exhibiting parental c...

  3. Drosophila phosphopantothenoylcysteine synthetase is required for tissue morphogenesis during oogenesis

    NARCIS (Netherlands)

    Bosveld, Floris; Rana, Anil; Lemstra - Wierenga, Willemina; Kampinga, Harm; Sibon, Ody

    2008-01-01

    Background: Coenzyme A (CoA) is an essential metabolite, synthesized from vitamin B5 by the subsequent action of five enzymes: PANK, PPCS, PPCDC, PPAT and DPCK. Mutations in Drosophila dPPCS disrupt female fecundity and in this study we analyzed the female sterile phenotype of dPPCS mutants in detai

  4. Oogenesis in adult mammals, including humans: a review.

    Science.gov (United States)

    Bukovsky, Antonin; Caudle, Michael R; Svetlikova, Marta; Wimalasena, Jay; Ayala, Maria E; Dominguez, Roberto

    2005-04-01

    The origin of oocytes and primary follicles in ovaries of adult mammalian females has been a matter of dispute for over 100 yr. The prevailing belief that all oocytes in adult mammalian females must persist from the fetal period of life seems to be a uniquely retrogressive reproductive mechanism requiring humans to preserve their gametes from the fetal period for several decades. The utilization of modern techniques during last 10 yr clearly demonstrates that mammalian primordial germ cells originate from somatic cell precursors. This indicates that if somatic cells are precursors of germ cells, then somatic mutations can be passed on to progeny. Mitotically active germline stem cells have been described earlier in ovaries of adult prosimian primates and recently have been reported to also be present in the ovaries of adult mice. We have earlier shown that in adult human females, mesenchymal cells in the ovarian tunica albuginea undergo a mesenchymal-epithelial transition into ovarian surface epithelium cells, which differentiate sequentially into primitive granulosa and germ cells. Recently, we have reported that these structures assemble in the deeper ovarian cortex and form new follicles to replace earlier primary follicles undergoing atresia (follicular renewal). Our current observations also indicate that follicular renewal exists in rat ovaries, and human oocytes can differentiate from ovarian surface epithelium in fetal ovaries in vivo and from adult ovaries in vitro. These reports challenge the established dogma regarding the fetal origin of eggs and primary follicles in adult mammalian ovaries. Our data indicate that the pool of primary follicles in adult human ovaries does not represent a static but a dynamic population of differentiating and regressing structures. Yet, the follicular renewal may cease at a certain age, and this may predetermine the onset of the natural menopause or premature ovarian failure. A lack of follicular renewal in aging ovaries may cause an accumulation of spontaneously arising or environmentally induced genetic alterations of oocytes, and that may be why aging females have a much higher chance of having oocytes with more mutations in persisting primary follicles.

  5. The flamenco locus controls the gypsy and ZAM retroviruses and is required for Drosophila oogenesis.

    Science.gov (United States)

    Mével-Ninio, Maryvonne; Pelisson, Alain; Kinder, Jennifer; Campos, Ana Regina; Bucheton, Alain

    2007-04-01

    In Drosophila, the as yet uncloned heterochromatic locus flamenco (flam) controls mobilization of the endogenous retrovirus gypsy through the repeat-associated small interfering (rasi) RNA silencing pathway. Restrictive alleles (flamR) downregulate accumulation of gypsy transcripts in the somatic follicular epithelium of the ovary. In contrast, permissive alleles (flamP) are unable to repress gypsy. DIP1, the closest transcription unit to a flam-insertional mutation, was considered as a good candidate to be a gypsy regulator, since it encodes a dsRNA-binding protein. To further characterize the locus we analyzed P-induced flam mutants and generated new mutations by transposon mobilization. We show that flam is required somatically for morphogenesis of the follicular epithelium, the tissue where gypsy is repressed. This developmental activity is necessary to control gypsy and another retroelement, ZAM. We also show that flam is not DIP1, as none of the new permissive mutants affect the DIP1 coding sequence. In addition, two deletions removing DIP1 coding sequences do not affect any of the flamenco functions. Our results suggest that flamenco extends proximally to DIP1, spanning >130 kb of transposon-rich heterochromatin. We propose a model explaining the multiple functions of this large heterochromatic locus.

  6. Gonadotropin treatment augments postnatal oogenesis and primordial follicle assembly in adult mouse ovaries?

    OpenAIRE

    Bhartiya, Deepa; Sriraman, Kalpana; Gunjal, Pranesh; Modak, Harshada

    2012-01-01

    Background Follicle stimulating hormone (FSH) exerts action on both germline and somatic compartment in both ovary and testis although FSH receptors (FSHR) are localized only on the somatic cells namely granulosa cells of growing follicles and Sertoli cells in the seminiferous tubules. High levels of FSH in females are associated with poor ovarian reserve, ovarian hyper stimulation syndrome etc. and at the same time FSH acts as a survival factor during in vitro organotypic culture of ovarian ...

  7. Microtubule binding by the formin Cappuccino and its implications for Drosophila oogenesis

    OpenAIRE

    Roth-Johnson, Elizabeth Anne

    2014-01-01

    Coordination of actin and microtubule cytoskeletal networks is required for a number of fundamental cellular processes. Formin family actin nucleators are emerging coordinators of the actin and microtubule cytoskeletons, as they can both nucleate actin filaments and bind microtubules in vitro. To gain a more detailed mechanistic understanding of formin-microtubule interactions and formin-mediated actin-microtubule crosstalk, we studied microtubule binding by Cappuccino (Capu), a formin involv...

  8. Drosophila Cappuccino alleles provide insight into formin mechanism and role in oogenesis

    OpenAIRE

    Yoo, Haneul; Roth-Johnson, Elizabeth A.; Bor, Batbileg; Quinlan, Margot E.

    2015-01-01

    During Drosophila development, the formin actin nucleator Cappuccino (Capu) helps build a cytoplasmic actin mesh throughout the oocyte. Loss of Capu leads to female sterility, presumably because polarity determinants fail to localize properly in the absence of the mesh. To gain deeper insight into how Capu builds this actin mesh, we systematically characterized seven capu alleles, which have missense mutations in Capu's formin homology 2 (FH2) domain. We report that all seven alleles have del...

  9. Drosophila Cappuccino alleles provide insight into formin mechanism and role in oogenesis.

    Science.gov (United States)

    Yoo, Haneul; Roth-Johnson, Elizabeth A; Bor, Batbileg; Quinlan, Margot E

    2015-05-15

    During Drosophila development, the formin actin nucleator Cappuccino (Capu) helps build a cytoplasmic actin mesh throughout the oocyte. Loss of Capu leads to female sterility, presumably because polarity determinants fail to localize properly in the absence of the mesh. To gain deeper insight into how Capu builds this actin mesh, we systematically characterized seven capu alleles, which have missense mutations in Capu's formin homology 2 (FH2) domain. We report that all seven alleles have deleterious effects on fly fertility and the actin mesh in vivo but have strikingly different effects on Capu's biochemical activity in vitro. Using a combination of bulk and single- filament actin-assembly assays, we find that the alleles differentially affect Capu's ability to nucleate and processively elongate actin filaments. We also identify a unique "loop" in the lasso region of Capu's FH2 domain. Removing this loop enhances Capu's nucleation, elongation, and F-actin-bundling activities in vitro. Together our results on the loop and the seven missense mutations provides mechanistic insight into formin function in general and Capu's role in the Drosophila oocyte in particular.

  10. Oogenesis, fecundity and condition of Baltic herring (Clupea harengus L.): A stereological study

    DEFF Research Database (Denmark)

    Bucholtz, R. Hagstrøm; Tomkiewicz, J.; Nyengaard, Jens Randel;

    2013-01-01

    Herring (Clupea harengus) is a capital breeder that stores energy reserves in muscle tissue. Individual potential fecundity relies on the size and weight of female fish. Poor condition during the maturation process can lead to a heavy down-regulation of fecundity through atresia and, in the extreme...

  11. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis

    OpenAIRE

    Spracklen, Andrew J.; Fagan, Tiffany N.; Lovander, Kaylee E.; Tootle, Tina L.

    2014-01-01

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools – Utrophin, Lifeact, an...

  12. Drosophila protein kinase N (Pkn) is a negative regulator of actin-myosin activity during oogenesis.

    Science.gov (United States)

    Ferreira, Tânia; Prudêncio, Pedro; Martinho, Rui Gonçalo

    2014-10-15

    Nurse cell dumping is an actin-myosin based process, where 15 nurse cells of a given egg chamber contract and transfer their cytoplasmic content through the ring canals into the growing oocyte. We isolated two mutant alleles of protein kinase N (pkn) and showed that Pkn negatively-regulates activation of the actin-myosin cytoskeleton during the onset of dumping. Using live-cell imaging analysis we observed that nurse cell dumping rates sharply increase during the onset of fast dumping. Such rate increase was severely impaired in pkn mutant nurse cells due to excessive nurse cell actin-myosin activity and/or loss of tissue integrity. Our work demonstrates that the transition between slow and fast dumping is a discrete event, with at least a five to six-fold dumping rate increase. We show that Pkn negatively regulates nurse cell actin-myosin activity. This is likely to be important for directional cytoplasmic flow. We propose Pkn provides a negative feedback loop to help avoid excessive contractility after local activation of Rho GTPase.

  13. [Morphological impairment of oogenesis in experimental iodine-dependent thyroid transformation].

    Science.gov (United States)

    Rodzaevskaia, E B

    2002-01-01

    Histophysiology of white rats' ovaries was studied in iodine-deficient and iodine-enriched diets; in such diets kept in pregnancy or postnatal period. The iodine-deficient diet leads to low histofunctional thyroid activity, formation of cysts in the ovaries, slow folliculogenesis, hypotrophy of yellow body tissue, overgrowth of the connective tissue, thickening of the theca of the cavernous follicles, hardening of the vessels of the cortical and core substances. The fertility fell by 18%. In long-term intake of iodine-rich diet and in pregnancy essential intensification of histofunctional activity of the thyroid gland was noticed and in the ovaries there was a distinct hypertrophy of the yellow bodies, hyperplasia of lutein cells, endomitosis. Postnatal structural changes of the gonads were registered as well as micro- and macrocystic degeneration of yellow body tissue, atretic and cavernous follicles, dystrophic transformation of interstitial tissue.

  14. Mouse staufen genes are expressed in germ cells during oogenesis and spermatogenesis.

    Science.gov (United States)

    Saunders, P T; Pathirana, S; Maguire, S M; Doyle, M; Wood, T; Bownes, M

    2000-11-01

    The Drosophila melanogaster staufen gene encodes an RNA binding protein (Dm Stau) required for the localization and translational repression of mRNAs within the Drosophila oocyte. In mammals translational repression is important for normal spermatogenesis in males and storage of mRNAs in the oocytes of females. In the present study we identified two mouse cDNA expressed sequence tags (ESTs), encoding proteins with significant homology to Dm Stau and used these firstly to screen a mouse kidney cDNA library and secondly to determine whether staufen mRNAs are expressed in the ovaries and testes of mice and rats. Sequence analysis of the cDNAs revealed that they originated from two different genes. Using Northern blots of RNAs from kidneys, ovaries and testes, both cDNAs hybridized to mRNA species of approximately 3 kb in all three tissues. On sections of mouse ovaries, staufen mRNA was localized specifically to oocytes. On sections of mouse testes, staufen mRNA was expressed in spermatocytes found in seminiferous tubules at stages VI-XII of the spermatogenic cycle. In conclusion, we have shown that the mammalian homologues of Dm stau are expressed in germ cells in both male and female mice, consistent with a role for these RNA binding proteins in mammalian gametogenesis.

  15. Effect of Imatinib on the Oogenesis and Pituitary -Ovary Hormonal Axis in Female Wistar Rat

    OpenAIRE

    Parichehreh Yaghmaei; Kazem Parivar; Fatemeh Jalalvand

    2009-01-01

    Background: Imatinib mesylate, a small-molecular analog of adenosine triphosphate (ATP)that potently inhibits tyrosine kinase activities of Bcr–Abl, PDGFR-β, PDGFR-α, c-Fms, Argand c-kit, is one of the novel molecularly targeted drugs being introduced into cancer therapy.We tested the effect of imatinib on the ovarian histological structure and the concentration ofestrogen and progesterone, luteinizing hormone (LH) and follicle stimulating hormone (FSH)in the serum of female Wistar rats.Mater...

  16. Effect of Imatinib on the Oogenesis and Pituitary -Ovary Hormonal Axis in Female Wistar Rat

    Directory of Open Access Journals (Sweden)

    Parichehreh Yaghmaei

    2009-01-01

    Full Text Available Background: Imatinib mesylate, a small-molecular analog of adenosine triphosphate (ATPthat potently inhibits tyrosine kinase activities of Bcr–Abl, PDGFR-β, PDGFR-α, c-Fms, Argand c-kit, is one of the novel molecularly targeted drugs being introduced into cancer therapy.We tested the effect of imatinib on the ovarian histological structure and the concentration ofestrogen and progesterone, luteinizing hormone (LH and follicle stimulating hormone (FSHin the serum of female Wistar rats.Materials and Methods: Two groups of rats (180 ± 15 grams were gavaged with doses of 50and 100 mg/kg body weight imatinib dissolved in distilled water for 14 days. The control groupreceived sterile water. On day 7, after termination of the treatment, blood serum concentrationwas measured with the radioimmunoassay (RIA method. Also, sections (5 μm thick of ovariesstained with hematoxylin and eosin (H&E were investigated histologically.Results: Progesterone concentration in the experimental groups was increased (p<0.001,estrogen and FSH concentrations were decreased (p<0.01, and the LH concentration decreasedbut was not statistically different in comparison with the control group. The weight of ovaries andnumber of atretic follicles in the experimental groups was increased compared with the controlgroup (p<0.05. The diameter of corpus lutea were increased but the number of corpus luteadecreased in both experimental groups (p<0.01.Conclusion: These findings suggest that administration of imatinib may have profound effects onfemale fertility.

  17. Effect of Camphor on Pituitary-Gonadal Hormonal Axis and Oogenesis in Adult Female Rats

    OpenAIRE

    Habibollah Johari; Amir Ashkan Mahjoor; Siyamak Fallahi; Hossein Kargar Jahromi; Maryam Abedini; Mohammad Ali Poor Danesh; Zahra Zamani

    2013-01-01

    Background & Objective: Camphor stimulates the nervous system and the circulatory system, reduces lactation, and prevents conception and embryo embedding. We investigated the effects of camphor on the pituitary-gonadal hormonal axis and concentration of steroidal hormones.   Materials & Methods: The parameters investigated were concentrations of LH, FSH, estrogen, progesterone, and testosterone. Forty adult female rats at a mean weight of 180 ± 20 grams were divided into five groups. Camphor ...

  18. Differences in spindle association of the mitotic checkpoint protein Mad2 in mammalian spermatogenesis and oogenesis.

    Science.gov (United States)

    Kallio, M; Eriksson, J E; Gorbsky, G J

    2000-09-01

    We have investigated expression and subcellular localization of the spindle checkpoint protein Mad2 during rat and mouse spermatogenesis and in superovulated mouse oocytes. Our immunofluorescence studies demonstrate substantial differences in the localization patterns of kinetochore-associated Mad2 in these meiotic systems compared with previous studies of mitosis. In addition, the association of Mad2 with second-division-metaphase kinetochores differed significantly in male versus female meiosis. In spermatogenesis, Mad2 remained at most kinetochores throughout the entire first meiotic division and was lost only at metaphase of the second meiotic division. This result indicates that loss of kinetochore-associated Mad2 is not essential for the metaphase-to-anaphase transition during the first meiotic division. Disruption of the male meiotic spindles with the microtubule depolymerizing agent nocodazole resulted in the appearance of Mad2 at nearly all kinetochores. In contrast, the microtubule stabilizer taxol induced the loss of Mad2 from the majority of the first-division-metaphase kinetochores in which it was normally present in untreated cells. In contrast to the situation in spermatogenesis, Mad2 persisted at the kinetochores of normal, second-division oocytes at metaphase. These findings suggest that the role of the kinetochore in signaling in the spindle checkpoint may differ markedly between mammalian mitosis and meiosis, between the two meiotic divisions, and between male and female meiosis.

  19. Ultrastructural aspects of oogenesis and oocyte primary growth in Serrasalmus spilopleura (Teleostei, Characiformes, Characidae).

    Science.gov (United States)

    Guimarães, A C; Quagio-Grassiotto, I

    2001-06-01

    The ultrastructural characteristics of the organelles present in Serrasalmus spilopleura oogonia and oocytes undergoing primary growth were described in detail, considering its role in the nuclear and cytoplasmic metabolic processes that occur in these cell types. Even though these cells do not significantly differ from those similar to them that are found in other teleost groups, the analysis of their ultrastructure makes available new data on the reproductive biology of Characiformes.

  20. Early oogenesis in the bat Carollia perspicillata: Transient germ cell cysts and noncanonical intercellular bridges

    Science.gov (United States)

    Lechowska, Agnieszka; Bilinski, Szczepan M.; Rasweiler, John J.; Cretekos, Chris J.; Behringer, Richard; Kloc, Malgorzata

    2012-01-01

    The ovaries of early embryos (40 days after fertilization) of the bat Carollia perspicillata contain numerous germ-line cysts, which are composed of 10 to 12 sister germ cells (cystocytes). The variability in the number of cystocytes within the cyst and between the cysts (that defies the Giardina rule) indicates that the mitotic divisions of the cystoblast are asynchronous in this bat species. The serial section analysis showed that the cystocytes are interconnected via intercellular bridges that are atypical, strongly elongated, short-lived, and rich in microtubule bundles and microfilaments. During the later stages of embryonic development (44–46 days after fertilization), the somatic cells penetrate the cyst, and their cytoplasmic projections separate individual oocytes. Separated oocytes surrounded by the single layer of somatic cells constitute the primordial ovarian follicles. The oocytes of C. perspicillata are similar to mouse oocytes and are asymmetric. In both species, this asymmetry is clearly recognizable in the localization of the Golgi complexes. The presence of germ-line cysts and intercellular bridges (although non-canonical) in the fetal ovaries of C. perspicillata indicate that the formation of germ-line cysts is an evolutionarily conserved phase in the development of the female gametes throughout the animal kingdom. PMID:21681920

  1. The Maf factor Traffic jam both enables and inhibits collective cell migration in Drosophila oogenesis.

    Science.gov (United States)

    Gunawan, Felix; Arandjelovic, Mimi; Godt, Dorothea

    2013-07-01

    Border cell cluster (BCC) migration in the Drosophila ovary is an excellent system to study the gene regulatory network that enables collective cell migration. Here, we identify the large Maf transcription factor Traffic jam (Tj) as an important regulator of BCC migration. Tj has a multifaceted impact on the known core cascade that enables BCC motility, consisting of the Jak/Stat signaling pathway, the C/EBP factor Slow border cells (Slbo), and the downstream effector DE-cadherin (DEcad). The initiation of BCC migration coincides with a Slbo-dependent decrease in Tj expression. This reduction of Tj is required for normal BCC motility, as high Tj expression strongly impedes migration. At high concentration, Tj has a tripartite negative effect on the core pathway: a decrease in Slbo, an increase in the Jak/Stat inhibitor Socs36E, and a Slbo-independent reduction of DEcad. However, maintenance of a low expression level of Tj in the BCC during migration is equally important, as loss of tj function also results in a significant delay in migration concomitant with a reduction of Slbo and consequently of DEcad. Taken together, we conclude that the regulatory feedback loop between Tj and Slbo is necessary for achieving the correct activity levels of migration-regulating factors to ensure proper BCC motility.

  2. Evaluation of Oogenesis Aspects in Neonatal and Adult Mice after Toloaldoxime Treatment

    Directory of Open Access Journals (Sweden)

    Mohammad Fazeltabar Malekshah

    2015-10-01

    Full Text Available Objective: Oximes are important materials in organic chemistry. Synparamethyl benzaldehyde oxime (toloaldoxime is structurally similar to other oximes, hence we have studied its effects on the neonatal and adult female Balb/c mice reproductive systems in order to provide a platform for future studies on the production of female contraceptive drugs. Materials and Methods: In experimental study, we studied the effects of toloaldoxime on ovary growth and gonadal hormones of neonatal and adult Balb/c mice. A regression model for prediction was presented. Results: The effects of toloaldoxime on neonatal mice were more than adult mice. The greatest effect was on the number of Graafian follicles (59.6% in adult mice and 31.83% in neonatal mice. The least effect was on ovary weight, and blood serum levels of follicle stimulating hormone (FSH and luteinizing hormone (LH. Conclusion: According to the data obtained, toloaldoxime can be considered an antipregnancy substance.

  3. Two distinct Staufen isoforms in Xenopus are vegetally localized during oogenesis

    OpenAIRE

    Allison, Rachel; Czaplinski, Kevin; Git, Anna; ADEGBENRO, ELIZABETH; STENNARD, FIONA; Houliston, Evelyn; Standart, Nancy

    2004-01-01

    Localization of mRNA is an important way of generating early asymmetries in the developing embryo. In Drosophila, Staufen is intimately involved in the localization of maternally inherited mRNAs critical for cell fate determination in the embryo. We show that double-stranded RNA-binding Staufen proteins are present in the oocytes of a vertebrate, Xenopus, and are localized to the vegetal cytoplasm, a region where important mRNAs including VegT and Vg1 mRNA become localized. We identified two ...

  4. The roles of haemolymphatic lipoproteins in the oogenesis of Rhodnius prolixus

    Directory of Open Access Journals (Sweden)

    Katia Calp Gondim

    1987-01-01

    Full Text Available The fates of purified 32P-vitellin and 32P-lipophorin were followed in vitellogenic females of Rhodnius prolixus. While the radioactivity from 32P-vitellin 6 hours after injection was found almost exclusively in the ovary, the radioactivity from injected 32P-lipophorin was found distributed among several organs. In the ovary, the radioactivity from 32P-vitellin was associated with the contents of the yolk granules. 32P-lipophorin delivered a great amount of radioactive phospholipids to the ovary with no accumulation of its protein moiety, as observed after its iodination with 131I. The delivery of phospholipids was inhibited at 0ºC and by the metabolic inhibitors, sodium azide and sodium fluoride. Comparison of the radioactivity incorporation from 32P-lipophorin with that of 14C-inulin suggests that the 32P-phospholipids from lipophorin are not taken up by fluid phase endocytosis. The data presented here are compatible with the concept of lipophorin as a carrier of lipids in insects and provide evidence that lipophorin transports phospholipids as shown previously for other classes of lipids. The utilization by the oocytes of the phospholipids transported by lipophorin is discussed.

  5. Oogenesis pattern and type of ovariole of the parasitoid Palmistichus elaeisis (Hymenoptera: Eulophidae

    Directory of Open Access Journals (Sweden)

    Gilberto S. Andrade

    2012-09-01

    Full Text Available The knowledge on ovigeny in parasitoids is important for basic studies on physiology and applied biological control. The ovigeny pattern and type of ovariole of the parasitoid Palmistichus elaeisis Delvare & LaSalle (Hymenoptera: Eulophidae were studied in newly-emerged females at seven, 14, 24 and 48 h intervals after their emergence from Tenebrio molitor L. pupae (Coleoptera: Tenebrionidae. Females of P. elaeisis presented ovaries composed by four ovarioles of the meroistic polytrophic type. The yolk accumulation and chorionogenesis in P. elaeisis were concluded 24 h after the female emergence. The 48 h-old females show a high quantity of egg ready for oviposition. These findings can help to improve the mass production of P. elaeisis and the augmentative biological control by using this natural enemy.O conhecimento da ovigenia em parasitóides é importante para estudos básicos em fisiologia e para o controle biológico aplicado. O padrão de ovigenia e OVIGENY OF Palmistichus elaeisis (HYMENOPTERA: EULOPHIDAE o tipo de ovaríolo do parasitóide Palmistichus elaeisis Delvare & LaSalle (Hymenopera: Eulophidae foram estudados em fêmeas recém-emergidas e em intervalos de sete, 14, 24 de 48 horas após a emergência em pupas de Tenebrio molitor L. (Coleoptera: Tenebrionidae. Fêmeas de P. elaesis apresentaram o ovário composto por quatro ovaríolos do tipo meroístico politrófico. A deposição de vitelo e corionogênese em P. elaeisis foram concluídas 24 horas após a emergência. Fêmeas com 48 horas de idade apresentam grande quantidade de ovos prontos para a oviposição. Esses resultados podem ajudar a melhoria da produção massal de P. elaeisis e o controle biológico aplicado com esse parasitóide.

  6. Oogenesis, fertilisation and early embryonic development in rats. I: Dose-dependent effects of pregnant mare serum gonadotrophins.

    Science.gov (United States)

    Goh, H H; Yang, X F; Tain, C F; Liew, L P; Ratnam, S S

    1992-07-01

    Five hundred and eight mature female Wistar rats divided into 35 different groups were stimulated with pregnant mare serum gonadotrophins (PMSG) (0, 5, 10, 20 & 40 IU) at the late diestrus stage to induce multiple follicular development. No chorionic gonadotrophin (CG) was used for ovulation induction. The quality of oocytes and their in vitro fertilisability, quality of Day 2-embryos, viability of pregnancy and status of fetuses on Day 14 of gestation and status of embryos retrieved on Day 2, 3, 4 and 5 of pregnancy in different subgroups of rats were examined. Results showed that more oocytes and embryos fertilised in in vivo were retrieved from rats supraphysiologically stimulated with 20 IU of PMSG. However, concurrent with the larger number, higher proportions of abnormal oocytes and embryos were found. High doses of PMSG caused lower in vitro fertilisability of oocytes and greater degrees of embryonic degeneration. Although, the number of oocytes and Day 2-embryos were higher in the 20PMGS dose group, the pregnancy rate was significantly reduced to 27%. In the 40PMSG group no viable pregnancy was noted. Most embryo demise occurred by day 3-5 of pregnancy, probably within the oviducts and before the implantation stage. In rats supraphysiologically stimulated with 20 and 40 IU of PMSG, the number of morphologically normal looking embryos was greatly reduced by Day 3-5 of pregnancy. In the 40PMSG group, there were no embryos retrieved by Day 4 and 5.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Oogenesis, fertilisation and early embryonic development in rats. II: Dose-dependent effects of human chorionic gonadotrophin.

    Science.gov (United States)

    Goh, H H; Yang, X F; Tain, C F; Liew, L P; Ratnam, S S

    1992-07-01

    A total of 950 female Wistar rats in 81 groups were involved in this study. Different groups of rats were stimulated with PMSG (0, 10 & 20 IU) at diestrus followed, 48-52 hr later, by different doses of HCG (0, 10, 20, 30 & 40) for ovulation induction. The dose-dependent effects of HCG, either with or without the use of PMSG for stimulation of multiple follicular development, on the quality of oocytes and their in vitro fertilisability, quality of Day 2-embryos, viability of pregnancy and status of embryos retrieved on Day 2, 3, 4 or 5 of pregnancy in different subgroups of rats were examined. Results showed that more oocytes and embryos fertilised in vivo were retrieved from rats supraphysiologically stimulated with 20 IU of PMSG. The addition of HCG did not increase the number of ovulated oocytes or Day-2 embryos. In other words, the number of oocytes or embryos produced is dependent on the dose of PMSG administered during diestrus rather than on the dose of HCG given for ovulation induction. Hence, no increase in the amount of HCG is required to effectively ovulate bigger cohort of preovulatory follicles in supraphysiologically stimulated rats. As was shown earlier, in vitro and in vivo fertilisation rates were reduced when higher doses of PMSG were used. Similarly, these rates were reduced when increasing doses of HCG were used in rats not previously stimulated with PMSG. When higher doses of HCG were used in rats stimulated earlier with PMSG (10 and 20 IU), the in vitro but not the in vivo fertilisation rates were further reduced.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Apoptotic cell death during Drosophila oogenesis is differentially increased by electromagnetic radiation depending on modulation, intensity and duration of exposure.

    Science.gov (United States)

    Sagioglou, Niki E; Manta, Areti K; Giannarakis, Ioannis K; Skouroliakou, Aikaterini S; Margaritis, Lukas H

    2016-01-01

    Present generations are being repeatedly exposed to different types and doses of non-ionizing radiation (NIR) from wireless technologies (FM radio, TETRA and TV stations, GSM and UMTS phones/base stations, Wi-Fi networks, DECT phones). Although there is controversy on the published data regarding the non-thermal effects of NIR, studies have convincingly demonstrated bioeffects. Their results indicate that modulation, intensity, exposure duration and model system are important factors determining the biological response to irradiation. Attempting to address the dependence of NIR bioeffectiveness on these factors, apoptosis in the model biological system Drosophila melanogaster was studied under different exposure protocols. A signal generator was used operating alternatively under Continuous Wave (CW) or Frequency Modulation (FM) emission modes, at three power output values (10 dB, 0, -10 dB), under four carrier frequencies (100, 395, 682, 900 MHz). Newly emerged flies were exposed either acutely (6 min or 60 min on the 6th day), or repeatedly (6 min or 60 min daily for the first 6 days of their life). All exposure protocols resulted in an increase of apoptotic cell death (ACD) observed in egg chambers, even at very low electric field strengths. FM waves seem to have a stronger effect in ACD than continuous waves. Regarding intensity and temporal exposure pattern, EMF-biological tissue interaction is not linear in response. Intensity threshold for the induction of biological effects depends on frequency, modulation and temporal exposure pattern with unknown so far mechanisms. Given this complexity, translating such experimental data into possible human exposure guidelines is yet arbitrary.

  9. Gclust Server: 141897 [Gclust Server

    Lifescience Database Archive (English)

    Full Text Available 141897 HSA_60302676 Cluster Sequences - 328 NP_001012415.1 spermatogenesis and oogenesis... - Sequence length 328 Representative annotation NP_001012415.1 spermatogenesis and oogenesis

  10. Histological Studies of the Oogenesis of Gambusia affinis%食蚊鱼卵子发生的组织学观察

    Institute of Scientific and Technical Information of China (English)

    王志坚; 罗虹; 张耀光

    2008-01-01

    食蚊鱼卵子发育过程分为6个时相.第1时相,卵原细胞细胞质较少,核质比较大.第2时相,卵母细胞体积增加迅速,核质比显著减小,细胞质强嗜碱性,滤泡细胞出现.到晚期,有卵黄核及类生长环的出现,这两种结构均和卵黄物质的形成有关.第3时相,卵母细胞嗜碱性减弱,卵黄泡从膜内缘开始出现,逐渐充满细胞质.颗粒层滤泡细胞互相堆积成舌状镶嵌入卵膜,并使放射带凹凸不平,称为镶嵌型滤泡.第4时相,卵母细胞体积增加较快,卵黄泡消失,卵黄物质逐渐充满细胞质,细胞核移至边缘.第5时相,滤泡细胞脱落,成为成熟卵,卵黄物质均匀散布,卵膜极薄.第6时相,未受精卵和滤泡细胞逐渐退化,被吸收.

  11. Internalization of LDL-receptor superfamily yolk-protein receptors during mosquito oogenesis involves transcriptional regulation of PTB-domain adaptors.

    Science.gov (United States)

    Mishra, Sanjay K; Jha, Anupma; Steinhauser, Amie L; Kokoza, Vladimir A; Washabaugh, Charles H; Raikhel, Alexander S; Foster, Woodbridge A; Traub, Linton M

    2008-04-15

    In the anautogenous disease vector mosquitoes Anopheles gambiae and Aedes aegypti, egg development is nutritionally controlled. A blood meal permits further maturation of developmentally repressed previtellogenic egg chambers. This entails massive storage of extraovarian yolk precursors by the oocyte, which occurs through a burst of clathrin-mediated endocytosis. Yolk precursors are concentrated at clathrin-coated structures on the oolemma by two endocytic receptors, the vitellogenin and lipophorin receptors. Both these mosquito receptors are members of the low-density-lipoprotein-receptor superfamily that contain FxNPxY-type internalization signals. In mammals, this tyrosine-based signal is not decoded by the endocytic AP-2 adaptor complex directly. Instead, two functionally redundant phosphotyrosine-binding domain adaptors, Disabled 2 and the autosomal recessive hypercholesterolemia protein (ARH) manage the internalization of the FxNPxY sorting signal. Here, we report that a mosquito ARH-like protein, which we designate trephin, possess similar functional properties to the orthologous vertebrate proteins despite engaging AP-2 in an atypical manner, and that mRNA expression in the egg chamber is strongly upregulated shortly following a blood meal. Temporally regulated trephin transcription and translation suggests a mechanism for controlling yolk uptake when vitellogenin and lipophorin receptors are expressed and clathrin coats operate in previtellogenic ovaries.

  12. Molecular Characterization and Expression Profiles of Cyclin B1, B2 and Cdc2 Kinase during Oogenesis and Spermatogenesis in Rainbow Trout (Oncorhynchus mykiss)

    Science.gov (United States)

    The meiotic maturation of oocytes and spermatocytes is controlled by the maturation promotion factor (MPF), a complex of the Cdc2 and cyclin B proteins. To better understand the mechanism of oocyte and spermatocyte maturation in fish, the expression of cyclin B1 (CB1), cyclin B2 (CB2) and Cdc2 kinas...

  13. Oogenesis and reproductive investment of Atlantic herring are functions of not only present but long-ago environmental influences as well

    Science.gov (United States)

    dos Santos Schmidt, Thassya C.; Slotte, Aril; Kennedy, James; Sundby, Svein; Johannessen, Arne; Óskarsson, Gudmundur J.; Kurita, Yutaka; Stenseth, Nils C.; Kjesbu, Olav Sigurd

    2017-01-01

    Following general life history theory, immediate reproductive investment (egg mass × fecundity/body mass) in oviparous teleosts is a consequence of both present and past environmental influences. This clarification questions the frequent use of season-independent (general) fecundity formulas in marine fish recruitment studies based on body metrics only. Here we test the underlying assumption of no lag effect on gametogenesis in the planktivorous, determinate-fecundity Atlantic herring (Clupea harengus) displaying large plasticity in egg mass and fecundity, examining Norwegian summer–autumn spawning herring (NASH), North Sea autumn-spawning herring (NSAH), and Norwegian spring-spawning herring (NSSH). No prior reproductive information existed for NASH. Compared with the 1960s, recent reproductive investment had dropped markedly, especially for NSAH, likely reflecting long-term changes in zooplankton biography and productivity. As egg mass was characteristically small for autumn spawners, although large for spring spawners (cf. different larval feeding conditions), fecundity was the most dynamic factor within reproductive investment. For the data-rich NSSH, we showed evidence that transient, major declines in zooplankton abundance resulted in low fecundity over several subsequent seasons, even if Fulton’s condition factor (K) turned high. Temporal trends in Kslope (K on total length) were, however, informative. These results clarify that fecundity is defined by (i) dynamics of primary (standing stock) oocytes and (ii) down-regulation of secondary oocytes, both processes intimately linked to environmental conditions but operating at different timescales. Thus, general fecundity formulas typically understate interannual variability in actual fecundity. We therefore argue for the use of segmented fecundity formulas linked to dedicated monitoring programs. PMID:28223491

  14. [Nature of cytogenetic and morphologic disorders in rat oogenesis and embryogenesis induced by chloridin and 2,4,5-trichlorophenoxyacetic acid during the preovulatory phase of meiosis].

    Science.gov (United States)

    Chebotar', N A

    1980-01-01

    The effect of pyrimethamine (chloridine) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) on embryo survival, cleavage rate and frequency of chromosome aberrations when injected into female rats just before ovulation was studied. Pyrimethamine induced 70% of embryonic death at a dose of 5 mg/kg and 27%--at a dose of 2 mg/kg. 200 mg/kg of 2,4,5-T had no embryotoxic effect, while 400 mg/kg increased the embryo loss up to 48%. Pyrimethamine (5 mg/kg) and 2,4,5-T (400 mg/kg), injected intragastrically just before ovulation, significantly affected the cleavage rate in the four day rat embryos. The frequency of chromosome aberrations in ovulated oocytes at metaphase, II subjected to pyrimethamine and 2,4,5-T, reached 6--8% and exceeded the control value in 5--10 times.

  15. The HEM proteins: a novel family of tissue-specific transmembrane proteins expressed from invertebrates through mammals with an essential function in oogenesis.

    Science.gov (United States)

    Baumgartner, S; Martin, D; Chiquet-Ehrismann, R; Sutton, J; Desai, A; Huang, I; Kato, K; Hromas, R

    1995-08-04

    We report the identification of a new family of proteins, termed the HEM family, which show distinct expression patterns in blood cells and the central nervous system. Through the isolation and characterization of the corresponding brain-specific Drosophila (dhem-2) and rat orthologues (Hem-2), and through the detection of the Caenorhabditis elegans Hem-2 orthologue in the database, we show that this family is conserved throughout evolution. HEM proteins show a conserved length ranging from 1118 to 1126 amino acid residues. Moreover, they are at least 35% identical with each other and harbour several conserved membrane-spanning domains, indicative for their location on the cell surface. One of the members, the Drosophila orthologue dhem-2, was analysed in detail for its spatial expression pattern during development and for its mutant phenotype. dhem-2 is expressed maternally in the oocyte and shows uniform expression during the first half of embryogenesis, but becomes restricted to the brain and the nervous system during late embryogenesis, consistent with the expression of its vertebrate orthologue in the brain. One P-element insertion, located 39 base-pairs downstream from the dhem-2 transcription start site, causes female sterility, due to the fact that developmental processes in the oocyte are disturbed. Of the vertebrate HEM family members, the mammalian Hem-1 gene is expressed only in cells of hematopoietic origin, while Hem-2 is preferentially expressed in brain, heart, liver and testis.

  16. 霍氏啮小蜂的卵巢发育和卵子发生%Ovarian development and oogenesis in Tetrastichus howardi (Olliff) (Hymenoptera: Eulophidae)

    Institute of Scientific and Technical Information of China (English)

    钟林海; 廖永林; 张扬; 吴伟坚

    2016-01-01

    霍氏啮小蜂是一些鳞翅目和双翅目昆虫蛹的寄生蜂.本文描述该寄生蜂从亚洲玉米螟羽化后0,6 12,18,24,30,36,42,48,54,60,66和72 h的卵巢发育和卵子发生过程.霍氏啮小蜂雌性生殖系统为典型的膜翅目姬小蜂类型,包括2个卵巢,每个卵巢通常有8-9根卵巢管,另有1对输卵管附腺,1个受精囊和1个受精囊腺等.卵黄和卵子形成于羽化后12 h,刚羽化的雌蜂不含成熟卵(成熟卵指数OI =0),成熟卵出现在羽化后24 h,成熟卵数量随后不断增加至数量较为稳定.卵巢管内卵数与雌蜂的体长和头宽呈正相关,相关系数分别为0.859和0.907.研究结果表明霍氏啮小蜂属卵育型(synovigeny)寄生蜂,本文还讨论了卵育型霍氏啮小蜂的卵成熟策略.

  17. Regulation of Pattern Formation and Gene Amplification During Drosophila Oogenesis by the miR-318 microRNA

    DEFF Research Database (Denmark)

    Ge, Wanzhong; Deng, Qiannan; Guo, Ting

    2015-01-01

    and laid eggs with abnormal morphology. Removal of miR-318 disrupted the dorsal-anterior follicle cell patterning, resulting in abnormal dorsal appendages. miR-318 mutant females also produced thin and fragile eggshells, due to impaired chorion gene amplification. We provide evidence that the ecdysone...

  18. New advances on the cytological studies of oogenesis and fertilization of the homosporous ferns%同型孢子蕨类植物卵发生和受精作用的细胞学研究新进展

    Institute of Scientific and Technical Information of China (English)

    曹建国

    2012-01-01

    The present paper described some new advances on the sexual reproduction of the ferns, mainly including detail processes on the production of the archegonia, the egg development and fertilization. The archegonia of the homosporous ferns are derived from the initial cells under the growing point. The initial cells have dense cytoplasm and a large centrally placed nucleus. The initial cell gives rise to a tier of three cells by two divisions, middle of which is the primary cell. The primary cell undergoes two unequal divisions, and forms a neck canal cell, a ventral cell and an egg cell. During maturation, the egg cell becomes progressively I-solated from the adjacent cells by forming a separation cavity and an egg envelope. It is proved that the advanced ferns form a fertilization pore in the upper egg envelope. It is first discovered that the ventral canal cell takes part in formation of the fertilization pore. The fertilization experiment indicated that the spermatozoid penetrate the egg through the fertilization pore. Immediately shrinkage of the egg at the moment of the sperm penetration and formation of a large sac blocking the fertilization pore are proposed to be used to prevent polyspermy. Subsequently, the fertilized egg undergoes the nuclear fusion, digestion of the male organ-elles,rearrangement of the zygotic organelles and change of the cellular polarity of the zygote,rebuilding of the plasmalemma and the cell wall. Finally a functional zygote is formed.%阐述了同型孢子蕨类植物有性生殖研究中卵发生和受精作用研究的一些新进展,包括颈卵器的形成、卵发育和受精作用3个方面.研究表明颈卵器来自于配子体生长点下方的原始细胞,其细胞质浓,核较大,位于细胞中央,原始细胞经2次分裂产生3层细胞,中间的为初生细胞,初生细胞经2次不等分裂形成1个卵细胞、1个腹沟细胞和1个双核颈沟细胞.卵成熟时,先后在卵细胞外产生分离腔和卵膜,进化的种类卵膜上形成了受精孔,首次证明腹沟细胞参与了受精孔的发生.受精作用研究表明精子是经受精孔钻入卵细胞的,受精时卵细胞剧烈地收缩和产生大的囊泡封阻受精孔可能是阻止多精受精的主要原因,接下来,受精卵经历核融合、雄细胞器的消化,合子细胞器的重排,质膜和细胞壁重建等过程,最终形成功能性合子.

  19. Histology of female reproductive system and oogenesis process of guppy (Poecilia reticulata)%孔雀鱼雌性生殖器官组织结构及卵子发生的研究

    Institute of Scientific and Technical Information of China (English)

    王晓艳; 王莎莎; 赵玉超; 刘永; 孙帆; 郭恩棉

    2014-01-01

    应用光镜技术研究了孔雀鱼(Poecilia reticulata)雌性生殖器官组织结构和卵子发生的特点,以期为孔雀鱼的良种繁育工作提供基础资料.结果表明,孔雀鱼雌性生殖器官由卵巢、卵子输送管和泄殖孔构成.卵子发生过程经历了6个时相:第Ⅰ时相主要为卵原细胞;第Ⅱ时相是处于小生长期的初级卵母细胞,形成生长环、卵黄核和单层扁平滤泡细胞膜;第Ⅲ时相是进入大生长期的初级卵母细胞,卵黄开始积累,形成2层滤泡细胞膜和2层卵包膜;第Ⅳ时相为发育晚期的初级卵母细胞,细胞发生了极化,卵包膜发育完善;第Ⅴ时相发育成熟,卵黄颗粒凝结呈块状,卵黄泡主要分布于细胞膜内缘,滤泡细胞膜萎缩;第Ⅵ时相是闭锁卵泡,被滤泡细胞消化和吸收转变为卵巢内结缔组织.

  20. Oocyte Maturation Process and Affecting Factors

    OpenAIRE

    Yurdun Kuyucu; Ozgul Tap

    2009-01-01

    Normal female fertility depends on normally occuring oogenesis and maturation progress. Oogenesis and folliculogenesis are different progresses but occure in a harmony and at the same time. Oogenesis includes the events that take place matur ovum produced from primordial germ cells. Although folliculogenesis includes the stages primordial, primary, secondary, matur (Graaf) follicules in the influece of gonadotropines and local growth factors. During oocyte maturation meiosis is distrupted til...

  1. [Aquaporins in gametogenesis of vertebrate animals].

    Science.gov (United States)

    Skoblina, M N

    2008-01-01

    A review of the data on the presence, localization, and supposed role of aquaporin water channels in oocytes of Xenopus laevis, oogenesis and maturation of teleosts Sparus auratus and Oncorhynchus mykiss, oogenesis and oocyte maturation of rats and mice, and spermatogenesis of several mammalians.

  2. AcEST: DK950560 [AcEST

    Lifescience Database Archive (English)

    Full Text Available A0|UVRC_SYNWW UvrABC system protein C OS=Syntrophomonas w... 36 0.28 sp|Q9NX45|SOLH2_HUMAN Spermatogenesis- and oogenesis...HUMAN Spermatogenesis- and oogenesis-specific basic helix-loop-helix-containing protein 2 OS=Homo sapiens GN

  3. AcEST: DK958200 [AcEST

    Lifescience Database Archive (English)

    Full Text Available ase regul... 33 1.6 sp|Q6IUP1|SOLH1_MOUSE Spermatogenesis- and oogenesis-specific ba... 31 4.5 sp|Q9RFD5|BCH...ry: 68 FLFCLVKMFAFL 33 LF L AFL Sbjct: 591 -LFELHVHQAFL 601 >sp|Q6IUP1|SOLH1_MOUSE Spermatogenesis- and oogenesis

  4. Germline cell death is inhibited by P-element insertions disrupting the dcp-1/pita nested gene pair in Drosophila.

    Science.gov (United States)

    Laundrie, Bonni; Peterson, Jeanne S; Baum, Jason S; Chang, Jeffrey C; Fileppo, Dana; Thompson, Sharona R; McCall, Kimberly

    2003-12-01

    Germline cell death in Drosophila oogenesis is controlled by distinct signals. The death of nurse cells in late oogenesis is developmentally regulated, whereas the death of egg chambers during mid-oogenesis is induced by environmental stress or developmental abnormalities. P-element insertions in the caspase gene dcp-1 disrupt both dcp-1 and the outlying gene, pita, leading to lethality and defective nurse cell death in late oogenesis. By isolating single mutations in the two genes, we have found that the loss of both genes contributes to this ovary phenotype. Mutants of pita, which encodes a C2H2 zinc-finger protein, are homozygous lethal and show dumpless egg chambers and premature nurse cell death in germline clones. Early nurse cell death is not observed in the dcp-1/pita double mutants, suggesting that dcp-1+ activity is required for the mid-oogenesis cell death seen in pita mutants. dcp-1 mutants are viable and nurse cell death in late oogenesis occurs normally. However, starvation-induced germline cell death during mid-oogenesis is blocked, leading to a reduction and inappropriate nuclear localization of the active caspase Drice. These findings suggest that the combinatorial loss of pita and dcp-1 leads to the increased survival of abnormal egg chambers in mutants bearing the P-element alleles and that dcp-1 is essential for cell death during mid-oogenesis.

  5. 可口革囊星虫(Phascolosoma esculenta)卵黄合成期卵母细胞发育及卵黄发生与卵膜形成的超微结构%ULTRASTRUCTURAL OBSERVATION ON OOGENESIS, VITELLOGENESIS AND VITELLINE MEMBRANE FORMATION DURING YOLK-SYNTHESIZING STAGE IN PHASCOLOSOMA ESCULENTA

    Institute of Scientific and Technical Information of China (English)

    竺俊全; 王伟; 丁理法

    2012-01-01

    采用电镜技术观察研究了可口革囊星虫卵黄合成期卵母细胞发育及卵黄发生与卵膜形成的超微结构特征。结果表明,可口革囊星虫卵黄合成期卵母细胞发育经历了卵黄合成初期、卵黄旺盛合成期及生长成熟期三个阶段。卵母细胞卵黄发生途径主要由线粒体、内质网、高尔基体等细胞器演变成卵黄粒,以及吞饮作用形成卵黄粒。卵母细胞质膜外被有卵黄膜,由卵母细胞自体形成,且随生长而加厚;卵黄膜具通透性,外源营养物质能透过卵黄膜进入卵内。生长成熟的卵母细胞卵黄膜厚7—9um,从内向外由纤维层、致密层、粒状突层及外膜构成,保护卵母细胞维持特定的形状。%Electron microscopy technology was employed to investigate the ultrastructural changes during oogenensis, vitellogenesis and vitelline membrane formation in the sipunculan Phascolosoma esculenta. The results show that oogene- sis in this species could be divided into three stages: the primary yolk synthesis stage, rapid yolk synthesis stage and maturation stage. Organelles including mitochondria, endoplasmic reticulum and Golgi apparatus can evolve into yolk granules via pinocytosis. The plasma membrane of oocyte is covered by vitelline membrane which is formed by the oocyte itself and thickens as the oocyte grows. The vitelline membrane is permeable, so external nutrients can penetrate through it and be utilized during oocyte development and vitellogenesis. The vitelline membrane of the growth mature oocyte is 7--9ktm thick, consisting of the fiber layer, the dense layer, granular protuberance layer and jelly coat. This tough and flexible structure could help the oocyte to maintain the specific shape.

  6. evaluation of the efficacy of separate oral supplements compared ...

    African Journals Online (AJOL)

    Daniel Owu

    the blood, urine and semen of exposed men; these are known to affect sperm ... is normally maintained at about 20C and 80C lower than the body temperature ..... Oogenesis' and 'molecular regulation of genital duct' Langman's Medical ...

  7. Paternal heterochromatin formation in human embryos is H3K9/HP1 directed and primed by sperm-derived histone modifications

    NARCIS (Netherlands)

    C. van de Werken (Christine); G.W. van der Heijden (Godfried); C. Eleveld (C.); M. Teeuwssen (Miriam); M. Albert (Mareike); W.M. Baarends (Willy); J.S.E. Laven (Joop); A.H.F.M. Peters (Antoine H. F. M.); E.B. Baart (Esther)

    2014-01-01

    textabstractThe different configurations of maternal and paternal chromatin, acquired during oogenesis and spermatogenesis, have to be rearranged after fertilization to form a functional embryonic genome. In the paternal genome, nucleosomal chromatin domains are re-established after the

  8. Oocyte Maturation Process and Affecting Factors

    Directory of Open Access Journals (Sweden)

    Yurdun Kuyucu

    2009-08-01

    Full Text Available Normal female fertility depends on normally occuring oogenesis and maturation progress. Oogenesis and folliculogenesis are different progresses but occure in a harmony and at the same time. Oogenesis includes the events that take place matur ovum produced from primordial germ cells. Although folliculogenesis includes the stages primordial, primary, secondary, matur (Graaf follicules in the influece of gonadotropines and local growth factors. During oocyte maturation meiosis is distrupted till the puberty. Under LH influence it starts again and first meiosis completes before ovulation. Oocyte maturation can be regarded as the process of coming metaphase II from prophase I of oocyte at the puberty and can be studied as nuclear and cytoplasmic maturation. Meiosis is completed when fertilization occures and zygot is formed. In this article oogenesis, folliculogenesis and oocyte maturation process are summerized with related studies and reiews are revised. [Archives Medical Review Journal 2009; 18(4.000: 227-240

  9. Regulation of the formin Cappuccino is critical for polarity of Drosophila oocytes

    OpenAIRE

    Bor, Batbileg; Bois, Justin S.; Quinlan, Margot E.

    2015-01-01

    The Drosophila formin Cappuccino (Capu) creates an actin mesh-like structure that traverses the oocyte during mid-oogenesis. This mesh is thought to prevent premature onset of fast cytoplasmic streaming which normally happens during late-oogenesis. Proper cytoskeletal organization and cytoplasmic streaming are crucial for localization of polarity determinants such as osk, grk, bcd and nanos mRNAs. Capu mutants disrupt these events, leading to female sterility. Capu is regulated by another nuc...

  10. Rôle de la voie de signalisation Insuline dans le couplage des informations nutritionnelles et développementales au cours de l'ovogenèse chez la drosophile

    OpenAIRE

    Jouandin, Patrick

    2013-01-01

    How oogenesis is controlled upon nutrient challenge is a key biological question to understand the balance between reproduction and adult fitness. During Drosophila oogenesis, vitellogenic stages are highly energy consuming so their formation has to be balanced with other physiological needs. We reveal the role of the Insulin pathway and FoxO in regulating the transition from Mitotic-to-Endocycle, a critical step controlling the entry of egg chambers into vitellogenesis. We show that the M/E ...

  11. Complete in vitro generation of fertile oocytes from mouse primordial germ cells.

    Science.gov (United States)

    Morohaku, Kanako; Tanimoto, Ren; Sasaki, Keisuke; Kawahara-Miki, Ryouka; Kono, Tomohiro; Hayashi, Katsuhiko; Hirao, Yuji; Obata, Yayoi

    2016-08-09

    Reconstituting gametogenesis in vitro is a key goal for reproductive biology and regenerative medicine. Successful in vitro reconstitution of primordial germ cells and spermatogenesis has recently had a significant effect in the field. However, recapitulation of oogenesis in vitro remains unachieved. Here we demonstrate the first reconstitution, to our knowledge, of the entire process of mammalian oogenesis in vitro from primordial germ cells, using an estrogen-receptor antagonist that promotes normal follicle formation, which in turn is crucial for supporting oocyte growth. The fundamental events in oogenesis (i.e., meiosis, oocyte growth, and genomic imprinting) were reproduced in the culture system. The most rigorous evidence of the recapitulation of oogenesis was the birth of fertile offspring, with a maximum of seven pups obtained from a cultured gonad. Moreover, cryopreserved gonads yielded functional oocytes and offspring in this culture system. Thus, our in vitro system will enable both innovative approaches for a deeper understanding of oogenesis and a new avenue to create and preserve female germ cells.

  12. Mago Nashi and Tsunagi/Y14, Respectively, Regulate Drosophila Germline Stem Cell Differentiation and Oocyte Specification

    OpenAIRE

    Parma, David H.; Bennett, Paul E.; Boswell, Robert E

    2007-01-01

    A protein complex consisting of Mago Nashi and Tsunagi/Y14 is required to establish the major body axes and for the localization of primordial germ cell determinants during Drosophila melanogaster oogenesis. The Mago Nashi:Tsunagi/Y14 heterodimer also serves as the core of the exon junction complex (EJC), a multiprotein complex assembled on spliced mRNAs. In previous studies, reduced function alleles of mago nashi and tsunagi/Y14 were used to characterize the roles of the genes in oogenesis. ...

  13. Sohlh2 affects differentiation of KIT positive oocytes and spermatogonia.

    Science.gov (United States)

    Toyoda, Shuichi; Miyazaki, Tatsushi; Miyazaki, Satsuki; Yoshimura, Takuji; Yamamoto, Mayu; Tashiro, Fumi; Yamato, Eiji; Miyazaki, Jun-ichi

    2009-01-01

    The differentiation programs of spermatogenesis and oogenesis are largely independent. In the early stages, however, the mechanisms partly overlap. Here we demonstrated that a germ-cell-specific basic helix-loop-helix (bHLH) transcription factor gene, Sohlh2, is required for early spermatogenesis and oogenesis. SOHLH2 was expressed in mouse spermatogonia from the undifferentiated stage through differentiation and in primordial-to-primary oocytes. Sohlh2-null mice, produced by gene targeting, showed both male and female sterility, owing to the disrupted differentiation of mature (KIT(+)) spermatogonia and oocytes. The Sohlh2-null mice also showed the downregulation of genes involved in spermatogenesis and oogenesis, including the Sohlh1 gene, which is essential for these processes. Furthermore, we showed that SOHLH2 and SOHLH1 could form heterodimers. These observations suggested that SOHLH2 might coordinate with SOHLH1 to control spermatogonial and oocyte genes, including Sohlh1, to promote the differentiation of KIT(+) germ cells in vivo. This study lays the foundation for further dissection of the bHLH network that regulates early spermatogenesis and oogenesis.

  14. Sequence Classification: 772197 [

    Lifescience Database Archive (English)

    Full Text Available in tyrosine phosphatase, non-receptor type, has 2 SH2 domains; participates in signal transduction during oogenesis and vulval develo...pment, STerile Progeny STP-1 (76.7 kD) (ptp-2) || http://www.ncbi.nlm.nih.gov/protein/17535377 ...

  15. Birth Weight Corrected for Gestational Age is Related to the Incidence of Down’s Syndrome Pregnancies

    NARCIS (Netherlands)

    Montfrans, van J.M.; Bakker, P.S.M.; Rekers-Mombarg, L.T.M.; Weissenbruch, M.M.; Lambalk, C.B.

    2001-01-01

    Three recent studies reported that early depletion of the primordial follicle pool is likely to be an independent risk factor for Down’s syndrome pregnancies. The size of the primordial follicle pool at birth is determined by oogenesis and by the rate of follicle atresia during the intra uterine per

  16. Transgenerational toxicity of Zearalenone in pigs

    NARCIS (Netherlands)

    Schoevers, Eric J.; Santos, Regiane R.; Colenbrander, Ben; Fink-Gremmels, Johanna; Roelen, Bernard A J

    2012-01-01

    Zearalenone (ZEN) is a mycotoxin that can be a contaminant of food and feed commodities. ZEN acts as a xenoestrogen and is considered an endocrine disruptor. Since estrogens influence oogenesis during fetal growth, the effect of ZEN on oocytes was investigated in the F1-generation. Pregnant and

  17. Expression and localization of heterogeneous nuclear ribonucleoprotein K in mouse ovaries and preimplantation embryos

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping [The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai (China); Wang, Ningling [Department of Assisted Reproduction, Shanghai Ninth People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai (China); Lin, Xianhua; Jin, Li [The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai (China); Xu, Hong, E-mail: xuhong1168@126.com [The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai (China); Li, Rong [The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai (China); Huang, Hefeng, E-mail: huanghefg@hotmail.com [The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai (China)

    2016-02-26

    Heterogeneous nuclear ribonucleoprotein K (hnRNP K), an evolutionarily conserved protein, is involved in several important cellular processes that are relevant to cell proliferation, differentiation, apoptosis, and cancer development. However, details of hnRNP K expression during mammalian oogenesis and preimplantation embryo development are lacking. The present study investigates the expression and cellular localization of K protein in the mouse ovaries and preimplantation embryos using immunostaining. We demonstrate, for the first time, that hnRNP K is abundantly expressed in the nuclei of mouse oocytes in primordial, primary and secondary follicles. In germ vesicle (GV)-stage oocytes, hnRNP K accumulates in the germinal vesicle in a spot distribution manner. After germinal vesicle breakdown, speckled hnRNP K is diffusely distributed in the cytoplasm. However, after fertilization, the K protein relocates into the female and male pronucleus and persists in the blastomere nuclei. Localization of K protein in the human ovary and ovarian granulosa cell tumor (GCT) was also investigated. Overall, this study provides important morphological evidence to better understand the possible roles of hnRNP K in mammalian oogenesis and early embryo development. - Highlights: • HnRNP K localizes in the nucleus of GV-stage oocyte in a punctate distribution. • HnRNP K strongly accumulates in zygotic pronuclei as condensed spots. • The localization of hnRNP K during oogenesis and embryogenesis is characteristic. • HnRNP K might have an important role in oogenesis and embryonic development.

  18. Visualization of Actin Cytoskeletal Dynamics in Fixed and Live Drosophila Egg Chambers.

    Science.gov (United States)

    Groen, Christopher M; Tootle, Tina L

    2015-01-01

    Visualization of actin cytoskeletal dynamics is critical for understanding the spatial and temporal regulation of actin remodeling. Drosophila oogenesis provides an excellent model system for visualizing the actin cytoskeleton. Here, we present methods for imaging the actin cytoskeleton in Drosophila egg chambers in both fixed samples by phalloidin staining and in live egg chambers using transgenic actin labeling tools.

  19. Linking Maternal and Somatic 5S rRNA types with Different Sequence-Specific Non-LTR Retrotransposons

    NARCIS (Netherlands)

    Locati, M.D.; Pagano, J.F.B.; Ensink, W.A.; van Olst, M.; van Leeuwen, S.; Nehrdich, U.; Zhu, K.; Spaink, H.P.; Girard, G.; Rauwerda, H.; Jonker, M.J.; Dekker, R.J.; Breit, T.M.

    5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo and adult tissue,

  20. Fish on avian lampbrush chromosomes produces higher resolution gene mapping

    NARCIS (Netherlands)

    Galkina, S.A.; Deryusheva, S.; Fillon, V.; Vignal, A.; Crooijmans, R.P.M.A.; Groenen, M.A.M.; Rodionov, A.V.; Gaginskaya, E.

    2006-01-01

    Giant lampbrush chromosomes, which are characteristic of the diplotene stage of prophase I during avian oogenesis, represent a very promising system for precise physical gene mapping. We applied 35 chicken BAC and 4 PAC clones to both mitotic metaphase chromosomes and meiotic lampbrush chromosomes

  1. A role for Bicaudal-D2 in radial cerebellar granule cell migration

    NARCIS (Netherlands)

    Jaarsma, Dick; van den Berg, Robert; Wulf, Phebe S; van Erp, Susan; Keijzer, Nanda; Schlager, Max A; de Graaff, Esther; De Zeeuw, Chris I; Pasterkamp, R Jeroen; Akhmanova, Anna; Hoogenraad, Casper C

    2014-01-01

    Bicaudal-D (BICD) belongs to an evolutionary conserved family of dynein adaptor proteins. It was first described in Drosophila as an essential factor in fly oogenesis and embryogenesis. Missense mutations in a human BICD homologue, BICD2, have been linked to a dominant mild early onset form of spina

  2. A role for Bicaudal-D2 in radial cerebellar granule cell migration

    NARCIS (Netherlands)

    D. Jaarsma (Dick); R. van den Berg (Robert); P. Wulf (Phebe); S. van Erp (Susan); N. Keijzer (Nanda); M.A. Schlager (Max); E. de Graaff (Esther); C.I. de Zeeuw (Chris); R. Jeroen Pasterkamp (R.); A.S. Akhmanova (Anna); C.C. Hoogenraad (Casper)

    2014-01-01

    textabstractBicaudal-D (BICD) belongs to an evolutionary conserved family of dynein adaptor proteins. It was first described in Drosophila as an essential factor in fly oogenesis and embryogenesis. Missense mutations in a human BICD homologue, BICD2, have been linked to a dominant mild early onset f

  3. Ecdysone signalling and ovarian development in insects: from stem cells to ovarian follicle formation.

    Science.gov (United States)

    Belles, Xavier; Piulachs, Maria-Dolors

    2015-02-01

    Although a great deal of information is available concerning the role of ecdysone in insect oogenesis, research has tended to focus on vitellogenesis and choriogenesis. As such, the study of oogenesis in a strict sense has received much less attention. This situation changed recently when a number of observations carried out in the meroistic polytrophic ovarioles of Drosophila melanogaster started to unravel the key roles played by ecdysone in different steps of oogenesis. Thus, in larval stages, a non-autonomous role of ecdysone, first in repression and later in activation, of stem cell niche and primordial germ cell differentiation has been reported. In the adult, ecdysone stimulates the proliferation of germline stem cells, plays a role in stem cell niche maintenance and is needed non-cell-autonomously for correct differentiation of germline stem cells. Moreover, in somatic cells ecdysone is required for 16-cell cyst formation and for ovarian follicle development. In the transition from stages 8 to 9 of oogenesis, ecdysone signalling is fundamental when deciding whether or not to go ahead with vitellogenesis depending on the nutritional status, as well as to start border cell migration. This article is part of a Special Issue entitled: Nuclear receptors in animal development.

  4. Post-transcriptional regulation of ornithine decarboxylase in Xenopus laevis oocytes.

    Science.gov (United States)

    Bassez, T; Paris, J; Omilli, F; Dorel, C; Osborne, H B

    1990-11-01

    The level at which ornithine decarboxylase expression is regulated in growing oocytes has been investigated. Immunoprecipitation of the in vivo labelled proteins showed that ornithine decarboxylase accumulated less rapidly in stage IV oocytes than in previtellogenic stage I + II oocytes. Quantitative Northern analysis showed that ornithine decarboxylase mRNA is abundant in oocytes (about 8 x 10(8) transcripts/cell) and this number does not significantly change during oogenesis. Polysome analysis showed that this mRNA is present in polysomes in stage I + II oocytes but has passed into puromycin-insensitive mRNP particles by stage IV of oogenesis. Therefore, during the growth phase of oogenesis, ornithine decarboxylase expression is regulated at a translational level. These results are discussed relative to the temporal expression of ornithine decarboxylase and of other proteins whose expression also decreases during oogenesis. In order to perform these experiments, the cDNA (XLODC1) corresponding to Xenopus laevis ornithine decarboxylase mRNA was cloned and sequenced.

  5. Transcription and chromatin determinants of de novo DNA methylation timing in oocytes

    DEFF Research Database (Denmark)

    Gahurova, Lenka; Tomizawa, Shin-Ichi; Smallwood, Sébastien A

    2017-01-01

    BACKGROUND: Gametogenesis in mammals entails profound re-patterning of the epigenome. In the female germline, DNA methylation is acquired late in oogenesis from an essentially unmethylated baseline and is established largely as a consequence of transcription events. Molecular and functional studi...

  6. Oogênese em Fannia pusio (Wiedemann, 1830 e Fannia heydenni (Wiedemann, 1830 (Diptera, Fanniidae

    Directory of Open Access Journals (Sweden)

    Márcia Souto Couri

    1990-01-01

    Full Text Available Oogenesis in Fannia pusio and Fannia heydenii was divided into a series of eight stages (stage I - germarium; stage VIII - mature egg, which are characterized and illustrated. Comments on similar researches and a comparison with related data in literature are also included.

  7. Influência da dieta no desenvolvimento oogênico de Fannia pusio (Wiedemann, 1830 (Diptera, Fanniidae

    Directory of Open Access Journals (Sweden)

    Márcia Souto Couri

    1990-01-01

    Full Text Available Females of Fannia pusio were submitted to three different diets (sugar, fish and sugar + liver, which influence in the oogenetic development was observed. The oogenesis was completed in the 15th. day, both under sugar or sugar + liver diets. This species proved to be autogenous for the first ovarian cycle.

  8. Influência da dieta no desenvolvimento oogênico de Fannia pusio (Wiedemann, 1830) (Diptera, Fanniidae)

    OpenAIRE

    Márcia Souto Couri

    1990-01-01

    Females of Fannia pusio were submitted to three different diets (sugar, fish and sugar + liver), which influence in the oogenetic development was observed. The oogenesis was completed in the 15th. day, both under sugar or sugar + liver diets. This species proved to be autogenous for the first ovarian cycle.

  9. Oogênese em Fannia pusio (Wiedemann, 1830) e Fannia heydenni (Wiedemann, 1830) (Diptera, Fanniidae)

    OpenAIRE

    Márcia Souto Couri

    1990-01-01

    Oogenesis in Fannia pusio and Fannia heydenii was divided into a series of eight stages (stage I - germarium; stage VIII - mature egg), which are characterized and illustrated. Comments on similar researches and a comparison with related data in literature are also included.

  10. Cytoskeleton and gravity at work in the establishment of dorso-ventral polarity in the egg of Xenopus laevis

    NARCIS (Netherlands)

    Brom, T.G.; Ubbels, G.A.

    1984-01-01

    The establishment of polarities during early embryogenesis is essential for normal development. Amphibian eggs are appropriate models for studies on embryonic pattern formation. The animal-vegetal axis of the axially symmetrical amphibian egg originates during oogenesis and foreshadows the main body

  11. Fish on avian lampbrush chromosomes produces higher resolution gene mapping

    NARCIS (Netherlands)

    Galkina, S.A.; Deryusheva, S.; Fillon, V.; Vignal, A.; Crooijmans, R.P.M.A.; Groenen, M.A.M.; Rodionov, A.V.; Gaginskaya, E.

    2006-01-01

    Giant lampbrush chromosomes, which are characteristic of the diplotene stage of prophase I during avian oogenesis, represent a very promising system for precise physical gene mapping. We applied 35 chicken BAC and 4 PAC clones to both mitotic metaphase chromosomes and meiotic lampbrush chromosomes o

  12. Cloning and characterization of a novel oocyte-specific gene encoding an F-Box protein in rainbow trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Oocyte-specific genes play critical roles in oogenesis, folliculogenesis and early embryonic development. Through analysis of expressed sequence tags (ESTs) from a rainbow trout oocyte cDNA library, we identified a novel transcript which is represented by ESTs only from the oocyte library. The novel...

  13. PI3K/PTEN/Akt and TSC/mTOR signaling pathways, ovarian dysfunction, and infertility: an update.

    Science.gov (United States)

    Makker, Annu; Goel, Madhu Mati; Mahdi, Abbas Ali

    2014-12-01

    Abnormalities in ovarian function, including defective oogenesis and folliculogenesis, represent a key female reproductive deficiency. Accumulating evidence in the literature has shown that the PI3K/PTEN/Akt and TSC/mTOR signaling pathways are critical regulators of ovarian function including quiescence, activation, and survival of primordial follicles, granulosa cell proliferation and differentiation, and meiotic maturation of oocytes. Dysregulation of these signaling pathways may contribute to infertility caused by impaired follicular development, intrafollicular oocyte development, and ovulation. This article reviews the current state of knowledge of the functional role of the PI3K/PTEN/Akt and TSC/mTOR pathways during mammalian oogenesis and folliculogenesis and their association with female infertility.

  14. Dopamine drives Drosophila sechellia adaptation to its toxic host.

    Science.gov (United States)

    Lavista-Llanos, Sofía; Svatoš, Aleš; Kai, Marco; Riemensperger, Thomas; Birman, Serge; Stensmyr, Marcus C; Hansson, Bill S

    2014-12-09

    Many insect species are host-obligate specialists. The evolutionary mechanism driving the adaptation of a species to a toxic host is, however, intriguing. We analyzed the tight association of Drosophila sechellia to its sole host, the fruit of Morinda citrifolia, which is toxic to other members of the melanogaster species group. Molecular polymorphisms in the dopamine regulatory protein Catsup cause infertility in D. sechellia due to maternal arrest of oogenesis. In its natural host, the fruit compensates for the impaired maternal dopamine metabolism with the precursor l-DOPA, resuming oogenesis and stimulating egg production. l-DOPA present in morinda additionally increases the size of D. sechellia eggs, what in turn enhances early fitness. We argue that the need of l-DOPA for successful reproduction has driven D. sechellia to become an M. citrifolia obligate specialist. This study illustrates how an insect's dopaminergic system can sustain ecological adaptations by modulating ontogenesis and development.

  15. Early programming of the oocyte epigenome temporally controls late prophase I transcription and chromatin remodelling.

    Science.gov (United States)

    Navarro-Costa, Paulo; McCarthy, Alicia; Prudêncio, Pedro; Greer, Christina; Guilgur, Leonardo G; Becker, Jörg D; Secombe, Julie; Rangan, Prashanth; Martinho, Rui G

    2016-08-10

    Oocytes are arrested for long periods of time in the prophase of the first meiotic division (prophase I). As chromosome condensation poses significant constraints to gene expression, the mechanisms regulating transcriptional activity in the prophase I-arrested oocyte are still not entirely understood. We hypothesized that gene expression during the prophase I arrest is primarily epigenetically regulated. Here we comprehensively define the Drosophila female germ line epigenome throughout oogenesis and show that the oocyte has a unique, dynamic and remarkably diversified epigenome characterized by the presence of both euchromatic and heterochromatic marks. We observed that the perturbation of the oocyte's epigenome in early oogenesis, through depletion of the dKDM5 histone demethylase, results in the temporal deregulation of meiotic transcription and affects female fertility. Taken together, our results indicate that the early programming of the oocyte epigenome primes meiotic chromatin for subsequent functions in late prophase I.

  16. Transcription of the 5S rRNA heterochromatic genes is epigenetically controlled in Arabidopsis thaliana and Xenopus laevis.

    Science.gov (United States)

    Douet, J; Tourmente, S

    2007-07-01

    5S ribosomal DNA is a highly conserved tandemly repeated multigenic family. As suggested for a long time, we have shown that only a fraction of the 5S rRNA genes are expressed in Arabidopsis thaliana. In Xenopus laevis, there is a developmental control of the expression of the 5S rRNA genes with only one of the two 5S rDNA families expressed during oogenesis. For both Arabidopsis and Xenopus, the strongest transcription of 5S rRNA, respectively in the seed and during oogenesis is correlated with heterogeneity in the transcribed 5S rRNAs. Epigenetic mechanisms such as modification of the chromatin structure are involved in the transcriptional regulation of the 5S rRNA genes in both organisms. In Arabidopsis, two silencing pathways, methylation-dependent (RNAi) and methylation-independent (MOM pathway), are involved in the silencing of a 5S rDNA fraction.

  17. The Stage- and Cell Type-Specific Localization of Fragile X Mental Retardation Protein in Rat Ovaries.

    Science.gov (United States)

    Takahashi, Noriyuki; Tarumi, Wataru; Itoh, Masanori T; Ishizuka, Bunpei

    2015-12-01

    Premutations of the fragile X mental retardation 1 (FMR1) gene are associated with increased risk of primary ovarian insufficiency. Here we examined the localization of the Fmr1 gene protein product, fragile X mental retardation protein (FMRP), in rat ovaries at different stages, including fetus, neonate, and old age. In ovaries dissected from 19 days postcoitum embryos, the germ cells were divided into 2 types: one with decondensed chromatin in the nucleus was FMRP positive in the cytoplasm, but the other with strongly condensed chromatin in the nucleus was FMRP negative in the cytoplasm. The FMRP was predominantly localized to the cytoplasm of oocytes in growing ovarian follicles. Levels of FMRP in oocytes from elderly (9 or 14 months of age) ovaries were lower than in those from younger ovaries. These results suggest that FMRP is associated with the activation of oogenesis and oocyte function. Especially, FMRP is likely to be implicated in germline development during oogenesis.

  18. Reproduction of the cold-water coral Primnoella chilensis (Philippi, 1894)

    Science.gov (United States)

    Rossin, Ashley M.; Waller, Rhian G.; Försterra, Gunter

    2017-07-01

    This study examined the reproduction of a cold-water coral, Primnoella chilensis (Philippi, 1894) from the Comau and Reñihué fjords in Chilean Patagonia. Samples were collected in September and November of 2012 and April, June, and September of 2013 from three sites within the two fjords. The sexuality, reproductive mode, spermatocyst stage, oocyte size, and fecundity were determined using histological techniques. This species is gonochoristic with one aberrant hermaphrodite identified in this study. Reproduction was found to be seasonal, with the initiation of oogenesis in September and suggested a broadcast spawning event between June and September. The maximum oocyte size was 752.96 μm, suggesting a lecithotrophic larvae. The maximum fecundity was 36 oocytes per polyp. Male individuals were only found in April and June. In June, all four spermatocyst stages were present. This suggests that spermatogenesis requires less time than oogenesis in P. chilensis.

  19. Effective gene silencing in Drosophila ovarian germline by artificial microRNAs

    Institute of Scientific and Technical Information of China (English)

    Hailong Wang; YanJun Mu; Dahua Chen

    2011-01-01

    @@ Dear Editor, Drosophila oogenesis is of great interest because it represents an excellent model system to study a number of fascinating biological processes, such as stem cell regulation, germ cell meiosis and oocyte determination, as well as signal interactions between germline and soma.A typical Drosophila ovary is composed of 16-20 ovarioles, each consisting of an anterior functional unit called a germarium and a linear string of differentiated egg chambers posterior to the germarium [1] (Figure 1A and 1B).Drosophila oogenesis initiates at the tip of the germarium, when a germline stem cell (GSC) divides asymmetrically to generate a daughter GSC and a cystoblast that eventually develops into a mature egg [2] (Figure 1C and 1E).

  20. Cytoplasmic Streaming in the Drosophila Oocyte.

    Science.gov (United States)

    Quinlan, Margot E

    2016-10-06

    Objects are commonly moved within the cell by either passive diffusion or active directed transport. A third possibility is advection, in which objects within the cytoplasm are moved with the flow of the cytoplasm. Bulk movement of the cytoplasm, or streaming, as required for advection, is more common in large cells than in small cells. For example, streaming is observed in elongated plant cells and the oocytes of several species. In the Drosophila oocyte, two stages of streaming are observed: relatively slow streaming during mid-oogenesis and streaming that is approximately ten times faster during late oogenesis. These flows are implicated in two processes: polarity establishment and mixing. In this review, I discuss the underlying mechanism of streaming, how slow and fast streaming are differentiated, and what we know about the physiological roles of the two types of streaming.

  1. Drosophila melanogaster as a model system for assessing development under conditions of microgravity

    Science.gov (United States)

    Abbott, M. K.; Hilgenfeld, R. B.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    More is known about the regulation of early developmental events in Drosophila than any other animal. In addition, its size and short life cycle make it a facile experimental system. Since developmental perturbations have been demonstrated when both oogenesis and embryogenesis occur in the space environment, there is a strong rationale for using this organism for the elucidation of specific gravity-sensitive developmental events.

  2. Understanding Autoinhibition of Drosophila Formin Cappuccino in vitro and in vivo

    OpenAIRE

    Bor, Batbileg

    2014-01-01

    Cappuccino (Capu) is an actin assembly factor that is necessary to establish Drosophila oocyte polarity. Disrupting normal polarity leads to female sterility. It is thought that Capu helps establish oocyte polarity by creating a mesh-like actin structure that spans the oocyte during early stages of development. Disappearance of this actin mesh in later stages of oogenesis coincides with rapid coordinated flows of the cytoplasm, referred to as cytoplasmic streaming. When cytoplasmic streaming ...

  3. Follicular cell differentiation in polytrophic ovaries of a moth midge, Tinearia alternata.

    Science.gov (United States)

    Mazurkiewicz, Marta; Kubrakiewicz, Janusz

    2008-01-01

    Dipteran ovaries consist of structural-functional units termed egg chambers. Each egg chamber is composed of a cluster of germ cells enveloped by a simple somatic follicular epithelium. With the progress of oogenesis, initially an almost uniform population of follicular cells (FCs) becomes diversified into a few subgroups, which significantly differ in their function and behaviour. From the extensive genetic and molecular studies on Drosophila it became evident that the mode of diversification of FCs and the interactions between distinct FC subpopulations and the germ-line cells are essential for a proper course of oogenesis and the generation of oocyte/embryo polarity. Recent comparative studies showed that major dipteran lineages may significantly differ in the mode of FC differentiation. The most essential difference occurs in the ability of the FCs to undertake migrations within the egg chamber. In contrast to long distance, invasive migrations characteristic of distinct FC subgroups in the egg chambers of the most derived flies (Brachycera), including Drosophila, the FCs in the ovaries of more ancestral Nematocera lack migratory activity and change their location only within the epithelial layer. Comparative analyses indicate that the FCs in the representatives of particular evolutionary lineages within Nematocera may differ in their behaviour during oogenesis. In this report we describe the FC differentiation pathway in the egg chambers of a moth midge, T. alternata (Psychodomorpha). Comparison with representatives of craneflies (Nematocera: Polyneura) showed that differences in the behaviour of FCs and in the number of FC subpopulations between Polyneura and Psychodomorpha, may depend on different oogenesis dynamics. In spite of the observed differences, some functional homologies between distinct subsets of the FCs in dipteran ovaries are postulated.

  4. Drosophila Fascin is a novel downstream target of prostaglandin signaling during actin remodeling

    OpenAIRE

    Groen, Christopher M.; Spracklen, Andrew J.; Fagan, Tiffany N.; Tootle, Tina L.

    2012-01-01

    Although prostaglandins (PGs)—lipid signals produced downstream of cyclooxygenase (COX) enzymes—regulate actin cytoskeletal dynamics, their mechanisms of action are unknown. We previously established Drosophila oogenesis, in particular nurse cell dumping, as a new model to determine how PGs regulate actin remodeling. PGs, and thus the Drosophila COX-like enzyme Pxt, are required for both the parallel actin filament bundle formation and the cortical actin strengthening required for dumping. He...

  5. Sex determination in mammalian germ cells

    OpenAIRE

    Spiller, Cassy M; Josephine Bowles

    2015-01-01

    Germ cells are the precursors of the sperm and oocytes and hence are critical for survival of the species. In mammals, they are specified during fetal life, migrate to the developing gonads and then undergo a critical period during which they are instructed, by the soma, to adopt the appropriate sexual fate. In a fetal ovary, germ cells enter meiosis and commit to oogenesis, whereas in a fetal testis, they avoid entry into meiosis and instead undergo mitotic arrest and mature toward spermatog...

  6. A Genetic Approach to Identifying Signal Transduction Mechanisms Initiated by Receptors for TGF-B-Related Factors.

    Science.gov (United States)

    1998-10-01

    first discovery of mammalian TGF-ßl 16 years ago as a factor capable of inducing anchorage-independent growth of normal rat kidney fibroblasts...and -4 and 60A is 70% identical to BMP-5 through -8 (Kingsley, 1994a). When implanted subcutaneously in rats , Dpp and 60A proteins are able to...The TGF-ß signaling pathway is essential for Drosophila oogenesis . Development 122, 1555-1565. Vaahtokari, A., Abert, T., Jernvall, J., Keranen

  7. Effects of aqueous extract from Asparagus officinalis L. roots on hypothalamic-pituitary-gonadal axis hormone levels and the number of ovarian follicles in adult rats

    OpenAIRE

    Hojatollah Karimi Jashni; Hossein Kargar Jahromi; Ali Ghorbani Ranjbary

    2016-01-01

    Background: Asparagus is a plant with high nutritional, pharmaceutical, and industrial values. Objective: The present study aimed to evaluate the effect of aqueous extract of asparagus roots on the hypothalamic-pituitary-gonadal axis hormones and oogenesis in female rats. Materials and Methods: In this experimental study, 40 adult female Wistar rats were divided into five groups, which consist 8 rats. Groups included control, sham and three experimental groups receiving different doses ...

  8. ANTIFERTILITY EFFECT OF LINDENBERGIA INDICA (70% EtOH) EXTRACT

    OpenAIRE

    Purohit, Ashok; Vyas, Surendra K.

    2003-01-01

    Oral feeding of 70% EtOH extract of Lindenbergia indica to female rats at the dose of 500 mg/kg body weight and 1000 mg / kg body weight caused significant reduction of serum cholesterol, HDL – cholesterol, triglycerides & phospholipids (P≤ 0.05 to P≤ 0.001). Where as the protein levels were not reduced significantly. Fertility test showed 100% negative results. The negative fertility reflects the arrest of Oogenesis & depletion of estrogen level. Further Lindenbergia indica reflects antiestr...

  9. windbeutel, a gene required for dorsoventral patterning in Drosophila, encodes a protein that has homologies to vertebrate proteins of the endoplasmic reticulum

    OpenAIRE

    Konsolaki, Mary; Schüpbach, Trudi

    1998-01-01

    The formation of the dorsoventral axis of the Drosophila embryo depends on cell–cell interactions that take place in the female ovary and involve the activation of transmembrane receptors by secreted ligands. The gene windbeutel functions in the somatic follicle cells of the ovary and is required for the generation of a signal that will determine the ventral side of the embryo. This signal originates in the follicle cells during oogenesis, but its actions are only manifested after fertilizati...

  10. Reprint Accession List 1978. Number 8.

    Science.gov (United States)

    1979-01-01

    Phospholipids during oogenesis and embryogeneses of Dermacentor andersoni (!xodidae) and Argas (Persicarqas) arhoreuIS (Argasidaie. J. Med. Ent. 14(2...71:113-118. 1978.- 1171 DARWISH. M.A., HOOGSTRAAL, H. and AMER, T.: A Serological f Survey for Bhanja Virus in Humans, Domestic Mammnals, and Rats ...technique 1150 RVF in domestic animals 1167 VIROLOGY Bhanja Virus In humans, domestic mammals, and. rats in Egypt 1171 IBiological and antigenic properties

  11. Control of Growth Within Drosophila Peripheral Nerves by Ras and Protein Kinase A

    Science.gov (United States)

    2009-02-01

    downstream of the EGF receptor to determine dorsoventral polarity during Drosophila oogenesis . Genes Dev 8:629 – 639. Brunet A, Bonni A, Zigmond MJ...are increased following induction of seizures in rats , and in the hippocampi of epileptic patients [56]. This activity- induced increase in phospho...nucleus tractus solitarius is depressed by Group II and III but not Group I presynaptic metabotropic glutamate receptors in rats . J Physiol 538: 773

  12. The Expression of Sprouty1, an Inhibitor of Fibroblast Growth Factor Signal Transduction, Is Decreased in Human Prostate Cancer

    Science.gov (United States)

    2004-07-15

    contribute to prostate cancer pro- gression. Yan et al. (4) have shown in the Dunning rat model system that as these transplantable tumors progress...mediated by the FGFR and the epidermal growth factor receptor during eye development and oogenesis in Drosophila (17–19). During Drosophila eye development...treated with bovine antigoat IgG (1:5000; Santa Cruz Biotechnology) or rat antimouse IgG secondary antibody conjugated to horseradish peroxidase (1

  13. Sprouty-1, an Inhibitor of Prostate Cancer Signal Transduction

    Science.gov (United States)

    2004-07-01

    could potentially limit the biological activity of during eye development and oogenesis in Drosophila (17-19). During FGFs in prostate cancer...Dunning rat model system Grb2 (26, 27) and c-Cbl (28), but the precise molecular mechanism by that as these transplantable tumors progress from a mixed...Santa Cruz Biotechnology) or rat antimouse lgG G1TrG-3’. Primers were carefully designed to cross exon/intron regions and to secondary antibody

  14. The Role(s) of Heparan Sulfate Proteoglycan(s) in the wnt-1 Signaling Pathway

    Science.gov (United States)

    1998-08-01

    paternally rescuable(see Perrimon et al., 1996; and Materials and methods for details) indicating that this gene is expressed in both oogenesis and early...between Sf1 and rat HS N-deacetylase/N-sulfotransferase and mouse heparin N-deacetylase/N-sulfotransferase are 51% and 53% respectively. HS N-deacetylase/N...Orellana, G. Gil, and C.B. Hirschberg. 1992. Molecular cloning and expression of rat liver N-heparan sulfate sulfotransferase. J. Biol, Chem. 1992: 15744

  15. Effects of aqueous extract from Asparagus officinalis L. roots on hypothalamic-pituitary-gonadal axis hormone levels and the number of ovarian follicles in adult rats

    OpenAIRE

    Karimi Jashni, Hojatollah; Kargar Jahromi, Hossein; Ghorbani Ranjbary, Ali; Kargar Jahromi, Zahra; Khabbaz Kherameh, Zahra

    2016-01-01

    Background: Asparagus is a plant with high nutritional, pharmaceutical, and industrial values. Objective: The present study aimed to evaluate the effect of aqueous extract of asparagus roots on the hypothalamic-pituitary-gonadal axis hormones and oogenesis in female rats. Materials and Methods: In this experimental study, 40 adult female Wistar rats were divided into five groups, which consist 8 rats. Groups included control, sham and three experimental groups receiving different doses (100, ...

  16. XY and ZW: Is Meiotic Sex Chromosome Inactivation the Rule in Evolution?

    OpenAIRE

    Sam Schoenmakers; Evelyne Wassenaar; Hoogerbrugge, Jos W.; Laven, Joop S E; J Anton Grootegoed; Baarends, Willy M.

    2009-01-01

    During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI) leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW), whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription ...

  17. Scrambling Eggs: Meiotic Drive and the Evolution of Female Recombination Rates

    OpenAIRE

    Brandvain, Yaniv; Coop, Graham

    2012-01-01

    Theories to explain the prevalence of sex and recombination have long been a central theme of evolutionary biology. Yet despite decades of attention dedicated to the evolution of sex and recombination, the widespread pattern of sex-differences in the recombination rate is not well understood and has received relatively little theoretical attention. Here, we argue that female meiotic drivers - alleles that increase in frequency by exploiting the asymmetric cell division of oogenesis - present ...

  18. The effects of follicle-stimulating hormone treatment on early meiotic oocytes of Podarcis sicula (Lacertilia).

    Science.gov (United States)

    Motta, C M; Borrelli, L; Filosa, S

    1995-07-01

    The effects of follicle-stimulating hormone (FSH) on early meiotic oocytes were studied by cytological, autoradiographic, and photometric techniques. In addition to regulating oogonial proliferation, oogenesis, and folliculogenesis, the hormone influenced germ cell number and the time course of early meiosis. FSH did not affect the timing of DNA replication and amplification and did not change the amount of rDNA accumulated in the nucleus by amplification. A genetic control mechanism for these processes is suggested.

  19. On the Role of PDZ Domain-Encoding Genes in Drosophila Border Cell Migration

    OpenAIRE

    Aranjuez, George; Kudlaty, Elizabeth; Longworth, Michelle S; McDonald, Jocelyn A.

    2012-01-01

    Cells often move as collective groups during normal embryonic development and wound healing, although the mechanisms governing this type of migration are poorly understood. The Drosophila melanogaster border cells migrate as a cluster during late oogenesis and serve as a powerful in vivo genetic model for collective cell migration. To discover new genes that participate in border cell migration, 64 out of 66 genes that encode PDZ domain-containing proteins were systematically targeted by in v...

  20. Ultrastructural observations of the early and late stages of gorgonian coral (Junceella juncea) oocytes.

    Science.gov (United States)

    Tsai, Sujune; Jhuang, Yating; Spikings, Emma; Sung, Ping-Jyun; Lin, Chiahsin

    2014-08-01

    The developmental oogenesis of gorgonian coral was investigated at the histological level. The objective of this study was to examine and improve the understanding of Junceella juncea oogenesis using ultrastructural methods, such as histological sectioning and transmission electron microscopy. At least three types of yolk materials were observed in this study: yolk body, lipid granules and cortical alveoli. Some of the complex yolk materials were encompassed by concentric or arched layers of smooth and rough endoplasmic reticulum and the Golgi complex in early stage oocytes. Different types of vesicles were found in both early and late stage oocytes and some granules could be seen inside the empty vesicles. This may be a possible method for elaborating complex yolk materials. Homogeneous yolks from different types of inclusions were abundant and the autosynthesis of yolk may be a major mechanism in J. juncea oocytes. This is the first report of the ultrastructural observation of oogenesis in gorgonian coral species using transmission electron microscopy. Our study obtained relatively detailed information at the ultrastructural level, and it provides an overview of the oocyte ultrastucture of the gorgonian coral J. juncea.

  1. The fog-3 gene and regulation of cell fate in the germ line of Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, R.; Kimble, J. [Univ. of Wisconsin, Madison, WI (United States)

    1995-02-01

    In the nematode Caenorhabditis elegans, germ cells normally adopt one of three fates: mitosis, spermatogenesis or oogenesis. We have identified and characterized the gene fog-3, which is required for germ cells to differentiate as sperm rather than as oocytes. Analysis of double mutants suggests that fog-3 is absolutely required for spermatogenesis and acts at the end of the regulatory hierarchy controlling sex determination for the germ line. By contrast, mutations in fog-3 do not alter the sexual identity of other tissues. We also have characterized the null phenotype of fog-1, another gene required for spermatogenesis; we demonstrate that it too controls the sexual identity of germ cells but not of other tissues. Finally, we have studied the same interaction of these two fog genes with gld-1, a gene required for germ cells to undergo oogenesis rather than mitosis. On the basis of these results, we propose that germ-cell fate might be controlled by a set of inhibitory interactions among genes that specify one of three fates: mitosis, spermatogenesis or oogenesis. Such a regulatory network would link the adoption of one germ-cell fate to the suppression of the other two. 68 refs., 7 figs., 6 tabs.

  2. The effects of microgravity on gametogenesis, fertilization, and early embryogenesis

    Science.gov (United States)

    Tan, X.

    Gametogenesis fertilization and early embryogenesis are crucial periods for normal development afterwards In past three decades many experiments have been conducted in space and in simulated weightlessness induced by clinostats to elucidate the issue Different animal species including Drosophila wasp shrimp fish amphibian mouse rats etc have been used for the study Oogenesis and spermatogenesis are affected by microgravity in different ways Some researches found that microgravity condition perturbed the process of oogenesis in many species A significant increased frequency of chromosomal non-disjunction was found in Drosophila females resulting the loss of chromosomes during meiosis and inhibition of cell division Studies on wasp showed a decreased hatchability and accumulation of unhatched eggs when the insects were exposed to spaceflight at different stages of oogenesis For experiments conducted on vertebrate animal models the results are somehow different however Microgravity has no significant effect for fish Medaka etc amphibian South African clawed toad Xenopus laevis or mammals mouse Spermatogenesis on the other hand is more significantly affected by microgravity condition Some researches indicated sperm are sensitive to changes in gravitational force and this sensitivity affects the ability of sperm to fertilize eggs Sperm swim with higher velocity in microgravity which is coupled with altered protein phosphorylation level in sperm under microgravity condition Microgravity also induced activation of the

  3. Early meiotic-specific protein expression in post-natal rat ovaries.

    Science.gov (United States)

    Zhang, P; Lv, L X; Xing, W J

    2010-12-01

    Recent studies in mice challenged the basic doctrine that most mammalian females lose neo-oogenesis in post-natal ovaries. In order to provide more information in other species, we examined post-natal rat ovaries by histological sections and detected the germline cell marker protein RVLG (rat vasa-like gene), BrdU (5-bromodeoxyuridine) incorporation in RVLG-expressing cells, for identification of germline cells undergoing mitosis and meiosis in the ovarian surface epithelium (OSE). We also detected the expression of early meiotic-specific proteins disruption of meiotic control 1 (DMC1), stimulated by retinoic acid gene 8 (STRA8) and synaptonemal complex protein 3 (SCP3) by immunohistochemical analysis and Western blotting, and the transcript of SCP1, SCP3 and Sporulation-specific protein 11 (SPO11) by RT-PCR in the post-natal ovarian cortex. However we failed in detecting large ovoid cells in the OSE, which may represent the putative germline stem cells (GSCs) that are supposed to sustain neo-oogenesis, and the transcription of the meiotic-specific genes SCP1, SCP3 and SPO11 by RT-PCR as well as the translation of DMC1, STRA8 and SCP3 by Western blotting. Our data support the postulation that there is no neo-oogenesis occurring in the OSE of rat post-natal ovary through meiosis of GSCs.

  4. Temporal dynamics of oocyte growth and vitellogenin gene expression in zebrafish (Danio rerio).

    Science.gov (United States)

    Connolly, Michelle H; Dutkosky, Rachel M; Heah, Tze P; Sayler, Gary S; Henry, Theodore B

    2014-04-01

    Little is known about how hepatic vitellogenin gene (vtg) expression relates to oogenesis in fish, especially among fractional spawners. The objective of this study was to relate hepatic vtg 1A/B expression to stage-specific oocyte development in zebrafish (Danio rerio), an asynchronous spawning fish. Liver samples were collected at seven time points postspawning (1-32 days) and fish were preserved for subsequent histological analyses. Relative vtg 1A/B expression among liver samples was quantified by reverse transcription-quantitative PCR and oogenesis was evaluated following standard hematoxylin and eosin staining of serial ovarian sections. Histological analyses indicate that a subset of previtellogenic oocytes (stages 1-2) transitioned into postvitellogenic oocytes (stages 3-4) within 4 days (96 h) postspawning. By 8 days postspawning (192 h), the majority of the ovary was occupied by mature (stage 4) oocytes, a trend that continued through 32 days postspawning. Hepatic vtg 1A/B gene expression was upregulated 3.89-fold 1-h postspawning relative to the average gene expression across all time points, but was not correlated to stage-specific oogenesis. Follicular atresia among fish sampled 32 days postspawning highlights the importance of regular spawning in zebrafish and suggests that the event of spawning itself may be integral to the regulation of oocyte development.

  5. The Notch pathway regulates both the proliferation and differentiation of follicular cells in the panoistic ovary of Blattella germanica.

    Science.gov (United States)

    Irles, Paula; Elshaer, Nashwa; Piulachs, Maria-Dolors

    2016-01-01

    The Notch pathway is an essential regulator of cell proliferation and differentiation during development. Its involvement in insect oogenesis has been examined in insect species with meroistic ovaries, and it is known to play a fundamental role in cell fate decisions and the induction of the mitosis-to-endocycle switch in follicular cells (FCs). This work reports the functions of the main components of the Notch pathway (Notch and its ligands Delta and Serrate) during oogenesis in Blattella germanica, a phylogenetically basal species with panoistic ovary. As is revealed by RNAi-based analyses, Notch and Delta were found to contribute towards maintaining the FCs in an immature, non-apoptotic state. This ancestral function of Notch appears in opposition to the induction of transition from mitosis to endocycle that Notch exerts in Drosophila melanogaster, a change in the Notch function that might be in agreement with the evolution of the insect ovary types. Notch was also shown to play an active role in inducing ovarian follicle elongation via the regulation of the cytoskeleton. In addition, Delta and Notch interactions were seen to determine the differentiation of the posterior population of FCs. Serrate levels were found to be Notch-dependent and are involved in the control of the FC programme, although they would appear to play no crucial role in panoistic ovary oogenesis.

  6. ELF alternating magnetic field decreases reproduction by DNA damage induction.

    Science.gov (United States)

    Panagopoulos, Dimitris J; Karabarbounis, Andreas; Lioliousis, Constantinos

    2013-11-01

    In the present experiments, the effect of 50-Hz alternating magnetic field on Drosophila melanogaster reproduction was studied. Newly eclosed insects were separated into identical groups of ten males and ten females and exposed to three different intensities of the ELF magnetic field (1, 11, and 21 G) continuously during the first 5 days of their adult lives. The reproductive capacity was assessed by the number of F1 pupae according to a well-defined protocol of ours. The magnetic field was found to decrease reproduction by up to 4.3%. The effect increased with increasing field intensities. The decline in reproductive capacity was found to be due to severe DNA damage (DNA fragmentation) and consequent cell death induction in the reproductive cells as determined by the TUNEL assay applied during early and mid-oogenesis (from germarium to stage 10) where physiological apoptosis does not occur. The increase in DNA damage was more significant than the corresponding decrease in reproductive capacity (up to ~7.5%). The TUNEL-positive signal denoting DNA fragmentation was observed exclusively at the two most sensitive developmental stages of oogenesis: the early and mid-oogenesis checkpoints (i.e. region 2a/2b of the germarium and stages 7-8 just before the onset of vitellogenesis)-in contrast to exposure to microwave radiation of earlier work of ours in which the DNA fragmentation was induced at all developmental stages of early and mid-oogenesis. Moreover, the TUNEL-positive signal was observed in all three types of egg chamber cells, mainly in the nurse and follicle cells and also in the oocyte, in agreement with the microwave exposure of our earlier works. According to previous reports, cell death induction in the oocyte was observed only in the case of microwave exposure and not after exposure to other stress factors as toxic chemicals or food deprivation. Now it is also observed for the first time after ELF magnetic field exposure. Finally, in contrast to microwave

  7. Gain-of-function mutations of fem-3, a sex-determination gene in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Barton, M.K.; Schedl, T.B.; Kimble, J.

    1987-01-01

    The authors have isolated nine gain-of-function (gf) alleles of the sex-determination gene fem-3 as suppressors of feminizing mutations in fem-1 and fem-2. The wild type fem-3 gene is needed for spermatogenesis in XX self-fertilizing hermaphrodites and for male development in both soma and germ line of XO animals. Loss-of-function alleles of fem-3 transform XX and XO animals into females (spermless hermaphrodites). In contrast, fem-3 (gf) alleles masculinize only one tissue, the hermaphrodite germ line. Thus, XX fem-3 (gf) mutant animals have a normal hermaphrodite soma, but the germ line produces a vast excess of sperm and no oocytes. All nine fem-3 (gf) alleles are temperature sensitive. The temperature-sensitive period is from late L4 to early adult, a period just preceding the first signs of oogenesis. The finding of gain-of-function alleles which confer a phenotype opposite to that of loss-of-function alleles supports the idea that fem-3 plays a critical role in germ-line sex determination. Furthermore, the germ-line specificity of the fem-3 (gf) mutant phenotype and the late temperature-sensitive period suggest that, in the wild-type XX hermaphrodite, fem-3 is negatively regulated so that the hermaphrodite stops making sperm and starts making oocytes. Temperature shift experiments also show that, in the germ line, sexual commitment appears to be a continuing process. Spermatogenesis can resume even after oogenesis has begun, and oogenesis can be initiated much later than normal.

  8. Differentially expressed genes in the ovary of the sixth day of pupal "Ming" lethal egg mutant of silkworm, Bombyx mori.

    Science.gov (United States)

    Gao, Peng; Chen, An-Li; Zhao, Qiao-Ling; Shen, Xing-Jia; Qiu, Zhi-Yong; Xia, Ding-Guo; Tang, Shun-Ming; Zhang, Guo-Zheng

    2013-09-15

    The "Ming" lethal egg mutant (l-em) is a vitelline membrane mutant in silkworm, Bombyx mori. The eggs laid by the l-em mutant lose water, ultimately causing death within an hour. Previous studies have shown that the deletion of BmEP80 is responsible for the l-em mutation in silkworm, B. mori. In the current study, digital gene expression (DGE) was performed to investigate the difference of gene expression in ovaries between wild type and l-em mutant on the sixth day of the pupal stage to obtain a global view of gene expression profiles using the ovaries of three l-em mutants and three wild types. The results showed a total of 3,463,495 and 3,607,936 clean tags in the wild type and the l-em mutant libraries, respectively. Compared with those of wild type, 239 differentially expressed genes were detected in the l-em mutant, wherein 181 genes are up-regulated and 58 genes are down-regulated in the mutant strain. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis results showed that no pathway was significantly enriched and three pathways are tightly related to protein synthesis among the five leading pathways. Moreover, the expression profiles of eight important differentially expressed genes related to oogenesis changed. These results provide a comprehensive gene expression analysis of oogenesis and vitellogenesis in B. mori which facilitates understanding of both the specific molecular mechanism of the 1-em mutant and Lepidopteran oogenesis in general.

  9. The placental analogue and the pattern of sexual reproduction in the cheilostome bryozoan Bicellariella ciliata (Gymnolaemata

    Directory of Open Access Journals (Sweden)

    Moosbrugger Martin

    2012-10-01

    Full Text Available Abstract Background Matrotrophy or extraembryonic nutrition – transfer of nutrients from mother to embryo during gestation – is well known and thoroughly studied among vertebrates, but still poorly understood in invertebrates. The current paper focuses on the anatomy and ultrastructure of the oogenesis and placentotrophy as well as formation of the brood chamber (ovicell in the cheilostome bryozoan Bicellariella ciliata (Linnaeus, 1758. Our research aimed to combine these aspects of the sexual reproduction into an integral picture, highlighting the role of the primitive placenta-like system in the evolution of bryozoan reproductive patterns. Results Follicular and nutrimentary provisioning of the oocyte occur during oogenesis. Small macrolecithal oocytes are produced, and embryos are nourished in the ovicell via a simple placental analogue (embryophore. Every brooding episode is accompanied by the hypertrophy of the embryophore, which collapses after larval release. Nutrients are released and uptaken by exocytosis (embryophore and endocytosis (embryo. Embryos lack specialized area for nutrient uptake, which occurs through the whole epidermal surface. The volume increase between the ripe oocyte and the larva is ca. 10-fold. Conclusions The ovicell is a complex organ (not a special polymorph as often thought consisting of an ooecium (protective capsule and an ooecial vesicle (plugging the entrance to the brooding cavity that develop from the distal and the fertile zooid correspondingly. Combination of macrolecithal oogenesis and extraembryonic nutrition allows attributing B. ciliata to species with reproductive pattern IV. However, since its oocytes are small, this species represents a previously undescribed variant of this pattern, which appears to represent a transitional state from the insipient matrotrophy (with large macrolecithal eggs to substantial one (with small microlecithal ones. Altogether, our results substantially added and

  10. Risks of hormonally active pharmaceuticals to amphibians: a growing concern regarding progestagens.

    Science.gov (United States)

    Säfholm, Moa; Ribbenstedt, Anton; Fick, Jerker; Berg, Cecilia

    2014-11-19

    Most amphibians breed in water, including the terrestrial species, and may therefore be exposed to water-borne pharmaceuticals during critical phases of the reproductive cycle, i.e. sex differentiation and gamete maturation. The objectives of this paper were to (i) review available literature regarding adverse effects of hormonally active pharmaceuticals on amphibians, with special reference to environmentally relevant exposure levels and (ii) expand the knowledge on toxicity of progestagens in amphibians by determining effects of norethindrone (NET) and progesterone (P) exposure to 0, 1, 10 or 100 ng l(-1) (nominal) on oogenesis in the test species Xenopus tropicalis. Very little information was found on toxicity of environmentally relevant concentrations of pharmaceuticals on amphibians. Research has shown that environmental concentrations (1.8 ng l(-1)) of the pharmaceutical oestrogen ethinylestradiol (EE2) cause developmental reproductive toxicity involving impaired spermatogenesis in frogs. Recently, it was found that the progestagen levonorgestrel (LNG) inhibited oogenesis in frogs by interrupting the formation of vitellogenic oocytes at an environmentally relevant concentration (1.3 ng l(-1)). Results from the present study revealed that 1 ng NET l(-1) and 10 ng P l(-1) caused reduced proportions of vitellogenic oocytes and increased proportions of previtellogenic oocytes compared with the controls, thereby indicating inhibited vitellogenesis. Hence, the available literature shows that the oestrogen EE2 and the progestagens LNG, NET and P impair reproductive functions in amphibians at environmentally relevant exposure concentrations. The progestagens are of particular concern given their prevalence, the range of compounds and that several of them (LNG, NET and P) share the same target (oogenesis) at environmental exposure concentrations, indicating a risk for adverse effects on fertility in exposed wild amphibians.

  11. Pulsed electric field increases reproduction.

    Science.gov (United States)

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated.

  12. Relationship between respiration rate and weight of loach oocytes.

    Science.gov (United States)

    Ozernyuk, N D; Zotin, A I

    1975-01-01

    It is shown that the constant k in the equation QO2 equals apk and the constant b in the equation qo2 equals aP-b change during the oogenesis of the loach. Hence, the growth of oocytes differs considerably from the growth of animals, where the constants k and b do not change with increase in weight. It is suggested that the relationship between the respiration rate and weight of the oocytes is due to the change in the amount of mitochondria in the oocytes.

  13. The dormant and the fully competent oocyte: comparing the transcriptome of human oocytes from primordial follicles and in metaphase II

    DEFF Research Database (Denmark)

    Grøndahl, Marie Louise; Borup, Rehannah; Vikeså, Jonas

    2013-01-01

    Oocytes become enclosed in primordial follicles during fetal life and remain dormant there until activation followed by growth and meiotic resumption. Current knowledge about the molecular pathways involved in oogenesis is incomplete. This study identifies the specific transcriptome of the human...... oocyte in the quiescent state and at the pinnacle of maturity at ovulation. In silico bioinformatic comparisons were made between the transcriptome of human oocytes from dormant primordial follicles and that of human metaphase II (MII) oocytes and granulosa cells and unique gene expression profiles were...

  14. 哺乳动物卵巢中生殖干细胞的研究历史与进展%Germ Stem Cells in the Mammalian Ovary—History and Recent Progress

    Institute of Scientific and Technical Information of China (English)

    罗阳; 林戈

    2012-01-01

    对于出生后的哺乳动物卵巢中是否存在生殖干细胞以维持卵泡的更新一直争议不断,现就该领域的研究历史及最新进展进行综述.%Whether the germ stem cells exist in mammalian postnatal ovary to surpport oogenesis throughout reproductive life is a vigorous debate. The purpose of this review is to summarize the research history, recent progress and unclear questions in this field.

  15. Effects of methyltestosterone, letrozole, triphenyltin and fenarimol on histology of reproductive organs of the copepod Acartia tonsa

    DEFF Research Database (Denmark)

    Watermann, Burkard T.; Albanis, Triantafyllos A.; Dagnac, Thierry

    2013-01-01

    and displayed deformations. In females, LET induced a disorder of oogenesis and disturbances in yolk synthesis. TPT stimulated the male reproductive system at 0.0014 and 0.0035μg TPT-SnL−1, whereas inhibiting effects were observed in the female gonad at 0.0088μg TPT-SnL−1. In FEN exposed females proliferation......, or the musculature were seen. This indicates that the effects on gonads might be caused rather by disturbance of endocrine signalling or interference with hormone metabolism than by general toxicity....

  16. Study of the oocyte degenerescence at mouse: role of the caspases and toxicity of natural uranium; Etude de la degenerescence ovocytaire chez la souris: role des caspases et toxicite de l'uranium naturel

    Energy Technology Data Exchange (ETDEWEB)

    Arnault, E

    2008-04-15

    The aim of this work is to estimate the uranium toxicity on the ovarian function and on the oocyte and more fundamentally to characterize the molecular ways regulating the oocyte degenerescence. At first, will be described the different exposure modes at uranium and the known toxic effects of this heavy metal on man and animal. The mechanisms regulating the follicle genesis and the oogenesis are then developed. At last, will be given the data available in literature and concerning the apoptosis ways intervening in the follicular atresia and in the oocyte degenerescence while referring to the known ways of the somatic cells. (O.M.)

  17. Investigation of histone H4 hyperacetylation dynamics in the 5S rRNA genes family by chromatin immunoprecipitation assay.

    Science.gov (United States)

    Burlibașa, Liliana; Suciu, Ilinca

    2015-12-01

    Oogenesis is a critical event in the formation of female gamete, whose role in development is to transfer genomic information to the next generation. During this process, the gene expression pattern changes dramatically concomitant with genome remodelling, while genomic information is stably maintained. The aim of the present study was to investigate the presence of H4 acetylation of the oocyte and somatic 5S rRNA genes in Triturus cristatus, using chromatin immunoprecipitation assay (ChIP). Our findings suggest that some epigenetic mechanisms such as histone acetylation could be involved in the transcriptional regulation of 5S rRNA gene families.

  18. Characterization of sur-2, a Novel Ras-Mediated Signal Transduction Component in C. elegans.

    Science.gov (United States)

    1998-01-01

    transcriptional regulation. Amino Acids Animal Host 1-462 rat 456-927 rat 947-1387 rat 950-963 rabbit 950-963 rat 1377-1390 rabbit 1377-1390... rat Methods /Results Numerous attempts have been made to raise anti-SUR-2 antibodies. The antigens used in these immunizations are summarized as...Wang, S. and Hazelrigg, T. (1994). Implications for bed mRNA localization from spatial distribution of exu protein in Drosophila oogenesis . Nature 369: 400-403.

  19. Retinoic acid, meiosis and germ cell fate in mammals.

    Science.gov (United States)

    Bowles, Josephine; Koopman, Peter

    2007-10-01

    Although mammalian sex is determined genetically, the sex-specific development of germ cells as sperm or oocytes is initiated by cues provided by the gonadal environment. During embryogenesis, germ cells in an ovary enter meiosis, thereby committing to oogenesis. By contrast, germ cells in a testicular environment do not enter meiosis until puberty. Recent findings indicate that the key to this sex-specific timing of meiosis entry is the presence or absence of the signaling molecule retinoic acid. Although this knowledge clarifies a long-standing mystery in reproductive biology, it also poses many new questions, which we discuss in this review.

  20. Smurfs have "fused" into the asymmetric division of stem cells

    Institute of Scientific and Technical Information of China (English)

    Steven Y. Cheng; Ying E. Zhang

    2011-01-01

    @@ The asymmetric cell division is the way in which a stem cell divides into one daughter stem cell and one differentiated daughter cell.This process is one of the key principles of developmental biology that ensures the perpetual supply of stem cells while allowing a particular cell lineage to be populated.During Drosophila oogenesis, the fate of the daughter stem cell produced from the asymmetric division of germline stem cells (GSCs) is specified by Decapentaplegic (Dpp), but the other daughter cell has almost equal access to the Dpp signal.

  1. Are queen ants inhibited by their own pheromone?

    DEFF Research Database (Denmark)

    Holman, L.; Leroy, C.; Jørgensen, Charlotte

    2013-01-01

    . Communication in social insects is predominantly chemical, and the mechanisms regulating processes such as reproductive division of labor are becoming increasingly well understood. Recently, a queen cuticular hydrocarbon (3-MeC31) that inhibits worker reproduction and aggression was isolated in the ant Lasius...... niger. Here, we find that this pheromone also has a weak negative effect on queen productivity and oogenesis. Because 3-MeC31 is present on both queens and their brood, we suggest that it is used by ants of both castes to adjust their fecundity to the amount of developing brood and the presence of other...

  2. Effects of Low Levels of Zinc on the Ovarian Development of Tilapia nilotica Linnaeus

    Directory of Open Access Journals (Sweden)

    Virginia Cariño

    1990-12-01

    Full Text Available Eight to ten days posthatch fry of Tilapia nilotica Linn. were exposed to sublethal levels of zinc, 2 mg/l and 5 mg/l. After 30 days, ovarian differentiation occurred in the unexposed fry while gonadal anlage of zinc-exposed fry contained still undifferentiated primordial germ cells (PGC. Normal oogenesis was exhibited by the unexposed ovaries after 57 days. Zinc caused alterations in the egg membrane layers. Histopathological changes as degeneration and hyperemia in treated ovaries were observed under the light and electron microscope.

  3. A role for WDR5 in TRA-1/Gli mediated transcriptional control of the sperm/oocyte switch in C. elegans.

    Science.gov (United States)

    Li, Tengguo; Kelly, William G

    2014-05-01

    The hermaphrodite germline of Caenorhabditis elegans initially engages in spermatogenesis and then switches to oogenesis during late stages of larval development. TRA-1, a member of the Ci/Gli family of transcriptional repressors, plays an essential role in this switch by repressing genes that promote spermatogenesis. WDR5 proteins are conserved components of histone methyltransferase complexes normally associated with gene activation. However, two C. elegans WDR5 homologs, wdr-5.1 and wdr-5.2 are redundantly required for normal TRA-1 dependent repression, and this function is independent of their roles in histone methylation. Animals lacking wdr-5.1/wdr-5.2 function fail to switch to oogenesis at 25°C, resulting in a masculinization of germline (Mog) phenotype. The Mog phenotype is caused by ectopic expression of fog-3, a direct target of TRA-1 repression. WDR-5.1 associates with the fog-3 promoter and is required for TRA-1 to bind to fog-3 promoter. Other direct targets of TRA-1 are similarly derepressed in the double mutant. These results show that WDR5 plays a novel and important role in stabilizing transcriptional repression during C. elegans sex determination, and provide evidence that this important protein may operate independently of its established role in histone methyltransferase complexes. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Behavioural and physiological responses to prey-related cues reflect higher competitiveness of invasive vs. native ladybirds.

    Science.gov (United States)

    Rondoni, Gabriele; Ielo, Fulvio; Ricci, Carlo; Conti, Eric

    2017-06-16

    Understanding the traits that might be linked with biological invasions represents a great challenge for preventing non-target effects on local biodiversity. In predatory insects, the ability to exploit habitats for oviposition and the physiological response to prey availability differs between species. Those species that respond more readily to environmental changes may confer to their offspring a competitive advantage over other species. Here, we tested the hypothesis that the invasive Harmonia axyridis (Coleoptera: Coccinellidae) makes better use of information from a plant-prey (Vicia faba - Aphis fabae) system compared to the native Oenopia conglobata. Y-tube olfactometer bioassays revealed that both species used olfactory cues from the system, but H. axyridis exhibited a more complete response. This species was also attracted by plants previously infested by aphids, indicating the capacity to exploit volatile synomones induced in plants by aphid attack. Oocyte resorption was investigated when different olfactory stimuli were provided under prey shortage and the readiness of new oogenesis was measured when prey was available again. H. axyridis exhibited higher plasticity in oogenesis related to the presence/absence of plant-aphid volatiles. Our results support the hypothesis that H. axyridis is more reactive than O. conglobata to olfactory cues from the plant-prey system.

  5. gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Francis, R.; Schedl, T. [Washington Univ. School of Medicine, St. Louis, MO (United States); Barton, M.K.; Kimble, J. [Univ. of Wisconsin, Madison, WI (United States)

    1995-02-01

    We have characterized 31 mutations in the gld-1 (defective in germline development) gene of Caenorhabditis elegans. In gld-1 (null) hermaphrodites, oogenesis is abolished and a germline tumor forms where oocyte development would normally occur. By contrast, gld-1 (null) males are unaffected. The hermaphrodite germline tumor appears to derive from germ cells that enter the meiotic pathway normally but then exit pachytene and return to the mitotic cycle. Certain gld-1 partial loss-of-function mutations also abolish oogenesis, but germ cells arrest in pachytene rather than returning to mitosis. Our results indicate that gld-1 is a tumor suppressor gene required for oocyte development. The tumorous phenotype suggests that gld-1(+) may function to negatively regulate proliferation during meiotic prophase and/or act to direct progression through meiotic prophase. We also show that gld-1(+) has an additional nonessential role in germline sex determination: promotion of hermaphrodite spermatogenesis. This function of gld-1 is inferred from a haplo-insufficient phenotype and from the properties of gain-of-function gld-1 mutations that cause alterations in the sexual identity of germ cells. 69 refs., 10 figs., 8 tabs.

  6. Initiation of two ovarian cell lines fromFugu rubripes (Temminck et. Schlegel)

    Institute of Scientific and Technical Information of China (English)

    ZHENG Debin; ZHANG Bo; SONG Wenping; PAN Luqing; MA Chao; XIAO Guangxia

    2015-01-01

    The ovary is an excellent system for studying stem cell renewal and differentiation, which is under the control of ovarian somatic cells. In order to understand oogenesis inFugu rubripes (Temminck et. Schlegel) as a marine fish model of aquaculture importance, we established cell lines called TSOC1 and TSOC2 from a juvenile ovary of this organism. TSOC1 is composed of spindle epithelial-like cells, while the other is cobblestone-like cells. Therefore, TSOC1 and TSOC2 appear to consist of ovarian somatic cells. Growth requirement condition was investigated including temperature, concentration of FBS and pH. Significant fluorescent signals were observed after TSOC1 and TSOC2 cells were transfected with pEGFP-N3 vector, indicating its potential utility for genetic manipulation such as gene function studies. It is shown that these cell lines are effective for infection by the turbot reddish body iridovirus and flounder lymphosystis disease virus as evidenced by the appearance of cytopathic effect and virus propagation in the virus-infected cells, and most convincingly, the observation of viral particles by electron microscopy, demonstrating that TSOC1 and TSOC2 are suitable to study interactions between virus and host cells. It is believed that TSOC1 and TSOC2 will be useful tools to study sex-related events and interactions between primordial germ cells and oogonia cells during oogenesis. Therefore, establishment of ovary cell lines fromFugu rubripes seems to be significant for those research areas.

  7. Noninheritable Maternal Factors Useful for Genetic Manipulation in Mammals.

    Science.gov (United States)

    Sakurai, Takayuki; Shindo, Takayuki; Sato, Masahiro

    2017-01-01

    Mammalian early embryogenesis is supported by maternal factors, such as messenger RNA (mRNA) and proteins, produced and accumulated during oogenesis at least up to the stage when zygotic activation commences. These maternal factors are involved in biologically important events such as epigenetic activation, reprogramming, and mitochondrial growth. Most of these maternal mRNAs are degraded by the 2-cell to 4 ~ 8-cell stages. Maternal proteins, which are produced during oogenesis or by the maternal mRNAs, are degraded by the 4 ~ 8-cell stage. In other words, the maternal factors exist during specific stages of early embryogenesis. In this chapter, we will briefly summarize the property of these maternal factors and mention possible applications of these factors for developing new reproduction engineering-related technologies and producing genetically modified animals. More specifically, we will show the usefulness of maternally accumulated Cas9 protein as a promising tool for CRISPR-/Cas9-based simultaneous genetic modification of multiple loci in mammals.

  8. Contribution of de novo synthesis of Gαs-proteins to 1-methyladenine production in starfish ovarian follicle cells stimulated by relaxin-like gonad-stimulating substance.

    Science.gov (United States)

    Mita, Masatoshi; Haraguchi, Shogo; Uzawa, Haruka; Tsutsui, Kazuyoshi

    2013-11-01

    In starfish, the peptide hormone gonad-stimulating substance (GSS) secreted from nervous tissue stimulates oocyte maturation to induce 1-methyladenine (1-MeAde) production by ovarian follicle cells. The hormonal action of GSS on follicle cells involves its receptor, G-proteins and adenylyl cyclase. However, GSS failed to induce 1-MeAde and cAMP production in follicle cells of ovaries during oogenesis. At the maturation stage, follicle cells acquired the potential to respond to GSS by producing 1-MeAde and cAMP. Adenylyl cyclase activity in follicle cells of fully grown stage ovaries was also stimulated by GSS in the presence of GTP. These activations depended on the size of oocytes in ovaries. The α subunit of Gs-proteins was not detected immunologically in follicle cells of oogenesis stage ovaries, although Gαi and Gαq were detectable. Using specific primers for Gαs and Gαi, expression levels of Gαs in follicle cells were found to increase significantly as the size of oocytes in ovaries increased, whereas the mRNA levels of Gαi were almost constant regardless of oocyte size. These findings strongly suggest the potential of follicle cells to respond to GSS by producing 1-MeAde and cAMP is brought by de novo synthesis of Gαs-proteins.

  9. Reproduction in two deep-sea anemones (Actiniaria); Phelliactis hertwigi and P. robusta

    Science.gov (United States)

    van Praët, M.; Rice, A. L.; Thurston, M. H.

    Bathymetric distribution, abundance, substrate choice and gametogenesis have been investigated in two species of deep-sea actiniarians found in the northeast Atlantic Ocean. Phelliactis hertwigi occurs at 719-1448m in the Porcupine Seabight, usually encloses a bolus of sediment within its highly concave pedal disc (79.7%), and has abundances of up to 14.5 individuals 1000m -2. Phelliactis robusta occurs at 1600-2173m in the Porcupine Seabight, but extends deeper in the Bay of Biscay. In areas of soft sediment it is associated strongly with clinker (92.7%) and attains densities of 2.9 individuals 1000m -2. Both species are dioecious. Their sperm appear similar to those of the related intertidal Calliactis spp. Previtellogenesis and vitellogenesis of the oocytes have been defined by ultrastructural and histochemical studies. In P. hertwigi mature oocytes measure up to 180μm, and to 210μm in P. robusta. In P. hertwigi oogenesis takes 8-9 months, with spawning in October/November, whereas in the deeper-living P. robusta oogenesis occupies 15 to 19 months and spawning occurs in April/ May. Evidence is produced to suggest that these two contrasting cycles are related to the rate and seasonality of deposition of organic matter to the deep-sea floor.

  10. C-terminal moiety of Tudor contains its in vivo activity in Drosophila.

    Directory of Open Access Journals (Sweden)

    Joël Anne

    Full Text Available BACKGROUND: In early Drosophila embryos, the germ plasm is localized to the posterior pole region and is partitioned into the germline progenitors, known as pole cells. Germ plasm, or pole plasm, contains the polar granules which form during oogenesis and are required for germline development. Components of these granules are also present in the perinuclear region of the nurse cells, the nuage. One such component is Tudor (Tud which is a large protein containing multiple Tudor domains. It was previously reported that specific Tudor domains are required for germ cell formation and Tud localization. METHODOLOGY/PRINCIPAL FINDINGS: In order to better understand the function of Tud the distribution and functional activity of fragments of Tud were analyzed. These fragments were fused to GFP and the fusion proteins were synthesized during oogenesis. Non-overlapping fragments of Tud were found to be able to localize to both the nuage and pole plasm. By introducing these fragments into a tud mutant background and testing their ability to rescue the tud phenotype, I determined that the C-terminal moiety contains the functional activity of Tud. Dividing this fragment into two parts reduces its localization in pole plasm and abolishes its activity. CONCLUSIONS/SIGNIFICANCE: I conclude that the C-terminal moiety of Tud contains all the information necessary for its localization in the nuage and pole plasm and its pole cell-forming activity. The present results challenge published data and may help refining the functional features of Tud.

  11. The methyltransferase Setdb1 is essential for meiosis and mitosis in mouse oocytes and early embryos.

    Science.gov (United States)

    Eymery, Angeline; Liu, Zichuan; Ozonov, Evgeniy A; Stadler, Michael B; Peters, Antoine H F M

    2016-08-01

    Oocytes develop the competence for meiosis and early embryogenesis during their growth. Setdb1 is a histone H3 lysine 9 (H3K9) methyltransferase required for post-implantation development and has been implicated in the transcriptional silencing of genes and endogenous retroviral elements (ERVs). To address its role in oogenesis and pre-implantation development, we conditionally deleted Setdb1 in growing oocytes. Loss of Setdb1 expression greatly impaired meiosis. It delayed meiotic resumption, altered the dynamics of chromatin condensation, and impaired kinetochore-spindle interactions, bipolar spindle organization and chromosome segregation in more mature oocytes. The observed phenotypes related to changes in abundance of specific transcripts in mutant oocytes. Setdb1 maternally deficient embryos arrested during pre-implantation development and showed comparable defects during cell cycle progression and in chromosome segregation. Finally, transcriptional profiling data indicate that Setdb1 downregulates rather than silences expression of ERVK and ERVL-MaLR retrotransposons and associated chimearic transcripts during oogenesis. Our results identify Setdb1 as a newly discovered meiotic and embryonic competence factor safeguarding genome integrity at the onset of life. © 2016. Published by The Company of Biologists Ltd.

  12. Integrin alpha chains exhibit distinct temporal and spatial localization patterns in epithelial cells of the Drosophila ovary.

    Science.gov (United States)

    Dinkins, Michael B; Fratto, Victoria M; Lemosy, Ellen K

    2008-12-01

    Integrins are heterodimeric transmembrane receptors that modulate cell adhesion, migration, and signaling. Multiple integrin chains contribute to development and morphogenesis of a given tissue. Here, we analyze the expression of Drosophila integrin alpha chains in the ovarian follicular epithelium, a model for tissue morphogenesis and cell migration. We find expression throughout development of the beta chain, betaPS. Alpha chains, however, exhibit both spatial and temporal expression differences. alphaPS1 and alphaPS2 integrins are detected during early and mid-oogenesis on apical, lateral, and basal membranes with the betaPS chain, whereas alphaPS3-family integrins (alphaPS3, alphaPS4, alphaPS5) are expressed in anterior cells late in oogenesis. Surprisingly, we find that alphaPS3-family integrins are dispensable for dorsal appendage morphogenesis but play a role in the final length of the egg, suggesting redundant functions of integrins in a simple tissue. We also demonstrate roles for alphaPS3betaPS integrin in border cell migration and in stretch cells.

  13. Analyses of the development and glycoproteins present in the ovarian follicles of Poecilia vivipara (Cyprinodontiformes, Poeciliidae

    Directory of Open Access Journals (Sweden)

    Thiago L. Rocha

    2011-01-01

    Full Text Available The morphofunctional aspects of oogenesis of Poecilia vivipara were studied aiming to understand the reproductive biology and development of species with internal fertilization, particularly those belonging to the family Poeciliidae. The stages of gonadal maturation and follicular development were characterized using mesoscopic, histological, histochemical, and lectin cytochemical analyses. Through mesoscopic evaluation the ovarian development was classified in six phases of development: immature, in maturation I, in maturation II, mature I, mature II, and post-spawn. Based on microscopic examination of the ovaries, we identified the presence of oocytes types I and II during the previtellogenic phase and types III, IV, and V during the vitellogenic phase. As oogenesis proceeded the oocyte cytosol increased in volume and presented increased cytoplasmic granule accumulation, characterizing vitellogenesis. The zona radiata (ZR increased in thickness and complexity, and the follicular epithelium, which was initially thin and consisting of pavimentous cells, in type III oocytes exhibited cubic simple cells. The histochemical and cytochemical analyses revealed alterations in the composition of the molecular structures that form the ovarian follicle throughout the gonadal development. Our study demonstrated differences in the female reproductive system among fish species with internal and external fertilization and we suggest P. vivipara can be used as experimental model to test environmental toxicity.

  14. Maternal Germinal Trisomy 21 in Down Syndrome

    Directory of Open Access Journals (Sweden)

    Maj A. Hultén

    2014-01-01

    Full Text Available It has now been over 50 years since it was discovered that Down syndrome is caused by an extra chromosome 21, i.e., trisomy 21. In the interim, it has become clear that in the majority of cases, the extra chromosome is inherited from the mother, and there is, in this respect, a strong maternal age effect. Numerous investigations have been devoted to clarifying the underlying mechanism, most recently suggesting that this situation is exceedingly complex, involving both biological and environmental factors. On the other hand, it has also been proposed that germinal trisomy 21 mosaicism, arising during the very early stages of maternal oogenesis with accumulation of trisomy 21 germ cells during subsequent development, may be the main predisposing factor. We present data here on the incidence of trisomy 21 mosaicism in a cohort of normal fetal ovarian samples, indicating that an accumulation of trisomy 21 germ cells does indeed take place during fetal oogenesis, i.e., from the first to the second trimester of pregnancy. We presume that this accumulation of trisomy 21 (T21 cells is caused by their delay in maturation and lagging behind the normal cells. We further presume that this trend continues during the third trimester of pregnancy and postnatally, up until ovulation, thereby explaining the maternal age effect in Down syndrome.

  15. Glycogen and Glucose Metabolism Are Essential for Early Embryonic Development of the Red Flour Beetle Tribolium castaneum

    Science.gov (United States)

    Fraga, Amanda; Ribeiro, Lupis; Lobato, Mariana; Santos, Vitória; Silva, José Roberto; Gomes, Helga; da Cunha Moraes, Jorge Luiz; de Souza Menezes, Jackson

    2013-01-01

    Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis) and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3) and hexokinase (HexA) genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi) of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen. PMID:23750237

  16. A germline-specific isoform of eIF4E (IFE-1) is required for efficient translation of stored mRNAs and maturation of both oocytes and sperm.

    Science.gov (United States)

    Henderson, Melissa A; Cronland, Elizabeth; Dunkelbarger, Steve; Contreras, Vince; Strome, Susan; Keiper, Brett D

    2009-05-15

    Fertility and embryonic viability are measures of efficient germ cell growth and development. During oogenesis and spermatogenesis, new proteins are required for both mitotic expansion and differentiation. Qualitative and quantitative changes in protein synthesis occur by translational control of mRNAs, mediated in part by eIF4E, which binds the mRNAs 5' cap. IFE-1 is one of five eIF4E isoforms identified in C. elegans. IFE-1 is expressed primarily in the germ line and associates with P granules, large mRNPs that store mRNAs. We isolated a strain that lacks IFE-1 [ife-1(bn127)] and demonstrated that the translation of several maternal mRNAs (pos-1, pal-1, mex-1 and oma-1) was inefficient relative to that in wild-type worms. At 25 degrees C, ife-1(bn127) spermatocytes failed in cytokinesis, prematurely expressed the pro-apoptotic protein CED-4/Apaf-1, and accumulated as multinucleate cells unable to mature to spermatids. A modest defect in oocyte development was also observed. Oocytes progressed normally through mitosis and meiosis, but subsequent production of competent oocytes became limiting, even in the presence of wild-type sperm. Combined gametogenesis defects decreased worm fertility by 80% at 20 degrees C; ife-1 worms were completely sterile at 25 degrees C. Thus, IFE-1 plays independent roles in late oogenesis and spermatogenesis through selective translation of germline-specific mRNAs.

  17. [The plate in the zone of oocyte and germinal epithelium contact in scyphomedusa Aurelia aurita binds antibodies to ZP-domain-containing protein mesoglein].

    Science.gov (United States)

    Adonin, L S; Podgornaia, O I; Matveev, I V; Shaposhnikova, T G

    2009-01-01

    Cnidaria are lower multicellular animals with the body consisting of two epithelial layers. An extracellular substance--mesoglea--is situated between epidermal and gastrodermal layers of these animals. Mesoglein is one of the major mesogleal proteins of adult medusa of Scyphozoan jellyfish Aurelia aurita. Search for the known domains in mesoglein amino acid sequence reveals prominent zona pellucida (ZP) domain (which was found at first in the mammal oocyte zona pellucida proteins), so the protein belongs to ZP family of extracellular matrix proteins and it is an early metazoan member of ZP-domain-containing protein family. However, nothing is known about oogenesis related ZP-domain proteins in the lower multicellular animals. Oogenesis in Scyphozoa is described poorly. In this work morphological features of the zone in contact area between the oocyte and the germinal epithelium were investigated in semi-fine sections: To make it more convenient we identified seven stages according to the oocyte size and the structure found in this area was named the plate. It was shown that the components of the plate bound specifically the antibodies against mesoglein. So it seems the plate material contains ZP-domain proteins. Electrophoresis and immunoblot results give evidence that the proteins immunologically related to mesoglein have a higher molecular mass. It might be due to either the posttranslational modifications of the precursors or that they represent other proteins of ZP-domain family in Cnidaria.

  18. Aurelia aurita (Cnidaria) oocytes' contact plate structure and development.

    Science.gov (United States)

    Adonin, Leonid S; Shaposhnikova, Tatyana G; Podgornaya, Olga

    2012-01-01

    One of the A. aurita medusa main mesoglea polypeptides, mesoglein, has been described previously. Mesoglein belongs to ZP-domain protein family and therefore we focused on A.aurita oogenesis. Antibodies against mesoglein (AB RA47) stain the plate in the place where germinal epithelium contacts oocyte on the paraffin sections. According to its position, we named the structure found the "contact plate". Our main instrument was AB against mesoglein. ZP-domain occupies about half of the whole amino acid sequence of the mesoglein. Immunoblot after SDS-PAGE and AU-PAGE reveals two charged and high M(r) bands among the female gonad germinal epithelium polypeptides. One of the gonads' polypeptides M(r) corresponds to that of mesogleal cells, the other ones' M(r) is higher. The morphological description of contact plate formation is the subject of the current work. Two types of AB RA47 positive granules were observed during progressive oogenesis stages. Granules form the contact plate in mature oocyte. Contact plate of A.aurita oocyte marks its animal pole and resembles Zona Pellucida by the following features: (1) it attracts spermatozoids; (2) the material of the contact plate is synthesized by oocyte and stored in granules; (3) these granules and the contact plate itself contain ZP domain protein(s); (4) contact plate is an extracellular structure made up of fiber bundles similar to those of conventional Zona Pellucida.

  19. Uncovering Notch pathway in the parasitic flatworm Schistosoma mansoni.

    Science.gov (United States)

    Magalhães, Lizandra G; Morais, Enyara R; Machado, Carla B; Gomes, Matheus S; Cabral, Fernanda J; Souza, Julia M; Soares, Cláudia S; Sá, Renata G; Castro-Borges, William; Rodrigues, Vanderlei

    2016-10-01

    Several signaling molecules that govern development in higher animals have been identified in the parasite Schistosoma mansoni, including the transforming growth factor β, protein tyrosine kinases, nuclear hormone receptors, among others. The Notch pathway is a highly conserved signaling mechanism which is involved in a wide variety of developmental processes including embryogenesis and oogenesis in worms and flies. Here we aimed to provide the molecular reconstitution of the Notch pathway in S. mansoni using the available transcriptome and genome databases. Our results also revealed the presence of the transcripts coded for SmNotch, SmSu(H), SmHes, and the gamma-secretase complex (SmNicastrin, SmAph-1, and SmPen-2), throughout all the life stages analyzed. Besides, it was observed that the viability and separation of adult worm pairs were not affected by treatment with N-[N(3,5)-difluorophenacetyl)-L-Alanyl]-S-phenylglycine t-butyl ester (DAPT), a Notch pathway inhibitor. Moreover, DAPT treatment decreased the production of phenotypically normal eggs and arrested their development in culture. Our results also showed a significant decrease in SmHes transcript levels in both adult worms and eggs treated with DAPT. These results provide, for the first time, functional validation of the Notch pathway in S. mansoni and suggest its involvement in parasite oogenesis and embryogenesis. Given the complexity of the Notch pathway, further experiments shall highlight the full repertoire of Notch-mediated cellular processes throughout the S. mansoni life cycle.

  20. Masculinization of female golden rabbitfish Siganus guttatus using an aromatase inhibitor treatment during sex differentiation.

    Science.gov (United States)

    Komatsu, Toru; Nakamura, Shigeo; Nakamura, Masaru

    2006-08-01

    To elucidate the involvement of endogenous estrogen (estradiol-17beta; E2) and the decisive factor (somatic or germinal element) in the ovarian differentiation of tropical marine teleosts, the effect of the aromatase inhibitor (AI) fadrozole on gonadal sex differentiation in the golden rabbitfish Siganus guttatus (Bloch) was examined for different dosages and periods of treatment. Fadrozole interrupted ovarian cavity formation at a dose of 500 microg g(-1) diet, while there was little effect at 10 or 100 microg g(-1). The gonads from both the 30-day and 90-day administration (500 microg g(-1) diet) groups were significantly biased toward testes (P=0.002 and <0.0001, respectively), which suggests strongly that E2 is involved in early ovarian differentiation and that its suppression is an indispensable condition for testicular differentiation in S. guttatus. The results from the two different AI treatment periods imply that the initial feminization of somatic gonadal elements determines subsequent ovarian differentiation, including oogenesis: a conclusion supported by the considerable time lag between ovarian cavity formation and subsequent oogenesis during normal ovarian differentiation in S. guttatus.

  1. Vertebrate extracellular preovulatory and postovulatory egg coats.

    Science.gov (United States)

    Menkhorst, Ellen; Selwood, Lynne

    2008-11-01

    Extracellular egg coats deposited by maternal or embryonic tissues surround all vertebrate conceptuses during early development. In oviparous species, the time of hatching from extracellular coats can be considered equivalent to the time of birth in viviparous species. Extracellular coats must be lost during gestation for implantation and placentation to occur in some viviparous species. In the most recent classification of vertebrate extracellular coats, Boyd and Hamilton (Cleavage, early development and implantation of the egg. In: Parkes AS (ed.), Marshall's Physiology of Reproduction, vol. 2, 3rd ed. London: Longmans, Green & Co; 1961:1-126) defined the coat synthesized by the oocyte during oogenesis as primary and the coat deposited by follicle cells surrounding the oocyte as secondary. Tertiary egg coats are those synthesized and deposited around the primary or secondary coat by the maternal reproductive tract. This classification is difficult to reconcile with recent data collected using modern molecular biological techniques that can accurately establish the site of coat precursor synthesis and secretion. We propose that a modification to the classification by Boyd and Hamilton is required. Vertebrate egg coats should be classed as belonging to the following two broad groups: the preovulatory coat, which is deposited during oogenesis by the oocyte or follicle cells, and the postovulatory coats, which are deposited after fertilization by the reproductive tract or conceptus. This review discusses the origin and classification of vertebrate extracellular preovulatory and postovulatory coats and illustrates what is known about coat homology between the vertebrate groups.

  2. Neurl4 contributes to germ cell formation and integrity in Drosophila

    Directory of Open Access Journals (Sweden)

    Jennifer Jones

    2015-08-01

    Full Text Available Primordial germ cells (PGCs form at the posterior pole of the Drosophila embryo, and then migrate to their final destination in the gonad where they will produce eggs or sperm. Studies of the different stages in this process, including assembly of germ plasm in the oocyte during oogenesis, specification of a subset of syncytial embryonic nuclei as PGCs, and migration, have been informed by genetic analyses. Mutants have defined steps in the process, and the identities of the affected genes have suggested biochemical mechanisms. Here we describe a novel PGC phenotype. When Neurl4 activity is reduced, newly formed PGCs frequently adopt irregular shapes and appear to bud off vesicles. PGC number is also reduced, an effect exacerbated by a separate role for Neurl4 in germ plasm formation during oogenesis. Like its mammalian homolog, Drosophila Neurl4 protein is concentrated in centrosomes and downregulates centrosomal protein CP110. Reducing CP110 activity suppresses the abnormal PGC morphology of Neurl4 mutants. These results extend prior analyses of Neurl4 in cultured cells, revealing a heightened requirement for Neurl4 in germ-line cells in Drosophila.

  3. Effects of aqueous extract from Asparagus officinalis L. roots on hypothalamic-pituitary-gonadal axis hormone levels and the number of ovarian follicles in adult rats

    Directory of Open Access Journals (Sweden)

    Hojatollah Karimi Jashni

    2016-02-01

    Full Text Available Background: Asparagus is a plant with high nutritional, pharmaceutical, and industrial values. Objective: The present study aimed to evaluate the effect of aqueous extract of asparagus roots on the hypothalamic-pituitary-gonadal axis hormones and oogenesis in female rats. Materials and Methods: In this experimental study, 40 adult female Wistar rats were divided into five groups, which consist 8 rats. Groups included control, sham and three experimental groups receiving different doses (100, 200, 400 mg/kg/bw of aqueous extract of asparagus roots. All dosages were administered orally for 28 days. Blood samples were taken from rats to evaluate serum levels of Gonadotropin releasing hormone (GnRH, follicular stimulating hormone (FSH, Luteinal hormone (LH, estrogen, and progesterone hormones. The ovaries were removed, weighted, sectioned, and studied by light microscope. Results: Dose-dependent aqueous extract of asparagus roots significantly increased serum levels of GnRH, FSH, LH, estrogen, and progestin hormones compared to control and sham groups. Increase in number of ovarian follicles and corpus luteum in groups treated with asparagus root extract was also observed (p<0.05. Conclusion: Asparagus roots extract stimulates secretion of hypothalamic- pituitary- gonadal axis hormones. This also positively affects oogenesis in female rats.

  4. Impact of glycosylation on the unimpaired functions of the sperm.

    Science.gov (United States)

    Cheon, Yong-Pil; Kim, Chung-Hoon

    2015-09-01

    One of the key factors of early development is the specification of competence between the oocyte and the sperm, which occurs during gametogenesis. However, the starting point, growth, and maturation for acquiring competence during spermatogenesis and oogenesis in mammals are very different. Spermatogenesis includes spermiogenesis, but such a metamorphosis is not observed during oogenesis. Glycosylation, a ubiquitous modification, is a preliminary requisite for distribution of the structural and functional components of spermatids for metamorphosis. In addition, glycosylation using epididymal or female genital secretory glycans is an important process for the sperm maturation, the acquisition of the potential for fertilization, and the acceleration of early embryo development. However, nonemzymatic unexpected covalent bonding of a carbohydrate and malglycosylation can result in falling fertility rates as shown in the diabetic male. So far, glycosylation during spermatogenesis and the dynamics of the plasma membrane in the process of capacitation and fertilization have been evaluated, and a powerful role of glycosylation in spermatogenesis and early development is also suggested by structural bioinformatics, functional genomics, and functional proteomics. Further understanding of glycosylation is needed to provide a better understanding of fertilization and embryo development and for the development of new diagnostic and therapeutic tools for infertility.

  5. Insect gravitational biology: ground-based and shuttle flight experiments using the beetle Tribolium castaneum

    Science.gov (United States)

    Bennett, R. L.; Abbott, M. K.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Many of the traditional experimental advantages of insects recommend their use in studies of gravitational and space biology. The fruit fly, Drosophila melanogaster, is an obvious choice for studies of the developmental significance of gravity vectors because of the unparalleled description of regulatory mechanisms controlling oogenesis and embryogenesis. However, we demonstrate that Drosophila could not survive the conditions mandated for particular flight opportunities on the Space Shuttle. With the exception of Drosophila, the red flour beetle, Tribolium castaneum, is the insect best characterized with respect to molecular embryology and most frequently utilized for past space flights. We show that Tribolium is dramatically more resistant to confinement in small sealed volumes. In preparation for flight experiments we characterize the course and timing of the onset of oogenesis in newly eclosed adult females. Finally, we present results from two shuttle flights which indicate that a number of aspects of the development and function of the female reproductive system are not demonstrably sensitive to microgravity. Available information supports the utility of this insect for future studies of gravitational biology.

  6. MYBL2 guides autophagy suppressor VDAC2 in the developing ovary to inhibit autophagy through a complex of VDAC2-BECN1-BCL2L1 in mammals.

    Science.gov (United States)

    Yuan, Jia; Zhang, Ying; Sheng, Yue; Fu, Xiazhou; Cheng, Hanhua; Zhou, Rongjia

    2015-01-01

    Oogenesis is essential for female gamete production in mammals. The total number of ovarian follicles is determined early in life and production of ovarian oocytes is thought to stop during the lifetime. However, the molecular mechanisms underling oogenesis, particularly autophagy regulation in the ovary, remain largely unknown. Here, we reveal an important MYBL2-VDAC2-BECN1-BCL2L1 pathway linking autophagy suppression in the developing ovary. The transcription factors GATA1 and MYBL2 can bind to and activate the Vdac2 promoter. MYBL2 regulates the spatiotemporal expression of VDAC2 in the developing ovary. Strikingly, in the VDAC2 transgenic pigs (Sus scrofa/Ss), VDAC2 exerts its function by inhibiting autophagy in the ovary. In contrast, Vdac2 knockout promotes autophagy. Moreover, VDAC2-mediated autophagy suppression is dependent on its interactions with both BECN1 and BCL2L1 to stabilize the BECN1 and BCL2L1 complex, suggesting VDAC2 as an autophagy suppressor in the pathway. Our findings provide a functional connection among the VDAC2, MYBL2, the BECN1-BCL2L1 pathway and autophagy suppression in the developing ovary, which is implicated in improving female fecundity.

  7. Glycogen and glucose metabolism are essential for early embryonic development of the red flour beetle Tribolium castaneum.

    Science.gov (United States)

    Fraga, Amanda; Ribeiro, Lupis; Lobato, Mariana; Santos, Vitória; Silva, José Roberto; Gomes, Helga; da Cunha Moraes, Jorge Luiz; de Souza Menezes, Jackson; de Oliveira, Carlos Jorge Logullo; Campos, Eldo; da Fonseca, Rodrigo Nunes

    2013-01-01

    Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis) and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3) and hexokinase (HexA) genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi) of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen.

  8. Cytoplasmic streaming in Drosophila oocytes varies with kinesin activity and correlates with the microtubule cytoskeleton architecture.

    Science.gov (United States)

    Ganguly, Sujoy; Williams, Lucy S; Palacios, Isabel M; Goldstein, Raymond E

    2012-09-18

    Cells can localize molecules asymmetrically through the combined action of cytoplasmic streaming, which circulates their fluid contents, and specific anchoring mechanisms. Streaming also contributes to the distribution of nutrients and organelles such as chloroplasts in plants, the asymmetric position of the meiotic spindle in mammalian embryos, and the developmental potential of the zygote, yet little is known quantitatively about the relationship between streaming and the motor activity which drives it. Here we use Particle Image Velocimetry to quantify the statistical properties of Kinesin-dependent streaming during mid-oogenesis in Drosophila. We find that streaming can be used to detect subtle changes in Kinesin activity and that the flows reflect the architecture of the microtubule cytoskeleton. Furthermore, based on characterization of the rheology of the cytoplasm in vivo, we establish estimates of the number of Kinesins required to drive the observed streaming. Using this in vivo data as the basis of a model for transport, we suggest that the disordered character of transport at mid-oogenesis, as revealed by streaming, is an important component of the localization dynamics of the body plan determinant oskar mRNA.

  9. Aspectos reprodutivos de Sphoeroides greeleyi (Gilbert, Pisces, Osteichthyes, Tetraodontidae, da gamboa do Baguaçu, Baia De Paranaguá, Paraná, Brasil Reproductive aspects of Sphoeroides greeleyi (Gilbert, Tetraodontidae, from gamboa do Baguaçu, Paranaguá, State of Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Yart Damasceno Schultz

    2002-03-01

    Full Text Available The present study analyses the reproductive aspects of Sphoeroides greeleyi (Gilbert, 1900, such as morphology and histochemistry of carbohydrates in the oogenesis phases, maturity scale, time and type of spawn, sexual rate and first ripened mature size for females. From the monthly captured animais (Nov 1998 to Nov 1999 the morphometric data (entire length and total weight were extracted and the sex and the gonadal maturity were determined. Some ovaries were prepared for microscopic analysis that charac-terized six phases for the development of the ovarian folheies. Through the carbohydrates analysis the acid carbohydrates could be related to the oogenesis maintenance and the neutral carbohydrates to the beginning of embryonic development. A maturity scale containing six stages of gonadal development was determined. The reproductive period is between August and January and the spawn time is from October to January. The first ripened mature size for females oceurs between 6,5cm and 7.5 cm of total length. The sexual rate shows that there are more females than males during the reproductive period.

  10. In Situ Labeling of Mitochondrial DNA Replication in Drosophila Adult Ovaries by EdU Staining.

    Science.gov (United States)

    Chen, Zhe; Xu, Hong

    2016-10-15

    The mitochondrial genome is inherited exclusively through the maternal line. Understanding of how the mitochondrion and its genome are proliferated and transmitted from one generation to the next through the female oocyte is of fundamental importance. Because of the genetic tractability, and the elegant, ordered simplicity by which oocyte development proceeds, Drosophila oogenesis has become an invaluable system for mitochondrial study. An EdU (5-ethynyl-2´-deoxyuridine) labeling method was utilized to detect mitochondrial DNA (mtDNA) replication in Drosophila ovaries. This method is superior to the BrdU (5-bromo-2'-deoxyuridine) labeling method in that it allows for good structural preservation and efficient fluorescent dye penetration of whole-mount tissues. Here we describe a detailed protocol for labeling replicating mitochondrial DNA in Drosophila adult ovaries with EdU. Some technical solutions are offered to improve the viability of the ovaries, maintain their health during preparation, and ensure high-quality imaging. Visualization of newly synthesized mtDNA in the ovaries not only reveals the striking temporal and spatial pattern of mtDNA replication through oogenesis, but also allows for simple quantification of mtDNA replication under various genetic and pharmacological perturbations.

  11. The impact of host diet on Wolbachia titer in Drosophila.

    Science.gov (United States)

    Serbus, Laura R; White, Pamela M; Silva, Jessica Pintado; Rabe, Amanda; Teixeira, Luis; Albertson, Roger; Sullivan, William

    2015-03-01

    While a number of studies have identified host factors that influence endosymbiont titer, little is known concerning environmental influences on titer. Here we examined nutrient impact on maternally transmitted Wolbachia endosymbionts in Drosophila. We demonstrate that Drosophila reared on sucrose- and yeast-enriched diets exhibit increased and reduced Wolbachia titers in oogenesis, respectively. The yeast-induced Wolbachia depletion is mediated in large part by the somatic TOR and insulin signaling pathways. Disrupting TORC1 with the small molecule rapamycin dramatically increases oocyte Wolbachia titer, whereas hyper-activating somatic TORC1 suppresses oocyte titer. Furthermore, genetic ablation of insulin-producing cells located in the Drosophila brain abolished the yeast impact on oocyte titer. Exposure to yeast-enriched diets altered Wolbachia nucleoid morphology in oogenesis. Furthermore, dietary yeast increased somatic Wolbachia titer overall, though not in the central nervous system. These findings highlight the interactions between Wolbachia and germline cells as strongly nutrient-sensitive, and implicate conserved host signaling pathways by which nutrients influence Wolbachia titer.

  12. The impact of host diet on Wolbachia titer in Drosophila.

    Directory of Open Access Journals (Sweden)

    Laura R Serbus

    2015-03-01

    Full Text Available While a number of studies have identified host factors that influence endosymbiont titer, little is known concerning environmental influences on titer. Here we examined nutrient impact on maternally transmitted Wolbachia endosymbionts in Drosophila. We demonstrate that Drosophila reared on sucrose- and yeast-enriched diets exhibit increased and reduced Wolbachia titers in oogenesis, respectively. The yeast-induced Wolbachia depletion is mediated in large part by the somatic TOR and insulin signaling pathways. Disrupting TORC1 with the small molecule rapamycin dramatically increases oocyte Wolbachia titer, whereas hyper-activating somatic TORC1 suppresses oocyte titer. Furthermore, genetic ablation of insulin-producing cells located in the Drosophila brain abolished the yeast impact on oocyte titer. Exposure to yeast-enriched diets altered Wolbachia nucleoid morphology in oogenesis. Furthermore, dietary yeast increased somatic Wolbachia titer overall, though not in the central nervous system. These findings highlight the interactions between Wolbachia and germline cells as strongly nutrient-sensitive, and implicate conserved host signaling pathways by which nutrients influence Wolbachia titer.

  13. Combined activities of Gurken and decapentaplegic specify dorsal chorion structures of the Drosophila egg.

    Science.gov (United States)

    Peri, F; Roth, S

    2000-02-01

    During Drosophila oogenesis Gurken, associated with the oocyte nucleus, activates the Drosophila EGF receptor in the follicular epithelium. Gurken first specifies posterior follicle cells, which in turn signal back to the oocyte to induce the migration of the oocyte nucleus from a posterior to an anterior-dorsal position. Here, Gurken signals again to specify dorsal follicle cells, which give rise to dorsal chorion structures including the dorsal appendages. If Gurken signaling is delayed and starts after stage 6 of oogenesis the nucleus remains at the posterior pole of the oocyte. Eggs develop with a posterior ring of dorsal appendage material that is produced by main-body follicle cells expressing the gene Broad-Complex. They encircle terminal follicle cells expressing variable amounts of the TGFbeta homologue, decapentaplegic. By ectopically expressing decapentaplegic and clonal analysis with Mothers against dpp we show that Decapentaplegic signaling is required for Broad-Complex expression. Thus, the specification and positioning of dorsal appendages along the anterior-posterior axis depends on the intersection of both Gurken and Decapentaplegic signaling. This intersection also induces rhomboid expression and thereby initiates the positive feedback loop of EGF receptor activation, which positions the dorsal appendages along the dorsal-ventral egg axis.

  14. The strength and timing of the mitochondrial bottleneck in salmon suggests a conserved mechanism in vertebrates.

    Directory of Open Access Journals (Sweden)

    Jonci N Wolff

    Full Text Available In most species mitochondrial DNA (mtDNA is inherited maternally in an apparently clonal fashion, although how this is achieved remains uncertain. Population genetic studies show not only that individuals can harbor more than one type of mtDNA (heteroplasmy but that heteroplasmy is common and widespread across a diversity of taxa. Females harboring a mixture of mtDNAs may transmit varying proportions of each mtDNA type (haplotype to their offspring. However, mtDNA variants are also observed to segregate rapidly between generations despite the high mtDNA copy number in the oocyte, which suggests a genetic bottleneck acts during mtDNA transmission. Understanding the size and timing of this bottleneck is important for interpreting population genetic relationships and for predicting the inheritance of mtDNA based disease, but despite its importance the underlying mechanisms remain unclear. Empirical studies, restricted to mice, have shown that the mtDNA bottleneck could act either at embryogenesis, oogenesis or both. To investigate whether the size and timing of the mitochondrial bottleneck is conserved between distant vertebrates, we measured the genetic variance in mtDNA heteroplasmy at three developmental stages (female, ova and fry in chinook salmon and applied a new mathematical model to estimate the number of segregating units (N(e of the mitochondrial bottleneck between each stage. Using these data we estimate values for mtDNA Ne of 88.3 for oogenesis, and 80.3 for embryogenesis. Our results confirm the presence of a mitochondrial bottleneck in fish, and show that segregation of mtDNA variation is effectively complete by the end of oogenesis. Considering the extensive differences in reproductive physiology between fish and mammals, our results suggest the mechanism underlying the mtDNA bottleneck is conserved in these distant vertebrates both in terms of it magnitude and timing. This finding may lead to improvements in our understanding of

  15. Identification of differentially expressed ovarian genes during primary and early secondary oocyte growth in coho salmon, Oncorhynchus kisutch

    Directory of Open Access Journals (Sweden)

    Iliev Dimitar B

    2008-01-01

    Full Text Available Abstract Background The aim of this study was to identify differentially expressed ovarian genes during primary and early secondary oocyte growth in coho salmon, a semelparous teleost that exhibits synchronous follicle development. Methods Reciprocal suppression subtractive hybridization (SSH libraries were generated from ovaries with perinucleolus (P or cortical alveolus (CA stage follicles and selected genes were assessed with quantitative PCR (qPCR. An assessment of changes in RNA composition during oocyte growth and its relationship to transcript levels was also conducted. Results SSH revealed several differentially expressed genes during early oogenesis, some which will not likely be utilized until 1–3 years later in salmon. Zona pellucida glycoprotein (zp genes, vitellogenin receptor (vldlr isoforms, cathepsin B (ctsba, cyclin E (ccne, a DnaJ transcript (dnaja2, and a ferritin subunit (fth3 were significantly elevated at the P stage, while a C-type lectin, retinol dehydrogenase (rdh1, and a coatomer protein subunit (cope were upregulated at the CA stage. Putative follicle cell transcripts such as anti-Müllerian hormone (amh, lipoprotein lipase (lpl, apolipoprotein E (apoe, gonadal soma-derived growth factor (gsdf and follicle-stimulating hormone receptor (fshr also increased significantly at the CA stage. The analysis of RNA composition during oocyte growth showed that the total RNA yield and proportion of messenger RNA relative to non-polyadenylated RNAs declined as oogenesis progressed. This influenced apparent transcript levels depending on the type of RNA template used and normalization method. Conclusion In coho salmon, which exhibit a dramatic change in oocyte size and RNA composition during oogenesis, use of messenger RNA as template and normalization of qPCR data to a housekeeping gene, ef1a, yielded results that best reflected transcript abundance within the ovarian follicle. Synthesis of zp transcripts and proteins involved in

  16. Aging and the germ line: where mortality and immortality meet.

    Science.gov (United States)

    Jones, D Leanne

    2007-01-01

    Germ cells are highly specialized cells that form gametes, and they are the only cells within an organism that contribute genes to offspring. Germline stem cells (GSCs) sustain gamete production, both oogenesis (egg production) and spermatogenesis (sperm production), in many organisms. Since the genetic information contained within germ cells is passed from generation to generation, the germ line is often referred to as immortal. Therefore, it is possible that germ cells possess unique strategies to protect and transmit the genetic information contained within them indefinitely. However, aging often leads to a dramatic decrease in gamete production and fecundity. In addition, single gene mutations affecting longevity often have a converse effect on reproduction. Recent studies examining age-related changes in GSC number and activity, as well as changes to the stem cell microenvironment, provide insights into the mechanisms underlying the observed reduction in gametogenesis over the lifetime of an organism.

  17. Amphibians as Model Organisms for Studying the Dynamics of Eukaryote Genetic Material Architecture

    Directory of Open Access Journals (Sweden)

    Burlibaşa, L.

    2005-06-01

    Full Text Available Amphibians have played a key role in the elucidation of the mechanisms of early development over the last century. Much of our knowledge about the mechanisms of vertebrate early development comes from studies using Xenopus laevis. Xenopus sp. is a major contributor to our understanding of cell biological and biochemical processes, including: (1 chromosome replication; (2 chromatin, cytoskeleton and nuclear assembly; (3 cell cycle progression and (4 intracellular signaling. Amphibian embryos remained the embryos of choice for experimental embryology for many decades. European embryologists used predominantly urodele embryos (such as Triturus and embryos of the frog Rana temporaria, which is related to the North American species Rana pipiens. Using light, fluorescence, transmission electron microscopy (TEM and molecular investigations, some peculiar aspects of chromatin and chromosome organization and evolution in oogenesis and spermatogenesis of amphibians were investigated. We have focused our investigations on dynamics of the chromatin structure in different stages of development.

  18. Mitochondrial dynamics and inheritance during cell division, development and disease.

    Science.gov (United States)

    Mishra, Prashant; Chan, David C

    2014-10-01

    During cell division, it is critical to properly partition functional sets of organelles to each daughter cell. The partitioning of mitochondria shares some common features with that of other organelles, particularly in the use of interactions with cytoskeletal elements to facilitate delivery to the daughter cells. However, mitochondria have unique features - including their own genome and a maternal mode of germline transmission - that place additional demands on this process. Consequently, mechanisms have evolved to regulate mitochondrial segregation during cell division, oogenesis, fertilization and tissue development, as well as to ensure the integrity of these organelles and their DNA, including fusion-fission dynamics, organelle transport, mitophagy and genetic selection of functional genomes. Defects in these processes can lead to cell and tissue pathologies.

  19. A thirty million year-old inherited heteroplasmy.

    Directory of Open Access Journals (Sweden)

    Vincent Doublet

    Full Text Available Due to essentially maternal inheritance and a bottleneck effect during early oogenesis, newly arising mitochondrial DNA (mtDNA mutations segregate rapidly in metazoan female germlines. Consequently, heteroplasmy (i.e. the mixture of mtDNA genotypes within an organism is generally resolved to homoplasmy within a few generations. Here, we report an exceptional transpecific heteroplasmy (predicting an alanine/valine alloacceptor tRNA change that has been stably inherited in oniscid crustaceans for at least thirty million years. Our results suggest that this heteroplasmy is stably transmitted across generations because it occurs within mitochondria and therefore escapes the mtDNA bottleneck that usually erases heteroplasmy. Consistently, at least two oniscid species possess an atypical trimeric mitochondrial genome, which provides an adequate substrate for the emergence of a constitutive intra-mitochondrial heteroplasmy. Persistence of a mitochondrial polymorphism on such a deep evolutionary timescale suggests that balancing selection may be shaping mitochondrial sequence evolution in oniscid crustaceans.

  20. Transcriptional properties and splicing of the flamenco piRNA cluster.

    Science.gov (United States)

    Goriaux, Coline; Desset, Sophie; Renaud, Yoan; Vaury, Chantal; Brasset, Emilie

    2014-04-01

    In Drosophila, the piRNA cluster, flamenco, produces most of the piRNAs (PIWI-interacting RNAs) that silence transposable elements in the somatic follicle cells during oogenesis. These piRNAs are thought to be processed from a long single-stranded precursor transcript. Here, we demonstrate that flamenco transcription is initiated from an RNA polymerase II promoter containing an initiator motif (Inr) and downstream promoter element (DPE) and requires the transcription factor, Cubitus interruptus. We show that the flamenco precursor transcript undergoes differential alternative splicing to generate diverse RNA precursors that are processed to piRNAs. Our data reveal dynamic processing steps giving rise to piRNA cluster precursors.

  1. Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice

    Energy Technology Data Exchange (ETDEWEB)

    Leland, Shawn; Nagarajan, Prabakaran; Polyzos, Aris; Thomas, Sharon; Samaan, George; Donnell, Robert; Marchetti, Francesco; Venkatachalam, Sundaresan

    2009-06-24

    Aneuploidy, the most common chromosomal abnormality at birth and the main ascertained cause of pregnancy loss in humans, originates primarily from chromosome segregation errors during oogenesis. Here we report that heterozygosity for a mutation in the mitotic checkpoint kinase gene, Bub1, induces aneuploidy in female germ cells of mice, and that the effect increases with advancing maternal age. Analysis of Bub1 heterozygous oocytes showed that aneuploidy occurred primarily during the first meiotic division and involved premature sister chromatid separation. Furthermore, aneuploidy was inherited in zygotes and resulted in the loss of embryos after implantation. The incidence of aneuploidy in zygotes was sufficient to explain the reduced litter size in matings with Bub1 heterozygous females. No effects were seen in germ cells from heterozygous males. These findings show that Bub1 dysfunction is linked to inherited aneuploidy in female germ cells and may contribute to the maternal age-related increase in aneuploidy and pregnancy loss.

  2. Spontaneous event of mitochondrial DNA mutation, A3243G, found in a family of identical twins.

    Science.gov (United States)

    Harihara, Shinji; Nakamura, Kennichi; Takubo, Kaiyo; Takeuchi, Fujio

    2013-04-01

    A mutation in mitochondrial DNA (mtDNA) A3243G is an important cause of some serious mitochondrial diseases, and maternal inheritance of the mutation has been reported. In order to investigate the heredity of the mutation, we measured the ratio of the mutated mtDNA molecule among 32 families of identical twins. Both twins from one family showed 20.16% and 18.49% mutated molecules, and the level is significantly high in comparison with members of other families and control subjects (0.23-0.86%). Their parents, however, showed normal level of mutated molecules (0.70% and 0.66%). The high-level mutation of the twins may be due to a spontaneous event, which occurred during development of germ line of their mother, or oogenesis of their mother, or during early stage of their development.

  3. First report of a patient with a mixoploidy 47,XXX/94,XXXXXX.

    Science.gov (United States)

    Rodríguez Criado, G; Galán Gómez, E; Tizzano, E F; García Rodríguez, E; Gómez de Terreros, I

    2007-01-01

    We present a 16 years old female with a chromosomal mixoploidy and multiple phenotypic anomalies. Peripheral blood G-band karyotype was 47,XXX and her skin fibroblast karyotype revealed a mosaic with a 47,XXX cell line in 88% of metaphases and a 94,XXXXXX cell line in 12% of metaphases, consistent with a hypertetraploidy. The most prominent clinical signs were: short stature, left upper limb asymmetry, senile-like appearance, generalized hypertrichosis, and small hands and feet. Radiological examination showed bone dysplasia. The result of molecular studies demonstrated that the patient inherited the two X chromosomes from the mother and one from the father, indicating that her 47,XXX trisomy resulted from an oogenesis error in the first meiotic division. The 94,XXXXXX cell line was likely the result of a cytokinesis error. To our knowledge, this is the first documented patient with a trisomy and a hypertetraploidy.

  4. Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA

    DEFF Research Database (Denmark)

    Rebolledo-Jaramillo, Boris; Su, Marcia Shu-Wei; Stoler, Nicholas

    2014-01-01

    The manifestation of mitochondrial DNA (mtDNA) diseases depends on the frequency of heteroplasmy (the presence of several alleles in an individual), yet its transmission across generations cannot be readily predicted owing to a lack of data on the size of the mtDNA bottleneck during oogenesis......, an order of magnitude higher than for nuclear DNA. Notably, we found a positive association between the number of heteroplasmies in a child and maternal age at fertilization, likely attributable to oocyte aging. This study also took advantage of droplet digital PCR (ddPCR) to validate heteroplasmies...... and confirm a de novo mutation. Our results can be used to predict the transmission of disease-causing mtDNA variants and illuminate evolutionary dynamics of the mitochondrial genome....

  5. BmECM25, from the silkworm Bombyx mori, is an extracellular matrix protein.

    Science.gov (United States)

    Zou, Ziliang; Xu, Yunmin; Ma, Bi; Xiang, Zhonghuai; He, Ningjia

    2015-10-01

    BmECM25 (previously reported as BmVMP25) was previously predicted as a gene encoding the vitelline membrane protein in silkworm, Bombyx mori. In this study, we investigated the detail temporal and spatial patterns of BmECM25 protein. Western blot results showed that BmECM25 was expressed in the follicular epithelium cells from stages -6 to +1, and was then secreted into the oocytes. However, the abundance of BmECM25 decreased during the subsequent oogenesis and finally disappeared in the mature follicles. Immunofluorescence detection showed that BmECM25 locates inside the VM layer and forms a discontinuous layer. These features of BmECM25 suggest that it is an oocyte membrane matrix protein, not a vitelline membrane protein.

  6. Effects of precocene and azadirachtin in Rhodnius prolixus: some data on development and reproduction

    Directory of Open Access Journals (Sweden)

    Eloi S. Garcia

    1987-01-01

    Full Text Available The results presented in this paper clearly indicate that precocene and azadirachtin are effective inhibitors of moulting and reproduction in the hemipteran Rhodnius prolixus. The time of application is important and only applications of these substances early in the intermoulting period cause their effects in nymphs. The inhibition of moulting is fully reversed by ecdysone therapy. Precocene and azadirachtin also affected drastically the oogenesis and egg deposition in this insect. Precocene-induced sterilization is reversed by application of juvenile hormone III. However, this hormone is unable to reverse the effect of azadirachtin on reproduction. Ecdysteroid titers in nymphs and adult females are decreased by these treatments. In vitro analysis suggest that precocene and azadirachtin may act directly on the prothoracic glands and ovaries producing ecdysteroids. Based on these and other findings the possible mode of action of these compounds on the development and reproduction of Rhodnius prolixus is discussed.

  7. β-Spectrin regulates the hippo signaling pathway and modulates the basal actin network.

    Science.gov (United States)

    Wong, Kenneth Kin Lam; Li, Wenyang; An, Yanru; Duan, Yangyang; Li, Zhuoheng; Kang, Yibin; Yan, Yan

    2015-03-01

    Emerging evidence suggests functional regulation of the Hippo pathway by the actin cytoskeleton, although the detailed molecular mechanism remains incomplete. In a genetic screen, we identified a requirement for β-Spectrin in the posterior follicle cells for the oocyte repolarization process during Drosophila mid-oogenesis. β-spectrin mutations lead to loss of Hippo signaling activity in the follicle cells. A similar reduction of Hippo signaling activity was observed after β-Spectrin knockdown in mammalian cells. We further demonstrated that β-spectrin mutations disrupt the basal actin network in follicle cells. The abnormal stress fiber-like actin structure on the basal side of follicle cells provides a likely link between the β-spectrin mutations and the loss of the Hippo signaling activity phenotype.

  8. Effect of growth hormone on testicular dysfunction induced by methotrexate in rats.

    Science.gov (United States)

    Nouri, H Serati; Azarmi, Y; Movahedin, M

    2009-04-01

    Methotrexate (MTX) is a chemotherapeutic agent causing defective oogenesis and spermatogenesis. This study was performed to assess the role of human growth hormone (GH) on testis recovery after treatment with MTX. Forty male Wistar rats were selected and randomly divided into four groups (n = 10): control (vehicle), GH group (0.3 mg kg(-1) GH for 28 days, IP), MTX group (MTX 1 mg kg(-1) week(-1) for 4 weeks, IP) and GH/MTX group (0.3 mg kg(-1) GH for 28 day plus 1 mg kg(-1) week(-1) MTX for 4 weeks, IP). On days 14 and 28, five rats from each group were killed, testes of rats of all groups were removed, spermatozoa were collected from epididymis and then prepared for analysis. MTX caused significant increase in interstitial tissue and capsular thickness and decrease of testicular and body weight (P rat testes and thus improved sperm parameters.

  9. Production of fat-1 transgenic rats using a post-natal female germline stem cell line.

    Science.gov (United States)

    Zhou, Li; Wang, Lei; Kang, Jing X; Xie, Wenhai; Li, Xiaoyong; Wu, Changqing; Xu, Bo; Wu, Ji

    2014-03-01

    Germline stem cell lines possess the abilities of self-renewal and differentiation, and have been established from both mouse and human ovaries. Here, we established a new female germline stem cell (FGSC) line from post-natal rats by immunomagnetic sorting for Fragilis, which showed a normal karyotype, high telomerase activity, and a consistent gene expression pattern of primordial germ cells after 1 year of culture. Using an in vitro differentiation system, the FGSC line could differentiate into oocytes. After liposome-based transfection with green fluorescent protein (GFP) or fat-1 vectors, the FGSCs were transplanted into the ovaries of infertile rats. The transplanted FGSCs underwent oogenesis, and the rats produced offspring carrying the GFP or fat-1 transgene after mating with wild-type male rats. The efficiency of gene transfer was 27.86-28.00%, and 2 months was needed to produce transgenic rats. These findings have implications in biomedical research and potential applications in biotechnology.

  10. Calcium ion currents mediating oocyte maturation events

    Directory of Open Access Journals (Sweden)

    Tosti Elisabetta

    2006-05-01

    Full Text Available Abstract During maturation, the last phase of oogenesis, the oocyte undergoes several changes which prepare it to be ovulated and fertilized. Immature oocytes are arrested in the first meiotic process prophase, that is morphologically identified by a germinal vesicle. The removal of the first meiotic block marks the initiation of maturation. Although a large number of molecules are involved in complex sequences of events, there is evidence that a calcium increase plays a pivotal role in meiosis re-initiation. It is well established that, during this process, calcium is released from the intracellular stores, whereas less is known on the role of external calcium entering the cell through the plasma membrane ion channels. This review is focused on the functional role of calcium currents during oocyte maturation in all the species, from invertebrates to mammals. The emerging role of specific L-type calcium channels will be discussed.

  11. Sex determination in mammalian germ cells

    Directory of Open Access Journals (Sweden)

    Cassy M Spiller

    2015-06-01

    Full Text Available Germ cells are the precursors of the sperm and oocytes and hence are critical for survival of the species. In mammals, they are specified during fetal life, migrate to the developing gonads and then undergo a critical period during which they are instructed, by the soma, to adopt the appropriate sexual fate. In a fetal ovary, germ cells enter meiosis and commit to oogenesis, whereas in a fetal testis, they avoid entry into meiosis and instead undergo mitotic arrest and mature toward spermatogenesis. Here, we discuss what we know so far about the regulation of sex-specific differentiation of germ cells, considering extrinsic molecular cues produced by somatic cells, as well as critical intrinsic changes within the germ cells. This review focuses almost exclusively on our understanding of these events in the mouse model.

  12. Pathogenesis of germ cell neoplasia in testicular dysgenesis and disorders of sex development

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Lindhardt Johansen, Marie; Juul, Anders

    2015-01-01

    Development of human gonads is a sex-dimorphic process which evolved to produce sex-specific types of germ cells. The process of gonadal sex differentiation is directed by the action of the somatic cells and ultimately results in germ cells differentiating to become functional gametes through...... spermatogenesis or oogenesis. This tightly controlled process depends on the proper sequential expression of many genes and signalling pathways. Disturbances of this process can be manifested as a large spectrum of disorders, ranging from severe disorders of sex development (DSD) to - in the genetic male - mild...... reproductive problems within the testicular dysgenesis syndrome (TDS), with large overlap between the syndromes. These disorders carry an increased but variable risk of germ cell neoplasia. In this review, we discuss the pathogenesis of germ cell neoplasia associated with gonadal dysgenesis, especially...

  13. Evolution of sexual traits influencing vectorial capacity in anopheline mosquitoes

    Science.gov (United States)

    Mitchell, Sara N.; Kakani, Evdoxia G.; South, Adam; Howell, Paul I.; Waterhouse, Robert M.; Catteruccia, Flaminia

    2015-01-01

    The availability of genome sequences from 16 anopheline species provides unprecedented opportunities to study the evolution of reproductive traits relevant for malaria transmission. In Anopheles gambiae, a likely candidate for sexual selection is male 20-hydroxyecdysone (20E). Sexual transfer of this steroid hormone as part of a mating plug dramatically changes female physiological processes intimately tied to vectorial capacity. By combining phenotypic studies with ancestral state reconstructions and phylogenetic analyses, we show that mating plug transfer and male 20E synthesis are both derived characters that have coevolved in anophelines, driving the adaptation of a female 20E-interacting protein that promotes oogenesis via mechanisms also favoring Plasmodium survival. Our data reveal coevolutionary dynamics of reproductive traits between the sexes likely to have shaped the ability of anophelines to transmit malaria. PMID:25722409

  14. Epigenetic: A new approach to etiology of infertility

    Directory of Open Access Journals (Sweden)

    Silvia W. Lestari

    2017-01-01

    Full Text Available Infertility is a complex disease which could be caused by male and female factors. The etiology from both factors needs further study. There are some approaches to understanding the etiology of infertility, one of them is epigenetic. Epigenetic modifications consist of DNA methylation, histone modifications, and chromatin remodelling. Male and female germinal cells undergo epigenetic modifications dynamically during differentiation into matured sperm and oocyte cells. In a male, the alteration of DNA methylation in spermatogenesis will cause oligo/asthenozoospermia. In addition, the histone methylation, acetylation, or other histone modification may lead sperm lose its ability to fertilize oocyte. Similarly, in a female, the alteration of DNA methylation and histone modification affects oogenesis, created aneuploidy in fertilized oocytes and resulted in embryonic death in the uterus. Alteration of these epigenetic modification patterns will cause infertility, both in male and female.

  15. The Autosomal Chorion Locus of the Medfly Ceratitis Capitata. I. Conserved Synteny, Amplification and Tissue Specificity but Sequence Divergence and Altered Temporal Regulation

    Science.gov (United States)

    Vlachou, D.; Konsolaki, M.; Tolias, P. P.; Kafatos, F. C.; Komitopoulou, K.

    1997-01-01

    We report the isolation, full sequence characterization, amplification and expression properties of medfly chorion genes corresponding to the autosomal chorion locus of Drosophila. These genes are found adjacent to the paramyosin gene and are organized in the same order and tandem orientation as their Drosophila homologues, although they are spaced further apart. They show substantial sequence divergence from their Drosophila homologues, including novel peptide repeats and a new spacing of the tyrosines, which are known to be cross-linked in Dipteran chorion. The genes are amplified and expressed during oogenesis, as in Drosophila. Three of them are expressed in the same relative temporal order as in Drosophila but the fourth gene, the homologue of s15, shows a clear shift to an earlier expression period. This is the first known instance of changed temporal regulation in dipteran chorion genes. PMID:9409839

  16. CYTOLOGICAL COMPARISON OF GAMETOGENESIS OF SCALLOPS,ARGOPECTEN IRRADIANS AND CHLAMYS FARRERI

    Institute of Scientific and Technical Information of China (English)

    董新红; 刘保忠; 吴长功; 相建海

    2002-01-01

    Histological characteristics of gametogenesis of two kinds of sca llops, gonochoric Chinese scallop, Chlamys farreri and hermaphroditic bay scallop, Argopecten irradians were investigated in this study. Spermatogenesis in C. Farreri h as different developmental stages: spermatogonia, primary spermatocyte, second spermatocyte, spermatid and spermatozoon. A large number of same developmental stage spermatic cells converg e at a definite area of the testis. Premeiotic, previtellogenic and vitellogenic oocytes ca n be found during oogenesis in C. Farreri, where oocyte distribution is obviously irregular. T he A. Irradians gonad consists of two different parts in one individual: one part functions as testis, the other as ovary. Between these two parts is a special appearance area, where a large number of spermatic cells are bound with two layers of acellular substance with many oocytes in it.

  17. CYTOLOGICAL COMPARISON OF GAMETOGENESIS OF SCALLOPS, ARGOPECTEN IRRADIANS AND CHLAMYS FARRERI

    Institute of Scientific and Technical Information of China (English)

    董新红; 刘保忠; 吴长功; 相建海

    2002-01-01

    Histological characteristics of gametogenesis of two kinds of scallops, gonochoric Chinese scallop, Chlamys farreri and hermaphroditic bay scallop, Argopecten irradians were investigated in this study. Spermatogenesis in C. farreri has different developmental stages: spermatogonia, primary spermatocyte, second spermatocyte, spermatid and spermatozoon. A large number of same developmental stage spermatic cells converge at a definite area of the testis. Premeiotic, previtellogenic and vitellogenic oocytes can be found during oogenesis in C. farreri, where oocyte distribution is obviously irregular. The A. irradians gonad consists of two different parts in one individual: one part functions as testis, the other as ovary. Between these two parts is a special appearance area, where a large number of spermatic cells are bound with two layers of acellular substance with many oocytes in it.

  18. Localization of nitric oxide synthase in the developing gonads of amphioxus Branchiostoma belcheri tsingtauense

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The localization of nitric oxide synthases (NOS) is dealed with in the developing gonads of amphioxus Branchiostoma belcheri tsingtauense. It was found by NADPH-diaphorase staining that (1) NOS activity was present in the nuclear membranes of germinal vesicles during the entire period of oocyte development; (2) NOS was localized in both the nuclear membranes and the perinuclear region of cytoplasm in the vitellogenetic oocytes; (3) NOS was relocated in the cortical layer in the mature egg; (4) NOS activity was present in spermatocytes, but not in the spermatogonia in the middle of October; (5) NOS was detected in both spermatozoa and spermatids as well as spermatocytes during the breeding season. This is the first report on the distribution pattern of NOS in the developing gonads in protochordates. These results suggest a role for NOS in the functioning of the nuclear membranes and yolk synthesis during oogenesis and in cell division and differentiation during spermatogenesis.

  19. The song of the old mother: reproductive senescence in female drosophila.

    Science.gov (United States)

    Miller, Paige B; Obrik-Uloho, Oghenemine T; Phan, Mai H; Medrano, Christian L; Renier, Joseph S; Thayer, Joseph L; Wiessner, Gregory; Bloch Qazi, Margaret C

    2014-01-01

    Among animals with multiple reproductive episodes, changes in adult condition over time can have profound effects on lifetime reproductive fitness and offspring performance. The changes in condition associated with senescence can be particularly acute for females who support reproductive processes from oogenesis through fertilization. The pomace fly Drosophila melanogaster is a well-established model system for exploring the physiology of reproduction and senescence. In this review, we describe how increasing maternal age in Drosophila affects reproductive fitness and offspring performance as well as the genetic foundation of these effects. Describing the processes underlying female reproductive senescence helps us understand diverse phenomena including population demographics, condition-dependent selection, sexual conflict, and transgenerational effects of maternal condition on offspring fitness. Understanding the genetic basis of reproductive senescence clarifies the nature of life-history trade-offs as well as potential ways to augment and/or limit female fertility in a variety of organisms.

  20. The effect of space environment on the development and aging of Drosophila Melanogaster (7-IML-1)

    Science.gov (United States)

    Marco, Roberto

    1992-01-01

    This experiment involves the study of the development of eggs of the fly, Drosophila, exposed to microgravity. It is presumed that oogenesis, rather than further states of embryonic development, is sensitive to gravity. This hypothesis will be tested by collecting eggs layered at specific times inflight and postflight from flies exposed to 0 and 1 g. This portion of the experiment is a repetition of an earlier experiment flown in Biorack during the Spacelab D1 Mission. An added feature of the experiment for the First International Microgravity Laboratory (IML-1) Mission is to study the effect of microgravity on the life span of Drosophila male flies. Various aspects of the investigation are discussed.

  1. Live imaging of GFP-labeled proteins in Drosophila oocytes.

    Science.gov (United States)

    Pokrywka, Nancy Jo

    2013-03-29

    The Drosophila oocyte has been established as a versatile system for investigating fundamental questions such as cytoskeletal function, cell organization, and organelle structure and function. The availability of various GFP-tagged proteins means that many cellular processes can be monitored in living cells over the course of minutes or hours, and using this technique, processes such as RNP transport, epithelial morphogenesis, and tissue remodeling have been described in great detail in Drosophila oocytes. The ability to perform video imaging combined with a rich repertoire of mutants allows an enormous variety of genes and processes to be examined in incredible detail. One such example is the process of ooplasmic streaming, which initiates at mid-oogenesis. This vigorous movement of cytoplasmic vesicles is microtubule and kinesin-dependent and provides a useful system for investigating cytoskeleton function at these stages. Here I present a protocol for time lapse imaging of living oocytes using virtually any confocal microscopy setup.

  2. Notch signalling mediates reproductive constraint in the adult worker honeybee

    Science.gov (United States)

    Duncan, Elizabeth J.; Hyink, Otto; Dearden, Peter K.

    2016-01-01

    The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. PMID:27485026

  3. Characterization and localization of dynein and myosins V and VI in the ovaries of queen bees.

    Science.gov (United States)

    Patricio, Karina; Calábria, Luciana Karen; Peixoto, Pablo Marco; Espindola, Foued Salmen; Da Cruz-Landim, Carminda

    2010-10-01

    The presence of myosin and dynein in the ovaries of both Apis mellifera and Scaptotrigona postica was investigated in extracts and in histological sections. In the ovary extracts, motor proteins, myosins V, VI and dynein were detected by Western blot. In histological sections, they were detected by immunocytochemistry, using a mouse monoclonal antibody against the intermediary chain of dynein and a rabbit polyclonal antibody against the myosin V head domain. The myosin VI tail domain was recognized by a pig polyclonal antibody. The results show that these molecular motors are expressed in the ovaries of both bee species with few differences in location and intensity, in regions where movement of substances is expected during oogenesis. The fact that antibodies against vertebrate proteins recognize proteins of bee species indicates that the specific epitopes are evolutionarily well preserved.

  4. Reproduction-Immunity Trade-Offs in Insects.

    Science.gov (United States)

    Schwenke, Robin A; Lazzaro, Brian P; Wolfner, Mariana F

    2016-01-01

    Immune defense and reproduction are physiologically and energetically demanding processes and have been observed to trade off in a diversity of female insects. Increased reproductive effort results in reduced immunity, and reciprocally, infection and activation of the immune system reduce reproductive output. This trade-off can manifest at the physiological level (within an individual) and at the evolutionary level (genetic distinction among individuals in a population). The resource allocation model posits that the trade-off arises because of competition for one or more limiting resources, and we hypothesize that pleiotropic signaling mechanisms regulate allocation of that resource between reproductive and immune processes. We examine the role of juvenile hormone, 20-hydroxyecdysone, and insulin/insulin-like growth factor-like signaling in regulating both oogenesis and immune system activity, and propose a signaling network that may mechanistically regulate the trade-off. Finally, we discuss implications of the trade-off in an ecological and evolutionary context.

  5. Study of nanoscale structural biology using advanced particle beam microscopy

    Science.gov (United States)

    Boseman, Adam J.

    This work investigates developmental and structural biology at the nanoscale using current advancements in particle beam microscopy. Typically the examination of micro- and nanoscale features is performed using scanning electron microscopy (SEM), but in order to decrease surface charging, and increase resolution, an obscuring conductive layer is applied to the sample surface. As magnification increases, this layer begins to limit the ability to identify nanoscale surface structures. A new technology, Helium Ion Microscopy (HIM), is used to examine uncoated surface structures on the cuticle of wild type and mutant fruit flies. Corneal nanostructures observed with HIM are further investigated by FIB/SEM to provide detailed three dimensional information about internal events occurring during early structural development. These techniques are also used to reconstruct a mosquito germarium in order to characterize unknown events in early oogenesis. Findings from these studies, and many more like them, will soon unravel many of the mysteries surrounding the world of developmental biology.

  6. Double partial trisomy of 6p23-pter and 9pter-q21.2 in a neonate resulting from 4:2 meiotic segregation of a maternal complex t(6;7;9)(p23;p15;q21.2) translocation.

    Science.gov (United States)

    Cetin, Z; Mihci, E; Keser, I; Karaali, K; Berker, S; Luleci, G

    2012-01-01

    We report, a newborn presenting multiple congenital abnormalities with karyotype; 47,XY,der(7)t(6;7)(pter-p23::p15-->qter),+der(9)t(7;9)(pter-->p15::q21.2--> pter)t(6;7;9)(p23;p15;q21.2)mat[20]. The mother and her phenotypically normal daughter were carriers of a complex chromosomal rearrangement with karyotypes; 46,XX,t(6;7;9)(p23;p15;q21.2)[20]. Paternal chromosomes were normal. In our case the extra derivative chromosome was the result of a 4:2 segregation of the chromosomes involved in translocation during oogenesis. Double partial trisomy in newborns resulting from 4:2 segregation is a rare event, and double partial trisomies of the 6p23-pter and trisomy 9pter-q22 regions have not reported to date.

  7. Conservation of the Type IV secretion system throughout Wolbachia evolution

    DEFF Research Database (Denmark)

    Pichon, Samuel; Bouchon, Didier; Cordaux, Richard;

    2009-01-01

    The Type IV Secretion System (T4SS) is an efficient pathway with which bacteria can mediate the transfer of DNA and/or proteins to eukaryotic cells. In Wolbachia pipientis, a maternally inherited obligate endosymbiont of arthropods and nematodes, two operons of vir genes, virB3-B6 and virB8-D4......, encoding a T4SS were previously identified and characterized at two separate genomic loci. Using the largest data set of Wolbachia strains studied so far, we show that vir gene sequence and organization are strictly conserved among 37 Wolbachia strains inducing various phenotypes such as cytoplasmic...... incompatibility, feminization, or oogenesis in their arthropod hosts. In sharp contrast, extensive variation of genomic sequences flanking the virB8-D4 operon suggested its distinct location among Wolbachia genomes. Long term conservation of the T4SS may imply maintenance of a functional effector translocation...

  8. Influence of Wolbachia on host gene expression in an obligatory symbiosis

    Directory of Open Access Journals (Sweden)

    Kremer Natacha

    2012-01-01

    Full Text Available Abstract Background Wolbachia are intracellular bacteria known to be facultative reproductive parasites of numerous arthropod hosts. Apart from these reproductive manipulations, recent findings indicate that Wolbachia may also modify the host’s physiology, notably its immune function. In the parasitoid wasp, Asobara tabida, Wolbachia is necessary for oogenesis completion, and aposymbiotic females are unable to produce viable offspring. The absence of egg production is also associated with an increase in programmed cell death in the ovaries of aposymbiotic females, suggesting that a mechanism that ensures the maintenance of Wolbachia in the wasp could also be responsible for this dependence. In order to decipher the general mechanisms underlying host-Wolbachia interactions and the origin of the dependence, we developed transcriptomic approaches to compare gene expression in symbiotic and aposymbiotic individuals. Results As no genetic data were available on A. tabida, we constructed several Expressed Sequence Tags (EST libraries, and obtained 12,551 unigenes from this species. Gene expression was compared between symbiotic and aposymbiotic ovaries through in silico analysis and in vitro subtraction (SSH. As pleiotropic functions involved in immunity and development could play a major role in the establishment of dependence, the expression of genes involved in oogenesis, programmed cell death (PCD and immunity (broad sense was analyzed by quantitative RT-PCR. We showed that Wolbachia might interfere with these numerous biological processes, in particular some related to oxidative stress regulation. We also showed that Wolbachia may interact with immune gene expression to ensure its persistence within the host. Conclusions This study allowed us to constitute the first major dataset of the transcriptome of A. tabida, a species that is a model system for both host/Wolbachia and host/parasitoid interactions. More specifically, our results

  9. Combining the auxin-inducible degradation system with CRISPR/Cas9-based genome editing for the conditional depletion of endogenous Drosophila melanogaster proteins.

    Science.gov (United States)

    Bence, Melinda; Jankovics, Ferenc; Lukácsovich, Tamás; Erdélyi, Miklós

    2017-04-01

    Inducible protein degradation techniques have considerable advantages over classical genetic approaches, which generate loss-of-function phenotypes at the gene or mRNA level. The plant-derived auxin-inducible degradation system (AID) is a promising technique which enables the degradation of target proteins tagged with the AID motif in nonplant cells. Here, we present a detailed characterization of this method employed during the adult oogenesis of Drosophila. Furthermore, with the help of CRISPR/Cas9-based genome editing, we improve the utility of the AID system in the conditional elimination of endogenously expressed proteins. We demonstrate that the AID system induces efficient and reversible protein depletion of maternally provided proteins both in the ovary and the early embryo. Moreover, the AID system provides a fine spatiotemporal control of protein degradation and allows for the generation of different levels of protein knockdown in a well-regulated manner. These features of the AID system enable the unraveling of the discrete phenotypes of genes with highly complex functions. We utilized this system to generate a conditional loss-of-function allele which allows for the specific degradation of the Vasa protein without affecting its alternative splice variant (solo) and the vasa intronic gene (vig). With the help of this special allele, we demonstrate that dramatic decrease of Vasa protein in the vitellarium does not influence the completion of oogenesis as well as the establishment of proper anteroposterior and dorsoventral polarity in the developing oocyte. Our study suggests that both the localization and the translation of gurken mRNA in the vitellarium is independent from Vasa. © 2017 Federation of European Biochemical Societies.

  10. Notch2 is required in somatic cells for breakdown of ovarian germ-cell nests and formation of primordial follicles

    Science.gov (United States)

    2013-01-01

    Background In the mouse ovary, oocytes initially develop in clusters termed germ-cell nests. Shortly after birth, these germ-cell nests break apart, and the oocytes individually become surrounded by somatic granulosa cells to form primordial follicles. Notch signaling plays essential roles during oogenesis in Drosophila, and recent studies have suggested that Notch signaling also plays an essential role during oogenesis and ovary development in mammals. However, no in vivo loss-of-function studies have been performed to establish whether Notch family receptors have an essential physiological role during normal ovarian development in mutant mice. Results Female mice with conditional deletion of the Notch2 gene in somatic granulosa cells of the ovary exhibited reduced fertility, accompanied by the formation of multi-oocyte follicles, which became hemorrhagic by 7 weeks of age. Formation of multi-oocyte follicles resulted from defects in breakdown of the primordial germ-cell nests. The ovaries of the Notch2 conditional mutant mice had increased numbers of oocytes, but decreased numbers of primordial follicles. Oocyte numbers in the Notch2 conditional mutants were increased not by excess or extended cellular proliferation, but as a result of decreased oocyte apoptosis. Conclusions Our work demonstrates that Notch2-mediated signaling in the somatic-cell lineage of the mouse ovary regulates oocyte apoptosis non-cell autonomously, and is essential for regulating breakdown of germ-cell nests and formation of primordial follicles. This model provides a new resource for studying the developmental and physiological roles of Notch signaling during mammalian reproductive biology. PMID:23406467

  11. Glycogen and glucose metabolism are essential for early embryonic development of the red flour beetle Tribolium castaneum.

    Directory of Open Access Journals (Sweden)

    Amanda Fraga

    Full Text Available Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3 and hexokinase (HexA genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen.

  12. Regulation of Injury-Induced Ovarian Regeneration by Activation of Oogonial Stem Cells.

    Science.gov (United States)

    Erler, Piril; Sweeney, Alexandra; Monaghan, James R

    2017-01-01

    Some animals have the ability to generate large numbers of oocytes throughout life. This raises the question whether persistent adult germline stem cell populations drive continuous oogenesis and whether they are capable of mounting a regenerative response after injury. Here we demonstrate the presence of adult oogonial stem cells (OSCs) in the adult axolotl salamander ovary and show that ovarian injury induces OSC activation and functional regeneration of the ovaries to reproductive capability. Cells that have morphological similarities to germ cells were identified in the developing and adult ovaries via histological analysis. Genes involved in germ cell maintenance including Vasa, Oct4, Sox2, Nanog, Bmp15, Piwil1, Piwil2, Dazl, and Lhx8 were expressed in the presumptive OSCs. Colocalization of Vasa protein with H3 mitotic marker showed that both oogonial and spermatogonial adult stem cells were mitotically active. Providing evidence of stemness and viability of adult OSCs, enhanced green fluorescent protein (EGFP) adult OSCs grafted into white juvenile host gonads gave rise to EGFP OSCs, and oocytes. Last, the axolotl ovaries completely regenerated after partial ovariectomy injury. During regeneration, OSC activation resulted in rapid differentiation into new oocytes, which was demonstrated by Vasa(+) /BrdU(+) coexpression. Furthermore, follicle cell proliferation promoted follicle maturation during ovarian regeneration. Overall, these results show that adult oogenesis occurs via proliferation of endogenous OSCs in a tetrapod and mediates ovarian regeneration. This study lays the foundations to elucidate mechanisms of ovarian regeneration that will assist regenerative medicine in treating premature ovarian failure and reduced fertility. Stem Cells 2017;35:236-247.

  13. Cloning of the neurodegeneration gene drop-dead and characterization of additional phenotypes of its mutation.

    Science.gov (United States)

    Blumenthal, Edward M

    2008-01-01

    Mutations in the Drosophila gene drop-dead (drd) result in early adult lethality and neurodegeneration, but the molecular identity of the drd gene and its mechanism of action are not known. This paper describes the characterization of a new X-linked recessive adult-lethal mutation, originally called lot's wife (lwf(1)) but subsequently identified as an allele of drd (drd(lwf)); drd(lwf) mutants die within two weeks of eclosion. Through mapping and complementation, the drd gene has been identified as CG33968, which encodes a putative integral membrane protein of unknown function. The drd(lwf) allele is associated with a nonsense mutation that eliminates nearly 80% of the CG33968 gene product; mutations in the same gene were also found in two previously described drd alleles. Characterization of drd (lwf) flies revealed additional phenotypes of drd, most notably, defects in food processing by the digestive system and in oogenesis. Mutant flies store significantly more food in their crops and defecate less than wild-type flies, suggesting that normal transfer of ingested food from the crop into the midgut is dependent upon the DRD gene product. The defect in oogenesis results in the sterility of homozygous mutant females and is associated with a reduction in the number of vitellogenic egg chambers. The disruption in vitellogenesis is far more severe than that seen in starved flies and so is unlikely to be a secondary consequence of the digestive phenotype. This study demonstrates that mutation of the drd gene CG33968 results in a complex phenotype affecting multiple physiological systems within the fly.

  14. Ultrastructural changes and programmed cell death of trophocytes in the gonad of Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada, Eutardigrada, Isohypsibiidae).

    Science.gov (United States)

    Poprawa, Izabela; Hyra, Marta; Kszuk-Jendrysik, Michalina; Rost-Roszkowska, Magdalena Maria

    2015-03-01

    The studies on the fates of the trophocytes, the apoptosis and autophagy in the gonad of Isohypsibius granulifer granulifer have been described using transmission electron microscope, light and fluorescent microscopes. The results presented here are the first that are connected with the cell death of nurse cells in the gonad of tardigrades. However, here we complete the results presented by Węglarska (1987). The reproductive system of I. g. granulifer contains a single sack-like hermaphroditic gonad and a single gonoduct. The gonad is composed of three parts: a germarium filled with proliferating germ cells (oogonia); a vitellarium that has clusters of female germ cells (the region of oocytes development); and a male part filled with male germ cells in which the sperm cells develop. The trophocytes (nurse cells) show distinct alterations during all of the stages of oogenesis: previtello-, vitello- and choriogenesis. During previtellogenesis the female germ cells situated in the vitellarium are connected by cytoplasmic bridges, and form clusters of cells. No ultrastructural differences appear among the germ cells in a cluster during this stage of oogenesis. In early vitellogenesis, the cells in each cluster start to grow and numerous organelles gradually accumulate in their cytoplasm. However, at the beginning of the middle of vitellogenesis, one cell in each cluster starts to grow in order to differentiate into oocyte, while the remaining cells are trophocytes. Eventually, the cytoplasmic bridges between the oocyte and trophocytes disappear. Autophagosomes also appear in the cytoplasm of nurse cells together with many degenerating organelles. The cytoplasm starts to shrink, which causes the degeneration of the cytoplasmic bridges between trophocytes. Apoptosis begins when the cytoplasm of these cells is full of autophagosomes/autolysosomes and causes their death.

  15. The oogenic germline starvation response in C. elegans.

    Directory of Open Access Journals (Sweden)

    Hannah S Seidel

    Full Text Available Many animals alter their reproductive strategies in response to environmental stress. Here we have investigated how L4 hermaphrodites of Caenorhabditis elegans respond to starvation. To induce starvation, we removed food at 2 h intervals from very early- to very late-stage L4 animals. The starved L4s molted into adulthood, initiated oogenesis, and began producing embryos; however, all three processes were severely delayed, and embryo viability was reduced. Most animals died via 'bagging,' because egg-laying was inhibited, and embryos hatched in utero, consuming their parent hermaphrodites from within. Some animals, however, avoided bagging and survived long term. Long-term survival did not rely on embryonic arrest but instead upon the failure of some animals to produce viable progeny during starvation. Regardless of the bagging fate, starved animals showed two major changes in germline morphology: All oogenic germlines were dramatically reduced in size, and these germlines formed only a single oocyte at a time, separated from the remainder of the germline by a tight constriction. Both changes in germline morphology were reversible: Upon re-feeding, the shrunken germlines regenerated, and multiple oocytes formed concurrently. The capacity for germline regeneration upon re-feeding was not limited to the small subset of animals that normally survive starvation: When bagging was prevented ectopically by par-2 RNAi, virtually all germlines still regenerated. In addition, germline shrinkage strongly correlated with oogenesis, suggesting that during starvation, germline shrinkage may provide material for oocyte production. Finally, germline shrinkage and regeneration did not depend upon crowding. Our study confirms previous findings that starvation uncouples germ cell proliferation from germline stem cell maintenance. Our study also suggests that when nutrients are limited, hermaphrodites scavenge material from their germlines to reproduce. We discuss

  16. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons.

    Science.gov (United States)

    Locati, Mauro D; Pagano, Johanna F B; Ensink, Wim A; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Zhu, Kongju; Spaink, Herman P; Girard, Geneviève; Rauwerda, Han; Jonker, Martijs J; Dekker, Rob J; Breit, Timo M

    2017-04-01

    5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci. © 2017 Locati et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  17. Reproductive performance of dibromochloropropane-treated female rats.

    Science.gov (United States)

    Shaked, I; Sod-Moriah, U A; Kaplanski, J; Potashnik, G; Buchman, O

    1988-01-01

    Dibromochloropropane (DBCP) is an effective nematocide which has been shown to suppress spermatogenesis and cause infertility in both men and male rats. There are no similar reports concerning the effects of DBCP on female reproduction. The purpose of the present study was to attempt to interfere with the various phases of oogenesis. Proestral or pregnant rats were injected subcutaneously once with 40 mg/kg DBCP on one of each days of L12-L20 of gestation; a double dose (80 mg/kg) was injected in eight consecutive days (L11-L18). In addition, L13 fetuses were injected--directly into the amniotic sac--with 0.1 mg DBCP. Pooled data from the various days of gestation revealed that postimplantation losses were three times as high in the DBCP-treated animals as in DMSO-treated controls. Perinatal deaths were 58% higher and mean pup weights were 30% lower in the DBCP-treated rats than in controls. The reproductive performance of females exposed to DBCP while in utero was affected only to a limited degree (reduced number of ovulations and implantations) as compared with their DMSO counterparts. Doubling the dose (80 mg/kg) seriously reduced the birth weight of pups (50% of controls), all of which died within several hours post-partum. Direct injection of DBCP into embryos or to proestral rats did not have any adverse effects on their future reproductive performance. In contrast to the effect on spermatogenesis, it appears that oogenesis and ova are unaffected by DBCP.

  18. High-throughput proteome dynamics for discovery of key proteins in sentinel species: Unsuspected vitellogenins diversity in the crustacean Gammarus fossarum.

    Science.gov (United States)

    Trapp, Judith; Armengaud, Jean; Gaillard, Jean-Charles; Pible, Olivier; Chaumot, Arnaud; Geffard, Olivier

    2016-09-02

    In environmental science, omics-based approaches are widely used for the identification of gene products related to stress response. However, when dealing with non-model species, functional prediction of genes is challenging. Indeed, functional predictions are often obtained by sequence similarity searches and functional data from phylogenetically distant organisms, which can lead to inaccurate predictions due to quite different evolutionary scenarios. In oviparous females, vitellogenin production is vital for embryonic development, ensuring population viability. Its abnormal presence in fish male organisms is commonly employed as a biomarker of exposure to xenoestrogens, named endocrine disruptors. Here, in the freshwater amphipod Gammarus fossarum, we identified vitellogenin proteins by means of a proteome temporal dynamics analysis during oogenesis and embryogenesis. This exhaustive approach allows several functional molecular hypotheses in the oogenesis process to be drawn. Moreover, we revealed an unsuspected diversity of molecular players involved in yolk formation as eight proteins originating from different families of the large lipid transfer protein superfamily were identified as "true vitellogenins". In non-model species, next generation sequencing technologies development enables quickly deciphering gene and protein sequences but accuracy of associated functional prediction remains to be established. Here, in the crustacean Gammarus fossarum, a key sentinel species in freshwater biomonitoring, we identified key molecular players involved in the female reproduction by studying the proteome dynamics of ovaries and embryos. An unsuspected diversity of vitellogenin proteins was evidenced. These proteins being vital for offspring development, their high diversity may be advantageous for the organism's reproduction. Phylogenetic analysis showed that some forms are true vitellogenin orthologs while others are included in the apolipoprotein family, a paralogous

  19. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons

    Science.gov (United States)

    Pagano, Johanna F.B.; Ensink, Wim A.; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Zhu, Kongju; Spaink, Herman P.; Girard, Geneviève; Rauwerda, Han; Jonker, Martijs J.; Dekker, Rob J.

    2017-01-01

    5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci. PMID:28003516

  20. Life history of Lineus viridis (Müller, 1774) (Heteronemertea, Nemertea)

    Science.gov (United States)

    von Döhren, Jörn; Beckers, Patrick; Bartolomaeus, Thomas

    2012-09-01

    Lineus viridis is a common nemertean species of North-Atlantic intertidal sand flats. Its mating behaviour is peculiar insofar as this species is reported to be polyandric. However, detailed information on this topic is lacking. In order to get more data on the reproduction, oogenesis and life history of this species, a population in the Wadden Sea on the Isle of Sylt (North Sea) was studied between 2005 and 2011. We conducted regular surveys, during which we sampled, measured and recorded the sex status of 25-100 individuals at each sampling event; at least three individuals were fixed for histological studies at each sampling date. In addition, animals were kept in the laboratory for 3 years to complement field data on sexual identity. Lineus viridis was found to reproduce annually in several successive year; the females are significantly larger than the males. Oogenesis starts in spring, shortly after the preceding reproductive period, and continues until the end of December. Spermiogenesis starts in late autumn and also ends late in December. During mating, several males are generally found crawling on a single female, which forms a cocoon that encloses both the female and the associated males. Fertilization is internal. While females discharge all of their eggs during a single mating event and lose more than 40% of their wet weight, males only empty a few of their gonads, and are thus able to fertilize more than one female. Our study clearly shows that Lineus viridis is a perennial, iteroparous species with a pronounced sexual size dimorphism. During this long-term study, no evidence for sequential hermaphroditism has been found. The observed polyandric mating system in this species raises further questions regarding mate and sperm competition that deserve additional research.

  1. In vivo mapping of the functional regions of the DEAD-box helicase Vasa

    Directory of Open Access Journals (Sweden)

    Mehrnoush Dehghani

    2015-03-01

    Full Text Available The maternally expressed Drosophila melanogaster DEAD-box helicase Vasa (Vas is necessary for many cellular and developmental processes, including specification of primordial germ cells (pole cells, posterior patterning of the embryo, piRNA-mediated repression of transposon-encoded mRNAs, translational activation of gurken (grk mRNA, and completion of oogenesis itself. Vas protein accumulates in the perinuclear nuage in nurse cells soon after their specification, and then at stage 10 Vas translocates to the posterior pole plasm of the oocyte. We produced a series of transgenic constructs encoding eGFP-Vas proteins carrying mutations affecting different regions of the protein, and analyzed in vivo which Vas functions each could support. We identified novel domains in the N- and C-terminal regions of the protein that are essential for localization, transposon repression, posterior patterning, and pole cell specification. One such functional region, the most C-terminal seven amino acids, is specific to Vas orthologues and is thus critical to distinguishing Vas from other closely related DEAD-box helicases. Surprisingly, we also found that many eGFP-Vas proteins carrying mutations that would be expected to abrogate DEAD-box helicase function localized to the nuage and posterior pole, and retained the capacity to support oogenesis, although they did not function in embryonic patterning, pole cell specification, grk activation, or transposon repression. We conclude from these experiments that Vas, a multifunctional protein, uses different domains and different molecular associations to carry out its various cellular and developmental roles.

  2. Activation and interruption of the reproduction of Varroa destructor is triggered by host signals (Apis mellifera).

    Science.gov (United States)

    Frey, Eva; Odemer, Richard; Blum, Thomas; Rosenkranz, Peter

    2013-05-01

    The reproductive cycle of the parasitic mite Varroa destructor is closely linked to the development of the honey bee host larvae. Using a within colony approach we introduced phoretic Varroa females into brood cells of different age in order to analyze the capacity of certain stages of the honey bee larva to either activate or interrupt the reproduction of Varroa females. Only larvae within 18 h (worker) and 36 h (drones), respectively, after cell capping were able to stimulate the mite's oogenesis. Therewith we could specify for the first time the short time window where honey bee larvae provide the signals for the activation of the Varroa reproduction. Stage specific volatiles of the larval cuticle are at least part of these activation signals. This is confirmed by the successful stimulation of presumably non-reproducing mites to oviposition by the application of a larval extract into the sealed brood cells. According to preliminary quantitative GC-MS analysis we suggest certain fatty acid ethyl esters as candidate compounds. If Varroa females that have just started with egg formation are transferred to brood cells containing host larvae of an elder stage two-thirds of these mites stopped their oogenesis. This confirms the presence of an additional signal in the host larvae allowing the reproducing mites to adjust their own reproductive cycle to the ontogenetic development of the host. From an adaptive point of view that sort of a stop signal enables the female mite to save resources for a next reproductive cycle if the own egg development is not sufficiently synchronized with the development of the host. The results presented here offer the opportunity to analyze exactly those host stages that have the capacity to activate or interrupt the Varroa reproduction in order to identify the crucial host signals.

  3. Effects of exogenous double-stranded RNA on the basonuclin gene expression in mouse oocytes

    Institute of Scientific and Technical Information of China (English)

    马峻; 周红林; 苏雷; 季维智

    2002-01-01

    In plants and less-advanced animal species, such as C.elegans, introduction of exogenous double-stranded RNA (dsRNA) into cells would trigger degradation of the mRNA with homologous sequence and interfere with the endogenous gene expression. It might represent an ancient anti-virus response which could prevent the mutation in the genome that was caused by virus infection or mobile DNA elements insertion. This phenomenon was named RNA interference, or RNAi. In this study, RNAi was used to investigate the function of basonuclin gene during oogenesis. Microinjection of dsRNA directed towards basonuclin into mouse germinal-vesicle-in- tact (GV) oocytes brought down the abundance of the cognate mRNA effectively in a time- and concentration-dependent manner. This reduction effect was sequence-specific and showed no negative effect on other non-homologous gene expression in oocytes, which indicated that dsRNA can recognize and cause the degradation of the transcriptional products of endogenous basonuclin gene in a sequence-specific manner. Immunofluorescence results showed that RNAi could reduce the concentration of basonuclin protein to some extent, but the effect was less efficient than the dsRNA targeting towards tPA and cMos which was also expressed in oocytes. This result might be due to the long half life of basonuclin protein in oocytes and the short reaction time which was posed by the limited life span of GV oocytes cultured in vitro. In summary, dsRNA could inhibit the expression of the cognate gene in oocytes at both mRNA and protein levels. The effect was similar to Knock-out technique which was based on homologous recombination. Furthermore, hairpin-style dsRNA targeting basonuclin gene could be produced by transcription from a recombinant plasmid and worked efficiently to deplete the cognate mRNA in oocytes. This finding offered a new way to study the function of basonuclin in the early stage of oogenesis by infection of primordial oocytes with the plasmid

  4. The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization.

    Science.gov (United States)

    Schatten, G

    1994-10-01

    Neither the restoration of the centrosome during fertilization nor its reduction during gametogenesis is fully understood, but both are pivotal events in development. During each somatic cell cycle, the chromosomes, cytoplasm, and centrosomes duplicate in interphase, and all three split in two during each cell division. While it has long been recognized that both the sperm and the egg contribute equal haploid genomes during fertilization and that the vast majority of the cytoplasm is contributed by the egg, the relative contributions of the centrosome by each gamete are still in question. This article explores centrosome inheritance patterns and considers nine integral and secondarily derived activities of the centrosome. Boveri once hypothesized that "The ripe egg possesses all of the elements necessary for development save an active division-center. The sperm, on the other hand, possesses such a center but lacks the protoplasmic substratum in which to operate. In this respect the egg and sperm are complementary structures; their union in syngamy thus restores to each the missing element necessary to further development." This article reviews the evidence gathered from 11 experimental strategies used to test this theory. While the majority of these approaches supports the hypothesis that the sperm introduces the centrosome at fertilization, the pattern did not reveal itself as universal, since parthenogenesis occurs in nature and can be induced artificially, since centrosome and centriole form de novo in extracts from unfertilized eggs and since the centrosome is derived from maternal sources during fertilization in some systems--notably, in mice. Models of the centrosome are proposed, along with speculative mechanisms which might lead to the cloaking of the reproducing element of the maternal centrosome during oogenesis and the retention of this structure by the paternal centrosome during spermatogenesis. Proteins essential for microtubule nucleation, like gamma

  5. Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation.

    Science.gov (United States)

    Panagopoulos, Dimitris J; Chavdoula, Evangelia D; Nezis, Ioannis P; Margaritis, Lukas H

    2007-01-10

    In the present study, the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay--a well known technique widely used for detecting fragmented DNA in various types of cells--was used to detect cell death (DNA fragmentation) in a biological model, the early and mid stages of oogenesis of the insect Drosophila melanogaster. The flies were exposed in vivo to either GSM 900-MHz (Global System for Mobile telecommunications) or DCS 1800-MHz (Digital Cellular System) radiation from a common digital mobile phone, for few minutes per day during the first 6 days of their adult life. The exposure conditions were similar to those to which a mobile phone user is exposed, and were determined according to previous studies of ours [D.J. Panagopoulos, A. Karabarbounis, L.H. Margaritis, Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of D. melanogaster, Electromagn. Biol. Med. 23 (1) (2004) 29-43; D.J. Panagopoulos, N. Messini, A. Karabarbounis, A.L. Philippetis, L.H. Margaritis, Radio frequency electromagnetic radiation within "safety levels" alters the physiological function of insects, in: P. Kostarakis, P. Stavroulakis (Eds.), Proceedings of the Millennium International Workshop on Biological Effects of Electromagnetic Fields, Heraklion, Crete, Greece, October 17-20, 2000, pp. 169-175, ISBN: 960-86733-0-5; D.J. Panagopoulos, L.H. Margaritis, Effects of electromagnetic fields on the reproductive capacity of D. melanogaster, in: P. Stavroulakis (Ed.), Biological Effects of Electromagnetic Fields, Springer, 2003, pp. 545-578], which had shown a large decrease in the oviposition of the same insect caused by GSM radiation. Our present results suggest that the decrease in oviposition previously reported, is due to degeneration of large numbers of egg chambers after DNA fragmentation of their constituent cells, induced by both types of mobile telephony radiation. Induced cell death is recorded for the first time, in all types of cells

  6. Molecular phenotype of zebrafish ovarian follicle by serial analysis of gene expression and proteomic profiling, and comparison with the transcriptomes of other animals

    Directory of Open Access Journals (Sweden)

    Forgue Jean

    2006-03-01

    complete sequence data set of maternal mRNA stored in zebrafish germ cells at the end of oogenesis. This catalogue contains highly-expressed transcripts that are part of a vertebrate ovarian expressed gene signature. Comparison of transcriptome and proteome data identified downregulated transcripts or proteins potentially incorporated in the oocyte by endocytosis. The molecular phenotype described provides groundwork for future experimental approaches aimed at identifying functionally important stored maternal transcripts and proteins involved in oogenesis and early stages of embryo development.

  7. The Ovary of Tubifex tubifex (Clitellata, Naididae, Tubificinae Is Composed of One, Huge Germ-Line Cyst that Is Enriched with Cytoskeletal Components.

    Directory of Open Access Journals (Sweden)

    Anna Z Urbisz

    Full Text Available Recent studies on the ovary organization and oogenesis in Tubificinae have revealed that their ovaries are small polarized structures that are composed of germ cells in subsequent stages of oogenesis that are associated with somatic cells. In syncytial cysts, as a rule, each germ cell is connected to the central cytoplasmic mass, the cytophore, via only one stable intercellular bridge (ring canal. In this paper we present detailed data about the composition of germ-line cysts in Tubifex tubifex with special emphasis on the occurrence and distribution of the cytoskeletal elements. Using fixed material and live cell imaging techniques, we found that the entire ovary of T. tubifex is composed of only one, huge multicellular germ-line cyst, which may contain up to 2,600 cells. Its architecture is broadly similar to the cysts that are found in other clitellate annelids, i.e. a common, anuclear cytoplasmic mass in the center of the cyst and germ cells that are connected to it via intercellular bridges. The cytophore in the T. tubifex cyst extends along the long axis of the ovary in the form of elongated and branched cytoplasmic strands. Rhodamine-coupled phalloidin staining revealed that the prominent strands of actin filaments occur inside the cytophore. Similar to the cytophore, F-actin strands are branched and they are especially well developed in the middle and outermost parts of the ovary. Microfilaments are also present in the ring canals that connect the germ cells with the cytophore in the narrow end of the ovary. Using TubulinTracker, we found that the microtubules form a prominent network of loosely and evenly distributed tubules inside the cytophore as well as in every germ cell. The well-developed cytoskeletal elements in T. tubifex ovary seem to ensure the integrity of such a huge germ-line cyst of complex (germ cells-ring canals-cytophore organization. A comparison between the cysts that are described here and other well-known female

  8. Some remarks on the female and male Keimbahn in the light of evolution and history.

    Science.gov (United States)

    Hilscher, W

    1999-10-15

    From the existence of two types of cells for reproduction-the female and male germ cells (GCs)-and by recombination of the genome, evolution proceeded dramatically. Unicellular and multicellular plants frequently are characterized by a sequence of haploid and diploid phases, or generations, with gametes and spores as reproductive cells. Isogamy, anisogamy, and oogamy can be distinguished depending on the GCs that correspond, differ in size, or impose as egg cell and sperm cell. In protozoans, too, species are found in which GCs differ clearly from each other. In the female lineage of angiosperms, a "Keimbahn chain" consisting of five successive germ line cells can be observed. Oogenesis and spermatogenesis are complete in coelenterates and similar in mammals. However, the controlling mechanisms are by far more complex in the latter. This means that the balance of hormonal and vegetative nervous influences (stimulation, inhibition) on gametogenesis is not primarily orientated on the germ line cells themselves, but mostly on the structural and functional situation of the gonads and the individual carriers. This becomes particularly evident in insects, where gametogenesis, on the one side, depends on the development of the rest of the organism but on the other side represents an independent developmental process. The point at which germ line cells and somatic cells separate correlates more or less with the degree of phylogenetic development. In worms, insects, and up to the anurans, a part of the cytoplasm, the so-called germ plasma, is separated for the development of GCs during oogenesis (preformistic development). However, in urodeles, reptiles, birds, and mammals, GCs and somatic cells cannot be distinguished before gastrulation (epigenetic development). In various species (e.g., in some oligochaetes and snails), there exist "double spermatogenic lines." In mammals (probably in other vertebrates and perhaps in various phyla of animals, too), the female Keimbahn is

  9. The Ovary of Tubifex tubifex (Clitellata, Naididae, Tubificinae) Is Composed of One, Huge Germ-Line Cyst that Is Enriched with Cytoskeletal Components.

    Science.gov (United States)

    Urbisz, Anna Z; Chajec, Łukasz; Świątek, Piotr

    2015-01-01

    Recent studies on the ovary organization and oogenesis in Tubificinae have revealed that their ovaries are small polarized structures that are composed of germ cells in subsequent stages of oogenesis that are associated with somatic cells. In syncytial cysts, as a rule, each germ cell is connected to the central cytoplasmic mass, the cytophore, via only one stable intercellular bridge (ring canal). In this paper we present detailed data about the composition of germ-line cysts in Tubifex tubifex with special emphasis on the occurrence and distribution of the cytoskeletal elements. Using fixed material and live cell imaging techniques, we found that the entire ovary of T. tubifex is composed of only one, huge multicellular germ-line cyst, which may contain up to 2,600 cells. Its architecture is broadly similar to the cysts that are found in other clitellate annelids, i.e. a common, anuclear cytoplasmic mass in the center of the cyst and germ cells that are connected to it via intercellular bridges. The cytophore in the T. tubifex cyst extends along the long axis of the ovary in the form of elongated and branched cytoplasmic strands. Rhodamine-coupled phalloidin staining revealed that the prominent strands of actin filaments occur inside the cytophore. Similar to the cytophore, F-actin strands are branched and they are especially well developed in the middle and outermost parts of the ovary. Microfilaments are also present in the ring canals that connect the germ cells with the cytophore in the narrow end of the ovary. Using TubulinTracker, we found that the microtubules form a prominent network of loosely and evenly distributed tubules inside the cytophore as well as in every germ cell. The well-developed cytoskeletal elements in T. tubifex ovary seem to ensure the integrity of such a huge germ-line cyst of complex (germ cells-ring canals-cytophore) organization. A comparison between the cysts that are described here and other well-known female germ-line cysts is

  10. TOPAZ1, a novel germ cell-specific expressed gene conserved during evolution across vertebrates.

    Directory of Open Access Journals (Sweden)

    Adrienne Baillet

    Full Text Available BACKGROUND: We had previously reported that the Suppression Subtractive Hybridization (SSH approach was relevant for the isolation of new mammalian genes involved in oogenesis and early follicle development. Some of these transcripts might be potential new oocyte and granulosa cell markers. We have now characterized one of them, named TOPAZ1 for the Testis and Ovary-specific PAZ domain gene. PRINCIPAL FINDINGS: Sheep and mouse TOPAZ1 mRNA have 4,803 bp and 4,962 bp open reading frames (20 exons, respectively, and encode putative TOPAZ1 proteins containing 1,600 and 1653 amino acids. They possess PAZ and CCCH domains. In sheep, TOPAZ1 mRNA is preferentially expressed in females during fetal life with a peak during prophase I of meiosis, and in males during adulthood. In the mouse, Topaz1 is a germ cell-specific gene. TOPAZ1 protein is highly conserved in vertebrates and specifically expressed in mouse and sheep gonads. It is localized in the cytoplasm of germ cells from the sheep fetal ovary and mouse adult testis. CONCLUSIONS: We have identified a novel PAZ-domain protein that is abundantly expressed in the gonads during germ cell meiosis. The expression pattern of TOPAZ1, and its high degree of conservation, suggests that it may play an important role in germ cell development. Further characterization of TOPAZ1 may elucidate the mechanisms involved in gametogenesis, and particularly in the RNA silencing process in the germ line.

  11. Automated microinjection of recombinant BCL-X into mouse zygotes enhances embryo development.

    Directory of Open Access Journals (Sweden)

    Xinyu Liu

    Full Text Available Progression of fertilized mammalian oocytes through cleavage, blastocyst formation and implantation depends on successful implementation of the developmental program, which becomes established during oogenesis. The identification of ooplasmic factors, which are responsible for successful embryo development, is thus crucial in designing possible molecular therapies for infertility intervention. However, systematic evaluation of molecular targets has been hampered by the lack of techniques for efficient delivery of molecules into embryos. We have developed an automated robotic microinjection system for delivering cell impermeable compounds into preimplantation embryos with a high post-injection survival rate. In this paper, we report the performance of the system on microinjection of mouse embryos. Furthermore, using this system we provide the first evidence that recombinant BCL-XL (recBCL-XL protein is effective in preventing early embryo arrest imposed by suboptimal culture environment. We demonstrate that microinjection of recBCL-XL protein into early-stage embryos repairs mitochondrial bioenergetics, prevents reactive oxygen species (ROS accumulation, and enhances preimplantation embryo development. This approach may lead to a possible treatment option for patients with repeated in vitro fertilization (IVF failure due to poor embryo quality.

  12. Caenorhabditis elegans p97 controls germline-specific sex determination by controlling the TRA-1 level in a CUL-2-dependent manner.

    Science.gov (United States)

    Sasagawa, Yohei; Otani, Mieko; Higashitani, Nahoko; Higashitani, Atsushi; Sato, Ken; Ogura, Teru; Yamanaka, Kunitoshi

    2009-10-15

    p97 (CDC-48 in Caenorhabditis elegans) is a ubiquitin-selective AAA (ATPases associated with diverse cellular activities) chaperone and its key function is to disassemble protein complexes. p97 functions in diverse cellular processes including endoplasmic reticulum (ER)-associated degradation, membrane fusion, and meiotic and mitotic progression. However, its cellular functions in development have not yet been clarified. Here, we present data that p97 is involved in the switch from spermatogenesis to oogenesis in the germline of the C. elegans hermaphrodite. We found that the cdc-48.1 deletion mutant produced less sperm than the wild type and thus showed a decreased brood size. The cdc-48.1 mutation suppressed the sperm-overproducing phenotypes of fbf-1 and fem-3(gf) mutants. In addition, the p97/CDC-48-UFD-1-NPL-4 complex interacted with the E3 ubiquitin ligase CUL-2 complex via NPL-4 binding to Elongin C. Furthermore, TRA-1A, which is the terminal effector of the sex determination pathway and is regulated by CUL-2-mediated proteolysis, accumulated in the cdc-48.1 mutant. Proteasome activity was also required for the brood size determination and sperm-oocyte switch. Our results demonstrate that the C. elegans p97/CDC-48-UFD-1-NPL-4 complex controls the sperm-oocyte switch by regulating CUL-2-mediated TRA-1A proteasome degradation.

  13. Germline Defects Caused by Smed-boule RNA-Interference Reveal That Egg Capsule Deposition Occurs Independently of Fertilization, Ovulation, Mating, or the Presence of Gametes in Planarian Flatworms.

    Directory of Open Access Journals (Sweden)

    Jessica Kathryne Steiner

    2016-05-01

    Full Text Available Few animals are known to lay eggs in the absence of ovulation or copulation, as it is presumably energetically wasteful and subjected to negative selection. Characterization of Smed-boule, a member of the DAZ family of germline RNA-binding proteins, revealed that egg capsule (or capsule production and deposition occurs independently of the presence of gametes in the planarian flatworm Schmidtea mediterranea. Reduction of Smed-boule expression by RNA-interference (RNAi causes ablation of spermatogonial stem cells and the inability of ovarian germline stem cells to undergo oogenesis. Although animals subjected to Smed-boule RNAi lose their gametes and become sterile, they continue to lay egg capsules. Production of sterile capsules is even observed in virgin Smed-boule(RNAi and control planarians maintained in complete isolation, demonstrating that egg production in S. mediterranea occurs independently of ovulation, fertilization, or mating. Evidence suggests that this is a conserved feature amongst Platyhelminthes, and therefore relevant to the pathology and dissemination of parasitic flatworms. These findings demonstrate that Smed-boule functions at different stages during male and female germline stem cell development, and also demonstrate that egg capsule production by planarian flatworms occurs independently of signals produced by mating or ova.

  14. Immunoglobulins in the eggs of the nurse shark, Ginglymostoma cirratum.

    Science.gov (United States)

    Haines, Ashley N; Flajnik, Martin F; Rumfelt, Lynn L; Wourms, John P

    2005-01-01

    Elasmobranchs, which include the sharks, skates, and rays, emerged over 450 million years ago and are the oldest vertebrates to possess an adaptive immune system. They have evolved diverse reproductive modes, with a variety of physiological adaptations that enhance reproductive success. The nurse shark, Ginglymostoma cirratum, is an aplacental, viviparous elasmobranch in which the egg and its associated vitelline vasculature are the primary route for maternal-embryonic interactions. During gestation, nurse shark embryos hatch from their eggcases and develop free in the uterus, which is flushed regularly with seawater. Similar to higher vertebrates, embryonic and neonatal nurse sharks possess an immune system that is not fully competent. In birds and bony fishes, maternal immunoglobulins (Ig) stored in the egg during oogenesis confer protective immunity to embryos during gestation. However, early research suggested that such transfer of passive immunity does not occur in sharks. To better understand how elasmobranch embryos are protected from waterborne pathogens during this potentially vulnerable time, we have re-examined the existence of Igs in elasmobranch eggs. Using monoclonal antibodies, we establish the presence of two classes of Igs in nurse shark eggs: 7S IgM and IgNAR. The potential transfer of immunoglobulins from elasmobranch eggs is discussed.

  15. The sea urchin stem–loop-binding protein: a maternally expressed protein that probably functions in expression of multiple classes of histone mRNA

    Science.gov (United States)

    Robertson, Anthony J.; Howard, Jason T.; Dominski, Zbigniew; Schnackenberg, Bradley J.; Sumerel, Jan L.; McCarthy, John J.; Coffman, James A.; Marzluff, William F.

    2004-01-01

    Following the completion of oogenesis and oocyte maturation, histone mRNAs are synthesized and stored in the sea urchin egg pronucleus. Histone mRNAs are the only mRNAs that are not polyadenylated but instead end in a stem–loop which has been conserved in evolution. The 3′ end binds the stem–loop-binding protein (SLBP), and SLBP is required for histone pre-mRNA processing as well as translation of the histone mRNAs. A cDNA encoding a 59 kDa sea urchin SLBP (suSLBP) has been cloned from an oocyte cDNA library. The suSLBP contains an RNA-binding domain that is similar to the RNA-binding domain found in SLBPs from other species, although there is no similarity between the rest of the suSLBP and other SLBPs. The suSLBP is present at constant levels in eggs and for the first 12 h of development. The levels of suSLBP then decline and remain at a low level for the rest of embryogenesis. The suSLBP is concentrated in the egg pronucleus and is released from the nucleus only when cells enter the first mitosis. SuSLBP expressed by in vitro translation does not bind the stem–loop RNA, suggesting that suSLBP is modified to activate RNA binding in sea urchin embryos. PMID:14762208

  16. Differentiation and function of the ovarian somatic cells in the pseudoscorpion, Chelifer cancroides (Linnaeus, 1761) (Chelicerata: Arachnida: Pseudoscorpionida).

    Science.gov (United States)

    Jędrzejowska, Izabela; Mazurkiewicz-Kania, Marta; Garbiec, Arnold; Kubrakiewicz, Janusz

    2013-01-01

    Pseudoscorpion females carry fertilized eggs and embryos in specialized brood sacs, where embryos are fed with a nutritive fluid produced and secreted by somatic ovarian cells. We used various microscopic techniques to analyze the organization of the somatic cells in the ovary of a pseudoscorpion, Chelifer cancroides. In young specimens, the ovary is a cylindrical mass of internally located germline cells (oogonia and early previtellogenic oocytes) and two types of somatic cells: the epithelial cells of the ovarian wall and the internal interstitial cells. In subsequent stages of the ovary development, the oocytes grow and protrude from the ovary into the hemocoel (opisthosomal cavity). At the same time the interstitial cells differentiate into the follicular cells that directly cover the oocyte surface, whereas some epithelial cells of the ovarian wall form the oocyte stalks - tubular structures that connect the oocytes with the ovarian tube. The follicular cells do not seem to participate in oogenesis. In contrast, the cells of the stalk presumably have a dual function. During ovulation the stalk cells appear to contribute to the formation of the external egg envelope (chorion), while in the post-ovulatory phase of ovary function they cooperate with the other cells of the ovarian wall in the production of the nutritive fluid for the developing embryos.

  17. Protein phosphatase 1ß limits ring canal constriction during Drosophila germline cyst formation.

    Science.gov (United States)

    Yamamoto, Shinya; Bayat, Vafa; Bellen, Hugo J; Tan, Change

    2013-01-01

    Germline cyst formation is essential for the propagation of many organisms including humans and flies. The cytoplasm of germline cyst cells communicate with each other directly via large intercellular bridges called ring canals. Ring canals are often derived from arrested contractile rings during incomplete cytokinesis. However how ring canal formation, maintenance and growth are regulated remains unclear. To better understand this process, we carried out an unbiased genetic screen in Drosophila melanogaster germ cells and identified multiple alleles of flapwing (flw), a conserved serine/threonine-specific protein phosphatase. Flw had previously been reported to be unnecessary for early D. melanogaster oogenesis using a hypomorphic allele. We found that loss of Flw leads to over-constricted nascent ring canals and subsequently tiny mature ring canals, through which cytoplasmic transfer from nurse cells to the oocyte is impaired, resulting in small, non-functional eggs. Flw is expressed in germ cells undergoing incomplete cytokinesis, completely colocalized with the Drosophila myosin binding subunit of myosin phosphatase (DMYPT). This colocalization, together with genetic interaction studies, suggests that Flw functions together with DMYPT to negatively regulate myosin activity during ring canal formation. The identification of two subunits of the tripartite myosin phosphatase as the first two main players required for ring canal constriction indicates that tight regulation of myosin activity is essential for germline cyst formation and reproduction in D. melanogaster and probably other species as well.

  18. Protein phosphatase 1ß limits ring canal constriction during Drosophila germline cyst formation.

    Directory of Open Access Journals (Sweden)

    Shinya Yamamoto

    Full Text Available Germline cyst formation is essential for the propagation of many organisms including humans and flies. The cytoplasm of germline cyst cells communicate with each other directly via large intercellular bridges called ring canals. Ring canals are often derived from arrested contractile rings during incomplete cytokinesis. However how ring canal formation, maintenance and growth are regulated remains unclear. To better understand this process, we carried out an unbiased genetic screen in Drosophila melanogaster germ cells and identified multiple alleles of flapwing (flw, a conserved serine/threonine-specific protein phosphatase. Flw had previously been reported to be unnecessary for early D. melanogaster oogenesis using a hypomorphic allele. We found that loss of Flw leads to over-constricted nascent ring canals and subsequently tiny mature ring canals, through which cytoplasmic transfer from nurse cells to the oocyte is impaired, resulting in small, non-functional eggs. Flw is expressed in germ cells undergoing incomplete cytokinesis, completely colocalized with the Drosophila myosin binding subunit of myosin phosphatase (DMYPT. This colocalization, together with genetic interaction studies, suggests that Flw functions together with DMYPT to negatively regulate myosin activity during ring canal formation. The identification of two subunits of the tripartite myosin phosphatase as the first two main players required for ring canal constriction indicates that tight regulation of myosin activity is essential for germline cyst formation and reproduction in D. melanogaster and probably other species as well.

  19. The dynamics of the primordial follicle reserve.

    Science.gov (United States)

    Kerr, Jeffrey B; Myers, Michelle; Anderson, Richard A

    2013-12-01

    The female germline comprises a reserve population of primordial (non-growing) follicles containing diplotene oocytes arrested in the first meiotic prophase. By convention, the reserve is established when all individual oocytes are enclosed by granulosa cells. This commonly occurs prior to or around birth, according to species. Histologically, the 'reserve' is the number of primordial follicles in the ovary at any given age and is ultimately depleted by degeneration and progression through folliculogenesis until exhausted. How and when the reserve reaches its peak number of follicles is determined by ovarian morphogenesis and germ cell dynamics involving i) oogonial proliferation and entry into meiosis producing an oversupply of oocytes and ii) large-scale germ cell death resulting in markedly reduced numbers surviving as the primordial follicle reserve. Our understanding of the processes maintaining the reserve comes primarily from genetically engineered mouse models, experimental activation or destruction of oocytes, and quantitative histological analysis. As the source of ovulated oocytes in postnatal life, the primordial follicle reserve requires regulation of i) its survival or maintenance, ii) suppression of development (dormancy), and iii) activation for growth and entry into folliculogenesis. The mechanisms influencing these alternate and complex inter-related phenomena remain to be fully elucidated. Drawing upon direct and indirect evidence, we discuss the controversial concept of postnatal oogenesis. This posits a rare population of oogonial stem cells that contribute new oocytes to partially compensate for the age-related decline in the primordial follicle reserve.

  20. Zearalenone exposure impairs ovarian primordial follicle formation via down-regulation of Lhx8 expression in vitro.

    Science.gov (United States)

    Zhang, Guo-Liang; Sun, Xiao-Feng; Feng, Yan-Zhong; Li, Bo; Li, Ya-Peng; Yang, Fan; Nyachoti, Charles Martin; Shen, Wei; Sun, Shi-Duo; Li, Lan

    2017-02-15

    Zearalenone (ZEA) is an estrogenic mycotoxin mainly produced as a secondary metabolite by numerous species of Fusarium. Previous work showed that ZEA had a negative impact on domestic animals with regard to reproduction. The adverse effects and the mechanisms of ZEA on mammalian ovarian folliculogenesis remain largely unknown, particularly its effect on primordial follicle formation. Thus, we investigated the biological effects of ZEA exposure on murine ovarian germ cell cyst breakdown and primordial follicle assembly. Our results demonstrated that newborn mouse ovaries exposed to 10 or 30μM ZEA in vitro had significantly less germ cell numbers compared to the control group. Moreover, the presence of ZEA in vitro increased the numbers of TUNEL and γH2AX positive cells within mouse ovaries and the ratio of mRNA levels of the apoptotic genes Bax/Bcl-2. Furthermore, ZEA exposure reduced the mRNA of oocyte specific genes such as LIM homeobox 8 (Lhx8), newborn ovary homeobox (Nobox), spermatogenesis and oogenesis helix-loop-helix (Sohlh2), and factor in the germline alpha (Figlα) in a dose dependent manner. Exposure to ZEA led to remarkable changes in the Lhx8 3'-UTR DNA methylation dynamics in oocytes and severely impaired folliculogenesis in ovaries after transplantation under the kidney capsules of immunodeficient mice. In conclusion, ZEA exposure impairs mouse primordial follicle formation in vitro. Copyright © 2017. Published by Elsevier Inc.

  1. Di-(2-ethylhexyl) phthalate and bisphenol A exposure impairs mouse primordial follicle assembly in vitro.

    Science.gov (United States)

    Zhang, Teng; Li, Lan; Qin, Xun-Si; Zhou, Yang; Zhang, Xi-Feng; Wang, Lin-Qing; De Felici, Massimo; Chen, Hong; Qin, Guo-Qing; Shen, Wei

    2014-05-01

    Bisphenol-A (BPA) and diethylhexyl phthalate (DEHP) are estrogenic compounds widely used in commercial plastic products. Previous studies have shown that exposure to such compounds have adverse effects on various aspects of mammalian reproduction including folliculogenesis. The objective of this study was to examine the effects of BPA and DEHP exposure on primordial follicle formation. We found that germ cell nest breakdown and primordial follicle assembly were significantly reduced when newborn mouse ovaries were exposed to 10 or 100 μM BPA and DEHP in vitro. Moreover, BPA and DEHP exposure increased the number of TUNEL positive oocytes and the mRNA level of the pro-apoptotic gene Bax in oocytes. These effects were associated with decreased expression of oocyte specific genes such as LIM homeobox 8 (Lhx8), factor in the germline alpha (Figla), spermatogenesis and oogenesis helix-loop-helix (Sohlh2), and newborn ovary homeobox (Nobox). Interestingly, BPA and DEHP exposure also prevented DNA demethylation of CpG sites of the Lhx8 gene in oocytes, a process normally associated with folliculogenesis. Finally, folliculogenesis was severely impaired in BPA and DEHP exposed ovaries after transplantation into the kidney capsules of immunodeficient mice. In conclusion, BPA and DEHP exposures impair mouse primordial follicle assembly in vitro. Copyright © 2014 Wiley Periodicals, Inc.

  2. How Is the Number of Primordial Follicles in the Ovarian Reserve Established?

    Science.gov (United States)

    Findlay, John K; Hutt, Karla J; Hickey, Martha; Anderson, Richard A

    2015-11-01

    The number of primordial follicles in the ovarian reserve is an important determinant of the length of the ovarian lifespan, and therefore the fertility of an individual. This reserve contains all of the oocytes potentially available for fertilization throughout the fertile lifespan. The maximum number is set during pregnancy or just after birth in most mammalian species; current evidence does not support neofolliculogenesis after the ovarian reserve is established, although this is increasingly being reexamined. Under physiological circumstances, this number will be influenced by the number of primordial germ cells initially specified in the epiblast of the developing embryo, their proliferation during and after migration to the developing gonads, and their death during oogenesis and formation of primordial follicles at nest breakdown. Death of germ cells during the establishment of the ovarian reserve occurs principally by autophagy or apoptosis, although the triggers that initiate these remain elusive. This review outlines the regulatory steps that determine the number of primordial follicles and thus the number of oocytes in the ovarian reserve at birth, using the mouse as the model, interspersed with human data where available. This information has application for understanding the variability in duration of fertility that occurs between normal individuals and with age, in premature ovarian insufficiency, and after chemotherapy or radiotherapy. © 2015 by the Society for the Study of Reproduction, Inc.

  3. Does a Change from Whole to Powdered Food (Artemia franciscana eggs Increase Oviposition in the Ladybird Coleomegilla maculata?

    Directory of Open Access Journals (Sweden)

    Eric W. Riddick

    2015-09-01

    Full Text Available The limited availability of alternative foods to replace natural prey hinders cost-effective mass production of ladybird beetles for augmentative biological control. We compared the effects of powdered vs. whole Artemia franciscana (A. franciscana (brine shrimp eggs with or without a dietary supplement on development and reproduction of Coleomegilla maculata (C. maculata (Coleoptera: Coccinellidae. We tested the hypotheses that (1 powdered A. franciscana eggs are more suitable than whole eggs; and (2 palmitic acid, a common fatty acid in natural prey, i.e., aphids, is an effective dietary supplement. Development time, pre-imaginal survival, sex ratio, and body weight of adults did not differ significantly amongst individuals fed powdered vs. whole eggs, with or without 5% palmitic acid. Significantly more oviposition occurred when females were fed powdered eggs than whole eggs and powdered eggs with 5% palmitic acid than whole eggs with or without 5% palmitic acid. A weak functional relationship was found between pre-oviposition time and total oviposition by females fed powdered eggs with 5% palmitic acid; pre-oviposition time decreased as oviposition increased. Food treatments had no significant differential effect on progeny (egg hatch rate. In conclusion, a simple change in A. franciscana egg texture and particle size (i.e., blending whole eggs into a dust-like powder increases oviposition in C. maculata. Supplementing powdered eggs with 5% palmitic acid might accelerate oogenesis (egg maturation in some females.

  4. Impact of Exogenous Gonadotropin Stimulation on Circulatory and Follicular Fluid Cytokine Profiles

    Directory of Open Access Journals (Sweden)

    N. Ellissa Baskind

    2014-01-01

    Full Text Available Background. The natural cycle is the prototype to which we aspire to emulate in assisted reproduction techniques. Increasing evidence is emerging that controlled ovarian hyperstimulation (COH with exogenous gonadotropins may be detrimental to oogenesis, embryo quality, and endometrial receptivity. This research aimed at assessing the impact of COH on the intrafollicular milieu by comparing follicular fluid (FF cytokine profiles during stimulated in vitro fertilization (IVF and modified natural cycle (MNC IVF. Methods. Ten women undergoing COH IVF and 10 matched women undergoing MNC IVF were recruited for this pilot study. 40 FF cytokine concentrations from individual follicles and plasma were measured by fluid-phase multiplex immunoassay. Demographic/cycle/cytokine data were compared and correlations between cytokines were computed. Results. No significant differences were found between COH and MNC groups for patient and cycle demographics, including outcome. Overall mean FF cytokine levels were higher in the MNC group for 29/40 cytokines, significantly so for leukaemia inhibitory factor and stromal cell-derived factor-1α. Furthermore, FF MNC cytokine correlations were significantly stronger than for COH data. Conclusions. These findings suggest that COH perturbs intrafollicular cytokine networks, in terms of both cytokine levels and their interrelationships. This may impact oocyte maturation/fertilization and embryo developmental competence.

  5. Infection of the germ line by retroviral particles produced in the follicle cells: a possible mechanism for the mobilization of the gypsy retroelement of Drosophila.

    Science.gov (United States)

    Song, S U; Kurkulos, M; Boeke, J D; Corces, V G

    1997-07-01

    The gypsy retroelement of Drosophila moves at high frequency in the germ line of the progeny of females carrying a mutation in the flamenco (flam) gene. This high rate of de novo insertion correlates with elevated accumulation of full-length gypsy RNA in the ovaries of these females, as well as the presence of an env-specific RNA. We have prepared monoclonal antibodies against the gypsy Pol and Env products and found that these proteins are expressed in the ovaries of flam females and processed in the manner characteristic of vertebrate retroviruses. The Pol proteins are expressed in both follicle and nurse cells, but they do not accumulate at detectable levels in the oocyte. The Env proteins are expressed exclusively in the follicle cells starting at stage 9 of oogenesis, where they accumulate in the secretory apparatus of the endoplasmic reticulum. They then migrate to the inner side of the cytoplasmic membrane where they assemble into viral particles. These particles can be observed in the perivitelline space starting at stage 10 by immunoelectron microscopy using anti-Env antibodies. We propose a model to explain flamenco-mediated induction of gypsy mobilization that involves the synthesis of gypsy viral particles in the follicle cells, from where they leave and infect the oocyte, thus explaining gypsy insertion into the germ line of the subsequent generation.

  6. Regulation of the formin Cappuccino is critical for polarity of Drosophila oocytes.

    Science.gov (United States)

    Bor, Batbileg; Bois, Justin S; Quinlan, Margot E

    2015-01-01

    The Drosophila formin Cappuccino (Capu) creates an actin mesh-like structure that traverses the oocyte during midoogenesis. This mesh is thought to prevent premature onset of fast cytoplasmic streaming which normally happens during late-oogenesis. Proper cytoskeletal organization and cytoplasmic streaming are crucial for localization of polarity determinants such as osk, grk, bcd, and nanos mRNAs. Capu mutants disrupt these events, leading to female sterility. Capu is regulated by another nucleator, Spire, as well as by autoinhibition in vitro. Studies in vivo confirm that Spire modulates Capu's function in oocytes; however, how autoinhibition contributes is still unclear. To study the role of autoinhibition in flies, we expressed a Capu construct that is missing the Capu Inhibitory Domain, CapuΔN. Consistent with a gain of activity due to loss of autoinhibition, the actin mesh was denser in CapuΔN oocytes. Further, cytoplasmic streaming was delayed and fertility levels decreased. Localization of osk mRNA in early stages, and bcd and nanos in late stages, were disrupted in CapuΔN-expressing oocytes. Finally, evidence that these phenotypes were due to a loss of autoinhibition comes from coexpression of the N-terminal half of Capu with CapuΔN, which suppressed the defects in actin, cytoplasmic streaming and fertility. From these results, we conclude that Capu can be autoinhibited during Drosophila oocyte development.

  7. Interaction between microtubules and the Drosophila formin Cappuccino and its effect on actin assembly.

    Science.gov (United States)

    Roth-Johnson, Elizabeth A; Vizcarra, Christina L; Bois, Justin S; Quinlan, Margot E

    2014-02-14

    Formin family actin nucleators are potential coordinators of the actin and microtubule cytoskeletons, as they can both nucleate actin filaments and bind microtubules in vitro. To gain a more detailed mechanistic understanding of formin-microtubule interactions and formin-mediated actin-microtubule cross-talk, we studied microtubule binding by Cappuccino (Capu), a formin involved in regulating actin and microtubule organization during Drosophila oogenesis. We found that two distinct domains within Capu, FH2 and tail, work together to promote high-affinity microtubule binding. The tail domain appears to bind microtubules through nonspecific charge-based interactions. In contrast, distinct residues within the FH2 domain are important for microtubule binding. We also report the first visualization of a formin polymerizing actin filaments in the presence of microtubules. Interestingly, microtubules are potent inhibitors of the actin nucleation activity of Capu but appear to have little effect on Capu once it is bound to the barbed end of an elongating filament. Because Capu does not simultaneously bind microtubules and assemble actin filaments in vitro, its actin assembly and microtubule binding activities likely require spatial and/or temporal regulation within the Drosophila oocyte.

  8. Cappuccino, a Drosophila maternal effect gene required for polarity of the egg and embryo, is related to the vertebrate limb deformity locus.

    Science.gov (United States)

    Emmons, S; Phan, H; Calley, J; Chen, W; James, B; Manseau, L

    1995-10-15

    We report the molecular isolation of cappuccino (capu), a gene required for localization of molecular determinants within the developing Drosophila oocyte. The carboxy-terminal half of the capu protein is closely related to that of the vertebrate limb deformity locus, which is known to function in polarity determination in the developing vertebrate limb. In addition, capu shares both a proline-rich region and a 70-amino-acid domain with a number of other genes, two of which also function in pattern formation, the Saccharomyes cerevisiae BNI1 gene and the Aspergillus FigA gene. We also show that capu mutant oocytes have abnormal microtubule distributions and premature microtubule-based cytoplasmic streaming within the oocyte, but that neither the speed nor the timing of the cytoplasmic streaming correlates with the strength of the mutant allele. This suggests that the premature cytoplasmic streaming in capu mutant oocytes does not suffice to explain the patterning defects. By inducing cytoplasmic streaming in wild-type oocytes during mid-oogenesis, we show that premature cytoplasmic streaming can displace staufen protein from the posterior pole, but not gurken mRNA from around the oocyte nucleus.

  9. Localization of vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities.

    Science.gov (United States)

    Liang, L; Diehl-Jones, W; Lasko, P

    1994-05-01

    The Drosophila gene vasa encodes a DEAD-box protein, which is localized during early oogenesis to the perinuclear region of the nurse cells and later to the pole plasm at the posterior end of the oocyte. Posterior localization of vasa protein depends upon the functions of four genes: capu, spir, osk and stau. We have found that localization of vasa to the perinuclear nuage is abolished in most vas alleles, but is unaffected by mutations in four genes required upstream for its pole plasm localization. Thus localization of vasa to the nuage particles is independent of the pole plasm assembly pathway. Furthermore, electron-dense nuage particles are less abundant in the cytoplasm of nurse cells from vas mutants that fail to exhibit perinuclear localization, suggesting that the formation of the nuage depends upon vas function. Eight of nine vas point mutations cause codon substitutions in a region conserved among DEAD-box genes. The proteins from two mutant alleles that retain the capacity to localize to the posterior pole of the oocyte, vasO14 and vasO11, are both severely reduced in RNA-binding and -unwinding activity as compared to the wild-type protein on a variety of RNA substrates including in vitro synthesized pole plasm RNAs. Initial recruitment of vasa to the pole plasm must consequently depend upon protein-protein interactions but, once localized, vasa must bind to RNA to mediate germ cell formation.

  10. Microtubule anchoring by cortical actin bundles prevents streaming of the oocyte cytoplasm.

    Science.gov (United States)

    Wang, Ying; Riechmann, Veit

    2008-01-01

    The localisation of the determinants of the body axis during Drosophila oogenesis is dependent on the microtubule (MT) cytoskeleton. Mutations in the actin binding proteins Profilin, Cappuccino (Capu) and Spire result in premature streaming of the cytoplasm and a reorganisation of the oocyte MT network. As a consequence, the localisation of axis determinants is abolished in these mutants. It is unclear how actin regulates the organisation of the MTs, or what the spatial relationship between these two cytoskeletal elements is. Here, we report a careful analysis of the oocyte cytoskeleton. We identify thick actin bundles at the oocyte cortex, in which the minus ends of the MTs are embedded. Disruption of these bundles results in cortical release of the MT minus ends, and premature onset of cytoplasmic streaming. Thus, our data indicate that the actin bundles anchor the MTs minus ends at the oocyte cortex, and thereby prevent streaming of the cytoplasm. We further show that actin bundle formation requires Profilin but not Capu and Spire. Thus, our results support a model in which Profilin acts in actin bundle nucleation, while Capu and Spire link the bundles to MTs. Finally, our data indicate how cytoplasmic streaming contributes to the reorganisation of the MT cytoskeleton. We show that the release of the MT minus ends from the cortex occurs independently of streaming, while the formation of MT bundles is streaming dependent.

  11. Interaction between Microtubules and the Drosophila Formin Cappuccino and Its Effect on Actin Assembly*

    Science.gov (United States)

    Roth-Johnson, Elizabeth A.; Vizcarra, Christina L.; Bois, Justin S.; Quinlan, Margot E.

    2014-01-01

    Formin family actin nucleators are potential coordinators of the actin and microtubule cytoskeletons, as they can both nucleate actin filaments and bind microtubules in vitro. To gain a more detailed mechanistic understanding of formin-microtubule interactions and formin-mediated actin-microtubule cross-talk, we studied microtubule binding by Cappuccino (Capu), a formin involved in regulating actin and microtubule organization during Drosophila oogenesis. We found that two distinct domains within Capu, FH2 and tail, work together to promote high-affinity microtubule binding. The tail domain appears to bind microtubules through nonspecific charge-based interactions. In contrast, distinct residues within the FH2 domain are important for microtubule binding. We also report the first visualization of a formin polymerizing actin filaments in the presence of microtubules. Interestingly, microtubules are potent inhibitors of the actin nucleation activity of Capu but appear to have little effect on Capu once it is bound to the barbed end of an elongating filament. Because Capu does not simultaneously bind microtubules and assemble actin filaments in vitro, its actin assembly and microtubule binding activities likely require spatial and/or temporal regulation within the Drosophila oocyte. PMID:24362037

  12. Germline Defects Caused by Smed-boule RNA-Interference Reveal That Egg Capsule Deposition Occurs Independently of Fertilization, Ovulation, Mating, or the Presence of Gametes in Planarian Flatworms.

    Science.gov (United States)

    Steiner, Jessica Kathryne; Tasaki, Junichi; Rouhana, Labib

    2016-05-01

    Few animals are known to lay eggs in the absence of ovulation or copulation, as it is presumably energetically wasteful and subjected to negative selection. Characterization of Smed-boule, a member of the DAZ family of germline RNA-binding proteins, revealed that egg capsule (or capsule) production and deposition occurs independently of the presence of gametes in the planarian flatworm Schmidtea mediterranea. Reduction of Smed-boule expression by RNA-interference (RNAi) causes ablation of spermatogonial stem cells and the inability of ovarian germline stem cells to undergo oogenesis. Although animals subjected to Smed-boule RNAi lose their gametes and become sterile, they continue to lay egg capsules. Production of sterile capsules is even observed in virgin Smed-boule(RNAi) and control planarians maintained in complete isolation, demonstrating that egg production in S. mediterranea occurs independently of ovulation, fertilization, or mating. Evidence suggests that this is a conserved feature amongst Platyhelminthes, and therefore relevant to the pathology and dissemination of parasitic flatworms. These findings demonstrate that Smed-boule functions at different stages during male and female germline stem cell development, and also demonstrate that egg capsule production by planarian flatworms occurs independently of signals produced by mating or ova.

  13. Protein arginine methyltransferase Prmt5-Mep50 methylates histones H2A and H4 and the histone chaperone nucleoplasmin in Xenopus laevis eggs.

    Science.gov (United States)

    Wilczek, Carola; Chitta, Raghu; Woo, Eileen; Shabanowitz, Jeffrey; Chait, Brian T; Hunt, Donald F; Shechter, David

    2011-12-01

    Histone proteins carry information contained in post-translational modifications. Eukaryotic cells utilize this histone code to regulate the usage of the underlying DNA. In the maturing oocytes and eggs of the frog Xenopus laevis, histones are synthesized in bulk in preparation for deposition during the rapid early developmental cell cycles. During this key developmental time frame, embryonic pluripotent chromatin is established. In the egg, non-chromatin-bound histones are complexed with storage chaperone proteins, including nucleoplasmin. Here we describe the identification and characterization of a complex of the protein arginine methyltransferase 5 (Prmt5) and the methylosome protein 50 (Mep50) isolated from Xenopus eggs that specifically methylates predeposition histones H2A/H2A.X-F and H4 and the histone chaperone nucleoplasmin on a conserved motif (GRGXK). We demonstrate that nucleoplasmin (Npm), an exceedingly abundant maternally deposited protein, is a potent substrate for Prmt5-Mep50 and is monomethylated and symmetrically dimethylated at Arg-187. Furthermore, Npm modulates Prmt5-Mep50 activity directed toward histones, consistent with a regulatory role for Npm in vivo. We show that H2A and nucleoplasmin methylation appears late in oogenesis and is most abundant in the laid egg. We hypothesize that these very abundant arginine methylations are constrained to pre-mid blastula transition events in the embryo and therefore may be involved in the global transcriptional repression found in this developmental time frame.

  14. The cadherin Fat2 is required for planar cell polarity in the Drosophila ovary.

    Science.gov (United States)

    Viktorinová, Ivana; König, Tina; Schlichting, Karin; Dahmann, Christian

    2009-12-01

    Planar cell polarity is an important characteristic of many epithelia. In the Drosophila wing, eye and abdomen, establishment of planar cell polarity requires the core planar cell polarity genes and two cadherins, Fat and Dachsous. Drosophila Fat2 is a cadherin related to Fat; however, its role during planar cell polarity has not been studied. Here, we have generated mutations in fat2 and show that Fat2 is required for the planar polarity of actin filament orientation at the basal side of ovarian follicle cells. Defects in actin filament orientation correlate with a failure of egg chambers to elongate during oogenesis. Using a functional fosmid-based fat2-GFP transgene, we show that the distribution of Fat2 protein in follicle cells is planar polarized and that Fat2 localizes where basal actin filaments terminate. Mosaic analysis demonstrates that Fat2 acts non-autonomously in follicle cells, indicating that Fat2 is required for the transmission of polarity information. Our results suggest a principal role for Fat-like cadherins during the establishment of planar cell polarity.

  15. Salvador-warts-hippo signaling promotes Drosophila posterior follicle cell maturation downstream of notch.

    Science.gov (United States)

    Polesello, Cédric; Tapon, Nicolas

    2007-11-06

    The Salvador Warts Hippo (SWH) network limits tissue size in Drosophila and vertebrates [1]. Decreased SWH pathway activity gives rise to excess proliferation and reduced apoptosis. The core of the SWH network is composed of two serine/threonine kinases Hippo (Hpo) and Warts (Wts), the scaffold proteins Salvador (Sav) and Mats, and the transcriptional coactivator Yorkie (Yki) [1]. Two band 4.1 related proteins, Merlin (Mer) and Expanded (Ex), have been proposed to act upstream of Hpo, which in turn activates Wts ([1] for review). Wts phosphorylates and inhibits Yki, repressing the expression of Yki target genes [2-4]. Recently, several planar cell polarity (PCP) genes have been implicated in the SWH network in growth control [5-8]. Here, we show that, during oogenesis, the core components of the SWH network are required in posterior follicle cells (PFCs) competent to receive the Gurken (Grk)/TGFalpha signal emitted by the oocyte to control body axis formation. Our results suggest that the SWH network controls the expression of Hindsight, the downstream effector of Notch, required for follicle cell mitotic cycle-endocycle switch. The PCP members of the SWH network are not involved in this process, indicating that signaling upstream of Hpo varies according to developmental context.

  16. U bodies respond to nutrient stress in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, Mickey; Liu, Ji-Long, E-mail: jilong.liu@dpag.ox.ac.uk

    2011-12-10

    The neurodegenerative disease spinal muscular atrophy (SMA) is caused by mutation of the survival motor neuron 1 (SMN1) gene. Cytoplasmic SMN protein-containing granules, known as U snRNP bodies (U bodies), are thought to be responsible for the assembly and storage of small nuclear ribonucleoproteins (snRNPs) which are essential for pre-mRNA splicing. U bodies exhibit close association with cytoplasmic processing bodies (P bodies), which are involved in mRNA decay and translational repression. The close association of the U body and P body in Drosophila resemble that of the stress granule and P body in yeast and mammalian cells. However, it is unknown whether the U body is responsive to any stress. Using Drosophila oogenesis as a model, here we show that U bodies increase in size following nutritional deprivation. Despite nutritional stress, U bodies maintain their close association with P bodies. Our results show that U bodies are responsive to nutrition changes, presumably through the U body-P body pathway.

  17. ifet-1 is a broad-scale translational repressor required for normal P granule formation in C. elegans.

    Science.gov (United States)

    Sengupta, Madhu S; Low, Wai Yee; Patterson, Joseph R; Kim, Hyun-Min; Traven, Ana; Beilharz, Traude H; Colaiácovo, Monica P; Schisa, Jennifer A; Boag, Peter R

    2013-02-01

    Large cytoplasmic ribonucleoprotein germ granule complexes are a common feature in germ cells. In C. elegans these are called P granules and for much of the life-cycle they associate with nuclear pore complexes in germ cells. P granules are rich in proteins that function in diverse RNA pathways. Here we report that the C. elegans homolog of the eIF4E-transporter IFET-1 is required for oogenesis but not spermatogenesis. We show that IFET-1 is required for translational repression of several maternal mRNAs in the distal gonad and functions in conjunction with the broad-scale translational regulators CGH-1, CAR-1 and PATR-1 to regulate germ cell sex determination. Furthermore we have found that IFET-1 localizes to P granules throughout the gonad and in the germ cell lineage in the embryo. Interestingly, IFET-1 is required for the normal ultrastructure of P granules and for the localization of CGH-1 and CAR-1 to P granules. Our findings suggest that IFET-1 is a key translational regulator and is required for normal P granule formation.

  18. MicroRNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice.

    Science.gov (United States)

    Huszar, Jessica M; Payne, Christopher J

    2013-01-01

    Impaired biogenesis of microRNAs disrupts spermatogenesis and leads to infertility in male mice. Spermatogonial differentiation is a key step in spermatogenesis, yet the mechanisms that control this event remain poorly defined. In this study, we discovered microRNA 146 (Mir146) to be highly regulated during spermatogonial differentiation, a process dependent on retinoic acid (RA) signaling. Mir146 transcript levels were diminished nearly 180-fold in differentiating spermatogonia when compared with undifferentiated spermatogonia. Luciferase assays revealed the direct binding of Mir146 to the 3' untranslated region of the mediator complex subunit 1 (Med1), a coregulator of retinoid receptors (RARs and RXRs). Overexpression of Mir146 in cultured undifferentiated spermatogonia reduced Med1 transcript levels, as well as those of differentiation marker kit oncogene (Kit). MED1 protein was also diminished. Conversely, inhibition of Mir146 increased the levels of Kit. When undifferentiated spermatogonia were exposed to RA, Mir146 was downregulated along with a marker for undifferentiated germ cells, zinc finger and BTB domain containing 16 (Zbtb16; Plzf); Kit was upregulated. Overexpression of Mir146 in RA-treated spermatogonia inhibited the upregulation of Kit, stimulated by retinoic acid gene 8 (Stra8), and spermatogenesis- and oogenesis-specific basic helix-loop-helix 2 (Sohlh2). Inhibition of Mir146 in RA-treated spermatogonia greatly enhanced the upregulation of these genes. We conclude that Mir146 modulates the effects of RA on spermatogonial differentiation.

  19. MicroRNA 146 (Mir146) Modulates Spermatogonial Differentiation by Retinoic Acid in Mice1

    Science.gov (United States)

    Huszar, Jessica M.; Payne, Christopher J.

    2012-01-01

    ABSTRACT Impaired biogenesis of microRNAs disrupts spermatogenesis and leads to infertility in male mice. Spermatogonial differentiation is a key step in spermatogenesis, yet the mechanisms that control this event remain poorly defined. In this study, we discovered microRNA 146 (Mir146) to be highly regulated during spermatogonial differentiation, a process dependent on retinoic acid (RA) signaling. Mir146 transcript levels were diminished nearly 180-fold in differentiating spermatogonia when compared with undifferentiated spermatogonia. Luciferase assays revealed the direct binding of Mir146 to the 3′ untranslated region of the mediator complex subunit 1 (Med1), a coregulator of retinoid receptors (RARs and RXRs). Overexpression of Mir146 in cultured undifferentiated spermatogonia reduced Med1 transcript levels, as well as those of differentiation marker kit oncogene (Kit). MED1 protein was also diminished. Conversely, inhibition of Mir146 increased the levels of Kit. When undifferentiated spermatogonia were exposed to RA, Mir146 was downregulated along with a marker for undifferentiated germ cells, zinc finger and BTB domain containing 16 (Zbtb16; Plzf); Kit was upregulated. Overexpression of Mir146 in RA-treated spermatogonia inhibited the upregulation of Kit, stimulated by retinoic acid gene 8 (Stra8), and spermatogenesis- and oogenesis-specific basic helix-loop-helix 2 (Sohlh2). Inhibition of Mir146 in RA-treated spermatogonia greatly enhanced the upregulation of these genes. We conclude that Mir146 modulates the effects of RA on spermatogonial differentiation. PMID:23221399

  20. MALDI Mass Spectrometry Imaging of Lipids and Gene Expression Reveals Differences in Fatty Acid Metabolism between Follicular Compartments in Porcine Ovaries

    Directory of Open Access Journals (Sweden)

    Svetlana Uzbekova

    2015-03-01

    Full Text Available In mammals, oocytes develop inside the ovarian follicles; this process is strongly supported by the surrounding follicular environment consisting of cumulus, granulosa and theca cells, and follicular fluid. In the antral follicle, the final stages of oogenesis require large amounts of energy that is produced by follicular cells from substrates including glucose, amino acids and fatty acids (FAs. Since lipid metabolism plays an important role in acquiring oocyte developmental competence, the aim of this study was to investigate site-specificity of lipid metabolism in ovaries by comparing lipid profiles and expression of FA metabolism-related genes in different ovarian compartments. Using MALDI Mass Spectrometry Imaging, images of porcine ovary sections were reconstructed from lipid ion signals for the first time. Cluster analysis of ion spectra revealed differences in spatial distribution of lipid species among ovarian compartments, notably between the follicles and interstitial tissue. Inside the follicles analysis differentiated follicular fluid, granulosa, theca and the oocyte-cumulus complex. Moreover, by transcript quantification using real time PCR, we showed that expression of five key genes in FA metabolism significantly varied between somatic follicular cells (theca, granulosa and cumulus and the oocyte. In conclusion, lipid metabolism differs between ovarian and follicular compartments.

  1. Mutation dependance of the mitochondrial DNA copy number in the first stages of human embryogenesis.

    Science.gov (United States)

    Monnot, Sophie; Samuels, David C; Hesters, Laetitia; Frydman, Nelly; Gigarel, Nadine; Burlet, Philippe; Kerbrat, Violaine; Lamazou, Frédéric; Frydman, René; Benachi, Alexandra; Feingold, Josué; Rotig, Agnes; Munnich, Arnold; Bonnefont, Jean-Paul; Steffann, Julie

    2013-05-01

    Mitochondrial DNA (mtDNA) content is thought to remain stable over the preimplantation period of human embryogenesis that is, therefore, suggested to be entirely dependent on ooplasm mtDNA capital. We have explored the impact of two disease-causing mutations [m.3243A>G myopathy, encephalopathy, lactic acidosis and stroke-like syndrome (MELAS) and m.8344A>G myoclonic epilepsy associated with ragged-red fibers (MERRF)] on mtDNA amounts in human oocytes and day 4-5 preimplantation embryos. The mtDNA amount was stable in MERRF and control materials, whereas gradually increasing from the germinal vesicle of oogenesis to the blastocyst stage of embryogenesis in MELAS cells, MELAS embryos carrying ∼3-fold higher mtDNA amount than control embryos (P = 0.0003). A correlation between mtDNA copy numbers and mutant loads was observed in MELAS embryos (R(2) = 0.42, P < 0.0013), suggestive of a compensation for the respiratory chain defect resulting from high mutation levels. These results suggest that mtDNA can replicate in early embryos and emphasize the need for sufficient amount of wild-type mtDNA to sustain embryonic development in humans.

  2. Patterning mechanisms in the evolution of derived developmental life histories: the role of Wnt signaling in axis formation of the direct-developing sea urchin Heliocidaris erythrogramma.

    Science.gov (United States)

    Kauffman, Jeffrey S; Raff, Rudolf A

    2003-12-01

    A number of echinoderm species have replaced indirect development with highly modified direct-developmental modes, and provide models for the study of the evolution of early embryonic development. These divergent early ontogenies may differ significantly in life history, oogenesis, cleavage pattern, cell lineage, and timing of cell fate specification compared with those of indirect-developing species. No direct-developing echinoderm species has been studied at the level of molecular specification of embryonic axes. Here we report the first functional analysis of Wnt pathway components in Heliocidaris erythrogramma, a direct-developing sea urchin. We show by misexpression and dominant negative knockout construct expression that Wnt8 and TCF are functionally conserved in the generation of the primary (animal/vegetal) axis in two independently evolved direct-developing sea urchins. Thus, Wnt pathway signaling is an overall deeply conserved mechanism for axis formation that transcends radical changes to early developmental ontogenies. However, the timing of expression and linkages between Wnt8, TCF, and components of the PMC-specification pathway have changed. These changes correlate with the transition from an indirect- to a direct-developing larval life history.

  3. Arginine methylation of SmB is required for Drosophila germ cell development.

    Science.gov (United States)

    Anne, Joël

    2010-09-01

    Sm proteins constitute the common core of spliceosomal small nuclear ribonucleoproteins. Although Sm proteins are known to be methylated at specific arginine residues within the C-terminal arginine-glycine dipeptide (RG) repeats, the biological relevance of these modifications remains unknown. In this study, a tissue-specific function of arginine methylation of the SmB protein was identified in Drosophila. Analysis of the distribution of SmB during oogenesis revealed that this protein accumulates at the posterior pole of the oocyte, a cytoplasmic region containing the polar granules, which are necessary for the formation of primordial germ cells. The pole plasm localisation of SmB requires the methylation of arginine residues in its RG repeats by the Capsuléen-Valois methylosome complex. Functional studies showed that the methylation of these arginine residues is essential for distinct processes of the germline life cycle, including germ cell formation, migration and differentiation. In particular, the methylation of a subset of these arginine residues appears essential for the anchoring of the polar granules at the posterior cortex of the oocyte, whereas the methylation of another subset controls germ cell migration during embryogenesis. These results demonstrate a crucial role of arginine methylation in directing the subcellular localisation of SmB and that this modification contributes specifically to the establishment and development of germ cells.

  4. Using mariculture as a breeding site: reproduction of Hypleurochilus fissicornis (Actinopterygii: Blenniidae

    Directory of Open Access Journals (Sweden)

    Bianca Possamai

    2015-09-01

    Full Text Available Mariculture in estuaries provides substrate for colonization by fouling organisms, thus attracting small cryptic fish species hitherto unknown in this environment. The blenny Hypleurochilus fissicornis is one of the species that is associated with this new system and is found in high abundance in bivalve farming. To understand the reproductive strategy that this species uses in this new environment, we collected specimens monthly in a mariculture on the southern coast of Paraná State (Brazil. After obtaining morphometric data, we removed gonads to determine sex and maturity stage. Gonads were weighed and analysed histologically. Oogenesis showed the same pattern as in other teleosts, but spermatogenesis showed a very complex dynamics. The spawning is multiple and synchronous between sexes, lasting eight months (May to December and peaking in winter. Hypleurochilus fissicornis was reproductively successful using the mariculture as a breeding site. The species has a variety of tactics to protect its offspring (e.g. batch spawning, long reproductive period, reduced L50, parental care and a reproductive peak in winter.

  5. New insights on the origin and relevance of aneuploidy in human spermatozoa.

    Science.gov (United States)

    Templado, C; Uroz, L; Estop, A

    2013-10-01

    In humans, the most common chromosomal abnormality is aneuploidy. Because the majority of aneuploid conceptuses die during the early stages of embryonic development, an accurate estimate of the frequency of aneuploidy at conception can only be assessed by directly studying the gametes. The vast majority of aneuploidies arise de novo as a result of sporadic chromosome missegregation in paternal or maternal meiosis. In this review, we present the basic current knowledge about the incidence of aneuploidy in human spermatozoa in the general population and in patient populations where elevated levels of sperm aneuploidy are observed. These include infertile patients, patients with abnormal somatic karyotypes, and individuals exposed to certain environmental/lifestyle hazards. The clinical impact of increased levels of aneuploidy is discussed. We then focus on the non-disjunction mechanisms that cause aneuploidy during spermatogenesis and the factors that predispose to non-disjunction in male germ cells followed by an analysis of the sex differences in the incidence of gamete aneuploidy. Recent meiotic studies using multiplex-FISH on three fertile men have revealed that the frequency of conservative aneuploidy of metaphase II spermatocytes is similar to that observed in non-inseminated oocytes of young women. These findings suggest that the differences in the incidence of aneuploidy between spermatozoa and oocytes are not due to differences in chromosome segregation errors but rather to more effective checkpoint mechanisms in spermatogenesis than in oogenesis.

  6. The Scd6/Lsm14 protein xRAPB has properties different from RAP55 in selecting mRNA for early translation or intracellular distribution in Xenopus oocytes.

    Science.gov (United States)

    Ladomery, Michael; Sommerville, John

    2015-11-01

    Oocytes accumulate mRNAs in the form of maternal ribonucleoprotein (RNP) particles, the protein components of which determine the location and stability of individual mRNAs prior to translation. Scd6/Lsm14 proteins, typified by RAP55, function in a wide range of eukaryotes in repressing translation and relocating mRNPs to processing bodies and stress granules. In Xenopus laevis, the RAP55 orthologue xRAPA fulfils these functions. Here we describe the properties of a variant of xRAPA, xRAPB, which is a member of the Lsm14B group. xRAPB differs from xRAPA in various respects: it is expressed at high concentration earlier in oogenesis; it interacts specifically with the DDX6 helicase Xp54; it is detected in polysomes and stalled translation initiation complexes; its over-expression leads to selective binding to translatable mRNA species without evidence of translation repression or mRNA degradation. Since both Xp54 and xRAPA are repressors of translation, activation appears to be effected through targeting of xRAPB/Xp54.

  7. Xp54, the Xenopus homologue of human RNA helicase p54, is an integral component of stored mRNP particles in oocytes.

    Science.gov (United States)

    Ladomery, M; Wade, E; Sommerville, J

    1997-01-01

    In investigating the composition of stored (maternal) mRNP particles in Xenopus oocytes, attention has focussed primarily on the phosphoproteins pp60/56, which are Y-box proteins involved in a general packaging of mRNA. We now identify a third, abundant, integral component of stored mRNP particles, Xp54, which belongs to the family of DEAD-box RNA helicases. Xp54 was first detected by its ability to photocrosslink ATP. Subsequent sequence analysis identifies Xp54 as a member of a helicase subfamily which includes: human p54, encoded at a chromosomal breakpoint in the B-cell lymphoma cell line, RC-K8; Drosophila ME31B, encoded by a maternally-expressed gene, and Saccharomyces pombe Ste13, cloned by complementation of the sterility mutant ste13. Expression studies reveal that the gene encoding Xp54 is transcribed maximally at early oogenesis: no transcripts are detected in adult tissues, other than ovary. Using a monospecific antibody raised against native Xp54, its presence in mRNP particles is confirmed by immunoblotting fractions bound to oligo(dT)-cellulose and separated by rate sedimentation and buoyant density. On isolating Xp54 from mRNP particles, it is shown to possess an ATP-dependent RNA helicase activity. Possible functions of Xp54 are discussed in relation to the assembly and utilization of mRNP particles. PMID:9023105

  8. RNA helicase Belle/DDX3 regulates transgene expression in Drosophila.

    Science.gov (United States)

    Lo, Pang-Kuo; Huang, Yi-Chun; Poulton, John S; Leake, Nicholas; Palmer, William H; Vera, Daniel; Xie, Gengqiang; Klusza, Stephen; Deng, Wu-Min

    2016-04-01

    Belle (Bel), the Drosophila homolog of the yeast DEAD-box RNA helicase DED1 and human DDX3, has been shown to be required for oogenesis and female fertility. Here we report a novel role of Bel in regulating the expression of transgenes. Abrogation of Bel by mutations or RNAi induces silencing of a variety of P-element-derived transgenes. This silencing effect depends on downregulation of their RNA levels. Our genetic studies have revealed that the RNA helicase Spindle-E (Spn-E), a nuage RNA helicase that plays a crucial role in regulating RNA processing and PIWI-interacting RNA (piRNA) biogenesis in germline cells, is required for loss-of-bel-induced transgene silencing. Conversely, Bel abrogation alleviates the nuage-protein mislocalization phenotype in spn-E mutants, suggesting a competitive relationship between these two RNA helicases. Additionally, disruption of the chromatin remodeling factor Mod(mdg4) or the microRNA biogenesis enzyme Dicer-1 (Dcr-1) also alleviates the transgene-silencing phenotypes in bel mutants, suggesting the involvement of chromatin remodeling and microRNA biogenesis in loss-of-bel-induced transgene silencing. Finally we show that genetic inhibition of Bel function leads to de novo generation of piRNAs from the transgene region inserted in the genome, suggesting a potential piRNA-dependent mechanism that may mediate transgene silencing as Bel function is inhibited.

  9. A Unique Egg Cortical Granule Localization Motif Is Required for Ovastacin Sequestration to Prevent Premature ZP2 Cleavage and Ensure Female Fertility in Mice.

    Directory of Open Access Journals (Sweden)

    Bo Xiong

    2017-01-01

    Full Text Available Monospermic fertilization is mediated by the extracellular zona pellucida composed of ZP1, ZP2 and ZP3. Sperm bind to the N-terminus of ZP2 which is cleaved after fertilization by ovastacin (encoded by Astl exocytosed from egg cortical granules to prevent sperm binding. AstlNull mice lack the post-fertilization block to sperm binding and the ability to rescue this phenotype with AstlmCherry transgenic mice confirms the role of ovastacin in providing a definitive block to polyspermy. During oogenesis, endogenous ovastacin traffics through the endomembrane system prior to storage in peripherally located cortical granules. Deletion mutants of ovastacinmCherry expressed in growing oocytes define a unique 7 amino acid motif near its N-terminus that is necessary and sufficient for cortical granule localization. Deletion of the 7 amino acids by CRISPR/Cas9 at the endogenous locus (AstlΔ prevents cortical granule localization of ovastacin. The misdirected enzyme is present within the endomembrane system and ZP2 is prematurely cleaved. Sperm bind poorly to the zona pellucida of AstlΔ/Δ mice with partially cleaved ZP2 and female mice are sub-fertile.

  10. Participation of D-serine in the development and reproduction of the silkworm Bombyx mori.

    Science.gov (United States)

    Tanigawa, Minoru; Suzuki, Chihiro; Niwano, Kimio; Kanekatsu, Rensuke; Tanaka, Hiroyuki; Horiike, Kihachiro; Hamase, Kenji; Nagata, Yoko

    2016-04-01

    The silkworm Bombyx mori contains high concentrations of free D-serine, an optical isomer of L-serine. To elucidate its function, we first investigated the localization of D-serine in various organs of silkworm larvae, pupae, and adult moths. Using immunohistochemical analysis with an anti-D-serine antibody, we found D-serine in the microvilli of midgut goblet and cylindrical cells and in peripheral matrix components of testicular and ovarian cells. By spectrophotometric analysis, D-serine was also found in the hemolymph and fat body. D-Alanine was not detected in the various organs by immunohistochemistry. Serine racemase, which catalyzes the inter-conversion of L- and D-serine, was found to co-localize with D-serine, and D-serine production from L-serine by intrinsic serine racemase was suggested. O-Phospho-L-serine is an inhibitor of serine racemase, and it was administered to the larvae to reduce the D-serine level. This reagent decreased the midgut caspase-3 level and caused a delay in spermatogenesis and oogenesis. The reagent also decreased mature sperm and egg numbers, suggesting D-serine participation in these processes. D-Serine administration induced an increase in pyruvate levels in testis, midgut, and fat body, indicating conversion of D-serine to pyruvate. On the basis of these results, together with our previous investigation of ATP biosynthesis in testis, we consider the possible involvement of D-serine in ATP synthesis for metamorphosis and reproduction.

  11. Unlike in Drosophila Meroistic Ovaries, hippo represses notch in Blattella germanica Panoistic ovaries, triggering the mitosis-endocycle switch in the follicular cells.

    Directory of Open Access Journals (Sweden)

    Paula Irles

    Full Text Available During insect oogenesis, the follicular epithelium undergoes both cell proliferation and apoptosis, thus modulating ovarian follicle growth. The Hippo pathway is key in these processes, and has been thoroughly studied in the meroistic ovaries of Drosophila melanogaster. However, nothing is known about the role of the Hippo pathway in primitive panoistic ovaries. This work examines the mRNA expression levels of the main components of the Hippo pathway in the panoistic ovary of the basal insect species Blattella germanica, and demonstrates the function of Hippo through RNAi. In Hippo-depleted specimens, the follicular cells of the basal ovarian follicles proliferate without arresting cytokinesis; the epithelium therefore becomes bilayered, impairing ovarian follicle growth. This phenotype is accompanied by long stalks between the ovarian follicles. In D. melanogaster loss of function of Notch determines that the stalk is not developed. With this in mind, we tested whether Hippo and Notch pathways are related in B. germanica. In Notch (only-depleted females, no stalks were formed between the ovarian follicles. Simultaneous depletion of Hippo and Notch rescued partially the stalk to wild-type. Unlike in the meroistic ovaries of D. melanogaster, in panoistic ovaries the Hippo pathway appears to regulate follicular cell proliferation by acting as a repressor of Notch, triggering the switch from mitosis to the endocycle in the follicular cells. The phylogenetically basal position of B. germanica suggests that this might be the ancestral function of Hippo in insect ovaries.

  12. Stanislaw Smreczynskis legacy and the Department of Zoology of the Jagiellonian University of Krakow (Poland).

    Science.gov (United States)

    Jaglarz, Mariusz K

    2008-01-01

    This article covers the origin and development of scientific interest in insect and amphibian developmental biology at the Department of Systematic Zoology and Zoogeography of the Jagiellonian University. The greater part of this historical account is devoted to Professor Stanislaw Smreczynski (1899-1975), the founding father of the Department, and comments on his biography and research achievements in the field of animal experimental embryology. A particular emphasis is on Smreczynski's contributions to contemporary understanding of early embryonic development of amphibians and insects as well as his expertise in Pleistocene and extant weevils (Curculionidae). A concise survey of developmental phenomena studied by some of Smreczynski's co-workers and followers is also presented, including the early embryogenesis of entognathans as well as germ cell determination and gonad formation in Drosophila virilis conducted by Jura; analysis of oogenesis in Collembola carried out by Krzysztofowicz; investigations of insects and tradigrades by Weglarska, and finally research into various aspects of ovary structure in diverse insect taxa by the Bilinski group.

  13. MLL2 Is Required in Oocytes for Bulk Histone 3 Lysine 4 Trimethylation and Transcriptional Silencing

    Science.gov (United States)

    Andreu-Vieyra, Claudia V.; Chen, Ruihong; Agno, Julio E.; Glaser, Stefan; Anastassiadis, Konstantinos; Stewart, A. Francis; Matzuk, Martin M.

    2010-01-01

    During gametogenesis and pre-implantation development, the mammalian epigenome is reprogrammed to establish pluripotency in the epiblast. Here we show that the histone 3 lysine 4 (H3K4) methyltransferase, MLL2, controls most of the promoter-specific chromatin modification, H3K4me3, during oogenesis and early development. Using conditional knockout mutagenesis and a hypomorph model, we show that Mll2 deficiency in oocytes results in anovulation and oocyte death, with increased transcription of p53, apoptotic factors, and Iap elements. MLL2 is required for (1) bulk H3K4me3 but not H3K4me1, indicating that MLL2 controls most promoters but monomethylation is regulated by a different H3K4 methyltransferase; (2) the global transcriptional silencing that preceeds resumption of meiosis but not for the concomitant nuclear reorganization into the surrounded nucleolus (SN) chromatin configuration; (3) oocyte survival; and (4) normal zygotic genome activation. These results reveal that MLL2 is autonomously required in oocytes for fertility and imply that MLL2 contributes to the epigenetic reprogramming that takes place before fertilization. We propose that once this task has been accomplished, MLL2 is not required until gastrulation and that other methyltransferases are responsible for bulk H3K4me3, thereby revealing an unexpected epigenetic control switch amongst the H3K4 methyltransferases during development. PMID:20808952

  14. The Mammalian Ovary from Genesis to Revelation

    Science.gov (United States)

    Edson, Mark A.; Nagaraja, Ankur K.; Matzuk, Martin M.

    2009-01-01

    Two major functions of the mammalian ovary are the production of germ cells (oocytes), which allow continuation of the species, and the generation of bioactive molecules, primarily steroids (mainly estrogens and progestins) and peptide growth factors, which are critical for ovarian function, regulation of the hypothalamic-pituitary-ovarian axis, and development of secondary sex characteristics. The female germline is created during embryogenesis when the precursors of primordial germ cells differentiate from somatic lineages of the embryo and take a unique route to reach the urogenital ridge. This undifferentiated gonad will differentiate along a female pathway, and the newly formed oocytes will proliferate and subsequently enter meiosis. At this point, the oocyte has two alternative fates: die, a common destiny of millions of oocytes, or be fertilized, a fate of at most approximately 100 oocytes, depending on the species. At every step from germline development and ovary formation to oogenesis and ovarian development and differentiation, there are coordinated interactions of hundreds of proteins and small RNAs. These studies have helped reproductive biologists to understand not only the normal functioning of the ovary but also the pathophysiology and genetics of diseases such as infertility and ovarian cancer. Over the last two decades, parallel progress has been made in the assisted reproductive technology clinic including better hormonal preparations, prenatal genetic testing, and optimal oocyte and embryo analysis and cryopreservation. Clearly, we have learned much about the mammalian ovary and manipulating its most important cargo, the oocyte, since the birth of Louise Brown over 30 yr ago. PMID:19776209

  15. MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing.

    Directory of Open Access Journals (Sweden)

    Claudia V Andreu-Vieyra

    Full Text Available During gametogenesis and pre-implantation development, the mammalian epigenome is reprogrammed to establish pluripotency in the epiblast. Here we show that the histone 3 lysine 4 (H3K4 methyltransferase, MLL2, controls most of the promoter-specific chromatin modification, H3K4me3, during oogenesis and early development. Using conditional knockout mutagenesis and a hypomorph model, we show that Mll2 deficiency in oocytes results in anovulation and oocyte death, with increased transcription of p53, apoptotic factors, and Iap elements. MLL2 is required for (1 bulk H3K4me3 but not H3K4me1, indicating that MLL2 controls most promoters but monomethylation is regulated by a different H3K4 methyltransferase; (2 the global transcriptional silencing that preceeds resumption of meiosis but not for the concomitant nuclear reorganization into the surrounded nucleolus (SN chromatin configuration; (3 oocyte survival; and (4 normal zygotic genome activation. These results reveal that MLL2 is autonomously required in oocytes for fertility and imply that MLL2 contributes to the epigenetic reprogramming that takes place before fertilization. We propose that once this task has been accomplished, MLL2 is not required until gastrulation and that other methyltransferases are responsible for bulk H3K4me3, thereby revealing an unexpected epigenetic control switch amongst the H3K4 methyltransferases during development.

  16. A Unique Egg Cortical Granule Localization Motif Is Required for Ovastacin Sequestration to Prevent Premature ZP2 Cleavage and Ensure Female Fertility in Mice

    Science.gov (United States)

    Xiong, Bo; Zhao, Yangu; Beall, Stephanie; Sadusky, Anna Burkart

    2017-01-01

    Monospermic fertilization is mediated by the extracellular zona pellucida composed of ZP1, ZP2 and ZP3. Sperm bind to the N-terminus of ZP2 which is cleaved after fertilization by ovastacin (encoded by Astl) exocytosed from egg cortical granules to prevent sperm binding. AstlNull mice lack the post-fertilization block to sperm binding and the ability to rescue this phenotype with AstlmCherry transgenic mice confirms the role of ovastacin in providing a definitive block to polyspermy. During oogenesis, endogenous ovastacin traffics through the endomembrane system prior to storage in peripherally located cortical granules. Deletion mutants of ovastacinmCherry expressed in growing oocytes define a unique 7 amino acid motif near its N-terminus that is necessary and sufficient for cortical granule localization. Deletion of the 7 amino acids by CRISPR/Cas9 at the endogenous locus (AstlΔ) prevents cortical granule localization of ovastacin. The misdirected enzyme is present within the endomembrane system and ZP2 is prematurely cleaved. Sperm bind poorly to the zona pellucida of AstlΔ/Δ mice with partially cleaved ZP2 and female mice are sub-fertile. PMID:28114310

  17. Production of transgenic mice by random recombination of targeted genes in female germline stem cells

    Institute of Scientific and Technical Information of China (English)

    Yong Zhang; Ji Xiong; Jie Xiang; Ji Wu; Zhaojuan Yang; Yunze Yang; Shuzeng Wang; Lingjun Shi; Wenhai Xie; Kejing Sun; Kang Zou; Lei Wang

    2011-01-01

    Oocyte production in most mammalian species is believed to cease before birth. However, this idea has been challenged with the finding that postnatal mouse ovaries possess mitotically active germ cells. A recent study showed that female germline stem cells (FGSCs) from adult mice were isolated, cultured long term and produced oocytes and progeny after transplantation into infertile mice. Here, we demonstrate the successful generation of transgenic or gene knock-down mice using FGSCs. The FGSCs from ovaries of 5-day-old and adult mice were isolated and either infected with recombinant viruses carrying green fluorescent protein, Oocyte-G1 or the mouse dynein axonemal intermediate chain 2 gene, or transfected with the Oocyte-G1 specific shRNA expression vector (pRS shOocyte-G1 vector), and then transplanted into infertile mice. Transplanted cells in the ovaries underwent oogenesis and produced heterozygous offspring after mating with wild-type male mice. The offspring were genetically characterized and the biological functions of the transferred or knock-down genes were investigated. Efficiency of genetransfer or gene knock-down was 29%-37% and it took 2 months to produce transgenic offspring. Gene manipulation of FGSCs is a rapid and efficient method of animal transgenesis and may serve as a powerful tool for biomedical science and biotechnology.

  18. Endosulfan inhibiting the meiosis process via depressing expressions of regulatory factors and causing cell cycle arrest in spermatogenic cells.

    Science.gov (United States)

    Guo, Fang-Zi; Zhang, Lian-Shuang; Wei, Jia-Liu; Ren, Li-Hua; Zhang, Jin; Jing, Li; Yang, Man; Wang, Ji; Sun, Zhi-Wei; Zhou, Xian-Qing

    2016-10-01

    Endosulfan is a persistent organic pollutant and widely used in agriculture as a pesticide. It is present in air, water, and soil worldwide; therefore, it is a health risk affecting especially the reproductive system. The aim of this study was to evaluate the toxicity of endosulfan in the reproductive system. To investigate the effect of endosulfan on meiosis process, 32 rats were divided into four groups, treated with 0, 1, 5, and 10 mg/kg/day endosulfan, respectively, and sacrificed after the 21 days of treatments. Results show that endosulfan caused the reductions in sperm concentration and motility rate, which resulted into an increased in sperm abnormality rate; further, endosulfan induced downregulation of spermatogenesis- and oogenesis-specific basic helix-loop-helix transcription factor (Sohlh1) which controls the switch on meiosis in mammals, as well cyclin A1, cyclin-dependent kinases 1 (CDK1), and cyclin-dependent kinases 2 (CDK2). In vitro, endosulfan induced G2/M phase arrest in the spermatogenic cell cycle and caused proliferation inhibition. Moreover, endosulfan induced oxidative stress and DNA damage in vivo and vitro. The results suggested that endosulfan could inhibit the start of meiosis by downregulating the expression of Sohlh1 and induce G2/M phase arrest of cell cycle by decreasing the expression of cyclin A1, CDK1, and CDK2 via oxidative damage, which inhibits the meiosis process, and therefore decrease the amount of sperm.

  19. Effects of gravity on meiosis, fertilization and early embryogenesis in Caenorhabditis elegans

    Science.gov (United States)

    Sasagawa, Y.; Saito, Y.; Shimizu, M.; Ishioka, N.; Yamashita, M.; Takahashi, H.; Higashitani, A.

    The embryonic development of the nematode Caenorhabditis elegans was examined under different gravitational conditions. The first cleavage plane in the 1-cell embryo was slid to some extent by re-orientation of liquid culture vessel, but the pattern and timing of cleavages were not affected. Under 100G of hypergravity condition with swing-centrifuge, the number of eggs laid from an adult hermaphrodite decreased and their hatching rate was drastically reduced. On the other hand, the embryonic development after fertilization normally occurred and grew to adulthood at more than 100G of hypergravity. When the adult hermaphrodites cultured under 100G of hypergravity transferred to a ground condition (1G), the newly fertilized embryos normally developed and their hatching rate was fully recovered. These results indicated that the reproductive process except spermatogenesis, oogenesis and embryogenesis after fertilization is impaired under 100G of hypergravity condition, and the effect is transient. Namely, the fertilization process including meiotic divisions I and II is sensitive to hypergravity in the nematode C. elegans.

  20. SMC5/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes.

    Science.gov (United States)

    Hwang, Grace; Sun, Fengyun; O'Brien, Marilyn; Eppig, John J; Handel, Mary Ann; Jordan, Philip W

    2017-05-01

    SMC complexes include three major classes: cohesin, condensin and SMC5/6. However, the localization pattern and genetic requirements for the SMC5/6 complex during mammalian oogenesis have not previously been examined. In mouse oocytes, the SMC5/6 complex is enriched at the pericentromeric heterochromatin, and also localizes along chromosome arms during meiosis. The infertility phenotypes of females with a Zp3-Cre-driven conditional knockout (cKO) of Smc5 demonstrated that maternally expressed SMC5 protein is essential for early embryogenesis. Interestingly, protein levels of SMC5/6 complex components in oocytes decline as wild-type females age. When SMC5/6 complexes were completely absent in oocytes during meiotic resumption, homologous chromosomes failed to segregate accurately during meiosis I. Despite what appears to be an inability to resolve concatenation between chromosomes during meiosis, localization of topoisomerase IIα to bivalents was not affected; however, localization of condensin along the chromosome axes was perturbed. Taken together, these data demonstrate that the SMC5/6 complex is essential for the formation of segregation-competent bivalents during meiosis I, and findings suggest that age-dependent depletion of the SMC5/6 complex in oocytes could contribute to increased incidence of oocyte aneuploidy and spontaneous abortion in aging females. © 2017. Published by The Company of Biologists Ltd.

  1. Drosophila Fascin is a novel downstream target of prostaglandin signaling during actin remodeling.

    Science.gov (United States)

    Groen, Christopher M; Spracklen, Andrew J; Fagan, Tiffany N; Tootle, Tina L

    2012-12-01

    Although prostaglandins (PGs)-lipid signals produced downstream of cyclooxygenase (COX) enzymes-regulate actin cytoskeletal dynamics, their mechanisms of action are unknown. We previously established Drosophila oogenesis, in particular nurse cell dumping, as a new model to determine how PGs regulate actin remodeling. PGs, and thus the Drosophila COX-like enzyme Pxt, are required for both the parallel actin filament bundle formation and the cortical actin strengthening required for dumping. Here we provide the first link between Fascin (Drosophila Singed, Sn), an actin-bundling protein, and PGs. Loss of either pxt or fascin results in similar actin defects. Fascin interacts, both pharmacologically and genetically, with PGs, as reduced Fascin levels enhance the effects of COX inhibition and synergize with reduced Pxt levels to cause both parallel bundle and cortical actin defects. Conversely, overexpression of Fascin in the germline suppresses the effects of COX inhibition and genetic loss of Pxt. These data lead to the conclusion that PGs regulate Fascin to control actin remodeling. This novel interaction has implications beyond Drosophila, as both PGs and Fascin-1, in mammalian systems, contribute to cancer cell migration and invasion.

  2. Drosophila sosie functions with βH-Spectrin and actin organizers in cell migration, epithelial morphogenesis and cortical stability

    Directory of Open Access Journals (Sweden)

    Olivier Urwyler

    2012-08-01

    Morphogenesis in multicellular organisms requires the careful coordination of cytoskeletal elements, dynamic regulation of cell adhesion and extensive cell migration. sosie (sie is a novel gene required in various morphogenesis processes in Drosophila oogenesis. Lack of sie interferes with normal egg chamber packaging, maintenance of epithelial integrity and control of follicle cell migration, indicating that sie is involved in controlling epithelial integrity and cell migration. For these functions sie is required both in the germ line and in the soma. Consistent with this, Sosie localizes to plasma membranes in the germ line and in the somatic follicle cells and is predicted to present an EGF-like domain on the extracellular side. Two positively charged residues, C-terminal to the predicted transmembrane domain (on the cytoplasmic side, are required for normal plasma membrane localization of Sosie. Because sie also contributes to normal cortical localization of βH-Spectrin, it appears that cortical βH-Spectrin mediates some of the functions of sosie. sie also interacts with the genes coding for the actin organizers Filamin and Profilin and, in the absence of sie function, F-actin is less well organized and nurse cells frequently fuse.

  3. Structure and function of the interacting domains of Spire and Fmn-family formins

    Energy Technology Data Exchange (ETDEWEB)

    Vizcarra, Christina L.; Kreutz, Barry; Rodal, Avital A.; Toms, Angela V.; Lu, Jun; Zheng, Wei; Quinlan, Margot E.; Eck, Michael J. (UCLA); (Brandeis); (DFCI)

    2012-07-11

    Evidence for cooperation between actin nucleators is growing. The WH2-containing nucleator Spire and the formin Cappuccino interact directly, and both are essential for assembly of an actin mesh during Drosophila oogenesis. Their interaction requires the kinase noncatalytic C-lobe domain (KIND) domain of Spire and the C-terminal tail of the formin. Here we describe the crystal structure of the KIND domain of human Spir1 alone and in complex with the tail of Fmn2, a mammalian ortholog of Cappuccino. The KIND domain is structurally similar to the C-lobe of protein kinases. The Fmn2 tail is coordinated in an acidic cleft at the base of the domain that appears to have evolved via deletion of a helix from the canonical kinase fold. Our functional analysis of Cappuccino reveals an unexpected requirement for its tail in actin assembly. In addition, we find that the KIND/tail interaction blocks nucleation by Cappuccino and promotes its displacement from filament barbed ends providing insight into possible modes of cooperation between Spire and Cappuccino.

  4. Analysis of cytoskeleton dynamics and cell migration in drosophila ovaries using GFP-actin and E-cadherin-GFP fusion molecules

    Science.gov (United States)

    Verkhusha, Vladyslav V.; Tsukita, Shoichiro; Oda, Hiroki

    1999-06-01

    Coordination of cell migration and adhesion is essential for movement of tissues during morphogenesis. During Drosophila oogenesis so called border cells (BCs) break from an anterior epithelium of egg chamber, acquire a mesenchymal-like morphology, and migrate posteriorly between nurse cells to oocyte. The confocal microscopic observation of BCs has revealed well-developed forepart lamellipodium stained with Drosophila E-cadherin (DE-cadherin), PS2 integrin, cytoplasmic myosin and F-actin. To investigate mechanism of BC migration in vivo we have constructed a DE-cadherin-GFP and a GFP-actin fusion proteins and induced their expression BCs utilizing the UAS/GAL4 system. The DE-cadherin-GFP signal as well as immunostaining of PS2 integrin visualized a track of migrating BCs providing an evidence that adhesive molecules are pulled out and left behind on the surface of nurse cells. Our data suggest that two distinct adhesive systems, DE-cadherins and PS2 integrins simultaneously mediate the migration of BCs. Release of adhesive contacts in the tail region is a rate- limited event in BC migration. The spatial-temporal sequence of actin-based events visualized by the GFP-actin suggest a treadmilling model for actin behavior in BC lamellipodium. BC migration can be considered as simultaneous reiterating processes of lamellipodium extension and adhesive attachment, cytoskeletal contraction, and rear detachment.

  5. Genomic integration and germline transmission of plasmid injected into crustacean Daphnia magna eggs.

    Directory of Open Access Journals (Sweden)

    Yasuhiko Kato

    Full Text Available The water flea, Daphnia, has been the subject of study in ecology, evolution, and environmental sciences for decades. Over the last few years, expressed sequence tags and a genome sequence have been determined. In addition, functional approaches of overexpression and gene silencing based on microinjection of RNAs into eggs have been established. However, the transient nature of these approaches prevents us from analyzing gene functions in later stages of development. To overcome this limitation, transgenesis would become a key tool. Here we report establishment of a transgenic line using microinjection of plasmid into Daphnia magna eggs. The green fluorescent protein (GFP gene fused with the D. magna histone H2B gene under the control of a promoter/enhancer region of the elongation factor 1α-1 (EF1α-1 gene, EF1α-1::H2B-GFP, was used as a reporter providing high resolution visualization of active chromatin. Transgenic lines were obtained from 0.67% of the total fertile adults that survived the injections. One of the transgenic animals, which exhibited fluorescence in the nuclei of cells during embryogenesis and oogenesis, had two copies of EF1α-1::H2B-GFP in a head-to-tail array. This is the first report of a transgenesis technique in Daphnia and, together with emerging genome sequences, will be useful for advancing knowledge of the molecular biology of Daphnia.

  6. [Progress in proteomics of mammalian oocyte and early embryo].

    Science.gov (United States)

    Chen, Lingsheng; Xu, Ping; Shi, Deshun; Li, Xiangping

    2014-07-01

    The development of female germ cell is the cornerstone for animal reproduction. Mammalian oocyte and early embryo have many distinct phenomena and mechanisms during their growth and development, involving series dynamic changes of protein synthesis/degradation and phosphorylation. Research on the regulatory mechanism of oocyte division, maturation, and developmental principle of pre-implantation embryo is an important topic in the field of animal developmental biology. Proteomics using all of proteins expressed by a cell or tissue as research object, systematically identify, quantify and study the function of all these proteins. With the rapid development of protein separation and identification technology, proteomics provide some new methods and the research contents on fields of oogenesis, differentiation, maturation and quality control, such as protein quantification, modification, location and interaction important information which other omics technology can not provide. These information will contribute to uncover the molecular mechanisms of mammalian oocyte maturation and embryonic development. And it is great significant for improving the culture system of oocyte in vitro maturation, the efficiency of embryo production in vitro, somatic cell clone and transgenic animal production.

  7. Reproductive seasonality of the female Florida gar, Lepisosteus platyrhincus.

    Science.gov (United States)

    Orlando, Edward F; Binczik, Gerald A; Denslow, Nancy D; Guillette, Louis J

    2007-05-01

    Our objective was to characterize the reproductive seasonality of a wild population of female Florida gar, Lepisosteus platyrhincus. We measured the gonadosomatic index, plasma estradiol, testosterone, and vitellogenin concentrations, and follicle diameters of fish collected from Orange Lake, Florida (USA). Additionally, the reproductive stage of the ovary was resolved histologically. We observed a seasonal pattern in reproduction. Following a quiescent period in the summer, there was an increase in sex steroid hormones during the fall, associated with the onset of vitellogenesis and active oogenesis. During the February collection, we directly observed ovulation in several females. This observation was supported by a sharp decrease in the gonadosomatic index between February and March as well as a decline in plasma hormones to basal levels during the summer months. Our data suggest the Florida gar has a group-synchronous ovary and the majority of females spawned during the early spring, followed by a general decrease in reproductive parameters to summer levels. While hormone and vitellogenin peaks may vary annually and variations in these reproductive patterns are expected for different collection sites, this study is important as it is the first characterization of the seasonal morphological and endocrinological reproductive pattern in a female holostean species. Moreover, it increases our understanding of basic reproductive biology of semitropical fishes in general, and nonteleost, bony fishes in particular.

  8. Revelation of ZnS Nanoparticles Induces Follicular Atresia and Apoptosis in the Ovarian Preovulatory Follicles in the Catfish Mystus tengara (Hamilton, 1822

    Directory of Open Access Journals (Sweden)

    Nilanjana Chatterjee

    2016-01-01

    Full Text Available Important physicochemical characteristics of water like dissolved oxygen content, pH, and so forth were found to change in a dose dependent manner, showing a negative correlation with the nanoparticle concentration, when ZnS nanoparticle (NP was exposed to water. This observation could be attributed to the enhanced photooxidation property associated with ZnS in its NP form. Under this situation, the catfish Mystus tengara was forced to live in hypoxia in its habitat. This condition was found to hamper the natural oogenesis process of the fish. Due to exposure at relatively lower concentration of ZnS NPs (250 μg/L, most of the maturing follicles of M. tengara failed to complete the process of vitellogenesis properly and underwent preovulatory atresia followed by oocytic apoptosis. For relatively higher concentration of ZnS nanoparticles (500 μg/L, the previtellogenic process continued with increasing number of apoptotic cells; however the vitellogenic process was found to be totally blocked. This unusual reproductive behaviour in female M. tengara can be attributed to the decreased metabolism of the fishes under ZnS nanoparticle induced hypoxia.

  9. Amphibians with infectious disease increase their reproductive effort: evidence for the terminal investment hypothesis

    Science.gov (United States)

    Brannelly, Laura A.; Webb, Rebecca; Skerratt, Lee F.; Berger, Lee

    2016-01-01

    Mounting an immune response to fight disease is costly for an organism and can reduce investment in another life-history trait, such as reproduction. The terminal investment hypothesis predicts that an organism will increase reproductive effort when threatened by disease. The reproductive fitness of amphibians infected with the deadly fungal pathogen Batrachochytrium dendrobatidis (Bd) is largely unknown. In this study, we explored gametogenesis in two endangered and susceptible frog species, Pseudophryne corroboree and Litoria verreauxii alpina. Gametogenesis, both oogenesis and spermatogenesis, increased when animals were experimentally infected with Bd. In P. corroboree, infected males have thicker germinal epithelium, and a larger proportion of spermatocytes. In L. v. alpina, infected males had more spermatic cell bundles in total, and a larger proportion of spermatozoa bundles. In female L. v. alpina, ovaries and oviducts were larger in infected animals, and there were more cells present within the ovaries. Terminal investment has consequences for the evolution of disease resistance in declining species. If infected animals are increasing reproductive efforts and producing more offspring before succumbing to disease, it is possible that population-level selection for disease resistance will be minimized. PMID:27358291

  10. Histological Description of Gonadal Development of Females and Males of Callinectes sapidus Rathbun, 1896 (Decapoda: Portunidae).

    Science.gov (United States)

    Carvalho-Saucedo, Liliana; Ramírez-Santiago, Cecilia; Pérez, Carlos

    2015-04-01

    This paper describes the characteristics of male and female germ cells during gonadal development and the gonadal maturity scale of the blue crab, Callinectes sapidus. A total of 20 specimens were collected monthly from June to November 2012, in two areas off the coast of the Gulf of Mexico: the San Andrés Lagoon and Alvarado Lagoon. The gonads were removed and processed following the standard technique of hematoxylin and eosin staining. An important event in oogenesis (pre-vitellogenesis) was the appearance of a perinuclear vesicle in the cytoplasm and the accumulation of yolk granules. Later, vitellogenesis began and there was an accumulation of nutritive droplets and fragmentation of the perinuclear vesicle. During spermatogenesis, the accumulation of two fluids was observed that were involved in the formation of the spermatophore and the delay of spermiogenesis. Based on the histological features of gonad maturity, five stages were described (inactive, early gametogenesis, development, maturity, and resorption), in females and males. This proposal can be useful for the study of reproductive seasonality of this species.

  11. Apoptosis in mammalian oocytes: a review.

    Science.gov (United States)

    Tiwari, Meenakshi; Prasad, Shilpa; Tripathi, Anima; Pandey, Ashutosh N; Ali, Irfan; Singh, Arvind K; Shrivastav, Tulsidas G; Chaube, Shail K

    2015-08-01

    Apoptosis causes elimination of more than 99% of germ cells from cohort of ovary through follicular atresia. Less than 1% of germ cells, which are culminated in oocytes further undergo apoptosis during last phases of oogenesis and depletes ovarian reserve in most of the mammalian species including human. There are several players that induce apoptosis directly or indirectly in oocytes at various stages of meiotic cell cycle. Premature removal of encircling granulosa cells from immature oocytes, reduced levels of adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, increased levels of calcium (Ca(2+)) and oxidants, sustained reduced level of maturation promoting factor, depletion of survival factors, nutrients and cell cycle proteins, reduced meiotic competency, increased levels of proapoptotic as well as apoptotic factors lead to oocyte apoptosis. The BH3-only proteins also act as key regulators of apoptosis in oocyte within the ovary. Both intrinsic (mitochondria-mediated) as well as extrinsic (cell surface death receptor-mediated) pathways are involved in oocyte apoptosis. BID, a BH3-only protein act as a bridge between both apoptotic pathways and its cleavage activates cell death machinery of both the pathways inside the follicular microenvironment. Oocyte apoptosis leads to the depletion of ovarian reserve that directly affects reproductive outcome of various mammals including human. In this review article, we highlight some of the important players and describe the pathways involved during oocyte apoptosis in mammals.

  12. Complex chromosome rearrangements related 15q14 microdeletion plays a relevant role in phenotype expression and delineates a novel recurrent syndrome

    Directory of Open Access Journals (Sweden)

    Tomaiuolo Anna

    2011-04-01

    Full Text Available Abstract Complex chromosome rearrangements are constitutional structural rearrangements involving three or more chromosomes or having more than two breakpoints. These are rarely seen in the general population but their frequency should be much higher due to balanced states with no phenotypic presentation. These abnormalities preferentially occur de novo during spermatogenesis and are transmitted in families through oogenesis. Here, we report a de novo complex chromosome rearrangement that interests eight chromosomes in eighteen-year-old boy with an abnormal phenotype consisting in moderate developmental delay, cleft palate, and facial dysmorphisms. Standard G-banding revealed four apparently balanced traslocations involving the chromosomes 1;13, 3;19, 9;15 and 14;18 that appeared to be reciprocal. Array-based comparative genomic hybridization analysis showed no imbalances at all the breakpoints observed except for an interstitial microdeletion on chromosome 15. This deletion is 1.6 Mb in size and is located at chromosome band 15q14, distal to the Prader-Willi/Angelman region. Comparing the features of our patient with published reports of patients with 15q14 deletion this finding corresponds to the smallest genomic region of overlap. The deleted segment at 15q14 was investigated for gene content.

  13. Study origin of germ cells and formation of new primary follicles in adult human and rat ovaries.

    Science.gov (United States)

    Bukovsky, Antonin; Gupta, Satish K; Virant-Klun, Irma; Upadhyaya, Nirmala B; Copas, Pleas; Van Meter, Stuart E; Svetlikova, Marta; Ayala, Maria E; Dominguez, Roberto

    2008-01-01

    The central thesis regarding the human ovaries is that, although primordial germ cells in embryonal ovaries are of extraovarian origin, those generated during the fetal period and in postnatal life are derived from the ovarian surface epithelium (OSE) bipotent cells. With the assistance of immune system-related cells, secondary germ cells and primitive granulosa cells originate from OSE stem cells in the fetal and adult human gonads. Fetal primary follicles are formed during the second trimester of intrauterine life, prior to the end of immune adaptation, possibly to be recognized as self-structures and renewed later. With the onset of menarche, a periodical oocyte and follicular renewal emerges to replace aging primary follicles and ensure that fresh eggs for healthy babies are always available during the prime reproductive period. The periodical follicular renewal ceases between 35 and 40 yr of age, and the remaining primary follicles are utilized during the premenopausal period until exhausted. However, the persisting oocytes accumulate genetic alterations and may become unsuitable for ovulation and fertilization. The human OSE stem cells preserve the character of embryonic stem cells, and they may produce distinct cell types, including new eggs in vitro, particularly when derived from patients with premature ovarian failure or aging and postmenopausal ovaries. Our observations also indicate that there are substantial differences in follicular renewal between adult human and rat ovaries. As part of this chapter, we present in detail protocols utilized to analyze oogenesis in humans and to study interspecies differences when compared to the ovaries of rat females.

  14. Immune physiology of the mammalian ovary - a review.

    Science.gov (United States)

    Bukovsky, Antonin; Caudle, Michael R

    2008-01-01

    The immune system, besides orchestrating the immune response, plays an important role in the regulation of tissue homeostasis. We refer to this later activity as 'immune physiology.' In human ovaries, immune system-related cells and molecules accompany corpus luteum development and regression and cancer progression. They also accompany the origination of new rat and human germ cells by asymmetric division of ovarian surface epithelium cells, symmetric division and migration of germ cells, and follicular growth. Currently prevailing dogma on the preservation of human oocytes from the fetal period until menopause ('storage' doctrine) vs. oocyte renewal in invertebrates and lower vertebrates ('continued formation' doctrine) raises question as to the disadvantage from an evolutionary point of view of prolonged oocyte storage in humans. We attempted to reconcile these two opposing views by proposing the prime reproductive period (PRP) doctrine as follows: The 'storage' doctrine fits two periods of the life in human females, that between the termination of fetal oogenesis and puberty or pre-menarcheal period (about 10-12 years), and also that period from the end of PRP (at about 38 years of age) until menopause. On the contrary, the 'continued formation' doctrine accounts for oocyte and follicular renewal during the PRP, and insures the availability of fresh oocytes for the development of healthy progeny. Further study on 'immune physiology' may help us better understand ovarian physiology and pathology in general, including infertility caused by premature ovarian failure, the pathophysiology of degenerative diseases and mechanisms of malignancy and metastasis.

  15. windbeutel, a gene required for dorsoventral patterning in Drosophila, encodes a protein that has homologies to vertebrate proteins of the endoplasmic reticulum.

    Science.gov (United States)

    Konsolaki, M; Schüpbach, T

    1998-01-01

    The formation of the dorsoventral axis of the Drosophila embryo depends on cell-cell interactions that take place in the female ovary and involve the activation of transmembrane receptors by secreted ligands. The gene windbeutel functions in the somatic follicle cells of the ovary and is required for the generation of a signal that will determine the ventral side of the embryo. This signal originates in the follicle cells during oogenesis, but its actions are only manifested after fertilization, when the egg has already been laid. We have performed a molecular analysis of windbeutel. We have found that windbeutel encodes a putative resident protein of the endoplasmic reticulum, and has homologs in rats and humans. The gene is expressed for a brief period of time in the follicle cells of the ovary, at around the time when the dorsoventral axis of the egg chamber is first established. We propose that Windbeutel is responsible for the folding and/or modification of a specific factor that is secreted from the follicle cells and participates in the activation of the ventralizing signal.

  16. Spindle assembly and spatial distribution of γ-tubulin during abortive meiosis and cleavage division in the parthenogenetic water flea Daphnia pulex.

    Science.gov (United States)

    Hiruta, Chizue; Tochinai, Shin

    2012-11-01

    In most animal species, centrosomes, the main microtubule-organizing centers, usually disintegrate in oocytes during meiosis and are reconstructed from sperm-provided centrioles before the first cleavage division. In parthenogenetic oocytes, however, no sperm-derived centrosome-dependent microtubule nucleation is expected, as fertilization does not occur. The water flea Daphnia pulex undergoes parthenogenesis and sexual reproduction differentially in response to environmental cues. We used immunofluorescence microscopy with anti-α-tubulin and anti-γ-tubulin antibodies to examine spindle formation and the occurrence of centrosomes during parthenogenetic oogenesis and the subsequent cleavage division in D. pulex. The spindle formed in abortive meiosis in parthenogenesis is barrel-shaped and lacks centrosomes, whereas the spindle in the subsequent cleavage division is typically spindle-shaped, with centrosomes. During abortive meiosis, γ-tubulin is localized along the spindle, while in the first cleavage division it is localized only at the spindle poles. Thus, D. pulex should provide a useful comparative model system for elucidating mechanisms of spindle formation and improving our understanding of how evolutionary modification of these mechanisms is involved in the switch from sexual to parthenogenetic reproduction.

  17. Ovary and embryo proteogenomic dataset revealing diversity of vitellogenins in the crustacean Gammarus fossarum.

    Science.gov (United States)

    Trapp, Judith; Gaillard, Jean-Charles; Chaumot, Arnaud; Geffard, Olivier; Pible, Olivier; Armengaud, Jean

    2016-09-01

    Ovaries and embryos from sexually mature Gammarus fossarum were sampled at different stages of the reproductive cycle. The soluble proteome was extracted for five biological replicates and samples were subjected to trypsin digestion. The resulting peptides were analyzed by high resolution tandem mass spectrometry with a LTQ-Orbitrap XL instrument. The MS/MS spectra were assigned with a previously described RNAseq-derived G. fossarum database. The proteins highlighted by proteogenomics were monitored and their abundance kinetics over the different stages revealed a large panel of vitellogenins. Criteria were i) accumulation during oogenesis, ii) decrease during embryogenesis, iii) classified as female-specific, and iv) sequence similarity and phylogenetic analysis. The data accompanying the manuscript describing the database searches and comparative analysis ("High-throughput proteome dynamics for discovery of key proteins in sentinel species: unsuspected vitellogenins diversity in the crustacean Gammarus fossarum" by Trapp et al. [1]) have been deposited to the ProteomeXchange via the PRIDE repository with identifiers PRIDE: PXD001002.

  18. *

    Directory of Open Access Journals (Sweden)

    Weingartová I.

    2015-03-01

    Full Text Available The progress of reproductive biotechnology is dependent on the amount, quality, and availability of female gametes – oocytes. The proper selection of a suitable model organism is vital to ensure effective research of the signal pathways that regulate oogenesis and meiotic maturation. Many factors are involved in meiosis regulation and some of them are evolutionarily conserved. Xenopus laevis is a traditional model for cell cycle research, which has become a background for a more detailed study of models that are similar to humans. In contrast to mammalian models, water-living vertebrates are appropriate models for studying effects of environmentally occurring pollutants such as endocrine-disrupting chemicals (EDCs. The triploid gynogenetic Prussian carp is a unique biological model for reproduction studies. The ability of clone production in combination with alternative sexual mode of reproduction brings advantages for the testing of sensitiveness to the effects of EDCs in terms of studying the alternative molecular pathways in meiosis regulations. The aim of this review is to compare meiosis regulating pathways among various animal models, and to suggest the possible utilization of these models in researching EDCs. A comparison of the currently recognized oocyte signalization and the endocrine disruptor effect points out the need for their molecular target identification and introduces some in water living vertebrates as suitable study models.

  19. Review: Lamin A/C, caspase-6, and chromatin configuration during meiosis resumption in the mouse oocyte.

    Science.gov (United States)

    Arnault, Emilie; Doussau, Mireille; Pesty, Arlette; Lefèvre, Brigitte; Courtot, Anne-Marie

    2010-02-01

    After in vitro maturation (IVM), isolation of the healthiest oocytes is essential for successful in vitro fertilization. As germinal vesicle (GV) oocytes resume meiosis through healthy or apoptotic pathways without discernable morphological criteria, we checked for an apoptotic element acting at the nucleus level. We hypothesized that caspase-6 with its corresponding substrate, lamin A/C, could be a potential target candidate, because caspase-6 is the only functional caspase for lamin A/C. We used immunohistochemistry methods, Western blots, and a specific caspase-6 inhibitor to determine the presence of lamin A/C and caspase-6 during oogenesis and in isolated oocytes. Our results demonstrated that these proteins were always present and that their distributions were related to oocyte maturity, determined by chromatin configuration and oocyte diameter. Caspase-6 inhibition slowed meiosis resumption suggesting the involvement of caspase-6 in the oocyte apoptotic pathway. Lamin A/C and caspase-6 could be valuable tools in the knowledge of oocyte in vitro destiny.

  20. Radiobiology and Reproduction—What Can We Learn from Mammalian Females?

    Directory of Open Access Journals (Sweden)

    Montserrat Garcia-Caldés

    2012-08-01

    Full Text Available Ionizing radiation damages DNA and induces mutations as well as chromosomal reorganizations. Although radiotherapy increases survival among cancer patients, this treatment does not come without secondary effects, among which the most problematic is gonadal dysfunction, especially in women. Even more, if radio-induced DNA damage occurs in germ cells during spermatogenesis and/or oogenesis, they can produce chromosomal reorganizations associated with meiosis malfunction, abortions, as well as hereditary effects. However, most of our current knowledge of ionizing radiation genotoxic effects is derived from in vitro studies performed in somatic cells and there are only some experimental data that shed light on how germ cells work when affected by DNA alterations produced by ionizing radiation. In addition, these few data are often related to mammalian males, making it difficult to extrapolate the results to females. Here, we review the current knowledge of radiobiology and reproduction, paying attention to mammalian females. In order to do that, we will navigate across the female meiotic/reproductive cycle/life taking into account the radiation-induced genotoxic effects analysis and animal models used, published in recent decades.

  1. On the evolutionary stability of Mendelian segregation.

    Science.gov (United States)

    Ubeda, Francisco; Haig, David

    2005-07-01

    We present a model of a primary locus subject to viability selection and an unlinked locus that causes sex-specific modification of the segregation ratio at the primary locus. If there is a balanced polymorphism at the primary locus, a population undergoing Mendelian segregation can be invaded by modifier alleles that cause sex-specific biases in the segregation ratio. Even though this effect is particularly strong if reciprocal heterozygotes at the primary locus have distinct viabilities, as might occur with genomic imprinting, it also applies if reciprocal heterozygotes have equal viabilities. The expected outcome of the evolution of sex-specific segregation distorters is all-and-none segregation schemes in which one allele at the primary locus undergoes complete drive in spermatogenesis and the other allele undergoes complete drive in oogenesis. All-and-none segregation results in a population in which all individuals are maximally fit heterozygotes. Unlinked modifiers that alter the segregation ratio are unable to invade such a population. These results raise questions about the reasons for the ubiquity of Mendelian segregation.

  2. Translational control in the Caenorhabditis elegans germ line.

    Science.gov (United States)

    Nousch, Marco; Eckmann, Christian R

    2013-01-01

    Translational control is a prevalent form of gene expression regulation in the Caenorhabditis elegans germ line. Linking the amount of protein synthesis to mRNA quantity and translational accessibility in the cell cytoplasm provides unique advantages over DNA-based controls for developing germ cells. This mode of gene expression is especially exploited in germ cell fate decisions and during oogenesis, when the developing oocytes stockpile hundreds of different mRNAs required for early embryogenesis. Consequently, a dense web of RNA regulators, consisting of diverse RNA-binding proteins and RNA-modifying enzymes, control the translatability of entire mRNA expression programs. These RNA regulatory networks are tightly coupled to germ cell developmental progression and are themselves under translational control. The underlying molecular mechanisms and RNA codes embedded in the mRNA molecules are beginning to be understood. Hence, the C. elegans germ line offers fertile grounds for discovering post-transcriptional mRNA regulatory mechanisms and emerges as great model for a systems level understanding of translational control during development.

  3. Dystroglycan is required for polarizing the epithelial cells and the oocyte in Drosophila

    DEFF Research Database (Denmark)

    Deng, Wu-Min; Schneider, Martina; Frock, Richard;

    2003-01-01

    The transmembrane protein Dystroglycan is a central element of the dystrophin-associated glycoprotein complex, which is involved in the pathogenesis of many forms of muscular dystrophy. Dystroglycan is a receptor for multiple extracellular matrix (ECM) molecules such as Laminin, agrin and perleca......, possibly by organizing the Laminin ECM. These data suggest that the primary function of Dystroglycan in oogenesis is to organize cellular polarity; and this study sets the stage for analyzing the Dystroglycan complex by using the power of Drosophila molecular genetics......., and plays a role in linking the ECM to the actin cytoskeleton; however, how these interactions are regulated and their basic cellular functions are poorly understood. Using mosaic analysis and RNAi in the model organism Drosophila melanogaster, we show that Dystroglycan is required cell......-autonomously for cellular polarity in two different cell types, the epithelial cells (apicobasal polarity) and the oocyte (anteroposterior polarity). Loss of Dystroglycan function in follicle and disc epithelia results in expansion of apical markers to the basal side of cells and overexpression results in a reduced apical...

  4. It's all in your mind: determining germ cell fate by neuronal IRE-1 in C. elegans.

    Directory of Open Access Journals (Sweden)

    Mor Levi-Ferber

    2014-10-01

    Full Text Available The C. elegans germline is pluripotent and mitotic, similar to self-renewing mammalian tissues. Apoptosis is triggered as part of the normal oogenesis program, and is increased in response to various stresses. Here, we examined the effect of endoplasmic reticulum (ER stress on apoptosis in the C. elegans germline. We demonstrate that pharmacological or genetic induction of ER stress enhances germline apoptosis. This process is mediated by the ER stress response sensor IRE-1, but is independent of its canonical downstream target XBP-1. We further demonstrate that ire-1-dependent apoptosis in the germline requires both CEP-1/p53 and the same canonical apoptotic genes as DNA damage-induced germline apoptosis. Strikingly, we find that activation of ire-1, specifically in the ASI neurons, but not in germ cells, is sufficient to induce apoptosis in the germline. This implies that ER stress related germline apoptosis can be determined at the organism level, and is a result of active IRE-1 signaling in neurons. Altogether, our findings uncover ire-1 as a novel cell non-autonomous regulator of germ cell apoptosis, linking ER homeostasis in sensory neurons and germ cell fate.

  5. The use of a chemically defined artificial diet as a tool to study Aedes aegypti physiology.

    Science.gov (United States)

    Talyuli, Octávio A C; Bottino-Rojas, Vanessa; Taracena, Mabel L; Soares, Ana Luiza Macedo; Oliveira, José Henrique M; Oliveira, Pedro L

    2015-12-01

    Aedes aegypti mosquitoes obtain from vertebrate blood nutrients that are essential to oogenesis, such as proteins and lipids. As with all insects, mosquitoes do not synthesize cholesterol but take it from the diet. Here, we used a chemically defined artificial diet, hereafter referred to as Substitute Blood Meal (SBM), that was supplemented with cholesterol to test the nutritional role of cholesterol. SBM-fed and blood-fed mosquitoes were compared regarding several aspects of the insect physiology that are influenced by a blood meal, including egg laying, peritrophic matrix formation, gut microbiota proliferation, generation of reactive oxygen species (ROS) and expression of antioxidant genes, such as catalase and ferritin. Our results show that SBM induced a physiological response that was very similar to a regular blood meal. Depending on the nutritional life history of the mosquito since the larval stage, the presence of cholesterol in the diet increased egg development, suggesting that the teneral reserves of cholesterol in the newly hatched female are determinant of reproductive performance. We propose here the use of SBM as a tool to study other aspects of the physiology of mosquitoes, including their interaction with microbiota and pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. dSETDB1 and SU(VAR3-9 sequentially function during germline-stem cell differentiation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Jeongheon Yoon

    Full Text Available Germline-stem cells (GSCs produce gametes and are thus true "immortal stem cells". In Drosophila ovaries, GSCs divide asymmetrically to produce daughter GSCs and cystoblasts, and the latter differentiate into germline cysts. Here we show that the histone-lysine methyltransferase dSETDB1, located in pericentric heterochromatin, catalyzes H3-K9 trimethylation in GSCs and their immediate descendants. As germline cysts differentiate into egg chambers, the dSETDB1 function is gradually taken over by another H3-K9-specific methyltransferase, SU(VAR3-9. Loss-of-function mutations in dsetdb1 or Su(var3-9 abolish both H3K9me3 and heterochromatin protein-1 (HP1 signals from the anterior germarium and the developing egg chambers, respectively, and cause localization of H3K9me3 away from DNA-dense regions in most posterior germarium cells. These results indicate that dSETDB1 and SU(VAR3-9 act together with distinct roles during oogenesis, with dsetdb1 being of particular importance due to its GSC-specific function and more severe mutant phenotype.

  7. A Comparative Study on the Population Fitness of Three Strains of Nilaparvata lugens (Hemiptera: Delphacidae) Differ in Eye Color-Related Genes.

    Science.gov (United States)

    Liu, Shuhua; Yang, Baojun; Luo, Ju; Tang, Jian; Wu, Jincai

    2015-08-01

    The brown planthopper, Nilaparvata lugens (Stål), is a destructive insect pest on rice throughout Asia. As a visible genetic marker, red eye mutant colony of brown planthopper is a valuable material. Here, we established the near-isogenic lines, NIL-BB and NIL-rr, through mating red eye females to brown eye brothers for eight successive generations. Biological experiments showed that NIL-BB had big fitness cost; however, NIL-rr had comparable survival and fertility parameters with BB, a normal laboratory brown planthopper strain. Significantly lower number eggs per female and egg hatchability were the key factors resulting in big fitness cost of NIL-BB. The population trend indexes of BB, NIL-rr, and NIL-BB were 52.18, 43.80, and 4.19, respectively. Real-time PCR study suggested that the poorer fertility of NIL-BB was not mediated by the differential expression of genes relating to oogenesis. The stronger fitness of NIL-rr compared with NIL-BB may be caused by the eye mutant gene or its closely linked genes having stronger compensation ability for reproduction. The comparable fitness of NIL-rr with BB indicated that NIL-rr may be used in field research. The NIL-BB strain with significantly declined fecundity and survival ability can be used as study model for the signal pathways relating to fecundity.

  8. Gametogenesis and spawning of Spirobranchus tetraceros (Polychaeta, Serpulidae in Abu Kir Bay, Egypt

    Directory of Open Access Journals (Sweden)

    S. A. SELIM

    2012-12-01

    Full Text Available The serpulid polychaete Spirobranchus tetraceros of Red Sea / Indo-pacific origin, recently has succeeded to establish a foothold in Alexandria Mediterranean waters. Worms were monthly scraped from submerged iron substrates at Abu Kir Bay during the period December 2000 – November 2001. Both light and TEM were used to study gametogenesis and time of spawning of S. tetraceros.Gametogenesis was asynchronous and oogenesis could be divided into two previtellogenic, two vitellogenic and a spawning stage. Oocyte development took about 8 months, from October to June. Spawning occurred from late May - early June until October. Thus S. tetraceros is a long period spawner. The maximum diameter of ripe oocyte is 78 mm. The spermatogenic phase could be divided into three stages: spermatogonia, spermatocytes and spermatids (including spermatozoa. The duration of sperm development took about 8 months. Spermatocytes persist from October to March. By March the sperms grew rapidly until they became spermatozoa in May. The sperm could be considered ect-aquasperm with regard to its fertilization biology.

  9. miRNA-dependent translational repression in the Drosophila ovary.

    Directory of Open Access Journals (Sweden)

    John Reich

    Full Text Available BACKGROUND: The Drosophila ovary is a tissue rich in post-transcriptional regulation of gene expression. Many of the regulatory factors are proteins identified via genetic screens. The more recent discovery of microRNAs, which in other animals and tissues appear to regulate translation of a large fraction of all mRNAs, raised the possibility that they too might act during oogenesis. However, there has been no direct demonstration of microRNA-dependent translational repression in the ovary. METHODOLOGY/PRINCIPAL FINDINGS: Here, quantitative analyses of transcript and protein levels of transgenes with or without synthetic miR-312 binding sites show that the binding sites do confer translational repression. This effect is dependent on the ability of the cells to produce microRNAs. By comparison with microRNA-dependent translational repression in other cell types, the regulated mRNAs and the protein factors that mediate repression were expected to be enriched in sponge bodies, subcellular structures with extensive similarities to the P bodies found in other cells. However, no such enrichment was observed. CONCLUSIONS/SIGNIFICANCE: Our results reveal the variety of post-transcriptional regulatory mechanisms that operate in the Drosophila ovary, and have implications for the mechanisms of miRNA-dependent translational control used in the ovary.

  10. Nondestructive imaging of plant-parasitic nematode development and host response to nematode pathogenesis.

    Science.gov (United States)

    Dinh, Phuong T Y; Knoblauch, Michael; Elling, Axel A

    2014-05-01

    The secluded lifestyle of endoparasitic plant nematodes hampers progress toward a comprehensive understanding of plant-nematode interactions. A novel technique that enables nondestructive, long-term observations of a wide range of live nematodes in planta is presented here. As proof of principle, Pratylenchus penetrans, Heterodera schachtii, and Meloidogyne chitwoodi were labeled fluorescently with PKH26 and used to infect Arabidopsis thaliana grown in microscopy rhizosphere chambers. Nematode behavior, development, and morphology were observed for the full duration of each parasite's life cycle by confocal microscopy for up to 27 days after inoculation. PKH26 accumulated in intestinal lipid droplets and had no negative effect on nematode infectivity. This technique enabled visualization of Meloidogyne gall formation, nematode oogenesis, and nematode morphological features, such as the metacorpus, vulva, spicules, and cuticle. Additionally, microscopy rhizosphere chambers were used to characterize plant organelle dynamics during M. chitwoodi infection. Peroxisome abundance strongly increased in early giant cells but showed a marked decrease at later stages of feeding site development, which suggests a modulation of plant peroxisomes by root-knot nematodes during the infection process. Taken together, this technique facilitates studies aimed at deciphering plant-nematode interactions at the cellular and subcellular level and enables unprecedented insights into nematode behavior in planta.

  11. Medea is a Drosophila Smad4 homolog that is differentially required to potentiate DPP responses.

    Science.gov (United States)

    Wisotzkey, R G; Mehra, A; Sutherland, D J; Dobens, L L; Liu, X; Dohrmann, C; Attisano, L; Raftery, L A

    1998-04-01

    Mothers against dpp (Mad) mediates Decapentaplegic (DPP) signaling throughout Drosophila development. Here we demonstrate that Medea encodes a MAD-related protein that functions in DPP signaling. MEDEA is most similar to mammalian Smad4 and forms heteromeric complexes with MAD. Like dpp, Medea is essential for embryonic dorsal/ventral patterning. However, Mad is essential in the germline for oogenesis whereas Medea is dispensable. In the wing primordium, loss of Medea most severely affects regions receiving low DPP signal. MEDEA is localized in the cytoplasm, is not regulated by phosphorylation, and requires physical association with MAD for nuclear translocation. Furthermore, inactivating MEDEA mutations prevent nuclear translocation either by preventing interaction with MAD or by trapping MAD/MEDEA complexes in the cytosol. Thus MAD-mediated nuclear translocation is essential for MEDEA function. Together these data show that, while MAD is essential for mediating all DPP signals, heteromeric MAD/MEDEA complexes function to modify or enhance DPP responses. We propose that this provides a general model for Smad4/MEDEA function in signaling by the TGF-beta family.

  12. Very Small Embryonic-Like Stem Cells: Implications in Reproductive Biology

    Directory of Open Access Journals (Sweden)

    Deepa Bhartiya

    2013-01-01

    Full Text Available The most primitive germ cells in adult mammalian testis are the spermatogonial stem cells (SSCs whereas primordial follicles (PFs are considered the fundamental functional unit in ovary. However, this central dogma has recently been modified with the identification of a novel population of very small embryonic-like stem cells (VSELs in the adult mammalian gonads. These stem cells are more primitive to SSCs and are also implicated during postnatal ovarian neo-oogenesis and primordial follicle assembly. VSELs are pluripotent in nature and characterized by nuclear Oct-4A, cell surface SSEA-4, and other pluripotent markers like Nanog, Sox2, and TERT. VSELs are considered to be the descendants of epiblast stem cells and possibly the primordial germ cells that persist into adulthood and undergo asymmetric cell division to replenish the gonadal germ cells throughout life. Elucidation of their role during infertility, endometrial repair, superovulation, and pathogenesis of various reproductive diseases like PCOS, endometriosis, cancer, and so on needs to be addressed. Hence, a detailed review of current understanding of VSEL biology is pertinent, which will hopefully open up new avenues for research to better understand various reproductive processes and cancers. It will also be relevant for future regenerative medicine, translational research, and clinical applications in human reproduction.

  13. Juvenile hormone regulation of female reproduction in the common bed bug, Cimex lectularius

    Science.gov (United States)

    Gujar, Hemant; Palli, Subba Reddy

    2016-01-01

    To begin studies on reproduction in common bed bug, Cimex lectularius, we identified three genes coding for vitellogenin (Vg, a protein required for the reproductive success of insects) and studied their hormonal regulation. RNA interference studied showed that expression of Vg3 gene in the adult females is a prerequisite for successful completion of embryogenesis in the eggs laid by them. Juvenile hormone (JH) receptor, Methoprene-tolerant (Met), steroid receptor coactivator (SRC) and GATAa but not ecdysone receptor (EcR) or its partner, ultraspiracle (USP) are required for expression of Vg genes. Feeding and mating working through Vg, Met, SRC, EcR, and GATAa regulate oocyte development. Knockdown of the expression of Met, SRC, EcR, USP, BR-C (Broad-Complex), TOR (target of rapamycin), and GATAa in female adults resulted in a reduction in the number eggs laid by them. Interestingly, Kruppel homolog 1 (Kr-h1) knockdown in the adult females did not reduce their fecundity but affected the development of embryos in the eggs laid by females injected with Kr-h1 double-stranded RNA. These data suggest that JH functioning through Met and SRC regulate both vitellogenesis and oogenesis in C. lectularius. However, JH does not work through Kr-h1 but may work through transcription factors not yet identified. PMID:27762340

  14. Comparison of biological effects between continuous and intermittent exposure to GSM-900-MHz mobile phone radiation: Detection of apoptotic cell-death features.

    Science.gov (United States)

    Chavdoula, Evangelia D; Panagopoulos, Dimitris J; Margaritis, Lukas H

    2010-07-19

    In the present study we used a 6-min daily exposure of dipteran flies, Drosophila melanogaster, to GSM-900MHz (Global System for Mobile Telecommunications) mobile phone electromagnetic radiation (EMR), to compare the effects between the continuous and four different intermittent exposures of 6min total duration, and also to test whether intermittent exposure provides any cumulative effects on the insect's reproductive capacity as well as on the induction of apoptotic cell death. According to our previous experiments, a 6-min continuous exposure per day for 5 days to GSM-900MHz and DCS-1800MHz (Digital Cellular System) mobile phone radiation, brought about a large decrease in the insect's reproductive capacity, as defined by the number of F(1) pupae. This decrease was found to be non-thermal and correlated with an increased percentage of induced fragmented DNA in the egg chambers' cells at early- and mid-oogenesis. In the present experiments we show that intermittent exposure also decreases the reproductive capacity and alters the actin-cytoskeleton network of the egg chambers, another known aspect of cell death that was not investigated in previous experiments, and that the effect is also due to DNA fragmentation. Intermittent exposures with 10-min intervals between exposure sessions proved to be almost equally effective as continuous exposure of the same total duration, whereas longer intervals between the exposures seemed to allow the organism the time required to recover and partly overcome the above-mentioned effects of the GSM exposure.

  15. Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach.

    Science.gov (United States)

    Tesfaye, Dawit; Worku, Dagnachew; Rings, Franca; Phatsara, Chirawath; Tholen, Ernst; Schellander, Karl; Hoelker, Michael

    2009-07-01

    The accumulation of maternal mRNA and protein during oogenesis for supporting oocyte maturation and the newly fertilised zygote marks the beginning of developmental process in mammals. MicroRNAs (approximately 18-22 nt long) which are known for post-transcriptional gene regulation are evidenced for their essential role during animal development. We, therefore, aimed to investigate the expression of miRNAs in immature and in vitro matured bovine oocytes, using heterologous miRNA array platform. To attain this, we used a mercury locked nucleic acids (LNA) array (Exiqon, Vedbaek, Denmark) microarray that consist of 454 capture probes for human, mouse and rat miRNAs as registered and annotated in the miRBase release 8.0 at The Wellcome Trust Sanger Institute. Our result revealed the differential expression of 59 miRNAs, of which 31 and 28 miRNAs were found to be preferentially expressed in immature and matured oocytes, respectively. Here, we also report the identification of 32 orthologous miRNAs using a heterologous approach. Expression profiling of selected miRNAs during preimplantation stage embryos showed a distinct temporal expression pattern. After target prediction for selected candidate miRNAs high ranking target mRNA were quantified in immature and matured oocytes and showed a reciprocal expression pattern between the miRNA and the predicted targets suggesting a cause and effect relationship.

  16. Molecular Cloning, Promoter Analysis and Expression Profiles of the sox3 Gene in Japanese Flounder, Paralichthys olivaceus

    Directory of Open Access Journals (Sweden)

    Jinning Gao

    2015-11-01

    Full Text Available Sox3, which belongs to the SoxB1 subgroup, plays major roles in neural and gonadal development. In the present study, Japanese flounder Paralichthys olivaceus sox3 gene (Posox3 and its promoter sequence were isolated and characterized. The deduced PoSox3 protein contained 298 amino acids with a characteristic HMG-box domain. Alignment and phylogenetic analyses indicated that PoSox3 shares highly identical sequence with Sox3 homologues from different species. The promoter region of Posox3 has many potential transcription factor (TF binding sites. The expression profiles of Posox3 in different developmental stages and diverse adult tissues were analyzed by quantitative real-time RT-PCR (qRT-PCR. Posox3 mRNA was maternally inherited, and maintained at a considerably high expression level between the blastula stage and the hatching stage during embryonic development. Posox3 was abundantly expressed in the adult brain and showed sexually dimorphic expression pattern. In situ hybridization (ISH was carried out to investigate the cellular distribution of Posox3 in the ovary, and results showed the uniform distribution of Posox3 throughout the cytoplasm of oogonia and stage I–III oocytes. These results indicate that Posox3 has potentially vital roles in embryonic and neural development and may be involved in the oogenesis process. Our work provides a fundamental understanding of the structure and potential functions of Sox3 in Paralichthys olivaceus.

  17. Analysis of ovary-specific genes in relation to egg maturation and female nutritional condition in the mosquitoes Georgecraigius atropalpus and Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Telang, Aparna; Rechel, Julie A; Brandt, Jessica R; Donnell, David M

    2013-03-01

    Analysis of the reproductive physiology of anautogenous mosquitoes at the molecular level is complicated by the simultaneity of ovarian maturation and the digestion of a blood meal. In contrast to anautogenous mosquitoes, autogenous female mosquitoes can acquire greater nutrient stores as larvae and exhibit higher ovarian production of ecdysteroids at adult eclosion. These features essentially replace the role of a blood meal in provisioning the first batch of eggs and initiating egg development. To gain insight into the process of ovary maturation we first performed a transcript analysis of the obligatory autogenous mosquito Georgecraigius atropalpus (formerly Ochlerotatus atropalpus). We identified ESTs using suppressive subtractive hybridization (SSH) of transcripts from ovaries at critical times during oogenesis in the absence of blood digestion. Preliminary expression studies of genes such as apolipophorin III (APO) and oxysterol binding protein (OSBP) suggested these genes might be cued to female nutritional status. We then applied our findings to the medically important anautogenous mosquito Aedes aegypti. RNAi-based analyses of these genes in Ae. aegypti revealed a reduction in APO transcripts leads to reduced lipid levels in carcass and ovaries and that OSBP may play a role in overall lipid and sterol homeostasis. In addition to expanding our understanding of mosquito ovarian development, the continued use of a comparative approach between autogenous and anautogenous species may provide novel intervention points for the regulation of mosquito egg production.

  18. Top-DER- and Dpp-dependent requirements for the Drosophila fos/kayak gene in follicular epithelium morphogenesis.

    Science.gov (United States)

    Dequier, E; Souid, S; Pál, M; Maróy, P; Lepesant, J A; Yanicostas, C

    2001-08-01

    The Drosophila fos (Dfos)/kayak gene has been previously identified as a key regulator of epithelial cell morphogenesis during dorsal closure of the embryo and fusion of the adult thorax. We show here that it is also required for two morphogenetic movements of the follicular epithelium during oogenesis. Firstly, it is necessary for the proper posteriorward migration of main body follicle cells during stage 9. Secondly, it controls, from stage 11 onwards, the morphogenetic reorganization of the follicle cells that are committed to secrete the respiratory appendages. We demonstrate that DER pathway activation and a critical level of Dpp/TGFbeta signalling are required to pattern a high level of transcription of Dfos at the anterior and dorsal edges of the two groups of cells that will give rise to the respiratory appendages. In addition, we provide evidence that, within the dorsal-anterior territory, the level of paracrine Dpp/TGFbeta signalling controls the commitment of follicle cells towards either an operculum or an appendage secretion fate. Finally, we show that Dfos is required in follicle cells for the dumping of the nurse cell cytoplasm into the oocyte and the subsequent apoptosis of nurse cells. This suggests that in somatic follicle cells, Dfos controls the expression of one or several factors that are necessary for these processes in underlying germinal nurse cells.

  19. C. elegans Anillin proteins regulate intercellular bridge stability and germline syncytial organization.

    Science.gov (United States)

    Amini, Rana; Goupil, Eugénie; Labella, Sara; Zetka, Monique; Maddox, Amy S; Labbé, Jean-Claude; Chartier, Nicolas T

    2014-07-07

    Cytokinesis generally produces two separate daughter cells, but in some tissues daughter nuclei remain connected to a shared cytoplasm, or syncytium, through incomplete cytokinesis. How syncytia form remains poorly understood. We studied syncytial formation in the Caenorhabditis elegans germline, in which germ cells connect to a shared cytoplasm core (the rachis) via intercellular bridges. We found that syncytial architecture initiates early in larval development, and germ cells become progressively interconnected until adulthood. The short Anillin family scaffold protein ANI-2 is enriched at intercellular bridges from the onset of germ cell specification, and ANI-2 loss resulted in destabilization of intercellular bridges and germ cell multinucleation defects. These defects were partially rescued by depleting the canonical Anillin ANI-1 or blocking cytoplasmic streaming. ANI-2 is also required for elastic deformation of the gonad during ovulation. We propose that ANI-2 promotes germ cell syncytial organization and allows for compensation of the mechanical stress associated with oogenesis by conferring stability and elasticity to germ cell intercellular bridges. © 2014 Amini et al.

  20. Ena/VASP proteins cooperate with the WAVE complex to regulate the actin cytoskeleton.

    Science.gov (United States)

    Chen, Xing Judy; Squarr, Anna Julia; Stephan, Raiko; Chen, Baoyu; Higgins, Theresa E; Barry, David J; Martin, Morag C; Rosen, Michael K; Bogdan, Sven; Way, Michael

    2014-09-01

    Ena/VASP proteins and the WAVE regulatory complex (WRC) regulate cell motility by virtue of their ability to independently promote actin polymerization. We demonstrate that Ena/VASP and the WRC control actin polymerization in a cooperative manner through the interaction of the Ena/VASP EVH1 domain with an extended proline rich motif in Abi. This interaction increases cell migration and enables VASP to cooperatively enhance WRC stimulation of Arp2/3 complex-mediated actin assembly in vitro in the presence of Rac. Loss of this interaction in Drosophila macrophages results in defects in lamellipodia formation, cell spreading, and redistribution of Ena to the tips of filopodia-like extensions. Rescue experiments of abi mutants also reveals a physiological requirement for the Abi:Ena interaction in photoreceptor axon targeting and oogenesis. Our data demonstrate that the activities of Ena/VASP and the WRC are intimately linked to ensure optimal control of actin polymerization during cell migration and development.

  1. Depleting Gene Activities in Early Drosophila Embryos with the “Maternal-Gal4–shRNA” System

    Science.gov (United States)

    Staller, Max V.; Yan, Dong; Randklev, Sakara; Bragdon, Meghan D.; Wunderlich, Zeba B.; Tao, Rong; Perkins, Lizabeth A.; DePace, Angela H.; Perrimon, Norbert

    2013-01-01

    In a developing Drosophila melanogaster embryo, mRNAs have a maternal origin, a zygotic origin, or both. During the maternal–zygotic transition, maternal products are degraded and gene expression comes under the control of the zygotic genome. To interrogate the function of mRNAs that are both maternally and zygotically expressed, it is common to examine the embryonic phenotypes derived from female germline mosaics. Recently, the development of RNAi vectors based on short hairpin RNAs (shRNAs) effective during oogenesis has provided an alternative to producing germline clones. Here, we evaluate the efficacies of: (1) maternally loaded shRNAs to knockdown zygotic transcripts and (2) maternally loaded Gal4 protein to drive zygotic shRNA expression. We show that, while Gal4-driven shRNAs in the female germline very effectively generate phenotypes for genes expressed maternally, maternally loaded shRNAs are not very effective at generating phenotypes for early zygotic genes. However, maternally loaded Gal4 protein is very efficient at generating phenotypes for zygotic genes expressed during mid-embryogenesis. We apply this powerful and simple method to unravel the embryonic functions of a number of pleiotropic genes. PMID:23105012

  2. Depleting gene activities in early Drosophila embryos with the "maternal-Gal4-shRNA" system.

    Science.gov (United States)

    Staller, Max V; Yan, Dong; Randklev, Sakara; Bragdon, Meghan D; Wunderlich, Zeba B; Tao, Rong; Perkins, Lizabeth A; Depace, Angela H; Perrimon, Norbert

    2013-01-01

    In a developing Drosophila melanogaster embryo, mRNAs have a maternal origin, a zygotic origin, or both. During the maternal-zygotic transition, maternal products are degraded and gene expression comes under the control of the zygotic genome. To interrogate the function of mRNAs that are both maternally and zygotically expressed, it is common to examine the embryonic phenotypes derived from female germline mosaics. Recently, the development of RNAi vectors based on short hairpin RNAs (shRNAs) effective during oogenesis has provided an alternative to producing germline clones. Here, we evaluate the efficacies of: (1) maternally loaded shRNAs to knockdown zygotic transcripts and (2) maternally loaded Gal4 protein to drive zygotic shRNA expression. We show that, while Gal4-driven shRNAs in the female germline very effectively generate phenotypes for genes expressed maternally, maternally loaded shRNAs are not very effective at generating phenotypes for early zygotic genes. However, maternally loaded Gal4 protein is very efficient at generating phenotypes for zygotic genes expressed during mid-embryogenesis. We apply this powerful and simple method to unravel the embryonic functions of a number of pleiotropic genes.

  3. Combined effects of dietary polyunsaturated fatty acids and parasite exposure on eicosanoid-related gene expression in an invertebrate model.

    Science.gov (United States)

    Schlotz, Nina; Roulin, Anne; Ebert, Dieter; Martin-Creuzburg, Dominik

    2016-11-01

    Eicosanoids derive from essential polyunsaturated fatty acids (PUFA) and play crucial roles in immunity, development, and reproduction. However, potential links between dietary PUFA supply and eicosanoid biosynthesis are poorly understood, especially in invertebrates. Using Daphnia magna and its bacterial parasite Pasteuria ramosa as model system, we studied the expression of genes coding for key enzymes in eicosanoid biosynthesis and of genes related to oogenesis in response to dietary arachidonic acid and eicosapentaenoic acid in parasite-exposed and non-exposed animals. Gene expression related to cyclooxygenase activity was especially responsive to the dietary PUFA supply and parasite challenge, indicating a role for prostanoid eicosanoids in immunity and reproduction. Vitellogenin gene expression was induced upon parasite exposure in all food treatments, suggesting infection-related interference with the host's reproductive system. Our findings highlight the potential of dietary PUFA to modulate the expression of key enzymes involved in eicosanoid biosynthesis and reproduction and thus underpin the idea that the dietary PUFA supply can influence invertebrate immune functions and host-parasite interactions.

  4. RHAMM deficiency disrupts folliculogenesis resulting in female hypofertility

    Directory of Open Access Journals (Sweden)

    Huaibiao Li

    2015-03-01

    Full Text Available The postnatal mammalian ovary contains the primary follicles, each comprising an immature oocyte surrounded by a layer of somatic granulosa cells. Oocytes reach meiotic and developmental competence via folliculogenesis. During this process, the granulosa cells proliferate massively around the oocyte, form an extensive extracellular matrix (ECM and differentiate into cumulus cells. As the ECM component hyaluronic acid (HA is thought to form the backbone of the oocyte-granulosa cell complex, we deleted the relevant domain of the Receptor for HA Mediated Motility (RHAMM gene in the mouse. This resulted in folliculogenesis defects and female hypofertility, although HA-induced signalling was not affected. We report that wild-type RHAMM localises at the mitotic spindle of granulosa cells, surrounding the oocyte. Deletion of the RHAMM C-terminus in vivo abolishes its spindle association, resulting in impaired spindle orientation in the dividing granulosa cells, folliculogenesis defects and subsequent female hypofertility. These data reveal the first identified physiological function for RHAMM, during oogenesis, and the importance of this spindle-associated function for female fertility.

  5. Phenotypic rescue of a Drosophila model of mitochondrial ANT1 disease

    Directory of Open Access Journals (Sweden)

    Suvi Vartiainen

    2014-06-01

    Full Text Available A point mutation in the Drosophila gene that codes for the major adult isoform of adenine nuclear translocase (ANT represents a model for human diseases that are associated with ANT insufficiency [stress-sensitive B1 (sesB1]. We characterized the organismal, bioenergetic and molecular phenotype of sesB1 flies then tested strategies to compensate the mutant phenotype. In addition to developmental delay and mechanical-stress-induced seizures, sesB1 flies have an impaired response to sound, defective male courtship, female sterility and curtailed lifespan. These phenotypes, excluding the latter two, are shared with the mitoribosomal protein S12 mutant, tko25t. Mitochondria from sesB1 adults showed a decreased respiratory control ratio and downregulation of cytochrome oxidase. sesB1 adults exhibited ATP depletion, lactate accumulation and changes in gene expression that were consistent with a metabolic shift towards glycolysis, characterized by activation of lactate dehydrogenase and anaplerotic pathways. Females also showed downregulation of many genes that are required for oogenesis, and their eggs, although fertilized, failed to develop to the larval stages. The sesB1 phenotypes of developmental delay and mechanical-stress-induced seizures were alleviated by an altered mitochondrial DNA background. Female sterility was substantially rescued by somatic expression of alternative oxidase (AOX from the sea squirt Ciona intestinalis, whereas AOX did not alleviate developmental delay. Our findings illustrate the potential of different therapeutic strategies for ANT-linked diseases, based on alleviating metabolic stress.

  6. Identification of the origin and localization of chorion (egg envelope) proteins in an ancient fish, the white sturgeon, Acipenser transmontanus.

    Science.gov (United States)

    Murata, Kenji; Conte, Fred S; McInnis, Elizabeth; Fong, Tak Hou; Cherr, Gary N

    2014-06-01

    In many modern teleost fish, chorion (egg envelope) glycoproteins are synthesized in the liver of females, and the expression of those genes is controlled by endogenous estrogen released from the ovary during maturation. However, among the classical teleosts, such as salmonid, carp, and zebrafish, the chorion glycoproteins are synthesized in the oocyte, as in higher vertebrates. Sturgeon, which are members of the subclass Chondrostei, represent an ancient lineage of ray-finned fishes that differ from other teleosts in that their sperm possess acrosomes, their eggs have numerous micropyles, and early embryo development is similar to that of amphibians. In order to understand the molecular mechanisms of chorion formation and the phylogenetic relationship between sturgeon and other teleosts, we used specific antibodies directed against the primary components of sturgeon chorion glycoproteins, using immunoblotting and immunocytochemistry approaches. The origin of each chorion glycoprotein was determined through analyses of both liver and ovary, and their localization during ovarian development was investigated. Our data indicate that the origin of the major chorion glycoproteins of sturgeon, ChG1, ChG2, and ChG4, derive not only from the oocyte itself but also from follicle cells in the ovary, as well as from hepatocytes. In the follicle cell layer, granulosa cells were found to be the primary source of ChGs during oogenesis in white sturgeon. The unique origins of chorion glycoproteins in sturgeon suggest that sturgeons are an intermediate form in the evolution of the teleost lineage.

  7. Sex-dependent effects of microcystin-LR on hypothalamic-pituitary-gonad axis and gametogenesis of adult zebrafish

    Science.gov (United States)

    Liu, Wanjing; Chen, Chuanyue; Chen, Liang; Wang, Li; Li, Jian; Chen, Yuanyuan; Jin, Jienan; Kawan, Atufa; Zhang, Xuezhen

    2016-03-01

    While microcystins (MCs) have been reported to exert reproductive toxicity on fish with a sex-dependent effect, the underlying mechanism has been rarely investigated. In the present study, zebrafish were exposed to 1, 5 and 20 μg/L MC-LR for 30 d. The gonad-somatic index declined in all treated males. 17β-estradiol (E2), testosterone (T), 11-keto testosterone (11-KT) and follicle-stimulating hormone (FSH) levels increased in serum from all treated females, while T, FSH and luteinizing hormone (LH) levels changed in all treated males. Histomorphological observation showed that MC-LR exposure evidently retarded oogenesis and spermatogenesis. Transcriptional changes of 22 genes of the hypothalamic-pituitary-gonad (HPG) axis exhibited sex-specific responses, and the relationship between gene transcriptions and gametogenesis was evaluated by principle component analysis (PCA). Major contributors to PC1 (gnrh2, gnrhr3, ar, lhr, hmgra, hmgrb and cyp19a) were positively correlated with the number of post-vitellogenic oocytes, while PC1 (gnrh2, lhβ, erβ, fshr, cyp11a and 17βhsd) were positively correlated with the number of spermatozoa. The protein levels of 17βHSD and CYP19a were affected in both females and males. In conclusion, this study first investigated the sex-dependent effects of microcystins on fish reproduction and revealed some important molecular biomarkers related to gametogenesis in zebrafish suffered from MC-LR.

  8. mTORC1 signalling mediates PI3K-dependent large lipid droplet accumulation in Drosophila ovarian nurse cells

    Directory of Open Access Journals (Sweden)

    Lawrence B. Mensah

    2017-05-01

    Full Text Available Insulin and insulin-like growth factor signalling (IIS, which is primarily mediated by the PI3-kinase (PI3K/PTEN/Akt kinase signalling cassette, is a highly evolutionarily conserved pathway involved in co-ordinating growth, development, ageing and nutrient homeostasis with dietary intake. It controls transcriptional regulators, in addition to promoting signalling by mechanistic target of rapamycin (mTOR complex 1 (mTORC1, which stimulates biosynthesis of proteins and other macromolecules, and drives organismal growth. Previous studies in nutrient-storing germline nurse cells of the Drosophila ovary showed that a cytoplasmic pool of activated phosphorylated Akt (pAkt controlled by Pten, an antagonist of IIS, cell-autonomously regulates accumulation of large lipid droplets in these cells at late stages of oogenesis. Here, we show that the large lipid droplet phenotype induced by Pten mutation is strongly suppressed when mTor function is removed. Furthermore, nurse cells lacking either Tsc1 or Tsc2, which negatively regulate mTORC1 activity, also accumulate large lipid droplets via a mechanism involving Rheb, the downstream G-protein target of TSC2, which positively regulates mTORC1. We conclude that elevated IIS/mTORC1 signalling is both necessary and sufficient to induce large lipid droplet formation in late-stage nurse cells, suggesting roles for this pathway in aspects of lipid droplet biogenesis, in addition to control of lipid metabolism.

  9. Cloning and Expression Analysis of vasa During the Reproductive Cycle of Korean Rockfish,Sebastes schlegeli

    Institute of Scientific and Technical Information of China (English)

    MU Weijie; WEN Haishen; HE Feng; LI Jifang; LIU Miao; MA Ruiqin; ZHANG Yuanqing

    2013-01-01

    Vasa,which is a conserved member of the DEAD-box protein family,plays an indispensable role in primordial germ cell proliferation.However,the expression of vasa gene during the reproductive cycle in ovoviviparous fish has not been documented.In this study,the full-length sequence of vasa was obtained from the ovary of Korean rockfish (Sebastes schlegeli) using reverse transcription-PCR and rapid amplification of cDNA ends.The Vasa with a mature protein of 650 amino acids showed greatest homology (84%) with giant gourami (Osphronemus goramy) and Pacific bluefin tuna (Thunnus orientalis).The expression of vasa mRNA in Korean rockfish was detected in gonads only,suggesting its specific role in gonadal development.In addition,seasonal changes in the vasa expression levels were examined in gonads by quantitative real-time PCR.The vasa transcript levels in adult testis were found higher during spermatogenesis than during spermiation.The vasa transcript levels remained relatively high at the early ovary stage but declined during ovary maturation in adult female fish.These results suggest that the vasa gene play an important role in spermatogenesis and early oogenesis during the reproductive cycle of Korean rockfish.

  10. Histology and gametogenesis in Heleobia piscium (Cochliopidae from the Multiple Use Reserve “Isla Martín García,” Buenos Aires, Argentina

    Directory of Open Access Journals (Sweden)

    Stella Maris Martin

    2016-10-01

    Full Text Available Heleobia piscium (d’Orbigny, 1835, a member of the Cochliopidae family found only in South America, is distributed from Entre Ríos, Delta del Paraná, and the littoral of the Río de la Plata down as far as to Punta Indio (Buenos Aires, the southernmost limit of the snail’s geographical distribution. To date, little information is available regarding the reproductive cycle of species within this family either in Argentina or throughout South America. The present work analyzed the histology of the reproductive system of the gonochoric species H. piscium and determined the stages oogenesis and spermatogenesis under natural conditions. Specimens of H. piscium were collected in the Multiple-Use Natural Reserve Isla Martín García, located in the Upper Río de la Plata estuary to the south of the mouth of the Uruguay River. The gametogenic cycle in both sexes was found to consist of the following stages: early maturation, maturation, and evacuation. The maturation period was found to extend from January to October and evacuation of the gametes to start in November and end in February (summer in the Southern Hemisphere. The results indicated the H. piscium exhibit a reproductive cycle without a resting period.

  11. Experimental evidence of polymorphysm of sexual development in Capitella sp. B (Polychaeta: Capitellidae from Barcelona, Spain

    Directory of Open Access Journals (Sweden)

    Nuria Méndez

    2002-06-01

    Full Text Available The development and growth of Capitella sp. B obtained from Barcelona were studied under culture conditions. Trochophore and metatrochophore larvae hatched non-simultaneously (two release periods from single brood tubes. This is the first laboratory evidence of polymorphysm of sexual development in the Capitella capitata species-complex. During the first release period, only free swimming trochophores hatched. The females, still bearing larvae inside the brood tube, were transferred to another dish. After three days, ciliated metatrochophores hatched from 8.7% of the transferred broods. In a culture experiment, larvae maintained in sediment enriched with artificial food grew to immature and mature adults. In this condition, the larvae that hatched during the first release reached the immature adult stage, while the larvae derived from the second release became mature adults. Oogenesis was observed three times in one female from the second release, though no spawning and fertilization occurred under incubation with sib mature males. Two different sizes of coelomic oocytes were observed. Polymorphysm of sexual development is discussed as an advantageous reproductive strategy enhancing survival in organic enriched sediments.

  12. Inactivating the spindle checkpoint kinase Bub1 during embryonic development results in a global shutdown of proliferation

    Directory of Open Access Journals (Sweden)

    Taylor Stephen S

    2009-09-01

    Full Text Available Abstract Background Bub1 is a component of the spindle assembly checkpoint, a surveillance mechanism that maintains chromosome stability during M-phase. Bub1 is essential during the early stages of embryogenesis, with homozygous BUB1-null mice dying shortly after day E3.5. Bub1 is also required later during embryogenesis; inactivation of BUB1 on day E10.5 appears to rapidly block all further development. However, the mechanism(s responsible for this phenotype remain unclear. Findings Here we show that inactivating BUB1 on day E10.5 stalls embryogenesis within 48 hours. This is accompanied by a global shutdown of proliferation, widespread apoptosis and haemorrhaging. Conclusion Our results suggest that Bub1 is required throughout the developing embryo for cellular proliferation. Therefore, Bub1 has been shown to be essential in all scenarios analyzed thus far in mice: proliferation of cultured fibroblasts, spermatogenesis, oogenesis and both early and late embryonic development. This likely reflects the fact that Bub1 has dual functions during mitosis, being required for both SAC function and chromosome alignment.

  13. SOHLH2 is essential for synaptonemal complex formation during spermatogenesis in early postnatal mouse testes.

    Science.gov (United States)

    Park, Miree; Lee, Youngeun; Jang, Hoon; Lee, Ok-Hee; Park, Sung-Won; Kim, Jae-Hwan; Hong, Kwonho; Song, Hyuk; Park, Se-Pill; Park, Yun-Yong; Ko, Jung Jae; Choi, Youngsok

    2016-02-12

    Spermatogenesis- and oogenesis-specific helix-loop-helix transcription factor 2 (SOHLH2) is exclusively expressed in germ cells of the gonads. Previous studies show that SOHLH2 is critical for spermatogenesis in mouse. However, the regulatory mechanism of SOHLH2 during early spermatogenesis is poorly understood. In the present study, we analyzed the gene expression profile of the Sohlh2-deficient testis and examined the role of SOHLH2 during spermatogenesis. We found 513 genes increased in abundance, while 492 genes decreased in abundance in 14-day-old Sohlh2-deficient mouse testes compared to wildtype mice. Gene ontology analysis revealed that Sohlh2 disruption effects the relative abundance of various meiotic genes during early spermatogenesis, including Spo11, Dmc1, Msh4, Prdm9, Sycp1, Sycp2, Sycp3, Hormad1, and Hormad2. Western blot analysis and immunostaining showed that SYCP3, a component of synaptonemal complex, was significantly less abundant in Sohlh2-deficient spermatocytes. We observed a lack of synaptonemal complex formation during meiosis in Sohlh2-deficient spermatocytes. Furthermore, we found that SOHLH2 interacted with two E-boxes on the mouse Sycp1 promoter and Sycp1 promoter activity increased with ectopically expressed SOHLH2. Taken together, our data suggest that SOHLH2 is critical for the formation of synaptonemal complexes via its regulation of Sycp1 expression during mouse spermatogonial differentiation.

  14. Reproductive cycle and strategy of Anodonta anatina (L., 1758): notes on hermaphroditism.

    Science.gov (United States)

    Hinzmann, Mariana; Lopes-Lima, Manuel; Teixeira, Amilcar; Varandas, Simone; Sousa, Ronaldo; Lopes, Anabela; Froufe, Elsa; Machado, Jorge

    2013-08-01

    Freshwater mussels have decreased dramatically in Iberia over the last decades. These animals are responsible for important ecosystem services such as recycling nutrients and improving water clarity. Under this view a better knowledge on the biological features of these animals is extremely important for future conservation and management actions. In this study the reproductive and gametogenic cycle of Anodonta anatina were studied during 2 years in one population as well as the sex ratio and hermaphroditism in six distinct populations, using standard histology. Gametogenesis was continuous in both sexes and germinal epithelium in early stages of development. Gametes were present throughout the reproductive cycle. Oogenesis and spermatogenesis occurred mainly between January and May. Larvae brooding occurred between September and March and main glochidia discharge occurred over a short period (2-3 weeks) in March. For the sex-ratio and hermaphroditism assessments a variable number of individuals were collected from several populations from lakes and rivers. Previous studies described A. anatina as mainly dioecious with only a few populations presenting occasional hermaphroditism. However, the present study indicates that A. anatina sexual behavior is influenced by environmental conditions, being mainly dioecious in rivers with increased hermaphroditism in standing waters. Although self-fertilization was not confirmed, additional studies with molecular characterization of larvae using fast evolving markers should be used in future studies to enlighten this process. Overall, this study indicates that for more efficient conservation actions and management plans, freshwater mussel reproductive biology should be studied at the population level mainly in the subfamily Anodontinae.

  15. DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila.

    Science.gov (United States)

    Liu, Jun; Zimmer, Kurt; Rusch, Douglas B; Paranjape, Neha; Podicheti, Ram; Tang, Haixu; Calvi, Brian R

    2015-10-15

    Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC.

  16. The DNA replication program is altered at the FMR1 locus in fragile X embryonic stem cells.

    Science.gov (United States)

    Gerhardt, Jeannine; Tomishima, Mark J; Zaninovic, Nikica; Colak, Dilek; Yan, Zi; Zhan, Qiansheng; Rosenwaks, Zev; Jaffrey, Samie R; Schildkraut, Carl L

    2014-01-09

    Fragile X syndrome (FXS) is caused by a CGG repeat expansion in the FMR1 gene that appears to occur during oogenesis and during early embryogenesis. One model proposes that repeat instability depends on the replication fork direction through the repeats such that (CNG)n hairpin-like structures form, causing DNA polymerase to stall and slip. Examining DNA replication fork progression on single DNA molecules at the endogenous FMR1 locus revealed that replication forks stall at CGG repeats in human cells. Furthermore, replication profiles of FXS human embryonic stem cells (hESCs) compared to nonaffected hESCs showed that fork direction through the repeats is altered at the FMR1 locus in FXS hESCs, such that predominantly the CCG strand serves as the lagging-strand template. This is due to the absence of replication initiation that would typically occur upstream of FMR1, suggesting that altered replication origin usage combined with fork stalling promotes repeat instability during early embryonic development.

  17. The presence of centrioles and centrosomes in ovarian mature cystic teratoma cells suggests human parthenotes developed in vitro can differentiate into mature cells without a sperm centriole

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bo Yon, E-mail: boyonlee@gmail.com [Department of Obstetrics and Gynecology, Kyung Hee University Hospital, Kyung Hee University, School of Medicine, Seoul (Korea, Republic of); Shim, Sang Woo; Kim, Young Sun; Kim, Seung Bo [Department of Obstetrics and Gynecology, Kyung Hee University Hospital, Kyung Hee University, School of Medicine, Seoul (Korea, Republic of)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer The sperm centriole is the progenitor of centrosomes in all somatic cells. Black-Right-Pointing-Pointer Centrioles and centrosomes exist in parthenogenetic ovarian teratoma cells. Black-Right-Pointing-Pointer Without a sperm centriole, parthenogenetic oocytes produce centrioles and centrosomes. Black-Right-Pointing-Pointer Parthenogenetic human oocytes can develop and differentiate into mature cells. -- Abstract: In most animals, somatic cell centrosomes are inherited from the centriole of the fertilizing spermatozoa. The oocyte centriole degenerates during oogenesis, and completely disappears in metaphase II. Therefore, the embryos generated by in vitro parthenogenesis are supposed to develop without any centrioles. Exceptional acentriolar and/or acentrosomal developments are possible in mice and in some experimental cells; however, in most animals, the full developmental potential of parthenogenetic cells in vitro and the fate of their centrioles/centrosomes are not clearly understood. To predict the future of in vitro human parthenogenesis, we explored the centrioles/centrosomes in ovarian mature cystic teratoma cells by immunofluorescent staining and transmission electron microscopy. We confirmed the presence of centrioles and centrosomes in these well-known parthenogenetic ovarian tumor cells. Our findings clearly demonstrate that, even without a sperm centriole, parthenotes that develop from activated oocytes can produce their own centrioles/centrosomes, and can even develop into the well-differentiated mature tissue.

  18. Extreme telomere length dimorphism in the Tasmanian devil and related marsupials suggests parental control of telomere length.

    Directory of Open Access Journals (Sweden)

    Hannah S Bender

    Full Text Available Telomeres, specialised structures that protect chromosome ends, play a critical role in preserving chromosome integrity. Telomere dynamics in the Tasmanian devil (Sarcophilus harrisii are of particular interest in light of the emergence of devil facial tumour disease (DFTD, a transmissible malignancy that causes rapid mortality and threatens the species with extinction. We used fluorescent in situ hybridisation to investigate telomere length in DFTD cells, in healthy Tasmanian devils and in four closely related marsupial species. Here we report that animals in the Order Dasyuromorphia have chromosomes characterised by striking telomere length dimorphism between homologues. Findings in sex chromosomes suggest that telomere length dimorphism may be regulated by events in the parental germlines. Long telomeres on the Y chromosome imply that telomere lengthening occurs during spermatogenesis, whereas telomere diminution occurs during oogenesis. Although found in several somatic cell tissue types, telomere length dimorphism was not found in DFTD cancer cells, which are characterised by uniformly short telomeres. This is, to our knowledge, the first report of naturally occurring telomere length dimorphism in any species and suggests a novel strategy of telomere length control. Comparative studies in five distantly related marsupials and a monotreme indicate that telomere dimorphism evolved at least 50 million years ago.

  19. Mammalian and avian embryology at Warsaw University (Poland) from XIX century to the present.

    Science.gov (United States)

    Tarkowski, Andrzej K; Maleszewski, Marek; Rogulska, Teresa; Ciemerych, Maria A; Borsuk, Ewa

    2008-01-01

    In this article, we describe the history (between the XIX century and World War II) of embryological research conducted at Warsaw University, together with current research activities being carried out at the Department of Embryology. During the partition of Poland, the Imperial (Russian) Warsaw University conducted research on avian embryology (and to a smaller extent, on reptilian embryology). When Poland regained independence in 1918, these studies were continued under the Chair of Comparative Anatomy headed by Professor Jan Tur. A new Department of Embryology created in 1954 was first headed by Professor Stanislaw Bilewicz and since 1964 by Professor Andrzej Tarkowski, who in 2003 was succeeded by Dr. Marek Maleszewski D.Sc. During the last 45 years, embryological research at Warsaw University has concentrated mainly on mammalian development with special emphasis on the regulative capabilities of early embryos and also on experimental chimaeras, nucleo-cytoplasmic interactions in oogenesis and early embryogenesis (including regulation of DNA replication and transcription), experimental parthenogenesis and fertilization.

  20. Organisation of Xenopus oocyte and egg cortices.

    Science.gov (United States)

    Chang, P; Pérez-Mongiovi, D; Houliston, E

    1999-03-15

    The division of the Xenopus oocyte cortex into structurally and functionally distinct "animal" and "vegetal" regions during oogenesis provides the basis of the organisation of the early embryo. The vegetal region of the cortex accumulates specific maternal mRNAs that specify the development of the endoderm and mesoderm, as well as functionally-defined "determinants" of dorso-anterior development, and recognisable "germ plasm" determinants that segregate into primary germ cells. These localised elements on the vegetal cortex underlie both the primary animal-vegetal polarity of the egg and the organisation of the developing embryo. The animal cortex meanwhile becomes specialised for the events associated with fertilisation: sperm entry, calcium release into the cytoplasm, cortical granule exocytosis, and polarised cortical contraction. Cortical and subcortical reorganisations associated with meiotic maturation, fertilisation, cortical rotation, and the first mitotic cleavage divisions redistribute the vegetal cortical determinants, contributing to the specification of dorso-anterior axis and segregation of the germ line. In this article we consider what is known about the changing organisation of the oocyte and egg cortex in relation to the mechanisms of determinant localisation, anchorage, and redistribution, and show novel ultrastructural views of cortices isolated at different stages and processed by the rapid-freeze deep-etch method. Cortical organisation involves interactions between the different cytoskeletal filament systems and internal membranes. Associated proteins and cytoplasmic signals probably modulate these interactions in stage-specific ways, leaving much to be understood.

  1. Oocyte and embryonic cytoskeletal defects caused by mutations in the Drosophila swallow gene.

    Science.gov (United States)

    Meng, Jing; Stephenson, Edwin C

    2002-06-01

    The maternal effect gene swallow ( swa) of Drosophila is required for bicoid and htsN4 mRNA localization during oogenesis. Swallow is also required for additional, poorly understood, functions in early embryogenesis. We have examined the cytoskeleton in swa mutant oocytes and embryos by immunocytochemistry and confocal microscopy. Mid- and late-stage swaoocytes have defective cytoplasmic actin networks. Stage-10 oocytes have solid actin clumps and hollow actin spheres in the subcortical layer, and late-stage oocytes have uniformly distributed hollow actin spheres in the subcortical layer and in deeper cytoplasm. Swa preblastoderm embryos have uneven and irregularly distributed actin at the cortex, and defective subcortical actin networks that contain hollow and solid spheres. In swa syncytial blastoderm embryos, the abnormal actin cytoskeleton is associated with defects in nuclear distribution, migration and cleavage. Actin cytoskeletal defects correlate with spindle defects, suggesting that the abnormal organization of the actin cytoskeleton allows interaction of mitotic spindles, which induces defective nuclear divisions and loss of nuclei from the surface of the embryo.

  2. Dynamic expression pattern of kinesin accessory protein in Drosophila

    Indian Academy of Sciences (India)

    Ritu Sarpal; Krishanu Ray

    2002-09-01

    We have identified the Drosophila homologue of the non-motor accessory subunit of kinesin-II motor complex. It is homologous to the SpKAP115 of the sea urchin, KAP3A and KAP3B of the mouse, and SMAP protein in humans. In situ hybridization using a DmKAP specific cRNA probe has revealed a dynamic pattern of expression in the developing nervous system. The staining first appears in a subset of cells in the embryonic central nervous system at stage 13 and continues till the first instar larva stage. At the third instar larva stage the staining gets restricted to a few cells in the optic lobe and in the ventral ganglion region. It has also stained a subset of sensory neurons from late stage 13 and till the first instar larva stage. The DmKAP expression pattern in the nervous system corresponds well with that of Klp64D and Klp68D as reported earlier. In addition, we have found that the DmKAP gene is constitutively expressed in the germline cells and in follicle cells during oogenesis. These cells are also stained using an antibody to KLP68D protein, but mRNA in situ hybridization using KLP64D specific probe has not stained these cells. Together these results proved a basis for further analysis of tissue specific function of DmKAP in future.

  3. Effects of a methanolic extract of the plant Haplophyllum tuberculatum and of teflubenzuron on female reproduction in the migratory locust, Locusta migratoria (Orthoptera: Oedipodinae).

    Science.gov (United States)

    Acheuk, Fatma; Cusson, Michel; Doumandji-Mitiche, Bahia

    2012-03-01

    The effects of a methanolic extract of the plant Haplophyllum tuberculatum (ME-Ht) and of teflubenzuron (TFB) were compared on several reproductive variables and ecdysteroid titers in the females of Locusta migratoria. The test products were administered orally to newly emerged females at doses of 1500 (ME-Ht) and 10μg/female (TFB). The methanolic extract and TFB had comparable effects on several of the variables examined. Both significantly delayed the first oviposition and reduced fecundity and fertility. ME-Ht and TFB also displayed similar effects on ovarian growth, vitellogenesis and ecdysteroid titers. Both treatments induced a drop in hemolymph protein levels as well as a reduction in vitellogenin uptake by oocytes. This delay in oogenesis was accompanied by a resorption of terminal oocytes. However, whereas TFB completely blocked egg hatch, ME-Ht only had a modest inhibitory effect on this variable. Hemolymph and ovarian ecdysteroid titers, as measured by radioimmunoassay, were similar and low in both control and treated females, except for a peak observed only in control females at the end of vitellogenesis. We discuss the functional significance of the observed effects in the context of the putative modes of action of the methanolic plant extract and TFB.

  4. Identification and characterization of novel ER-based hsp90 gene in the red flour beetle, Tribolium castaneum.

    Science.gov (United States)

    Zhang, Yi; Gu, Shasha; Li, Chengjun; Sang, Ming; Wu, Wei; Yun, Xiaopei; Hu, Xingxing; Li, Bin

    2014-09-01

    Heat-shock protein 90 (HSP90) is a highly conserved molecular chaperone found in all species except for Archaea, which is required not only for stress tolerance but also for normal development. Recently, it was reported that HSP83, one member of the cytosolic HSP90 family, contributes to oogenesis and responds to heat resistance in Tribolium castaneum. Here, a novel ER-based HSP90 gene, Tchsp90, has been identified in T. castaneum. Phylogenetic analysis showed that hsp90s and hsp83s evolved separately from a common ancestor but that hsp90s originated earlier. Quantitative real-time polymerase chain reaction illustrated that Tchsp90 is expressed in all developmental stages and is highly expressed at early pupa and late adult stages. Tchsp90 was upregulated in response to heat stress but not to cold stress. Laval RNAi revealed that Tchsp90 is important for larval/pupal development. Meanwhile, parental RNAi indicated that it completely inhibited female fecundity and partially inhibited male fertility once Tchsp90 was knocked down and that it will further shorten the lifespan of T. castaneum. These results suggest that Tchsp90 is essential for development, lifespan, and reproduction in T. castaneum in addition to its response to heat stress.

  5. iBeetle-Base: a database for RNAi phenotypes in the red flour beetle Tribolium castaneum.

    Science.gov (United States)

    Dönitz, Jürgen; Schmitt-Engel, Christian; Grossmann, Daniela; Gerischer, Lizzy; Tech, Maike; Schoppmeier, Michael; Klingler, Martin; Bucher, Gregor

    2015-01-01

    The iBeetle-Base (http://ibeetle-base.uni-goettingen.de) makes available annotations of RNAi phenotypes, which were gathered in a large scale RNAi screen in the red flour beetle Tribolium castaneum (iBeetle screen). In addition, it provides access to sequence information and links for all Tribolium castaneum genes. The iBeetle-Base contains the annotations of phenotypes of several thousands of genes knocked down during embryonic and metamorphic epidermis and muscle development in addition to phenotypes linked to oogenesis and stink gland biology. The phenotypes are described according to the EQM (entity, quality, modifier) system using controlled vocabularies and the Tribolium morphological ontology (TrOn). Furthermore, images linked to the respective annotations are provided. The data are searchable either for specific phenotypes using a complex 'search for morphological defects' or a 'quick search' for gene names and IDs. The red flour beetle Tribolium castaneum has become an important model system for insect functional genetics and is a representative of the most species rich taxon, the Coleoptera, which comprise several devastating pests. It is used for studying insect typical development, the evolution of development and for research on metabolism and pest control. Besides Drosophila, Tribolium is the first insect model organism where large scale unbiased screens have been performed.

  6. In vitro oocyte culture-based manipulation of zebrafish maternal genes.

    Science.gov (United States)

    Nair, Sreelaja; Lindeman, Robin E; Pelegri, Francisco

    2013-01-01

    In animals, females deposit gene products into developing oocytes, which drive early cellular events in embryos immediately after fertilization. As maternal gene products are present before fertilization, the functional manipulation of maternal genes is often challenging to implement, requiring gene expression or targeting during oogenesis. Maternal expression can be achieved through transgenesis, but transgenic approaches are time consuming and subject to undesired epigenetic effects. Here, we have implemented in vitro culturing of experimentally manipulated immature oocytes to study maternal gene contribution to early embryonic development in the zebrafish. We demonstrate phenotypic rescue of a maternal-effect mutation by expressing wild-type product in cultured oocytes. We also generate loss-of-function phenotypes in embryos through either the expression of a dominant-negative transcript or injection of translation-blocking morpholino oligonucleotides. Finally, we demonstrate subcellular localization during the early cell divisions immediately after fertilization of an exogenously provided maternal product fused to a fluorescent protein. These manipulations extend the potential to carry out genetic and imaging studies of zebrafish maternal genes during the egg-to-embryo transition. Copyright © 2012 Wiley Periodicals, Inc.

  7. Cloning and expression analysis of vasa during the reproductive cycle of Korean rockfish, Sebastes schlegeli

    Science.gov (United States)

    Mu, Weijie; Wen, Haishen; He, Feng; Li, Jifang; Liu, Miao; Ma, Ruiqin; Zhang, Yuanqing; Hu, Jian; Qi, Baoxia

    2013-03-01

    Vasa, which is a conserved member of the DEAD-box protein family, plays an indispensable role in primordial germ cell proliferation. However, the expression of vasa gene during the reproductive cycle in ovoviviparous fish has not been documented. In this study, the full-length sequence of vasa was obtained from the ovary of Korean rockfish ( Sebastes schlegeli) using reverse transcription-PCR and rapid amplification of cDNA ends. The Vasa with a mature protein of 650 amino acids showed greatest homology (84%) with giant gourami ( Osphronemus goramy) and Pacific bluefin tuna ( Thunnus orientalis). The expression of vasa mRNA in Korean rockfish was detected in gonads only, suggesting its specific role in gonadal development. In addition, seasonal changes in the vasa expression levels were examined in gonads by quantitative real-time PCR. The vasa transcript levels in adult testis were found higher during spermatogenesis than during spermiation. The vasa transcript levels remained relatively high at the early ovary stage but declined during ovary maturation in adult female fish. These results suggest that the vasa gene play an important role in spermatogenesis and early oogenesis during the reproductive cycle of Korean rockfish.

  8. Nectar feeding by the early-spring mosquito Aedes provocans.

    Science.gov (United States)

    Smith, S M; Gadawski, R M

    1994-07-01

    Nectar feeding by males and females of the mosquito Aedes provocans was studied at a site near Belleville, Ontario, Canada. Canada plum, Prunus nigra, and especially pin cherry, P. pensylvanica, bloomed contemporaneously with the emergence of Ae. provocans and were important nectar sources for adult mosquitoes during their first week of life. Blossoms of P. pensylvanica shielded for 24 h from foragers produced an average of 0.14 mg of sugar (approximately 2.3J). This nectar was avidly sought by both sexes of Ae. provocans; > 97% of the blossoms were visited by mosquitoes in the first few days of blooming. Young adult mosquitoes were found on blossoms at all hours of the day and night; feeding on P. nigra was strongly eocrepuscular, whereas on P. pensylvanica feeding was much less strongly periodic. Adults foraged for nectar in an energy-conserving, pedestrian strategy, devoting 56% (females) and 68% (males) of their time on blossoms to nectar feeding during foraging bouts that lasted a median of 5.3 min. Both sexes sought nectar soon after emergence--males before they had completed hypopygial rotation or swarmed, and females before mating or host seeking. Female Ae. provocans sought nectar in all stages of oogenesis, but primarily at the initiation of a gonotrophic cycle. Energy stores in the crop averaged 18J per female, with a distribution that depended on gonotrophic age and parity.

  9. Annual Reproductive Cycle and Unusual Embryogenesis of a Temperate Coral in the Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Chiara Marchini

    Full Text Available The variety of reproductive processes and modes among coral species reflects their extraordinary regeneration ability. Scleractinians are an established example of clonal animals that can exhibit a mixed strategy of sexual and asexual reproduction to maintain their populations. This study provides the first description of the annual reproductive cycle and embryogenesis of the temperate species Caryophyllia inornata. Cytometric analyses were used to define the annual development of germ cells and embryogenesis. The species was gonochoric with three times more male polyps than female. Polyps were sexually mature from 6 to 8 mm length. Not only females, but also sexually inactive individuals (without germ cells and males were found to brood their embryos. Spermaries required 12 months to reach maturity, while oogenesis seemed to occur more rapidly (5-6 months. Female polyps were found only during spring and summer. Furthermore, the rate of gamete development in both females and males increased significantly from March to May and fertilization was estimated to occur from April to July, when mature germ cells disappeared. Gametogenesis showed a strong seasonal influence, while embryos were found throughout the year in males and in sexually inactive individuals without a defined trend. This unusual embryogenesis suggests the possibility of agamic reproduction, which combined with sexual reproduction results in high fertility. This mechanism is uncommon and only four other scleractinians (Pocillopora damicornis, Tubastraea diaphana, T. coccinea and Oulastrea crispata have been shown to generate their broods asexually. The precise nature of this process is still unknown.

  10. The reproductive seasonality and gametogenic cycle of Acropora cervicornis off Broward County, Florida, USA

    Science.gov (United States)

    Vargas-Ángel, Bernardo; Colley, Susan B.; Hoke, S. Michael; Thomas, James D.

    2006-03-01

    Reproductive characters of the Caribbean reef-building coral Acropora cervicornis were investigated based on histological samples collected from April 2001 through October 2002. Oogenesis commenced in early to mid-October through November and spermatogenesis was initiated from January to March. The onset of gametogenesis was staggered, exhibiting up to approximately a 1-month delay within colonies. In the hermaphroditic polyps, the observed male-to-female gonad ratio was nearly 1:1 and ripe oocytes represented over 70% of the total gonadal volume. Fecundity estimates based on Stage IV ova ranged between 10.4 and 21.8 mm3 per square centimeter per year, comparable to A. cervicornis in Puerto Rico and other broadcasting Indo-Pacific Acropora. Fecundity estimates based on Stage III vitellogenic oocytes indicated statistically significant differences among study sites. Spawning in field conditions was observed in 2001, 2003, and 2004 from 2300 to 2330 h. Gamete release generally occurred synchronously between nights two and seven after the full moon of July or August. However in 2003, multiple, small-scale gamete release episodes occurred over more than one lunar cycle. This coincided with the full moon occurring early in the month of July. While prolific gamete production is reported in this study, low levels of recruitment have been reported for this species. Thus, the highly fragmenting A. cervicornis may rely heavily on asexual reproduction for population maintenance and expansion, and recovery after disturbance may be greatly protracted.

  11. Global expression profile of silkworm genes from larval to pupal stages: Toward a comprehensive understanding of sexual differences

    Institute of Scientific and Technical Information of China (English)

    Min Zhao; Xing-Fu Zha; Jin Liu; Wen-Ji Zhang; Ning-Jia He; Dao-Jun Cheng; Ya Dai; Zhong-Huai Xiang; Qing-You Xia

    2011-01-01

    Sexual dimorphism is a widespread phenomenon in many higher animals.The genes and gent networks that underlie sex differences are poorly understood.Using microarray data we analyzed sex-related differences in the global expression profiles of silkworm genes from larval to pupal stages.Sex-biased genes could be divided into three clusters.Cluster 1 contained 932 genes that showed a female-biased expression trend at first and a male-biased trend afterward.Cluster 2 included 283 male-biased genes.Cluster 3 was comprised of 497 female-biased genes that were expressed during the late pupal stage.Cluster 1 genes were found to be related closely to cuticle proteins,hormones,binding proteins,enzyme regulators,structural proteins,transcription regulators and so on.Several genes in clusters 2 and 3 were associated with spermatogenesis and oogenesis,respectively.The chromosomal distribution of sex-biased genes showed evidence of chromosomal enrichment.In particular a large number of the silkworms' male-biased genes are located on the Z chromosome.These results provide new insights into the molecular differences that dictate sexual dimorphism in the silkworm.

  12. Histology and gametogenesis in Heleobia piscium (Cochliopidae) from the Multiple Use Reserve “Isla Martín García,” Buenos Aires, Argentina

    Science.gov (United States)

    Díaz, Ana C.

    2016-01-01

    Heleobia piscium (d’Orbigny, 1835), a member of the Cochliopidae family found only in South America, is distributed from Entre Ríos, Delta del Paraná, and the littoral of the Río de la Plata down as far as to Punta Indio (Buenos Aires), the southernmost limit of the snail’s geographical distribution. To date, little information is available regarding the reproductive cycle of species within this family either in Argentina or throughout South America. The present work analyzed the histology of the reproductive system of the gonochoric species H. piscium and determined the stages oogenesis and spermatogenesis under natural conditions. Specimens of H. piscium were collected in the Multiple-Use Natural Reserve Isla Martín García, located in the Upper Río de la Plata estuary to the south of the mouth of the Uruguay River. The gametogenic cycle in both sexes was found to consist of the following stages: early maturation, maturation, and evacuation. The maturation period was found to extend from January to October and evacuation of the gametes to start in November and end in February (summer in the Southern Hemisphere). The results indicated the H. piscium exhibit a reproductive cycle without a resting period. PMID:27761336

  13. Length class and histological description of the gonads of Diplodon ellipticus (Wagner, 1827 (Mollusca, Bivalvia, Hyriidae at an artificial lake, Morretes, Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Ana Aparecida Nogueira Meyer

    2014-09-01

    Full Text Available This study aimed to analyze the frequency by length classes and the histological organization of gonads of Diplodon ellipticus at an artificial lake located in the town of Morretes, Paraná, Brazil. Six bimonthly sampling campaigns were conducted within the period from July 2009 to May 2010, with capture of 150 specimens. The total length of shells was measured for determining the frequencies of length classes and an analysis of the presence of marsupials in branchiae was performed. Sex determination was performed through histological analysis of cross sections of the visceral mass. We registered 8 length classes, with an interval of 9 mm, and the modal class varied between 50 and 59 mm. The population is predominantly dioecious, with occurrence of hermaphrodite specimens at low frequency. Marsupials were registered among females (86% in all sampling campaigns and in 2 hermaphrodite specimens. Histological analyses showed that spermatogenesis and oogenesis occur over the year, indicating that D. ellipticus has a strategy that provides continuous reproduction, with peaks of glochidia release.

  14. Hematological, Biochemical and Histopathological Studies on Marsh Frog, Rana ridibunda, Naturally Infected with Waltonella duboisi

    Directory of Open Access Journals (Sweden)

    A.M. Al-Attar

    2010-01-01

    Full Text Available The present study was aimed to evaluate the impact of Waltonella duboisi naturally infection in the marsh frog, Rana ridibunda. Healthy and infected frogs of both sexes were collected from Al-Qatif and Al-Hassa farms, Eastern Province, Saudi Arabia. The hematological, biochemical and histopathological changes were estimated in infected male and female frogs compared with healthy frogs. The values of red blood cell count, hemoglobin concentration, hematocrit, mean cell volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration and white blood cell count were statistically decreased in infected frogs. Infection with Waltonella duboisi induced significant reduction in the levels of serum glucose and total proteins, while the values of triglycerides cholesterol, creatinine, glutamic pyruvic acid transaminase and glutamic oxaloacetic acid transaminase were significantly elevated. Histopathological examination of stomach, small intestine, liver showed the larval developmental stages of Waltonella duboisi. A partially abnormal of testis and ovary structures with pronounced disturbance in quantity and quality of spermatogenesis and oogenesis processes were noted in infected of both sexes of frogs. From the present study, it is obviously that Waltonella duboisi caused many severe physiological and histopathological alterations in both sexes of the marsh frogs. Thus, more sincere ecological and scientific efforts are required to rescue the marsh frog population from parasitic infection, pathogenic factors and increases of mortality rate.

  15. Roles of Puf proteins in mRNA degradation and translation.

    Science.gov (United States)

    Miller, Melanie A; Olivas, Wendy M

    2011-01-01

    Puf proteins are regulators of diverse eukaryotic processes including stem cell maintenance, organelle biogenesis, oogenesis, neuron function, and memory formation. At the molecular level, Puf proteins promote translational repression and/or degradation of target mRNAs by first interacting with conserved cis-elements in the 3' untranslated region (UTR). Once bound to an mRNA, Puf proteins elicit RNA repression by complex interactions with protein cofactors and regulatory machinery involved in translation and degradation. Recent work has dramatically increased our understanding of the targets of Puf protein regulation, as well as the mechanisms by which Puf proteins recognize and regulate those mRNA targets. Crystal structure analysis of several Puf-RNA complexes has demonstrated that while Puf proteins are extremely conserved in their RNA-binding domains, Pufs attain target specificity by utilizing different structural conformations to recognize 8-10 nt sequences. Puf proteins have also evolved modes of protein interactions that are organism and transcript-specific, yet two common mechanisms of repression have emerged: inhibition of cap-binding events to block translation initiation, and recruitment of the CCR4-POP2-NOT deadenylase complex for poly(A) tail removal. Finally, multiple schemes to regulate Puf protein activity have been identified, including post-translational mechanisms that allow rapid changes in the repression of mRNA targets.

  16. Role of the C. elegans U2 snRNP protein MOG-2 in sex determination, meiosis, and splice site selection.

    Science.gov (United States)

    Zanetti, Simone; Meola, Marco; Bochud, Arlette; Puoti, Alessandro

    2011-06-15

    In Caenorhabditis elegans, germ cells develop as spermatids in the larva and as oocytes in the adult. Such fundamentally different gametes are produced through a fine-tuned balance between feminizing and masculinizing genes. For example, the switch to oogenesis requires repression of the fem-3 mRNA through the mog genes. Here we report on the cloning and characterization of the sex determination gene mog-2. MOG-2 is the worm homolog of spliceosomal protein U2A'. We found that MOG-2 is expressed in most nuclei of somatic and germ cells. In addition to its role in sex determination, mog-2 is required for meiosis. Moreover, MOG-2 binds to U2B″/RNP-3 in the absence of RNA. We also show that MOG-2 associates with the U2 snRNA in the absence of RNP-3. Therefore, we propose that MOG-2 is a bona fide component of the U2 snRNP. Albeit not being required for general pre-mRNA splicing, MOG-2 increases the splicing efficiency to a cryptic splice site that is located at the 5' end of the exon. Copyright © 2011. Published by Elsevier Inc.

  17. Chromatin structure and ATRX function in mouse oocytes.

    Science.gov (United States)

    De La Fuente, Rabindranath; Baumann, Claudia; Viveiros, Maria M

    2012-01-01

    Differentiation of chromatin structure and function during oogenesis is essential to confer the mammalian oocyte with meiotic and developmental potential. Errors in chromosome segregation during female meiosis and subsequent transmission of an abnormal chromosome complement (aneuploidy) to the early conceptus are one of the leading causes of pregnancy loss in women. The chromatin remodeling protein ATRX (α-thalassemia mental retardation X-linked) has recently emerged as a critical factor involved in heterochromatin formation at mammalian centromeres during meiosis. In mammalian oocytes, ATRX binds to centromeric heterochromatin domains where it is required for accurate chromosome segregation. Loss of ATRX function induces abnormal meiotic chromosome morphology, reduces histone H3 phosphorylation, and promotes a high incidence of aneuploidy associated with severely reduced fertility. The presence of centromeric breaks during the transition to the first mitosis in the early embryo indicates that the role of ATRX in chromosome segregation is mediated through an epigenetic mechanism involving the maintenance of chromatin modifications associated with pericentric heterochromatin (PCH) formation and chromosome condensation. This is consistent with the existence of a potential molecular link between centromeric and PCH in the epigenetic control of centromere function and maintenance of chromosome stability in mammalian oocytes. Dissecting the molecular mechanisms of ATRX function during meiosis will have important clinical implications towards uncovering the epigenetic factors contributing to the onset of aneuploidy in the human oocyte.

  18. Germ Plasm Anchoring Is a Dynamic State that Requires Persistent Trafficking

    Directory of Open Access Journals (Sweden)

    Kristina S. Sinsimer

    2013-12-01

    Full Text Available Localized cytoplasmic determinants packaged as ribonucleoprotein (RNP particles direct embryonic patterning and cell fate specification in a wide range of organisms. Once established, the asymmetric distributions of such RNP particles must be maintained, often over considerable developmental time. A striking example is the Drosophila germ plasm, which contains RNP particles whose localization to the posterior of the egg during oogenesis results in their asymmetric inheritance and segregation of germline from somatic fates in the embryo. Although actin-based anchoring mechanisms have been implicated, high-resolution live imaging revealed persistent trafficking of germ plasm RNP particles at the posterior cortex of the Drosophila oocyte. This motility relies on cortical microtubules, is mediated by kinesin and dynein motors, and requires coordination between the microtubule and actin cytoskeletons. Finally, we show that RNP particle motility is required for long-term germ plasm retention. We propose that anchoring is a dynamic state that renders asymmetries robust to developmental time and environmental perturbations.

  19. Recovery of fertility from adult ovarian tissue transplanted into week-old Japanese quail chicks.

    Science.gov (United States)

    Liu, Jianan; Cheng, Kimberly M; Silversides, Frederick G

    2015-01-01

    Fertility of cryopreserved ovarian tissue from immature chickens and Japanese quail has been recovered by transplantation. This is of special importance for non-mammalian vertebrates in which cryopreservation and in vitro maturation of oocytes are challenging because their oogenesis is characterised by vitellogenesis. This study tested whether fertility of adult quail ovarian tissue could be recovered by transplantation. Ovaries were isolated from mature Japanese quail hens, trimmed, cut into 3- to 4-mm2 pieces and transplanted into ovariectomised, week-old chicks. Recipients were administered an immunosuppressant for two weeks. Ten of 12 recipients survived until sexual maturity and seven laid eggs, but all stopped laying by 17 weeks of age. The age at first egg of recipients laying eggs (75.7±4.2 days) was greater than that of untreated hens (51.8±1.7 days) and egg production of recipients during the laying period (21.7±5.7) was less than that of untreated hens (60.8±3.5). Recipients were paired with males from the WB line for test mating. Only two hens laid eggs during the test period but both produced 100% donor-derived offspring. This research demonstrated that the reproductive potential of ovarian tissue from adult quail hens can be restored by transplantation.

  20. Oct4/Sox2 binding sites contribute to maintaining hypomethylation of the maternal igf2/h19 imprinting control region.

    Directory of Open Access Journals (Sweden)

    David L Zimmerman

    Full Text Available A central question in genomic imprinting is how parental-specific DNA methylation of imprinting control regions (ICR is established during gametogenesis and maintained after fertilization. At the imprinted Igf2/H19 locus, CTCF binding maintains the unmethylated state of the maternal ICR after the blastocyst stage. In addition, evidence from Beckwith-Wiedemann patients and cultured mouse cells suggests that two Sox-Oct binding motifs within the Igf2/H19 ICR also participate in maintaining hypomethylation of the maternal allele. We found that the Sox and octamer elements from both Sox-Oct motifs were required to drive hypomethylation of integrated transgenes in mouse embryonic carcinoma cells. Oct4 and Sox2 showed cooperative binding to the Sox-Oct motifs, and both were present at the endogenous ICR. Using a mouse with mutations in the Oct4 binding sites, we found that maternally transmitted mutant ICRs acquired partial methylation in somatic tissues, but there was little effect on imprinted expression of H19 and Igf2. A subset of mature oocytes also showed partial methylation of the mutant ICR, which suggested that the Sox-Oct motifs provide some protection from methylation during oogenesis. The Sox-Oct motifs, however, were not required for erasure of paternal methylation in primordial germ cells, which indicated that the oocyte methylation was acquired post-natally. Maternally inherited mutant ICRs were unmethylated in blastocysts, which suggested that at least a portion of the methylation in somatic tissues occurred after implantation. These findings provide evidence that Sox-Oct motifs contribute to ICR hypomethylation in post-implantation embryos and maturing oocytes and link imprinted DNA methylation with key stem cell/germline transcription factors.

  1. Orbit/CLASP is required for germline cyst formation through its developmental control of fusomes and ring canals in Drosophila males.

    Directory of Open Access Journals (Sweden)

    Chie Miyauchi

    Full Text Available Orbit, a Drosophila ortholog of microtubule plus-end enriched protein CLASP, plays an important role in many developmental processes involved in microtubule dynamics. Previous studies have shown that Orbit is required for asymmetric stem cell division and cystocyte divisions in germline cysts and for the development of microtubule networks that interconnect oocyte and nurse cells during oogenesis. Here, we examined the cellular localization of Orbit and its role in cyst formation during spermatogenesis. In male germline stem cells, distinct localization of Orbit was first observed on the spectrosome, which is a spherical precursor of the germline-specific cytoskeleton known as the fusome. In dividing stem cells and spermatogonia, Orbit was localized around centrosomes and on kinetochores and spindle microtubules. After cytokinesis, Orbit remained localized on ring canals, which are cytoplasmic bridges between the cells. Thereafter, it was found along fusomes, extending through the ring canal toward all spermatogonia in a cyst. Fusome localization of Orbit was not affected by microtubule depolymerization. Instead, our fluorescence resonance energy transfer experiments suggested that Orbit is closely associated with F-actin, which is abundantly found in fusomes. Surprisingly, F-actin depolymerization influenced neither fusome organization nor Orbit localization on the germline-specific cytoskeleton. We revealed that two conserved regions of Orbit are required for fusome localization. Using orbit hypomorphic mutants, we showed that the protein is required for ring canal formation and for fusome elongation mediated by the interaction of newly generated fusome plugs with the pre-existing fusome. The orbit mutation also disrupted ring canal clustering, which is essential for folding of the spermatogonia after cytokinesis. Orbit accumulates around centrosomes at the onset of spermatogonial mitosis and is required for the capture of one of the

  2. Skin-derived mesenchymal stem cells help restore function to ovaries in a premature ovarian failure mouse model.

    Directory of Open Access Journals (Sweden)

    Dongmei Lai

    Full Text Available Skin-derived mesenchymal stem cells (SMSCs can differentiate into the three embryonic germ layers. For this reason, they are considered a powerful tool for therapeutic cloning and offer new possibilities for tissue therapy. Recent studies showed that skin-derived stem cells can differentiate into cells expressing germ-cell specific markers in vitro and form oocytes in vivo. The idea that SMSCs may be suitable for the treatment of intractable diseases or traumatic tissue damage has attracted attention. To determine the ability of SMSCs to reactivate injured ovaries, a mouse model with ovaries damaged by busulfan and cyclophosphamide was developed and is described here. Female skin-derived mesenchymal stem cells (F-SMSCs and male skin-derived mesenchymal stem cells (M-SMSCs from red fluorescence protein (RFP transgenic adult mice were used to investigate the restorative effects of SMSCs on ovarian function. Significant increases in total body weight and the weight of reproductive organs were observed in the treated animals. Both F-SMSCs and M-SMSCs were shown to be capable of partially restoring fertility in chemotherapy-treated females. Immunostaining with RFP and anti-Müllerian hormone (AMH antibodies demonstrated that the grafted SMSCs survived, migrated to the recipient ovaries. After SMSCs were administered to the treated mice, real-time PCR showed that the expression levels of pro-inflammatory cytokines TNF-α, TGF-β, IL-8, IL-6, IL-1β, and IFNγ were significantly lower in the ovaries than in the untreated controls. Consistent with this observation, expression of oogenesis marker genes Nobox, Nanos3, and Lhx8 increased in ovaries of SMSCs-treated mice. These findings suggest that SMSCs may play a role within the ovarian follicle microenvironment in restoring the function of damaged ovaries and could be useful in reproductive health.

  3. The torpedo (DER) receptor tyrosine kinase is required at multiple times during Drosophila embryogenesis.

    Science.gov (United States)

    Clifford, R; Schüpbach, T

    1992-07-01

    The torpedo (DER) gene of Drosophila, which encodes a receptor tyrosine kinase of the EGF receptor subfamily, is essential for oogenesis, embryogenesis and imaginal disc development. To gain insight into the nature of the signals transduced by the torpedo product, we have characterized the gene's loss-of-function phenotype in the embryo. Through the induction of germline clones, we provide a genetic demonstration that maternal torpedo product does not contribute to zygotic development. Thus, the embryonic lethal phenotypes examined accurately reflect the consequences of eliminating all gene activity from the zygote. Temperature-shift experiments with the conditional allele topIF26 show that torpedo is required at two distinct times during embryonic development: the gene is first needed for germband retraction and for the production of anterior, posterior and ventral cuticle, then later for the secretion of ventral denticles. Since denticle formation can be severely disrupted in topIF26 animals without affecting cuticle production, the early and late requirements for torpedo appear to be functionally unrelated. torpedo, therefore, is required at multiple times in the development of the ventral epidermis, and may transduce qualitatively different signals. Since the early requirement for torpedo correlates with the first visible defect in embryonic development, increased cell death in the amnioserosa, cephalic ectoderm and ventral epidermis, the abnormalities in cuticle production and germband shortening seen in the mutant may be secondary consequences of a primary defect in cell viability. Given that the onset of cell death in torpedo embryos is not preceded by any obvious defects in mitogenesis, the establishment of cell identities or the maintenance of gene expression, it is possible that torpedo transduces a signal necessary for cell survival per se during early embryogenesis. During late embryogenesis, torpedo may mediate the reception of a second signal which

  4. Essential Role for endogenous siRNAs during meiosis in mouse oocytes.

    Directory of Open Access Journals (Sweden)

    Paula Stein

    2015-02-01

    Full Text Available The RNase III enzyme DICER generates both microRNAs (miRNAs and endogenous short interfering RNAs (endo-siRNAs. Both small RNA species silence gene expression post-transcriptionally in association with the ARGONAUTE (AGO family of proteins. In mammals, there are four AGO proteins (AGO1-4, of which only AGO2 possesses endonucleolytic activity. siRNAs trigger endonucleolytic cleavage of target mRNAs, mediated by AGO2, whereas miRNAs cause translational repression and mRNA decay through association with any of the four AGO proteins. Dicer deletion in mouse oocytes leads to female infertility due to defects during meiosis I. Because mouse oocytes express both miRNAs and endo-siRNAs, this phenotype could be due to the absence of either class of small RNA, or both. However, we and others demonstrated that miRNA function is suppressed in mouse oocytes, which suggested that endo-siRNAs, not miRNAs, are essential for female meiosis. To determine if this was the case we generated mice that express a catalytically inactive knock-in allele of Ago2 (Ago2ADH exclusively in oocytes and thereby disrupted the function of siRNAs. Oogenesis and hormonal response are normal in Ago2ADH oocytes, but meiotic maturation is impaired, with severe defects in spindle formation and chromosome alignment that lead to meiotic catastrophe. The transcriptome of these oocytes is widely perturbed and shows a highly significant correlation with the transcriptome of Dicer null and Ago2 null oocytes. Expression of the mouse transcript (MT, the most abundant transposable element in mouse oocytes, is increased. This study reveals that endo-siRNAs are essential during meiosis I in mouse females, demonstrating a role for endo-siRNAs in mammals.

  5. One-cell zygote transfer from diabetic to nondiabetic mouse results in congenital malformations and growth retardation in offspring.

    Science.gov (United States)

    Wyman, Amanda; Pinto, Anil B; Sheridan, Rachael; Moley, Kelle H

    2008-02-01

    Fetuses of type 1 and 2 diabetic women experience higher incidences of malformations and fetal death as compared with nondiabetics, even when they achieve adequate glycemic control during the first trimester. We hypothesize that maternal diabetes adversely affects the earliest embryonic stage after fertilization and programs the fetus to experience these complications. To test this hypothesis, we transferred either one-cell mouse zygotes or blastocysts from either streptozotocin-induced diabetic or control mice into nondiabetic pseudopregnant female recipients. We then evaluated the fetuses at embryonic d 14.5 to assess fetal growth and the presence or absence of malformations. We found that fetuses from the diabetic mice transferred at the blastocyst stage but also as early as the one-cell zygote stage displayed significantly higher rates of malformations consistent with neural tube closure problems and abdominal wall and limb deformities. In addition, both these groups of fetuses were significantly growth retarded. To determine if this phenomenon was due to high glucose concentrations, two-cell embryos were cultured to a blastocyst stage in 52 mm D-glucose or L-glucose as an osmotic control, transferred into nondiabetic pseudopregnant mice, and examined at embryonic d 14.5. These embryos did not demonstrate any evidence of malformations, however, they did experience significantly higher rates of resorptions, lower implantation rates, and they were significantly smaller at embryonic d 14.5. In summary, exposure to maternal diabetes during oogenesis, fertilization, and the first 24 h was enough to program permanently the fetus to develop significant morphological changes.

  6. Post-hatching development of Alligator mississippiensis ovary and testis

    Science.gov (United States)

    Moore, Brandon C.; Hamlin, Heather J.; Botteri, Nicole L.; Lawler, Ashley N.; Mathavan, Ketan K.; Guillette, Louis J.

    2009-01-01

    We investigated ovary and testis development of Alligator mississippiensis during the first five months post-hatch. To better describe follicle assembly and seminiferous cord development, we employed histochemical techniques to detect carbohydrate-rich extracellular matrix components in one-week, one-month, three-month, and five-month-old gonads. We found profound morphological changes in both ovary and testis. During this time, oogenesis progressed up to diplotene arrest and meiotic germ cells increasingly interacted with follicular cells. Concomitant with follicles becoming invested with full complements of granulosa cells, a periodic acid Schiff’s (PAS)-positive basement membrane formed. As follicles enlarged and thecal layers were observed, basement membranes and thecal compartments gained periodic acid-methionine silver (PAMS)-reactive fibers. The ovarian medulla increased first PAS- and then PAMS-reactivity as it fragmented into wide lacunae lined with low cuboidal to squamous epithelia. During this same period, testicular germ cells found along the tubule margins were observed progressing from spermatogonia to round spermatids located within the center of tubules. Accompanying this meiotic development, interstitial Leydig cell clusters become more visible and testicular capsules thickened. During the observed testis development, the thickening tunica albuginea and widening interstitial tissues showed increasing PAS- and PAMS-reactivity. We observed putative inter-sex structures in both ovary and testis. On the coelomic aspect of testes were cell clusters with germ cell morphology and at the posterior end of ovaries, we observed “medullary rests” resembling immature testis cords. We hypothesize laboratory conditions accelerated gonad maturation due to optimum conditions, including nutrients and temperature. Laboratory alligators grew more rapidly and with increased body conditions compared to previous measured, field-caught animals. Additionally, we

  7. Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA.

    Science.gov (United States)

    Rebolledo-Jaramillo, Boris; Su, Marcia Shu-Wei; Stoler, Nicholas; McElhoe, Jennifer A; Dickins, Benjamin; Blankenberg, Daniel; Korneliussen, Thorfinn S; Chiaromonte, Francesca; Nielsen, Rasmus; Holland, Mitchell M; Paul, Ian M; Nekrutenko, Anton; Makova, Kateryna D

    2014-10-28

    The manifestation of mitochondrial DNA (mtDNA) diseases depends on the frequency of heteroplasmy (the presence of several alleles in an individual), yet its transmission across generations cannot be readily predicted owing to a lack of data on the size of the mtDNA bottleneck during oogenesis. For deleterious heteroplasmies, a severe bottleneck may abruptly transform a benign (low) frequency in a mother into a disease-causing (high) frequency in her child. Here we present a high-resolution study of heteroplasmy transmission conducted on blood and buccal mtDNA of 39 healthy mother-child pairs of European ancestry (a total of 156 samples, each sequenced at ∼20,000× per site). On average, each individual carried one heteroplasmy, and one in eight individuals carried a disease-associated heteroplasmy, with minor allele frequency ≥1%. We observed frequent drastic heteroplasmy frequency shifts between generations and estimated the effective size of the germ-line mtDNA bottleneck at only ∼30-35 (interquartile range from 9 to 141). Accounting for heteroplasmies, we estimated the mtDNA germ-line mutation rate at 1.3 × 10(-8) (interquartile range from 4.2 × 10(-9) to 4.1 × 10(-8)) mutations per site per year, an order of magnitude higher than for nuclear DNA. Notably, we found a positive association between the number of heteroplasmies in a child and maternal age at fertilization, likely attributable to oocyte aging. This study also took advantage of droplet digital PCR (ddPCR) to validate heteroplasmies and confirm a de novo mutation. Our results can be used to predict the transmission of disease-causing mtDNA variants and illuminate evolutionary dynamics of the mitochondrial genome.

  8. Contrasting reproductive strategies in three deep-sea octocorals from eastern Canada: Primnoa resedaeformis, Keratoisis ornata, and Anthomastus grandiflorus

    Science.gov (United States)

    Mercier, A.; Hamel, J.-F.

    2011-06-01

    Various aspects of reproduction were studied in three deep-sea octocorals belonging to the order Alcyonacea that co-occur at bathyal depths on the continental edge and the slope of eastern Canada. The main goals were to expand knowledge of deep-water heterotrophic corals and ascertain whether reproductive strategies could explain the known patterns of occurrence. Anthomastus grandiflorus is a gonochoric species with a female-biased sex ratio that exhibits internal fertilization and brooding of planula larvae. Conversely, Primnoa resedaeformis and Keratoisis ornata rely on broadcast spawning and external fertilization; their sexuality remains undetermined as spermatocysts were not found. In P. resedaeformis, the presence of mixed size classes of oocytes in samples from all months, depths, and locations studied suggests continuous oogenesis or overlapping development of oocyte cohorts, indicative of a gametogenic cycle spanning more than a year. No evidence of periodicity was found in this species, although it could have been masked by the striking bathymetric variation in potential relative fecundity (oocytes polyp-1). The two other octocorals displayed a clear annual breeding pattern. Spawning in K. ornata and larval release in A. grandiflorus occurred in late summer and fall, respectively, possibly in response to environmental factors, as supported by shifts in the reproductive peak of A. grandiflorus across latitudes. The three species are presumed to share a nonfeeding larval mode, and data on their reproductive potential do not present any striking disparities. Published data on bycatches and video surveys in Atlantic Canada indicate that the gonochoric brooder A. grandiflorus is more widely distributed than the two free spawners, P. resedaeformis and K. ornata, which is contrary to common dispersal potential paradigms.

  9. THE ECOLOGY AND REPRODUCTION OF A MARINE BIVALVE, MYSELLA PLANULATA (ERYCINACEA).

    Science.gov (United States)

    Franz, David R

    1973-02-01

    1. In Beebe Cove, a shallow sublittoral bay, the bivalve Mysella planulata is dispersed contagiously throughout the year. This dispersion is not associated with the mode of development of the species but may be correlated with non-random variability in the microhabitat. There is no evidence that M. planulata in Beebe Cove is symbiotically associated with any invertebrate species. 2. Mysella planulata has a life span encompassing four growing seasons and a maximum size of about 4.0 mm. About 50% of maximum length is attained by the end of the first growing season. 3. Mysella planulata is a simultaneous hermaphrodite. Spermatogenesis precedes oogenesis. The species is capable of self-fertilization and although no animals were ever observed to release sperm, the possibility of cross-fertilization is not ruled out. Egg production is limited to animals in excess of 1.7 mm. 4. Larvae are retained in the suprabranchial chamber to the straight-hinge stage of development. Upon release, the larvae are planktotrophic; starved larvae in culture grow slightly but will not metamorphose. Metamorphosis in culture occurs in about two weeks at 25° C. In the laboratory, larvae metamorphose over a wider range of size than in nature, probably reflecting predation pressure in nature. 5. Estimates of the potential reproductive contribution of the various age classes show that although the major burden is carried by animals in their 3rd season (0 + 2 class), older classes contribute significantly. This pattern is adaptive in unstable environments where high mortality of the 0-year class is probable. 6. On morphological grounds, M. planulata is believed to be a suspension feeder; probably feeding on very fine particulate organic matter.

  10. Evolutionary Conservation of pou5f3 Genomic Organization and Its Dynamic Distribution during Embryogenesis and in Adult Gonads in Japanese Flounder Paralichthys olivaceus

    Directory of Open Access Journals (Sweden)

    Jinning Gao

    2017-01-01

    Full Text Available Octamer-binding transcription factor 4 (Oct4 is a member of POU (Pit-Oct-Unc transcription factor family Class V that plays a crucial role in maintaining the pluripotency and self-renewal of stem cells. Though it has been deeply investigated in mammals, its lower vertebrate homologue, especially in the marine fish, is poorly studied. In this study, we isolated the full-length sequence of Paralichthys olivaceus pou5f3 (Popou5f3, and we found that it is homologous to mammalian Oct4. We identified two transcript variants with different lengths of 3′-untranslated regions (UTRs generated by alternative polyadenylation (APA. Quantitative real-time RT-PCR (qRT-PCR, in situ hybridization (ISH and immunohistochemistry (IHC were implemented to characterize the spatial and temporal expression pattern of Popou5f3 during early development and in adult tissues. Our results show that Popou5f3 is maternally inherited, abundantly expressed at the blastula and early gastrula stages, then greatly diminishes at the end of gastrulation. It is hardly detectable from the heart-beating stage onward. We found that Popou5f3 expression is restricted to the adult gonads, and continuously expresses during oogenesis while its dynamics are downregulated during spermatogenesis. Additionally, numerous cis-regulatory elements (CRE on both sides of the flanking regions show potential roles in regulating the expression of Popou5f3. Taken together, these findings could further our understanding of the functions and evolution of pou5f3 in lower vertebrates, and also provides fundamental information for stem cell tracing and genetic manipulation in Paralichthys olivaceus.

  11. Small RNA in situ hybridization in Caenorhabditis elegans, combined with RNA-seq, identifies germline-enriched microRNAs.

    Science.gov (United States)

    McEwen, Tamara J; Yao, Qiuming; Yun, Sijung; Lee, Chin-Yung; Bennett, Karen L

    2016-10-15

    Over four hundred different microRNAs (miRNAs) have been identified in the genome of the model organism the nematode Caenorhabditis elegans. As the germline is dedicated to the preservation of each species, and almost half of all the cells in an adult nematode are germline, it is likely that regulatory miRNAs are important for germline development and maintenance. In C. elegans the miR35 family has strong maternal effects, contributing to normal embryogenesis and to adult fecundity. To determine whether any particular miRNAs are greatly enriched in the C. elegans germline we used RNA-seq to compare the miRNA populations in several germline-defective strains of adult C. elegans worms, including glp-4(germline proliferation-4), glh-1(germline helicase-1) and dcr-1(dicer-1). Statistical analyses of RNA-seq comparisons identified 13 miRNAs that are germline-enriched, including seven members of the well-studied miR35 family that were reduced as much as 1000-fold in TaqMan qRT PCR miRNA assays. Along with the miR35s, six others: miR-56 (a member of the miR51 family),-70, -244, -260 , -788 and -4813, none of which previously considered as such, were also identified by RNA-seq as germline-enriched candidates. We went on to develop a successful miRNA in situ hybridization protocol for C. elegans, revealing miR35s specifically concentrate during oogenesis in the pachytene region of the gonad, and persist throughout early embryogenesis, while in adult animals neither let-7 nor miR-228 has a germline-bias.

  12. A comparative study of vitellogenesis in Echinodermata: Lessons from the sea star.

    Science.gov (United States)

    Alqaisi, Khalid M; Lamare, Miles D; Grattan, Dave R; Damsteegt, Erin L; Schneider, Wolfgang J; Lokman, P Mark

    2016-08-01

    The provision of yolk precursor proteins to the oviparous egg is crucial for normal embryo development. In Echinodermata, a transferrin-like yolk component termed major yolk protein (MYP) is a major precursor protein in Echinoidea and Holothuroidea. In contrast, in Asteroidea a single vitellogenin (Vtg) was recently identified, but its role as primary yolk protein remains unclear. To resolve the apparent MYP-Vtg dichotomy in sea stars and to understand the dynamics of candidate yolk protein gene expression during the reproductive cycle, we investigated the molecular structures of sea star Vtg and MYP and quantified their transcript levels during oogenesis. By combining protein sequencing of the predominant proteins in ovulated eggs of Patiriella regularis with ovarian transcriptome sequencing and molecular cloning, we characterized two cDNAs encoding two bona fide Vtgs (PrVtg1 and PrVtg2) and a partial cDNA encoding MYP (PrMYP). PrMYP mRNA was found in low abundance in growing oocytes, possibly as maternal transcripts for translation after ovulation. In contrast, PrVtg transcripts, whose levels varied during the reproductive cycle, were not found in developing oocytes - rather, they were detected in ovarian follicle cells and pyloric caeca, indicating an extra-oocytic origin. Vtg accumulating in oocytes was stored in the form of cleaved products, which constituted the most abundant yolk polypeptides in ovulated sea star eggs; their levels decreased during early embryonic and larval development. Together, these traits are the hallmarks of a classical yolk protein - and hence, we contend that Vtg, and not MYP, is the main yolk protein in asteroids.

  13. Association of 8q22.3 locus in Chinese Han with idiopathic premature ovarian failure (POF).

    Science.gov (United States)

    Qin, Yingying; Zhao, Han; Xu, Jianfeng; Shi, Yongyong; Li, Zhiqiang; Qiao, Jie; Liu, Jiayin; Qin, Chunrong; Ren, Chune; Li, Jie; Chen, Shiling; Cao, Yunxia; Simpson, Joe Leigh; Chen, Zi-Jiang

    2012-01-15

    Premature ovarian failure (POF) is a complex heritable disorder known to be caused by chromosomal abnormalities and to date a limited number of known mutations, often autosomal. We sought to identify additional genetic loci associated with POF by performing the first large-scale genome-wide association study (GWAS). GWAS, using Affymetrix SNP 6.0 chip, was conducted in an initial discovery set of 391 well-documented (follicle-stimulating hormone >40 IU/ml) Chinese Han POF patients, compared with 895 unrelated Chinese female controls. A replication study on the most significant loci was then performed in an independent set of 400 cases and 800 controls. Suggestive significant associations were observed at 8q22.3. Replication of eight single-nucleotide polymorphisms (SNPs) (rs10464815, rs10808365, rs3847152, rs3847153, rs3847154, rs3843552, rs10955242, rs3843555) (P ≤ 3.86 × 10(-6)) was confirmed in verification sets. No specific candidate gene was found in the immediate region of 8q22.3. This GWAS, involving by far the largest sample of POF cases accumulated to date, revealed heretofore unrecognized association between POF and a novel genetic locus or region of unknown nature on 8q22.3. We speculate existence of a long-distance regulatory region that has relevance to the control of ovarian differentiation or oogenesis. Given failure to find association with any of the other autosomal regions known to harbor genes causing ovarian failure, our findings also underscore the likelihood of considerable genetic and etiologic heterogeneity in POF and the need for additional approaches like whole-genome sequencing.

  14. Gender-enriched transcripts in Haemonchus contortus--predicted functions and genetic interactions based on comparative analyses with Caenorhabditis elegans.

    Science.gov (United States)

    Campbell, Bronwyn E; Nagaraj, Shivashankar H; Hu, Min; Zhong, Weiwei; Sternberg, Paul W; Ong, Eng K; Loukas, Alex; Ranganathan, Shoba; Beveridge, Ian; McInnes, Russell L; Hutchinson, Gareth W; Gasser, Robin B

    2008-01-01

    In the present study, a bioinformatic-microarray approach was employed for the analysis of selected expressed sequence tags (ESTs) from Haemonchus contortus, a key parasitic nematode of small ruminants. Following a bioinformatic analysis of EST data using a semiautomated pipeline, 1885 representative ESTs (rESTs) were selected, to which oligonucleotides (three per EST) were designed and spotted on to a microarray. This microarray was hybridized with cyanine-dye labelled cRNA probes synthesized from RNA from female or male adults of H. contortus. Differential hybridisation was displayed for 301 of the 1885 rESTs ( approximately 16%). Of these, 165 (55%) had significantly greater signal intensities for female cRNA and 136 (45%) for male cRNA. Of these, 113 with increased signals in female or male H. contortus had homologues in Caenorhabditis elegans, predicted to function in metabolism, information storage and processing, cellular processes and signalling, and embryonic and/or larval development. Of the rESTs with no known homologues in C. elegans, 24 ( approximately 40%) had homologues in other nematodes, four had homologues in various other organisms and 30 (52%) had no homology to any sequence in current gene databases. A genetic interaction network was predicted for the C. elegans orthologues of the gender-enriched H. contortus genes, and a focused analysis of a subset revealed a tight network of molecules involved in amino acid, carbohydrate or lipid transport and metabolism, energy production and conversion, translation, ribosomal structure and biogenesis and, importantly, those associated with meiosis and/or mitosis in the germline during oogenesis or spermatogenesis. This study provides a foundation for the molecular, biochemical and functional exploration of selected molecules with differential transcription profiles in H. contortus, for further microarray analyses of transcription in different developmental stages of H. contortus, and for an extended

  15. Compromised fertility disrupts Peg1 but not Snrpn and Peg3 imprinted methylation acquisition in mouse oocytes

    Directory of Open Access Journals (Sweden)

    Michelle M Denomme

    2012-07-01

    Full Text Available Growth and maturation of healthy oocytes within follicles requires bidirectional signaling and intercellular gap junctional communication. Aberrant endocrine signaling and loss of gap junctional communication between the oocyte and granulosa cells leads to compromised folliculogenesis, oocyte maturation and oocyte competency, consequently impairing fertility. Given that oocyte-specific DNA methylation establishment at imprinted genes occurs during this growth phase, we determined whether compromised endocrine signaling and gap junctional communication would disrupt de novo methylation acquisition using ERβ and connexin37 genetic models. To compare mutant oocytes to control oocytes, DNA methylation acquisition was first examined in individual, 20-80 μm control oocytes at three imprinted genes, Snrpn, Peg3 and Peg1. We observed that each gene has its own size-dependent acquisition kinetics, similar to previous studies. To determine whether compromised endocrine signaling and gap junctional communication disrupted de novo methylation acquisition, individual oocytes from Esr2- and Gja4-deficient mice were also assessed for DNA methylation establishment. We observed no aberrant or delayed acquisition of DNA methylation at Snrpn, Peg3 or Peg1 in oocytes from Ers2-deficient females, and no perturbation in Snrpn or Peg3 de novo methylation in oocytes from Gja4-null females. However, Gja4-deficiency resulted in a loss or delay in methylation acquisition at Peg1. One explanation for this difference between the three loci analyzed is the late establishment of DNA methylation at the Peg1 gene. These results indicate that compromised fertility though impaired intercellular communication can lead to imprinting acquisition errors. Further studies are required to determine the effects of subfertility/infertility originating from impaired signaling and intercellular communication during oogenesis on imprint maintenance during preimplantation development.

  16. Planar cell polarity signaling in collective cell movements during morphogenesis and disease.

    Science.gov (United States)

    Muñoz-Soriano, Verónica; Belacortu, Yaiza; Paricio, Nuria

    2012-12-01

    Collective and directed cell movements are crucial for diverse developmental processes in the animal kingdom, but they are also involved in wound repair and disease. During these processes groups of cells are oriented within the tissue plane, which is referred to as planar cell polarity (PCP). This requires a tight regulation that is in part conducted by the PCP pathway. Although this pathway was initially characterized in flies, subsequent studies in vertebrates revealed a set of conserved core factors but also effector molecules and signal modulators, which build the fundamental PCP machinery. The PCP pathway in Drosophila regulates several developmental processes involving collective cell movements such as border cell migration during oogenesis, ommatidial rotation during eye development, and embryonic dorsal closure. During vertebrate embryogenesis, PCP signaling also controls collective and directed cell movements including convergent extension during gastrulation, neural tube closure, neural crest cell migration, or heart morphogenesis. Similarly, PCP signaling is linked to processes such as wound repair, and cancer invasion and metastasis in adults. As a consequence, disruption of PCP signaling leads to pathological conditions. In this review, we will summarize recent findings about the role of PCP signaling in collective cell movements in flies and vertebrates. In addition, we will focus on how studies in Drosophila have been relevant to our understanding of the PCP molecular machinery and will describe several developmental defects and human disorders in which PCP signaling is compromised. Therefore, new discoveries about the contribution of this pathway to collective cell movements could provide new potential diagnostic and therapeutic targets for these disorders.

  17. Germ band retraction as a landmark in glucose metabolism during Aedes aegypti embryogenesis

    Directory of Open Access Journals (Sweden)

    Logullo Carlos

    2010-02-01

    Full Text Available Abstract Background The mosquito A. aegypti is vector of dengue and other viruses. New methods of vector control are needed and can be achieved by a better understanding of the life cycle of this insect. Embryogenesis is a part of A. aegypty life cycle that is poorly understood. In insects in general and in mosquitoes in particular energetic metabolism is well studied during oogenesis, when the oocyte exhibits fast growth, accumulating carbohydrates, lipids and proteins that will meet the regulatory and metabolic needs of the developing embryo. On the other hand, events related with energetic metabolism during A. aegypti embryogenesis are unknown. Results Glucose metabolism was investigated throughout Aedes aegypti (Diptera embryonic development. Both cellular blastoderm formation (CBf, 5 h after egg laying - HAE and germ band retraction (GBr, 24 HAE may be considered landmarks regarding glucose 6-phosphate (G6P destination. We observed high levels of glucose 6-phosphate dehydrogenase (G6PDH activity at the very beginning of embryogenesis, which nevertheless decreased up to 5 HAE. This activity is correlated with the need for nucleotide precursors generated by the pentose phosphate pathway (PPP, of which G6PDH is the key enzyme. We suggest the synchronism of egg metabolism with carbohydrate distribution based on the decreasing levels of phosphoenolpyruvate carboxykinase (PEPCK activity and on the elevation observed in protein content up to 24 HAE. Concomitantly, increasing levels of hexokinase (HK and pyruvate kinase (PK activity were observed, and PEPCK reached a peak around 48 HAE. Glycogen synthase kinase (GSK3 activity was also monitored and shown to be inversely correlated with glycogen distribution during embryogenesis. Conclusions The results herein support the hypothesis that glucose metabolic fate changes according to developmental embryonic stages. Germ band retraction is a moment that was characterized as a landmark in glucose

  18. FSH-FSHR3-stem cells in ovary surface epithelium: basis for adult ovarian biology, failure, aging, and cancer.

    Science.gov (United States)

    Bhartiya, Deepa; Singh, Jarnail

    2015-01-01

    Despite extensive research, genetic basis of premature ovarian failure (POF) and ovarian cancer still remains elusive. It is indeed paradoxical that scientists searched for mutations in FSH receptor (FSHR) expressed on granulosa cells, whereas more than 90% of cancers arise in ovary surface epithelium (OSE). Two distinct populations of stem cells including very small embryonic-like stem cells (VSELs) and ovarian stem cells (OSCs) exist in OSE, are responsible for neo-oogenesis and primordial follicle assembly in adult life, and are modulated by FSH via its alternatively spliced receptor variant FSHR3 (growth factor type 1 receptor acting via calcium signaling and the ERK/MAPK pathway). Any defect in FSH-FSHR3-stem cell interaction in OSE may affect folliculogenesis and thus result in POF. Ovarian aging is associated with a compromised microenvironment that does not support stem cell differentiation into oocytes and further folliculogenesis. FSH exerts a mitogenic effect on OSE and elevated FSH levels associated with advanced age may provide a continuous trigger for stem cells to proliferate resulting in cancer, thus supporting gonadotropin theory for ovarian cancer. Present review is an attempt to put adult ovarian biology, POF, aging, and cancer in the perspective of FSH-FSHR3-stem cell network that functions in OSE. This hypothesis is further supported by the recent understanding that: i) cancer is a stem cell disease and OSE is the niche for ovarian cancer stem cells; ii) ovarian OCT4-positive stem cells are regulated by FSH; and iii) OCT4 along with LIN28 and BMP4 are highly expressed in ovarian cancers.

  19. Roles of brca2 (fancd1 in oocyte nuclear architecture, gametogenesis, gonad tumors, and genome stability in zebrafish.

    Directory of Open Access Journals (Sweden)

    Adriana Rodríguez-Marí

    2011-03-01

    Full Text Available Mild mutations in BRCA2 (FANCD1 cause Fanconi anemia (FA when homozygous, while severe mutations cause common cancers including breast, ovarian, and prostate cancers when heterozygous. Here we report a zebrafish brca2 insertional mutant that shares phenotypes with human patients and identifies a novel brca2 function in oogenesis. Experiments showed that mutant embryos and mutant cells in culture experienced genome instability, as do cells in FA patients. In wild-type zebrafish, meiotic cells expressed brca2; and, unexpectedly, transcripts in oocytes localized asymmetrically to the animal pole. In juvenile brca2 mutants, oocytes failed to progress through meiosis, leading to female-to-male sex reversal. Adult mutants became sterile males due to the meiotic arrest of spermatocytes, which then died by apoptosis, followed by neoplastic proliferation of gonad somatic cells that was similar to neoplasia observed in ageing dead end (dnd-knockdown males, which lack germ cells. The construction of animals doubly mutant for brca2 and the apoptotic gene tp53 (p53 rescued brca2-dependent sex reversal. Double mutants developed oocytes and became sterile females that produced only aberrant embryos and showed elevated risk for invasive ovarian tumors. Oocytes in double-mutant females showed normal localization of brca2 and pou5f1 transcripts to the animal pole and vasa transcripts to the vegetal pole, but had a polarized rather than symmetrical nucleus with the distribution of nucleoli and chromosomes to opposite nuclear poles; this result revealed a novel role for Brca2 in establishing or maintaining oocyte nuclear architecture. Mutating tp53 did not rescue the infertility phenotype in brca2 mutant males, suggesting that brca2 plays an essential role in zebrafish spermatogenesis. Overall, this work verified zebrafish as a model for the role of Brca2 in human disease and uncovered a novel function of Brca2 in vertebrate oocyte nuclear architecture.

  20. New DAPI and FISH findings on egg maturation processes in related hybridogenetic and parthenogenetic Bacillus hybrids (Insecta, Phasmatodea).

    Science.gov (United States)

    Marescalchi, O; Scali, V

    2001-10-01

    Bacillus stick insects have proved adequate for studying a wide array of reproductive modes: sexual, parthenogenetic, hybridogenetic, androgenetic. Hybridogenetic strains (B. rossius-grandii) were thought to discard the paternal "grandii" haploset during first meiotic division and keep the "rossius" hemiclone, whereas the clonal B. whitei (=rossius/grandii) would maintain its hybrid structure by fusing back two nonsister nuclei-each derived from previously segregated heterospecific complements-by the end of the 2(nd) meiotic division. New investigations on laid eggs and ovariole squashes, either DAPI stained or FISH labeled, revealed that in hybridogens the "grandii" set is excluded from the germ line prior to meiosis and that a DNA extra-synthesis should occur to produce hemiclonal eggs after two cytologically normal meiotic divisions. On the other hand, in B. whitei eggs no genome segregation appears to occur and an intrameiotic DNA extra-synthesis must take place to produce 2n tetrachromatidic oocytes I; these divide twice and give unreduced clonal eggs. The new findings bring hybridogenetic oogenesis of Bacillus to be coincident with that of the known hemiclonal organisms and point to an independent onset of B. whitei from hemiclonal strains. In addition, B. whitei gains a closer resemblance to B. lynceorum owing to the sharing of a cytologically identical egg maturation mechanism, of the same maternal ancestor and of peculiar chromosomal features. It is here suggested that B. lynceorum originated from the incorporation of an "atticus" genome into a B. whitei egg, according to a pathway of repeated hybridization often occurred with other polyploid hybrids.

  1. Rhipicephalus sanguineus (Acari: Ixodidae) female ticks exposed to castor oil (Ricinus communis): an ultrastructural overview.

    Science.gov (United States)

    Sampieri, B R; Furquim, K C S; Nunes, P H; Camargo-Mathias, M I

    2013-02-01

    Tick control has been accomplished through the use of synthetic acaricides, which has created resistant individuals, as well as contaminating the environment and nontarget organisms. Substances of plant origin, such as oils and extracts of eucalyptus and neem leaves, have been researched as an alternative to replace the synthetic acaricides. Ricinoleic acid esters from castor oil have recently been shown as a promising alternative in eliminating bacterial contamination during ethanol fermentation, by acting as an effective biocide. The same positive results have been observed when these esters are added to the food given to tick-infested rabbits. This study tested the effect of these substance on the reproductive system of Rhipicephalus sanguineus females, added to rabbit food, more specifically on oogenesis. For this, four groups were established: four control groups (CG1, CG2, CG3, and CG4) and four treatment groups (TG1, TG2, TG3, and TG4) with one rabbit in each (New Zealand White), used as hosts. After full 4 days feeding (semi-engorgement), the females were collected and had their ovaries extracted. In this study, it was observed that R. sanguineus females exposed to esters had their ovaries modified, which was demonstrated through transmission electron microscopy techniques. The addition of ricinoleic esters to the diet of tick-infested rabbits revealed how toxic such substances are for the cytoplasmic organelles of oocytes and pedicel cells. These compounds can change the morphophysiology of germ and somatic cells, consequently influencing their viability and, therefore, confirming that the ricinoleic acid esters from castor oil are a promising substance in the control of R. sanguineus.

  2. Involvement of Gαs-proteins in the action of relaxin-like gonad-stimulating substance on starfish ovarian follicle cells.

    Science.gov (United States)

    Mita, Masatoshi; Haraguchi, Shogo; Watanabe, Miho; Takeshige, Yuki; Yamamoto, Kazutoshi; Tsutsui, Kazuyoshi

    2014-09-01

    Gonad-stimulating substance (GSS) in starfish is the only known invertebrate peptide hormone responsible for final gamete maturation, rendering it functionally analogous to gonadotropins in vertebrates. In breeding season (stage V), GSS stimulates oocyte maturation to induce 1-methyladenine (1-MeAde) by ovarian follicle cells. The hormonal action of GSS is mediated through the activation of its receptor, G-proteins and adenylyl cyclase. It has been reported that GSS fails to induce 1-MeAde and cyclic AMP (cAMP) production in follicle cells of ovaries during oogenesis (stage IV). This study examined the regulatory mechanism how ovarian follicle cells acquire the potential to respond to GSS by producing 1-MeAde and cAMP. Because the failure of GSS action was due to G-proteins of follicle cells, the molecular structures of Gαs, Gαi, Gαq and Gβ were identified in follicle cells of starfish Asterina pectinifera. The cDNA sequences of Gαs, Gαi, Gαq and Gβ consisted of ORFs encoding 379, 354, 353 and 353 amino acids. The expression levels of Gαs were extremely low in follicle cells at stage IV, whereas the mRNA levels increased markedly in stage V. On contrary, the mRNA levels of Gαi were almost constant regardless of stage IV and V. These findings strongly suggest that de novo synthesis of Gαs-proteins is contributed to the action of GSS on follicle cells to produce 1-MeAde and cAMP.

  3. Genome-wide analysis of alternative reproductive phenotypes in honeybee workers.

    Science.gov (United States)

    Cardoen, Dries; Wenseleers, Tom; Ernst, Ulrich R; Danneels, Ellen L; Laget, Dries; DE Graaf, Dirk C; Schoofs, Liliane; Verleyen, Peter

    2011-10-01

    A defining feature of social insects is the reproductive division of labour, in which workers usually forego all reproduction to help their mother queen to reproduce. However, little is known about the molecular basis of this spectacular form of altruism. Here, we compared gene expression patterns between nonreproductive, altruistic workers and reproductive, non-altruistic workers in queenless honeybee colonies using a whole-genome microarray analysis. Our results demonstrate massive differences in gene expression patterns between these two sets of workers, with a total of 1292 genes being differentially expressed. In nonreproductive workers, genes associated with energy metabolism and respiration, flight and foraging behaviour, detection of visible light, flight and heart muscle contraction and synaptic transmission were overexpressed relative to reproductive workers. This implies they probably had a higher whole-body energy metabolism and activity rate and were most likely actively foraging, whereas same-aged reproductive workers were not. This pattern is predicted from evolutionary theory, given that reproductive workers should be less willing to compromise their reproductive futures by carrying out high-risk tasks such as foraging or other energetically expensive tasks. By contrast, reproductive workers mainly overexpressed oogenesis-related genes compared to nonreproductive ones. With respect to key switches for ovary activation, several genes involved in steroid biosynthesis were upregulated in reproductive workers, as well as genes known to respond to queen and brood pheromones, genes involved in TOR and insulin signalling pathways and genes located within quantitative trait loci associated with reproductive capacity in honeybees. Overall, our results provide unique insight into the molecular mechanisms underlying alternative reproductive phenotypes in honeybee workers. © 2011 Blackwell Publishing Ltd.

  4. Maternal characteristics versus egg size and energy density: do stocked lake trout in Lake Ontario experience premature reproductive senescence?

    Science.gov (United States)

    Lantry, B.F.; O'Gorman, R.; Machut, L.S.

    2008-01-01

    Observations from September 1994 and 1997 collections of hatchery-origin, mature female lake trout (Salvelinus namaycush) from Lake Ontario indicated that egg mass decreased with age, fueling the notion that stocked fish experienced premature reproductive senescence. Supplemental collections during September 2002 and November 2002-2004 were combined with the 1994 and 1997 samples to examine whether sample date or maternal age, body mass, condition (K), egg count, or strain were related to egg mass or energy content (percentage dry mass [%DM]). Body mass was correlated with egg mass for age ≥ 8 lake trout sampled in September, and egg count was correlated with egg mass for September age-6 lake trout only. Within each month, egg mass was not related to K or egg %DM, however, egg %DM was 1.52% greater (P ≤ 0.0247) in November than in September which is equivalent to a 110 cal/g difference. Samples were grouped for the three most abundant strains (Seneca, Superior, and Ontario) after finding no strain or year effects from our 1994 and 1997 samples and based on life history data from the literature and our assessment sampling. Further analysis indicated that September egg masses were greater for fish ages ≤ 6 than for fish ages ≥ 8. The age effect disappeared in November when mean egg mass across all ages (0.078 g) was greater than September means (P < 0.0005) for ages -5 (0.054 g), -6 (0.057 g) and ≥ 8 (0.041 g). Our results indicate that the decrease in egg mass with female age in September was not due to senescence, but to oogenesis being closer to completion in young age-5 and -6 fish than in older individuals.

  5. Prevalence and origin of De Novo duplications in Charcot-Marie-Tooth disease type 1A: First report of a De Novo duplication with a maternal origin

    Energy Technology Data Exchange (ETDEWEB)

    Blair, I.P.; Nash, J.; Gordon, M.J.; Nicholson, G.A. [Univ. of Sydney, New South Wales (United Kingdom)

    1996-03-01

    Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy. Sporadic cases of CMT have been described since the earliest reports of the disease. The most frequent form of the disorder, CMT1A, is associated with a 1.5-Mb DNA duplication on chromosome 17p11.2, which segregates with the disease. In order to investigate the prevalence of de novo CMT1A duplications, this study examined 118 duplication-positive CMT1A families. In 10 of these families it was demonstrated that the disease had arisen as the result of a de novo mutation. By taking into account the ascertainment of families, it can be estimated that {>=}10% of autosomal dominant CMT1 families are due to de novo duplications. The CMT1A duplication is thought to be the product of unequal crossing over between parental chromosome 17 homologues during meiosis. Polymorphic markers from within the duplicated region were used to determine the parental origin of these de novo duplications in eight informative families. Seven were of paternal and one of maternal origin. This study represents the first report of a de novo duplication with a maternal origin and indicates that it is not a phenomenon associated solely with male meioses. Recombination fractions for the region duplicated in CMT1A are larger in females than in males. That suggests that oogenesis may be afforded greater protection from misalignment during synapsis, and/or that there may be lower activity of those factors or mechanisms that lead to unequal crossing over at the CMT1A locus. 41 refs., 2 figs.

  6. piRNA-associated proteins and retrotransposons are differentially expressed in murine testis and ovary of aryl hydrocarbon receptor deficient mice

    Science.gov (United States)

    Rico-Leo, Eva M.; Moreno-Marín, Nuria; González-Rico, Francisco J.; Barrasa, Eva; Ortega-Ferrusola, Cristina; Martín-Muñoz, Patricia; Sánchez-Guardado, Luis O.; Llano, Elena; Alvarez-Barrientos, Alberto; Infante-Campos, Ascensión; Catalina-Fernández, Inmaculada; Hidalgo-Sánchez, Matías; de Rooij, Dirk G.; Pendás, Alberto M.; Peña, Fernando J.; Merino, Jaime M.

    2016-01-01

    Previous studies suggested that the aryl hydrocarbon receptor (AhR) contributes to mice reproduction and fertility. However, the mechanisms involved remain mostly unknown. Retrotransposon silencing by Piwi-interacting RNAs (piRNAs) is essential for germ cell maturation and, remarkably, AhR has been identified as a regulator of murine B1-SINE retrotransposons. Here, using littermate AhR+/+ and AhR−/− mice, we report that AhR regulates the general course of spermatogenesis and oogenesis by a mechanism likely to be associated with piRNA-associated proteins, piRNAs and retrotransposons. piRNA-associated proteins MVH and Miwi are upregulated in leptotene to pachytene spermatocytes with a more precocious timing in AhR−/− than in AhR+/+ testes. piRNAs and transcripts from B1-SINE, LINE-1 and IAP retrotransposons increased at these meiotic stages in AhR-null testes. Moreover, B1-SINE transcripts colocalize with MVH and Miwi in leptonema and pachynema spermatocytes. Unexpectedly, AhR−/− males have increased sperm counts, higher sperm functionality and enhanced fertility than AhR+/+ mice. In contrast, piRNA-associated proteins and B1-SINE and IAP-derived transcripts are reduced in adult AhR−/− ovaries. Accordingly, AhR-null female mice have lower numbers of follicles when compared with AhR+/+ mice. Thus, AhR deficiency differentially affects testis and ovary development possibly by a process involving piRNA-associated proteins, piRNAs and transposable elements. PMID:28003471

  7. Mice Deficient in Oocyte-Specific Oligoadenylate Synthetase-Like Protein OAS1D Display Reduced Fertility†

    Science.gov (United States)

    Yan, Wei; Ma, Lang; Stein, Paula; Pangas, Stephanie A.; Burns, Kathleen H.; Bai, Yuchen; Schultz, Richard M.; Matzuk, Martin M.

    2005-01-01

    The double-stranded RNA (dsRNA)-induced interferon response is a defense mechanism against viral infection. Upon interferon activation by dsRNA, 2′,5′-oligoadenylate synthetase 1 (OAS1A) is induced; it binds dsRNA and converts ATP into 2′,5′-linked oligomers of adenosine (called 2-5A), which activate RNase L that in turn degrades viral and cellular RNAs. In a screen to identify oocyte-specific genes, we identified a novel murine cDNA encoding an ovary-specific 2′,5′-oligoadenylate synthetase-like protein, OAS1D, which displays 59% identity with OAS1A. OAS1D is predominantly cytoplasmic and is exclusively expressed in growing oocytes and early embryos. Like OAS1A, OAS1D binds the dsRNA mimetic poly(I-C), but unlike OAS1A, it lacks 2′-5′ adenosine linking activity. OAS1D interacts with OAS1A and inhibits the enzymatic activity of OAS1A. Mutant mice lacking OAS1D (Oas1d−/−) display reduced fertility due to defects in ovarian follicle development, decreased efficiency of ovulation, and eggs that are fertilized arrest at the one-cell stage. These effects are exacerbated after activation of the interferon/OAS1A/RNase L pathway by poly(I-C). We propose that OAS1D suppresses the interferon/OAS/RNase L-mediated cellular destruction by interacting with OAS1A during oogenesis and early embryonic development. PMID:15899864

  8. Complex regulation and multiple developmental functions of misfire, the Drosophila melanogaster ferlin gene

    Directory of Open Access Journals (Sweden)

    Wakimoto Barbara T

    2007-03-01

    Full Text Available Abstract Background Ferlins are membrane proteins with multiple C2 domains and proposed functions in Ca2+ mediated membrane-membrane interactions in animals. Caenorhabditis elegans has two ferlin genes, one of which is required for sperm function. Mammals have several ferlin genes and mutations in the human dysferlin (DYSF and otoferlin (OTOF genes result in muscular dystrophy and hearing loss, respectively. Drosophila melanogaster has a single ferlin gene called misfire (mfr. A previous study showed that a mfr mutation caused male sterility because of defects in fertilization. Here we analyze the expression and structure of the mfr gene and the consequences of multiple mutations to better understand the developmental function of ferlins. Results We show that mfr is expressed in the testis and ovaries of adult flies, has tissue-specific promoters, and expresses alternatively spliced transcripts that are predicted to encode distinct protein isoforms. Studies of 11 male sterile mutations indicate that a predicted Mfr testis isoform with five C2 domains and a transmembrane (TM domain is required for sperm plasma membrane breakdown (PMBD and completion of sperm activation during fertilization. We demonstrate that Mfr is not required for localization of Sneaky, another membrane protein necessary for PMBD. The mfr mutations vary in their effects in females, with a subset disrupting egg patterning and causing a maternal effect delay in early embryonic development. Locations of these mutations indicate that a short Mfr protein isoform carries out ferlin activities during oogenesis. Conclusion The mfr gene exhibits complex transcriptional and post-transcriptional regulation and functions in three developmental processes: sperm activation, egg patterning, and early embryogenesis. These functions are in part due to the production of protein isoforms that vary in the number of C2 domains. These findings help establish D. melanogaster as model system for

  9. Regulation of gonadal sex ratios and pubertal development by the thyroid endocrine system in zebrafish (Danio rerio)

    Science.gov (United States)

    Sharma, Prakash; Patino, Reynaldo

    2013-01-01

    We examined associations between thyroid condition, gonadal sex and pubertal development in zebrafish. Seventy-two-hour postfertilization larvae were reared in untreated medium or in the presence of goitrogens (sodium perchlorate, 0.82 mM; methimazole, 0.15 and 0.3 mM) or thyroxine (1 and 10 nM) for 30 days. Thyrocyte height, gonadal sex and gonadal development were histologically determined at 45 and 60 days postfertilization (dpf). Thyrocyte hypertrophy, an index of hypothyroidism, was observed at 45 and 60 dpf in perchlorate-treated but only at 45 dpf in methimazole-treated fish. Similarly, gonadal sex ratios were biased toward ovaries relative to control animals at 45 and 60 dpf in perchlorate-treated fish but only at 45 dpf in methimazole-treated fish. Gonadal sex ratios were biased toward testes at 45 and 60 dpf in thyroxine-treated fish. Spermatogenesis was delayed in testes from goitrogen-treated fish at 60 dpf relative to control values, but was unaffected in testes from thyroxine-treated individuals. Oogenesis seemed to be nonspecifically delayed in all treatments relative to control at 60 dpf. This study confirmed the previously reported association between hypothyroid condition and ovarian-skewed ratios, and hyperthyroid condition and testicular-skewed ratios, and also showed that male pubertal development is specifically delayed by experimental hypothyroidism. The simultaneous recovery from the hypothyroid and ovary-inducing effects of methimazole by 60 dpf (27 days post-treatment) suggests that the ovary-skewing effect of goitrogens is reversible when thyroid conditions return to basal levels before developmental commitment of gonadal sex. Conversely, the masculinizing effect of hyperthyroidism seems to be stable and perhaps permanent.

  10. Venus Kinase Receptors: prospects in signalling and biological functions of these invertebrate receptors

    Directory of Open Access Journals (Sweden)

    Colette eDissous

    2014-05-01

    Full Text Available Venus Kinase Receptors (VKRs form a family of invertebrate receptor tyrosine kinases (RTKs initially discovered in the parasitic platyhelminth Schistosoma mansoni. VKRs are single transmembrane receptors which contain an extracellular Venus Flytrap (VFT structure similar to the ligand binding domain of G Protein Coupled Receptors of class C, and an intracellular Tyrosine Kinase domain close to that of Insulin Receptors. VKRs are found in a large variety of invertebrates from cnidarians to echinoderms, and are highly expressed in larval stages and in gonads, suggesting a role of these proteins in embryonic and larval development as well as in reproduction. Vkr gene silencing could demonstrate the function of these receptors in oogenesis as well as in spermatogenesis in Schistosoma .mansoni. VKRs are activated by amino-acids, and highly responsive to arginine. As many other RTKs, they form dimers when activated by ligands and induce intracellular pathways involved in protein synthesis and cellular growth, such as MAPK and PI3K/Akt/S6K pathways. VKRs are not present in vertebrates, nor in some invertebrate species. Questions remain open about the origin of this little-known RTK family in evolution and its role in emergence and specialization of Metazoa. What is the meaning of maintenance or loss of VKR in some phyla or species in terms of development and physiological functions? The presence of VKRs in invertebrates of economical and medical importance, such as pests, vectors of pathogens and platyhelminth parasites, and the implication of these RTKs in gametogenesis and reproduction processes are valuable reasons to consider VKRs as interesting targets in new programs for eradication/ control of pests and infectious diseases, with the main advantage in the case of parasite targeting that VKR counterparts are absent from the vertebrate host kinase panel.

  11. Diversity in the fertilization envelopes of echinoderms.

    Science.gov (United States)

    Oulhen, Nathalie; Reich, Adrian; Wong, Julian L; Ramos, Isabela; Wessel, Gary M

    2013-01-01

    Cell surface changes in an egg at fertilization are essential to begin development and for protecting the zygote. Most fertilized eggs construct a barrier around themselves by modifying their original extracellular matrix. This construction usually results from calcium-induced exocytosis of cortical granules, the contents of which in sea urchins function to form the fertilization envelope (FE), an extracellular matrix of cortical granule contents built upon a vitelline layer scaffold. Here, we examined the molecular mechanism of this process in sea stars, a close relative of the sea urchins, and analyze the evolutionary changes that likely occurred in the functionality of this structure between these two organisms. We find that the FE of sea stars is more permeable than in sea urchins, allowing diffusion of molecules in excess of 2 megadaltons. Through a proteomic and transcriptomic approach, we find that most, but not all, of the proteins present in the sea urchin envelope are present in sea stars, including SFE9, proteoliaisin, and rendezvin. The mRNAs encoding these FE proteins accumulated most densely in early oocytes, and then beginning with vitellogenesis, these mRNAs decreased in abundance to levels nearly undetectable in eggs. Antibodies to the SFE9 protein of sea stars showed that the cortical granules in sea star also accumulated most significantly in early oocytes, but different from sea urchins, they translocated to the cortex of the oocytes well before meiotic initiation. These results suggest that the preparation for cell surface changes in sea urchins has been shifted to later in oogenesis, and perhaps reflects the meiotic differences among the species-sea star oocytes are stored in prophase of meiosis and fertilized during the meiotic divisions, as in most animals, whereas sea urchins are one of the few taxons in which eggs have completed meiosis prior to fertilization.

  12. Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error.

    Science.gov (United States)

    Vogt, E; Kirsch-Volders, M; Parry, J; Eichenlaub-Ritter, U

    2008-03-12

    The spindle assembly checkpoint (SAC) monitors attachment to microtubules and tension on chromosomes in mitosis and meiosis. It represents a surveillance mechanism that halts cells in M-phase in the presence of unattached chromosomes, associated with accumulation of checkpoint components, in particular, Mad2, at the kinetochores. A complex between the anaphase promoting factor/cylosome (APC/C), its accessory protein Cdc20 and proteins of the SAC renders APC/C inactive, usually until all chromosomes are properly assembled at the spindle equator (chromosome congression) and under tension from spindle fibres. Upon release from the SAC the APC/C can target proteins like cyclin B and securin for degradation by the proteasome. Securin degradation causes activation of separase proteolytic enzyme, and in mitosis cleavage of cohesin proteins at the centromeres and arms of sister chromatids. In meiosis I only the cohesin proteins at the sister chromatid arms are cleaved. This requires meiosis specific components and tight regulation by kinase and phosphatase activities. There is no S-phase between meiotic divisions. Second meiosis resembles mitosis. Mammalian oocytes arrest constitutively at metaphase II in presence of aligned chromosomes, which is due to the activity of the cytostatic factor (CSF). The SAC has been identified in spermatogenesis and oogenesis, but gender-differences may contribute to sex-specific differential responses to aneugens. The age-related reduction in expression of components of the SAC in mammalian oocytes may act synergistically with spindle and other cell organelles' dysfunction, and a partial loss of cohesion between sister chromatids to predispose oocytes to errors in chromosome segregation. This might affect dose-response to aneugens. In view of the tendency to have children at advanced maternal ages it appears relevant to pursue studies on consequences of ageing on the susceptibility of human oocytes to the induction of meiotic error by

  13. Expression of fragile X mental retardation protein and Fmr1 mRNA during folliculogenesis in the rat.

    Science.gov (United States)

    Ferder, Ianina; Parborell, Fernanda; Sundblad, Victoria; Chiauzzi, Violeta; Gómez, Karina; Charreau, Eduardo H; Tesone, Marta; Dain, Liliana

    2013-04-01

    Fragile X mental retardation protein (FMRP) belongs to a small family of RNA-binding proteins. Its absence or inactivity is responsible for fragile X syndrome, the most common cause of inherited mental retardation. Despite its ubiquitous expression, FMRP function and expression remain almost understudied in non-neuronal tissues, though previous studies on germline development during oogenesis may suggest a special function of this protein also in ovarian tissue. In addition, the well-documented association of FMR1 premutation state with fragile X-related premature ovarian insufficiency adds interest to the role of FMRP in ovarian physiology. The aim of the present work was to investigate the expression of Fmr1 mRNA and its protein, FMRP, at different stages of rat follicular development. By immunohistochemical studies we demonstrated FMRP expression in granulosa, theca and germ cells in all stages of follicular development. In addition, changes in Fmr1 expression, both at the protein and mRNA levels, were observed. FMRP levels increased upon follicular development while preantral and early antral follicles presented similar levels of Fmr1 transcripts with decreased expression in preovulatory follicles. These observations suggest that Fmr1 expression in the ovary is regulated at different and perhaps independent levels. In addition, our results show expression of at least four different isoforms of FMRP during all stages of follicular growth with expression patterns that differ from those observed in brain and testis. Our study shows a regulated expression of Fmr1, both at mRNA and protein levels, during rat follicular development.

  14. The adapter protein APPL1 links FSH receptor to inositol 1,4,5-trisphosphate production and is implicated in intracellular Ca(2+) mobilization.

    Science.gov (United States)

    Thomas, Richard M; Nechamen, Cheryl A; Mazurkiewicz, Joseph E; Ulloa-Aguirre, Alfredo; Dias, James A

    2011-04-01

    FSH binds to its receptor (FSHR) on target cells in the ovary and testis, to regulate oogenesis and spermatogenesis, respectively. The signaling cascades activated after ligand binding are extremely complex and have been shown to include protein kinase A, mitogen-activated protein kinase, phosphatidylinositol 3-kinase/protein kinase B, and inositol 1,4,5-trisphosphate-mediated calcium signaling pathways. The adapter protein APPL1 (Adapter protein containing Pleckstrin homology domain, Phosphotyrosine binding domain and Leucine zipper motif), which has been linked to an assortment of other signaling proteins, was previously identified as an interacting protein with FSHR. Thus, alanine substitution mutations in the first intracellular loop of FSHR were generated to determine which residues are essential for FSHR-APPL1 interaction. Three amino acids were essential; when any one of them was altered, APPL1 association with FSHR mutants was abrogated. Two of the mutants (L377A and F382A) that displayed poor cell-surface expression were not studied further. Substitution of FSHR-K376A did not affect FSH binding or agonist-stimulated cAMP production in either transiently transfected human embryonic kidney cells or virally transduced human granulosa cells (KGN). In the KGN line, as well as primary cultures of rat granulosa cells transduced with wild type or mutant receptor, FSH-mediated progesterone or estradiol production was not affected by the mutation. However, in human embryonic kidney cells inositol 1,4,5-trisphosphate production was curtailed and KGN cells transduced with FSHR-K376A evidenced reduced Ca(2+) mobilization from intracellular stores after FSH treatment.

  15. Regulatory role of kit ligand-c-kit interaction and oocyte factors in steroidogenesis by rat granulosa cells.

    Science.gov (United States)

    Miyoshi, Tomoko; Otsuka, Fumio; Nakamura, Eri; Inagaki, Kenichi; Ogura-Ochi, Kanako; Tsukamoto, Naoko; Takeda, Masaya; Makino, Hirofumi

    2012-07-06

    Although kit ligand (KL)-c-kit interaction is known to be critical for oogenesis and folliculogenesis, its role in ovarian steroidogenesis has yet to be elucidated. We studied the impact of KL-c-kit interaction in regulation of steroidogenesis using rat oocyte/granulosa cell co-culture. In the presence of oocytes, soluble KL suppressed FSH-induced estradiol production and aromatase mRNA expression without affecting FSH-induced progesterone production. The KL effect on steroidogenesis was interrupted by an anti-c-kit neutralizing antibody, suggesting that KL-c-kit interaction is involved in suppression of estrogen by granulosa cells through oocyte c-kit action. The cAMP-PKA pathway activity was not directly involved in the estrogen regulation by KL-c-kit action. It was of note that KL treatment increased the expression levels of oocyte-derived FGF-8, GDF-9 and BMP-6, while it reduced the expression levels of oocyte-derived BMP-15 in the oocyte-granulosa cell co-culture. Given the findings that FGF-8, but not GDF-9, BMP-6 or -15, suppressed FSH-induced estrogen production by granulosa cells, oocyte-derived FGF-8 is linked to suppression of FSH-induced estrogen production through the KL-c-kit interaction. Furthermore, the suppression of FSH-induced estrogen production by KL in the co-culture was reversed by a FGF receptor kinase inhibitor and the effect of the inhibitor was enhanced in combination with extracellular-domain protein of BMPRII, which interferes with BMP-15 and GDF-9 activities. Thus, the actions of endogenous oocyte factors including FGF-8 and BMP-15/GDF-9 were involved in the KL activity that inhibited FSH-induced estradiol production. Collectively, the results indicate that KL-c-kit interaction plays a role in estrogenic regulation through oocyte-granulosa cell communication.

  16. Inter- and Intra-specific variation in egg size among reef fishes across the Isthmus of Panama

    Directory of Open Access Journals (Sweden)

    D Ross Robertson

    2015-01-01

    Full Text Available Effects of planktonic food supplies and temperature on pelagic fish larvae are thought to be the primary environmental determinants of adaptive variation in egg size. Differences between the Atlantic and Pacific coasts of Panama in primary production (higher in the Pacific due to upwelling and temperature (less seasonal in the non-upwelling Caribbean allow testing such ideas. We compared the volumes, dry weights and energy content of eggs of 24 species of reef fishes from the two sides of the isthmus during the cool and warm seasons. Both egg volume and egg dry weight were good predictors of egg energy content among species, although not within species. Caribbean species produced larger eggs than their close relatives in the Pacific. In the Pacific, eggs were significantly larger during the cool upwelling season than during the warm, non-upwelling period, with a similar but weaker seasonal pattern evident in the Caribbean. The production of larger eggs in the low-productivity Caribbean is consistent with the hypothesis that species produce larger eggs and offspring when larval food supplies are lower. Parallel patterns of seasonal variation in eggs size and the greater strength of that relationship in the Pacific indicate that temperature drives seasonal variation in egg size within species. The decline in egg size with increasing temperature, a general pattern among ectotherms, may be a physiological side-effect, due to differing effects of temperature on various metabolic processes during oogenesis or on hormones that influence growth and reproduction. Alternatively, the seasonal pattern may be adaptive in these fishes, by affecting larval performance or maintaining a particular timeline of major events during embryonic development.

  17. A New Component of the Nasonia Sex Determining Cascade Is Maternally Silenced and Regulates Transformer Expression

    Science.gov (United States)

    Bopp, Daniel; Beukeboom, Leo W.; van de Zande, Louis

    2013-01-01

    Although sex determination is a universal process in sexually reproducing organisms, sex determination pathways are among the most highly variable genetic systems found in nature. Nevertheless, general principles can be identified among the diversity, like the central role of transformer (tra) in insects. When a functional TRA protein is produced in early embryogenesis, the female sex determining route is activated, while prevention of TRA production leads to male development. In dipterans, male development is achieved by prevention of female-specific splicing of tra mRNA, either mediated by X-chromosome dose or masculinizing factors. In Hymenoptera, which have haplodiploid sex determination, complementary sex determination and maternal imprinting have been identified to regulate timely TRA production. In the parasitoid Nasonia, zygotic transformer (Nvtra) expression and splicing is regulated by a combination of maternal provision of Nvtra mRNA and silencing of Nvtra expression in unfertilized eggs. It is unclear, however, if this silencing is directly on the tra locus or whether it is mediated through maternal silencing of a trans-acting factor. Here we show that in Nasonia, female sex determination is dependent on zygotic activation of Nvtra expression by an as yet unknown factor. This factor, which we propose to term womanizer (wom), is maternally silenced during oogenesis to ensure male development in unfertilized eggs. This finding implicates the upstream recruitment of a novel gene in the Nasonia sex determining cascade and supports the notion that sex determining cascades can rapidly change by adding new components on top of existing regulators. PMID:23717455

  18. The multiple roles of Bub1 in chromosome segregation during mitosis and meiosis

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Venkatachalam, Sundaresan

    2009-06-19

    Aneuploidy, any deviation from an exact multiple of the haploid number of chromosomes, is a common occurrence in cancer and represents the most frequent chromosomal disorder in newborns. Eukaryotes have evolved mechanisms to assure the fidelity of chromosome segregation during cell division that include a multiplicity of checks and controls. One of the main cell division control mechanisms is the spindle assembly checkpoint (SAC) that monitors the proper attachment of chromosomes to spindle fibers and prevents anaphase until all kinetochores are properly attached. The mammalian SAC is composed by at least 14 evolutionary-conserved proteins that work in a coordinated fashion to monitor the establishment of amphitelic attachment of all chromosomes before allowing cell division to occur. Among the SAC proteins, the budding uninhibited by benzimidazole protein 1 (Bub1), is a highly conserved protein of prominent importance for the proper functioning of the SAC. Studies have revealed many roles for Bub1 in both mitosis and meiosis, including the localization of other SAC proteins to the kinetochore, SAC signaling, metaphase congression and the protection of the sister chromatid cohesion. Recent data show striking sex specific differences in the response to alterations in Bub1 activity. Proper Bub1 functioning is particularly important during oogenesis in preventing the generation of aneuploid gametes that can have detrimental effects on the health status of the fetus and the newborn. These data suggest that Bub1 is a master regulator of SAC and chromosomal segregation in both mitosis and meiosis. Elucidating its many essential functions in regulating proper chromosome segregation can have important consequences for preventing tumorigenesis and developmental abnormalities.

  19. Defining global gene expression changes of the hypothalamic-pituitary-gonadal axis in female sGnRH-antisense transgenic common carp (Cyprinus carpio.

    Directory of Open Access Journals (Sweden)

    Jing Xu

    Full Text Available BACKGROUND: The hypothalamic-pituitary-gonadal (HPG axis is critical in the development and regulation of reproduction in fish. The inhibition of neuropeptide gonadotropin-releasing hormone (GnRH expression may diminish or severely hamper gonadal development due to it being the key regulator of the axis, and then provide a model for the comprehensive study of the expression patterns of genes with respect to the fish reproductive system. METHODOLOGY/PRINCIPAL FINDINGS: In a previous study we injected 342 fertilized eggs from the common carp (Cyprinus carpio with a gene construct that expressed antisense sGnRH. Four years later, we found a total of 38 transgenic fish with abnormal or missing gonads. From this group we selected the 12 sterile females with abnormal ovaries in which we combined suppression subtractive hybridization (SSH and cDNA microarray analysis to define changes in gene expression of the HPG axis in the present study. As a result, nine, 28, and 212 genes were separately identified as being differentially expressed in hypothalamus, pituitary, and ovary, of which 87 genes were novel. The number of down- and up-regulated genes was five and four (hypothalamus, 16 and 12 (pituitary, 119 and 93 (ovary, respectively. Functional analyses showed that these genes involved in several biological processes, such as biosynthesis, organogenesis, metabolism pathways, immune systems, transport links, and apoptosis. Within these categories, significant genes for neuropeptides, gonadotropins, metabolic, oogenesis and inflammatory factors were identified. CONCLUSIONS/SIGNIFICANCE: This study indicated the progressive scaling-up effect of hypothalamic sGnRH antisense on the pituitary and ovary receptors of female carp and provided comprehensive data with respect to global changes in gene expression throughout the HPG signaling pathway, contributing towards improving our understanding of the molecular mechanisms and regulative pathways in the

  20. Specific deletion of AMP-activated protein kinase (α1AMPK in murine oocytes alters junctional protein expression and mitochondrial physiology.

    Directory of Open Access Journals (Sweden)

    Michael J Bertoldo

    Full Text Available Oogenesis and folliculogenesis are dynamic processes that are regulated by endocrine, paracrine and autocrine signals. These signals are exchanged between the oocyte and the somatic cells of the follicle. Here we analyzed the role of AMP-activated protein kinase (AMPK, an important regulator of cellular energy homeostasis, by using transgenic mice deficient in α1AMPK specifically in the oocyte. We found a decrease of 27% in litter size was observed in ZP3-α1AMPK-/- (ZP3-KO female mice. Following in vitro fertilization, where conditions are stressful for the oocyte and embryo, ZP3-KO oocytes were 68% less likely to pass the 2-cell stage. In vivo and in cumulus-oocyte complexes, several proteins involved in junctional communication, such as connexin37 and N-cadherin were down-regulated in the absence of α1AMPK. While the two signalling pathways (PKA and MAPK involved in the junctional communication between the cumulus/granulosa cells and the oocyte were stimulated in control oocytes, ZP3-KO oocytes exhibited only low phosphorylation of MAPK or CREB proteins. In addition, MII oocytes deficient in α1AMPK had a 3-fold lower ATP concentration, an increase in abnormal mitochondria, and a decrease in cytochrome C and PGC1α levels, suggesting perturbed energy production by mitochondria. The absence of α1AMPK also induced a reduction in histone deacetylase activity, which was associated with an increase in histone H3 acetylation (K9/K14 residues. Together, the results of the present study suggest that absence of AMPK, modifies oocyte quality through energy processes and oocyte/somatic cell communication. The limited effect observed in vivo could be partly due to a favourable follicle microenvironment where nutrients, growth factors, and adequate cell interaction were present. Whereas in a challenging environment such as that of in vitro culture following IVF, the phenotype is revealed.