WorldWideScience

Sample records for onset prion disease

  1. Lesion of the olfactory epithelium accelerates prion neuroinvasion and disease onset when prion replication is restricted to neurons.

    Directory of Open Access Journals (Sweden)

    Jenna Crowell

    Full Text Available Natural prion diseases of ruminants are moderately contagious and while the gastrointestinal tract is the primary site of prion agent entry, other mucosae may be entry sites in a subset of infections. In the current study we examined prion neuroinvasion and disease induction following disruption of the olfactory epithelium in the nasal mucosa since this site contains environmentally exposed olfactory sensory neurons that project directly into the central nervous system. Here we provide evidence for accelerated prion neuroinvasion and clinical onset from the olfactory mucosa after disruption and regeneration of the olfactory epithelium and when prion replication is restricted to neurons. In transgenic mice with neuron restricted replication of prions, there was a reduction in survival when the olfactory epithelium was disrupted prior to intranasal inoculation and there was >25% decrease in the prion incubation period. In a second model, the neurotropic DY strain of transmissible mink encephalopathy was not pathogenic in hamsters by the nasal route, but 50% of animals exhibited brain infection and/or disease when the olfactory epithelium was disrupted prior to intranasal inoculation. A time course analysis of prion deposition in the brain following loss of the olfactory epithelium in models of neuron-restricted prion replication suggests that neuroinvasion from the olfactory mucosa is via the olfactory nerve or brain stem associated cranial nerves. We propose that induction of neurogenesis after damage to the olfactory epithelium can lead to prion infection of immature olfactory sensory neurons and accelerate prion spread to the brain.

  2. Lesion of the Olfactory Epithelium Accelerates Prion Neuroinvasion and Disease Onset when Prion Replication Is Restricted to Neurons

    Science.gov (United States)

    Crowell, Jenna; Wiley, James A.; Bessen, Richard A.

    2015-01-01

    Natural prion diseases of ruminants are moderately contagious and while the gastrointestinal tract is the primary site of prion agent entry, other mucosae may be entry sites in a subset of infections. In the current study we examined prion neuroinvasion and disease induction following disruption of the olfactory epithelium in the nasal mucosa since this site contains environmentally exposed olfactory sensory neurons that project directly into the central nervous system. Here we provide evidence for accelerated prion neuroinvasion and clinical onset from the olfactory mucosa after disruption and regeneration of the olfactory epithelium and when prion replication is restricted to neurons. In transgenic mice with neuron restricted replication of prions, there was a reduction in survival when the olfactory epithelium was disrupted prior to intranasal inoculation and there was >25% decrease in the prion incubation period. In a second model, the neurotropic DY strain of transmissible mink encephalopathy was not pathogenic in hamsters by the nasal route, but 50% of animals exhibited brain infection and/or disease when the olfactory epithelium was disrupted prior to intranasal inoculation. A time course analysis of prion deposition in the brain following loss of the olfactory epithelium in models of neuron-restricted prion replication suggests that neuroinvasion from the olfactory mucosa is via the olfactory nerve or brain stem associated cranial nerves. We propose that induction of neurogenesis after damage to the olfactory epithelium can lead to prion infection of immature olfactory sensory neurons and accelerate prion spread to the brain. PMID:25822718

  3. Prion Diseases

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Prion Diseases Prion diseases are a related group of ... deer and elk. Why Is the Study of Prion Diseases a Priority for NIAID? Much about TSE ...

  4. Transmissible Spongiform Encephalopathies (Prion Diseases)

    Science.gov (United States)

    ... This research is aimed at determining how abnormal prion proteins lead to disease, at finding better tests ... This research is aimed at determining how abnormal prion proteins lead to disease, at finding better tests ...

  5. Human prion diseases: surgical lessons learned from iatrogenic prion transmission.

    Science.gov (United States)

    Bonda, David J; Manjila, Sunil; Mehndiratta, Prachi; Khan, Fahd; Miller, Benjamin R; Onwuzulike, Kaine; Puoti, Gianfranco; Cohen, Mark L; Schonberger, Lawrence B; Cali, Ignazio

    2016-07-01

    The human prion diseases, or transmissible spongiform encephalopathies, have captivated our imaginations since their discovery in the Fore linguistic group in Papua New Guinea in the 1950s. The mysterious and poorly understood "infectious protein" has become somewhat of a household name in many regions across the globe. From bovine spongiform encephalopathy (BSE), commonly identified as mad cow disease, to endocannibalism, media outlets have capitalized on these devastatingly fatal neurological conditions. Interestingly, since their discovery, there have been more than 492 incidents of iatrogenic transmission of prion diseases, largely resulting from prion-contaminated growth hormone and dura mater grafts. Although fewer than 9 cases of probable iatrogenic neurosurgical cases of Creutzfeldt-Jakob disease (CJD) have been reported worldwide, the likelihood of some missed cases and the potential for prion transmission by neurosurgery create considerable concern. Laboratory studies indicate that standard decontamination and sterilization procedures may be insufficient to completely remove infectivity from prion-contaminated instruments. In this unfortunate event, the instruments may transmit the prion disease to others. Much caution therefore should be taken in the absence of strong evidence against the presence of a prion disease in a neurosurgical patient. While the Centers for Disease Control and Prevention (CDC) and World Health Organization (WHO) have devised risk assessment and decontamination protocols for the prevention of iatrogenic transmission of the prion diseases, incidents of possible exposure to prions have unfortunately occurred in the United States. In this article, the authors outline the historical discoveries that led from kuru to the identification and isolation of the pathological prion proteins in addition to providing a brief description of human prion diseases and iatrogenic forms of CJD, a brief history of prion disease nosocomial transmission

  6. Statistical Mechanics of Prion Diseases

    International Nuclear Information System (INIS)

    Slepoy, A.; Singh, R. R. P.; Pazmandi, F.; Kulkarni, R. V.; Cox, D. L.

    2001-01-01

    We present a two-dimensional, lattice based, protein-level statistical mechanical model for prion diseases (e.g., mad cow disease) with concomitant prion protein misfolding and aggregation. Our studies lead us to the hypothesis that the observed broad incubation time distribution in epidemiological data reflect fluctuation dominated growth seeded by a few nanometer scale aggregates, while much narrower incubation time distributions for innoculated lab animals arise from statistical self-averaging. We model ''species barriers'' to prion infection and assess a related treatment protocol

  7. Prion diseases of the brain

    International Nuclear Information System (INIS)

    Lutz, Kira; Urbach, Horst

    2015-01-01

    The prion diseases of the brain, especially Creutzfeldt-Jakob disease, are rare fatal neurodegenerative disorders. A definitive CJD diagnosis is currently only possible by a brain biopsy or post mortem autopsy. The diagnosis of Creutzfeldt-Jakob disease is based on clinical signs, pathognomonic EEG, on typical MRI findings and the examination of the cerebrospinal fluid. Using the MRI the diagnosis Creutzfeldt-Jakob disease can be confirmed or excluded with high certainty. The MRI examination should contain diffusion-weighted and FLAIR imaging sequences. This review article provides an overview of the prion diseases of the brain with the corresponding imaging findings.

  8. Genetics Home Reference: prion disease

    Science.gov (United States)

    ... which have overlapping signs and symptoms, include familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), and fatal ... Sc . Sporadic forms of prion disease include sporadic Creutzfeldt-Jakob disease (sCJD), sporadic fatal insomnia (sFI), and variably protease- ...

  9. Treatment with a non-toxic, self-replicating anti-prion delays or prevents prion disease in vivo.

    Science.gov (United States)

    Diaz-Espinoza, R; Morales, R; Concha-Marambio, L; Moreno-Gonzalez, I; Moda, F; Soto, C

    2018-03-01

    Transmissible spongiform encephalopathies (TSEs) are fatal neurological disorders caused by prions, which are composed of a misfolded protein (PrP Sc ) that self-propagates in the brain of infected individuals by converting the normal prion protein (PrP C ) into the pathological isoform. Here, we report a novel experimental strategy for preventing prion disease based on producing a self-replicating, but innocuous PrP Sc -like form, termed anti-prion, which can compete with the replication of pathogenic prions. Our results show that a prophylactic inoculation of prion-infected animals with an anti-prion delays the onset of the disease and in some animals completely prevents the development of clinical symptoms and brain damage. The data indicate that a single injection of the anti-prion eliminated ~99% of the infectivity associated to pathogenic prions. Furthermore, this treatment caused significant changes in the profile of regional PrP Sc deposition in the brains of animals that were treated, but still succumbed to the disease. Our findings provide new insights for a mechanistic understanding of prion replication and support the concept that prion replication can be separated from toxicity, providing a novel target for therapeutic intervention.

  10. Prions and neuro degenerative diseases | Nair | African Journal of ...

    African Journals Online (AJOL)

    Prion is a disease-causing agent that is neither bacterial nor fungal nor viral and contains no genetic material. A prion is a protein that occurs normally in a harmless form. By folding into an aberrant shape, the normal prion turns into a rogue agent. It then co-opts other normal prions to become rogue prions. Prions have ...

  11. Prion diseases: immunotargets and therapy

    Directory of Open Access Journals (Sweden)

    Burchell JT

    2016-06-01

    Full Text Available Jennifer T Burchell, Peter K Panegyres Neurodegenerative Disorders Research Pty Ltd, West Perth, Western Australia, Australia Abstract: Transmissible spongiform encephathalopathies or prion diseases are a group of neurological disorders characterized by neuronal loss, spongiform degeneration, and activation of astrocytes or microglia. These diseases affect humans and animals with an extremely high prevalence in some species such as deer and elk in North America. Although rare in humans, they result in a devastatingly swift neurological progression with dementia and ataxia. Patients usually die within a year of diagnosis. Prion diseases are familial, sporadic, iatrogenic, or transmissible. Human prion diseases include Kuru, sporadic, iatrogenic, and familial forms of Creutzfeldt–Jakob disease, variant Creutzfeldt–Jakob disease, Gerstmann–Sträussler–Scheinker disease, and fatal familial insomnia. The causative agent is a misfolded version of the physiological prion protein called PrPSc in the brain. There are a number of therapeutic options currently under investigation. A number of small molecules have had some success in delaying disease progression in animal models and mixed results in clinical trials, including pentosan polysulfate, quinacrine, and amphotericin B. More promisingly, immunotherapy has reported success in vitro and in vivo in animal studies and clinical trials. The three main branches of immunotherapy research are focus on antibody vaccines, dendritic cell vaccines, and adoptive transfer of physiological prion protein-specific CD4+ T-lymphocytes. Vaccines utilizing antibodies generally target disease-specific epitopes that are only exposed in the misfolded PrPSc conformation. Vaccines utilizing antigen-loaded dendritic cell have the ability to bypass immune tolerance and prime CD4+ cells to initiate an immune response. Adoptive transfer of CD4+ T-cells is another promising target as this cell type can orchestrate the

  12. Molecular Pathology of Human Prion Diseases

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Prion diseases are fatal neurodegenerative conditions in humans and animals. In this review, we summarize the molecular background of phenotypic variability, relation of prion protein (PrP to other proteins associated with neurodegenerative diseases, and pathogenesis of neuronal vulnerability. PrP exists in different forms that may be present in both diseased and non-diseased brain, however, abundant disease-associated PrP together with tissue pathology characterizes prion diseases and associates with transmissibility. Prion diseases have different etiological background with distinct pathogenesis and phenotype. Mutations of the prion protein gene are associated with genetic forms. The codon 129 polymorphism in combination with the Western blot pattern of PrP after proteinase K digestion serves as a basis for molecular subtyping of sporadic Creutzfeldt-Jakob disease. Tissue damage may result from several parallel, interacting or subsequent pathways that involve cellular systems associated with synapses, protein processing, oxidative stress, autophagy, and apoptosis.

  13. Prions And Prion Diseases | Obi | African Journal of Clinical and ...

    African Journals Online (AJOL)

    Patients also may experience involuntary jerking movements called myoclonus, unusual sensation, insomnia, and confusion or memory problems. In the later stages of the disease, patients may have severe mental impairment (dementia) and may lose the ability to move or speak. Well known prion diseases include scrapie ...

  14. A role for astroglia in prion diseases.

    Science.gov (United States)

    Aguzzi, Adriano; Liu, Yingjun

    2017-12-04

    In this issue of JEM, Krejciova et al. (https://doi.org/10.1084/jem.20161547) report that astrocytes derived from human iPSCs can replicate human CJD prions. These observations provide a new, potentially very valuable model for studying human prions in cellula and for identifying antiprion compounds that might serve as clinical candidates. Furthermore, they add to the evidence that astrocytes may not be just innocent bystanders in prion diseases. © 2017 Aguzzi and Liu.

  15. Neuroinflammation in Alzheimer's disease and prion disease

    NARCIS (Netherlands)

    Eikelenboom, P.; Bate, C.; van Gool, W. A.; Hoozemans, J. J. M.; Rozemuller, J. M.; Veerhuis, R.; Williams, A.

    2002-01-01

    Alzheimer's disease (AD) and prion disease are characterized neuropathologically by extracellular deposits of Abeta and PrP amyloid fibrils, respectively. In both disorders, these cerebral amyloid deposits are co-localized with a broad variety of inflammation-related proteins (complement factors,

  16. Prion protein self-interaction in prion disease therapy approaches

    NARCIS (Netherlands)

    Rigter, A.; Priem, J.; Langeveld, J.P.M.; Bossers, A.

    2011-01-01

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are unique disorders that are not caused by infectious micro-organisms (bacteria or fungi), viruses or parasites, but rather seem to be the result of an infectious protein. TSEs are comprised of fatal neurodegenerative disorders

  17. Localization of A11-reactive oligomeric species in prion diseases

    DEFF Research Database (Denmark)

    Aidt, Frederik H; Hasholt, Lis F; Christiansen, Michael

    2013-01-01

    To investigate in prion diseases the in-situ localization of prion protein oligomers sharing a common epitope with amyloid oligomers involved in a range of neurodegenerative diseases.......To investigate in prion diseases the in-situ localization of prion protein oligomers sharing a common epitope with amyloid oligomers involved in a range of neurodegenerative diseases....

  18. Prions

    Directory of Open Access Journals (Sweden)

    W. Bodemer

    2016-09-01

    BSE is always unknown. Telemetry revealed a shift in sleep–wake cycles early on, long before behavioral changes or clinical symptoms appeared. Pathology confirmed non-neuronal tissue as hidden places where prions exist. The rhesus model also allowed first comparative studies of epigenetic modifications on RNA in peripheral blood and brain tissue collected from uninfected and prion-infected animals. To conclude, our studies clearly demonstrated that this model is valid since progression to disease is almost identical to human CJD.

  19. Atypical scrapie prions from sheep and lack of disease in transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Wadsworth, Jonathan D F; Joiner, Susan; Linehan, Jacqueline M; Balkema-Buschmann, Anne; Spiropoulos, John; Simmons, Marion M; Griffiths, Peter C; Groschup, Martin H; Hope, James; Brandner, Sebastian; Asante, Emmanuel A; Collinge, John

    2013-11-01

    Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue from sheep with natural field cases of classical and atypical scrapie, sheep with experimental BSE, and cattle with BSE. We found that these mice were susceptible to BSE prions, but disease did not develop after prolonged postinoculation periods when mice were inoculated with classical or atypical scrapie prions. These data are consistent with the conclusion that prion disease is less likely to develop in humans after exposure to naturally occurring prions of sheep than after exposure to epizootic BSE prions of ruminants.

  20. Chronic wasting disease prions are not transmissible to transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Sandberg, Malin K; Al-Doujaily, Huda; Sigurdson, Christina J; Glatzel, Markus; O'Malley, Catherine; Powell, Caroline; Asante, Emmanuel A; Linehan, Jacqueline M; Brandner, Sebastian; Wadsworth, Jonathan D F; Collinge, John

    2010-10-01

    Chronic wasting disease (CWD) is a prion disease that affects free-ranging and captive cervids, including mule deer, white-tailed deer, Rocky Mountain elk and moose. CWD-infected cervids have been reported in 14 USA states, two Canadian provinces and in South Korea. The possibility of a zoonotic transmission of CWD prions via diet is of particular concern in North America where hunting of cervids is a popular sport. To investigate the potential public health risks posed by CWD prions, we have investigated whether intracerebral inoculation of brain and spinal cord from CWD-infected mule deer transmits prion infection to transgenic mice overexpressing human prion protein with methionine or valine at polymorphic residue 129. These transgenic mice have been utilized in extensive transmission studies of human and animal prion disease and are susceptible to BSE and vCJD prions, allowing comparison with CWD. Here, we show that these mice proved entirely resistant to infection with mule deer CWD prions arguing that the transmission barrier associated with this prion strain/host combination is greater than that observed with classical BSE prions. However, it is possible that CWD may be caused by multiple prion strains. Further studies will be required to evaluate the transmission properties of distinct cervid prion strains as they are characterized.

  1. Genetic prion disease: no role for the immune system in disease pathogenesis?

    Science.gov (United States)

    Friedman-Levi, Yael; Binyamin, Orli; Frid, Kati; Ovadia, Haim; Gabizon, Ruth

    2014-08-01

    Prion diseases, which can manifest by transmissible, sporadic or genetic etiologies, share several common features, such as a fatal neurodegenerative outcome and the aberrant accumulation of proteinase K (PK)-resistant PrP forms in the CNS. In infectious prion diseases, such as scrapie in mice, prions first replicate in immune organs, then invade the CNS via ascending peripheral tracts, finally causing death. Accelerated neuroinvasion and death occurs when activated prion-infected immune cells infiltrate into the CNS, as is the case for scrapie-infected mice induced for experimental autoimmune encephalomyelitis (EAE), a CNS inflammatory insult. To establish whether the immune system plays such a central role also in genetic prion diseases, we induced EAE in TgMHu2ME199K mice, a line mimicking for late onset genetic Creutzfeldt Jacob disease (gCJD), a human prion disease. We show here that EAE induction of TgMHu2ME199K mice neither accelerated nor aggravated prion disease manifestation. Concomitantly, we present evidence that PK-resistant PrP forms were absent from CNS immune infiltrates, and most surprisingly also from lymph nodes and spleens of TgMHu2ME199K mice at all ages and stages of disease. These results imply that the mechanism of genetic prion disease differs widely from that of the infectious presentation, and that the conversion of mutant PrPs into PK resistant forms occurs mostly/only in the CNS. If the absence of pathogenic PrP forms form immune organs is also true for gCJD patients, it may suggest their blood is devoid of prion infectivity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Chronic wasting disease: Bambi vs. the prion

    Science.gov (United States)

    Chronic wasting disease (CWD) was first described in Colorado in 1967 and subsequently recognized as a prion disease in 1980. CWD has a long and asymptomatic incubation period (> 1 year) followed by a short disease course that ends in the death of the animal. There is no known treatment or cure for ...

  3. Differential overexpression of SERPINA3 in human prion diseases.

    Science.gov (United States)

    Vanni, S; Moda, F; Zattoni, M; Bistaffa, E; De Cecco, E; Rossi, M; Giaccone, G; Tagliavini, F; Haïk, S; Deslys, J P; Zanusso, G; Ironside, J W; Ferrer, I; Kovacs, G G; Legname, G

    2017-11-15

    Prion diseases are fatal neurodegenerative disorders with sporadic, genetic or acquired etiologies. The molecular alterations leading to the onset and the spreading of these diseases are still unknown. In a previous work we identified a five-gene signature able to distinguish intracranially BSE-infected macaques from healthy ones, with SERPINA3 showing the most prominent dysregulation. We analyzed 128 suitable frontal cortex samples, from prion-affected patients (variant Creutzfeldt-Jakob disease (vCJD) n = 20, iatrogenic CJD (iCJD) n = 11, sporadic CJD (sCJD) n = 23, familial CJD (gCJD) n = 17, fatal familial insomnia (FFI) n = 9, Gerstmann-Sträussler-Scheinker syndrome (GSS)) n = 4), patients with Alzheimer disease (AD, n = 14) and age-matched controls (n = 30). Real Time-quantitative PCR was performed for SERPINA3 transcript, and ACTB, RPL19, GAPDH and B2M were used as reference genes. We report SERPINA3 to be strongly up-regulated in the brain of all human prion diseases, with only a mild up-regulation in AD. We show that this striking up-regulation, both at the mRNA and at the protein level, is present in all types of human prion diseases analyzed, although to a different extent for each specific disorder. Our data suggest that SERPINA3 may be involved in the pathogenesis and the progression of prion diseases, representing a valid tool for distinguishing different forms of these disorders in humans.

  4. Prion protein immunocytochemistry helps to establish the true incidence of prion diseases.

    Science.gov (United States)

    Lantos, P L; McGill, I S; Janota, I; Doey, L J; Collinge, J; Bruce, M T; Whatley, S A; Anderton, B H; Clinton, J; Roberts, G W

    1992-11-23

    Creutzfeldt-Jakob disease (CJD) and Gerstmann-Strüssler-Scheinker disease (GSSD) are transmissible spongiform encephalopathies or prion diseases affecting man. It has been reported that prion diseases may occur without the histological hallmarks of spongiform encephalopathies: vacuolation of the cerebral grey matter, neuronal loss and astrocytosis. These cases without characteristic neuropathology may go undiagnosed and consequently the true incidence of transmissible dementias is likely to have been under-estimated. Immunocytochemistry using antibodies to prion protein gives positive staining of these cases, albeit the pattern of immunostaining differs from that seen in typical forms. Accumulation of prion protein is a molecular hallmark of prion diseases, and thus a reproducible, speedy and cost-efficient immunocytochemical screening of unusual dementias may help to establish the true incidence of prion diseases.

  5. The expanding universe of prion diseases.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Prions cause fatal and transmissible neurodegenerative disease. These etiological infectious agents are formed in greater part from a misfolded cell-surface protein called PrP(C. Several mammalian species are affected by the diseases, and in the case of "mad cow disease" (BSE the agent has a tropism for humans, with negative consequences for agribusiness and public health. Unfortunately, the known universe of prion diseases is expanding. At least four novel prion diseases-including human diseases variant Creutzfeldt-Jakob disease (vCJD and sporadic fatal insomnia (sFI, bovine amyloidotic spongiform encephalopathy (BASE, and Nor98 of sheep-have been identified in the last ten years, and chronic wasting disease (CWD of North American deer (Odocoileus Specis and Rocky Mountain elk (Cervus elaphus nelsoni is undergoing a dramatic spread across North America. While amplification (BSE and dissemination (CWD, commercial sourcing of cervids from the wild and movement of farmed elk can be attributed to human activity, the origins of emergent prion diseases cannot always be laid at the door of humankind. Instead, the continued appearance of new outbreaks in the form of "sporadic" disease may be an inevitable outcome in a situation where the replicating pathogen is host-encoded.

  6. The expanding universe of prion diseases.

    Directory of Open Access Journals (Sweden)

    Joel C Watts

    2006-03-01

    Full Text Available Prions cause fatal and transmissible neurodegenerative disease. These etiological infectious agents are formed in greater part from a misfolded cell-surface protein called PrP(C. Several mammalian species are affected by the diseases, and in the case of "mad cow disease" (BSE the agent has a tropism for humans, with negative consequences for agribusiness and public health. Unfortunately, the known universe of prion diseases is expanding. At least four novel prion diseases--including human diseases variant Creutzfeldt-Jakob disease (vCJD and sporadic fatal insomnia (sFI, bovine amyloidotic spongiform encephalopathy (BASE, and Nor98 of sheep--have been identified in the last ten years, and chronic wasting disease (CWD of North American deer (Odocoileus Specis and Rocky Mountain elk (Cervus elaphus nelsoni is undergoing a dramatic spread across North America. While amplification (BSE and dissemination (CWD, commercial sourcing of cervids from the wild and movement of farmed elk can be attributed to human activity, the origins of emergent prion diseases cannot always be laid at the door of humankind. Instead, the continued appearance of new outbreaks in the form of "sporadic" disease may be an inevitable outcome in a situation where the replicating pathogen is host-encoded.

  7. The expanding universe of prion diseases.

    Science.gov (United States)

    Watts, Joel C; Balachandran, Aru; Westaway, David

    2006-03-01

    Prions cause fatal and transmissible neurodegenerative disease. These etiological infectious agents are formed in greater part from a misfolded cell-surface protein called PrP(C). Several mammalian species are affected by the diseases, and in the case of "mad cow disease" (BSE) the agent has a tropism for humans, with negative consequences for agribusiness and public health. Unfortunately, the known universe of prion diseases is expanding. At least four novel prion diseases--including human diseases variant Creutzfeldt-Jakob disease (vCJD) and sporadic fatal insomnia (sFI), bovine amyloidotic spongiform encephalopathy (BASE), and Nor98 of sheep--have been identified in the last ten years, and chronic wasting disease (CWD) of North American deer (Odocoileus Specis) and Rocky Mountain elk (Cervus elaphus nelsoni) is undergoing a dramatic spread across North America. While amplification (BSE) and dissemination (CWD, commercial sourcing of cervids from the wild and movement of farmed elk) can be attributed to human activity, the origins of emergent prion diseases cannot always be laid at the door of humankind. Instead, the continued appearance of new outbreaks in the form of "sporadic" disease may be an inevitable outcome in a situation where the replicating pathogen is host-encoded.

  8. Prion Disease: Learn the Facts. Avoid Exposure.

    Centers for Disease Control (CDC) Podcasts

    2011-05-23

    This podcast discusses prion diseases and the risk of exposure associated with some common activities.  Created: 5/23/2011 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 5/23/2011.

  9. Prion disease tempo determined by host-dependent substrate reduction

    NARCIS (Netherlands)

    Mays, C.E.; Kim, C.; Haldiman, T.; Merwe, v.d. J.; Lau, A.; Yang, J.; Grams, J.; Bari, Di M.A.; Nonno, R.; Telling, G.C.; Kong, Q.; Langeveld, J.P.M.; McKenzie, D.; Westaway, D.; Safar, J.G.

    2014-01-01

    The symptoms of prion infection can take years or decades to manifest following the initial exposure. Molecular markers of prion disease include accumulation of the misfolded prion protein (PrPSc), which is derived from its cellular precursor (PrPC), as well as downregulation of the PrP-like Shadoo

  10. The structural core of prion disease

    NARCIS (Netherlands)

    Boshuizen, R.S.

    2010-01-01

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are serious neurological ailments, in which the brain tissue deteriorates by progressive loss of brain cells which results in the loss of a wide variety of brain functions, including memory, speech and locomotion. Similar conditions

  11. Experimental Models of Inherited PrP Prion Diseases.

    Science.gov (United States)

    Watts, Joel C; Prusiner, Stanley B

    2017-11-01

    The inherited prion protein (PrP) prion disorders, which include familial Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker disease, and fatal familial insomnia, constitute ∼10%-15% of all PrP prion disease cases in humans. Attempts to generate animal models of these disorders using transgenic mice expressing mutant PrP have produced variable results. Although many lines of mice develop spontaneous signs of neurological illness with accompanying prion disease-specific neuropathological changes, others do not. Furthermore, demonstrating the presence of protease-resistant PrP species and prion infectivity-two of the hallmarks of the PrP prion disorders-in the brains of spontaneously sick mice has proven particularly challenging. Here, we review the progress that has been made toward developing accurate mouse models of the inherited PrP prion disorders. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  12. Involvement of Endogenous Retroviruses in Prion Diseases

    Directory of Open Access Journals (Sweden)

    Yong-Sun Kim

    2013-08-01

    Full Text Available For millions of years, vertebrates have been continuously exposed to infection by retroviruses. Ancient retroviral infection of germline cells resulted in the formation and accumulation of inherited retrovirus sequences in host genomes. These inherited retroviruses are referred to as endogenous retroviruses (ERVs, and recent estimates have revealed that a significant portion of animal genomes is made up of ERVs. Although various host factors have suppressed ERV activation, both positive and negative functions have been reported for some ERVs in normal and abnormal physiological conditions, such as in disease states. Similar to other complex diseases, ERV activation has been observed in prion diseases, and this review will discuss the potential involvement of ERVs in prion diseases.

  13. Synthetic Prions Provide Clues for Understanding Prion Diseases.

    Science.gov (United States)

    Imberdis, Thibaut; Harris, David A

    2016-04-01

    This Commentary highlights the article by Makarava et al that discusses the formation of synthetic prions and the role of substrate levels in their evolution. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Glycoform-selective prion formation in sporadic and familial forms of prion disease

    NARCIS (Netherlands)

    Xiao, X.; Yuan, J.; Haïk, S.; Cali, I.; Zhan, Y.; Moudjou, M.; Li, B.; Laplanche, J.L.; Laude, H.; Langeveld, J.P.M.; Gambetti, P.

    2013-01-01

    The four glycoforms of the cellular prion protein (PrP(C)) variably glycosylated at the two N-linked glycosylation sites are converted into their pathological forms (PrP(Sc)) in most cases of sporadic prion diseases. However, a prominent molecular characteristic of PrP(Sc) in the recently identified

  15. Efficient prion disease transmission through common environmental materials.

    Science.gov (United States)

    Pritzkow, Sandra; Morales, Rodrigo; Lyon, Adam; Concha-Marambio, Luis; Urayama, Akihiko; Soto, Claudio

    2018-03-02

    Prion diseases are a group of fatal neurodegenerative diseases associated with a protein-based infectious agent, termed prion. Compelling evidence suggests that natural transmission of prion diseases is mediated by environmental contamination with infectious prions. We hypothesized that several natural and man-made materials, commonly found in the environments of wild and captive animals, can bind prions and may act as vectors for disease transmission. To test our hypothesis, we exposed surfaces composed of various common environmental materials ( i.e. wood, rocks, plastic, glass, cement, stainless steel, aluminum, and brass) to hamster-adapted 263K scrapie prions and studied their attachment and retention of infectivity in vitro and in vivo Our results indicated that these surfaces, with the sole exception of brass, efficiently bind, retain, and release prions. Prion replication was studied in vitro using the protein misfolding cyclic amplification technology, and infectivity of surface-bound prions was analyzed by intracerebrally challenging hamsters with contaminated implants. Our results revealed that virtually all prion-contaminated materials transmitted the disease at high rates. To investigate a more natural form of exposure to environmental contamination, we simply housed animals with large contaminated spheres made of the different materials under study. Strikingly, most of the hamsters developed classical clinical signs of prion disease and typical disease-associated brain changes. Our findings suggest that prion contamination of surfaces commonly present in the environment can be a source of disease transmission, thus expanding our understanding of the mechanisms for prion spreading in nature. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. A naturally occurring variant of the human prion protein completely prevents prion disease.

    Science.gov (United States)

    Asante, Emmanuel A; Smidak, Michelle; Grimshaw, Andrew; Houghton, Richard; Tomlinson, Andrew; Jeelani, Asif; Jakubcova, Tatiana; Hamdan, Shyma; Richard-Londt, Angela; Linehan, Jacqueline M; Brandner, Sebastian; Alpers, Michael; Whitfield, Jerome; Mead, Simon; Wadsworth, Jonathan D F; Collinge, John

    2015-06-25

    Mammalian prions, transmissible agents causing lethal neurodegenerative diseases, are composed of assemblies of misfolded cellular prion protein (PrP). A novel PrP variant, G127V, was under positive evolutionary selection during the epidemic of kuru--an acquired prion disease epidemic of the Fore population in Papua New Guinea--and appeared to provide strong protection against disease in the heterozygous state. Here we have investigated the protective role of this variant and its interaction with the common, worldwide M129V PrP polymorphism. V127 was seen exclusively on a M129 PRNP allele. We demonstrate that transgenic mice expressing both variant and wild-type human PrP are completely resistant to both kuru and classical Creutzfeldt-Jakob disease (CJD) prions (which are closely similar) but can be infected with variant CJD prions, a human prion strain resulting from exposure to bovine spongiform encephalopathy prions to which the Fore were not exposed. Notably, mice expressing only PrP V127 were completely resistant to all prion strains, demonstrating a different molecular mechanism to M129V, which provides its relative protection against classical CJD and kuru in the heterozygous state. Indeed, this single amino acid substitution (G→V) at a residue invariant in vertebrate evolution is as protective as deletion of the protein. Further study in transgenic mice expressing different ratios of variant and wild-type PrP indicates that not only is PrP V127 completely refractory to prion conversion but acts as a potent dose-dependent inhibitor of wild-type prion propagation.

  17. Cholesterol Balance in Prion Diseases and Alzheimer’s Disease

    Science.gov (United States)

    Hannaoui, Samia; Shim, Su Yeon; Cheng, Yo Ching; Corda, Erica; Gilch, Sabine

    2014-01-01

    Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI) anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer’s disease (AD): whereas amyloid β peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD. PMID:25419621

  18. Cholesterol Balance in Prion Diseases and Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Samia Hannaoui

    2014-11-01

    Full Text Available Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer’s disease (AD: whereas amyloid β peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD.

  19. Fatal Prion Disease in a Mouse Model of Genetic E200K Creutzfeldt-Jakob Disease

    Science.gov (United States)

    Friedman-Levi, Yael; Meiner, Zeev; Canello, Tamar; Frid, Kati; Kovacs, Gabor G.; Budka, Herbert; Avrahami, Dana; Gabizon, Ruth

    2011-01-01

    Genetic prion diseases are late onset fatal neurodegenerative disorders linked to pathogenic mutations in the prion protein-encoding gene, PRNP. The most prevalent of these is the substitution of Glutamate for Lysine at codon 200 (E200K), causing genetic Creutzfeldt-Jakob disease (gCJD) in several clusters, including Jews of Libyan origin. Investigating the pathogenesis of genetic CJD, as well as developing prophylactic treatments for young asymptomatic carriers of this and other PrP mutations, may well depend upon the availability of appropriate animal models in which long term treatments can be evaluated for efficacy and toxicity. Here we present the first effective mouse model for E200KCJD, which expresses chimeric mouse/human (TgMHu2M) E199KPrP on both a null and a wt PrP background, as is the case for heterozygous patients and carriers. Mice from both lines suffered from distinct neurological symptoms as early as 5–6 month of age and deteriorated to death several months thereafter. Histopathological examination of the brain and spinal cord revealed early gliosis and age-related intraneuronal deposition of disease-associated PrP similarly to human E200K gCJD. Concomitantly we detected aggregated, proteinase K resistant, truncated and oxidized PrP forms on immunoblots. Inoculation of brain extracts from TgMHu2ME199K mice readily induced, the first time for any mutant prion transgenic model, a distinct fatal prion disease in wt mice. We believe that these mice may serve as an ideal platform for the investigation of the pathogenesis of genetic prion disease and thus for the monitoring of anti-prion treatments. PMID:22072968

  20. Fatal prion disease in a mouse model of genetic E200K Creutzfeldt-Jakob disease.

    Directory of Open Access Journals (Sweden)

    Yael Friedman-Levi

    2011-11-01

    Full Text Available Genetic prion diseases are late onset fatal neurodegenerative disorders linked to pathogenic mutations in the prion protein-encoding gene, PRNP. The most prevalent of these is the substitution of Glutamate for Lysine at codon 200 (E200K, causing genetic Creutzfeldt-Jakob disease (gCJD in several clusters, including Jews of Libyan origin. Investigating the pathogenesis of genetic CJD, as well as developing prophylactic treatments for young asymptomatic carriers of this and other PrP mutations, may well depend upon the availability of appropriate animal models in which long term treatments can be evaluated for efficacy and toxicity. Here we present the first effective mouse model for E200KCJD, which expresses chimeric mouse/human (TgMHu2M E199KPrP on both a null and a wt PrP background, as is the case for heterozygous patients and carriers. Mice from both lines suffered from distinct neurological symptoms as early as 5-6 month of age and deteriorated to death several months thereafter. Histopathological examination of the brain and spinal cord revealed early gliosis and age-related intraneuronal deposition of disease-associated PrP similarly to human E200K gCJD. Concomitantly we detected aggregated, proteinase K resistant, truncated and oxidized PrP forms on immunoblots. Inoculation of brain extracts from TgMHu2ME199K mice readily induced, the first time for any mutant prion transgenic model, a distinct fatal prion disease in wt mice. We believe that these mice may serve as an ideal platform for the investigation of the pathogenesis of genetic prion disease and thus for the monitoring of anti-prion treatments.

  1. Prions and neuro degenerative diseases

    African Journals Online (AJOL)

    user

    2011-03-28

    Mar 28, 2011 ... scrapie (a fatal disease of sheep and goats), mad cow disease, Creutzfeldt-Jacob disease, fatal familial insomnia, kuru .... The scrapie agent is extremely resistant to heat ... movement, or the stress of handling, the animal may.

  2. Human prion diseases in the United States.

    Directory of Open Access Journals (Sweden)

    Robert C Holman

    Full Text Available BACKGROUND: Prion diseases are a family of rare, progressive, neurodegenerative disorders that affect humans and animals. The most common form of human prion disease, Creutzfeldt-Jakob disease (CJD, occurs worldwide. Variant CJD (vCJD, a recently emerged human prion disease, is a zoonotic foodborne disorder that occurs almost exclusively in countries with outbreaks of bovine spongiform encephalopathy. This study describes the occurrence and epidemiology of CJD and vCJD in the United States. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of CJD and vCJD deaths using death certificates of US residents for 1979-2006, and those identified through other surveillance mechanisms during 1996-2008. Since CJD is invariably fatal and illness duration is usually less than one year, the CJD incidence is estimated as the death rate. During 1979 through 2006, an estimated 6,917 deaths with CJD as a cause of death were reported in the United States, an annual average of approximately 247 deaths (range 172-304 deaths. The average annual age-adjusted incidence for CJD was 0.97 per 1,000,000 persons. Most (61.8% of the CJD deaths occurred among persons >or=65 years of age for an average annual incidence of 4.8 per 1,000,000 persons in this population. Most deaths were among whites (94.6%; the age-adjusted incidence for whites was 2.7 times higher than that for blacks (1.04 and 0.40, respectively. Three patients who died since 2004 were reported with vCJD; epidemiologic evidence indicated that their infection was acquired outside of the United States. CONCLUSION/SIGNIFICANCE: Surveillance continues to show an annual CJD incidence rate of about 1 case per 1,000,000 persons and marked differences in CJD rates by age and race in the United States. Ongoing surveillance remains important for monitoring the stability of the CJD incidence rates, and detecting occurrences of vCJD and possibly other novel prion diseases in the United States.

  3. Ultraviolet-ozone treatment reduces levels of disease-associated prion protein and prion infectivity

    Science.gov (United States)

    Johnson, C.J.; Gilbert, P.; McKenzie, D.; Pedersen, J.A.; Aiken, Judd M.

    2009-01-01

    Background. Transmissible spongiform encephalopathies (TSEs) are a group of fatal neurodegenerative diseases caused by novel infectious agents referred to as prions. Prions appear to be composed primarily, if not exclusively, of a misfolded isoform of the cellular prion protein. TSE infectivity is remarkably stable and can resist many aggressive decontamination procedures, increasing human, livestock and wildlife exposure to TSEs. Findings. We tested the hypothesis that UV-ozone treatment reduces levels of the pathogenic prion protein and inactivates the infectious agent. We found that UV-ozone treatment decreased the carbon and prion protein content in infected brain homogenate to levels undetectable by dry-ashing carbon analysis or immunoblotting, respectively. After 8 weeks of ashing, UV-ozone treatment reduced the infectious titer of treated material by a factor of at least 105. A small amount of infectivity, however, persisted despite UV-ozone treatment. When bound to either montmorillonite clay or quartz surfaces, PrPTSE was still susceptible to degradation by UV-ozone. Conclusion. Our findings strongly suggest that UV-ozone treatment can degrade pathogenic prion protein and inactivate prions, even when the agent is associated with surfaces. Using larger UV-ozone doses or combining UV-ozone treatment with other decontaminant methods may allow the sterilization of TSE-contaminated materials. ?? 2009 Aiken et al; licensee BioMed Central Ltd.

  4. Transmission of chronic wasting disease identifies a prion strain causing cachexia and heart infection in hamsters.

    Directory of Open Access Journals (Sweden)

    Richard A Bessen

    Full Text Available Chronic wasting disease (CWD is an emerging prion disease of free-ranging and captive cervids in North America. In this study we established a rodent model for CWD in Syrian golden hamsters that resemble key features of the disease in cervids including cachexia and infection of cardiac muscle. Following one to three serial passages of CWD from white-tailed deer into transgenic mice expressing the hamster prion protein gene, CWD was subsequently passaged into Syrian golden hamsters. In one passage line there were preclinical changes in locomotor activity and a loss of body mass prior to onset of subtle neurological symptoms around 340 days. The clinical symptoms included a prominent wasting disease, similar to cachexia, with a prolonged duration. Other features of CWD in hamsters that were similar to cervid CWD included the brain distribution of the disease-specific isoform of the prion protein, PrP(Sc, prion infection of the central and peripheral neuroendocrine system, and PrP(Sc deposition in cardiac muscle. There was also prominent PrP(Sc deposition in the nasal mucosa on the edge of the olfactory sensory epithelium with the lumen of the nasal airway that could have implications for CWD shedding into nasal secretions and disease transmission. Since the mechanism of wasting disease in prion diseases is unknown this hamster CWD model could provide a means to investigate the physiological basis of cachexia, which we propose is due to a prion-induced endocrinopathy. This prion disease phenotype has not been described in hamsters and we designate it as the 'wasting' or WST strain of hamster CWD.

  5. Disturbed vesicular trafficking of membrane proteins in prion disease.

    Science.gov (United States)

    Uchiyama, Keiji; Miyata, Hironori; Sakaguchi, Suehiro

    2013-01-01

    The pathogenic mechanism of prion diseases remains unknown. We recently reported that prion infection disturbs post-Golgi trafficking of certain types of membrane proteins to the cell surface, resulting in reduced surface expression of membrane proteins and abrogating the signal from the proteins. The surface expression of the membrane proteins was reduced in the brains of mice inoculated with prions, well before abnormal symptoms became evident. Prions or pathogenic prion proteins were mainly detected in endosomal compartments, being particularly abundant in recycling endosomes. Some newly synthesized membrane proteins are delivered to the surface from the Golgi apparatus through recycling endosomes, and some endocytosed membrane proteins are delivered back to the surface through recycling endosomes. These results suggest that prions might cause neuronal dysfunctions and cell loss by disturbing post-Golgi trafficking of membrane proteins via accumulation in recycling endosomes. Interestingly, it was recently shown that delivery of a calcium channel protein to the cell surface was impaired and its function was abrogated in a mouse model of hereditary prion disease. Taken together, these results suggest that impaired delivery of membrane proteins to the cell surface is a common pathogenic event in acquired and hereditary prion diseases.

  6. Chronic wasting disease prion infection of differentiated neurospheres.

    Science.gov (United States)

    Iwamaru, Yoshifumi; Mathiason, Candace K; Telling, Glenn C; Hoover, Edward A

    2017-07-04

    A possible strategy to develop more diverse cell culture systems permissive to infection with naturally occurring prions is to exploit culture of neurospheres from transgenic mice expressing the normal prion protein (PrP) of the native host species. Accordingly, we developed differentiated neurosphere cultures from the cervid PrP-expressing mice to investigate whether this in vitro system would support replication of non-adapted cervid-origin chronic wasting disease (CWD) prions. Here we report the successful amplification of disease-associated PrP in differentiated neurosphere cultures within 3 weeks after exposure to CWD prions from both white-tailed deer or elk. This neurosphere culture system provides a new in vitro tool that can be used to assess non-adapted CWD prion propagation and transmission.

  7. Infectious prion diseases in humans: cannibalism, iatrogenicity and zoonoses.

    Science.gov (United States)

    Haïk, Stéphane; Brandel, Jean-Philippe

    2014-08-01

    In contrast with other neurodegenerative disorders associated to protein misfolding, human prion diseases include infectious forms (also called transmitted forms) such as kuru, iatrogenic Creutzfeldt-Jakob disease and variant Creutzfeldt-Jakob disease. The transmissible agent is thought to be solely composed of the abnormal isoform (PrP(Sc)) of the host-encoded prion protein that accumulated in the central nervous system of affected individuals. Compared to its normal counterpart, PrP(Sc) is β-sheet enriched and aggregated and its propagation is based on an autocatalytic conversion process. Increasing evidence supports the view that conformational variations of PrP(Sc) encoded the biological properties of the various prion strains that have been isolated by transmission studies in experimental models. Infectious forms of human prion diseases played a pivotal role in the emergence of the prion concept and in the characterization of the very unconventional properties of prions. They provide a unique model to understand how prion strains are selected and propagate in humans. Here, we review and discuss how genetic factors interplay with strain properties and route of transmission to influence disease susceptibility, incubation period and phenotypic expression in the light of the kuru epidemics due to ritual endocannibalism, the various series iatrogenic diseases secondary to extractive growth hormone treatment or dura mater graft and the epidemics of variant Creutzfeldt-Jakob disease linked to dietary exposure to the agent of bovine spongiform encephalopathy. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Primary transmission of chronic wasting disease versus scrapie prions from small ruminants to transgenic mice expressing ovine or cervid prion protein.

    Science.gov (United States)

    Madsen-Bouterse, Sally A; Schneider, David A; Zhuang, Dongyue; Dassanayake, Rohana P; Balachandran, Aru; Mitchell, Gordon B; O'Rourke, Katherine I

    2016-09-01

    Development of mice expressing either ovine (Tg338) or cervid (TgElk) prion protein (PrP) have aided in characterization of scrapie and chronic wasting disease (CWD), respectively. Experimental inoculation of sheep with CWD prions has demonstrated the potential for interspecies transmission but, infection with CWD versus classical scrapie prions may be difficult to differentiate using validated diagnostic platforms. In this study, mouse bioassay in Tg338 and TgElk was utilized to evaluate transmission of CWD versus scrapie prions from small ruminants. Mice (≥5 per homogenate) were inoculated with brain homogenates from clinically affected sheep or goats with naturally acquired classical scrapie, white-tailed deer with naturally acquired CWD (WTD-CWD) or sheep with experimentally acquired CWD derived from elk (sheep-passaged-CWD). Survival time (time to clinical disease) and attack rates (brain accumulation of protease resistant PrP, PrPres) were determined. Inoculation with classical scrapie prions resulted in clinical disease and 100 % attack rates in Tg338, but no clinical disease at endpoint (>300 days post-inoculation, p.i.) and low attack rates (6.8 %) in TgElk. Inoculation with WTD-CWD prions yielded no clinical disease or brain PrPres accumulation in Tg338 at endpoint (>500 days p.i.), but rapid onset of clinical disease (~121 days p.i.) and 100 % attack rate in TgElk. Sheep-passaged-CWD resulted in transmission to both mouse lines with 100 % attack rates at endpoint in Tg338 and an attack rate of ~73 % in TgElk with some culled due to clinical disease. These primary transmission observations demonstrate the potential of bioassay in Tg338 and TgElk to help differentiate possible infection with CWD versus classical scrapie prions in sheep and goats.

  9. Prion diseases and adult neurogenesis: how do prions counteract the brain's endogenous repair machinery?

    Science.gov (United States)

    Relaño-Ginés, Aroa; Lehmann, Sylvain; Crozet, Carole

    2014-01-01

    Scientific advances in stem cell biology and adult neurogenesis have raised the hope that neurodegenerative disorders could benefit from stem cell-based therapy. Adult neurogenesis might be part of the physiological regenerative process, however it might become impaired by the disease's mechanism and therefore contribute to neurodegeneration. In prion disorders this endogenous repair system has rarely been studied. Whether adult neurogenesis plays a role or not in brain repair or in the propagation of prion pathology remains unclear. We have recently investigated the status of adult neural stem cells isolated from prion-infected mice. We were able to show that neural stem cells accumulate and replicate prions thus resulting in an alteration of their neuronal destiny. We also reproduced these results in adult neural stem cells, which were infected in vitro. The fact that endogenous adult neurogenesis could be altered by the accumulation of misfolded prion protein represents another great challenge. Inhibiting prion propagation in these cells would thus help the endogenous neurogenesis to compensate for the injured neuronal system. Moreover, understanding the endogenous modulation of the neurogenesis system would help develop effective neural stem cell-based therapies.

  10. Current and future molecular diagnostics for prion diseases.

    Science.gov (United States)

    Lehto, Marty T; Peery, Harry E; Cashman, Neil R

    2006-07-01

    It is now widely held that the infectious agents underlying the transmissible spongiform encephalopathies are prions, which are primarily composed of a misfolded, protease-resistant isoform of the host prion protein. Untreatable prion disorders include some human diseases, such as Creutzfeldt-Jakob disease, and diseases of economically important animals, such as bovine spongiform encephalopathy (cattle) and chronic wasting disease (deer and elk). Detection and diagnosis of prion disease (and presymptomatic incubation) is contingent upon developing novel assays, which exploit properties uniquely possessed by this misfolded protein complex, rather than targeting an agent-specific nucleic acid. This review highlights some of the conventional and disruptive technologies developed to respond to this challenge.

  11. Molecular pathogenesis of sporadic prion diseases in man

    Science.gov (United States)

    Safar, Jiri G.

    2012-01-01

    The yeast, fungal and mammalian prions determine heritable and infectious traits that are encoded in alternative conformations of proteins. They cause lethal sporadic, familial and infectious neurodegenerative conditions in man, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), kuru, sporadic fatal insomnia (SFI) and likely variable protease-sensitive prionopathy (VPSPr). The most prevalent of human prion diseases is sporadic (s)CJD. Recent advances in amplification and detection of prions led to considerable optimism that early and possibly preclinical diagnosis and therapy might become a reality. Although several drugs have already been tested in small numbers of sCJD patients, there is no clear evidence of any agent’s efficacy. Therefore, it remains crucial to determine the full spectrum of sCJD prion strains and the conformational features in the pathogenic human prion protein governing replication of sCJD prions. Research in this direction is essential for the rational development of diagnostic as well as therapeutic strategies. Moreover, there is growing recognition that fundamental processes involved in human prion propagation – intercellular induction of protein misfolding and seeded aggregation of misfolded host proteins – are of far wider significance. This insight leads to new avenues of research in the ever-widening spectrum of age-related human neurodegenerative diseases that are caused by protein misfolding and that pose a major challenge for healthcare. PMID:22421210

  12. Guinea Pig Prion Protein Supports Rapid Propagation of Bovine Spongiform Encephalopathy and Variant Creutzfeldt-Jakob Disease Prions.

    Science.gov (United States)

    Watts, Joel C; Giles, Kurt; Saltzberg, Daniel J; Dugger, Brittany N; Patel, Smita; Oehler, Abby; Bhardwaj, Sumita; Sali, Andrej; Prusiner, Stanley B

    2016-11-01

    The biochemical and neuropathological properties of bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) prions are faithfully maintained upon transmission to guinea pigs. However, primary and secondary transmissions of BSE and vCJD in guinea pigs result in long incubation periods of ∼450 and ∼350 days, respectively. To determine if the incubation periods of BSE and vCJD prions could be shortened, we generated transgenic (Tg) mice expressing guinea pig prion protein (GPPrP). Inoculation of Tg(GPPrP) mice with BSE and vCJD prions resulted in mean incubation periods of 210 and 199 days, respectively, which shortened to 137 and 122 days upon serial transmission. In contrast, three different isolates of sporadic CJD prions failed to transmit disease to Tg(GPPrP) mice. Many of the strain-specified biochemical and neuropathological properties of BSE and vCJD prions, including the presence of type 2 protease-resistant PrP Sc , were preserved upon propagation in Tg(GPPrP) mice. Structural modeling revealed that two residues near the N-terminal region of α-helix 1 in GPPrP might mediate its susceptibility to BSE and vCJD prions. Our results demonstrate that expression of GPPrP in Tg mice supports the rapid propagation of BSE and vCJD prions and suggest that Tg(GPPrP) mice may serve as a useful paradigm for bioassaying these prion isolates. Variant Creutzfeldt-Jakob disease (vCJD) and bovine spongiform encephalopathy (BSE) prions are two of the prion strains most relevant to human health. However, propagating these strains in mice expressing human or bovine prion protein has been difficult because of prolonged incubation periods or inefficient transmission. Here, we show that transgenic mice expressing guinea pig prion protein are fully susceptible to vCJD and BSE prions but not to sporadic CJD prions. Our results suggest that the guinea pig prion protein is a better, more rapid substrate than either bovine or human prion protein for

  13. Prion disease resembling frontotemporal dementia and parkinsonism linked to chromosome 17

    Directory of Open Access Journals (Sweden)

    Nitrini Ricardo

    2001-01-01

    Full Text Available OBJECTIVE: To compare the clinical features of a familial prion disease with those of frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17. BACKGROUND: Prion diseases are not usually considered in the differential diagnosis of FTDP-17, since familial Creutzfeldt-Jakob disease (CJD, the most common inherited prion disease, often manifests as a rapidly progressive dementia. Conversely, FTDP-17 usually has an insidious onset in the fifth decade, with abnormal behavior and parkinsonian features. METHOD: We present the clinical features of 12 patients from a family with CJD associated with a point mutation at codon 183 of the prion protein gene. RESULTS: The mean age at onset was 44.0 ± 3.7; the duration of the symptoms until death ranged from two to nine years. Behavioral disturbances were the predominant presenting symptoms. Nine patients were first seen by psychiatrists. Eight patients manifested parkinsonian signs. CONCLUSION: These clinical features bear a considerable resemblance to those described in FTDP-17.

  14. Inherited prion disease A117V is not simply a proteinopathy but produces prions transmissible to transgenic mice expressing homologous prion protein.

    Directory of Open Access Journals (Sweden)

    Emmanuel A Asante

    Full Text Available Prions are infectious agents causing fatal neurodegenerative diseases of humans and animals. In humans, these have sporadic, acquired and inherited aetiologies. The inherited prion diseases are caused by one of over 30 coding mutations in the human prion protein (PrP gene (PRNP and many of these generate infectious prions as evidenced by their experimental transmissibility by inoculation to laboratory animals. However, some, and in particular an extensively studied type of Gerstmann-Sträussler-Scheinker syndrome (GSS caused by a PRNP A117V mutation, are thought not to generate infectious prions and instead constitute prion proteinopathies with a quite distinct pathogenetic mechanism. Multiple attempts to transmit A117V GSS have been unsuccessful and typical protease-resistant PrP (PrP(Sc, pathognomonic of prion disease, is not detected in brain. Pathogenesis is instead attributed to production of an aberrant topological form of PrP, C-terminal transmembrane PrP ((CtmPrP. Barriers to transmission of prion strains from one species to another appear to relate to structural compatibility of PrP in host and inoculum and we have therefore produced transgenic mice expressing human 117V PrP. We found that brain tissue from GSS A117V patients did transmit disease to these mice and both the neuropathological features of prion disease and presence of PrP(Sc was demonstrated in the brains of recipient transgenic mice. This PrP(Sc rapidly degraded during laboratory analysis, suggesting that the difficulty in its detection in patients with GSS A117V could relate to post-mortem proteolysis. We conclude that GSS A117V is indeed a prion disease although the relative contributions of (CtmPrP and prion propagation in neurodegeneration and their pathogenetic interaction remains to be established.

  15. Inherited prion disease A117V is not simply a proteinopathy but produces prions transmissible to transgenic mice expressing homologous prion protein.

    Science.gov (United States)

    Asante, Emmanuel A; Linehan, Jacqueline M; Smidak, Michelle; Tomlinson, Andrew; Grimshaw, Andrew; Jeelani, Asif; Jakubcova, Tatiana; Hamdan, Shyma; Powell, Caroline; Brandner, Sebastian; Wadsworth, Jonathan D F; Collinge, John

    2013-01-01

    Prions are infectious agents causing fatal neurodegenerative diseases of humans and animals. In humans, these have sporadic, acquired and inherited aetiologies. The inherited prion diseases are caused by one of over 30 coding mutations in the human prion protein (PrP) gene (PRNP) and many of these generate infectious prions as evidenced by their experimental transmissibility by inoculation to laboratory animals. However, some, and in particular an extensively studied type of Gerstmann-Sträussler-Scheinker syndrome (GSS) caused by a PRNP A117V mutation, are thought not to generate infectious prions and instead constitute prion proteinopathies with a quite distinct pathogenetic mechanism. Multiple attempts to transmit A117V GSS have been unsuccessful and typical protease-resistant PrP (PrP(Sc)), pathognomonic of prion disease, is not detected in brain. Pathogenesis is instead attributed to production of an aberrant topological form of PrP, C-terminal transmembrane PrP ((Ctm)PrP). Barriers to transmission of prion strains from one species to another appear to relate to structural compatibility of PrP in host and inoculum and we have therefore produced transgenic mice expressing human 117V PrP. We found that brain tissue from GSS A117V patients did transmit disease to these mice and both the neuropathological features of prion disease and presence of PrP(Sc) was demonstrated in the brains of recipient transgenic mice. This PrP(Sc) rapidly degraded during laboratory analysis, suggesting that the difficulty in its detection in patients with GSS A117V could relate to post-mortem proteolysis. We conclude that GSS A117V is indeed a prion disease although the relative contributions of (Ctm)PrP and prion propagation in neurodegeneration and their pathogenetic interaction remains to be established.

  16. Clinically Unsuspected Prion Disease Among Patients With Dementia Diagnoses in an Alzheimer's Disease Database.

    Science.gov (United States)

    Maddox, Ryan A; Blase, J L; Mercaldo, N D; Harvey, A R; Schonberger, L B; Kukull, W A; Belay, E D

    2015-12-01

    Brain tissue analysis is necessary to confirm prion diseases. Clinically unsuspected cases may be identified through neuropathologic testing. National Alzheimer's Coordinating Center (NACC) Minimum and Neuropathologic Data Set for 1984 to 2005 were reviewed. Eligible patients had dementia, underwent autopsy, had available neuropathologic data, belonged to a currently funded Alzheimer's Disease Center (ADC), and were coded as having an Alzheimer's disease clinical diagnosis or a nonprion disease etiology. For the eligible patients with neuropathology indicating prion disease, further clinical information, collected from the reporting ADC, determined whether prion disease was considered before autopsy. Of 6000 eligible patients in the NACC database, 7 (0.12%) were clinically unsuspected but autopsy-confirmed prion disease cases. The proportion of patients with dementia with clinically unrecognized but autopsy-confirmed prion disease was small. Besides confirming clinically suspected cases, neuropathology is useful to identify unsuspected clinically atypical cases of prion disease. © The Author(s) 2015.

  17. Genesis of mammalian prions: from non-infectious amyloid fibrils to a transmissible prion disease.

    Directory of Open Access Journals (Sweden)

    Natallia Makarava

    2011-12-01

    Full Text Available The transmissible agent of prion disease consists of a prion protein in its abnormal, β-sheet rich state (PrP(Sc, which is capable of replicating itself according to the template-assisted mechanism. This mechanism postulates that the folding pattern of a newly recruited polypeptide chain accurately reproduces that of a PrP(Sc template. Here we report that authentic PrP(Sc and transmissible prion disease can be generated de novo in wild type animals by recombinant PrP (rPrP amyloid fibrils, which are structurally different from PrP(Sc and lack any detectable PrP(Sc particles. When induced by rPrP fibrils, a long silent stage that involved two serial passages preceded development of the clinical disease. Once emerged, the prion disease was characterized by unique clinical, neuropathological, and biochemical features. The long silent stage to the disease was accompanied by significant transformation in neuropathological properties and biochemical features of the proteinase K-resistant PrP material (PrPres before authentic PrP(Sc evolved. The current work illustrates that transmissible prion diseases can be induced by PrP structures different from that of authentic PrP(Sc and suggests that a new mechanism different from the classical templating exists. This new mechanism designated as "deformed templating" postulates that a change in the PrP folding pattern from the one present in rPrP fibrils to an alternative specific for PrP(Sc can occur. The current work provides important new insight into the mechanisms underlying genesis of the transmissible protein states and has numerous implications for understanding the etiology of neurodegenerative diseases.

  18. Enzymatic Digestion of Chronic Wasting Disease Prions Bound to Soil

    Science.gov (United States)

    SAUNDERS, SAMUEL E.; BARTZ, JASON C.; VERCAUTEREN, KURT C.; BARTELT-HUNT, SHANNON L.

    2010-01-01

    Chronic wasting disease (CWD) and sheep scrapie can be transmitted via indirect environmental routes, and it is known that soil can serve as a reservoir of prion infectivity. Given the strong interaction between the prion protein (PrP) and soil, we hypothesized that binding to soil enhances prion resistance to enzymatic digestion, thereby facilitating prion longevity in the environment and providing protection from host degradation. We characterized the performance of a commercially available subtilisin enzyme, the Prionzyme, to degrade soil-bound and unbound CWD and HY TME PrP as a function of pH, temperature, and treatment time. The subtilisin enzyme effectively degraded PrP adsorbed to a wide range of soils and soil minerals below the limits of detection. Signal loss occurred rapidly at high pH (12.5) and within 7 d under conditions representative of the natural environment (pH 7.4, 22°C). We observed no apparent difference in enzyme effectiveness between bound and unbound CWD PrP. Our results show that although adsorbed prions do retain relative resistance to enzymatic digestion compared with other brain homogenate proteins, they can be effectively degraded when bound to soil. Our results also suggest a topical application of a subtilisin enzyme solution may be an effective decontamination method to limit disease transmission via environmental ‘hot spots’ of prion infectivity. PMID:20450190

  19. Prion diseases of the brain; Prionenerkrankung des Gehirns

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Kira; Urbach, Horst [Universitaetsklinik Freiburg (Germany). Klinik fuer Neuroradiologie

    2015-09-15

    The prion diseases of the brain, especially Creutzfeldt-Jakob disease, are rare fatal neurodegenerative disorders. A definitive CJD diagnosis is currently only possible by a brain biopsy or post mortem autopsy. The diagnosis of Creutzfeldt-Jakob disease is based on clinical signs, pathognomonic EEG, on typical MRI findings and the examination of the cerebrospinal fluid. Using the MRI the diagnosis Creutzfeldt-Jakob disease can be confirmed or excluded with high certainty. The MRI examination should contain diffusion-weighted and FLAIR imaging sequences. This review article provides an overview of the prion diseases of the brain with the corresponding imaging findings.

  20. Prion disease. The characteristics and diagnostic points in Japan

    International Nuclear Information System (INIS)

    Sanjo, Nobuo; Mizusawa, Hidehiro

    2010-01-01

    Prion disease develops when normal prion proteins change into transmissible abnormal prion proteins and the converted proteins accumulate in the brain. The Japanese Creutzfeldt-Jakob Disease (CJD) Surveillance Committee has identified 1,320 patients with prion diseases in the 10 years since 1999 (classified into 3 types: sporadic, 77.2%; hereditary, 16.7%; and environmentally acquired, 6.1%). Compared with patients in other countries, a relatively larger number of Japanese patients characteristically have dura mater graft-associated CJD and hereditary prion diseases. All the environmentally acquired cases, except 1 case of variant CJD, were acquired from dura grafts. Although most patients were diagnosed with a classical subtype of sporadic CJD (sCJD), whose features include rapidly progressing dementia, myoclonus, hyperintensity in the cerebral cortex and basal ganglia in diffusion-weighted magnetic resonance imaging, and periodic synchronous discharge in electroencephalography, the number of cases with atypical symptoms, such as MM2 (0.8%), MV2 (0.2%), VV1 (0%), and VV2 (0.2%) subtypes of sCJD cases, was not negligible. Appropriate diagnosis should be made based on clinical features, neuroradiological findings, cerebrospinal fluid (CSF) findings (14-3-3 and total tau proteins), and genetic analysis of polymorphisms. Hereditary prion diseases are classified into 3 major phenotypes: familial CJD (fCJD); Gerstmann-Straeussler-Scheinker disease (GSS), which mainly presents as spinocerebellar ataxia; and fatal familial insomnia. Many mutations of the prion protein gene have been identified, but V1801 (fCJD), P102L (GSS), and E200K (fCJD) mutations were the most common among the fCJD cases in Japan. Without a family history, genetic testing is necessary to distinguish even seemingly ''sporadic'' CJD from fCJD. Accurate diagnosis is important for clarification of the pathological process, prevention of secondary infection, and also psychological support. (author)

  1. Prying into the Prion Hypothesis for Parkinson's Disease.

    Science.gov (United States)

    Brundin, Patrik; Melki, Ronald

    2017-10-11

    In Parkinson's disease, intracellular α-synuclein inclusions form in neurons. We suggest that prion-like behavior of α-synuclein is a key component in Parkinson's disease pathogenesis. Although multiple molecular changes are involved in the triggering of the disease process, we propose that neuron-to-neuron transfer is a crucial event that is essential for Lewy pathology to spread from one brain region to another. In this review, we describe key findings in human postmortem brains, cultured cells, and animal models of disease that support the idea that α-synuclein can act as a prion. We consider potential triggers of the α-synuclein misfolding and why the aggregates escape cellular degradation under disease conditions. We also discuss whether different strains of α-synuclein fibrils can underlie differences in cellular and regional distribution of aggregates in different synucleinopathies. Our conclusion is that α-synuclein probably acts as a prion in human diseases, and a deeper understanding of this step in the pathogenesis of Parkinson's disease can facilitate the development of disease-modifying therapies in the future. Dual Perspectives Companion Paper: Parkinson's Disease Is Not Simply a Prion Disorder, by D. James Surmeier, José A. Obeso, and Glenda M. Halliday. Copyright © 2017 the authors 0270-6474/17/379808-11$15.00/0.

  2. Insights into mechanisms of transmission and pathogenesis from transgenic mouse models of prion diseases

    Science.gov (United States)

    Moreno, Julie A.; Telling, Glenn C.

    2018-01-01

    Prions represent a new paradigm of protein-mediated information transfer. In the case of mammals, prions are the cause of fatal, transmissible neurodegenerative diseases, sometimes referred to as transmissible spongiform encephalopathies (TSE’s), which frequently occur as epidemics. An increasing body of evidence indicates that the canonical mechanism of conformational corruption of cellular prion protein (PrPC) by the pathogenic isoform (PrPSc) that is the basis of prion formation in TSE’s, is common to a spectrum of proteins associated with various additional human neurodegenerative disorders, including the more common Alzheimer’s and Parkinson’s diseases. The peerless infectious properties of TSE prions, and the unparalleled tools for their study, therefore enable elucidation of mechanisms of template-mediated conformational propagation that are generally applicable to these related disease states. Many unresolved issues remain including the exact molecular nature of the prion, the detailed cellular and molecular mechanisms of prion propagation, and the means by which prion diseases can be both genetic and infectious. In addition, we know little about the mechanism by which neurons degenerate during prion diseases. Tied to this, the physiological role of the normal form of the prion protein remains unclear and it is uncertain whether or not loss of this function contributes to prion pathogenesis. The factors governing the transmission of prions between species remain unclear, in particular the means by which prion strains and PrP primary structure interact to affect inter-species prion transmission. Despite all these unknowns, advances in our understanding of prions have occurred because of their transmissibility to experimental animals and the development of transgenic (Tg) mouse models has done much to further our understanding about various aspects of prion biology. In this review we will focus on advances in our understanding of prion biology that

  3. Ascertainment bias causes false signal of anticipation in genetic prion disease.

    Science.gov (United States)

    Minikel, Eric Vallabh; Zerr, Inga; Collins, Steven J; Ponto, Claudia; Boyd, Alison; Klug, Genevieve; Karch, André; Kenny, Joanna; Collinge, John; Takada, Leonel T; Forner, Sven; Fong, Jamie C; Mead, Simon; Geschwind, Michael D

    2014-10-02

    Anticipation is the phenomenon whereby age of onset in genetic disease decreases in successive generations. Three independent reports have claimed anticipation in Creutzfeldt-Jakob disease (CJD) caused by the c.598G > A mutation in PRNP encoding a p.Glu200Lys (E200K) substitution in the prion protein. If confirmed, this finding would carry clear implications for genetic counseling. We analyzed pedigrees with this mutation from four prion centers worldwide (n = 217 individuals with the mutation) to analyze age of onset and death in affected and censored individuals. We show through simulation that selective ascertainment of individuals whose onset falls within the historical window since the mutation's 1989 discovery is sufficient to create robust false signals both of anticipation and of heritability of age of onset. In our data set, the number of years of anticipation observed depends upon how strictly the data are limited by the ascertainment window. Among individuals whose disease was directly observed at a study center, a 28-year difference between parent and child age of onset is observed (p = 0.002), but including individuals ascertained retrospectively through family history reduces this figure to 7 years (p = 0.005). Applying survival analysis to the most thoroughly ascertained subset of data eliminates the signal of anticipation. Moreover, even non-CJD deaths exhibit 16 years anticipation (p = 0.002), indicating that ascertainment bias can entirely explain observed anticipation. We suggest that reports of anticipation in genetic prion disease are driven entirely by ascertainment bias. Guidelines for future studies claiming statistical evidence for anticipation are suggested. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. The Distribution of Prion Protein Allotypes Differs Between Sporadic and Iatrogenic Creutzfeldt-Jakob Disease Patients.

    Science.gov (United States)

    Moore, Roger A; Head, Mark W; Ironside, James W; Ritchie, Diane L; Zanusso, Gianluigi; Choi, Young Pyo; Pyo Choi, Young; Priola, Suzette A

    2016-02-01

    Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent of the human prion diseases, which are fatal and transmissible neurodegenerative diseases caused by the infectious prion protein (PrP(Sc)). The origin of sCJD is unknown, although the initiating event is thought to be the stochastic misfolding of endogenous prion protein (PrP(C)) into infectious PrP(Sc). By contrast, human growth hormone-associated cases of iatrogenic CJD (iCJD) in the United Kingdom (UK) are associated with exposure to an exogenous source of PrP(Sc). In both forms of CJD, heterozygosity at residue 129 for methionine (M) or valine (V) in the prion protein gene may affect disease phenotype, onset and progression. However, the relative contribution of each PrP(C) allotype to PrP(Sc) in heterozygous cases of CJD is unknown. Using mass spectrometry, we determined that the relative abundance of PrP(Sc) with M or V at residue 129 in brain specimens from MV cases of sCJD was highly variable. This result is consistent with PrP(C) containing an M or V at residue 129 having a similar propensity to misfold into PrP(Sc) thus causing sCJD. By contrast, PrP(Sc) with V at residue 129 predominated in the majority of the UK human growth hormone associated iCJD cases, consistent with exposure to infectious PrP(Sc) containing V at residue 129. In both types of CJD, the PrP(Sc) allotype ratio had no correlation with CJD type, age at clinical onset, or disease duration. Therefore, factors other than PrP(Sc) allotype abundance must influence the clinical progression and phenotype of heterozygous cases of CJD.

  5. Gene knockout of tau expression does not contribute to the pathogenesis of prion disease.

    Science.gov (United States)

    Lawson, Victoria A; Klemm, Helen M; Welton, Jeremy M; Masters, Colin L; Crouch, Peter; Cappai, Roberto; Ciccotosto, Giuseppe D

    2011-11-01

    Prion diseases or transmissible spongiform encephalopathies are a group of fatal and transmissible disorders affecting the central nervous system of humans and animals. The principal agent of prion disease transmission and pathogenesis is proposed to be an abnormal protease-resistant isoform of the normal cellular prion protein. The microtubule-associated protein tau is elevated in patients with Creutzfeldt-Jakob disease. To determine whether tau expression contributes to prion disease pathogenesis, tau knockout and control wild-type mice were infected with the M1000 strain of mouse-adapted human prions. Immunohistochemical analysis for total tau expression in prion-infected wild-type mice indicated tau aggregation in the cytoplasm of a subpopulation of neurons in regions associated with spongiform change. Western immunoblot analysis of brain homogenates revealed a decrease in total tau immunoreactivity and epitope-specific changes in tau phosphorylation. No significant difference in incubation period or other disease features were observed between tau knockout and wild-type mice with clinical prion disease. These results demonstrate that, in this model of prion disease, tau does not contribute to the pathogenesis of prion disease and that changes in the tau protein profile observed in mice with clinical prion disease occurs as a consequence of the prion-induced pathogenesis.

  6. Putting prions into focus: application of single molecule detection to the diagnosis of prion diseases.

    Science.gov (United States)

    Giese, A; Bieschke, J; Eigen, M; Kretzschmar, H A

    2000-01-01

    Prion diseases are characterized by the cerebral deposition of an aggregated pathological isoform of the prion protein (PrP(Sc)) which constitutes the principal component of the transmissible agent termed prion. In order to develop a highly sensitive method for the detection of PrP(Sc) aggregates in biological samples such as cerebrospinal fluid (CSF), we used a method based on Fluorescence Correlation Spectroscopy (FCS), a technique which allows detection of single fluorescently labeled molecules in solution. Within the FCS setup, fluorescent photons emitted by molecules passing an open volume element defined by the beam of an excitation laser focussed into a diffraction-limited spot are imaged confocally onto a single photon counting detector. Aggregates of PrP(Sc) could be labeled by co-aggregation of probe molecules such as monomeric recombinant PrP or PrP-specific antibodies tagged with a fluorescent dye. In addition to slow diffusion, labeled aggregates are characterized by high fluorescence intensity, which allows detection and quantification by analysis of fluorescence intensity distribution. To improve detection of rare target particles, the accessible volume element was increased by scanning for intensely fluorescent targets (SIFT). To further improve sensitivity and specificity, two different probes were used simultaneously in a two-color setup. In a diagnostic model system of CSF spiked with purified prion rods, dual-color SIFT was more sensitive than Western blot analysis. In addition, a PrP(Sc)-specific signal was also detected in a number of CSF samples derived from CJD patients but not in controls.

  7. Resistance to chronic wasting disease in transgenic mice expressing a naturally occurring allelic variant of deer prion protein

    NARCIS (Netherlands)

    Meade-White, K.; Race, B.; Trifilo, M.; Bossers, A.; Favara, C.; Lacasse, R.; Miller, M.; Williams, E.; Oldstone, M.; Race, R.; Chesebro, B.

    2007-01-01

    Prion protein (PrP) is a required factor for susceptibility to transmissible spongiform encephalopathy or prion diseases. In transgenic mice, expression of prion protein (PrP) from another species often confers susceptibility to prion disease from that donor species. For example, expression of deer

  8. Virus Infections on Prion Diseased Mice Exacerbate Inflammatory Microglial Response

    Science.gov (United States)

    Lins, Nara; Mourão, Luiz; Trévia, Nonata; Passos, Aline; Farias, José Augusto; Assunção, Jarila; Bento-Torres, João; Consentino Kronka Sosthenes, Marcia; Diniz, José Antonio Picanço; Vasconcelos, Pedro Fernando da Costa

    2016-01-01

    We investigated possible interaction between an arbovirus infection and the ME7 induced mice prion disease. C57BL/6, females, 6-week-old, were submitted to a bilateral intrahippocampal injection of ME7 prion strain (ME7) or normal brain homogenate (NBH). After injections, animals were organized into two groups: NBH (n = 26) and ME7 (n = 29). At 15th week after injections (wpi), animals were challenged intranasally with a suspension of Piry arbovirus 0.001% or with NBH. Behavioral changes in ME7 animals appeared in burrowing activity at 14 wpi. Hyperactivity on open field test, errors on rod bridge, and time reduction in inverted screen were detected at 15th, 19th, and 20th wpi respectively. Burrowing was more sensitive to earlier hippocampus dysfunction. However, Piry-infection did not significantly affect the already ongoing burrowing decline in the ME7-treated mice. After behavioral tests, brains were processed for IBA1, protease-resistant form of PrP, and Piry virus antigens. Although virus infection in isolation did not change the number of microglia in CA1, virus infection in prion diseased mice (at 17th wpi) induced changes in number and morphology of microglia in a laminar-dependent way. We suggest that virus infection exacerbates microglial inflammatory response to a greater degree in prion-infected mice, and this is not necessarily correlated with hippocampal-dependent behavioral deficits. PMID:28003864

  9. Genetic Predictions of Prion Disease Susceptibility in Carnivore Species Based on Variability of the Prion Gene Coding Region

    Science.gov (United States)

    Stewart, Paula; Campbell, Lauren; Skogtvedt, Susan; Griffin, Karen A.; Arnemo, Jon M.; Tryland, Morten; Girling, Simon; Miller, Michael W.; Tranulis, Michael A.; Goldmann, Wilfred

    2012-01-01

    Mammalian species vary widely in their apparent susceptibility to prion diseases. For example, several felid species developed prion disease (feline spongiform encephalopathy or FSE) during the bovine spongiform encephalopathy (BSE) epidemic in the United Kingdom, whereas no canine BSE cases were detected. Whether either of these or other groups of carnivore species can contract other prion diseases (e.g. chronic wasting disease or CWD) remains an open question. Variation in the host-encoded prion protein (PrPC) largely explains observed disease susceptibility patterns within ruminant species, and may explain interspecies differences in susceptibility as well. We sequenced and compared the open reading frame of the PRNP gene encoding PrPC protein from 609 animal samples comprising 29 species from 22 genera of the Order Carnivora; amongst these samples were 15 FSE cases. Our analysis revealed that FSE cases did not encode an identifiable disease-associated PrP polymorphism. However, all canid PrPs contained aspartic acid or glutamic acid at codon 163 which we propose provides a genetic basis for observed susceptibility differences between canids and felids. Among other carnivores studied, wolverine (Gulo gulo) and pine marten (Martes martes) were the only non-canid species to also express PrP-Asp163, which may impact on their prion diseases susceptibility. Populations of black bear (Ursus americanus) and mountain lion (Puma concolor) from Colorado showed little genetic variation in the PrP protein and no variants likely to be highly resistant to prions in general, suggesting that strain differences between BSE and CWD prions also may contribute to the limited apparent host range of the latter. PMID:23236380

  10. Genetic predictions of prion disease susceptibility in carnivore species based on variability of the prion gene coding region.

    Directory of Open Access Journals (Sweden)

    Paula Stewart

    Full Text Available Mammalian species vary widely in their apparent susceptibility to prion diseases. For example, several felid species developed prion disease (feline spongiform encephalopathy or FSE during the bovine spongiform encephalopathy (BSE epidemic in the United Kingdom, whereas no canine BSE cases were detected. Whether either of these or other groups of carnivore species can contract other prion diseases (e.g. chronic wasting disease or CWD remains an open question. Variation in the host-encoded prion protein (PrP(C largely explains observed disease susceptibility patterns within ruminant species, and may explain interspecies differences in susceptibility as well. We sequenced and compared the open reading frame of the PRNP gene encoding PrP(C protein from 609 animal samples comprising 29 species from 22 genera of the Order Carnivora; amongst these samples were 15 FSE cases. Our analysis revealed that FSE cases did not encode an identifiable disease-associated PrP polymorphism. However, all canid PrPs contained aspartic acid or glutamic acid at codon 163 which we propose provides a genetic basis for observed susceptibility differences between canids and felids. Among other carnivores studied, wolverine (Gulo gulo and pine marten (Martes martes were the only non-canid species to also express PrP-Asp163, which may impact on their prion diseases susceptibility. Populations of black bear (Ursus americanus and mountain lion (Puma concolor from Colorado showed little genetic variation in the PrP protein and no variants likely to be highly resistant to prions in general, suggesting that strain differences between BSE and CWD prions also may contribute to the limited apparent host range of the latter.

  11. Increased expression of p62/SQSTM1 in prion diseases and its association with pathogenic prion protein.

    Science.gov (United States)

    Homma, Takujiro; Ishibashi, Daisuke; Nakagaki, Takehiro; Satoh, Katsuya; Sano, Kazunori; Atarashi, Ryuichiro; Nishida, Noriyuki

    2014-03-28

    Prion diseases are neurodegenerative disorders characterized by the aggregation of abnormally folded prion protein (PrP(Sc)). In this study, we focused on the mechanism of clearance of PrP(Sc), which remains unclear. p62 is a cytosolic protein known to mediate both the formation and degradation of aggregates of abnormal proteins. The levels of p62 protein increased in prion-infected brains and persistently infected cell cultures. Upon proteasome inhibition, p62 co-localized with PrP(Sc), forming a large aggregate in the perinuclear region, hereafter referred to as PrP(Sc)-aggresome. These aggregates were surrounded with autophagosome marker LC3 and lysosomes in prion-infected cells. Moreover, transient expression of the phosphomimic form of p62, which has enhanced ubiquitin-binding activity, reduced the amount of PrP(Sc) in prion-infected cells, indicating that the activation of p62 could accelerate the clearance of PrP(Sc). Our findings would thus suggest that p62 could be a target for the therapeutic control of prion diseases.

  12. Disease Transmission by Misfolded Prion-Protein Isoforms, Prion-Like Amyloids, Functional Amyloids and the Central Dogma.

    Science.gov (United States)

    Daus, Martin L

    2016-01-04

    In 1982, the term "prions" (proteinaceous infectious particles) was coined to specify a new principle of infection. A misfolded isoform of a cellular protein has been described as the causative agent of a fatal neurodegenerative disease. At the beginning of prion research scientists assumed that the infectious agent causing transmissible spongiform encephalopathy (TSE) was a virus, but some unconventional properties of these pathogens were difficult to bring in line with the prevailing viral model. The discovery that prions (obviously devoid of any coding nucleic acid) can store and transmit information similarly to DNA was initially even denoted as being "heretical" but is nowadays mainly accepted by the scientific community. This review describes, from a historical point of view, how the "protein-only hypothesis" expands the Central Dogma. Definition of both, the prion principle and the Central Dogma, have been essential steps to understand information storage and transfer within and among cells and organisms. Furthermore, the current understanding of the infectivity of prion-proteins after misfolding is summarized succinctly. Finally, prion-like amyloids and functional amyloids, as found in yeast and bacteria, will be discussed.

  13. Secretin receptor involvement in prion-infected cells and animals.

    Science.gov (United States)

    Kimura, Tomohiro; Nishizawa, Keiko; Oguma, Ayumi; Nishimura, Yuki; Sakasegawa, Yuji; Teruya, Kenta; Nishijima, Ichiko; Doh-ura, Katsumi

    2015-07-08

    The cellular mechanisms behind prion biosynthesis and metabolism remain unclear. Here we show that secretin signaling via the secretin receptor regulates abnormal prion protein formation in prion-infected cells. Animal studies demonstrate that secretin receptor deficiency slightly, but significantly, prolongs incubation time in female but not male mice. This gender-specificity is consistent with our finding that prion-infected cells are derived from females. Therefore, our results provide initial insights into the reasons why age of disease onset in certain prion diseases is reported to occur slightly earlier in females than males. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Searching for Factors that Distinguish Disease-Prone and Disease-Resistant Prions via Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Lukasz Kurgan

    2008-01-01

    Full Text Available The exact mechanisms of prion misfolding and factors that predispose an individual to prion diseases are largely unknown. Our approach to identifying candidate factors in-silico relies on contrasting the C-terminal domain of PrPC sequences from two groups of vertebrate species: those that have been found to suffer from prion diseases, and those that have not. We propose that any significant differences between the two groups are candidate factors that may predispose individuals to develop prion disease, which should be further analyzed by wet-lab investigations. Using an array of computational methods we identified possible point mutations that could predispose PrPC to misfold into PrPSc. Our results include confirmatory findings such as the V210I mutation, and new findings including P137M, G142D, G142N, D144P, K185T, V189I, H187Y and T191P mutations, which could impact structural stability. We also propose new hypotheses that give insights into the stability of helix-2 and -3. These include destabilizing effects of Histidine and T188-T193 segment in helix-2 in the disease-prone prions, and a stabilizing effect of Leucine on helix-3 in the disease-resistant prions.

  15. Glycoform-Selective Prion Formation in Sporadic and Familial Forms of Prion Disease

    Science.gov (United States)

    Xiao, Xiangzhu; Yuan, Jue; Haïk, Stéphane; Cali, Ignazio; Zhan, Yian; Moudjou, Mohammed; Li, Baiya; Laplanche, Jean-Louis; Laude, Hubert; Langeveld, Jan; Gambetti, Pierluigi; Kitamoto, Tetsuyuki; Kong, Qingzhong; Brandel, Jean-Philippe; Cobb, Brian A.; Petersen, Robert B.; Zou, Wen-Quan

    2013-01-01

    The four glycoforms of the cellular prion protein (PrPC) variably glycosylated at the two N-linked glycosylation sites are converted into their pathological forms (PrPSc) in most cases of sporadic prion diseases. However, a prominent molecular characteristic of PrPSc in the recently identified variably protease-sensitive prionopathy (VPSPr) is the absence of a diglycosylated form, also notable in familial Creutzfeldt-Jakob disease (fCJD), which is linked to mutations in PrP either from Val to Ile at residue 180 (fCJDV180I) or from Thr to Ala at residue 183 (fCJDT183A). Here we report that fCJDV180I, but not fCJDT183A, exhibits a proteinase K (PK)-resistant PrP (PrPres) that is markedly similar to that observed in VPSPr, which exhibits a five-step ladder-like electrophoretic profile, a molecular hallmark of VPSPr. Remarkably, the absence of the diglycosylated PrPres species in both fCJDV180I and VPSPr is likewise attributable to the absence of PrPres glycosylated at the first N-linked glycosylation site at residue 181, as in fCJDT183A. In contrast to fCJDT183A, both VPSPr and fCJDV180I exhibit glycosylation at residue 181 on di- and monoglycosylated (mono181) PrP prior to PK-treatment. Furthermore, PrPV180I with a typical glycoform profile from cultured cells generates detectable PrPres that also contains the diglycosylated PrP in addition to mono- and unglycosylated forms upon PK-treatment. Taken together, our current in vivo and in vitro studies indicate that sporadic VPSPr and familial CJDV180I share a unique glycoform-selective prion formation pathway in which the conversion of diglycosylated and mono181 PrPC to PrPSc is inhibited, probably by a dominant-negative effect, or by other co-factors. PMID:23527023

  16. Disease Transmission by Misfolded Prion-Protein Isoforms, Prion-Like Amyloids, Functional Amyloids and the Central Dogma

    Directory of Open Access Journals (Sweden)

    Martin L. Daus

    2016-01-01

    Full Text Available In 1982, the term “prions” (proteinaceous infectious particles was coined to specify a new principle of infection. A misfolded isoform of a cellular protein has been described as the causative agent of a fatal neurodegenerative disease. At the beginning of prion research scientists assumed that the infectious agent causing transmissible spongiform encephalopathy (TSE was a virus, but some unconventional properties of these pathogens were difficult to bring in line with the prevailing viral model. The discovery that prions (obviously devoid of any coding nucleic acid can store and transmit information similarly to DNA was initially even denoted as being “heretical” but is nowadays mainly accepted by the scientific community. This review describes, from a historical point of view, how the “protein-only hypothesis” expands the Central Dogma. Definition of both, the prion principle and the Central Dogma, have been essential steps to understand information storage and transfer within and among cells and organisms. Furthermore, the current understanding of the infectivity of prion-proteins after misfolding is summarized succinctly. Finally, prion-like amyloids and functional amyloids, as found in yeast and bacteria, will be discussed.

  17. Detection of type 1 prion protein in variant Creutzfeldt-Jakob disease

    NARCIS (Netherlands)

    Yull, H.M.; Ritchie, D.L.; Langeveld, J.P.M.; Zijderveld, van F.G.; Bruce, M.E.; Ironside, J.W.; Head, M.W.

    2006-01-01

    Molecular typing of the abnormal form of the prion protein (PrPSc) has come to be regarded as a powerful tool in the investigation of the prion diseases. All evidence thus far presented indicates a single PrPSc molecular type in variant Creutzfeldt-Jakob disease (termed type 2B), presumably

  18. Protease-sensitive synthetic prions.

    Directory of Open Access Journals (Sweden)

    David W Colby

    2010-01-01

    Full Text Available Prions arise when the cellular prion protein (PrP(C undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrP(Sc. Frequently, PrP(Sc is protease-resistant but protease-sensitive (s prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164, denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174 did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrP(Sc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600-750 days in Tg4053 mice, which exhibited sPrP(Sc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrP(Sc.

  19. Genetic human prion disease modelled in PrP transgenic Drosophila.

    Science.gov (United States)

    Thackray, Alana M; Cardova, Alzbeta; Wolf, Hanna; Pradl, Lydia; Vorberg, Ina; Jackson, Walker S; Bujdoso, Raymond

    2017-09-20

    Inherited human prion diseases, such as fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD), are associated with autosomal dominant mutations in the human prion protein gene PRNP and accumulation of PrP Sc , an abnormal isomer of the normal host protein PrP C , in the brain of affected individuals. PrP Sc is the principal component of the transmissible neurotoxic prion agent. It is important to identify molecular pathways and cellular processes that regulate prion formation and prion-induced neurotoxicity. This will allow identification of possible therapeutic interventions for individuals with, or at risk from, genetic human prion disease. Increasingly, Drosophila has been used to model human neurodegenerative disease. An important unanswered question is whether genetic prion disease with concomitant spontaneous prion formation can be modelled in Drosophila We have used pUAST/PhiC31-mediated site-directed mutagenesis to generate Drosophila transgenic for murine or hamster PrP (prion protein) that carry single-codon mutations associated with genetic human prion disease. Mouse or hamster PrP harbouring an FFI (D178N) or fCJD (E200K) mutation showed mild Proteinase K resistance when expressed in Drosophila Adult Drosophila transgenic for FFI or fCJD variants of mouse or hamster PrP displayed a spontaneous decline in locomotor ability that increased in severity as the flies aged. Significantly, this mutant PrP-mediated neurotoxic fly phenotype was transferable to recipient Drosophila that expressed the wild-type form of the transgene. Collectively, our novel data are indicative of the spontaneous formation of a PrP-dependent neurotoxic phenotype in FFI- or CJD-PrP transgenic Drosophila and show that inherited human prion disease can be modelled in this invertebrate host. © 2017 The Author(s).

  20. [Doctor Francoise Cathala and history of prions diseases].

    Science.gov (United States)

    Court, L; Hauw, J-J

    2015-12-01

    Doctor Françoise Cathala Pagesy, MD, MS, born on July 7, 1921 in Paris, passed away peacefully at home on November 5, 2012. Unconventional, passionate and enthusiastic neurologist and virologist, she devoted her life to research on latent and slow viral infections, specializing mainly on unconventional transmissible agents or prions. As a research member of Inserm (French Institute for Medical Research), she soon joined the team of Carlton Gajdusek (the NINCDS - National Institute of Nervous Central System and Stroke - of NIH), who first demonstrated the transmissibility of kuru and Creutzfeldt-Jakob disease to monkeys. When she came back to Paris, where she was followed by one of NIH members, Paul Brown, she joined the Centre de Recherches du Service de Santé des Armées (Army Health Research Center), in Percy-Clamart, where she found the experimental design and the attentive help needed for her research, which appeared heretical to many French virologists, including some authorities. A large number of research programs were set up with numerous collaborations involving CEA (Center for Atomic Energy) and other institutions in Paris and Marseilles on epidemiology, results of tissue inoculation, electrophysiology and neuropathology of human and animal prions diseases, and resistance of the infectious agent. International symposia were set up, where met, in the Val-de-Grâce hospital in Paris, the research community on "slow viral diseases". Stanley Prusiner introduced the concept - then badly accepted and still in evolution - of prion, a protein only infectious agent. Before retiring from Inserm, Françoise Cathala predicted and was involved in some of the huge sanitary crises in France. These were, first, Creutzfeldt-Jakob disease from contaminated growth hormone extracted from cadavers, which led parents to instigate legal procedure - a quite unusual practice in France. The second was Mad cow disease in the United Kingdom then in France, followed by new variant

  1. Mapping Neurodegenerative Disease Onset and Progression.

    Science.gov (United States)

    Seeley, William W

    2017-08-01

    Brain networks have been of long-standing interest to neurodegeneration researchers, including but not limited to investigators focusing on conventional prion diseases, which are known to propagate along neural pathways. Tools for human network mapping, however, remained inadequate, limiting our understanding of human brain network architecture and preventing clinical research applications. Until recently, neuropathological studies were the only viable approach to mapping disease onset and progression in humans but required large autopsy cohorts and laborious methods for whole-brain sectioning and staining. Despite important advantages, postmortem studies cannot address in vivo, physiological, or longitudinal questions and have limited potential to explore early-stage disease except for the most common disorders. Emerging in vivo network-based neuroimaging strategies have begun to address these issues, providing data that complement the neuropathological tradition. Overall, findings to date highlight several fundamental principles of neurodegenerative disease anatomy and pathogenesis, as well as some enduring mysteries. These principles and mysteries provide a road map for future research. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  2. Pathways of Prion Spread during Early Chronic Wasting Disease in Deer.

    Science.gov (United States)

    Hoover, Clare E; Davenport, Kristen A; Henderson, Davin M; Denkers, Nathaniel D; Mathiason, Candace K; Soto, Claudio; Zabel, Mark D; Hoover, Edward A

    2017-05-15

    Among prion infections, two scenarios of prion spread are generally observed: (i) early lymphoid tissue replication or (ii) direct neuroinvasion without substantial antecedent lymphoid amplification. In nature, cervids are infected with chronic wasting disease (CWD) prions by oral and nasal mucosal exposure, and studies of early CWD pathogenesis have implicated pharyngeal lymphoid tissue as the earliest sites of prion accumulation. However, knowledge of chronological events in prion spread during early infection remains incomplete. To investigate this knowledge gap in early CWD pathogenesis, we exposed white-tailed deer to CWD prions by mucosal routes and performed serial necropsies to assess PrP CWD tissue distribution by real-time quaking-induced conversion (RT-QuIC) and tyramide signal amplification immunohistochemistry (TSA-IHC). Although PrP CWD was not detected by either method in the initial days (1 and 3) postexposure, we observed PrP CWD seeding activity and follicular immunoreactivity in oropharyngeal lymphoid tissues at 1 and 2 months postexposure (MPE). At 3 MPE, PrP CWD replication had expanded to all systemic lymphoid tissues. By 4 MPE, the PrP CWD burden in all lymphoid tissues had increased and approached levels observed in terminal disease, yet there was no evidence of nervous system invasion. These results indicate the first site of CWD prion entry is in the oropharynx, and the initial phase of prion amplification occurs in the oropharyngeal lymphoid tissues followed by rapid dissemination to systemic lymphoid tissues. This lymphoid replication phase appears to precede neuroinvasion. IMPORTANCE Chronic wasting disease (CWD) is a universally fatal transmissible spongiform encephalopathy affecting cervids, and natural infection occurs through oral and nasal mucosal exposure to infectious prions. Terminal disease is characterized by PrP CWD accumulation in the brain and lymphoid tissues of affected animals. However, the initial sites of prion

  3. Unraveling the key to the resistance of canids to prion diseases.

    Directory of Open Access Journals (Sweden)

    Natalia Fernández-Borges

    2017-11-01

    Full Text Available One of the characteristics of prions is their ability to infect some species but not others and prion resistant species have been of special interest because of their potential in deciphering the determinants for susceptibility. Previously, we developed different in vitro and in vivo models to assess the susceptibility of species that were erroneously considered resistant to prion infection, such as members of the Leporidae and Equidae families. Here we undertake in vitro and in vivo approaches to understand the unresolved low prion susceptibility of canids. Studies based on the amino acid sequence of the canine prion protein (PrP, together with a structural analysis in silico, identified unique key amino acids whose characteristics could orchestrate its high resistance to prion disease. Cell- and brain-based PMCA studies were performed highlighting the relevance of the D163 amino acid in proneness to protein misfolding. This was also investigated by the generation of a novel transgenic mouse model carrying this substitution and these mice showed complete resistance to disease despite intracerebral challenge with three different mouse prion strains (RML, 22L and 301C known to cause disease in wild-type mice. These findings suggest that dog D163 amino acid is primarily, if not totally, responsible for the prion resistance of canids.

  4. Advancing prion science: guidance for the National Prion Research Program

    National Research Council Canada - National Science Library

    Erdtmann, Rick; Sivitz, Laura

    2004-01-01

    ...€™s National Prion Research Program (NPRP). Transmissible spongiform encephalopathies (TSEs), also called prion diseases, are invariably fatal neurodegenerative infectious diseases that include bovine spongiform encephalopathy...

  5. Co-existence of scrapie prion protein types 1 and 2 in sporadic Creutzfeldt-Jakob disease: its effect on the phenotype and prion-type characteristics

    NARCIS (Netherlands)

    Cali, I.; Castellani, R.; Alshekhlee, A.; Cohen, Y.; Blevins, J.; Yuan, J.; Langeveld, J.P.M.; Parchi, P.; Safar, J.G.; Zou, W.Q.; Gambetti, P.

    2009-01-01

    Five phenotypically distinct subtypes have been identified in sporadic Creutzfeldt-Jakob disease (sCJD), based on the methionine/valine polymorphic genotype of codon 129 of the prion protein (PrP) gene and the presence of either one of the two protease K-resistant scrapie prion protein (PrPSc) types

  6. Pros and cons of a prion-like pathogenesis in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Brotchie Jonathan M

    2011-06-01

    Full Text Available Abstract Background Parkinson's disease (PD is a slowly progressive neurodegenerative disorder which affects widespread areas of the brainstem, basal ganglia and cerebral cortex. A number of proteins are known to accumulate in parkinsonian brains including ubiquitin and α-synuclein. Prion diseases are sporadic, genetic or infectious disorders with various clinical and histopathological features caused by prion proteins as infectious proteinaceous particles transmitting a misfolded protein configuration through brain tissue. The most important form is Creutzfeldt-Jakob disease which is associated with a self-propagating pathological precursor form of the prion protein that is physiologically widely distributed in the central nervous system. Discussion It has recently been found that α-synuclein may behave similarly to the prion precursor and propagate between cells. The post-mortem proof of α-synuclein containing Lewy bodies in embryonic dopamine cells transplants in PD patient suggests that the misfolded protein might be transmitted from the diseased host to donor neurons reminiscent of prion behavior. The involvement of the basal ganglia and brainstem in the degenerative process are other congruencies between Parkinson's and Creutzfeldt-Jakob disease. However, a number of issues advise caution before categorizing Parkinson's disease as a prion disorder, because clinical appearance, brain imaging, cerebrospinal fluid and neuropathological findings exhibit fundamental differences between both disease entities. Most of all, infectiousness, a crucial hallmark of prion diseases, has never been observed in PD so far. Moreover, the cellular propagation of the prion protein has not been clearly defined and it is, therefore, difficult to assess the molecular similarities between the two disease entities. Summary At the current state of knowledge, the molecular pathways of transmissible pathogenic proteins are not yet fully understood. Their exact

  7. PrPST, a Soluble, Protease Resistant and Truncated PrP Form Features in the Pathogenesis of a Genetic Prion Disease

    Science.gov (United States)

    Frid, Kati; Binyamin, Orli; Gabizon, Ruth

    2013-01-01

    While the conversion of PrPC into PrPSc in the transmissible form of prion disease requires a preexisting PrPSc seed, in genetic prion disease accumulation of disease related PrP could be associated with biochemical and metabolic modifications resulting from the designated PrP mutation. To investigate this possibility, we looked into the time related changes of PrP proteins in the brains of TgMHu2ME199K/wt mice, a line modeling for heterozygous genetic prion disease linked to the E200K PrP mutation. We found that while oligomeric entities of mutant E199KPrP exist at all ages, aggregates of wt PrP in the same brains presented only in advanced disease, indicating a late onset conversion process. We also show that most PK resistant PrP in TgMHu2ME199K mice is soluble and truncated (PrPST), a pathogenic form never before associated with prion disease. We next looked into brain samples from E200K patients and found that both PK resistant PrPs, PrPST as in TgMHu2ME199K mice, and “classical” PrPSc as in infectious prion diseases, coincide in the patient's post mortem brains. We hypothesize that aberrant metabolism of mutant PrPs may result in the formation of previously unknown forms of the prion protein and that these may be central for the fatal outcome of the genetic prion condition. PMID:23922744

  8. PrP(ST), a soluble, protease resistant and truncated PrP form features in the pathogenesis of a genetic prion disease.

    Science.gov (United States)

    Friedman-Levi, Yael; Mizrahi, Michal; Frid, Kati; Binyamin, Orli; Gabizon, Ruth

    2013-01-01

    While the conversion of PrP(C) into PrP(Sc) in the transmissible form of prion disease requires a preexisting PrP(Sc) seed, in genetic prion disease accumulation of disease related PrP could be associated with biochemical and metabolic modifications resulting from the designated PrP mutation. To investigate this possibility, we looked into the time related changes of PrP proteins in the brains of TgMHu2ME199K/wt mice, a line modeling for heterozygous genetic prion disease linked to the E200K PrP mutation. We found that while oligomeric entities of mutant E199KPrP exist at all ages, aggregates of wt PrP in the same brains presented only in advanced disease, indicating a late onset conversion process. We also show that most PK resistant PrP in TgMHu2ME199K mice is soluble and truncated (PrP(ST)), a pathogenic form never before associated with prion disease. We next looked into brain samples from E200K patients and found that both PK resistant PrPs, PrP(ST) as in TgMHu2ME199K mice, and "classical" PrP(Sc) as in infectious prion diseases, coincide in the patient's post mortem brains. We hypothesize that aberrant metabolism of mutant PrPs may result in the formation of previously unknown forms of the prion protein and that these may be central for the fatal outcome of the genetic prion condition.

  9. PrP(ST, a soluble, protease resistant and truncated PrP form features in the pathogenesis of a genetic prion disease.

    Directory of Open Access Journals (Sweden)

    Yael Friedman-Levi

    Full Text Available While the conversion of PrP(C into PrP(Sc in the transmissible form of prion disease requires a preexisting PrP(Sc seed, in genetic prion disease accumulation of disease related PrP could be associated with biochemical and metabolic modifications resulting from the designated PrP mutation. To investigate this possibility, we looked into the time related changes of PrP proteins in the brains of TgMHu2ME199K/wt mice, a line modeling for heterozygous genetic prion disease linked to the E200K PrP mutation. We found that while oligomeric entities of mutant E199KPrP exist at all ages, aggregates of wt PrP in the same brains presented only in advanced disease, indicating a late onset conversion process. We also show that most PK resistant PrP in TgMHu2ME199K mice is soluble and truncated (PrP(ST, a pathogenic form never before associated with prion disease. We next looked into brain samples from E200K patients and found that both PK resistant PrPs, PrP(ST as in TgMHu2ME199K mice, and "classical" PrP(Sc as in infectious prion diseases, coincide in the patient's post mortem brains. We hypothesize that aberrant metabolism of mutant PrPs may result in the formation of previously unknown forms of the prion protein and that these may be central for the fatal outcome of the genetic prion condition.

  10. Prion-Seeding Activity Is widely Distributed in Tissues of Sporadic Creutzfeldt-Jakob Disease Patients

    Directory of Open Access Journals (Sweden)

    Hanae Takatsuki, PhD

    2016-10-01

    Full Text Available Human prion diseases are neurodegenerative disorders caused by abnormally folded prion proteins in the central nervous system. These proteins can be detected using the quaking-induced conversion assay. Compared with other bioassays, this assay is extremely sensitive and was used in the present study to determine prion distribution in sporadic Creutzfeldt-Jakob disease patients at autopsy. Although infectivity of the sporadic form is thought to be restricted within the central nervous system, results showed that prion-seeding activities reach 106/g from a 50% seeding dose in non-neuronal tissues, suggesting that prion-seeding activity exists in non-neural organs, and we suggested that non-neural tissues of 106/g SD50 did not exist the infectivity.

  11. Prion-Seeding Activity Is widely Distributed in Tissues of Sporadic Creutzfeldt-Jakob Disease Patients.

    Science.gov (United States)

    Takatsuki, Hanae; Fuse, Takayuki; Nakagaki, Takehiro; Mori, Tsuyoshi; Mihara, Ban; Takao, Masaki; Iwasaki, Yasushi; Yoshida, Mari; Murayama, Shigeo; Atarashi, Ryuichiro; Nishida, Noriyuki; Satoh, Katsuya

    2016-10-01

    Human prion diseases are neurodegenerative disorders caused by abnormally folded prion proteins in the central nervous system. These proteins can be detected using the quaking-induced conversion assay. Compared with other bioassays, this assay is extremely sensitive and was used in the present study to determine prion distribution in sporadic Creutzfeldt-Jakob disease patients at autopsy. Although infectivity of the sporadic form is thought to be restricted within the central nervous system, results showed that prion-seeding activities reach 10 6 /g from a 50% seeding dose in non-neuronal tissues, suggesting that prion-seeding activity exists in non-neural organs, and we suggested that non-neural tissues of 10 6 /g SD50 did not exist the infectivity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Human prion diseases in The Netherlands : clinico-pathological, genetic and molecular aspects

    NARCIS (Netherlands)

    Jansen, C.

    2011-01-01

    Prion diseases, or transmissible spongiform encephalopathies (TSEs), are invariably fatal neurodegenerative disorders that can be sporadic, inherited or acquired by infection. In humans, TSEs comprise three major groups showing a wide phenotypic heterogeneity: Creutzfeldt-Jakob disease (CJD),

  13. The Prion Protein Preference of Sporadic Creutzfeldt-Jakob Disease Subtypes*

    Science.gov (United States)

    Klemm, Helen M. J.; Welton, Jeremy M.; Masters, Colin L.; Klug, Genevieve M.; Boyd, Alison; Hill, Andrew F.; Collins, Steven J.; Lawson, Victoria A.

    2012-01-01

    Sporadic Creutzfeldt-Jakob disease (CJD) is the most prevalent manifestation of the transmissible spongiform encephalopathies or prion diseases affecting humans. The disease encompasses a spectrum of clinical phenotypes that have been correlated with molecular subtypes that are characterized by the molecular mass of the protease-resistant fragment of the disease-related conformation of the prion protein and a polymorphism at codon 129 of the gene encoding the prion protein. A cell-free assay of prion protein misfolding was used to investigate the ability of these sporadic CJD molecular subtypes to propagate using brain-derived sources of the cellular prion protein (PrPC). This study confirmed the presence of three distinct sporadic CJD molecular subtypes with PrPC substrate requirements that reflected their codon 129 associations in vivo. However, the ability of a sporadic CJD molecular subtype to use a specific PrPC substrate was not determined solely by codon 129 as the efficiency of prion propagation was also influenced by the composition of the brain tissue from which the PrPC substrate was sourced, thus indicating that nuances in PrPC or additional factors may determine sporadic CJD subtype. The results of this study will aid in the design of diagnostic assays that can detect prion disease across the diversity of sporadic CJD subtypes. PMID:22930754

  14. Mutation and polymorphism of the prion protein gene in Libyan Jews with Creutzfeldt-Jakob disease (CJD)

    Energy Technology Data Exchange (ETDEWEB)

    Gabizon, R.; Rosenmann, H.; Meiner, Z.; Kahana, I. (Hadassah Univ., Jerusalem (Israel)); Kahana, E. (Barzilai Medical Center, Ashkelon (Israel)); Shugart, Y.; Ott, J. (Columbia Univ., New York, NY (United States)); Prusiner, S.B. (Univ. of California, San Francisco, CA (United States))

    1993-10-01

    The inherited prion diseases are neurodegenerative disorders which are not only genetic but also transmissible. More than a dozen mutations in the prion protein gene that result in nonconservative amino acid substitutions segregate with the inherited prion diseases including familial Creutzfeldt-Jakob disease (CJD). In Israel, the incidence of CJD is about 1 case/10[sup 4] Libyan Jews. A Lys[sub 200] substitution segregates with CJD and is reported here to be genetically linked to CJD with a lod score of >4.8. Some healthy elderly Lys[sub 200] carriers > age 65 years were identified, suggesting the possibility of incomplete penetrance. In contrast, no linkage was found between the development of familial CJD and a polymorphism encoding either Met[sub 129] or Val[sub 129]. All Libyan Jewish CJD patients with the Lys[sub 200] mutation encode a Met[sub 129] on the mutant allele. Homozygosity for Met[sub 129] did not correlate with age at disease onset or the duration of illness. The frequency of the Met[sub 129] allele was higher in the affected pedigrees than in a control population of Libyan Jews. The frequency of the Met[sub 129] and Val[sub 129] alleles in the control Libyan population was similar to that found in the general Caucasian population. The identification of three Libyan Jews homozygous for the Lys[sub 200] mutation suggests frequent intrafamilial marriages, a custom documented by genealogical investigations. 26 refs., 3 figs., 6 tabs.

  15. Emerging prion disease drives host selection in a wildlife population

    Science.gov (United States)

    Robinson, Stacie J.; Samuel, Michael D.; Johnson, Chad J.; Adams, Marie; McKenzie, Debbie I.

    2012-01-01

    Infectious diseases are increasingly recognized as an important force driving population dynamics, conservation biology, and natural selection in wildlife populations. Infectious agents have been implicated in the decline of small or endangered populations and may act to constrain population size, distribution, growth rates, or migration patterns. Further, diseases may provide selective pressures that shape the genetic diversity of populations or species. Thus, understanding disease dynamics and selective pressures from pathogens is crucial to understanding population processes, managing wildlife diseases, and conserving biological diversity. There is ample evidence that variation in the prion protein gene (PRNP) impacts host susceptibility to prion diseases. Still, little is known about how genetic differences might influence natural selection within wildlife populations. Here we link genetic variation with differential susceptibility of white-tailed deer to chronic wasting disease (CWD), with implications for fitness and disease-driven genetic selection. We developed a single nucleotide polymorphism (SNP) assay to efficiently genotype deer at the locus of interest (in the 96th codon of the PRNP gene). Then, using a Bayesian modeling approach, we found that the more susceptible genotype had over four times greater risk of CWD infection; and, once infected, deer with the resistant genotype survived 49% longer (8.25 more months). We used these epidemiological parameters in a multi-stage population matrix model to evaluate relative fitness based on genotype-specific population growth rates. The differences in disease infection and mortality rates allowed genetically resistant deer to achieve higher population growth and obtain a long-term fitness advantage, which translated into a selection coefficient of over 1% favoring the CWD-resistant genotype. This selective pressure suggests that the resistant allele could become dominant in the population within an

  16. Evolution of Diagnostic Tests for Chronic Wasting Disease, a Naturally Occurring Prion Disease of Cervids

    Directory of Open Access Journals (Sweden)

    Nicholas J. Haley

    2017-08-01

    Full Text Available Since chronic wasting disease (CWD was first identified nearly 50 years ago in a captive mule deer herd in the Rocky Mountains of the United States, it has slowly spread across North America through the natural and anthropogenic movement of cervids and their carcasses. As the endemic areas have expanded, so has the need for rapid, sensitive, and cost effective diagnostic tests—especially those which take advantage of samples collected antemortem. Over the past two decades, strategies have evolved from the recognition of microscopic spongiform pathology and associated immunohistochemical staining of the misfolded prion protein to enzyme-linked immunoassays capable of detecting the abnormal prion conformer in postmortem samples. In a history that parallels the diagnosis of more conventional infectious agents, both qualitative and real-time amplification assays have recently been developed to detect minute quantities of misfolded prions in a range of biological and environmental samples. With these more sensitive and semi-quantitative approaches has come a greater understanding of the pathogenesis and epidemiology of this disease in the native host. Because the molecular pathogenesis of prion protein misfolding is broadly analogous to the misfolding of other pathogenic proteins, including Aβ and α-synuclein, efforts are currently underway to apply these in vitro amplification techniques towards the diagnosis of Alzheimer’s disease, Parkinson’s disease, and other proteinopathies. Chronic wasting disease—once a rare disease of Colorado mule deer—now represents one of the most prevalent prion diseases, and should serve as a model for the continued development and implementation of novel diagnostic strategies for protein misfolding disorders in the natural host.

  17. Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases

    KAUST Repository

    Emwas, Abdul-Hamid M.

    2013-02-24

    Copper is an essential nutrient for the normal development of the brain and nervous system, although the hallmark of several neurological diseases is a change in copper concentrations in the brain and central nervous system. Prion protein (PrP) is a copper-binding, cell-surface glycoprotein that exists in two alternatively folded conformations: a normal isoform (PrPC) and a disease-associated isoform (PrPSc). Prion diseases are a group of lethal neurodegenerative disorders that develop as a result of conformational conversion of PrPC into PrPSc. The pathogenic mechanism that triggers this conformational transformation with the subsequent development of prion diseases remains unclear. It has, however, been shown repeatedly that copper plays a significant functional role in the conformational conversion of prion proteins. In this review, we focus on current research that seeks to clarify the conformational changes associated with prion diseases and the role of copper in this mechanism, with emphasis on the latest applications of NMR and EPR spectroscopy to probe the interactions of copper with prion proteins. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases

    KAUST Repository

    Emwas, Abdul-Hamid M.; Al-Talla, Zeyad; Guo, Xianrong; Al-Ghamdi, Suliman; Al-Masri, Harbi Tomah

    2013-01-01

    Copper is an essential nutrient for the normal development of the brain and nervous system, although the hallmark of several neurological diseases is a change in copper concentrations in the brain and central nervous system. Prion protein (PrP) is a copper-binding, cell-surface glycoprotein that exists in two alternatively folded conformations: a normal isoform (PrPC) and a disease-associated isoform (PrPSc). Prion diseases are a group of lethal neurodegenerative disorders that develop as a result of conformational conversion of PrPC into PrPSc. The pathogenic mechanism that triggers this conformational transformation with the subsequent development of prion diseases remains unclear. It has, however, been shown repeatedly that copper plays a significant functional role in the conformational conversion of prion proteins. In this review, we focus on current research that seeks to clarify the conformational changes associated with prion diseases and the role of copper in this mechanism, with emphasis on the latest applications of NMR and EPR spectroscopy to probe the interactions of copper with prion proteins. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Implications of prion adaptation and evolution paradigm for human neurodegenerative diseases.

    Science.gov (United States)

    Kabir, M Enamul; Safar, Jiri G

    2014-01-01

    There is a growing body of evidence indicating that number of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, fronto-temporal dementias, and amyotrophic lateral sclerosis, propagate in the brain via prion-like intercellular induction of protein misfolding. Prions cause lethal neurodegenerative diseases in humans, the most prevalent being sporadic Creutzfeldt-Jakob disease (sCJD); they self-replicate and spread by converting the cellular form of prion protein (PrP(C)) to a misfolded pathogenic conformer (PrP(Sc)). The extensive phenotypic heterogeneity of human prion diseases is determined by polymorphisms in the prion protein gene, and by prion strain-specific conformation of PrP(Sc). Remarkably, even though informative nucleic acid is absent, prions may undergo rapid adaptation and evolution in cloned cells and upon crossing the species barrier. In the course of our investigation of this process, we isolated distinct populations of PrP(Sc) particles that frequently co-exist in sCJD. The human prion particles replicate independently and undergo competitive selection of those with lower initial conformational stability. Exposed to mutant substrate, the winning PrP(Sc) conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to the lowest stability. Thus, the evolution and adaptation of human prions is enabled by a dynamic collection of distinct populations of particles, whose evolution is governed by the selection of progressively less stable, faster replicating PrP(Sc) conformers. This fundamental biological mechanism may explain the drug resistance that some prions gained after exposure to compounds targeting PrP(Sc). Whether the phenotypic heterogeneity of other neurodegenerative diseases caused by protein misfolding is determined by the spectrum of misfolded conformers (strains) remains to be established. However, the prospect that these conformers may evolve and

  20. The Prion Concept and Synthetic Prions.

    Science.gov (United States)

    Legname, Giuseppe; Moda, Fabio

    2017-01-01

    Transmissible spongiform encephalopathies or prion diseases are a group of fatal neurodegenerative diseases caused by unconventional infectious agents, known as prions (PrP Sc ). Prions derive from a conformational conversion of the normally folded prion protein (PrP C ), which acquires pathological and infectious features. Moreover, PrP Sc is able to transmit the pathological conformation to PrP C through a mechanism that is still not well understood. The generation of synthetic prions, which behave like natural prions, is of fundamental importance to study the process of PrP C conversion and to assess the efficacy of therapeutic strategies to interfere with this process. Moreover, the ability of synthetic prions to induce pathology in animals confirms that the pathological properties of the prion strains are all enciphered in abnormal conformations, characterizing these infectious agents. © 2017 Elsevier Inc. All rights reserved.

  1. Creutzfeldt-Jakob Disease with a prion protein gene codon 180 mutation presenting asymmetric cortical high-intensity on magnetic resonance imaging.

    Science.gov (United States)

    Amano, Yuko; Kimura, Noriyuki; Hanaoka, Takuya; Aso, Yasuhiro; Hirano, Teruyuki; Murai, Hiroyuki; Satoh, Katsuya; Matsubara, Etsuro

    2015-01-01

    Here we report a genetically confirmed case of Creutzfeldt-Jakob disease with a prion protein gene codon 180 mutation presenting atypical magnetic resonance imaging findings. The present case exhibited an acute onset and lateralized neurologic signs, and progressive cognitive impairment. No myoclonus or periodic synchronous discharges on electroencephalography were observed. Diffusion-weighted images revealed areas of high signal intensity in the right frontal and temporal cortices at onset that extended to the whole cortex and basal ganglia of the right cerebral hemisphere at 3 months. Although the cerebrospinal fluid (CSF) was initially negative for neuron specific enolase, tau protein, 14-3-3 protein, and abnormal prion protein, the CSF was positive for these brain-derived proteins at 3 months after onset.

  2. Nanomedicine for prion disease treatment: new insights into the role of dendrimers.

    Science.gov (United States)

    McCarthy, James M; Appelhans, Dietmar; Tatzelt, Jörg; Rogers, Mark S

    2013-01-01

    Despite their devastating impact, no effective therapeutic yet exists for prion diseases at the symptomatic stage in humans or animals. Progress is hampered by the difficulty in identifying compounds that affect PrP (Sc) and the necessity of any potential therapeutic to gain access to the CNS. Synthetic polymers known as dendrimers are a particularly promising candidate in this area. Studies with cell culture models of prion disease and prion infected brain homogenate have demonstrated that numerous species of dendrimers eliminate PrP (Sc) in a dose and time dependent fashion and specific glycodendrimers are capable of crossing the CNS. However, despite their potential a number of important questions remained unanswered such as what makes an effective dendrimer and how dendrimers eliminate prions intracellularly. In a number of recent studies we have tackled these questions and revealed for the first time that a specific dendrimer can inhibit the intracellular conversion of PrP (C) to PrP (Sc) and that a high density of surface reactive groups is a necessity for dendrimers in vitro anti-prion activity. Understanding how a therapeutic works is a vital component in maximising its activity and these studies therefore represent a significant development in the race to find effective treatments for prion diseases.

  3. Distinct prion-like strains of amyloid beta implicated in phenotypic diversity of Alzheimer's disease.

    Science.gov (United States)

    Cohen, Mark; Appleby, Brian; Safar, Jiri G

    2016-01-01

    Vast evidence on human prions demonstrates that variable disease phenotypes, rates of propagation, and targeting of distinct brain structures are determined by unique conformers (strains) of pathogenic prion protein (PrP(Sc)). Recent progress in the development of advanced biophysical tools that inventory structural characteristics of amyloid beta (Aβ) in the brain cortex of phenotypically diverse Alzheimer's disease (AD) patients, revealed unique spectrum of oligomeric particles in the cortex of rapidly progressive cases, implicating these structures in variable rates of propagation in the brain, and in distict disease manifestation. Since only ∼30% of phenotypic diversity of AD can be explained by polymorphisms in risk genes, these and transgenic bioassay data argue that structurally distinct Aβ particles play a major role in the diverse pathogenesis of AD, and may behave as distinct prion-like strains encoding diverse phenotypes. From these observations and our growing understanding of prions, there is a critical need for new strain-specific diagnostic strategies for misfolded proteins causing these elusive disorders. Since targeted drug therapy can induce mutation and evolution of prions into new strains, effective treatments of AD will require drugs that enhance clearance of pathogenic conformers, reduce the precursor protein, or inhibit the conversion of precursors into prion-like states.

  4. Sod1 deficiency reduces incubation time in mouse models of prion disease.

    Directory of Open Access Journals (Sweden)

    Shaheen Akhtar

    Full Text Available Prion infections, causing neurodegenerative conditions such as Creutzfeldt-Jakob disease and kuru in humans, scrapie in sheep and BSE in cattle are characterised by prolonged and variable incubation periods that are faithfully reproduced in mouse models. Incubation time is partly determined by genetic factors including polymorphisms in the prion protein gene. Quantitative trait loci studies in mice and human genome-wide association studies have confirmed that multiple genes are involved. Candidate gene approaches have also been used and identified App, Il1-r1 and Sod1 as affecting incubation times. In this study we looked for an association between App, Il1-r1 and Sod1 representative SNPs and prion disease incubation time in the Northport heterogeneous stock of mice inoculated with the Chandler/RML prion strain. No association was seen with App, however, significant associations were seen with Il1-r1 (P = 0.02 and Sod1 (P<0.0001 suggesting that polymorphisms at these loci contribute to the natural variation observed in incubation time. Furthermore, following challenge with Chandler/RML, ME7 and MRC2 prion strains, Sod1 deficient mice showed highly significant reductions in incubation time of 20, 13 and 24%, respectively. No differences were detected in Sod1 expression or activity. Our data confirm the protective role of endogenous Sod1 in prion disease.

  5. Prion Strain Characterization of a Novel Subtype of Creutzfeldt-Jakob Disease.

    Science.gov (United States)

    Galeno, Roberta; Di Bari, Michele Angelo; Nonno, Romolo; Cardone, Franco; Sbriccoli, Marco; Graziano, Silvia; Ingrosso, Loredana; Fiorini, Michele; Valanzano, Angelina; Pasini, Giulia; Poleggi, Anna; Vinci, Ramona; Ladogana, Anna; Puopolo, Maria; Monaco, Salvatore; Agrimi, Umberto; Zanusso, Gianluigi; Pocchiari, Maurizio

    2017-06-01

    In 2007, we reported a patient with an atypical form of Creutzfeldt-Jakob disease (CJD) heterozygous for methionine-valine (MV) at codon 129 who showed a novel pathological prion protein (PrP TSE ) conformation with an atypical glycoform (AG) profile and intraneuronal PrP deposition. In the present study, we further characterize the conformational properties of this pathological prion protein (PrP TSE MV AG ), showing that PrP TSE MV AG is composed of multiple conformers with biochemical properties distinct from those of PrP TSE type 1 and type 2 of MV sporadic CJD (sCJD). Experimental transmission of CJD-MV AG to bank voles and gene-targeted transgenic mice carrying the human prion protein gene (TgHu mice) showed unique transmission rates, survival times, neuropathological changes, PrP TSE deposition patterns, and PrP TSE glycotypes that are distinct from those of sCJD-MV1 and sCJD-MV2. These biochemical and experimental data suggest the presence of a novel prion strain in CJD-MV AG IMPORTANCE Sporadic Creutzfeldt-Jakob disease is caused by the misfolding of the cellular prion protein, which assumes two different major conformations (type 1 and type 2) and, together with the methionine/valine polymorphic codon 129 of the prion protein gene, contribute to the occurrence of distinct clinical-pathological phenotypes. Inoculation in laboratory rodents of brain tissues from the six possible combinations of pathological prion protein types with codon 129 genotypes results in the identification of 3 or 4 strains of prions. We report on the identification of a novel strain of Creutzfeldt-Jakob disease isolated from a patient who carried an abnormally glycosylated pathological prion protein. This novel strain has unique biochemical characteristics, does not transmit to humanized transgenic mice, and shows exclusive transmission properties in bank voles. The identification of a novel human prion strain improves our understanding of the pathogenesis of the disease and of

  6. Meat and bone meal and mineral feed additives may increase the risk of oral prion disease transmission

    Science.gov (United States)

    Johnson, Christopher J.; McKenzie, Debbie; Pedersen, Joel A.; Aiken, Judd M.

    2011-01-01

    Ingestion of prion-contaminated materials is postulated to be a primary route of prion disease transmission. Binding of prions to soil (micro)particles dramatically enhances peroral disease transmission relative to unbound prions, and it was hypothesized that micrometer-sized particles present in other consumed materials may affect prion disease transmission via the oral route of exposure. Small, insoluble particles are present in many substances, including soil, human foods, pharmaceuticals, and animal feeds. It is known that meat and bone meal (MBM), a feed additive believed responsible for the spread of bovine spongiform encephalopathy (BSE), contains particles smaller than 20 μm and that the pathogenic prion protein binds to MBM. The potentiation of disease transmission via the oral route by exposure to MBM or three micrometer-sized mineral feed additives was determined. Data showed that when the disease agent was bound to any of the tested materials, the penetrance of disease was increased compared to unbound prions. Our data suggest that in feed or other prion-contaminated substances consumed by animals or, potentially, humans, the addition of MBM or the presence of microparticles could heighten risks of prion disease acquisition.

  7. Characterization of Variant Creutzfeldt-Jakob Disease Prions in Prion Protein-humanized Mice Carrying Distinct Codon 129 Genotypes*

    Science.gov (United States)

    Takeuchi, Atsuko; Kobayashi, Atsushi; Ironside, James W.; Mohri, Shirou; Kitamoto, Tetsuyuki

    2013-01-01

    To date, all clinical variant Creutzfeldt-Jakob disease (vCJD) patients are homozygous for methionine at polymorphic codon 129 (129M/M) of the prion protein (PrP) gene. However, the appearance of asymptomatic secondary vCJD infection in individuals with a PRNP codon 129 genotype other than M/M and transmission studies using animal models have raised the concern that all humans might be susceptible to vCJD prions, especially via secondary infection. To reevaluate this possibility and to analyze in detail the transmission properties of vCJD prions to transgenic animals carrying distinct codon 129 genotype, we performed intracerebral inoculation of vCJD prions to humanized knock-in mice carrying all possible codon 129 genotypes (129M/M, 129M/V, or 129V/V). All humanized knock-in mouse lines were susceptible to vCJD infection, although the attack rate gradually decreased from 129M/M to 129M/V and to 129V/V. The amount of PrP deposition including florid/amyloid plaques in the brain also gradually decreased from 129M/M to 129M/V and to 129V/V. The biochemical properties of protease-resistant abnormal PrP in the brain and transmissibility of these humanized mouse-passaged vCJD prions upon subpassage into knock-in mice expressing bovine PrP were not affected by the codon 129 genotype. These results indicate that individuals with the 129V/V genotype may be more susceptible to secondary vCJD infection than expected and may lack the neuropathological characteristics observed in vCJD patients with the 129M/M genotype. Besides the molecular typing of protease-resistant PrP in the brain, transmission studies using knock-in mice carrying bovine PrP may aid the differential diagnosis of secondary vCJD infection, especially in individuals with the 129V/V genotype. PMID:23792955

  8. Characterization of variant Creutzfeldt-Jakob disease prions in prion protein-humanized mice carrying distinct codon 129 genotypes.

    Science.gov (United States)

    Takeuchi, Atsuko; Kobayashi, Atsushi; Ironside, James W; Mohri, Shirou; Kitamoto, Tetsuyuki

    2013-07-26

    To date, all clinical variant Creutzfeldt-Jakob disease (vCJD) patients are homozygous for methionine at polymorphic codon 129 (129M/M) of the prion protein (PrP) gene. However, the appearance of asymptomatic secondary vCJD infection in individuals with a PRNP codon 129 genotype other than M/M and transmission studies using animal models have raised the concern that all humans might be susceptible to vCJD prions, especially via secondary infection. To reevaluate this possibility and to analyze in detail the transmission properties of vCJD prions to transgenic animals carrying distinct codon 129 genotype, we performed intracerebral inoculation of vCJD prions to humanized knock-in mice carrying all possible codon 129 genotypes (129M/M, 129M/V, or 129V/V). All humanized knock-in mouse lines were susceptible to vCJD infection, although the attack rate gradually decreased from 129M/M to 129M/V and to 129V/V. The amount of PrP deposition including florid/amyloid plaques in the brain also gradually decreased from 129M/M to 129M/V and to 129V/V. The biochemical properties of protease-resistant abnormal PrP in the brain and transmissibility of these humanized mouse-passaged vCJD prions upon subpassage into knock-in mice expressing bovine PrP were not affected by the codon 129 genotype. These results indicate that individuals with the 129V/V genotype may be more susceptible to secondary vCJD infection than expected and may lack the neuropathological characteristics observed in vCJD patients with the 129M/M genotype. Besides the molecular typing of protease-resistant PrP in the brain, transmission studies using knock-in mice carrying bovine PrP may aid the differential diagnosis of secondary vCJD infection, especially in individuals with the 129V/V genotype.

  9. Alteration of the chronic wasting disease species barrier by in vitro prion amplification

    Science.gov (United States)

    Kurt, Timothy D.; Seelig, Davis M.; Schneider, Jay R.; Johnson, Christopher J.; Telling, Glenn C.; Heisey, Dennis M.; Hoover, Edward A.

    2011-01-01

    Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) of cervids now detected in 19 states of the United States, three Canadian provinces, and South Korea. Whether noncervid species can be infected by CWD and thereby serve as reservoirs for the infection is not known. To investigate this issue, we previously used serial protein misfolding cyclic amplification (sPMCA) to demonstrate that CWD prions can amplify in brain homogenates from several species sympatric with cervids, including prairie voles (Microtus ochrogaster) and field mice (Peromyscus spp.). Here, we show that prairie voles are susceptible to mule deer CWD prions in vivo and that sPMCA amplification of CWD prions in vole brain enhances the infectivity of CWD for this species. Prairie voles inoculated with sPMCA products developed clinical signs of TSE disease approximately 300 days prior to, and more consistently than, those inoculated with CWD prions from deer brain. Moreover, the deposition patterns and biochemical properties of protease-resistant form of PrP (PrPRES) in the brains of affected voles differed from those in cervidized transgenic (CerPrP) mice infected with CWD. In addition, voles inoculated orally with sPMCA products developed clinical signs of TSE and were positive for PrPRES deposition, whereas those inoculated orally with deer-origin CWD prions did not. These results demonstrate that transspecies sPMCA of CWD prions can enhance the infectivity and adapt the host range of CWD prions and thereby may be useful to assess determinants of prion species barriers.

  10. Neuroinflammation and common mechanism in Alzheimer's disease and prion amyloidosis: amyloid-associated proteins, neuroinflammation and neurofibrillary degeneration

    NARCIS (Netherlands)

    Rozemuller, A.J.M.; Jansen, C.; Carrano, A.; van Haastert, E.S.; Hondius, D.; van der Vies, S.M.; Hoozemans, J.J.M.

    2012-01-01

    Background: In cases with a long (>1 year) clinical duration of prion disease, the prion protein can form amyloid deposits. These cases do not show accumulation of 4-kDa β-amyloid, which is observed in amyloid deposits in Alzheimer's disease (AD). In AD, amyloid is associated with inflammation and

  11. Phosphatidylinositol-glycan-phospholipase D is involved in neurodegeneration in prion disease.

    Directory of Open Access Journals (Sweden)

    Jae-Kwang Jin

    Full Text Available PrPSc is formed from a normal glycosylphosphatidylinositol (GPI-anchored prion protein (PrPC by a posttranslational modification. Most GPI-anchored proteins have been shown to be cleaved by GPI phospholipases. Recently, GPI-phospholipase D (GPI-PLD was shown to be a strictly specific enzyme for GPI anchors. To investigate the involvement of GPI-PLD in the processes of neurodegeneration in prion diseases, we examined the mRNA and protein expression levels of GPI-PLD in the brains of a prion animal model (scrapie, and in both the brains and cerebrospinal fluids (CSF of sporadic and familial Creutzfeldt-Jakob disease (CJD patients. We found that compared with controls, the expression of GPI-PLD was dramatically down-regulated in the brains of scrapie-infected mice, especially in the caveolin-enriched membrane fractions. Interestingly, the observed decrease in GPI-PLD expression levels began at the same time that PrPSc began to accumulate in the infected brains and this decrease was also observed in both the brain and CSF of CJD patients; however, no differences in expression were observed in either the brains or CSF specimens from Alzheimer's disease patients. Taken together, these results suggest that the down-regulation of GPI-PLD protein may be involved in prion propagation in the brains of prion diseases.

  12. Emergence of two prion subtypes in ovine PrP transgenic mice infected with human MM2-cortical Creutzfeldt-Jakob disease prions.

    Science.gov (United States)

    Chapuis, Jérôme; Moudjou, Mohammed; Reine, Fabienne; Herzog, Laetitia; Jaumain, Emilie; Chapuis, Céline; Quadrio, Isabelle; Boulliat, Jacques; Perret-Liaudet, Armand; Dron, Michel; Laude, Hubert; Rezaei, Human; Béringue, Vincent

    2016-02-05

    Mammalian prions are proteinaceous pathogens responsible for a broad range of fatal neurodegenerative diseases in humans and animals. These diseases can occur spontaneously, such as Creutzfeldt-Jakob disease (CJD) in humans, or be acquired or inherited. Prions are primarily formed of macromolecular assemblies of the disease-associated prion protein PrP(Sc), a misfolded isoform of the host-encoded prion protein PrP(C). Within defined host-species, prions can exist as conformational variants or strains. Based on both the M/V polymorphism at codon 129 of PrP and the electrophoretic signature of PrP(Sc) in the brain, sporadic CJD is classified in different subtypes, which may encode different strains. A transmission barrier, the mechanism of which remains unknown, limits prion cross-species propagation. To adapt to the new host, prions have the capacity to 'mutate' conformationally, leading to the emergence of a variant with new biological properties. Here, we transmitted experimentally one rare subtype of human CJD, designated cortical MM2 (129 MM with type 2 PrP(Sc)), to transgenic mice overexpressing either human or the VRQ allele of ovine PrP(C). In marked contrast with the reported absence of transmission to knock-in mice expressing physiological levels of human PrP, this subtype transmitted faithfully to mice overexpressing human PrP, and exhibited unique strain features. Onto the ovine PrP sequence, the cortical MM2 subtype abruptly evolved on second passage, thereby allowing emergence of a pair of strain variants with distinct PrP(Sc) biochemical characteristics and differing tropism for the central and lymphoid tissues. These two strain components exhibited remarkably distinct replicative properties in cell-free amplification assay, allowing the 'physical' cloning of the minor, lymphotropic component, and subsequent isolation in ovine PrP mice and RK13 cells. Here, we provide in-depth assessment of the transmissibility and evolution of one rare subtype of

  13. Prion-seeding activity in cerebrospinal fluid of deer with chronic wasting disease.

    Directory of Open Access Journals (Sweden)

    Nicholas J Haley

    Full Text Available Transmissible spongiform encephalopathies (TSEs, or prion diseases, are a uniformly fatal family of neurodegenerative diseases in mammals that includes chronic wasting disease (CWD of cervids. The early and ante-mortem identification of TSE-infected individuals using conventional western blotting or immunohistochemistry (IHC has proven difficult, as the levels of infectious prions in readily obtainable samples, including blood and bodily fluids, are typically beyond the limits of detection. The development of amplification-based seeding assays has been instrumental in the detection of low levels of infectious prions in clinical samples. In the present study, we evaluated the cerebrospinal fluid (CSF of CWD-exposed (n=44 and naïve (n=4 deer (n=48 total for CWD prions (PrP(d using two amplification assays: serial protein misfolding cyclic amplification with polytetrafluoroethylene beads (sPMCAb and real-time quaking induced conversion (RT-QuIC employing a truncated Syrian hamster recombinant protein substrate. Samples were evaluated blindly in parallel with appropriate positive and negative controls. Results from amplification assays were compared to one another and to obex immunohistochemistry, and were correlated to available clinical histories including CWD inoculum source (e.g. saliva, blood, genotype, survival period, and duration of clinical signs. We found that both sPMCAb and RT-QuIC were capable of amplifying CWD prions from cervid CSF, and results correlated well with one another. Prion seeding activity in either assay was observed in approximately 50% of deer with PrP(d detected by IHC in the obex region of the brain. Important predictors of amplification included duration of clinical signs and time of first tonsil biopsy positive results, and ultimately the levels of PrP(d identified in the obex by IHC. Based on our findings, we expect that both sPMCAb and RT-QuIC may prove to be useful detection assays for the detection of prions in

  14. Variably Protease-Sensitive Prionopathy: A New Sporadic Disease of the Prion Protein

    Science.gov (United States)

    Zou, Wen-Quan; Puoti, Gianfranco; Xiao, Xiangzhu; Yuan, Jue; Qing, Liuting; Cali, Ignazio; Shimoji, Miyuki; Langeveld, Jan P. M.; Castellani, Rudy; Notari, Silvio; Crain, Barbara; Schmidt, Robert E.; Geschwind, Michael; DeArmond, Stephen J.; Cairns, Nigel J.; Dickson, Dennis; Honig, Lawrence; Torres, Juan Maria; Mastrianni, James; Capellari, Sabina; Giaccone, Giorgio; Belay, Ermias D.; Schonberger, Lawrence B.; Cohen, Mark; Perry, George; Kong, Qingzhong; Parchi, Piero; Tagliavini, Fabrizio; Gambetti, Pierluigi

    2011-01-01

    Objective The objective of the study is to report 2 new genotypic forms of protease-sensitive prionopathy (PSPr), a novel prion disease described in 2008, in 11 subjects all homozygous for valine at codon 129 of the prion protein (PrP) gene (129VV). The 2 new PSPr forms affect individuals who are either homozygous for methionine (129MM) or heterozygous for methionine/valine (129MV). Methods Fifteen affected subjects with 129MM, 129MV, and 129VV underwent comparative evaluation at the National Prion Disease Pathology Surveillance Center for clinical, histopathologic, immunohistochemical, genotypical, and PrP characteristics. Results Disease duration (between 22 and 45 months) was significantly different in the 129VV and 129MV subjects. Most other phenotypic features along with the PrP electrophoretic profile were similar but distinguishable in the 3 129 genotypes. A major difference laid in the sensitivity to protease digestion of the disease-associated PrP, which was high in 129VV but much lower, or altogether lacking, in 129MV and 129MM. This difference prompted the substitution of the original designation with “variably protease-sensitive prionopathy” (VPSPr). None of the subjects had mutations in the PrP gene coding region. Interpretation Because all 3 129 genotypes are involved, and are associated with distinguishable phenotypes, VPSPr becomes the second sporadic prion protein disease with this feature after Creutzfeldt-Jakob disease, originally reported in 1920. However, the characteristics of the abnormal prion protein suggest that VPSPr is different from typical prion diseases, and perhaps more akin to subtypes of Gerstmann-Sträussler-Scheinker disease. PMID:20695009

  15. Early-Onset Creutzfeldt-Jakob Disease Mimicking Immune-Mediated Encephalitis

    Directory of Open Access Journals (Sweden)

    Wietse A. Wiels

    2018-04-01

    Full Text Available ObjectivesThe objective of this study is to explore the clinical, radiological, and pathological manifestations of a rare subtype of prion disease and their implication for differential diagnosis in case of an early onset neuropsychiatric deterioration.MethodsWe discuss a patients’ clinical history, as well as the string of investigations and symptomatological evolution that finally led to a pathological diagnosis.ResultsOur patient had the extremely rare VV1 type sporadic Creutzfeldt-Jakob disease (sCJD. We explain the differential diagnosis of progressive encephalomyelitis with rigidity and myoclonus and its implications for treatment.ConclusionsCJD, especially the VV1 subtype, can present at an early age with an insidious psychiatric onset. Classical findings of prion disease—14-3-3 protein, PSWC on electroencephalography, and magnetic resonance imaging patterns—are not always present. The presence of neural autoantibodies does not always implicate pathogenicity in the presence of other neurological/neurodegenerative conditions.

  16. The spread of prion-like proteins by lysosomes and tunneling nanotubes: Implications for neurodegenerative diseases.

    Science.gov (United States)

    Victoria, Guiliana Soraya; Zurzolo, Chiara

    2017-09-04

    Progression of pathology in neurodegenerative diseases is hypothesized to be a non-cell-autonomous process that may be mediated by the productive spreading of prion-like protein aggregates from a "donor cell" that is the source of misfolded aggregates to an "acceptor cell" in which misfolding is propagated by conversion of the normal protein. Although the proteins involved in the various diseases are unrelated, common pathways appear to be used for their intercellular propagation and spreading. Here, we summarize recent evidence of the molecular mechanisms relevant for the intercellular trafficking of protein aggregates involved in prion, Alzheimer's, Huntington's, and Parkinson's diseases. We focus in particular on the common roles that lysosomes and tunneling nanotubes play in the formation and spreading of prion-like assemblies. © 2017 Victoria and Zurzolo.

  17. COMPOSITE PEPTIDE COMPOUNDS FOR DIAGNOSIS AND TREATMENT OF DISEASES CAUSED BY PRION PROTEINS

    DEFF Research Database (Denmark)

    2004-01-01

    The present invention relates to diseases caused by prion proteins, Novel composite peptide compounds are disclosed which comprise two or more peptides or peptide fragments optionally linked to a backbone and the peptides or peptide fragments are spatially positioned relative to each other so tha....... Other uses of the composite peptide compounds are also disclosed, such as use in diagnostic assays, production of antibodies and uses as vaccine immunogens for the prophylactic protection and therapeutic treatment of subjects against transmissible prion disease.......The present invention relates to diseases caused by prion proteins, Novel composite peptide compounds are disclosed which comprise two or more peptides or peptide fragments optionally linked to a backbone and the peptides or peptide fragments are spatially positioned relative to each other so...

  18. The Good, the Bad, and the Ugly of Dendritic Cells during Prion Disease

    Science.gov (United States)

    Mabbott, Neil Andrew; Bradford, Barry Matthew

    2015-01-01

    Prions are a unique group of proteinaceous pathogens which cause neurodegenerative disease and can be transmitted by a variety of exposure routes. After peripheral exposure, the accumulation and replication of prions within secondary lymphoid organs are obligatory for their efficient spread from the periphery to the brain where they ultimately cause neurodegeneration and death. Mononuclear phagocytes (MNP) are a heterogeneous population of dendritic cells (DC) and macrophages. These cells are abundant throughout the body and display a diverse range of roles based on their anatomical locations. For example, some MNP are strategically situated to provide a first line of defence against pathogens by phagocytosing and destroying them. Conventional DC are potent antigen presenting cells and migrate via the lymphatics to the draining lymphoid tissue where they present the antigens to lymphocytes. The diverse roles of MNP are also reflected in various ways in which they interact with prions and in doing so impact on disease pathogenesis. Indeed, some studies suggest that prions exploit conventional DC to infect the host. Here we review our current understanding of the influence of MNP in the pathogenesis of the acquired prion diseases with particular emphasis on the role of conventional DC. PMID:26697507

  19. Trafficking and degradation pathways in pathogenic conversion of prions and prion-like proteins in neurodegenerative diseases.

    Science.gov (United States)

    Victoria, Guiliana Soraya; Zurzolo, Chiara

    2015-09-02

    Several neurodegenerative diseases such as transmissible spongiform encephalopathies, Alzheimer's and Parkinson's diseases are caused by the conversion of cellular proteins to a pathogenic conformer. Despite differences in the primary structure and subcellular localization of these proteins, which include the prion protein, α-synuclein and amyloid precursor protein (APP), striking similarity has been observed in their ability to seed and convert naïve protein molecules as well as transfer between cells. This review aims to cover what is known about the intracellular trafficking of these proteins as well as their degradation mechanisms and highlight similarities in their movement through the endocytic pathway that could contribute to the pathogenic conversion and seeding of these proteins which underlies the basis of these diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effects of a naturally occurring amino acid substitution in bovine PrP: a model for inherited prion disease in a natural host species

    Science.gov (United States)

    The most common hereditary prion disease is human Creutzfeldt-Jakob disease (CJD) associated with a mutation in the prion gene (PRNP) resulting in a glutamic acid to lysine substitution at position 200 (E200K) in the prion protein. Models of E200K CJD in transgenic mice have proven interesting but h...

  1. Subtype and regional regulation of prion biomarkers in sporadic Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Llorens, Franc; Zafar, Saima; Ansoleaga, Belén; Shafiq, Mohsin; Blanco, Rosi; Carmona, Marga; Grau-Rivera, Oriol; Nos, Carlos; Gelpí, Ellen; Del Río, José Antonio; Zerr, Inga; Ferrer, Isidre

    2015-08-01

    Creutzfeldt-Jakob disease (CJD) is a rapid progressive neurological disease leading to dementia and death. Prion biomarkers are altered in the cerebrospinal fluid (CSF) of CJD patients, but the pathogenic mechanisms underlying these alterations are still unknown. The present study examined prion biomarker levels in the brain and CSF of sporadic CJD (sCJD) cases and their correlation with neuropathological lesion profiles. The expression levels of 14-3-3, Tau, phospho-Tau and α-synuclein were measured in the CSF and brain of sCJD cases in a subtype- and region-specific manner. In addition, the activity of prion biomarker kinases, the expression levels of CJD hallmarks and the most frequent neuropathological sCJD findings were analysed. Prion biomarkers levels were increased in the CSF of sCJD patients; however, correlations between mRNA, total protein and their phosphorylated forms in brain were different. The observed downregulation of the main Tau kinase, GSK3, in sCJD brain samples may help to explain the differential phospho-Tau/Tau ratios between sCJD and other dementias in the CSF. Importantly, CSF biomarkers levels do not necessarily correlate with sCJD neuropathological findings. Present findings indicate that prion biomarkers levels in sCJD tissues and their release into the CSF are differentially regulated following specific modulated responses, and suggest a functional role for these proteins in sCJD pathogenesis. © 2014 British Neuropathological Society.

  2. Prions and prion-like proteins.

    Science.gov (United States)

    Fraser, Paul E

    2014-07-18

    Prions are self-replicating protein aggregates and are the primary causative factor in a number of neurological diseases in mammals. The prion protein (PrP) undergoes a conformational transformation leading to aggregation into an infectious cellular pathogen. Prion-like protein spreading and transmission of aggregates between cells have also been demonstrated for other proteins associated with Alzheimer disease and Parkinson disease. This protein-only phenomenon may therefore have broader implications in neurodegenerative disorders. The minireviews in this thematic series highlight the recent advances in prion biology and the roles these unique proteins play in disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Aβ seeds and prions: How close the fit?

    Science.gov (United States)

    Rasmussen, Jay; Jucker, Mathias; Walker, Lary C

    2017-07-04

    The prion paradigm is increasingly invoked to explain the molecular pathogenesis of neurodegenerative diseases involving the misfolding and aggregation of proteins other than the prion protein (PrP). Extensive evidence from in vitro and in vivo studies indicates that misfolded and aggregated Aβ peptide, which is the probable molecular trigger for Alzheimer's disease, manifests all of the key characteristics of canonical mammalian prions. These features include a β-sheet rich architecture, tendency to polymerize into amyloid, templated corruption of like protein molecules, ability to form structurally and functionally variant strains, systematic spread by neuronal transport, and resistance to inactivation by heat and formaldehyde. In addition to Aβ, a growing body of research supports the view that the prion-like molecular transformation of specific proteins drives the onset and course of a remarkable variety of clinicopathologically diverse diseases. As such, the expanded prion paradigm could conceptually unify fundamental and translational investigations of these disorders.

  4. Polymorphisms in the prion protein gene and in the doppel gene increase susceptibility for Creutzfeldt-Jakob disease

    NARCIS (Netherlands)

    E.A. Croes (Esther); B.Z. Alizadeh (Behrooz); A.M. Bertoli Avella (Aida); T.A.M. Rademaker (Tessa); J. Vergeer-Drop (Jeannette); B. Dermaut (Bart); J.J. Houwing-Duistermaat (Jeanine); D.P.W.M. Wientjens (Dorothee); A. Hofman (Albert); C. van Broeckhoven (Christine); C.M. van Duijn (Cornelia)

    2004-01-01

    textabstractThe prion protein gene (PRNP) plays a central role in the origin of Creutzfeldt-Jakob disease (CJD), but there is growing interest in other polymorphisms that may be involved in CJD. Polymorphisms upstream of PRNP that may modulate the prion protein production as well as polymorphisms in

  5. Primary transmission of chronic wasting disease versus scrapie prions from small ruminants to transgenic mice expressing ovine and cervid prion protein

    Science.gov (United States)

    Identifying transmissible spongiform encephalopathy (TSE) reservoirs that could lead to disease re-emergence is imperative to U.S. scrapie eradication efforts. Transgenic mice expressing the cervid (TgElk) or ovine (Tg338) prion protein have aided characterization of chronic wasting disease (CWD) an...

  6. Rapid and Highly Sensitive Detection of Variant Creutzfeldt-Jakob Disease Abnormal Prion Protein on Steel Surfaces by Protein Misfolding Cyclic Amplification: Application to Prion Decontamination Studies.

    Directory of Open Access Journals (Sweden)

    Maxime Belondrade

    Full Text Available The prevalence of variant Creutzfeldt-Jakob disease (vCJD in the population remains uncertain, although it has been estimated that 1 in 2000 people in the United Kingdom are positive for abnormal prion protein (PrPTSE by a recent survey of archived appendix tissues. The prominent lymphotropism of vCJD prions raises the possibility that some surgical procedures may be at risk of iatrogenic vCJD transmission in healthcare facilities. It is therefore vital that decontamination procedures applied to medical devices before their reprocessing are thoroughly validated. A current limitation is the lack of a rapid model permissive to human prions. Here, we developed a prion detection assay based on protein misfolding cyclic amplification (PMCA technology combined with stainless-steel wire surfaces as carriers of prions (Surf-PMCA. This assay allowed the specific detection of minute quantities (10-8 brain dilution of either human vCJD or ovine scrapie PrPTSE adsorbed onto a single steel wire, within a two week timeframe. Using Surf-PMCA we evaluated the performance of several reference and commercially available prion-specific decontamination procedures. Surprisingly, we found the efficiency of several marketed reagents to remove human vCJD PrPTSE was lower than expected. Overall, our results demonstrate that Surf-PMCA can be used as a rapid and ultrasensitive assay for the detection of human vCJD PrPTSE adsorbed onto a metallic surface, therefore facilitating the development and validation of decontamination procedures against human prions.

  7. Prion replication occurs in endogenous adult neural stem cells and alters their neuronal fate: involvement of endogenous neural stem cells in prion diseases.

    Directory of Open Access Journals (Sweden)

    Aroa Relaño-Ginès

    Full Text Available Prion diseases are irreversible progressive neurodegenerative diseases, leading to severe incapacity and death. They are characterized in the brain by prion amyloid deposits, vacuolisation, astrocytosis, neuronal degeneration, and by cognitive, behavioural and physical impairments. There is no treatment for these disorders and stem cell therapy therefore represents an interesting new approach. Gains could not only result from the cell transplantation, but also from the stimulation of endogenous neural stem cells (NSC or by the combination of both approaches. However, the development of such strategies requires a detailed knowledge of the pathology, particularly concerning the status of the adult neurogenesis and endogenous NSC during the development of the disease. During the past decade, several studies have consistently shown that NSC reside in the adult mammalian central nervous system (CNS and that adult neurogenesis occurs throughout the adulthood in the subventricular zone of the lateral ventricle or the Dentate Gyrus of the hippocampus. Adult NSC are believed to constitute a reservoir for neuronal replacement during normal cell turnover or after brain injury. However, the activation of this system does not fully compensate the neuronal loss that occurs during neurodegenerative diseases and could even contribute to the disease progression. We investigated here the status of these cells during the development of prion disorders. We were able to show that NSC accumulate and replicate prions. Importantly, this resulted in the alteration of their neuronal fate which then represents a new pathologic event that might underlie the rapid progression of the disease.

  8. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease

    Science.gov (United States)

    King, Oliver D.; Gitler, Aaron D.; Shorter, James

    2012-01-01

    Prions are self-templating protein conformers that are naturally transmitted between individuals and promote phenotypic change. In yeast, prion-encoded phenotypes can be beneficial, neutral or deleterious depending upon genetic background and environmental conditions. A distinctive and portable ‘prion domain’ enriched in asparagine, glutamine, tyrosine and glycine residues unifies the majority of yeast prion proteins. Deletion of this domain precludes prionogenesis and appending this domain to reporter proteins can confer prionogenicity. An algorithm designed to detect prion domains has successfully identified 19 domains that can confer prion behavior. Scouring the human genome with this algorithm enriches a select group of RNA-binding proteins harboring a canonical RNA recognition motif (RRM) and a putative prion domain. Indeed, of 210 human RRM-bearing proteins, 29 have a putative prion domain, and 12 of these are in the top 60 prion candidates in the entire genome. Startlingly, these RNA-binding prion candidates are inexorably emerging, one by one, in the pathology and genetics of devastating neurodegenerative disorders, including: amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U), Alzheimer’s disease and Huntington’s disease. For example, FUS and TDP-43, which rank 1st and 10th among RRM-bearing prion candidates, form cytoplasmic inclusions in the degenerating motor neurons of ALS patients and mutations in TDP-43 and FUS cause familial ALS. Recently, perturbed RNA-binding proteostasis of TAF15, which is the 2nd ranked RRM-bearing prion candidate, has been connected with ALS and FTLD-U. We strongly suspect that we have now merely reached the tip of the iceberg. We predict that additional RNA-binding prion candidates identified by our algorithm will soon surface as genetic modifiers or causes of diverse neurodegenerative conditions. Indeed, simple prion-like transfer mechanisms involving the

  9. Metabolic patterns in prion diseases: an FDG PET voxel-based analysis

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, Elena; Dominguez-Prado, Ines; Jesus Ribelles, Maria; Arbizu, Javier [Clinica Universidad de Navarra, Nuclear Medicine Department, Pamplona (Spain); Riverol, Mario; Ortega-Cubero, Sara; Rosario Luquin, Maria; Castro, Purificacion de [Clinica Universidad de Navarra, Neurology Department, Pamplona (Spain)

    2015-09-15

    Clinical diagnosis of human prion diseases can be challenging since symptoms are common to other disorders associated with rapidly progressive dementia. In this context, {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) might be a useful complementary tool. The aim of this study was to determine the metabolic pattern in human prion diseases, particularly sporadic Creutzfeldt-Jakob disease (sCJD), the new variant of Creutzfeldt-Jakob disease (vCJD) and fatal familial insomnia (FFI). We retrospectively studied 17 patients with a definitive, probable or possible prion disease who underwent FDG PET in our institution. Of these patients, 12 were diagnosed as sCJD (9 definitive, 2 probable and 1 possible), 1 was diagnosed as definitive vCJD and 4 were diagnosed as definitive FFI. The hypometabolic pattern of each individual and comparisons across the groups of subjects (control subjects, sCJD and FFI) were evaluated using a voxel-based analysis. The sCJD group exhibited a pattern of hypometabolism that affected both subcortical (bilateral caudate, thalamus) and cortical (frontal cortex) structures, while the FFI group only presented a slight hypometabolism in the thalamus. Individual analysis demonstrated a considerable variability of metabolic patterns among patients, with the thalamus and basal ganglia the most frequently affected areas, combined in some cases with frontal and temporal hypometabolism. Patients with a prion disease exhibit a characteristic pattern of brain metabolism presentation in FDG PET imaging. Consequently, in patients with rapidly progressive cognitive impairment, the detection of these patterns in the FDG PET study could orient the diagnosis to a prion disease. (orig.)

  10. Metabolic patterns in prion diseases: an FDG PET voxel-based analysis

    International Nuclear Information System (INIS)

    Prieto, Elena; Dominguez-Prado, Ines; Jesus Ribelles, Maria; Arbizu, Javier; Riverol, Mario; Ortega-Cubero, Sara; Rosario Luquin, Maria; Castro, Purificacion de

    2015-01-01

    Clinical diagnosis of human prion diseases can be challenging since symptoms are common to other disorders associated with rapidly progressive dementia. In this context, 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) might be a useful complementary tool. The aim of this study was to determine the metabolic pattern in human prion diseases, particularly sporadic Creutzfeldt-Jakob disease (sCJD), the new variant of Creutzfeldt-Jakob disease (vCJD) and fatal familial insomnia (FFI). We retrospectively studied 17 patients with a definitive, probable or possible prion disease who underwent FDG PET in our institution. Of these patients, 12 were diagnosed as sCJD (9 definitive, 2 probable and 1 possible), 1 was diagnosed as definitive vCJD and 4 were diagnosed as definitive FFI. The hypometabolic pattern of each individual and comparisons across the groups of subjects (control subjects, sCJD and FFI) were evaluated using a voxel-based analysis. The sCJD group exhibited a pattern of hypometabolism that affected both subcortical (bilateral caudate, thalamus) and cortical (frontal cortex) structures, while the FFI group only presented a slight hypometabolism in the thalamus. Individual analysis demonstrated a considerable variability of metabolic patterns among patients, with the thalamus and basal ganglia the most frequently affected areas, combined in some cases with frontal and temporal hypometabolism. Patients with a prion disease exhibit a characteristic pattern of brain metabolism presentation in FDG PET imaging. Consequently, in patients with rapidly progressive cognitive impairment, the detection of these patterns in the FDG PET study could orient the diagnosis to a prion disease. (orig.)

  11. Sheep scrapie susceptibility-linked polymorphisms do not modulate the initial binding of cellular to disease-associated prion protein prior to conversion

    NARCIS (Netherlands)

    Rigter, A.; Bossers, A.

    2005-01-01

    Conversion of the host-encoded protease-sensitive cellular prion protein (PrPC) into the scrapie-associated protease-resistant isoform (PrPSc) of prion protein (PrP) is the central event in transmissible spongiform encephalopathies or prion diseases. Differences in transmissibility and

  12. Infectivity versus Seeding in Neurodegenerative Diseases Sharing a Prion-Like Mechanism

    Directory of Open Access Journals (Sweden)

    Natalia Fernández-Borges

    2013-01-01

    Full Text Available Prions are considered the best example to prove that the biological information can be transferred protein to protein through a conformational change. The term “prion-like” is used to describe molecular mechanisms that share similarities with the mammalian prion protein self-perpetuating aggregation and spreading characteristics. Since prions are presumably composed only of protein and are infectious, the more similar the mechanisms that occur in the different neurodegenerative diseases, the more these processes will resemble an infection. In vitro and in vivo experiments carried out during the last decade in different neurodegenerative disorders such as Alzheimer's disease (AD, Parkinson's diseases (PD, and amyotrophic lateral sclerosis (ALS have shown a convergence toward a unique mechanism of misfolded protein propagation. In spite of the term “infection” that could be used to explain the mechanism governing the diversity of the pathological processes, other concepts as “seeding” or “de novo induction” are being used to describe the in vivo propagation and transmissibility of misfolded proteins. The current studies are demanding an extended definition of “disease-causing agents” to include those already accepted as well as other misfolded proteins. In this new scenario, “seeding” would be a type of mechanism by which an infectious agent can be transmitted but should not be used to define a whole “infection” process.

  13. Transgenic Fatal Familial Insomnia Mice Indicate Prion Infectivity-Independent Mechanisms of Pathogenesis and Phenotypic Expression of Disease

    OpenAIRE

    Bouybayoune, I.; Mantovani, S.; Del Gallo, F.; Bertani, I.; Restelli, E.; Comerio, L.; Tapella, L.; Baracchi, F.; Fernández-Borges, N.; Mangieri, M.; Bisighini, C.; Beznoussenko, G..V.; Paladini, A.; Balducci, C.; Micotti, E.

    2015-01-01

    Author Summary Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease (CJD) and fatal familial insomnia (FFI). The reason for this variability is not known, but assembly of the mutant PrPs into distinct aggregates that spread in the brain by promoting PrP aggregation may contribute to the disease phenotype. We previously generated transgenic ...

  14. Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease

    Science.gov (United States)

    Aims: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of cervids. We previously demonstrated that disease-associated prion protein (PrPSc) can be detected in the brain and retina from pigs challenged intracranially or orally with the CWD agent. In that study,...

  15. Proteomics analyses for the global proteins in the brain tissues of different human prion diseases.

    Science.gov (United States)

    Shi, Qi; Chen, Li-Na; Zhang, Bao-Yun; Xiao, Kang; Zhou, Wei; Chen, Cao; Zhang, Xiao-Mei; Tian, Chan; Gao, Chen; Wang, Jing; Han, Jun; Dong, Xiao-Ping

    2015-04-01

    Proteomics changes of brain tissues have been described in different neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. However, the brain proteomics of human prion disease remains less understood. In the study, the proteomics patterns of cortex and cerebellum of brain tissues of sporadic Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD were analyzed with isobaric tags for relative and absolute quantitation combined with multidimensional liquid chromatography and MS analysis, with the brains from three normal individuals as controls. Global protein profiling, significant pathway, and functional categories were analyzed. In total, 2287 proteins were identified with quantitative information both in cortex and cerebellum regions. Cerebellum tissues appeared to contain more up- and down-regulated proteins (727 proteins) than cortex regions (312 proteins) of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD. Viral myocarditis, Parkinson's disease, Alzheimer's disease, lysosome, oxidative phosphorylation, protein export, and drug metabolism-cytochrome P450 were the most commonly affected pathways of the three kinds of diseases. Almost coincident biological functions were identified in the brain tissues of the three diseases. In all, data here demonstrate that the brain tissues of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD have obvious proteomics changes at their terminal stages, which show the similarities not only among human prion diseases but also with other neurodegeneration diseases. This is the first study to provide a reference proteome map for human prion diseases and will be helpful for future studies focused on potential biomarkers for the diagnosis and therapy of human prion diseases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Modeling routes of chronic wasting disease transmission: Environmental prion persistence promotes deer population decline and extinction

    Science.gov (United States)

    Almberg, Emily S.; Cross, Paul C.; Johnson, Christopher J.; Heisey, Dennis M.; Richards, Bryan J.

    2011-01-01

    Chronic wasting disease (CWD) is a fatal disease of deer, elk, and moose transmitted through direct, animal-to-animal contact, and indirectly, via environmental contamination. Considerable attention has been paid to modeling direct transmission, but despite the fact that CWD prions can remain infectious in the environment for years, relatively little information exists about the potential effects of indirect transmission on CWD dynamics. In the present study, we use simulation models to demonstrate how indirect transmission and the duration of environmental prion persistence may affect epidemics of CWD and populations of North American deer. Existing data from Colorado, Wyoming, and Wisconsin's CWD epidemics were used to define plausible short-term outcomes and associated parameter spaces. Resulting long-term outcomes range from relatively low disease prevalence and limited host-population decline to host-population collapse and extinction. Our models suggest that disease prevalence and the severity of population decline is driven by the duration that prions remain infectious in the environment. Despite relatively low epidemic growth rates, the basic reproductive number, R0, may be much larger than expected under the direct-transmission paradigm because the infectious period can vastly exceed the host's life span. High prion persistence is expected to lead to an increasing environmental pool of prions during the early phases (i.e. approximately during the first 50 years) of the epidemic. As a consequence, over this period of time, disease dynamics will become more heavily influenced by indirect transmission, which may explain some of the observed regional differences in age and sex-specific disease patterns. This suggests management interventions, such as culling or vaccination, will become increasingly less effective as CWD epidemics progress.

  17. The Gut-Associated Lymphoid Tissues in the Small Intestine, Not the Large Intestine, Play a Major Role in Oral Prion Disease Pathogenesis

    Science.gov (United States)

    Donaldson, David S.; Else, Kathryn J.

    2015-01-01

    ABSTRACT Prion diseases are infectious neurodegenerative disorders characterized by accumulations of abnormally folded cellular prion protein in affected tissues. Many natural prion diseases are acquired orally, and following exposure, the early replication of some prion isolates upon follicular dendritic cells (FDC) within gut-associated lymphoid tissues (GALT) is important for the efficient spread of disease to the brain (neuroinvasion). Prion detection within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, the relative contributions of the small and large intestinal GALT to oral prion pathogenesis were unknown. To address this issue, we created mice that specifically lacked FDC-containing GALT only in the small intestine. Our data show that oral prion disease susceptibility was dramatically reduced in mice lacking small intestinal GALT. Although these mice had FDC-containing GALT throughout their large intestines, these tissues were not early sites of prion accumulation or neuroinvasion. We also determined whether pathology specifically within the large intestine might influence prion pathogenesis. Congruent infection with the nematode parasite Trichuris muris in the large intestine around the time of oral prion exposure did not affect disease pathogenesis. Together, these data demonstrate that the small intestinal GALT are the major early sites of prion accumulation and neuroinvasion after oral exposure. This has important implications for our understanding of the factors that influence the risk of infection and the preclinical diagnosis of disease. IMPORTANCE Many natural prion diseases are acquired orally. After exposure, the accumulation of some prion diseases in the gut-associated lymphoid tissues (GALT) is important for efficient spread of disease to the brain. However, the relative contributions of GALT in the small and large intestines to oral prion pathogenesis were unknown. We show that the

  18. The Gut-Associated Lymphoid Tissues in the Small Intestine, Not the Large Intestine, Play a Major Role in Oral Prion Disease Pathogenesis.

    Science.gov (United States)

    Donaldson, David S; Else, Kathryn J; Mabbott, Neil A

    2015-09-01

    Prion diseases are infectious neurodegenerative disorders characterized by accumulations of abnormally folded cellular prion protein in affected tissues. Many natural prion diseases are acquired orally, and following exposure, the early replication of some prion isolates upon follicular dendritic cells (FDC) within gut-associated lymphoid tissues (GALT) is important for the efficient spread of disease to the brain (neuroinvasion). Prion detection within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, the relative contributions of the small and large intestinal GALT to oral prion pathogenesis were unknown. To address this issue, we created mice that specifically lacked FDC-containing GALT only in the small intestine. Our data show that oral prion disease susceptibility was dramatically reduced in mice lacking small intestinal GALT. Although these mice had FDC-containing GALT throughout their large intestines, these tissues were not early sites of prion accumulation or neuroinvasion. We also determined whether pathology specifically within the large intestine might influence prion pathogenesis. Congruent infection with the nematode parasite Trichuris muris in the large intestine around the time of oral prion exposure did not affect disease pathogenesis. Together, these data demonstrate that the small intestinal GALT are the major early sites of prion accumulation and neuroinvasion after oral exposure. This has important implications for our understanding of the factors that influence the risk of infection and the preclinical diagnosis of disease. Many natural prion diseases are acquired orally. After exposure, the accumulation of some prion diseases in the gut-associated lymphoid tissues (GALT) is important for efficient spread of disease to the brain. However, the relative contributions of GALT in the small and large intestines to oral prion pathogenesis were unknown. We show that the small intestinal

  19. Detection of prions in blood from patients with variant Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Concha-Marambio, Luis; Pritzkow, Sandra; Moda, Fabio; Tagliavini, Fabrizio; Ironside, James W; Schulz, Paul E; Soto, Claudio

    2016-12-21

    Human prion diseases are infectious and invariably fatal neurodegenerative diseases. They include sporadic Creutzfeldt-Jakob disease (sCJD), the most common form, and variant CJD (vCJD), which is caused by interspecies transmission of prions from cattle infected by bovine spongiform encephalopathy. Development of a biochemical assay for the sensitive, specific, early, and noninvasive detection of prions (PrP Sc ) in the blood of patients affected by prion disease is a top medical priority to increase the safety of the blood supply. vCJD has already been transmitted from human to human by blood transfusion, and the number of asymptomatic carriers of vCJD in the U.K. alone is estimated to be 1 in 2000 people. We used the protein misfolding cyclic amplification (PMCA) technique to analyze blood samples from 14 cases of vCJD and 153 controls, including patients affected by sCJD and other neurodegenerative or neurological disorders as well as healthy subjects. Our results showed that PrP Sc could be detected with 100% sensitivity and specificity in blood samples from vCJD patients. Detection was possible in any of the blood fractions analyzed and could be done with as little as a few microliters of sample volume. The PrP Sc concentration in blood was estimated to be ~0.5 pg/ml. Our findings suggest that PMCA may be useful for premortem noninvasive diagnosis of vCJD and to identify prion contamination of the blood supply. Further studies are needed to fully validate the technology. Copyright © 2016, American Association for the Advancement of Science.

  20. Effects of peptidyl-prolyl isomerase 1 depletion in animal models of prion diseases.

    Science.gov (United States)

    Legname, Giuseppe; Virgilio, Tommaso; Bistaffa, Edoardo; De Luca, Chiara Maria Giulia; Catania, Marcella; Zago, Paola; Isopi, Elisa; Campagnani, Ilaria; Tagliavini, Fabrizio; Giaccone, Giorgio; Moda, Fabio

    2018-04-20

    Pin1 is a peptidyl-prolyl isomerase that induces the cis-trans conversion of specific Ser/Thr-Pro peptide bonds in phosphorylated proteins, leading to conformational changes through which Pin1 regulates protein stability and activity. Since down-regulation of Pin1 has been described in several neurodegenerative disorders, including Alzheimer's Disease (AD), Parkinson's Disease (PD) and Huntington's Disease (HD), we investigated its potential role in prion diseases. Animals generated on wild-type (Pin1 +/+ ), hemizygous (Pin1 +/- ) or knock-out (Pin1 -/- ) background for Pin1 were experimentally infected with RML prions. The study indicates that, neither the total depletion nor reduced levels of Pin1 significantly altered the clinical and neuropathological features of the disease.

  1. ER stress signaling and neurodegeneration: At the intersection between Alzheimer's disease and Prion-related disorders.

    Science.gov (United States)

    Torres, Mauricio; Matamala, José Manuel; Duran-Aniotz, Claudia; Cornejo, Victor Hugo; Foley, Andrew; Hetz, Claudio

    2015-09-02

    Alzheimer's and Prion diseases are two neurodegenerative conditions sharing different pathophysiological characteristics. Disease symptoms are associated with the abnormal accumulation of protein aggregates, which are generated by the misfolding and oligomerization of specific proteins. Recent functional studies uncovered a key role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in the occurrence of synaptic dysfunction and neurodegeneration in Prion-related disorders and Alzheimer's disease. Here we review common pathological features of both diseases, emphasizing the link between amyloid formation, its pathogenesis and alterations in ER proteostasis. The potential benefits of targeting the UPR as a therapeutic strategy is also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Theoretical Modeling of Molecular Mechanisms, Time Scales and Strains in Prion Diseases

    Science.gov (United States)

    2008-01-01

    106 46 (Lou Gehrig’s (20% of cases) stress all ALS) disease)53 Type II diabetes54 IAPP ? High ( obesity 14 106 per year (U.S.) 40 trigger...and in enhancing conversion kinetics for inherited forms of the disease and explain resistance (for canines ) involving hypothesized coupling to...bovine spongiform encephalopathy (BSE) prions in England through contaminated protein supplements, canines , cervids, and pigs appear to have escaped

  3. Infectivity-associated PrP(Sc) and disease duration-associated PrP(Sc) of mouse BSE prions.

    Science.gov (United States)

    Miyazawa, Kohtaro; Okada, Hiroyuki; Masujin, Kentaro; Iwamaru, Yoshifumi; Yokoyama, Takashi

    2015-01-01

    Disease-related prion protein (PrP(Sc)), which is a structural isoform of the host-encoded cellular prion protein, is thought to be a causative agent of transmissible spongiform encephalopathies. However, the specific role of PrP(Sc) in prion pathogenesis and its relationship to infectivity remain controversial. A time-course study of prion-affected mice was conducted, which showed that the prion infectivity was not simply proportional to the amount of PrP(Sc) in the brain. Centrifugation (20,000 ×g) of the brain homogenate showed that most of the PrP(Sc) was precipitated into the pellet, and the supernatant contained only a slight amount of PrP(Sc). Interestingly, mice inoculated with the obtained supernatant showed incubation periods that were approximately 15 d longer than those of mice inoculated with the crude homogenate even though both inocula contained almost the same infectivity. Our results suggest that a small population of fine PrP(Sc) may be responsible for prion infectivity and that large, aggregated PrP(Sc) may contribute to determining prion disease duration.

  4. Early detection of abnormal prion protein in genetic human prion diseases now possible using real-time QUIC assay.

    Directory of Open Access Journals (Sweden)

    Kazunori Sano

    Full Text Available INTRODUCTION: The definitive diagnosis of genetic prion diseases (gPrD requires pathological confirmation. To date, diagnosis has relied upon the finding of the biomarkers 14-3-3 protein and total tau (t-tau protein in the cerebrospinal fluid (CSF, but many researchers have reported that these markers are not sufficiently elevated in gPrD, especially in Gerstmann-Sträussler-Scheinker syndrome (GSS. We recently developed a new in vitro amplification technology, designated "real-time quaking-induced conversion (RT-QUIC", to detect the abnormal form of prion protein in CSF from sporadic Creutzfeldt-Jakob disease (sCJD patients. In the present study, we aimed to investigate the presence of biomarkers and evaluate RT-QUIC assay in patients with gPrD, as the utility of RT-QUIC as a diagnostic tool in gPrD has yet to be determined. METHOD/PRINCIPAL FINDINGS: 56 CSF samples were obtained from gPrD patients, including 20 cases of GSS with P102L mutation, 12 cases of fatal familial insomnia (FFI; D178N, and 24 cases of genetic CJD (gCJD, comprising 22 cases with E200K mutation and 2 with V203I mutation. We subjected all CSF samples to RT-QUIC assay, analyzed 14-3-3 protein by Western blotting, and measured t-tau protein using an ELISA kit. The detection sensitivities of RT-QUIC were as follows: GSS (78%, FFI (100%, gCJD E200K (87%, and gCJD V203I (100%. On the other hand the detection sensitivities of biomarkers were considerably lower: GSS (11%, FFI (0%, gCJD E200K (73%, and gCJD V203I (67%. Thus, RT-QUIC had a much higher detection sensitivity compared with testing for biomarkers, especially in patients with GSS and FFI. CONCLUSION/SIGNIFICANCE: RT-QUIC assay is more sensitive than testing for biomarkers in gPrD patients. RT-QUIC method would thus be useful as a diagnostic tool when the patient or the patient's family does not agree to genetic testing, or to confirm the diagnosis in the presence of a positive result for genetic testing.

  5. Porcine prion protein amyloid.

    Science.gov (United States)

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions.

  6. Estrogen and early-onset Alzheimer's disease

    NARCIS (Netherlands)

    A.J.C. Slooter (Arjen); J.B. Bronzova (Juliana); A. Hofman (Albert); C. van Broeckhoven (Christine); C.M. van Duijn (Cornelia); J.C.M. Witteman (Jacqueline)

    1999-01-01

    textabstractEstrogen use may be protective for Alzheimer's disease with late onset. However, the effects on early onset Alzheimer's disease are unclear. This issue was studied in a population based setting. For each female patient, a female control was matched on age (within 5 years) and place of

  7. Presence of voltage-gated potassium channel complex antibody in a case of genetic prion disease.

    Science.gov (United States)

    Jammoul, Adham; Lederman, Richard J; Tavee, Jinny; Li, Yuebing

    2014-06-05

    Voltage-gated potassium channel (VGKC) complex antibody-mediated encephalitis is a recently recognised entity which has been reported to mimic the clinical presentation of Creutzfeldt-Jakob disease (CJD). Testing for the presence of this neuronal surface autoantibody in patients presenting with subacute encephalopathy is therefore crucial as it may both revoke the bleak diagnosis of prion disease and allow institution of potentially life-saving immunotherapy. Tempering this optimistic view is the rare instance when a positive VGKC complex antibody titre occurs in a definite case of prion disease. We present a pathologically and genetically confirmed case of CJD with elevated serum VGKC complex antibody titres. This case highlights the importance of interpreting the result of a positive VGKC complex antibody with caution and in the context of the overall clinical manifestation. 2014 BMJ Publishing Group Ltd.

  8. Positive 14-3-3 and tau proteins in a sporadic Creutzfeldt-Jakob disease case and a brief perspective of prion diseases in Colombia.

    Science.gov (United States)

    Escandón-Vargas, Kevin; Zorrilla-Vaca, Andrés; Corral-Prado, Raúl Heli

    2016-02-24

    Prion diseases are rare neurodegenerative disorders occurring worldwide and affecting both humans and animals. Herein, we present the case of a patient diagnosed with definite sporadic Creutzfeldt-Jakob disease in Cali, Colombia. Besides neurological examination, 14-3-3 and tau proteins were valuable tools supporting the diagnosis. We also present a brief perspective of the prion diseases reported in Colombia to date. Although the incidence of prion diseases is unknown in Colombia, our literature review revealed that one case of scrapie in 1981 and 29 human sporadic cases of Creutzfeldt-Jakob disease have been documented and published in our country.

  9. Prions in the Urine of Patients with Variant Creutzfeldt–Jakob Disease

    Science.gov (United States)

    Moda, Fabio; Gambetti, Pierluigi; Notari, Silvio; Concha-Marambio, Luis; Catania, Marcella; Park, Kyung-Won; Maderna, Emanuela; Suardi, Silvia; Haïk, Stéphane; Brandel, Jean-Philippe; Ironside, James; Knight, Richard; Tagliavini, Fabrizio; Soto, Claudio

    2014-01-01

    BACKGROUND Prions, the infectious agents responsible for transmissible spongiform encephalopathies, consist mainly of the misfolded prion protein (PrPSc). The unique mechanism of transmission and the appearance of a variant form of Creutzfeldt–Jakob disease, which has been linked to consumption of prion-contaminated cattle meat, have raised concerns about public health. Evidence suggests that variant Creutzfeldt–Jakob disease prions circulate in body fluids from people in whom the disease is silently incubating. METHODS To investigate whether PrPSc can be detected in the urine of patients with variant Creutzfeldt–Jakob disease, we used the protein misfolding cyclic amplification (PMCA) technique to amplify minute quantities of PrPSc, enabling highly sensitive detection of the protein. We analyzed urine samples from several patients with various transmissible spongiform encephalopathies (variant and sporadic Creutzfeldt–Jakob disease and genetic forms of prion disease), patients with other degenerative or nondegenerative neurologic disorders, and healthy persons. RESULTS PrPSc was detectable only in the urine of patients with variant Creutzfeldt–Jakob disease and had the typical electrophoretic profile associated with this disease. PrPSc was detected in 13 of 14 urine samples obtained from patients with variant Creutzfeldt–Jakob disease and in none of the 224 urine samples obtained from patients with other neurologic diseases and from healthy controls, resulting in an estimated sensitivity of 92.9% (95% confidence interval [CI], 66.1 to 99.8) and a specificity of 100.0% (95% CI, 98.4 to 100.0). The PrPSc concentration in urine calculated by means of quantitative PMCA was estimated at 1×10−16 g per milliliter, or 3×10−21 mol per milliliter, which extrapolates to approximately 40 to 100 oligomeric particles of PrPSc per milliliter of urine. CONCLUSIONS Urine samples obtained from patients with variant Creutzfeldt–Jakob disease contained minute

  10. Prions in the urine of patients with variant Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Moda, Fabio; Gambetti, Pierluigi; Notari, Silvio; Concha-Marambio, Luis; Catania, Marcella; Park, Kyung-Won; Maderna, Emanuela; Suardi, Silvia; Haïk, Stéphane; Brandel, Jean-Philippe; Ironside, James; Knight, Richard; Tagliavini, Fabrizio; Soto, Claudio

    2014-08-07

    Prions, the infectious agents responsible for transmissible spongiform encephalopathies, consist mainly of the misfolded prion protein (PrP(Sc)). The unique mechanism of transmission and the appearance of a variant form of Creutzfeldt-Jakob disease, which has been linked to consumption of prion-contaminated cattle meat, have raised concerns about public health. Evidence suggests that variant Creutzfeldt-Jakob disease prions circulate in body fluids from people in whom the disease is silently incubating. To investigate whether PrP(Sc) can be detected in the urine of patients with variant Creutzfeldt-Jakob disease, we used the protein misfolding cyclic amplification (PMCA) technique to amplify minute quantities of PrP(Sc), enabling highly sensitive detection of the protein. We analyzed urine samples from several patients with various transmissible spongiform encephalopathies (variant and sporadic Creutzfeldt-Jakob disease and genetic forms of prion disease), patients with other degenerative or nondegenerative neurologic disorders, and healthy persons. PrP(Sc) was detectable only in the urine of patients with variant Creutzfeldt-Jakob disease and had the typical electrophoretic profile associated with this disease. PrP(Sc) was detected in 13 of 14 urine samples obtained from patients with variant Creutzfeldt-Jakob disease and in none of the 224 urine samples obtained from patients with other neurologic diseases and from healthy controls, resulting in an estimated sensitivity of 92.9% (95% confidence interval [CI], 66.1 to 99.8) and a specificity of 100.0% (95% CI, 98.4 to 100.0). The PrP(Sc) concentration in urine calculated by means of quantitative PMCA was estimated at 1×10(-16) g per milliliter, or 3×10(-21) mol per milliliter, which extrapolates to approximately 40 to 100 oligomeric particles of PrP(Sc) per milliliter of urine. Urine samples obtained from patients with variant Creutzfeldt-Jakob disease contained minute quantities of PrP(Sc). (Funded by the

  11. Revisiting the Heidenhain Variant of Creutzfeldt-Jakob Disease: Evidence for Prion Type Variability Influencing Clinical Course and Laboratory Findings.

    Science.gov (United States)

    Baiardi, Simone; Capellari, Sabina; Ladogana, Anna; Strumia, Silvia; Santangelo, Mario; Pocchiari, Maurizio; Parchi, Piero

    2016-01-01

    The Heidenhain variant defines a peculiar clinical presentation of sporadic Creutzfeldt-Jakob disease (sCJD) characterized by isolated visual disturbances at disease onset and reflecting the early targeting of prions to the occipital cortex. Molecular and histopathological typing, thus far performed in 23 cases, has linked the Heidenhain variant to the MM1 sCJD type. To contribute a comprehensive characterization of cases with the Heidenhain variant, we reviewed a series of 370 definite sCJD cases. Eighteen patients (4.9%) fulfilled the selection criteria. Fourteen of them belonging to sCJD types MM1 or MM1+2C had a short duration of isolated visual symptoms and overall clinical disease, a high prevalence of periodic sharp-wave complexes in EEG, and a marked increase of cerebrospinal fluid proteins t-tau and 14-3-3 levels. In contrast, three cases of the MM 2C or MM 2+1C types showed a longer duration of isolated visual symptoms and overall clinical disease, non-specific EEG findings, and cerebrospinal fluid concentration below threshold for the diagnosis of "probable" CJD of both 14-3-3 and t-tau. However, a brain DWI-MRI disclosed an occipital cortical hyperintensity in the majority of examined cases of both groups. While confirming the strong linkage with the methionine genotype at the polymorphic codon 129 of the prion protein gene, our results definitely establish that the Heidenhain variant can also be associated with the MM 2C sCJD type in addition to the more common MM1 type. Likewise, our results highlight the significant differences in clinical evolution and laboratory findings between cases according to the dominant PrPSc type (type 1 versus type 2).

  12. Distinct pathological phenotypes of Creutzfeldt-Jakob disease in recipients of prion-contaminated growth hormone.

    Science.gov (United States)

    Cali, Ignazio; Miller, Cathleen J; Parisi, Joseph E; Geschwind, Michael D; Gambetti, Pierluigi; Schonberger, Lawrence B

    2015-06-25

    The present study compares the clinical, pathological and molecular features of a United States (US) case of growth hormone (GH)-associated Creutzfeldt-Jakob disease (GH-CJD) (index case) to those of two earlier referred US cases of GH-CJD and one case of dura mater (d)-associated CJD (dCJD). All iatrogenic CJD (iCJD) subjects were methionine (M) homozygous at codon 129 (129MM) of the prion protein (PrP) gene and had scrapie prion protein (PrP(Sc)) type 1 (iCJDMM1). The index subject presented with ataxia, weight loss and changes in the sleep pattern about 38 years after the midpoint of GH treatment. Autopsy examination revealed a neuropathological phenotype reminiscent of both sCJDMV2-K (a sporadic CJD subtype in subjects methionine/valine heterozygous at codon 129 with PrP(Sc) type 2 and the presence of kuru plaques) and variant CJD (vCJD). The two earlier cases of GH-CJDMM1 and the one of dCJDMM1 were associated with neuropathological phenotypes that differed from that of the index case mainly because they lacked PrP plaques. The phenotype of the earlier GH-CJDMM1 cases shared several, but not all, characteristics with sCJDMM1, whereas dCJDMM1 was phenotypically indistinguishable from sCJDMM1. Two distinct groups of dCJDMM1 have also been described in Japan based on clinical features, the presence or absence of PrP plaques and distinct PK-resistant PrP(Sc) (resPrP(Sc)) electrophoretic mobilities. The resPrP(Sc) electrophoretic mobility was, however, identical in our GH-CJDMM1 and dCJDMM1 cases, and matched that of sCJDMM1. Our study shows that receipt of prion-contaminated GH can lead to a prion disease with molecular features (129MM and PrP(Sc) type 2) and phenotypic characteristics that differ from those of sporadic prion disease (sCJDMM1), a difference that may reflect adaptation of "heterologous" prion strains to the 129MM background.

  13. Semi-purification procedures of prions from a prion-infected brain using sucrose has no influence on the nonenzymatic glycation of the disease-associated prion isoform.

    Science.gov (United States)

    Choi, Yeong-Gon; Kim, Jae-Il; Choi, Eun-Kyoung; Carp, Richard I; Kim, Yong-Sun

    2016-01-01

    Previous studies have shown that the Nε-carboxymethyl group is linked to not only one or more N-terminal Lys residues but also to one or more Lys residues of the protease-resistant core region of the pathogenic prion isoform (PrPSc) in prion-infected brains. Using an anti-advanced glycation end product (AGE) antibody, we detected nonenzymatically glycated PrPSc (AGE-PrPSc) in prion-infected brains following concentration by a series of ultracentrifugation steps with a sucrose cushion. In the present study, the levels of in vitro nonenzymatic glycation of PrPSc using sucrose were investigated to determine whether sucrose cushion can artificially and nonenzymatically induce in vitro glycation during ultracentrifugation. The first insoluble pellet fraction following the first ultracentrifugation (PU1st) collected from 263K scrapie-infected brains was incubated with sucrose, glucose or colloidal silica coated with polyvinylpyrrolidone (percoll). None of the compounds in vitro resulted in AGE-PrPSc. Nonetheless, glucose and percoll produced AGEs in vitro from other proteins within PU1st of the infected brains. This reaction could lead to the AGE-modified polymer(s) of nonenzymatic glycation-prone protein(s). This study showed that PrPSc is not nonenzymatically glycated in vitro with sucrose, glucose or percoll and that AGE-modified PrPSc can be isolated and enriched from prion-infected brains.

  14. Hypothyroidism in late-onset Pompe disease

    Directory of Open Access Journals (Sweden)

    Joseph Schneider

    2016-09-01

    Conclusions: Hypothyroidism was found at a higher prevalence in patients with late-onset Pompe disease compared to the general adult population at UMMC. Studies in larger populations of patients with Pompe disease would be needed to confirm an association of Pompe disease and hypothyroidism. Challenges include finding an adequate sample size, due the rarity of Pompe disease.

  15. Intranasal inoculation of white-tailed deer (Odocoileus virginianus with lyophilized chronic wasting disease prion particulate complexed to montmorillonite clay.

    Directory of Open Access Journals (Sweden)

    Tracy A Nichols

    Full Text Available Chronic wasting disease (CWD, the only known prion disease endemic in wildlife, is a persistent problem in both wild and captive North American cervid populations. This disease continues to spread and cases are found in new areas each year. Indirect transmission can occur via the environment and is thought to occur by the oral and/or intranasal route. Oral transmission has been experimentally demonstrated and although intranasal transmission has been postulated, it has not been tested in a natural host until recently. Prions have been shown to adsorb strongly to clay particles and upon oral inoculation the prion/clay combination exhibits increased infectivity in rodent models. Deer and elk undoubtedly and chronically inhale dust particles routinely while living in the landscape while foraging and rutting. We therefore hypothesized that dust represents a viable vehicle for intranasal CWD prion exposure. To test this hypothesis, CWD-positive brain homogenate was mixed with montmorillonite clay (Mte, lyophilized, pulverized and inoculated intranasally into white-tailed deer once a week for 6 weeks. Deer were euthanized at 95, 105, 120 and 175 days post final inoculation and tissues examined for CWD-associated prion proteins by immunohistochemistry. Our results demonstrate that CWD can be efficiently transmitted utilizing Mte particles as a prion carrier and intranasal exposure.

  16. Brain delivery of AAV9 expressing an anti-PrP monovalent antibody delays prion disease in mice.

    Science.gov (United States)

    Moda, Fabio; Vimercati, Chiara; Campagnani, Ilaria; Ruggerone, Margherita; Giaccone, Giorgio; Morbin, Michela; Zentilin, Lorena; Giacca, Mauro; Zucca, Ileana; Legname, Giuseppe; Tagliavini, Fabrizio

    2012-01-01

    Prion diseases are caused by a conformational modification of the cellular prion protein (PrP (C)) into disease-specific forms, termed PrP (Sc), that have the ability to interact with PrP (C) promoting its conversion to PrP (Sc). In vitro studies demonstrated that anti-PrP antibodies inhibit this process. In particular, the single chain variable fragment D18 antibody (scFvD18) showed high efficiency in curing chronically prion-infected cells. This molecule binds the PrP (C) region involved in the interaction with PrP (Sc) thus halting further prion formation. These findings prompted us to test the efficiency of scFvD18 in vivo. A recombinant Adeno-Associated Viral vector serotype 9 was used to deliver scFvD18 to the brain of mice that were subsequently infected by intraperitoneal route with the mouse-adapted scrapie strain RML. We found that the treatment was safe, prolonged the incubation time of scrapie-infected animals and decreased the burden of total proteinase-resistant PrP (Sc) in the brain, suggesting that scFvD18 interferes with prion replication in vivo. This approach is relevant for designing new therapeutic strategies for prion diseases and other disorders characterized by protein misfolding.

  17. Yeast prions: structure, biology, and prion-handling systems.

    Science.gov (United States)

    Wickner, Reed B; Shewmaker, Frank P; Bateman, David A; Edskes, Herman K; Gorkovskiy, Anton; Dayani, Yaron; Bezsonov, Evgeny E

    2015-03-01

    A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Coexistence of protease sensitive and resistant prion protein in 129VV homozygous sporadic Creutzfeldt–Jakob disease: a case report

    Directory of Open Access Journals (Sweden)

    Rodríguez-Martínez Ana B

    2012-10-01

    Full Text Available Abstract Introduction The coexistence of different molecular types of classical protease-resistant prion protein in the same individual have been described, however, the simultaneous finding of these with the recently described protease-sensitive variant or variably protease-sensitive prionopathy has, to the best of our knowledge, not yet been reported. Case presentation A 74-year-old Caucasian woman showed a sporadic Creutzfeldt–Jakob disease clinical phenotype with reactive depression, followed by cognitive impairment, akinetic-rigid Parkinsonism with pseudobulbar syndrome and gait impairment with motor apraxia, visuospatial disorientation, and evident frontal dysfunction features such as grasping, palmomental reflex and brisk perioral reflexes. She died at age 77. Neuropathological findings showed: spongiform change in the patient’s cerebral cortex, striatum, thalamus and molecular layer of the cerebellum with proteinase K-sensitive synaptic-like, dot-like or target-like prion protein deposition in the cortex, thalamus and striatum; proteinase K-resistant prion protein in the same regions; and elongated plaque-like proteinase K-resistant prion protein in the molecular layer of the cerebellum. Molecular analysis of prion protein after proteinase K digestion revealed decreased signal intensity in immunoblot, a ladder-like protein pattern, and a 71% reduction of PrPSc signal relative to non-digested material. Her cerebellum showed a 2A prion protein type largely resistant to proteinase K. Genotype of polymorphism at codon 129 was valine homozygous. Conclusion Molecular typing of prion protein along with clinical and neuropathological data revealed, to the best of our knowledge, the first case of the coexistence of different protease-sensitive prion proteins in the same patient in a rare case that did not fulfill the current clinical diagnostic criteria for either probable or possible sporadic Creutzfeldt–Jakob disease. This highlights the

  19. Immunology of Prion Protein and Prions.

    Science.gov (United States)

    Mabbott, Neil A

    2017-01-01

    Many natural prion diseases are acquired peripherally, such as following the oral consumption of contaminated food or pasture. After peripheral exposure many prion isolates initially accumulate to high levels within the host's secondary lymphoid tissues. The replication of prions within these tissues is essential for their efficient spread to the brain where they ultimately cause neurodegeneration. This chapter describes our current understanding of the critical tissues, cells, and molecules which the prions exploit to mediate their efficient propagation from the site of exposure (such as the intestine) to the brain. Interactions between the immune system and prions are not only restricted to the secondary lymphoid tissues. Therefore, an account of how the activation status of the microglial in the brain can also influence progression of prion disease pathogenesis is provided. Prion disease susceptibility may also be influenced by additional factors such as chronic inflammation, coinfection with other pathogens, and aging. Finally, the potential for immunotherapy to provide a means of safe and effective prophylactic or therapeutic intervention in these currently untreatable diseases is considered. © 2017 Elsevier Inc. All rights reserved.

  20. Rapid and Quantitative Assay of Amyloid-Seeding Activity in Human Brains Affected with Prion Diseases.

    Directory of Open Access Journals (Sweden)

    Hanae Takatsuki

    Full Text Available The infectious agents of the transmissible spongiform encephalopathies are composed of amyloidogenic prion protein, PrPSc. Real-time quaking-induced conversion can amplify very small amounts of PrPSc seeds in tissues/body fluids of patients or animals. Using this in vitro PrP-amyloid amplification assay, we quantitated the seeding activity of affected human brains. End-point assay using serially diluted brain homogenates of sporadic Creutzfeldt-Jakob disease patients demonstrated that 50% seeding dose (SD50 is reached approximately 10(10/g brain (values varies 10(8.79-10.63/g. A genetic case (GSS-P102L yielded a similar level of seeding activity in an autopsy brain sample. The range of PrPSc concentrations in the samples, determined by dot-blot assay, was 0.6-5.4 μg/g brain; therefore, we estimated that 1 SD50 unit was equivalent to 0.06-0.27 fg of PrPSc. The SD50 values of the affected brains dropped more than three orders of magnitude after autoclaving at 121°C. This new method for quantitation of human prion activity provides a new way to reduce the risk of iatrogenic prion transmission.

  1. High prevalence of a fungal prion

    NARCIS (Netherlands)

    Debets, A.J.M.; Dalstra, H.J.P.; Slakhorst, S.M.; Koopmanschap-Memelink, A.B.; Hoekstra, R.F.; Saupe, S.J.

    2012-01-01

    Prions are infectious proteins that cause fatal diseases in mammals. Prions have also been found in fungi, but studies on their role in nature are scarce. The proposed biological function of fungal prions is debated and varies from detrimental to benign or even beneficial. [Het-s] is a prion of the

  2. Sporadic Creutzfeldt-Jakob Disease: Prion Pathology in Medulla Oblongata-Possible Routes of Infection and Host Susceptibility.

    Science.gov (United States)

    Iacono, Diego; Ferrari, Sergio; Gelati, Matteo; Zanusso, Gianluigi; Mariotto, Sara; Monaco, Salvatore

    2015-01-01

    Sporadic Creutzfeldt-Jakob disease (sCJD), the most frequent human prion disorder, is characterized by remarkable phenotypic variability, which is influenced by the conformation of the pathologic prion protein and the methionine/valine polymorphic codon 129 of the prion protein gene. While the etiology of sCJD remains unknown, it has been hypothesized that environmental exposure to prions might occur through conjunctival/mucosal contact, oral ingestion, inhalation, or simultaneous involvement of the olfactory and enteric systems. We studied 21 subjects with definite sCJD to assess neuropathological involvement of the dorsal motor nucleus of the vagus and other medullary nuclei and to evaluate possible associations with codon 129 genotype and prion protein conformation. The present data show that prion protein deposition was detected in medullary nuclei of distinct sCJD subtypes, either valine homozygous or heterozygous at codon 129. These findings suggest that an "environmental exposure" might occur, supporting the hypothesis that external sources of contamination could contribute to sCJD in susceptible hosts. Furthermore, these novel data could shed the light on possible causes of sCJD through a "triple match" hypothesis that identify environmental exposure, host genotype, and direct exposure of specific anatomical regions as possible pathogenetic factors.

  3. Hypothyroidism in late-onset Pompe disease.

    Science.gov (United States)

    Schneider, Joseph; Burmeister, Lynn A; Rudser, Kyle; Whitley, Chester B; Jarnes Utz, Jeanine

    2016-09-01

    In Pompe disease, a deficiency of acid α-glucosidase enzyme activity leads to pathologic accumulation of glycogen in tissues. Phenotype heterogeneity in Pompe includes an infantile form and late-onset forms (juvenile- and adult-onset forms). Symptoms common to all phenotypes include progressive muscle weakness and worsening respiratory function. Patients with late-onset forms of Pompe disease commonly complain of chronic fatigue and generalized muscle weakness prior to being diagnosed with Pompe disease, and this may lead to consideration of hypothyroidism in the differential diagnosis. This study aimed to evaluate the prevalence of hypothyroidism in the adult-onset form of Pompe disease. Electronic chart review was performed at the Advanced Therapies Clinic at the University of Minnesota Medical Center (UMMC) to identify patients with late-onset Pompe disease. The identified charts were reviewed for a co-diagnosis of hypothyroidism. A query was made to the clinical data repository at UMMC searching diagnosis ICD9 code 244.9 (hypothyroidism not otherwise specified) and/or presence of levothyroxine from 2011 to 2014 in patients 18 years of age and older. The clinical data repository found a prevalence of hypothyroidism of 3.15% (56,072 of 1,782,720 patients) in the adult patient population at UMMC. Ten adult patients with Pompe disease were identified, five with the diagnosis of hypothyroidism (50%, 95% CI: 23.7, 76.3, p Hypothyroidism was found at a higher prevalence in patients with late-onset Pompe disease compared to the general adult population at UMMC. Studies in larger populations of patients with Pompe disease would be needed to confirm an association of Pompe disease and hypothyroidism. Challenges include finding an adequate sample size, due the rarity of Pompe disease.

  4. Snord 3A: A Molecular Marker and Modulator of Prion Disease Progression

    Science.gov (United States)

    Cohen, Eran; Avrahami, Dana; Frid, Kati; Canello, Tamar; Levy Lahad, Ephrat; Zeligson, Sharon; Perlberg, Shira; Chapman, Joab; Cohen, Oren S.; Kahana, Esther; Lavon, Iris; Gabizon, Ruth

    2013-01-01

    Since preventive treatments for prion disease require early identification of subjects at risk, we searched for surrogate peripheral markers characterizing the asymptomatic phases of such conditions. To this effect, we subjected blood mRNA from E200K PrP CJD patients and corresponding family members to global arrays and found that the expression of Snord3A, a non-coding RNA transcript, was elevated several times in CJD patients as compared to controls, while asymptomatic carriers presented intermediate Snord3A levels. In the brains of TgMHu2ME199K mice, a mouse model mimicking for E200K CJD, Snord 3A levels were elevated in an age and disease severity dependent manner, as was the case for brains of these mice in which disease was exacerbated by copper administration. Snord3A expression was also elevated in scrapie infected mice, but not in PrP0/0 mice, indicating that while the expression levels of this transcript may reflect diverse prion etiologies, they are not related to the loss of PrPC’s function. Elevation of Snord3A was consistent with the activation of ATF6, representing one of the arms of the unfolded protein response system. Indeed, SnoRNAs were associated with reduced resistance to oxidative stress, and with ER stress in general, factors playing a significant role in this and other neurodegenerative conditions. We hypothesize that in addition to its function as a disease marker, Snord3A may play an important role in the mechanism of prion disease manifestation and progression. PMID:23349890

  5. Snord 3A: a molecular marker and modulator of prion disease progression.

    Directory of Open Access Journals (Sweden)

    Eran Cohen

    Full Text Available Since preventive treatments for prion disease require early identification of subjects at risk, we searched for surrogate peripheral markers characterizing the asymptomatic phases of such conditions. To this effect, we subjected blood mRNA from E200K PrP CJD patients and corresponding family members to global arrays and found that the expression of Snord3A, a non-coding RNA transcript, was elevated several times in CJD patients as compared to controls, while asymptomatic carriers presented intermediate Snord3A levels. In the brains of TgMHu2ME199K mice, a mouse model mimicking for E200K CJD, Snord 3A levels were elevated in an age and disease severity dependent manner, as was the case for brains of these mice in which disease was exacerbated by copper administration. Snord3A expression was also elevated in scrapie infected mice, but not in PrP(0/0 mice, indicating that while the expression levels of this transcript may reflect diverse prion etiologies, they are not related to the loss of PrP(C's function. Elevation of Snord3A was consistent with the activation of ATF6, representing one of the arms of the unfolded protein response system. Indeed, SnoRNAs were associated with reduced resistance to oxidative stress, and with ER stress in general, factors playing a significant role in this and other neurodegenerative conditions. We hypothesize that in addition to its function as a disease marker, Snord3A may play an important role in the mechanism of prion disease manifestation and progression.

  6. The human prion diseases. A review with special emphasis on new variant CJD and comments on surveillance.

    LENUS (Irish Health Repository)

    Keohane, C

    2012-02-03

    The transmissible spongiform encephalopathies or prion diseases represent a new group of diseases with unique clinical and neuropathological features, the transmission of which is both genetic and infectious. The responsible agent is unconventional and appears to be largely composed of a glycoprotein, the prion protein PrP. This is normally present on different cells. In prion diseases, it becomes converted to the pathogenic form PrPres which is resistant to proteinase and accumulates within the brain and this process is accompanied by the development of spongiform change, gliosis and neuronal loss. The human prion diseases include Kuru a progressive cerebellar degeneration with late dementia affecting Fore tribes in New-Guinea, now almost extinct, regarded as being related to cannibalism. Creutzfeldt-Jakob disease is the more frequent human prion disease. Its incidence is approximately one case per million per year. Four variants are now recognized: sporadic, familial, iatrogenic and the new variant. The latter represents a distinct clinico-pathological entity. It is now widely accepted that it is due to the same agent responsible for Bovine Spongiform Encephalopathy in cattle. Gerstmann-Straussler-Scheinker disease is a very rare inherited disorder due to a number of different mutations in the PRP gene, characterized by abundant deposits of plaque PrPres in the cerebral grey matter. Fatal familial insomnia is another inherited disorder due to a mutation at codon 178 of the PRP gene associated with methionine on codon 129 of the mutant allele. The main neuropathological change is neuronal loss in the thalamus with little or no spongiosis and usually no PrPres deposition. Following the emergence of new variant CJD in 1996, surveillance of all forms of prion diseases has been now been actively introduced in many European nations in order to determine the true incidence and geographic distribution of these rare disorders in humans.

  7. Is Parkinson’s Disease Truly a Prion-Like Disorder? An Appraisal of Current Evidence

    Directory of Open Access Journals (Sweden)

    Aneesha Chauhan

    2015-01-01

    Full Text Available Parkinson’s disease (PD is the world’s second most common neurodegenerative disease and most common movement disorder. Characterised by a loss of dopaminergic neurons and the development of intraneuronal inclusions known as Lewy bodies, it has classically been thought of as a cell-autonomous disease. However, in 2008, two groups reported the startling observation of Lewy bodies within embryonic neuronal grafts transplanted into PD patients little more than a decade previously, suggesting that PD pathology can be propagated to neighbouring cells and calling basic assumptions of our understanding of the disease into question. Subsequent research has largely served to confirm this interpretation, pointing towards a prion-like intercellular transfer of misfolded α-synuclein, the main component of Lewy bodies, as central to PD. This shift in thinking offers a revolutionary approach to PD treatment, potentially enabling a transition from purely symptomatic therapy to direct targeting of the pathology that drives disease progression. In this short review, we appraise current experimental support for PD as a prion-like disease, whilst highlighting areas of controversy or inconsistency which must be resolved. We also offer a brief discussion of the therapeutic implications of these discoveries.

  8. Progression of Late-Onset Stargardt Disease

    OpenAIRE

    Lambertus, Stanley; Lindner, Moritz; Bax, Nathalie M.; Mauschitz, Matthias M.; Nadal, Jennifer; Schmid, Matthias; Schmitz-Valckenberg, Steffen; den Hollander, Anneke I.; Weber, Bernhard H. F.; Holz, Frank G.; van der Wilt, Gert Jan; Fleckenstein, Monika; Hoyng, Carel B.

    2016-01-01

    Purpose: Identification of sensitive biomarkers is essential to determine potential effects of emerging therapeutic trials for Stargardt disease. This study aimed to describe the natural history of late-onset Stargardt, and demonstrates the accuracy of retinal pigment epithelium (RPE) atrophy progression as an outcome measure. Methods: We performed a retrospective cohort study collecting multicenter data from 47 patients (91 eyes) with late-onset Stargardt, defined by clinical phenotype...

  9. The many shades of prion strain adaptation.

    Science.gov (United States)

    Baskakov, Ilia V

    2014-01-01

    In several recent studies transmissible prion disease was induced in animals by inoculation with recombinant prion protein amyloid fibrils produced in vitro. Serial transmission of amyloid fibrils gave rise to a new class of prion strains of synthetic origin. Gradual transformation of disease phenotypes and PrP(Sc) properties was observed during serial transmission of synthetic prions, a process that resembled the phenomenon of prion strain adaptation. The current article discusses the remarkable parallels between phenomena of prion strain adaptation that accompanies cross-species transmission and the evolution of synthetic prions occurring within the same host. Two alternative mechanisms underlying prion strain adaptation and synthetic strain evolution are discussed. The current article highlights the complexity of the prion transmission barrier and strain adaptation and proposes that the phenomenon of prion adaptation is more common than previously thought.

  10. Early behavioral changes and quantitative analysis of neuropathological features in murine prion disease

    Science.gov (United States)

    Borner, Roseane; Bento-Torres, João; Souza, Diego RV; Sadala, Danyelle B; Trevia, Nonata; Farias, José Augusto; Lins, Nara; Passos, Aline; Quintairos, Amanda; Diniz, José Antônio; Perry, Victor Hugh; Vasconcelos, Pedro Fernando; Cunningham, Colm

    2011-01-01

    Behavioral and neuropathological changes have been widely investigated in murine prion disease but stereological based unbiased estimates of key neuropathological features have not been carried out. After injections of ME7 infected (ME7) or normal brain homogenates (NBH) into dorsal CA1 of albino Swiss mice and C57BL6, we assessed behavioral changes on hippocampal-dependent tasks. We also estimated by optical fractionator at 15 and 18 weeks post-injections (w.p.i.) the total number of neurons, reactive astrocytes, activated microglia and perineuronal nets (PN) in the polymorphic layer of dentate gyrus (PolDG), CA1 and septum in albino Swiss mice. On average, early behavioral changes in albino Swiss mice start four weeks later than in C57BL6. Cluster and discriminant analysis of behavioral data in albino Swiss mice revealed that four of nine subjects start to change their behavior at 12 w.p.i. and reach terminal stage at 22 w.p.i and the remaining subjects start at 22 w.p.i. and reach terminal stage at 26 w.p.i. Biotinylated dextran-amine BDA-tracer experiments in mossy fiber pathway confirmed axonal degeneration and stereological data showed that early astrocytosis, microgliosis and reduction in the perineuronal nets are independent of a change in the number of neuronal cell bodies. Statistical analysis revealed that the septal region had greater levels of neuroinflammation and extracellular matrix damage than CA1. This stereological and multivariate analysis at early stages of disease in an outbred model of prion disease provided new insights connecting behavioral changes and neuroinflammation and seems to be important to understand the mechanisms of prion disease progression. PMID:21862877

  11. Orally administered indomethacin acutely reduces cellular prion protein in the small intestine and modestly increases survival of mice exposed to infectious prions.

    Science.gov (United States)

    Martin, Gary R; Sharkey, Keith A; Jirik, Frank R

    2015-05-01

    The oral uptake of infectious prions represents a common way to acquire a prion disease; thus, host factors, such as gut inflammation and intestinal "leakiness", have the potential to influence infectivity. For example, the ingestion of nonsteroidal anti-inflammatory drugs (NSAIDs) is known to induce intestinal inflammation and increase intestinal permeability. Previously, we reported that normal cellular prion protein (PrP(C)) expression was increased in experimental colitis, and since the level of PrP(C) expressed is a determinant of prion disease propagation, we hypothesized that NSAID administration prior to the oral inoculation of mice with infectious prions would increase intestinal PrP(C) expression and accelerate the onset of neurological disease. In the long-term experiments, one group of mice was gavaged with indomethacin, followed by a second gavage with brain homogenate containing mouse-adapted scrapie (ME7). Control mice received ME7 brain homogenate alone. Brain and splenic tissues were harvested at several time points for immunoblotting, including at the onset of clinical signs of disease. In a second series of experiments, mice were gavaged with indomethacin to assess the acute effects of this treatment on intestinal PrP(C) expression. Acutely, NSAID treatment reduced intestinal PrP(C) expression, and chronically, there was a modest delay in the onset of neurological disease. In contrast to our hypothesis, brief exposure to an NSAID decreased intestinal PrP(C) expression and led to a modest survival advantage following oral ingestion of infectious prions.

  12. An acoustic prion assay

    Directory of Open Access Journals (Sweden)

    Gordon Hayward

    2016-12-01

    Full Text Available An acoustic prion assay has been demonstrated for sheep brain samples. Only five false positives and no false negatives were observed in a test of 45 positive and 45 negative samples. The acoustic prion sensor was constructed using a thickness shear mode quartz resonator coated with a covalently bound recombinant prion protein. The characteristic indicator of a scrapie infected sheep brain sample was an observed shoulder in the frequency decrease in response to a sample.The response of the sensor aligns with a conformational shift in the surface protein and with the propagation mechanism of the disease. This alignment is evident in the response timing and shape, dependence on concentration, cross species behaviour and impact of blood plasma. This alignment is far from sufficient to prove the mechanism of the sensor but it does offer the possibility of a rapid and inexpensive additional tool to explore prion disease. Keywords: Prions, Thickness shear mode quartz sensor

  13. The Role of Unfolded Protein Response and Mitogen-Activated Protein Kinase Signaling in Neurodegenerative Diseases with Special Focus on Prion Diseases

    Directory of Open Access Journals (Sweden)

    Lifeng Yang

    2017-05-01

    Full Text Available Prion diseases are neurodegenerative pathologies characterized by the accumulation of a protease-resistant form of the cellular prion protein named prion protein scrapie (PrPSc in the brain. PrPSc accumulation in the endoplasmic reticulum (ER result in a dysregulated calcium (Ca2+ homeostasis and subsequent initiation of unfolded protein response (UPR leading to neuronal dysfunction and apoptosis. The molecular mechanisms for the transition between adaptation to ER stress and ER stress-induced apoptosis are still unclear. Mitogen-activated protein kinases (MAPKs are serine/threonine protein kinases that rule the signaling of many extracellular stimuli from plasma membrane to the nucleus. However the identification of numerous points of cross talk between the UPR and MAPK signaling pathways may contribute to our understanding of the consequences of ER stress in prion diseases. Indeed the MAPK signaling network is known to regulate cell cycle progression and cell survival or death responses following a variety of stresses including misfolded protein response stress. In this article, we review the UPR signaling in prion diseases and discuss the triad of MAPK signaling pathways. We also describe the role played by MAPK signaling cascades in Alzheimer’s (AD and Parkinson’s disease (PD. We will also overview the mechanisms of cell death and the role of MAPK signaling in prion disease progression and highlight potential avenues for therapeutic intervention.

  14. Prions, prion-like prionoids, and neurodegenerative disordersVacancy

    Directory of Open Access Journals (Sweden)

    Ashok Verma

    2016-01-01

    Full Text Available Prion diseases or transmissible spongiform encephalopathies are fatal neurodegenerative diseases characterized by the aggregation and deposition of the misfolded prion protein in the brain. α-synuclein (α-syn-associated multiple system atrophy has been recently shown to be caused by a bona fide α-syn prion strain. Several other misfolded native proteins such as β-amyloid, tau and TDP-43 share some aspects of prions although none of them is shown to be transmissible in nature or in experimental animals. However, these prion-like “prionoids” are causal to a variety of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The remarkable recent discovery of at least two new α-syn prion strains and their transmissibility in transgenic mice and in vitro cell models raises a distinct question as to whether some specific strain of other prionoids could have the capability of disease transmission in a manner similar to prions. In this overview, we briefly describe human and other mammalian prion diseases and comment on certain similarities between prion and prionoid and the possibility of prion-like transmissibility of some prionoid strains.

  15. Age at onset and Parkinson disease phenotype

    Science.gov (United States)

    Pagano, Gennaro; Ferrara, Nicola; Brooks, David J.

    2016-01-01

    Objective: To explore clinical phenotype and characteristics of Parkinson disease (PD) at different ages at onset in recently diagnosed patients with untreated PD. Methods: We have analyzed baseline data from the Parkinson's Progression Markers Initiative database. Four hundred twenty-two patients with a diagnosis of PD confirmed by DaTSCAN imaging were divided into 4 groups according to age at onset (onset younger than 50 years, 50–59 years, 60–69 years, and 70 years or older) and investigated for differences in side, type and localization of symptoms, occurrence/severity of motor and nonmotor features, nigrostriatal function, and CSF biomarkers. Results: Older age at onset was associated with a more severe motor and nonmotor phenotype, a greater dopaminergic dysfunction on DaTSCAN, and reduction of CSF α-synuclein and total tau. The most common presentation was the combination of 2 or 3 motor symptoms (bradykinesia, resting tremor, and rigidity) with rigidity being more common in the young-onset group. In about 80% of the patients with localized onset, the arm was the most affected part of the body, with no difference across subgroups. Conclusions: Although the presentation of PD symptoms is similar across age subgroups, the severity of motor and nonmotor features, the impairment of striatal binding, and the levels of CSF biomarkers increase with age at onset. The variability of imaging and nonimaging biomarkers in patients with PD at different ages could hamper the results of future clinical trials. PMID:26865518

  16. The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion

    Science.gov (United States)

    Giachin, Gabriele; Mai, Phuong Thao; Tran, Thanh Hoa; Salzano, Giulia; Benetti, Federico; Migliorati, Valentina; Arcovito, Alessandro; Longa, Stefano Della; Mancini, Giordano; D'Angelo, Paola; Legname, Giuseppe

    2015-10-01

    The conversion of the prion protein (PrPC) into prions plays a key role in transmissible spongiform encephalopathies. Despite the importance for pathogenesis, the mechanism of prion formation has escaped detailed characterization due to the insoluble nature of prions. PrPC interacts with copper through octarepeat and non-octarepeat binding sites. Copper coordination to the non-octarepeat region has garnered interest due to the possibility that this interaction may impact prion conversion. We used X-ray absorption spectroscopy to study copper coordination at pH 5.5 and 7.0 in human PrPC constructs, either wild-type (WT) or carrying pathological mutations. We show that mutations and pH cause modifications of copper coordination in the non-octarepeat region. In the WT at pH 5.5, copper is anchored to His96 and His111, while at pH 7 it is coordinated by His111. Pathological point mutations alter the copper coordination at acidic conditions where the metal is anchored to His111. By using in vitro approaches, cell-based and computational techniques, we propose a model whereby PrPC coordinating copper with one His in the non-octarepeat region converts to prions at acidic condition. Thus, the non-octarepeat region may act as the long-sought-after prion switch, critical for disease onset and propagation.

  17. Mad Cows and CJD A Physicist's View of Prion Brain Diseases

    CERN Document Server

    Morrison, Douglas Robert Ogston

    1997-01-01

    The research of Carleton Gajdusek on a stone-age tribe in Papua New Guinea, who suffered from a mysterious disease, kuru, spread by cannibalism, is described and short extracts from his films will be shown. Some deaths from kuru are still occuring after 45 years. This disease is believed to be caused by an entirely new mechanism, not a virus or bacteria, but by a small molecule known as a prion that occurs naturally in many living forms. The Prion Only hypothesis of Stan Prusiner is discussed critically. It has been calculated that 900,000 cows in Britain had the Mad Cow disease, BSE, but most were slaughtered before symptoms were recognised. This epidemic started with 10 cases in the first year, and finally 160,000 were officially classified as having BSE; it is now slowly dying out. The human epidemic, caused by a new version of Creutzfeldt-Jakob Disease, nvCJD, affects mainly young people, has just begun with 10 cases in the first year. The average incubation time may be about 14 years then death follows i...

  18. A BRIEF DISCUSSION REGARDING PRION DISEASES AND SARS

    Science.gov (United States)

    Recent diagnoses of Mad Cow disease in Canadian and American cattle has increased concern for this disease and other TSEs in North America. This presentation provides a quick review of the important features of Mad Cow disease as well as SARS as they might relate to land applicat...

  19. Inhibition of protease-resistant prion protein formation in a transformed deer cell line infected with chronic wasting disease

    NARCIS (Netherlands)

    Raymond, G.J.; Olsen, E.A.; Lee, K.S.; Raymond, L.D.; Bryant, P.K.; Baron, G.S.; Caughey, W.S.; Kocisko, D.A.; McHolland, L.E.; Favara, C.; Langeveld, J.P.M.; Zijderveld, van F.G.; Mayer, R.T.; Miller, M.W.; Williams, E.S.; Caughey, B.

    2006-01-01

    Chronic wasting disease (CWD) is an emerging transmissible spongiform encephalopathy (prion disease) of North American cervids, i.e., mule deer, white-tailed deer, and elk (wapiti). To facilitate in vitro studies of CWD, we have developed a transformed deer cell line that is persistently infected

  20. MM2-Thalamic Creutzfeldt-Jacob Disease: Neuropathological, Biochemical and Transmission Studies Identify a Distinctive Prion Strain

    NARCIS (Netherlands)

    Moda, F.; Suardi, S.; Fede, Di G.; Indaco, A.; Limido, L.; Vimercati, C.; Ruggerone, M.; Campagnani, I.; Langeveld, J.P.M.; Terruzzi, A.; Brambilla, A.; Zerbi, P.; Fociani, P.; Bishop, T.; Will, G.W.; Manson, J.C.; Giaccone, G.; Tagliavini, F.

    2012-01-01

    In CreutzfeldtJakob disease (CJD), molecular typing based on the size of the protease resistant core of the disease-associated prion protein (PrPSc) and the M/V polymorphism at codon 129 of the PRNP gene correlates with the clinico-pathologic subtypes. Approximately 95% of the sporadic 129MM CJD

  1. A Fluorescent Oligothiophene-Bis-Triazine ligand interacts with PrP fibrils and detects SDS-resistant oligomers in human prion diseases.

    Science.gov (United States)

    Imberdis, Thibaut; Ayrolles-Torro, Adeline; Duarte Rodrigues, Alysson; Torrent, Joan; Alvarez-Martinez, Maria Teresa; Kovacs, Gabor G; Verdier, Jean-Michel; Robitzer, Mike; Perrier, Véronique

    2016-01-26

    Prion diseases are characterized by the accumulation in the central nervous system of an abnormally folded isoform of the prion protein, named PrP(Sc). Aggregation of PrP(Sc) into oligomers and fibrils is critically involved in the pathogenesis of prion diseases. Oligomers are supposed to be the key neurotoxic agents in prion disease, so modulation of prion aggregation pathways with small molecules can be a valuable strategy for studying prion pathogenicity and for developing new diagnostic and therapeutic approaches. We previously identified thienyl pyrimidine compounds that induce SDS-resistant PrP(Sc) (rSDS-PrP(Sc)) oligomers in prion-infected samples. Due to the low effective doses of the thienyl pyrimidine hits, we synthesized a quaterthiophene-bis-triazine compound, called MR100 to better evaluate their diagnostic and therapeutic potentials. This molecule exhibits a powerful activity inducing rSDS-PrP(Sc) oligomers at nanomolar concentrations in prion-infected cells. Fluorescence interaction studies of MR100 with mouse PrP fibrils showed substantial modification of the spectrum, and the interaction was confirmed in vitro by production of rSDS-oligomer species upon incubation of MR100 with fibrils in SDS-PAGE gel. We further explored whether MR100 compound has a potential to be used in the diagnosis of prion diseases. Our results showed that: (i) MR100 can detect rSDS-oligomers in prion-infected brain homogenates of various species, including human samples from CJD patients; (ii) A protocol, called "Rapid Centrifugation Assay" (RCA), was developed based on MR100 property of inducing rSDS-PrP(Sc) oligomers only in prion-infected samples, and avoiding the protease digestion step. RCA allows the detection of both PK-sensitive and PK-resistant PrP(Sc) species in rodents samples but also from patients with different CJD forms (sporadic and new variant); (iii) A correlation could be established between the amount of rSDS-PrP(Sc) oligomers revealed by MR100 and the

  2. Prion disease susceptibility is affected by β-structure folding propensity and local side-chain interactions in PrP

    Science.gov (United States)

    Khan, M. Qasim; Sweeting, Braden; Mulligan, Vikram Khipple; Arslan, Pharhad Eli; Cashman, Neil R.; Pai, Emil F.; Chakrabartty, Avijit

    2010-01-01

    Prion diseases occur when the normally α-helical prion protein (PrP) converts to a pathological β-structured state with prion infectivity (PrPSc). Exposure to PrPSc from other mammals can catalyze this conversion. Evidence from experimental and accidental transmission of prions suggests that mammals vary in their prion disease susceptibility: Hamsters and mice show relatively high susceptibility, whereas rabbits, horses, and dogs show low susceptibility. Using a novel approach to quantify conformational states of PrP by circular dichroism (CD), we find that prion susceptibility tracks with the intrinsic propensity of mammalian PrP to convert from the native, α-helical state to a cytotoxic β-structured state, which exists in a monomer–octamer equilibrium. It has been controversial whether β-structured monomers exist at acidic pH; sedimentation equilibrium and dual-wavelength CD evidence is presented for an equilibrium between a β-structured monomer and octamer in some acidic pH conditions. Our X-ray crystallographic structure of rabbit PrP has identified a key helix-capping motif implicated in the low prion disease susceptibility of rabbits. Removal of this capping motif increases the β-structure folding propensity of rabbit PrP to match that of PrP from mouse, a species more susceptible to prion disease. PMID:21041683

  3. Prion disease susceptibility is affected by beta-structure folding propensity and local side-chain interactions in PrP.

    Science.gov (United States)

    Khan, M Qasim; Sweeting, Braden; Mulligan, Vikram Khipple; Arslan, Pharhad Eli; Cashman, Neil R; Pai, Emil F; Chakrabartty, Avijit

    2010-11-16

    Prion diseases occur when the normally α-helical prion protein (PrP) converts to a pathological β-structured state with prion infectivity (PrP(Sc)). Exposure to PrP(Sc) from other mammals can catalyze this conversion. Evidence from experimental and accidental transmission of prions suggests that mammals vary in their prion disease susceptibility: Hamsters and mice show relatively high susceptibility, whereas rabbits, horses, and dogs show low susceptibility. Using a novel approach to quantify conformational states of PrP by circular dichroism (CD), we find that prion susceptibility tracks with the intrinsic propensity of mammalian PrP to convert from the native, α-helical state to a cytotoxic β-structured state, which exists in a monomer-octamer equilibrium. It has been controversial whether β-structured monomers exist at acidic pH; sedimentation equilibrium and dual-wavelength CD evidence is presented for an equilibrium between a β-structured monomer and octamer in some acidic pH conditions. Our X-ray crystallographic structure of rabbit PrP has identified a key helix-capping motif implicated in the low prion disease susceptibility of rabbits. Removal of this capping motif increases the β-structure folding propensity of rabbit PrP to match that of PrP from mouse, a species more susceptible to prion disease.

  4. The expanded octarepeat domain selectively binds prions and disrupts homomeric prion protein interactions

    NARCIS (Netherlands)

    Leliveld, S. R.; Dame, R.T.; Wuite, G.J.L.; Stitz, L.; Korth, C.

    2006-01-01

    Insertion of additional octarepeats into the prion protein gene has been genetically linked to familial Creutzfeldt Jakob disease and hence to de novo generation of infectious prions. The pivotal event during prion formation is the conversion of the normal prion protein (PrP

  5. PrionHome: a database of prions and other sequences relevant to prion phenomena.

    Directory of Open Access Journals (Sweden)

    Djamel Harbi

    Full Text Available Prions are units of propagation of an altered state of a protein or proteins; prions can propagate from organism to organism, through cooption of other protein copies. Prions contain no necessary nucleic acids, and are important both as both pathogenic agents, and as a potential force in epigenetic phenomena. The original prions were derived from a misfolded form of the mammalian Prion Protein PrP. Infection by these prions causes neurodegenerative diseases. Other prions cause non-Mendelian inheritance in budding yeast, and sometimes act as diseases of yeast. We report the bioinformatic construction of the PrionHome, a database of >2000 prion-related sequences. The data was collated from various public and private resources and filtered for redundancy. The data was then processed according to a transparent classification system of prionogenic sequences (i.e., sequences that can make prions, prionoids (i.e., proteins that propagate like prions between individual cells, and other prion-related phenomena. There are eight PrionHome classifications for sequences. The first four classifications are derived from experimental observations: prionogenic sequences, prionoids, other prion-related phenomena, and prion interactors. The second four classifications are derived from sequence analysis: orthologs, paralogs, pseudogenes, and candidate-prionogenic sequences. Database entries list: supporting information for PrionHome classifications, prion-determinant areas (where relevant, and disordered and compositionally-biased regions. Also included are literature references for the PrionHome classifications, transcripts and genomic coordinates, and structural data (including comparative models made for the PrionHome from manually curated alignments. We provide database usage examples for both vertebrate and fungal prion contexts. Using the database data, we have performed a detailed analysis of the compositional biases in known budding-yeast prionogenic

  6. PrionHome: a database of prions and other sequences relevant to prion phenomena.

    Science.gov (United States)

    Harbi, Djamel; Parthiban, Marimuthu; Gendoo, Deena M A; Ehsani, Sepehr; Kumar, Manish; Schmitt-Ulms, Gerold; Sowdhamini, Ramanathan; Harrison, Paul M

    2012-01-01

    Prions are units of propagation of an altered state of a protein or proteins; prions can propagate from organism to organism, through cooption of other protein copies. Prions contain no necessary nucleic acids, and are important both as both pathogenic agents, and as a potential force in epigenetic phenomena. The original prions were derived from a misfolded form of the mammalian Prion Protein PrP. Infection by these prions causes neurodegenerative diseases. Other prions cause non-Mendelian inheritance in budding yeast, and sometimes act as diseases of yeast. We report the bioinformatic construction of the PrionHome, a database of >2000 prion-related sequences. The data was collated from various public and private resources and filtered for redundancy. The data was then processed according to a transparent classification system of prionogenic sequences (i.e., sequences that can make prions), prionoids (i.e., proteins that propagate like prions between individual cells), and other prion-related phenomena. There are eight PrionHome classifications for sequences. The first four classifications are derived from experimental observations: prionogenic sequences, prionoids, other prion-related phenomena, and prion interactors. The second four classifications are derived from sequence analysis: orthologs, paralogs, pseudogenes, and candidate-prionogenic sequences. Database entries list: supporting information for PrionHome classifications, prion-determinant areas (where relevant), and disordered and compositionally-biased regions. Also included are literature references for the PrionHome classifications, transcripts and genomic coordinates, and structural data (including comparative models made for the PrionHome from manually curated alignments). We provide database usage examples for both vertebrate and fungal prion contexts. Using the database data, we have performed a detailed analysis of the compositional biases in known budding-yeast prionogenic sequences, showing

  7. Voice Onset Time in Parkinson Disease

    Science.gov (United States)

    Fischer, Emily; Goberman, Alexander M.

    2010-01-01

    Research has found that speaking rate has an effect on voice onset time (VOT). Given that Parkinson disease (PD) affects speaking rate, the purpose of this study was to examine VOT with the effect of rate removed (VOT ratio), along with the traditional VOT measure, in individuals with PD. VOT and VOT ratio were examined in 9 individuals with PD…

  8. Progression of Late-Onset Stargardt Disease

    NARCIS (Netherlands)

    Lambertus, S.; Lindner, M.; Bax, N.M.; Mauschitz, M.M.; Nadal, J.; Schmid, M.; Schmitz-Valckenberg, S.; Hollander, A.I. den; Weber, B.H.; Holz, F.G.; Wilt, G.J. van der; Fleckenstein, M.; Hoyng, C.B.

    2016-01-01

    Purpose: Identification of sensitive biomarkers is essential to determine potential effects of emerging therapeutic trials for Stargardt disease. This study aimed to describe the natural history of late-onset Stargardt, and demonstrates the accuracy of retinal pigment epithelium (RPE) atrophy

  9. Prion protein accumulation in lipid rafts of mouse aging brain.

    Directory of Open Access Journals (Sweden)

    Federica Agostini

    Full Text Available The cellular form of the prion protein (PrP(C is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrP(C. In old mice, this change favors PrP(C accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrP(C translocation into detergent-resistant membranes (DRMs, we looked at PrP(C compartmentalization in hippocampi from acid sphingomyelinase (ASM knockout (KO mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrP(C in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases.

  10. Prion diseases are efficiently transmitted by blood transfusion in sheep

    OpenAIRE

    Houston, F.; McCutcheon, S.; Goldmann, W.; Chong, A.; Foster, J.; Siso, S.; Gonzalez, L.; Jeffrey, M.; Hunter, N.

    2008-01-01

    The emergence of variant Creutzfeld-Jakob disease, following on from the bovine spongiform encephalopathy (BSE) epidemic, led to concerns about the potential risk of iatrogenic transmission of disease by blood transfusion and the introduction of costly control measures to protect blood supplies. We previously reported preliminary data demonstrating the transmission of BSE and natural scrapie by blood transfusion in sheep. The final results of this experiment, reported here, give unexpectedly ...

  11. Degradation of the disease-associated prion protein by a serine protease from lichens

    Science.gov (United States)

    Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J.C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T.E.; Bartz, Jason C.

    2011-01-01

    The disease-associated prion protein (PrP(TSE)), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrP(TSE) inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrP(TSE). Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrP(TSE)-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrP(TSE) and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  12. Glypican-1 mediates both prion protein lipid raft association and disease isoform formation.

    Directory of Open Access Journals (Sweden)

    David R Taylor

    2009-11-01

    Full Text Available In prion diseases, the cellular form of the prion protein, PrP(C, undergoes a conformational conversion to the infectious isoform, PrP(Sc. PrP(C associates with lipid rafts through its glycosyl-phosphatidylinositol (GPI anchor and a region in its N-terminal domain which also binds to heparan sulfate proteoglycans (HSPGs. We show that heparin displaces PrP(C from rafts and promotes its endocytosis, suggesting that heparin competes with an endogenous raft-resident HSPG for binding to PrP(C. We then utilised a transmembrane-anchored form of PrP (PrP-TM, which is targeted to rafts solely by its N-terminal domain, to show that both heparin and phosphatidylinositol-specific phospholipase C can inhibit its association with detergent-resistant rafts, implying that a GPI-anchored HSPG targets PrP(C to rafts. Depletion of the major neuronal GPI-anchored HSPG, glypican-1, significantly reduced the raft association of PrP-TM and displaced PrP(C from rafts, promoting its endocytosis. Glypican-1 and PrP(C colocalised on the cell surface and both PrP(C and PrP(Sc co-immunoprecipitated with glypican-1. Critically, treatment of scrapie-infected N2a cells with glypican-1 siRNA significantly reduced PrP(Sc formation. In contrast, depletion of glypican-1 did not alter the inhibitory effect of PrP(C on the beta-secretase cleavage of the Alzheimer's amyloid precursor protein. These data indicate that glypican-1 is a novel cellular cofactor for prion conversion and we propose that it acts as a scaffold facilitating the interaction of PrP(C and PrP(Sc in lipid rafts.

  13. Codon 129 polymorphism of prion protein gene in is not a risk factor for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Jerusa Smid

    2013-07-01

    Full Text Available Interaction of prion protein and amyloid-b oligomers has been demonstrated recently. Homozygosity at prion protein gene (PRNP codon 129 is associated with higher risk for Creutzfeldt-Jakob disease. This polymorphism has been addressed as a possible risk factor in Alzheimer disease (AD. Objective To describe the association between codon 129 polymorphisms and AD. Methods We investigated the association of codon 129 polymorphism of PRNP in 99 AD patients and 111 controls, and the association between this polymorphism and cognitive performance. Other polymorphisms of PRNP and additive effect of apolipoprotein E gene (ApoE were evaluated. Results Codon 129 genotype distribution in AD 45.5% methionine (MM, 42.2% methionine valine (MV, 12.1% valine (VV; and 39.6% MM, 50.5% MV, 9.9% VV among controls (p>0.05. There were no differences of cognitive performance concerning codon 129. Stratification according to ApoE genotype did not reveal difference between groups. Conclusion Codon 129 polymorphism is not a risk factor for AD in Brazilian patients.

  14. Distribution and Quantitative Estimates of Variant Creutzfeldt-Jakob Disease Prions in Tissues of Clinical and Asymptomatic Patients.

    Science.gov (United States)

    Douet, Jean Y; Lacroux, Caroline; Aron, Naima; Head, Mark W; Lugan, Séverine; Tillier, Cécile; Huor, Alvina; Cassard, Hervé; Arnold, Mark; Beringue, Vincent; Ironside, James W; Andréoletti, Olivier

    2017-06-01

    In the United-Kingdom, ≈1 of 2,000 persons could be infected with variant Creutzfeldt-Jakob disease (vCJD). Therefore, risk of transmission of vCJD by medical procedures remains a major concern for public health authorities. In this study, we used in vitro amplification of prions by protein misfolding cyclic amplification (PMCA) to estimate distribution and level of the vCJD agent in 21 tissues from 4 patients who died of clinical vCJD and from 1 asymptomatic person with vCJD. PMCA identified major levels of vCJD prions in a range of tissues, including liver, salivary gland, kidney, lung, and bone marrow. Bioassays confirmed that the quantitative estimate of levels of vCJD prion accumulation provided by PMCA are indicative of vCJD infectivity levels in tissues. Findings provide critical data for the design of measures to minimize risk for iatrogenic transmission of vCJD.

  15. Transgenic fatal familial insomnia mice indicate prion infectivity-independent mechanisms of pathogenesis and phenotypic expression of disease.

    Directory of Open Access Journals (Sweden)

    Ihssane Bouybayoune

    2015-04-01

    Full Text Available Fatal familial insomnia (FFI and a genetic form of Creutzfeldt-Jakob disease (CJD178 are clinically different prion disorders linked to the D178N prion protein (PrP mutation. The disease phenotype is determined by the 129 M/V polymorphism on the mutant allele, which is thought to influence D178N PrP misfolding, leading to the formation of distinctive prion strains with specific neurotoxic properties. However, the mechanism by which misfolded variants of mutant PrP cause different diseases is not known. We generated transgenic (Tg mice expressing the mouse PrP homolog of the FFI mutation. These mice synthesize a misfolded form of mutant PrP in their brains and develop a neurological illness with severe sleep disruption, highly reminiscent of FFI and different from that of analogously generated Tg(CJD mice modeling CJD178. No prion infectivity was detectable in Tg(FFI and Tg(CJD brains by bioassay or protein misfolding cyclic amplification, indicating that mutant PrP has disease-encoding properties that do not depend on its ability to propagate its misfolded conformation. Tg(FFI and Tg(CJD neurons have different patterns of intracellular PrP accumulation associated with distinct morphological abnormalities of the endoplasmic reticulum and Golgi, suggesting that mutation-specific alterations of secretory transport may contribute to the disease phenotype.

  16. Controlling the prion propensity of glutamine/asparagine-rich proteins.

    Science.gov (United States)

    Paul, Kacy R; Ross, Eric D

    2015-01-01

    The yeast Saccharomyces cerevisiae can harbor a number of distinct prions. Most of the yeast prion proteins contain a glutamine/asparagine (Q/N) rich region that drives prion formation. Prion-like domains, defined as regions with high compositional similarity to yeast prion domains, are common in eukaryotic proteomes, and mutations in various human proteins containing prion-like domains have been linked to degenerative diseases, including amyotrophic lateral sclerosis. Here, we discuss a recent study in which we utilized two strategies to generate prion activity in non-prion Q/N-rich domains. First, we made targeted mutations in four non-prion Q/N-rich domains, replacing predicted prion-inhibiting amino acids with prion-promoting amino acids. All four mutants formed foci when expressed in yeast, and two acquired bona fide prion activity. Prion activity could be generated with as few as two mutations, suggesting that many non-prion Q/N-rich proteins may be just a small number of mutations from acquiring aggregation or prion activity. Second, we created tandem repeats of short prion-prone segments, and observed length-dependent prion activity. These studies demonstrate the considerable progress that has been made in understanding the sequence basis for aggregation of prion and prion-like domains, and suggest possible mechanisms by which new prion domains could evolve.

  17. Chronic wasting disease in bank voles: characterisation of the shortest incubation time model for prion diseases.

    Directory of Open Access Journals (Sweden)

    Michele Angelo Di Bari

    2013-03-01

    Full Text Available In order to assess the susceptibility of bank voles to chronic wasting disease (CWD, we inoculated voles carrying isoleucine or methionine at codon 109 (Bv109I and Bv109M, respectively with CWD isolates from elk, mule deer and white-tailed deer. Efficient transmission rate (100% was observed with mean survival times ranging from 156 to 281 days post inoculation. Subsequent passages in Bv109I allowed us to isolate from all CWD sources the same vole-adapted CWD strain (Bv(109ICWD, typified by unprecedented short incubation times of 25-28 days and survival times of ∼35 days. Neuropathological and molecular characterisation of Bv(109ICWD showed that the classical features of mammalian prion diseases were all recapitulated in less than one month after intracerebral inoculation. Bv(109ICWD was characterised by a mild and discrete distribution of spongiosis and relatively low levels of protease-resistant PrP(Sc (PrP(res in the same brain regions. Despite the low PrP(res levels and the short time lapse available for its accumulation, end-point titration revealed that brains from terminally-ill voles contained up to 10(8,4 i.c. ID50 infectious units per gram. Bv(109ICWD was efficiently replicated by protein misfolding cyclic amplification (PMCA and the infectivity faithfully generated in vitro, as demonstrated by the preservation of the peculiar Bv(109ICWD strain features on re-isolation in Bv109I. Overall, we provide evidence that the same CWD strain was isolated in Bv109I from the three-cervid species. Bv(109ICWD showed unique characteristics of "virulence", low PrP(res accumulation and high infectivity, thus providing exceptional opportunities to improve basic knowledge of the relationship between PrP(Sc, neurodegeneration and infectivity.

  18. [A case of Creutzfeldt-Jakob in the Mexican north-east and review of current concepts on prion disease].

    Science.gov (United States)

    Calderón-Garcidueñas, A L; Sagastegui-Rodríguez, J A; Canales-Ibarra, C; Farías-García, R

    2001-01-01

    The case reported here is that of a 50-year-old man from Saltillo, Coahuila, Mexico, who during the previous 15 months developed a demential syndrome and myoclonia. The brain biopsy led to establish a diagnosis of spongiform encephalopathy. The EEG showed periodic sharp wave complexes over the right hemisphere. A review on about prion diseases is included.

  19. The contribution of different prion protein types and host polymorphisms to clinicopathological variations in Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Head, Mark W; Ironside, James W

    2012-07-01

    Creutzfeldt-Jakob disease is a fatal neurodegenerative disease that primarily affects the central nervous system. In this respect, it can be considered alongside the more frequently occurring neurodegenerative diseases, such as Alzheimer's disease. Creutzfeldt-Jakob disease is perhaps the paradigmatic protein misfolding disorder, so comparisons between the mechanisms involved in Creutzfeldt-Jakob disease and other neurodegenerative diseases associated with protein misfolding (such as the tauopathies and synucleinopathies) may also be informative. Like many of these diseases, Creutzfeldt-Jakob disease occurs sporadically or can, more rarely, be associated with mutations. However, Creutzfeldt-Jakob disease can also be acquired and is experimentally transmissible. These properties have had profound public health implications and made the disease of interest to virologists, in addition to those interested in protein misfolding disorders and neurodegeneration. The possible causes for the pronounced phenotypic variation among different forms of Creutzfeldt-Jakob disease are beginning to become understood, and these appear to depend in large measure on the genetics of the host (specifically the sequence of the prion protein gene, PRNP) and the epigenetic aspects of the agent (thought to be a misfolded and aggregated form of the PRNP gene product, termed a prion). This review will examine whether this model in its present form has sufficient complexity and subtlety to account for the clinicopathological variation evident in Creutzfeldt-Jakob disease and will outline the ways in which a more complete and informative molecular definition of human prions are currently being sought. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Autologous neural progenitor cell transplantation into newborn mice modeling for E200K genetic prion disease delays disease progression.

    Science.gov (United States)

    Frid, Kati; Binyamin, Orli; Fainstein, Nina; Keller, Guy; Ben-Hur, Tamir; Gabizon, Ruth

    2018-05-01

    TgMHu2ME199K mice, a transgenic line mimicking genetic prion disease, are born healthy and gradually deteriorate to a terminal neurological condition concomitant with the accumulation of disease-related PrP. To investigate whether transplantation of neural progenitor cells (NPCs) to these mice can delay disease aggravation, we first tested the properties of mutant PrP in homogenates and enriched NPCs from TgMHu2ME199K embryos, as compared to PrP in sick TgMHu2ME199K brains. Next, we tested the clinical effect of NPCs transplantation into newborn TgMHu2ME199K mice. We show that mutant PrP does not convert into a disease-related isoform while in progenitor cells. Most important, transplantation of both wild type and transgenic NPCs significantly delayed the progression of spontaneous prion disease in TgMHu2ME199K mice. While the strong clinical effect was not accompanied by a reduced accumulation of disease-related PrP, treated mouse brains presented a significant reduction in amyloid glycosaminoglycans and preservation of neurogenesis levels, indicating a strong neuroprotective effect. These results may encourage the investigation of new pathways for treatment in these terrible diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Early-onset Alzheimer's Disease Phenotypes: Neuropsychology and Neural Networks

    Science.gov (United States)

    2017-05-11

    Alzheimer Disease, Early Onset; Alzheimer Disease; Alzheimer Disease, Late Onset; Dementia, Alzheimer Type; Logopenic Progressive Aphasia; Primary Progressive Aphasia; Visuospatial/Perceptual Abilities; Posterior Cortical Atrophy; Executive Dysfunction; Corticobasal Degeneration; Ideomotor Apraxia

  2. Comparative Study of Prions in Iatrogenic and Sporadic Creutzfeldt-Jakob Disease

    Science.gov (United States)

    Xiao, Xiangzhu; Yuan, Jue; Qing, Liuting; Cali, Ignazio; Mikol, Jacqueline; Delisle, Marie-Bernadette; Uro-Coste, Emmanuelle; Zeng, Liang; Abouelsaad, Mai; Gazgalis, Dimitris; Martinez, Manuel Camacho; Wang, Gong-Xian; Brown, Paul; Ironside, James W.; Gambetti, Pierluigi; Kong, Qingzhong; Zou, Wen-Quan

    2014-01-01

    Differentiating iatrogenic Creutzfeldt-Jakob disease (iCJD) from sporadic CJD (sCJD) would be useful for the identification and prevention of human-to-human prion transmission. Currently, the diagnosis of iCJD depends on identification of a recognized source of contamination to which patients have been exposed, in addition to fulfilling basic requirements for the establishment of diagnosis of CJD. Attempts to identify differences in clinical manifestations, neuropathological changes and pathological prion protein (PrPSc) between iCJD and sCJD have been unsuccessful. In the present study, using a variety of more sophisticated methods including sucrose step gradient sedimentation, conformational stability immunoassay, protein misfolding cyclic amplification (PMCA), fragment-mapping, and transmission study, we show no significant differences in gel profiles, oligomeric state, conformational stability and infectivity of PrPSc between iCJD and sCJD. However, using PMCA, we find that convertibility and amplification efficiency of PrPSc is greater in iCJD than in sCJD in a polymorphism-dependent manner. Moreover, two protease-resistant PrP C-terminal fragments (termed PrP-CTF12/13) were detected in all 9 cases of sCJD but not in 6 of 8 cases of iCJD tested in this study. The use of fragment mapping- and PMCA-based assays thus provides a means to distinguish most cases of iCJD from sCJD. PMID:25419482

  3. Prion protein polymorphisms affect chronic wasting disease progression.

    Directory of Open Access Journals (Sweden)

    Chad J Johnson

    Full Text Available Analysis of the PRNP gene in cervids naturally infected with chronic wasting disease (CWD suggested that PRNP polymorphisms affect the susceptibility of deer to infection. To test this effect, we orally inoculated 12 white-tailed deer with CWD agent. Three different PRNP alleles, wild-type (wt; glutamine at amino acid 95 and glycine at 96, Q95H (glutamine to histidine at amino acid position 95 and G96S (glycine to serine at position 96 were represented in the study cohort with 5 wt/wt, 3 wt/G96S, and 1 each wt/Q95H and Q95H/G96S. Two animals were lost to follow-up due to intercurrent disease. The inoculum was prepared from Wisconsin hunter-harvested homozygous wt/wt animals. All infected deer presented with clinical signs of CWD; the orally infected wt/wt had an average survival period of 693 days post inoculation (dpi and G96S/wt deer had an average survival period of 956 dpi. The Q95H/wt and Q95H/G96S deer succumbed to CWD at 1,508 and 1,596 dpi respectively. These data show that polymorphisms in the PRNP gene affect CWD incubation period. Deer heterozygous for the PRNP alleles had extended incubation periods with the Q95H allele having the greatest effect.

  4. Distinct transmissibility features of TSE sources derived from ruminant prion diseases by the oral route in a transgenic mouse model (TgOvPrP4 overexpressing the ovine prion protein.

    Directory of Open Access Journals (Sweden)

    Jean-Noël Arsac

    Full Text Available Transmissible spongiform encephalopathies (TSEs are a group of fatal neurodegenerative diseases associated with a misfolded form of host-encoded prion protein (PrP. Some of them, such as classical bovine spongiform encephalopathy in cattle (BSE, transmissible mink encephalopathy (TME, kuru and variant Creutzfeldt-Jakob disease in humans, are acquired by the oral route exposure to infected tissues. We investigated the possible transmission by the oral route of a panel of strains derived from ruminant prion diseases in a transgenic mouse model (TgOvPrP4 overexpressing the ovine prion protein (A136R154Q171 under the control of the neuron-specific enolase promoter. Sources derived from Nor98, CH1641 or 87V scrapie sources, as well as sources derived from L-type BSE or cattle-passaged TME, failed to transmit by the oral route, whereas those derived from classical BSE and classical scrapie were successfully transmitted. Apart from a possible effect of passage history of the TSE agent in the inocula, this implied the occurrence of subtle molecular changes in the protease-resistant prion protein (PrPres following oral transmission that can raises concerns about our ability to correctly identify sheep that might be orally infected by the BSE agent in the field. Our results provide proof of principle that transgenic mouse models can be used to examine the transmissibility of TSE agents by the oral route, providing novel insights regarding the pathogenesis of prion diseases.

  5. Progression of Late-Onset Stargardt Disease.

    Science.gov (United States)

    Lambertus, Stanley; Lindner, Moritz; Bax, Nathalie M; Mauschitz, Matthias M; Nadal, Jennifer; Schmid, Matthias; Schmitz-Valckenberg, Steffen; den Hollander, Anneke I; Weber, Bernhard H F; Holz, Frank G; van der Wilt, Gert Jan; Fleckenstein, Monika; Hoyng, Carel B

    2016-10-01

    Identification of sensitive biomarkers is essential to determine potential effects of emerging therapeutic trials for Stargardt disease. This study aimed to describe the natural history of late-onset Stargardt, and demonstrates the accuracy of retinal pigment epithelium (RPE) atrophy progression as an outcome measure. We performed a retrospective cohort study collecting multicenter data from 47 patients (91 eyes) with late-onset Stargardt, defined by clinical phenotype, at least one ABCA4 mutation, and age at disease onset ≥ 45 years. We analyzed RPE atrophy progression on fundus autofluorescence and near-infrared reflectance imaging using semiautomated software and a linear mixed model. We performed sample size calculations to assess the power in a simulated 2-year interventional study and assessed visual endpoints using time-to-event analysis. Over time, progression of RPE atrophy was observed (mean: 0.22 mm/year, 95% confidence interval [CI]: 0.19-0.27). By including only patients with bilateral RPE atrophy in a future trial, 32 patients are needed to reach a power of 83.9% (95% CI: 83.1-84.6), assuming a fixed therapeutic effect size of 30%. We found a median interval between disease onset and visual acuity decline to 20/32, 20/80, and 20/200 of 2.74 (95% CI: 0.54-4.41), 10.15 (95% CI: 6.13-11.38), and 11.38 (95% CI: 6.13-13.34) years, respectively. We show that RPE atrophy represents a robust biomarker to monitor disease progression in future therapeutic trials. In contrast, the variability in terms of the course of visual acuity was high.

  6. Amyloid- and FDG-PET in sporadic Creutzfeldt-Jakob disease: Correlation with pathological prion protein in neuropathology.

    Science.gov (United States)

    Matías-Guiu, Jordi A; Guerrero-Márquez, Carmen; Cabrera-Martín, María Nieves; Gómez-Pinedo, Ulises; Romeral, María; Mayo, Diego; Porta-Etessam, Jesús; Moreno-Ramos, Teresa; Carreras, José Luis; Matías-Guiu, Jorge

    2017-05-04

    The role of positron emission tomography (PET) in Creutzfeldt-Jakob disease is less defined than in other neurodegenerative diseases. We studied the correlation between the uptake of 18 F-florbetaben and 18 F-fluorodeoxyglucose with pathological prion protein deposition in histopathology in a case. A patient with 80 y old with a rapid neurological deterioration with a confirmed diagnosis of CJD was studied. PET and MRI studies were performed between 13-20 d before the death. A region of interest analysis was performed using Statistical Parametric Mapping. MRI showed atrophy with no other alterations. FDG-PET showed extensive areas of hypometabolism including left frontoparietal lobes as well as bilateral thalamus. Correlation between uptake of 18 F-florbetaben and pathological prion protein deposition was r = 0.786 (p < 0.05). Otherwise, correlation between uptake of 18 F-FDG and pathological prion protein was r = 0.357 (p = 0.385). Immunohistochemistry with β-amyloid did not show amyloid deposition or neuritic plaques. Our study supports the use of FDG-PET in the assessment of CJD. FDG-PET may be especially useful in cases of suspected CJD and negative MRI. Furthermore, this case report provides more evidence about the behavioral of amyloid tracers, and the possibility of a low-affinity binding to other non-amyloid proteins, such as the pathological prion protein, is discussed.

  7. Delaying the onset of Alzheimer disease

    Science.gov (United States)

    Craik, Fergus I.M.; Bialystok, Ellen; Freedman, Morris

    2010-01-01

    Objectives: There is strong epidemiologic evidence to suggest that older adults who maintain an active lifestyle in terms of social, mental, and physical engagement are protected to some degree against the onset of dementia. Such factors are said to contribute to cognitive reserve, which acts to compensate for the accumulation of amyloid and other brain pathologies. We present evidence that lifelong bilingualism is a further factor contributing to cognitive reserve. Methods: Data were collected from 211 consecutive patients diagnosed with probable Alzheimer disease (AD). Patients' age at onset of cognitive impairment was recorded, as was information on occupational history, education, and language history, including fluency in English and any other languages. Following this procedure, 102 patients were classified as bilingual and 109 as monolingual. Results: We found that the bilingual patients had been diagnosed 4.3 years later and had reported the onset of symptoms 5.1 years later than the monolingual patients. The groups were equivalent on measures of cognitive and occupational level, there was no apparent effect of immigration status, and the monolingual patients had received more formal education. There were no gender differences. Conclusions: The present data confirm results from an earlier study, and thus we conclude that lifelong bilingualism confers protection against the onset of AD. The effect does not appear to be attributable to such possible confounding factors as education, occupational status, or immigration. Bilingualism thus appears to contribute to cognitive reserve, which acts to compensate for the effects of accumulated neuropathology. GLOSSARY AD = Alzheimer disease; MMSE = Mini-Mental State Examination. PMID:21060095

  8. Prion protein and scrapie susceptibility

    NARCIS (Netherlands)

    Smits, M.A.; Bossers, A.; Schreuder, B.E.C.

    1997-01-01

    This article presents briefly current views on the role of prion protein (PrP) in Transmissible Spongiform Encephalopathies or prion diseases and the effect of PrP polymoryhisms on the susceptibility to these diseases, with special emphasis on sheep scrapie. The PrP genotype of sheep apears to be a

  9. Genes contributing to prion pathogenesis

    DEFF Research Database (Denmark)

    Tamgüney, Gültekin; Giles, Kurt; Glidden, David V

    2008-01-01

    incubation times, indicating that the conversion reaction may be influenced by other gene products. To identify genes that contribute to prion pathogenesis, we analysed incubation times of prions in mice in which the gene product was inactivated, knocked out or overexpressed. We tested 20 candidate genes...... show that many genes previously implicated in prion replication have no discernible effect on the pathogenesis of prion disease. While most genes tested did not significantly affect survival times, ablation of the amyloid beta (A4) precursor protein (App) or interleukin-1 receptor, type I (Il1r1...

  10. Prion Amplification and Hierarchical Bayesian Modeling Refine Detection of Prion Infection

    Science.gov (United States)

    Wyckoff, A. Christy; Galloway, Nathan; Meyerett-Reid, Crystal; Powers, Jenny; Spraker, Terry; Monello, Ryan J.; Pulford, Bruce; Wild, Margaret; Antolin, Michael; Vercauteren, Kurt; Zabel, Mark

    2015-02-01

    Prions are unique infectious agents that replicate without a genome and cause neurodegenerative diseases that include chronic wasting disease (CWD) of cervids. Immunohistochemistry (IHC) is currently considered the gold standard for diagnosis of a prion infection but may be insensitive to early or sub-clinical CWD that are important to understanding CWD transmission and ecology. We assessed the potential of serial protein misfolding cyclic amplification (sPMCA) to improve detection of CWD prior to the onset of clinical signs. We analyzed tissue samples from free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) and used hierarchical Bayesian analysis to estimate the specificity and sensitivity of IHC and sPMCA conditional on simultaneously estimated disease states. Sensitivity estimates were higher for sPMCA (99.51%, credible interval (CI) 97.15-100%) than IHC of obex (brain stem, 76.56%, CI 57.00-91.46%) or retropharyngeal lymph node (90.06%, CI 74.13-98.70%) tissues, or both (98.99%, CI 90.01-100%). Our hierarchical Bayesian model predicts the prevalence of prion infection in this elk population to be 18.90% (CI 15.50-32.72%), compared to previous estimates of 12.90%. Our data reveal a previously unidentified sub-clinical prion-positive portion of the elk population that could represent silent carriers capable of significantly impacting CWD ecology.

  11. Prion amplification and hierarchical Bayesian modeling refine detection of prion infection.

    Science.gov (United States)

    Wyckoff, A Christy; Galloway, Nathan; Meyerett-Reid, Crystal; Powers, Jenny; Spraker, Terry; Monello, Ryan J; Pulford, Bruce; Wild, Margaret; Antolin, Michael; VerCauteren, Kurt; Zabel, Mark

    2015-02-10

    Prions are unique infectious agents that replicate without a genome and cause neurodegenerative diseases that include chronic wasting disease (CWD) of cervids. Immunohistochemistry (IHC) is currently considered the gold standard for diagnosis of a prion infection but may be insensitive to early or sub-clinical CWD that are important to understanding CWD transmission and ecology. We assessed the potential of serial protein misfolding cyclic amplification (sPMCA) to improve detection of CWD prior to the onset of clinical signs. We analyzed tissue samples from free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) and used hierarchical Bayesian analysis to estimate the specificity and sensitivity of IHC and sPMCA conditional on simultaneously estimated disease states. Sensitivity estimates were higher for sPMCA (99.51%, credible interval (CI) 97.15-100%) than IHC of obex (brain stem, 76.56%, CI 57.00-91.46%) or retropharyngeal lymph node (90.06%, CI 74.13-98.70%) tissues, or both (98.99%, CI 90.01-100%). Our hierarchical Bayesian model predicts the prevalence of prion infection in this elk population to be 18.90% (CI 15.50-32.72%), compared to previous estimates of 12.90%. Our data reveal a previously unidentified sub-clinical prion-positive portion of the elk population that could represent silent carriers capable of significantly impacting CWD ecology.

  12. Evidence for varied aetiologies regulating the transmission of prion disease: implications for understanding the heritable basis of prion incubation times.

    Directory of Open Access Journals (Sweden)

    Conrad O Iyegbe

    2010-12-01

    Full Text Available Transmissible Spongiform Encephalopathies (TSEs are a group of progressive fatal neurodegenerative disorders, triggered by abnormal folding of the endogenous prion protein molecule. The encoding gene is a major biological factor influencing the length of the asymptomatic period after infection. It remains unclear the extent to which the variation between quantitative trait loci (QTLs reported in mouse models is due to methodological differences between approaches or genuine differences between traits. With this in mind, our approach to identifying genetic factors has sought to extend the linkage mapping approach traditionally applied, to a series of additional traits, while minimising methodological variability between them. Our approach allows estimations of heritability to be derived, as well as predictions to be made about possible existence of genetic overlap between the various traits.Our data indicate a surprising degree of heritability (up to 60%. Correlations between traits are also identified. A series of QTLs on chromosomes 1, 2, 3, 4, 6, 11 and 18 accompany our heritability estimates. However, only a locus on chromosome 11 has a general effect across all 4 models explored.We have achieved some success in detecting novel and pre-existing QTLs associated with incubation time. However, aside from the general effects described, the model-specific nature of the broader host genetic architecture has also been brought into clearer focus. This suggests that genetic overlap can only partially account for the general heritability of incubation time when factors, such as the nature of the TSE agent and the route of administration are considered. This point is highly relevant to vCJD (a potential threat to public health where the route of primary importance is oral, while the QTLs being sought derive exclusively from studies of the ic route. Our results highlight the limitations of a single-model approach to QTL-mapping of TSEs.

  13. Age and Environment Influences on Mouse Prion Disease Progression: Behavioral Changes and Morphometry and Stereology of Hippocampal Astrocytes

    Directory of Open Access Journals (Sweden)

    J. Bento-Torres

    2017-01-01

    Full Text Available Because enriched environment (EE and exercise increase and aging decreases immune response, we hypothesized that environmental enrichment and aging will, respectively, delay and increase prion disease progression. Mice dorsal striatum received bilateral stereotaxic intracerebral injections of normal or ME7 prion infected mouse brain homogenates. After behavior analysis, animals were euthanized and their brains processed for astrocyte GFAP immunolabeling. Our analysis related to the environmental influence are limited to young adult mice, whereas age influence refers to aged mice raised on standard cages. Burrowing activity began to reduce in ME7-SE two weeks before ME7-EE, while no changes were apparent in ME7 aged mice (ME7-A. Object placement recognition was impaired in ME7-SE, NBH-A, and ME7-A but normal in all other groups. Object identity recognition was impaired in ME7-A. Cluster analysis revealed two morphological families of astrocytes in NBH-SE animals, three in NBH-A and ME7-A, and four in NBH-EE, ME7-SE, and ME7-EE. As compared with control groups, astrocytes from DG and CA3 prion-diseased animals show significant numerical and morphological differences and environmental enrichment did not reverse these changes but induced different morphological changes in GFAP+ hippocampal astroglia. We suggest that environmental enrichment and aging delayed hippocampal-dependent behavioral and neuropathological signs of disease progression.

  14. New variant of Creutzfeldt-Jakob (vCJD disease and other human prion diseases under epidemiological surveillance in Brazil

    Directory of Open Access Journals (Sweden)

    Vera Lúcia Gattás

    Full Text Available Abstract To increase the timeliness of detection of human cases of the new variant of Creutzfeldt-Jakob disease (vCJD and to reduce the risk of transmission, the Brazilian Ministry of Health has established and standardized rules and control measures. These include the definition of criteria for suspect cases, reporting, monitoring, and control measures for illness prevention and transmission. Guidelines to be used by the team of health care staff were published and distributed to health workers. A detailed proposal for a simplified system of surveillance for prion diseases was developed and mandatory reporting introduced. Additional effort is necessary to increase vCJD case detection, thus making it necessary to establish a partnership with health care services for best identification of suspected cases and dissemination of information to all involved in the service dealing with vCJD investigation.

  15. Parasitic, fungal and prion zoonoses: an expanding universe of candidates for human disease.

    Science.gov (United States)

    Akritidis, N

    2011-03-01

    Zoonotic infections have emerged as a burden for millions of people in recent years, owing to re-emerging or novel pathogens often causing outbreaks in the developing world in the presence of inadequate public health infrastructure. Among zoonotic infections, those caused by parasitic pathogens are the ones that affect millions of humans worldwide, who are also at risk of developing chronic disease. The present review discusses the global effect of protozoan pathogens such as Leishmania sp., Trypanosoma sp., and Toxoplasma sp., as well as helminthic pathogens such as Echinococcus sp., Fasciola sp., and Trichinella sp. The zoonotic aspects of agents that are not essentially zoonotic are also discussed. The review further focuses on the zoonotic dynamics of fungal pathogens and prion diseases as observed in recent years, in an evolving environment in which novel patient target groups have developed for agents that were previously considered to be obscure or of minimal significance. © 2011 The Author. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  16. Defining the conformational features of anchorless, poorly neuroinvasive prions.

    Directory of Open Access Journals (Sweden)

    Cyrus Bett

    Full Text Available Infectious prions cause diverse clinical signs and form an extraordinary range of structures, from amorphous aggregates to fibrils. How the conformation of a prion dictates the disease phenotype remains unclear. Mice expressing GPI-anchorless or GPI-anchored prion protein exposed to the same infectious prion develop fibrillar or nonfibrillar aggregates, respectively, and show a striking divergence in the disease pathogenesis. To better understand how a prion's physical properties govern the pathogenesis, infectious anchorless prions were passaged in mice expressing anchorless prion protein and the resulting prions were biochemically characterized. Serial passage of anchorless prions led to a significant decrease in the incubation period to terminal disease and altered the biochemical properties, consistent with a transmission barrier effect. After an intraperitoneal exposure, anchorless prions were only weakly neuroinvasive, as prion plaques rarely occurred in the brain yet were abundant in extracerebral sites such as heart and adipose tissue. Anchorless prions consistently showed very high stability in chaotropes or when heated in SDS, and were highly resistant to enzyme digestion. Consistent with the results in mice, anchorless prions from a human patient were also highly stable in chaotropes. These findings reveal that anchorless prions consist of fibrillar and highly stable conformers. The additional finding from our group and others that both anchorless and anchored prion fibrils are poorly neuroinvasive strengthens the hypothesis that a fibrillar prion structure impedes efficient CNS invasion.

  17. Mathematical models for the diffusion magnetic resonance signal abnormality in patients with prion diseases

    Directory of Open Access Journals (Sweden)

    Matteo Figini

    2015-01-01

    Full Text Available In clinical practice signal hyperintensity in the cortex and/or in the striatum on magnetic resonance (MR diffusion-weighted images (DWIs is a marker of sporadic Creutzfeldt–Jakob Disease (sCJD. MR diagnostic accuracy is greater than 90%, but the biophysical mechanisms underpinning the signal abnormality are unknown. The aim of this prospective study is to combine an advanced DWI protocol with new mathematical models of the microstructural changes occurring in prion disease patients to investigate the cause of MR signal alterations. This underpins the later development of more sensitive and specific image-based biomarkers. DWI data with a wide a range of echo times and diffusion weightings were acquired in 15 patients with suspected diagnosis of prion disease and in 4 healthy age-matched subjects. Clinical diagnosis of sCJD was made in nine patients, genetic CJD in one, rapidly progressive encephalopathy in three, and Gerstmann–Sträussler–Scheinker syndrome in two. Data were analysed with two bi-compartment models that represent different hypotheses about the histopathological alterations responsible for the DWI signal hyperintensity. A ROI-based analysis was performed in 13 grey matter areas located in affected and apparently unaffected regions from patients and healthy subjects. We provide for the first time non-invasive estimate of the restricted compartment radius, designed to reflect vacuole size, which is a key discriminator of sCJD subtypes. The estimated vacuole size in DWI hyperintense cortex was in the range between 3 and 10 µm that is compatible with neuropathology measurements. In DWI hyperintense grey matter of sCJD patients the two bi-compartment models outperform the classic mono-exponential ADC model. Both new models show that T2 relaxation times significantly increase, fast and slow diffusivities reduce, and the fraction of the compartment with slow/restricted diffusion increases compared to unaffected grey matter of

  18. Yeast prions and human prion-like proteins: sequence features and prediction methods.

    Science.gov (United States)

    Cascarina, Sean M; Ross, Eric D

    2014-06-01

    Prions are self-propagating infectious protein isoforms. A growing number of prions have been identified in yeast, each resulting from the conversion of soluble proteins into an insoluble amyloid form. These yeast prions have served as a powerful model system for studying the causes and consequences of prion aggregation. Remarkably, a number of human proteins containing prion-like domains, defined as domains with compositional similarity to yeast prion domains, have recently been linked to various human degenerative diseases, including amyotrophic lateral sclerosis. This suggests that the lessons learned from yeast prions may help in understanding these human diseases. In this review, we examine what has been learned about the amino acid sequence basis for prion aggregation in yeast, and how this information has been used to develop methods to predict aggregation propensity. We then discuss how this information is being applied to understand human disease, and the challenges involved in applying yeast prediction methods to higher organisms.

  19. Late-onset Huntington's disease: diagnostic and prognostic considerations.

    Science.gov (United States)

    Koutsis, Georgios; Karadima, Georgia; Kladi, Athina; Panas, Marios

    2014-07-01

    To address diagnostic and prognostic issues in patients with late-onset Huntington's disease (HD). We analyzed a cohort of 41 late-onset (≥60 years) HD patients and compared them to 39 late-onset patients referred for HD testing that were negative for the HD-expansion and to 290 usual-onset (20-59 years) HD patients. Disease severity was assessed by the Total Functional Capacity Scale. Late-onset HD comprised 11.5% of our HD cohort. In total, 70.7% of late-onset HD patients had positive family history compared to 15.4% of late-onset expansion-negative patients (p < 0.001). Clinical features at onset or presentation could not usefully distinguish between late-onset expansion-positive and negative patients, excepting hemichorea, which was absent from the HD group (p = 0.024). Chorea was the first clinical feature in 53.7% and a presenting feature in 90.2% of late-onset HD. The mutation hit rate for late-onset patients was 51.3%, lower than in usual-onset patients (p = 0.04). Frequencies of chorea, cognitive impairment and psychiatric manifestations at onset or presentation were not significantly different between late-onset and usual-onset HD patients. Gait unsteadiness however was more common at presentation in late-onset HD (p = 0.007). Late-onset HD patients reached a severe stage of illness on average 2.8 years earlier than usual-onset HD patients (p = 0.046). A positive family history suggestive of HD, although absent in a third of patients, remains a helpful clue in diagnosing late-onset HD. Prognosis of late-onset HD in terms of Total Functional Capacity appears no better and shows a trend of being somewhat less favorable compared to usual-onset HD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Temporal relationship between onset of Graves' ophthalmopathy and onset of thyroidal Graves' disease

    NARCIS (Netherlands)

    Wiersinga, W. M.; Smit, T.; van der Gaag, R.; Koornneef, L.

    1988-01-01

    The temporal relationship between the onset of Graves' ophthalmopathy and the onset of thyroidal Graves' disease was evaluated in 125 consecutive patients with Graves' ophthalmopathy. Thyroidal Graves' disease--past or present--was clinically evident in 99 patients (79%): hyperthyroidism in 3 cases.

  1. Potential contribution of exosomes to the prion-like propagation of lesions in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Valerie eVingtdeux

    2012-07-01

    Full Text Available Since the discovery of prion diseases, the concept that a transmissible pathogen could be a protein has emerged. As such, this transmissible protein agent can transfer its pathological mis-folded shape to the same but normally folded protein thus leading to the propagation of a disease. This idea is now extrapolate to several neurological diseases associated with protein mis-folding and aggregation, such as Alzheimer’s disease. Alzheimer’s disease (AD is a slowly developing dementing disease characterized by the coexistence of two types of lesions: the parenchymal amyloid deposits and the intraneuronal neurofibrillary tangles (NFT. Amyloid deposits are composed of amyloid-beta peptides that derive from sequential cleavages of its precursor named amyloid protein precursor. Neurofibrillary tangle is characterized by intraneuronal aggregation of abnormally modified microtubule-associated Tau proteins. A synergistic relationship between the two lesions may trigger the progression of the disease. Thus, starting in the medial temporal lobe and slowly progressing through temporal, frontal, parietal and occipital cortex, the progression of NFT is well correlated with clinical expression of the disease. However, little is known about the mechanism driving the spatiotemporal propagation of these lesions ultimately leading to the disease. A growing number of studies suggest a prion-like diffusion of amyloid deposits and NFT. In the present chapter, we will develop the current hypotheses regarding the molecular and cellular mechanisms driving the development and spreading of Alzheimer disease lesions from the window of multivesicular bodies and exosomes.

  2. Downregulation of the Repressor Element 1-Silencing Transcription Factor (REST Is Associated with Akt-mTOR and Wnt-β-Catenin Signaling in Prion Diseases Models

    Directory of Open Access Journals (Sweden)

    Zhiqi Song

    2017-05-01

    Full Text Available Prion diseases are a group of infectious diseases characterized by multiple neuropathological changes, yet the mechanisms that preserve function and protect against prion-associated neurodegeneration are still unclear. We previously reported that the repressor element 1-silencing transcription factor (REST alleviates neurotoxic prion peptide (PrP106-126-induced toxicity in primary neurons. Here we confirmed the findings of the in vitro model in 263K infected hamsters, an in vivo model of prion diseases and further showed the relationships between REST and related signaling pathways. REST was depleted from the nucleus in prion infected brains and taken up by autophagosomes in the cytoplasm, co-localizing with LC3-II. Importantly, downregulation of the Akt–mTOR and at least partially inactivation of LRP6-Wnt-β-catenin signaling pathways correlated with the decreased levels of REST in vivo in the brain of 263K-infected hamsters and in vitro in PrP106-126-treated primary neurons. Overexpression of REST in primary cortical neurons alleviated PrP106-126 peptide-induced neuronal oxidative stress, mitochondrial damage and partly inhibition of the LRP6-Wnt-β-catenin and Akt–mTOR signaling. Based on our findings, a model of REST-mediated neuroprotection in prion infected animals is proposed, with Akt–mTOR and Wnt-β-catenin signaling as the key pathways. REST-mediated neuronal survival signaling could be explored as a viable therapeutic target for prion diseases and related neurodegenerative diseases.

  3. Early-onset stargardt disease: phenotypic and genotypic characteristics

    NARCIS (Netherlands)

    Lambertus, S.; Huet, R.A.C. van; Bax, N.M.; Hoefsloot, L.H.; Cremers, F.P.M.; Boon, C.J.F.; Klevering, B.J.; Hoyng, C.B.

    2015-01-01

    OBJECTIVE: To describe the phenotype and genotype of patients with early-onset Stargardt disease. DESIGN: Retrospective cohort study. PARTICIPANTS: Fifty-one Stargardt patients with age at onset onset, medical history, initial

  4. Prion infectivity in the spleen of a PRNP heterozygous individual with subclinical variant Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Bishop, Matthew T; Diack, Abigail B; Ritchie, Diane L; Ironside, James W; Will, Robert G; Manson, Jean C

    2013-04-01

    Blood transfusion has been identified as a source of human-to-human transmission of variant Creutzfeldt-Jakob disease. Three cases of variant Creutzfeldt-Jakob disease have been identified following red cell transfusions from donors who subsequently developed variant Creutzfeldt-Jakob disease and an asymptomatic red cell transfusion recipient, who did not die of variant Creutzfeldt-Jakob disease, has been identified with prion protein deposition in the spleen and a lymph node, but not the brain. This individual was heterozygous (MV) at codon 129 of the prion protein gene (PRNP), whereas all previous definite and probable cases of variant Creutzfeldt-Jakob disease have been methionine homozygotes (MM). A critical question for public health is whether the prion protein deposition reported in peripheral tissues from this MV individual correlates with infectivity. Additionally it is important to establish whether the PRNP codon 129 genotype has influenced the transmission characteristics of the infectious agent. Brain and spleen from the MV blood recipient were inoculated into murine strains that have consistently demonstrated transmission of the variant Creutzfeldt-Jakob disease agent. Mice were assessed for clinical and pathological signs of disease and transmission data were compared with other transmission studies in variant Creutzfeldt-Jakob disease, including those on the spleen and brain of the donor to the index case. Transmission of variant Creutzfeldt-Jakob disease was observed from the MV blood recipient spleen, but not from the brain, whereas there was transmission from both spleen and brain tissues from the red blood cell donor. Longer incubation times were observed for the blood donor spleen inoculum compared with the blood donor brain inoculum, suggesting lower titres of infectivity in the spleen. The distribution of vacuolar pathology and abnormal prion protein in infected mice were similar following inoculation with both donor and recipient spleen

  5. Prion infectivity in the spleen of a PRNP heterozygous individual with subclinical variant Creutzfeldt–Jakob disease

    Science.gov (United States)

    Bishop, Matthew T.; Diack, Abigail B.; Ritchie, Diane L.; Ironside, James W.; Will, Robert G.

    2013-01-01

    Blood transfusion has been identified as a source of human-to-human transmission of variant Creutzfeldt–Jakob disease. Three cases of variant Creutzfeldt–Jakob disease have been identified following red cell transfusions from donors who subsequently developed variant Creutzfeldt–Jakob disease and an asymptomatic red cell transfusion recipient, who did not die of variant Creutzfeldt–Jakob disease, has been identified with prion protein deposition in the spleen and a lymph node, but not the brain. This individual was heterozygous (MV) at codon 129 of the prion protein gene (PRNP), whereas all previous definite and probable cases of variant Creutzfeldt–Jakob disease have been methionine homozygotes (MM). A critical question for public health is whether the prion protein deposition reported in peripheral tissues from this MV individual correlates with infectivity. Additionally it is important to establish whether the PRNP codon 129 genotype has influenced the transmission characteristics of the infectious agent. Brain and spleen from the MV blood recipient were inoculated into murine strains that have consistently demonstrated transmission of the variant Creutzfeldt–Jakob disease agent. Mice were assessed for clinical and pathological signs of disease and transmission data were compared with other transmission studies in variant Creutzfeldt–Jakob disease, including those on the spleen and brain of the donor to the index case. Transmission of variant Creutzfeldt–Jakob disease was observed from the MV blood recipient spleen, but not from the brain, whereas there was transmission from both spleen and brain tissues from the red blood cell donor. Longer incubation times were observed for the blood donor spleen inoculum compared with the blood donor brain inoculum, suggesting lower titres of infectivity in the spleen. The distribution of vacuolar pathology and abnormal prion protein in infected mice were similar following inoculation with both donor and

  6. Prion replication without host adaptation during interspecies transmissions.

    Science.gov (United States)

    Bian, Jifeng; Khaychuk, Vadim; Angers, Rachel C; Fernández-Borges, Natalia; Vidal, Enric; Meyerett-Reid, Crystal; Kim, Sehun; Calvi, Carla L; Bartz, Jason C; Hoover, Edward A; Agrimi, Umberto; Richt, Jürgen A; Castilla, Joaquín; Telling, Glenn C

    2017-01-31

    Adaptation of prions to new species is thought to reflect the capacity of the host-encoded cellular form of the prion protein (PrP C ) to selectively propagate optimized prion conformations from larger ensembles generated in the species of origin. Here we describe an alternate replicative process, termed nonadaptive prion amplification (NAPA), in which dominant conformers bypass this requirement during particular interspecies transmissions. To model susceptibility of horses to prions, we produced transgenic (Tg) mice expressing cognate PrP C Although disease transmission to only a subset of infected TgEq indicated a significant barrier to EqPrP C conversion, the resulting horse prions unexpectedly failed to cause disease upon further passage to TgEq. TgD expressing deer PrP C was similarly refractory to deer prions from diseased TgD infected with mink prions. In both cases, the resulting prions transmitted to mice expressing PrP C from the species of prion origin, demonstrating that transmission barrier eradication of the originating prions was ephemeral and adaptation superficial in TgEq and TgD. Horse prions produced in vitro by protein misfolding cyclic amplification of mouse prions using horse PrP C also failed to infect TgEq but retained tropism for wild-type mice. Concordant patterns of neuropathology and prion deposition in susceptible mice infected with NAPA prions and the corresponding prion of origin confirmed preservation of strain properties. The comparable responses of both prion types to guanidine hydrochloride denaturation indicated this occurs because NAPA precludes selection of novel prion conformations. Our findings provide insights into mechanisms regulating interspecies prion transmission and a framework to reconcile puzzling epidemiological features of certain prion disorders.

  7. Mammalian prions

    Science.gov (United States)

    Salamat, Muhammad Khalid; Munoz-Montesino, Carola; Moudjou, Mohammed; Rezaei, Human; Laude, Hubert; Béringue, Vincent; Dron, Michel

    2013-01-01

    Upon prion infection, abnormal prion protein (PrPSc) self-perpetuate by conformational conversion of α-helix-rich PrPC into β sheet enriched form, leading to formation and deposition of PrPSc aggregates in affected brains. However the process remains poorly understood at the molecular level and the regions of PrP critical for conversion are still debated. Minimal amino acid substitutions can impair prion replication at many places in PrP. Conversely, we recently showed that bona fide prions could be generated after introduction of eight and up to 16 additional amino acids in the H2-H3 inter-helix loop of PrP. Prion replication also accommodated the insertions of an octapeptide at different places in the last turns of H2. This reverse genetic approach reveals an unexpected tolerance of prions to substantial sequence changes in the protease-resistant part which is associated with infectivity. It also demonstrates that conversion does not require the presence of a specific sequence in the middle of the H2-H3 area. We discuss the implications of our findings according to different structural models proposed for PrPSc and questioned the postulated existence of an N- or C-terminal prion domain in the protease-resistant region. PMID:23232499

  8. The inhibition of prions through blocking prion conversion by permanently charged branched polyamines of low cytotoxicity.

    Science.gov (United States)

    Lim, Yong-beom; Mays, Charles E; Kim, Younghwan; Titlow, William B; Ryou, Chongsuk

    2010-03-01

    Branched polyamines are effective in inhibiting prions in a cationic surface charge density dependent manner. However, toxicity associated with branched polyamines, in general, often hampers the successful application of the compounds to treat prion diseases. Here, we report that constitutively maintained cationic properties in branched polyamines reduced the intrinsic toxicity of the compounds while retaining the anti-prion activities. In prion-infected neuroblastoma cells, quaternization of amines in polyethyleneimine (PEI) and polyamidoamine (PAMAM) dendrimers markedly increased the nontoxic concentration ranges of the compounds and still supported, albeit reduced, an appreciable level of anti-prion activity in clearing prions from the infected cells. Furthermore, quaternized PEI was able to degrade prions at acidic pH conditions and inhibit the in vitro prion propagation facilitated by conversion of the normal prion protein isoform to its misfolded counterpart, although such activities were decreased by quaternization. Quaternized PAMAM was least effective in degrading prions but efficiently inhibited prion conversion with the same efficacy as unmodified PAMAM. Our results suggest that quaternization represents an effective strategy for developing nontoxic branched polyamines with potent anti-prion activity. This study highlights the importance of polyamine structural control for developing polyamine-based anti-prion agents and understanding of an action mechanism of quaternized branched polyamines. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  9. Late-onset Tay-Sachs disease.

    Science.gov (United States)

    Barritt, Andrew W; Anderson, Stuart J; Leigh, P Nigel; Ridha, Basil H

    2017-10-01

    We discuss the assessment and differential diagnoses of a young adult Hungarian man with a 1-year history of a progressive and symmetric amyotrophic lateral sclerosis-like syndrome, along with irregular action tremor and stimulus-sensitive myoclonus of the arms. MR scan of the brain showed isolated cerebellar atrophy and formal neuropsychometric testing identified significant subclinical deficits in attention, processing speed and memory. We suspected a form of GM 2 gangliosidosis, and white cell enzyme analysis showed markedly reduced enzymatic activity of β-hexosaminidase A. Genetic testing subsequently revealed two heterozygous pathogenic mutations in the HEXA gene (c.1499delT p.(Leu500fs) and c.805G>A p.(Gly269Ser)), confirming the very rare diagnosis of adult-onset Tay-Sachs disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Classifying prion and prion-like phenomena.

    Science.gov (United States)

    Harbi, Djamel; Harrison, Paul M

    2014-01-01

    The universe of prion and prion-like phenomena has expanded significantly in the past several years. Here, we overview the challenges in classifying this data informatically, given that terms such as "prion-like", "prion-related" or "prion-forming" do not have a stable meaning in the scientific literature. We examine the spectrum of proteins that have been described in the literature as forming prions, and discuss how "prion" can have a range of meaning, with a strict definition being for demonstration of infection with in vitro-derived recombinant prions. We suggest that although prion/prion-like phenomena can largely be apportioned into a small number of broad groups dependent on the type of transmissibility evidence for them, as new phenomena are discovered in the coming years, a detailed ontological approach might be necessary that allows for subtle definition of different "flavors" of prion / prion-like phenomena.

  11. Biochemical features of genetic Creutzfeldt-Jakob disease with valine-to-isoleucine substitution at codon 180 on the prion protein gene.

    Science.gov (United States)

    Ito, Yoko; Sanjo, Nobuo; Hizume, Masaki; Kobayashi, Atsushi; Ohgami, Tetsuya; Satoh, Katsuya; Hamaguchi, Tsuyoshi; Yamada, Masahito; Kitamoto, Tetsuyuki; Mizusawa, Hidehiro; Yokota, Takanori

    2018-02-19

    Valine-to-isoleucine substitution at codon 180 of the prion protein gene is only observed in patients with Creutzfeldt-Jakob disease and accounts for approximately half of all cases of genetic prion disease in Japan. In the present study, we investigated the biochemical characteristics of valine-to-isoleucine substitution at codon 180 in the prion protein gene, using samples obtained from the autopsied brains of seven patients with genetic Creutzfeldt-Jakob disease exhibiting this mutation (diagnoses confirmed via neuropathological examination). Among these patients, we observed an absence of diglycosylated and monoglycosylated forms of PrP res at codon 181. Our findings further indicated that the abnormal prion proteins were composed of at least three components, although smaller carboxyl-terminal fragments were predominant. Western blot analyses revealed large amounts of PrP res in the cerebral neocortices, where neuropathological examination revealed marked spongiosis. Relatively smaller amounts of PrP res were detected in the hippocampus, where milder spongiosis was observed, than in the cerebral neocortex. These findings indicate that abnormal prion proteins in the neocortex are associated with severe toxicity, resulting in severe spongiosis. Our findings further indicate that the valine-to-isoleucine substitution is not a polymorphism, but rather an authentic pathogenic mutation associated with specific biochemical characteristics that differ from those observed in sporadic Creutzfeldt-Jakob disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. The diagnostic challenge of Adult-onset Still's disease | Rostamipour ...

    African Journals Online (AJOL)

    The diagnostic challenge of Adult-onset Still's disease. ... Elevated serum ferritin level is not yet considered as a criteria for diagnosis of AOSD in Yamaguchi criteria, however, there are several studies which have demonstrated a strong ... Keywords: Adult Onset Still's Disease; Fever of Unknown Origin, serum ferritin ...

  13. Soluble Aβ aggregates can inhibit prion propagation.

    Science.gov (United States)

    Sarell, Claire J; Quarterman, Emma; Yip, Daniel C-M; Terry, Cassandra; Nicoll, Andrew J; Wadsworth, Jonathan D F; Farrow, Mark A; Walsh, Dominic M; Collinge, John

    2017-11-01

    Mammalian prions cause lethal neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) and consist of multi-chain assemblies of misfolded cellular prion protein (PrP C ). Ligands that bind to PrP C can inhibit prion propagation and neurotoxicity. Extensive prior work established that certain soluble assemblies of the Alzheimer's disease (AD)-associated amyloid β-protein (Aβ) can tightly bind to PrP C , and that this interaction may be relevant to their toxicity in AD. Here, we investigated whether such soluble Aβ assemblies might, conversely, have an inhibitory effect on prion propagation. Using cellular models of prion infection and propagation and distinct Aβ preparations, we found that the form of Aβ assemblies which most avidly bound to PrP in vitro also inhibited prion infection and propagation. By contrast, forms of Aβ which exhibit little or no binding to PrP were unable to attenuate prion propagation. These data suggest that soluble aggregates of Aβ can compete with prions for binding to PrP C and emphasize the bidirectional nature of the interplay between Aβ and PrP C in Alzheimer's and prion diseases. Such inhibitory effects of Aβ on prion propagation may contribute to the apparent fall-off in the incidence of sporadic CJD at advanced age where cerebral Aβ deposition is common. © 2017 The Authors.

  14. Prions: the danger of biochemical weapons

    Directory of Open Access Journals (Sweden)

    Eric Almeida Xavier

    2014-09-01

    Full Text Available The knowledge of biotechnology increases the risk of using biochemical weapons for mass destruction. Prions are unprecedented infectious pathogens that cause a group of fatal neurodegenerative diseases by a novel mechanism. They are transmissible particles that are devoid of nucleic acid. Due to their singular characteristics, Prions emerge as potential danger since they can be used in the development of such weapons. Prions cause fatal infectious diseases, and to date there is no therapeutic or prophylactic approach against these diseases. Furthermore, Prions are resistant to food-preparation treatments such as high heat and can find their way from the digestive system into the nervous system; recombinant Prions are infectious either bound to soil particles or in aerosols. Therefore, lethal Prions can be developed by malicious researchers who could use it to attack political enemies since such weapons cause diseases that could be above suspicion.

  15. UK Iatrogenic Creutzfeldt-Jakob disease: investigating human prion transmission across genotypic barriers using human tissue-based and molecular approaches.

    Science.gov (United States)

    Ritchie, Diane L; Barria, Marcelo A; Peden, Alexander H; Yull, Helen M; Kirkpatrick, James; Adlard, Peter; Ironside, James W; Head, Mark W

    2017-04-01

    Creutzfeldt-Jakob disease (CJD) is the prototypic human prion disease that occurs most commonly in sporadic and genetic forms, but it is also transmissible and can be acquired through medical procedures, resulting in iatrogenic CJD (iCJD). The largest numbers of iCJD cases that have occurred worldwide have resulted from contaminated cadaveric pituitary-derived human growth hormone (hGH) and its use to treat primary and secondary growth hormone deficiency. We report a comprehensive, tissue-based and molecular genetic analysis of the largest series of UK hGH-iCJD cases reported to date, including in vitro kinetic molecular modelling of genotypic factors influencing prion transmission. The results show the interplay of prion strain and host genotype in governing the molecular, pathological and temporal characteristics of the UK hGH-iCJD epidemic and provide insights into the adaptive mechanisms involved when prions cross genotypic barriers. We conclude that all of the available evidence is consistent with the hypothesis that the UK hGH-iCJD epidemic resulted from transmission of the V2 human prion strain, which is associated with the second most common form of sporadic CJD.

  16. A closer look at prion strains

    Science.gov (United States)

    Solforosi, Laura; Milani, Michela; Mancini, Nicasio; Clementi, Massimo; Burioni, Roberto

    2013-01-01

    Prions are infectious proteins that are responsible for transmissible spongiform encephalopathies (TSEs) and consist primarily of scrapie prion protein (PrPSc), a pathogenic isoform of the host-encoded cellular prion protein (PrPC). The absence of nucleic acids as essential components of the infectious prions is the most striking feature associated to these diseases. Additionally, different prion strains have been isolated from animal diseases despite the lack of DNA or RNA molecules. Mounting evidence suggests that prion-strain-specific features segregate with different PrPSc conformational and aggregation states. Strains are of practical relevance in prion diseases as they can drastically differ in many aspects, such as incubation period, PrPSc biochemical profile (e.g., electrophoretic mobility and glycoform ratio) and distribution of brain lesions. Importantly, such different features are maintained after inoculation of a prion strain into genetically identical hosts and are relatively stable across serial passages. This review focuses on the characterization of prion strains and on the wide range of important implications that the study of prion strains involves. PMID:23357828

  17. Sporadic Creutzfeldt–Jakob disease with cerebellar ataxia at onset in the UK

    Science.gov (United States)

    Cooper, S A; Murray, K L; Heath, C A; Will, R G; Knight, R S G

    2006-01-01

    Objective To determine the frequency, in the UK, of sporadic Creutzfeldt–Jakob Disease (sCJD) with a cerebellar ataxic onset, and to describe the clinical features of the syndrome. Methods A retrospective review of autopsy‐proved cases of sCJD cases in the UK, 1990–2005, identifying those presenting with cerebellar features without early cognitive decline. Results 29 of 618 (5%) patients with sCJD had an isolated cerebellar onset. Mean illness duration was 9 months. Subsequently, 21 (72%) developed myoclonus and 23 (79%) developed pyramidal features. Magnetic resonance imaging showed high signal in the basal ganglia in 11 of 14 (79%) patients. 7 of 15 (47%) patients were valine homozygotic at prion protein gene (PRNP)‐129. Only 8 (28%) cases were referred to the surveillance unit after death. Conclusion A better definition of sCJD presenting with an isolated cerebellar syndrome might improve future case recognition and contribute to the determination of its cause. PMID:16835290

  18. Prions in yeast

    OpenAIRE

    Bezdíčka, Martin

    2013-01-01

    The thesis describes yeast prions and their biological effects on yeast in general. It defines the basic characteristics of yeast prions, that distinguish prions from other proteins. The thesis introduces various possibilities of prion formation, and propagation as well as specific types of yeast prions, including various functions of most studied types of prions. The thesis also focuses on chaperones that affect the state of yeast prions in cells. Lastly, the thesis indicates similarities be...

  19. Prion Protein and Aging

    Directory of Open Access Journals (Sweden)

    Lisa eGasperini

    2014-08-01

    Full Text Available The cellular prion protein (PrPC has been widely investigated ever since its conformational isoform, the prion (or PrPSc, was identified as the etiological agent of prion disorders. The high homology shared by the PrPC-encoding gene among mammals, its high turnover rate and expression in every tissue strongly suggest that PrPC may possess key physiological functions. Therefore, defining PrPC roles, properties and fate in the physiology of mammalian cells would be fundamental to understand its pathological involvement in prion diseases. Since the incidence of these neurodegenerative disorders is enhanced in aging, understanding PrPC functions in this life phase may be of crucial importance. Indeed, a large body of evidence suggests that PrPC plays a neuroprotective and antioxidant role. Moreover, it has been suggested that PrPC is involved in Alzheimer disease, another neurodegenerative pathology that develops predominantly in the aging population. In prion diseases, PrPC function is likely lost upon protein aggregation occurring in the course of the disease. Additionally, the aging process may alter PrPC biochemical properties, thus influencing its propensity to convert into PrPSc. Both phenomena may contribute to the disease development and progression. In Alzheimer disease, PrPC has a controversial role because its presence seems to mediate β-amyloid toxicity, while its down-regulation correlates with neuronal death. The role of PrPC in aging has been investigated from different perspectives, often leading to contrasting results. The putative protein functions in aging have been studied in relation to memory, behavior and myelin maintenance. In aging mice, PrPC changes in subcellular localization and post-translational modifications have been explored in an attempt to relate them to different protein roles and propensity to convert into PrPSc. Here we provide an overview of the most relevant studies attempting to delineate PrPC functions and

  20. Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿

    OpenAIRE

    Race, Brent; Meade-White, Kimberly; Race, Richard; Chesebro, Bruce

    2009-01-01

    Chronic wasting disease (CWD) is a neurodegenerative prion disease of cervids. Some animal prion diseases, such as bovine spongiform encephalopathy, can infect humans; however, human susceptibility to CWD is unknown. In ruminants, prion infectivity is found in central nervous system and lymphoid tissues, with smaller amounts in intestine and muscle. In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity t...

  1. Yeast and Fungal Prions: Amyloid-Handling Systems, Amyloid Structure, and Prion Biology.

    Science.gov (United States)

    Wickner, R B; Edskes, H K; Gorkovskiy, A; Bezsonov, E E; Stroobant, E E

    2016-01-01

    Yeast prions (infectious proteins) were discovered by their outré genetic properties and have become important models for an array of human prion and amyloid diseases. A single prion protein can become any of many distinct amyloid forms (called prion variants or strains), each of which is self-propagating, but with different biological properties (eg, lethal vs mild). The folded in-register parallel β sheet architecture of the yeast prion amyloids naturally suggests a mechanism by which prion variant information can be faithfully transmitted for many generations. The yeast prions rely on cellular chaperones for their propagation, but can be cured by various chaperone imbalances. The Btn2/Cur1 system normally cures most variants of the [URE3] prion that arise. Although most variants of the [PSI+] and [URE3] prions are toxic or lethal, some are mild in their effects. Even the most mild forms of these prions are rare in the wild, indicating that they too are detrimental to yeast. The beneficial [Het-s] prion of Podospora anserina poses an important contrast in its structure, biology, and evolution to the yeast prions characterized thus far. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A novel seven-octapeptide repeat insertion in the prion protein gene (PRNP) in a Dutch pedigree with Gerstmann-Sträussler-Scheinker disease phenotype: comparison with similar cases from the literature

    NARCIS (Netherlands)

    Jansen, Casper; Voet, Willem; Head, Mark W.; Parchi, Piero; Yull, Helen; Verrips, Aad; Wesseling, Pieter; Meulstee, Jan; Baas, Frank; van Gool, Willem A.; Ironside, James W.; Rozemuller, Annemieke J. M.

    2011-01-01

    Human prion diseases can be sporadic, inherited or acquired by infection and show considerable phenotypic heterogeneity. We describe the clinical, histopathological and pathological prion protein (PrP(Sc)) characteristics of a Dutch family with a novel 7-octapeptide repeat insertion (7-OPRI) in

  3. Temporal resolution of PrPSc transport, PrPSc accumulation, activation of glia and neuronal death in retinas from C57Bl/6 mice inoculated with RML scrapie: Relevance to biomarkers of prion disease progression

    Science.gov (United States)

    Currently, there is a lack of pathologic landmarks to objectively evaluate the progression of prion disease in vivo. The goal of this work was to determine the temporal relationship between transport of misfolded prion protein to the retina from the brain, accumulation of PrPSc in the retina, the re...

  4. MM2-thalamic Creutzfeldt-Jakob disease: neuropathological, biochemical and transmission studies identify a distinctive prion strain.

    Science.gov (United States)

    Moda, Fabio; Suardi, Silvia; Di Fede, Giuseppe; Indaco, Antonio; Limido, Lucia; Vimercati, Chiara; Ruggerone, Margherita; Campagnani, Ilaria; Langeveld, Jan; Terruzzi, Alessandro; Brambilla, Antonio; Zerbi, Pietro; Fociani, Paolo; Bishop, Matthew T; Will, Robert G; Manson, Jean C; Giaccone, Giorgio; Tagliavini, Fabrizio

    2012-09-01

    In Creutzfeldt-Jakob disease (CJD), molecular typing based on the size of the protease resistant core of the disease-associated prion protein (PrP(Sc) ) and the M/V polymorphism at codon 129 of the PRNP gene correlates with the clinico-pathologic subtypes. Approximately 95% of the sporadic 129MM CJD patients are characterized by cerebral deposition of type 1 PrP(Sc) and correspond to the classic clinical CJD phenotype. The rare 129MM CJD patients with type 2 PrP(Sc) are further subdivided in a cortical and a thalamic form also indicated as sporadic fatal insomnia. We observed two young patients with MM2-thalamic CJD. Main neuropathological features were diffuse, synaptic PrP immunoreactivity in the cerebral cortex and severe neuronal loss and gliosis in the thalamus and olivary nucleus. Western blot analysis showed the presence of type 2A PrP(Sc) . Challenge of transgenic mice expressing 129MM human PrP showed that MM2-thalamic sporadic CJD (sCJD) was able to transmit the disease, at variance with MM2-cortical sCJD. The affected mice showed deposition of type 2A PrP(Sc) , a scenario that is unprecedented in this mouse line. These data indicate that MM2-thalamic sCJD is caused by a prion strain distinct from the other sCJD subtypes including the MM2-cortical form. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  5. Neurotoxic Antibodies against the Prion Protein Do Not Trigger Prion Replication.

    Directory of Open Access Journals (Sweden)

    Karl Frontzek

    Full Text Available Prions are the infectious agents causing transmissible spongiform encephalopathies (TSE, progressive, inexorably lethal neurological diseases. Antibodies targeting the globular domain (GD of the cellular prion protein PrPC trigger a neurotoxic syndrome morphologically and molecularly similar to prion disease. This phenomenon raises the question whether such antibodies induce infectious prions de novo. Here we exposed cerebellar organotypic cultured slices (COCS to the neurotoxic antibody, POM1. We then inoculated COCS homogenates into tga20 mice, which overexpress PrPC and are commonly utilized as sensitive indicators of prion infectivity. None of the mice inoculated with COCS-derived lysates developed any signs of disease, and all mice survived for at least 200 days post-inoculation. In contrast, all mice inoculated with bona fide prions succumbed to TSE after 55-95 days. Post-mortem analyses did not reveal any signs of prion pathology in mice inoculated with POM1-COCS lysates. Also, lysates from POM1-exposed COCS were unable to convert PrP by quaking. Hence, anti-GD antibodies do not catalyze the generation of prion infectivity. These data indicate that prion replication can be separated from prion toxicity, and suggest that anti-GD antibodies exert toxicity by acting downstream of prion replication.

  6. Cellular Aspects of Prion Replication In Vitro

    Science.gov (United States)

    Grassmann, Andrea; Wolf, Hanna; Hofmann, Julia; Graham, James; Vorberg, Ina

    2013-01-01

    Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders in mammals that are caused by unconventional agents predominantly composed of aggregated misfolded prion protein (PrP). Prions self-propagate by recruitment of host-encoded PrP into highly ordered β-sheet rich aggregates. Prion strains differ in their clinical, pathological and biochemical characteristics and are likely to be the consequence of distinct abnormal prion protein conformers that stably replicate their alternate states in the host cell. Understanding prion cell biology is fundamental for identifying potential drug targets for disease intervention. The development of permissive cell culture models has greatly enhanced our knowledge on entry, propagation and dissemination of TSE agents. However, despite extensive research, the precise mechanism of prion infection and potential strain effects remain enigmatic. This review summarizes our current knowledge of the cell biology and propagation of prions derived from cell culture experiments. We discuss recent findings on the trafficking of cellular and pathologic PrP, the potential sites of abnormal prion protein synthesis and potential co-factors involved in prion entry and propagation. PMID:23340381

  7. Regional brain metabolite abnormalities in inherited prion disease and asymptomatic gene carriers demonstrated in vivo by quantitative proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, A.D.; Cordery, R.J.; Godbolt, A.; Rossor, M.N. [University College London, Dementia Research Group, Department of Neurodegenerative Disease, Institute of Neurology, London (United Kingdom); Imperial College of Science, Technology and Medicine, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, London (United Kingdom); MacManus, D.G. [University College London, NMR Research Unit, Department of Clinical Neurology, Institute of Neurology, London (United Kingdom); Collinge, J. [University College London, MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, London (United Kingdom)

    2006-06-15

    Inherited prion diseases are caused by mutations in the gene which codes for prion protein (PrP), leading to proliferation of abnormal PrP isomers in the brain and neurodegeneration; they include Gerstmann-Straeussler-Scheinker disease (GSS), fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). We studied two patients with symptomatic inherited prion disease (P102L) and two pre-symptomatic P102L gene carriers using quantitative magnetic resonance spectroscopy (MRS). Short echo time spectra were acquired from the thalamus, caudate region and frontal white matter, metabolite levels and ratios were measured and z-scores calculated for individual patients relative to age-matched normal controls. MRS data were compared with structural magnetic resonance imaging. One fCJD case had generalised atrophy and showed increased levels of myo-inositol (MI) in the thalamus (z=3.7). The other had decreased levels of N-acetylaspartate (z=4) and diffuse signal abnormality in the frontal white matter. Both asymptomatic gene carriers had normal imaging, but increased frontal white matter MI (z=4.3, 4.1), and one also had increased MI in the caudate (z=5.3). Isolated MI abnormalities in asymptomatic gene carriers are a novel finding and may reflect early glial proliferation, prior to significant neuronal damage. MRS provides potential non-invasive surrogate markers of early disease and progression in inherited prion disease. (orig.)

  8. Regional brain metabolite abnormalities in inherited prion disease and asymptomatic gene carriers demonstrated in vivo by quantitative proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Waldman, A.D.; Cordery, R.J.; Godbolt, A.; Rossor, M.N.; MacManus, D.G.; Collinge, J.

    2006-01-01

    Inherited prion diseases are caused by mutations in the gene which codes for prion protein (PrP), leading to proliferation of abnormal PrP isomers in the brain and neurodegeneration; they include Gerstmann-Straeussler-Scheinker disease (GSS), fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). We studied two patients with symptomatic inherited prion disease (P102L) and two pre-symptomatic P102L gene carriers using quantitative magnetic resonance spectroscopy (MRS). Short echo time spectra were acquired from the thalamus, caudate region and frontal white matter, metabolite levels and ratios were measured and z-scores calculated for individual patients relative to age-matched normal controls. MRS data were compared with structural magnetic resonance imaging. One fCJD case had generalised atrophy and showed increased levels of myo-inositol (MI) in the thalamus (z=3.7). The other had decreased levels of N-acetylaspartate (z=4) and diffuse signal abnormality in the frontal white matter. Both asymptomatic gene carriers had normal imaging, but increased frontal white matter MI (z=4.3, 4.1), and one also had increased MI in the caudate (z=5.3). Isolated MI abnormalities in asymptomatic gene carriers are a novel finding and may reflect early glial proliferation, prior to significant neuronal damage. MRS provides potential non-invasive surrogate markers of early disease and progression in inherited prion disease. (orig.)

  9. Lichens: Unexpected anti-prion agents?

    Science.gov (United States)

    Rodriguez, Cynthia M.; Bennett, James P.; Johnson, Christopher J.

    2012-01-01

    The prion diseases sheep scrapie and cervid chronic wasting disease are transmitted, in part, via an environmental reservoir of infectivity; prions released from infected animals persist in the environment and can cause disease years later. Central to controlling disease transmission is the identification of methods capable of inactivating these agents on the landscape. We have found that certain lichens, common, ubiquitous, symbiotic organisms, possess a serine protease capable of degrading prion protein (PrP) from prion-infected animals. The protease functions against a range of prion strains from various hosts and reduces levels of abnormal PrP by at least two logs. We have now tested more than 20 lichen species from several geographical locations and from various taxa and found that approximately half of these species degrade PrP. Critical next steps include examining the effect of lichens on prion infectivity and cloning the protease responsible for PrP degradation. The impact of lichens on prions in the environment remains unknown. We speculate that lichens could have the potential to degrade prions when they are shed from infected animals onto lichens or into environments where lichens are abundant. In addition, lichens are frequently consumed by cervids and many other animals and the effect of dietary lichens on prion disease transmission should also be considered.

  10. Prions in Variably Protease-Sensitive Prionopathy: An Update

    NARCIS (Netherlands)

    Zou, W.Q.; Gambetti, P.; Xiao, X.; Yuan, J.; Langeveld, J.P.M.; Pirisinu, L.

    2013-01-01

    Human prion diseases, including sporadic, familial, and acquired forms such as Creutzfeldt-Jakob disease (CJD), are caused by prions in which an abnormal prion protein (PrPSc) derived from its normal cellular isoform (PrPC) is the only known component. The recently-identified variably

  11. Early-onset Coronary Artery Disease: Clinical and Hereditary Aspects

    DEFF Research Database (Denmark)

    Christiansen, Morten Krogh

    2017-01-01

    ), and to characterize and quantify subclinical atherosclerosis in their relatives. Furthermore, the aim was to explore the impact of common genetic risk variants on the age of onset, familial clustering and disease severity. In study I, 143 patients with early-onset CAD were recruited from the Western Denmark Heart...

  12. S. pombe placed on the prion map

    Directory of Open Access Journals (Sweden)

    Jacqueline Hayles

    2017-02-01

    Full Text Available Schizosaccharomyces pombe has been used extensively as a model organism, however it is only recently that the first prion in this organism, a copper transporter protein encoded by ctr4, has been conclusively demonstrated. Prions are found in a wide range of organisms and have been implicated in a number of human neurodegenerative diseases. Research into the biology of prions has been carried out mainly in the budding yeast Saccharomyces cerevisiae, however there are many questions still to be addressed. Now, with the identification of the Ctr4 prion in S. pombe, further work in the two yeasts and comparisons of prion biology in these organisms should lead to a greater understanding of prions and their role in disease.

  13. Prion pathogenesis and secondary lymphoid organs (SLO)

    Science.gov (United States)

    Mabbott, Neil A.

    2012-01-01

    Prion diseases are subacute neurodegenerative diseases that affect humans and a range of domestic and free-ranging animal species. These diseases are characterized by the accumulation of PrPSc, an abnormally folded isoform of the cellular prion protein (PrPC), in affected tissues. The pathology during prion disease appears to occur almost exclusively within the central nervous system. The extensive neurodegeneration which occurs ultimately leads to the death of the host. An intriguing feature of the prion diseases, when compared with other protein-misfolding diseases, is their transmissibility. Following peripheral exposure, some prion diseases accumulate to high levels within lymphoid tissues. The replication of prions within lymphoid tissue has been shown to be important for the efficient spread of disease to the brain. This article describes recent progress in our understanding of the cellular mechanisms that influence the propagation of prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. A thorough understanding of these events will lead to the identification of important targets for therapeutic intervention, or alternatively, reveal additional processes that influence disease susceptibility to peripherally-acquired prion diseases. PMID:22895090

  14. Reaction of quinacrine with prion protein: treatment for Creutzfeldt-Jakob disease?

    Czech Academy of Sciences Publication Activity Database

    Zawada, Zbigniew; Šebestík, Jaroslav; Šafařík, Martin; Březinová, Anna; Bouř, Petr; Hlaváček, Jan; Stibor, Ivan

    2010-01-01

    Roč. 104, č. 11 (2010), s. 1129-1129 ISSN 0009-2770. [Pokroky v organické, bioorganické a farmaceutické chemii /45./. 20.11.2010-22.11.2010, Nymburk] R&D Projects: GA ČR GA203/07/1517 Institutional research plan: CEZ:AV0Z40550506 Keywords : quinacrine * acridine displacement * prions * prevention of aggregation Subject RIV: CC - Organic Chemistry

  15. Spermidine cures yeast of prions

    Directory of Open Access Journals (Sweden)

    Shaun H. Speldewinde

    2015-12-01

    Full Text Available Prions are self-perpetuating amyloid protein aggregates which underlie various neurodegenerative diseases in mammals. The molecular basis underlying their conversion from a normally soluble protein into the prion form remains largely unknown. Studies aimed at uncovering these mechanism(s are therefore essential if we are to develop effective therapeutic strategies to counteract these disease-causing entities. Autophagy is a cellular degradation system which has predominantly been considered as a non-selective bulk degradation process which recycles macromolecules in response to starvation conditions. We now know that autophagy also serves as a protein quality control mechanism which selectively degrades protein aggregates and damaged organelles. These are commonly accumulated in various neurodegenerative disorders including prion diseases. In our recent study [Speldewinde et al. Mol. Biol. Cell. (2015] we used the well-established yeast [PSI+]/Sup35 and [PIN­+]/Rnq1 prion models to show that autophagy prevents sporadic prion formation. Importantly, we found that spermidine, a polyamine that has been used to increase autophagic flux, acts as a protective agent which prevents spontaneous prion formation.

  16. Accelerated high fidelity prion amplification within and across prion species barriers.

    Directory of Open Access Journals (Sweden)

    Kristi M Green

    2008-08-01

    Full Text Available Experimental obstacles have impeded our ability to study prion transmission within and, more particularly, between species. Here, we used cervid prion protein expressed in brain extracts of transgenic mice, referred to as Tg(CerPrP, as a substrate for in vitro generation of chronic wasting disease (CWD prions by protein misfolding cyclic amplification (PMCA. Characterization of this infectivity in Tg(CerPrP mice demonstrated that serial PMCA resulted in the high fidelity amplification of CWD prions with apparently unaltered properties. Using similar methods to amplify mouse RML prions and characterize the resulting novel cervid prions, we show that serial PMCA abrogated a transmission barrier that required several hundred days of adaptation and subsequent stabilization in Tg(CerPrP mice. While both approaches produced cervid prions with characteristics distinct from CWD, the subtly different properties of the resulting individual prion isolates indicated that adaptation of mouse RML prions generated multiple strains following inter-species transmission. Our studies demonstrate that combined transgenic mouse and PMCA approaches not only expedite intra- and inter-species prion transmission, but also provide a facile means of generating and characterizing novel prion strains.

  17. Detection of prion infectivity in fat tissues of scrapie-infected mice.

    Directory of Open Access Journals (Sweden)

    Brent Race

    2008-12-01

    Full Text Available Distribution of prion infectivity in organs and tissues is important in understanding prion disease pathogenesis and designing strategies to prevent prion infection in animals and humans. Transmission of prion disease from cattle to humans resulted in banning human consumption of ruminant nervous system and certain other tissues. In the present study, we surveyed tissue distribution of prion infectivity in mice with prion disease. We show for the first time detection of infectivity in white and brown fat. Since high amounts of ruminant fat are consumed by humans and also incorporated into animal feed, fat-containing tissues may pose a previously unappreciated hazard for spread of prion infection.

  18. A visual dual-aptamer logic gate for sensitive discrimination of prion diseases-associated isoform with reusable magnetic microparticles and fluorescence quantum dots.

    Science.gov (United States)

    Xiao, Sai Jin; Hu, Ping Ping; Chen, Li Qiang; Zhen, Shu Jun; Peng, Li; Li, Yuan Fang; Huang, Cheng Zhi

    2013-01-01

    Molecular logic gates, which have attracted increasing research interest and are crucial for the development of molecular-scale computers, simplify the results of measurements and detections, leaving the diagnosis of disease either "yes" or "no". Prion diseases are a group of fatal neurodegenerative disorders that happen in human and animals. The main problem with a diagnosis of prion diseases is how to sensitively and selectively discriminate and detection of the minute amount of PrP(Res) in biological samples. Our previous work had demonstrated that dual-aptamer strategy could achieve highly sensitive and selective discrimination and detection of prion protein (cellular prion protein, PrP(C), and the diseases associated isoform, PrP(Res)) in serum and brain. Inspired by the advantages of molecular logic gate, we further conceived a new concept for dual-aptamer logic gate that responds to two chemical input signals (PrP(C) or PrP(Res) and Gdn-HCl) and generates a change in fluorescence intensity as the output signal. It was found that PrP(Res) performs the "OR" logic operation while PrP(C) performs "XOR" logic operation when they get through the gate consisted of aptamer modified reusable magnetic microparticles (MMPs-Apt1) and quantum dots (QDs-Apt2). The dual-aptamer logic gate simplifies the discrimination results of PrP(Res), leaving the detection of PrP(Res) either "yes" or "no". The development of OR logic gate based on dual-aptamer strategy and two chemical input signals (PrP(Res) and Gdn-HCl) is an important step toward the design of prion diseases diagnosis and therapy systems.

  19. A visual dual-aptamer logic gate for sensitive discrimination of prion diseases-associated isoform with reusable magnetic microparticles and fluorescence quantum dots.

    Directory of Open Access Journals (Sweden)

    Sai Jin Xiao

    Full Text Available Molecular logic gates, which have attracted increasing research interest and are crucial for the development of molecular-scale computers, simplify the results of measurements and detections, leaving the diagnosis of disease either "yes" or "no". Prion diseases are a group of fatal neurodegenerative disorders that happen in human and animals. The main problem with a diagnosis of prion diseases is how to sensitively and selectively discriminate and detection of the minute amount of PrP(Res in biological samples. Our previous work had demonstrated that dual-aptamer strategy could achieve highly sensitive and selective discrimination and detection of prion protein (cellular prion protein, PrP(C, and the diseases associated isoform, PrP(Res in serum and brain. Inspired by the advantages of molecular logic gate, we further conceived a new concept for dual-aptamer logic gate that responds to two chemical input signals (PrP(C or PrP(Res and Gdn-HCl and generates a change in fluorescence intensity as the output signal. It was found that PrP(Res performs the "OR" logic operation while PrP(C performs "XOR" logic operation when they get through the gate consisted of aptamer modified reusable magnetic microparticles (MMPs-Apt1 and quantum dots (QDs-Apt2. The dual-aptamer logic gate simplifies the discrimination results of PrP(Res, leaving the detection of PrP(Res either "yes" or "no". The development of OR logic gate based on dual-aptamer strategy and two chemical input signals (PrP(Res and Gdn-HCl is an important step toward the design of prion diseases diagnosis and therapy systems.

  20. Adult onset glycogen storage disease type II (adult onset Pompe disease): report and magnetic resonance images of two cases

    International Nuclear Information System (INIS)

    Del Gaizo, Andrew; Banerjee, Sima; Terk, Michael

    2009-01-01

    Glycogen storage disease type II (GSDII), also referred to as Pompe disease or acid maltase deficiency, is a rare inherited condition caused by a deficiency in acid alpha-glucosidase (GAA) enzyme activity. The condition is often classified by age of presentation, with infantile and late onset variants (Laforet et al. J Neurology 55:1122-8, 2000). Late onset tends to present with progressive proximal muscle weakness and respiratory insufficiency (Winkel et al. J Neurology 252:875-84, 2005). We report two cases of biopsy confirmed adult onset GSDII, along with key Magnetic Resonance (MR) images. (orig.)

  1. Accelerating Yeast Prion Biology using Droplet Microfluidics

    Science.gov (United States)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  2. Defining the Conformational Features of Anchorless, Poorly Neuroinvasive Prions

    NARCIS (Netherlands)

    Bett, C.; Kurt, T.D.; Lucero, M.; Trejo, M.; Rozemuller, A.J.M.; Kong, Q.Z.; Nilsson, K.P.R.; Masliah, E.; Oldstone, M.B.; Sigurdson, C.J.

    2013-01-01

    Infectious prions cause diverse clinical signs and form an extraordinary range of structures, from amorphous aggregates to fibrils. How the conformation of a prion dictates the disease phenotype remains unclear. Mice expressing GPI-anchorless or GPI-anchored prion protein exposed to the same

  3. Panencephalopathic Creutzfeldt-Jakob disease with distinct pattern of prion protein deposition in a patient with D178N mutation and homozygosity for valine at codon 129 of the prion protein Gene.

    Science.gov (United States)

    Marcon, Gabriella; Indaco, Antonio; Di Fede, Giuseppe; Suardi, Silvia; Finato, Nicoletta; Moretti, Valentino; Micoli, Sandro; Fociani, Paolo; Zerbi, Pietro; Pincherle, Alessandro; Redaelli, Veronica; Tagliavini, Fabrizio; Giaccone, Giorgio

    2014-03-01

    Prion diseases include sporadic, acquired and genetic forms linked to mutations of the prion protein (PrP) gene (PRNP). In subjects carrying the D178N PRNP mutation, distinct phenotypes can be observed, depending on the methionine/valine codon 129 polymorphism. We present here a 53-year-old woman with D178N mutation in the PRNP gene and homozygosity for valine at codon 129. The disease started at age 47 with memory deficits, progressive cognitive impairment and ataxia. The clinical picture slowly worsened to a state of akinetic mutism in about 2 years and the disease course was 6 years. The neuropathologic examination demonstrated severe diffuse cerebral atrophy with neuronal loss, spongiosis and marked myelin loss and tissue rarefaction in the hemispheric white matter, configuring panencephalopathic Creutzfeldt-Jakob disease. PrP deposition was present in the cerebral cortex, basal ganglia and cerebellum with diffuse synaptic-type pattern of immunoreactivity and clusters of countless, small PrP deposits, particularly evident in the lower cortical layers, in the striatum and in the molecular layer of the cerebellum. Western blot analysis showed the presence of type 1 PrP(Sc) (Parchi classification). These findings underline the clear-cut distinction between the neuropathological features of Creutzfeldt-Jakob disease associated with D178N PRNP mutation and those of fatal familial insomnia. © 2013 International Society of Neuropathology.

  4. A brief history of prions

    Science.gov (United States)

    Zabel, Mark D.; Reid, Crystal

    2015-01-01

    Proteins were described as distinct biological molecules and their significance in cellular processes was recognized as early as the 18th century. At the same time, Spanish shepherds observed a disease that compelled their Merino sheep to pathologically scrape against fences, a defining clinical sign that led to the disease being named scrapie. In the late 19th century, Robert Koch published his postulates for defining causative agents of disease. In the early 20th century, pathologists Creutzfeldt and Jakob described a neurodegenerative disease that would later be included with scrapie into a group of diseases known as transmissible spongiform encephalopathies (TSEs). Later that century, mounting evidence compelled a handful of scientists to betray the prevailing biological dogma governing pathogen replication that Watson and Crick so convincingly explained by cracking the genetic code just two decades earlier. Because TSEs seemed to defy these new rules, J.S. Griffith theorized mechanisms by which a pathogenic protein could encipher its own replication blueprint without a genetic code. Stanley Prusiner called this proteinaceous infectious pathogen a prion. Here we offer a concise account of the discovery of prions, the causative agent of TSEs, in the wider context of protein biochemistry and infectious disease. We highlight the discovery of prions in yeast and discuss the implication of prions as epigenomic carriers of biological and pathological information. We also consider expanding the prion hypothesis to include other proteins whose alternate isoforms confer new biological or pathological properties. PMID:26449713

  5. Elderly Onset Celiac Disease: A Narrative Review

    Directory of Open Access Journals (Sweden)

    Maria Cappello

    2016-09-01

    Full Text Available Celiac sprue is a chronic disease, which usually occurs in children and young adults. However, it can develop in any age group, and the prevalence is increasing even in the elderly population. The atypical patterns of clinical presentation in this age group sometimes can cause a delay in diagnosis. Given the lower sensitivity and specificity of serological tests in the aged population, clinical suspect often arises in the presence of complications (autoimmune disorders, fractures, and finally, malignancy and must be supported by endoscopic and imaging tools. In this review, we highlight the incidence and prevalence of celiac disease in the elderly, the patterns of clinical presentation, diagnosis, and the most frequent complications, with the aim of increasing awareness and reducing the diagnostic delay of celiac disease even in the elderly population.

  6. Quantifying the relative amounts of PrP polymorphisms present in prions isolated from heterozygous prion-infected animals

    Science.gov (United States)

    Prions cause protein misfolding diseases, such as transmissible spongiform encephalopathy. They propagate infections by converting a normal cellular prion protein into a prion (PrPSc). PrPC and PrPSc are isosequential and differ only in their respective conformations. PrPC is monomeric and sensit...

  7. Intraperitoneal Infection of Wild-Type Mice with Synthetically Generated Mammalian Prion.

    Directory of Open Access Journals (Sweden)

    Xinhe Wang

    2015-07-01

    Full Text Available The prion hypothesis postulates that the infectious agent in transmissible spongiform encephalopathies (TSEs is an unorthodox protein conformation based agent. Recent successes in generating mammalian prions in vitro with bacterially expressed recombinant prion protein provide strong support for the hypothesis. However, whether the pathogenic properties of synthetically generated prion (rec-Prion recapitulate those of naturally occurring prions remains unresolved. Using end-point titration assay, we showed that the in vitro prepared rec-Prions have infectious titers of around 104 LD50/μg. In addition, intraperitoneal (i.p. inoculation of wild-type mice with rec-Prion caused prion disease with an average survival time of 210-220 days post inoculation. Detailed pathological analyses revealed that the nature of rec-Prion induced lesions, including spongiform change, disease specific prion protein accumulation (PrP-d and the PrP-d dissemination amongst lymphoid and peripheral nervous system tissues, the route and mechanisms of neuroinvasion were all typical of classical rodent prions. Our results revealed that, similar to naturally occurring prions, the rec-Prion has a titratable infectivity and is capable of causing prion disease via routes other than direct intra-cerebral challenge. More importantly, our results established that the rec-Prion caused disease is pathogenically and pathologically identical to naturally occurring contagious TSEs, supporting the concept that a conformationally altered protein agent is responsible for the infectivity in TSEs.

  8. Travel history, hunting, and venison consumption related to prion disease exposure, 2006-2007 FoodNet Population Survey.

    Science.gov (United States)

    Abrams, Joseph Y; Maddox, Ryan A; Harvey, Alexis R; Schonberger, Lawrence B; Belay, Ermias D

    2011-06-01

    The transmission of bovine spongiform encephalopathy (BSE) to human beings and the spread of chronic wasting disease (CWD) among cervids have prompted concerns about zoonotic transmission of prion diseases. Travel to the United Kingdom and other European countries, hunting for deer or elk, and venison consumption could result in the exposure of US residents to the agents that cause BSE and CWD. The Foodborne Diseases Active Surveillance Network 2006-2007 population survey was used to assess the prevalence of these behaviors among residents of 10 catchment areas across the United States. Of 17,372 survey respondents, 19.4% reported travel to the United Kingdom since 1980, and 29.5% reported travel to any of the nine European countries considered to be BSE-endemic since 1980. The proportion of respondents who had ever hunted deer or elk was 18.5%, and 1.2% had hunted deer or elk in a CWD-endemic area. More than two thirds (67.4%) reported having ever eaten deer or elk meat. Respondents who traveled spent more time in the United Kingdom (median 14 days) than in any other BSE-endemic country. Of the 11,635 respondents who had consumed venison, 59.8% ate venison at most one to two times during their year of highest consumption, and 88.6% had obtained all of their meat from the wild. The survey results were useful in determining the prevalence and frequency of behaviors that could be important factors for foodborne prion transmission. Copyright © 2011 American Dietetic Association. Published by Elsevier Inc. All rights reserved.

  9. Isolated visual symptoms at onset in sporadic Creutzfeldt-Jakob disease: the clinical phenotype of the “Heidenhain variant”

    Science.gov (United States)

    Cooper, S A; Murray, K L; Heath, C A; Will, R G; Knight, R S G

    2005-01-01

    Background: The Heidenhain variant of sporadic Creutzfeldt-Jakob disease (sCJD) is commonly understood to represent cases with early, prominent visual complaints. The term is clarified to represent those who present with isolated visual symptoms. This group may pose diagnostic difficulties and often present to ophthalmologists where they may undergo needless invasive procedures. Method: A retrospective review of 594 pathologically proved sCJD cases referred to the UK National CJD Surveillance Unit over a 15 year period to identify Heidenhain cases. Results: 22 cases had isolated visual symptoms at onset with a mean illness duration of 4 months. The mean age at disease onset was 67 years. Most displayed myoclonus, pyramidal signs, and a delay in the onset of dementia for some weeks. 17 (77%) were referred initially to ophthalmology. Two underwent cataract extraction before diagnosis. All tested cases were homozygous for methionine at codon 129 of the prion protein gene. Conclusions: This rare, but clinically distinct, group of patients with sCJD may cause diagnostic difficulties. Because ocular intervention carries with it the risk of onward transmission awareness of this condition among ophthalmologists is important. PMID:16170128

  10. Disease-associated prion protein in neural and lymphoid tissues of mink (Mustela vison) inoculated with transmissible mink encephalopathy.

    Science.gov (United States)

    Schneider, D A; Harrington, R D; Zhuang, D; Yan, H; Truscott, T C; Dassanayake, R P; O'Rourke, K I

    2012-11-01

    Transmissible spongiform encephalopathies (TSEs) are diagnosed by immunodetection of disease-associated prion protein (PrP(d)). The distribution of PrP(d) within the body varies with the time-course of infection and between species, during interspecies transmission, as well as with prion strain. Mink are susceptible to a form of TSE known as transmissible mink encephalopathy (TME), presumed to arise due to consumption of feed contaminated with a single prion strain of ruminant origin. After extended passage of TME isolates in hamsters, two strains emerge, HY and DY, each of which is associated with unique structural isoforms of PrP(TME) and of which only the HY strain is associated with accumulation of PrP(TME) in lymphoid tissues. Information on the structural nature and lymphoid accumulation of PrP(TME) in mink is limited. In this study, 13 mink were challenged by intracerebral inoculation using late passage TME inoculum, after which brain and lymphoid tissues were collected at preclinical and clinical time points. The distribution and molecular nature of PrP(TME) was investigated by techniques including blotting of paraffin wax-embedded tissue and epitope mapping by western blotting. PrP(TME) was detected readily in the brain and retropharyngeal lymph node during preclinical infection, with delayed progression of accumulation within other lymphoid tissues. For comparison, three mink were inoculated by the oral route and examined during clinical disease. Accumulation of PrP(TME) in these mink was greater and more widespread, including follicles of rectoanal mucosa-associated lymphoid tissue. Western blot analyses revealed that PrP(TME) accumulating in the brain of mink is structurally most similar to that accumulating in the brain of hamsters infected with the DY strain. Collectively, the results of extended passage in mink are consistent with the presence of only a single strain of TME, the DY strain, capable of inducing accumulation of PrP(TME) in the lymphoid

  11. Survival time and stability properties of disease-associated prion protein in chronic wasting disease of elk

    Science.gov (United States)

    Background: The Rocky Mountain elk (Cervus elaphus nelsoni) prion protein gene exhibits amino acid polymorphism at codon 132, with 132L (leucine) and 132M (methionine) allelic variants present in the population. We have previously shown that following experimental oral challenge with chronic wasting...

  12. Localization of disease-related PrP in Danish patients with different subtypes of prion disease

    DEFF Research Database (Denmark)

    Bergström, A. L.; Heegaard, Peter M. H.; Dyrbye, H.

    2009-01-01

    Objective: The transmissible spongiform encephalopaties are characterized by vacuolization, neuronal loss, gliosis and deposition of a misfilded and Proteinase K resistant isoform of the prion protein (PrPSc) in the central nervous system. Methods, materials and patients: Paraffin-embedded tissue...

  13. New insights into structural determinants of prion protein folding and stability.

    Science.gov (United States)

    Benetti, Federico; Legname, Giuseppe

    2015-01-01

    Prions are the etiological agent of fatal neurodegenerative diseases called prion diseases or transmissible spongiform encephalopathies. These maladies can be sporadic, genetic or infectious disorders. Prions are due to post-translational modifications of the cellular prion protein leading to the formation of a β-sheet enriched conformer with altered biochemical properties. The molecular events causing prion formation in sporadic prion diseases are still elusive. Recently, we published a research elucidating the contribution of major structural determinants and environmental factors in prion protein folding and stability. Our study highlighted the crucial role of octarepeats in stabilizing prion protein; the presence of a highly enthalpically stable intermediate state in prion-susceptible species; and the role of disulfide bridge in preserving native fold thus avoiding the misfolding to a β-sheet enriched isoform. Taking advantage from these findings, in this work we present new insights into structural determinants of prion protein folding and stability.

  14. Prions: Beyond a Single Protein

    Science.gov (United States)

    Das, Alvin S.

    2016-01-01

    SUMMARY Since the term protein was first coined in 1838 and protein was discovered to be the essential component of fibrin and albumin, all cellular proteins were presumed to play beneficial roles in plants and mammals. However, in 1967, Griffith proposed that proteins could be infectious pathogens and postulated their involvement in scrapie, a universally fatal transmissible spongiform encephalopathy in goats and sheep. Nevertheless, this novel hypothesis had not been evidenced until 1982, when Prusiner and coworkers purified infectious particles from scrapie-infected hamster brains and demonstrated that they consisted of a specific protein that he called a “prion.” Unprecedentedly, the infectious prion pathogen is actually derived from its endogenous cellular form in the central nervous system. Unlike other infectious agents, such as bacteria, viruses, and fungi, prions do not contain genetic materials such as DNA or RNA. The unique traits and genetic information of prions are believed to be encoded within the conformational structure and posttranslational modifications of the proteins. Remarkably, prion-like behavior has been recently observed in other cellular proteins—not only in pathogenic roles but also serving physiological functions. The significance of these fascinating developments in prion biology is far beyond the scope of a single cellular protein and its related disease. PMID:27226089

  15. Serial MRI in early Creutzfeldt-Jacob disease with a point mutation of prion protein at codon 180

    International Nuclear Information System (INIS)

    Ishida, S.; Sugino, M.; Shinoda, K.; Ohsawa, N.; Koizumi, N.; Ohta, T.; Kitamoto, T.; Tateishi, J.

    1995-01-01

    We report a 66-year-old woman with histologically diagnosed Creutzfeld-Jacob disease (CJD), followed with MRI from an early clinical stage. MRI demonstrated expansion of the high cortical signal on T2-weighted images, which differs from previous MRI reports of CJD. This patient followed an atypical clinical course: 16 months had passed before she developed akinetic mutism, and periodic sharp waves had not been detected on EEG after 2 years in spite of her akinetic mutism. Brain biopsy showed primary spongiform changes in the grey matter, and a point mutation of the prion protein gene at codon 180 was discovered using polymerase chain reaction direct sequencing and Tth 111 I cutting. This is the first case with the point mutation of the codon 180 variant with an atypical clinical course and characteristic MRI findings. (orig.)

  16. Prion pathogenesis and secondary lymphoid organs (SLO): tracking the SLO spread of prions to the brain.

    Science.gov (United States)

    Mabbott, Neil A

    2012-01-01

    Prion diseases are subacute neurodegenerative diseases that affect humans and a range of domestic and free-ranging animal species. These diseases are characterized by the accumulation of PrP (Sc), an abnormally folded isoform of the cellular prion protein (PrP (C)), in affected tissues. The pathology during prion disease appears to occur almost exclusively within the central nervous system. The extensive neurodegeneration which occurs ultimately leads to the death of the host. An intriguing feature of the prion diseases, when compared with other protein-misfolding diseases, is their transmissibility. Following peripheral exposure, some prion diseases accumulate to high levels within lymphoid tissues. The replication of prions within lymphoid tissue has been shown to be important for the efficient spread of disease to the brain. This article describes recent progress in our understanding of the cellular mechanisms that influence the propagation of prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. A thorough understanding of these events will lead to the identification of important targets for therapeutic intervention, or alternatively, reveal additional processes that influence disease susceptibility to peripherally-acquired prion diseases.

  17. Chronic Wasting Disease in Bank Voles: Characterisation of the Shortest Incubation Time Model for Prion Diseases

    NARCIS (Netherlands)

    Bari, Di M.A.; Nonno, R.; Castilla, J.; Augostino, D' C.; Pirisinu, L.; Riccardi, G.; Conte, M.; Richt, J.A.; Kunkle, R.; Langeveld, J.P.M.; Vaccari, G.; Agrimi, U.

    2013-01-01

    In order to assess the susceptibility of bank voles to chronic wasting disease (CWD), we inoculated voles carrying isoleucine or methionine at codon 109 (Bv109I and Bv109M, respectively) with CWD isolates from elk, mule deer and white-tailed deer. Efficient transmission rate (100%) was observed with

  18. Review article. Predicting disease onset in clinically healthy people

    Directory of Open Access Journals (Sweden)

    Zeliger . Harold I.

    2016-06-01

    Full Text Available Virtually all human disease is induced by oxidative stress. Oxidative stress, which is caused by toxic environmental exposure, the presence of disease, lifestyle choices, stress, chronic inflammation or combinations of these, is responsible for most disease. Oxidative stress from all sources is additive and it is the total oxidative stress from all sources that induces the onset of most disease. Oxidative stress leads to lipid peroxidation, which in turn produces Malondialdehyde. Serum malondialdehyde level is an additive parameter resulting from all sources of oxidative stress and, therefore, is a reliable indicator of total oxidative stress which can be used to predict the onset of disease in clinically asymptomatic individuals and to suggest the need for treatment that can prevent much human disease.

  19. Mammalian amyloidogenic proteins promote prion nucleation in yeast.

    Science.gov (United States)

    Chandramowlishwaran, Pavithra; Sun, Meng; Casey, Kristin L; Romanyuk, Andrey V; Grizel, Anastasiya V; Sopova, Julia V; Rubel, Aleksandr A; Nussbaum-Krammer, Carmen; Vorberg, Ina M; Chernoff, Yury O

    2018-03-02

    Fibrous cross-β aggregates (amyloids) and their transmissible forms (prions) cause diseases in mammals (including humans) and control heritable traits in yeast. Initial nucleation of a yeast prion by transiently overproduced prion-forming protein or its (typically, QN-rich) prion domain is efficient only in the presence of another aggregated (in most cases, QN-rich) protein. Here, we demonstrate that a fusion of the prion domain of yeast protein Sup35 to some non-QN-rich mammalian proteins, associated with amyloid diseases, promotes nucleation of Sup35 prions in the absence of pre-existing aggregates. In contrast, both a fusion of the Sup35 prion domain to a multimeric non-amyloidogenic protein and the expression of a mammalian amyloidogenic protein that is not fused to the Sup35 prion domain failed to promote prion nucleation, further indicating that physical linkage of a mammalian amyloidogenic protein to the prion domain of a yeast protein is required for the nucleation of a yeast prion. Biochemical and cytological approaches confirmed the nucleation of protein aggregates in the yeast cell. Sequence alterations antagonizing or enhancing amyloidogenicity of human amyloid-β (associated with Alzheimer's disease) and mouse prion protein (associated with prion diseases), respectively, antagonized or enhanced nucleation of a yeast prion by these proteins. The yeast-based prion nucleation assay, developed in our work, can be employed for mutational dissection of amyloidogenic proteins. We anticipate that it will aid in the identification of chemicals that influence initial amyloid nucleation and in searching for new amyloidogenic proteins in a variety of proteomes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Age at Death of Creutzfeldt-Jakob disease in subsequent family generation carrying the E200K mutation of the prion protein gene.

    Directory of Open Access Journals (Sweden)

    Maurizio Pocchiari

    Full Text Available The E200K mutation of the prion protein gene (PRNP is the most frequent amino acid substitution in genetic Creutzfeldt-Jakob disease and is the only one responsible for the appearance of clustered cases in the world. In the Israel and Slovakian clusters, age of disease onset was reduced in successive generations but the absence of a clear molecular basis raised the possibility that this event was an observational bias. The aim of the present study was to investigate possible selection biases or confounding factors related to anticipation in E200K CJD patients belonging to a cluster in Southern Italy.Clinical and demographical data of 41 parent-offspring pairs from 19 pedigrees of the Italian cluster of E200K patients were collected. Age at death of parents was compared with age at death of E200K CJD offspring. Subgroup analyses were performed for controlling possible selection biases, confounding factors, or both.The mean age at death/last follow-up of the parent generation was 71.4 years while that of CJD offspring was 59.3 years with an estimated anticipation of 12.1 years. When the same analysis was performed including only parents with CJD or carrying the E200K mutation (n = 26, the difference between offspring and parents increased to 14.8 years.These results show that early age at death occurs in offspring of families carrying the E200K PRNP mutation and that this event is not linked to observational biases. Although molecular or environmental bases for this occurrence remain unsettled, this information is important for improving the accuracy of information to give to mutated carriers.

  1. Early-onset Hirayama disease in a female

    Directory of Open Access Journals (Sweden)

    Matthias Baumann

    2017-01-01

    Full Text Available Objectives: Hirayama disease is a rare myelopathy, occurring predominantly in males with onset in the teens. Methods and results: Here, we report a young female patient who developed the first signs of Hirayama disease at 10.5 years of age. Prior to onset, she had experienced a growth spurt and grew about 8 cm. The disease progressed over 3 years and the typical clinical, electrophysiological, and neuroimaging signs of Hirayama disease were found. After this period and achievement of her final height, no further progression was noticed. Conclusions: This case highlights that pediatric neurologists should be aware of Hirayama disease, which can also occur in girls in early adolescence.

  2. Late-onset CMV disease following CMV prophylaxis.

    LENUS (Irish Health Repository)

    Donnelly, C

    2012-02-01

    BACKGROUND: Cytomegalovirus (CMV) is the most common opportunistic infection after solid-organ transplantation, increasing morbidity and mortality. Three months of oral valganciclovir have been shown to provide effective prophylaxis. Late-onset CMV disease, occurring after the discontinuation of prophylaxis, is now increasingly recognised. AIMS: To investigate the incidence and the time of detection of CMV infections in liver transplant recipients who received CMV prophylaxis. METHODS: Retrospective review of 64 high- and moderate-risk patients with 1 year of follow-up. RESULTS: The incidence of CMV infection was 12.5%, with 4.7% disease. All cases of symptomatic CMV disease were of late-onset. CONCLUSIONS: The incidence of CMV infections in this study was low compared with literature reports; however, the late-onset disease is an emerging problem. Detection of late-onset disease may be delayed because of less frequent clinic follow-up visits. Increased regular laboratory monitoring may allow earlier detection at the asymptomatic infection stage.

  3. Increased infectivity of anchorless mouse scrapie prions in transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Race, Brent; Phillips, Katie; Meade-White, Kimberly; Striebel, James; Chesebro, Bruce

    2015-06-01

    Prion protein (PrP) is found in all mammals, mostly as a glycoprotein anchored to the plasma membrane by a C-terminal glycosylphosphatidylinositol (GPI) linkage. Following prion infection, host protease-sensitive prion protein (PrPsen or PrPC) is converted into an abnormal, disease-associated, protease-resistant form (PrPres). Biochemical characteristics, such as the PrP amino acid sequence, and posttranslational modifications, such as glycosylation and GPI anchoring, can affect the transmissibility of prions as well as the biochemical properties of the PrPres generated. Previous in vivo studies on the effects of GPI anchoring on prion infectivity have not examined cross-species transmission. In this study, we tested the effect of lack of GPI anchoring on a species barrier model using mice expressing human PrP. In this model, anchorless 22L prions derived from tg44 mice were more infectious than 22L prions derived from C57BL/10 mice when tested in tg66 transgenic mice, which expressed wild-type anchored human PrP at 8- to 16-fold above normal. Thus, the lack of the GPI anchor on the PrPres from tg44 mice appeared to reduce the effect of the mouse-human PrP species barrier. In contrast, neither source of prions induced disease in tgRM transgenic mice, which expressed human PrP at 2- to 4-fold above normal. Prion protein (PrP) is found in all mammals, usually attached to cells by an anchor molecule called GPI. Following prion infection, PrP is converted into a disease-associated form (PrPres). While most prion diseases are species specific, this finding is not consistent, and species barriers differ in strength. The amino acid sequence of PrP varies among species, and this variability affects prion species barriers. However, other PrP modifications, including glycosylation and GPI anchoring, may also influence cross-species infectivity. We studied the effect of PrP GPI anchoring using a mouse-to-human species barrier model. Experiments showed that prions produced by

  4. Grass Plants Bind, Retain, Uptake, and Transport Infectious Prions

    Directory of Open Access Journals (Sweden)

    Sandra Pritzkow

    2015-05-01

    Full Text Available Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrPSc to plants. Small quantities of PrPSc contained in diluted brain homogenate or in excretory materials (urine and feces can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrPSc for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves. These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease.

  5. Grass plants bind, retain, uptake, and transport infectious prions.

    Science.gov (United States)

    Pritzkow, Sandra; Morales, Rodrigo; Moda, Fabio; Khan, Uffaf; Telling, Glenn C; Hoover, Edward; Soto, Claudio

    2015-05-26

    Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrP(Sc)) to plants. Small quantities of PrP(Sc) contained in diluted brain homogenate or in excretory materials (urine and feces) can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrP(Sc) for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves). These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Accumulation of pathological prion protein PrPSc in the skin of animals with experimental and natural scrapie.

    Directory of Open Access Journals (Sweden)

    Achim Thomzig

    2007-05-01

    Full Text Available Prion infectivity and its molecular marker, the pathological prion protein PrP(Sc, accumulate in the central nervous system and often also in lymphoid tissue of animals or humans affected by transmissible spongiform encephalopathies. Recently, PrP(Sc was found in tissues previously considered not to be invaded by prions (e.g., skeletal muscles. Here, we address the question of whether prions target the skin and show widespread PrP(Sc deposition in this organ in hamsters perorally or parenterally challenged with scrapie. In hamsters fed with scrapie, PrP(Sc was detected before the onset of symptoms, but the bulk of skin-associated PrP(Sc accumulated in the clinical phase. PrP(Sc was localized in nerve fibres within the skin but not in keratinocytes, and the deposition of PrP(Sc in skin showed no dependence from the route of infection and lymphotropic dissemination. The data indicated a neurally mediated centrifugal spread of prions to the skin. Furthermore, in a follow-up study, we examined sheep naturally infected with scrapie and detected PrP(Sc by Western blotting in skin samples from two out of five animals. Our findings point to the skin as a potential reservoir of prions, which should be further investigated in relation to disease transmission.

  7. Recombinant human prion protein inhibits prion propagation in vitro.

    Science.gov (United States)

    Yuan, Jue; Zhan, Yi-An; Abskharon, Romany; Xiao, Xiangzhu; Martinez, Manuel Camacho; Zhou, Xiaochen; Kneale, Geoff; Mikol, Jacqueline; Lehmann, Sylvain; Surewicz, Witold K; Castilla, Joaquín; Steyaert, Jan; Zhang, Shulin; Kong, Qingzhong; Petersen, Robert B; Wohlkonig, Alexandre; Zou, Wen-Quan

    2013-10-09

    Prion diseases are associated with the conformational conversion of the cellular prion protein (PrP(C)) into the pathological scrapie isoform (PrP(Sc)) in the brain. Both the in vivo and in vitro conversion of PrP(C) into PrP(Sc) is significantly inhibited by differences in amino acid sequence between the two molecules. Using protein misfolding cyclic amplification (PMCA), we now report that the recombinant full-length human PrP (rHuPrP23-231) (that is unglycosylated and lacks the glycophosphatidylinositol anchor) is a strong inhibitor of human prion propagation. Furthermore, rHuPrP23-231 also inhibits mouse prion propagation in a scrapie-infected mouse cell line. Notably, it binds to PrP(Sc), but not PrP(C), suggesting that the inhibitory effect of recombinant PrP results from blocking the interaction of brain PrP(C) with PrP(Sc). Our findings suggest a new avenue for treating prion diseases, in which a patient's own unglycosylated and anchorless PrP is used to inhibit PrP(Sc) propagation without inducing immune response side effects.

  8. Direct Detection of Soil-Bound Prions

    Science.gov (United States)

    Genovesi, Sacha; Leita, Liviana; Sequi, Paolo; Andrighetto, Igino; Sorgato, M. Catia; Bertoli, Alessandro

    2007-01-01

    Scrapie and chronic wasting disease are contagious prion diseases affecting sheep and cervids, respectively. Studies have indicated that horizontal transmission is important in sustaining these epidemics, and that environmental contamination plays an important role in this. In the perspective of detecting prions in soil samples from the field by more direct methods than animal-based bioassays, we have developed a novel immuno-based approach that visualises in situ the major component (PrPSc) of prions sorbed onto agricultural soil particles. Importantly, the protocol needs no extraction of the protein from soil. Using a cell-based assay of infectivity, we also report that samples of agricultural soil, or quartz sand, acquire prion infectivity after exposure to whole brain homogenates from prion-infected mice. Our data provide further support to the notion that prion-exposed soils retain infectivity, as recently determined in Syrian hamsters intracerebrally or orally challanged with contaminated soils. The cell approach of the potential infectivity of contaminated soil is faster and cheaper than classical animal-based bioassays. Although it suffers from limitations, e.g. it can currently test only a few mouse prion strains, the cell model can nevertheless be applied in its present form to understand how soil composition influences infectivity, and to test prion-inactivating procedures. PMID:17957252

  9. Direct detection of soil-bound prions.

    Directory of Open Access Journals (Sweden)

    Sacha Genovesi

    Full Text Available Scrapie and chronic wasting disease are contagious prion diseases affecting sheep and cervids, respectively. Studies have indicated that horizontal transmission is important in sustaining these epidemics, and that environmental contamination plays an important role in this. In the perspective of detecting prions in soil samples from the field by more direct methods than animal-based bioassays, we have developed a novel immuno-based approach that visualises in situ the major component (PrP(Sc of prions sorbed onto agricultural soil particles. Importantly, the protocol needs no extraction of the protein from soil. Using a cell-based assay of infectivity, we also report that samples of agricultural soil, or quartz sand, acquire prion infectivity after exposure to whole brain homogenates from prion-infected mice. Our data provide further support to the notion that prion-exposed soils retain infectivity, as recently determined in Syrian hamsters intracerebrally or orally challenged with contaminated soils. The cell approach of the potential infectivity of contaminated soil is faster and cheaper than classical animal-based bioassays. Although it suffers from limitations, e.g. it can currently test only a few mouse prion strains, the cell model can nevertheless be applied in its present form to understand how soil composition influences infectivity, and to test prion-inactivating procedures.

  10. At the centre of neuronal, synaptic and axonal pathology in murine prion disease: degeneration of neuroanatomically linked thalamic and brainstem nuclei

    Science.gov (United States)

    Reis, Renata; Hennessy, Edel; Murray, Caoimhe; Griffin, Éadaoin W.

    2015-01-01

    Aims The processes by which neurons degenerate in chronic neurodegenerative diseases remain unclear. Synaptic loss and axonal pathology frequently precede neuronal loss and protein aggregation demonstrably spreads along neuroanatomical pathways in many neurodegenerative diseases. The spread of neuronal pathology is less studied. Methods We previously demonstrated severe neurodegeneration in the posterior thalamus of multiple prion disease strains. Here we used the ME7 model of prion disease to examine the nature of this degeneration in the posterior thalamus and the major brainstem projections into this region. Results We objectively quantified neurological decline between 16 and 18 weeks post‐inoculation and observed thalamic subregion‐selective neuronal, synaptic and axonal pathology while demonstrating relatively uniform protease‐resistant prion protein (PrP) aggregation and microgliosis across the posterior thalamus. Novel amyloid precursor protein (APP) pathology was particularly prominent in the thalamic posterior (PO) and ventroposterior lateral (VPL) nuclei. The brainstem nuclei forming the major projections to these thalamic nuclei were examined. Massive neuronal loss in the PO was not matched by significant neuronal loss in the interpolaris (Sp5I), while massive synaptic loss in the ventral posteromedial nucleus (VPM) did correspond with significant neuronal loss in the principal trigeminal nucleus. Likewise, significant VPL synaptic loss was matched by significant neuronal loss in the gracile and cuneate nuclei. Conclusion These findings demonstrate significant spread of neuronal pathology from the thalamus to the brainstem in prion disease. The divergent neuropathological features in adjacent neuronal populations demonstrates that there are discrete pathways to neurodegeneration in different neuronal populations. PMID:25727649

  11. Late onset Pompe disease- new genetic variant: Case report ...

    African Journals Online (AJOL)

    The patient was not given enzyme replacement therapy due to cost but received high protein therapy and Oxygen supplementation using Oxygen extractor machine. She is worsening due to respiratory failure. Conclusion: This is a new genetic variant isolated of late-onset Pompe disease which presents with almost pure ...

  12. Screening for late-onset Pompe disease in western Denmark

    DEFF Research Database (Denmark)

    Hansen, Julie Schjødtz; Pedersen, E G; Gaist, D

    2018-01-01

    OBJECTIVE: Late-onset Pompe disease (LOPD) is a rare autosomal recessively inherited metabolic myopathy caused by reduced activity of the lysosomal enzyme alpha-glucosidase. In a previous screening study at two large neuromuscular university clinics in Denmark, three patients with LOPD were...

  13. Prevalence of chronic diseases at the onset of inflammatory arthritis.

    NARCIS (Netherlands)

    Ursum, J.; Korevaar, J.C.; Twisk, J.W.R.; Peters, M.J.L.; Schellevis, F.G.; Nurmohamed, M.T.; Nielen, M.M.J.

    2012-01-01

    Background: To explore the prevalence of chronic diseases at the onset of inflammatory arthritis (IA) in the general practice and compare this to a group of control patients without IA. Methods: In this nested-case-control study, data were used from the Netherlands Information Network of eneral

  14. De novo generation of infectious prions with bacterially expressed recombinant prion protein.

    Science.gov (United States)

    Zhang, Zhihong; Zhang, Yi; Wang, Fei; Wang, Xinhe; Xu, Yuanyuan; Yang, Huaiyi; Yu, Guohua; Yuan, Chonggang; Ma, Jiyan

    2013-12-01

    The prion hypothesis is strongly supported by the fact that prion infectivity and the pathogenic conformer of prion protein (PrP) are simultaneously propagated in vitro by the serial protein misfolding cyclic amplification (sPMCA). However, due to sPMCA's enormous amplification power, whether an infectious prion can be formed de novo with bacterially expressed recombinant PrP (rPrP) remains to be satisfactorily resolved. To address this question, we performed unseeded sPMCA with rPrP in a laboratory that has never been exposed to any native prions. Two types of proteinase K (PK)-resistant and self-perpetuating recombinant PrP conformers (rPrP-res) with PK-resistant cores of 17 or 14 kDa were generated. A bioassay revealed that rPrP-res(17kDa) was highly infectious, causing prion disease in wild-type mice with an average survival time of about 172 d. In contrast, rPrP-res(14kDa) completely failed to induce any disease. Our findings reveal that sPMCA is sufficient to initiate various self-perpetuating PK-resistant rPrP conformers, but not all of them possess in vivo infectivity. Moreover, generating an infectious prion in a prion-free environment establishes that an infectious prion can be formed de novo with bacterially expressed rPrP.

  15. Presence and seeding activity of pathological prion protein (PrP(TSE in skeletal muscles of white-tailed deer infected with chronic wasting disease.

    Directory of Open Access Journals (Sweden)

    Martin L Daus

    Full Text Available Chronic wasting disease (CWD is a contagious, rapidly spreading transmissible spongiform encephalopathy (TSE, or prion disease, occurring in cervids such as white tailed-deer (WTD, mule deer or elk in North America. Despite efficient horizontal transmission of CWD among cervids natural transmission of the disease to other species has not yet been observed. Here, we report for the first time a direct biochemical demonstration of pathological prion protein PrP(TSE and of PrP(TSE-associated seeding activity, the static and dynamic biochemical markers for biological prion infectivity, respectively, in skeletal muscles of CWD-infected cervids, i. e. WTD for which no clinical signs of CWD had been recognized. The presence of PrP(TSE was detected by Western- and postfixed frozen tissue blotting, while the seeding activity of PrP(TSE was revealed by protein misfolding cyclic amplification (PMCA. Semi-quantitative Western blotting indicated that the concentration of PrP(TSE in skeletal muscles of CWD-infected WTD was approximately 2000-10,000-fold lower than in brain tissue. Tissue-blot-analyses revealed that PrP(TSE was located in muscle-associated nerve fascicles but not, in detectable amounts, in myocytes. The presence and seeding activity of PrP(TSE in skeletal muscle from CWD-infected cervids suggests prevention of such tissue in the human diet as a precautionary measure for food safety, pending on further clarification of whether CWD may be transmissible to humans.

  16. Amyloidosis, synucleinopathy, and prion encephalopathy in a neuropathic lysosomal storage disease: the CNS-biomarker potential of peripheral blood.

    Directory of Open Access Journals (Sweden)

    Bartholomew J Naughton

    Full Text Available Mucopolysaccharidosis (MPS IIIB is a devastating neuropathic lysosomal storage disease with complex pathology. This study identifies molecular signatures in peripheral blood that may be relevant to MPS IIIB pathogenesis using a mouse model. Genome-wide gene expression microarrays on pooled RNAs showed dysregulation of 2,802 transcripts in blood from MPS IIIB mice, reflecting pathological complexity of MPS IIIB, encompassing virtually all previously reported and as yet unexplored disease aspects. Importantly, many of the dysregulated genes are reported to be tissue-specific. Further analyses of multiple genes linked to major pathways of neurodegeneration demonstrated a strong brain-blood correlation in amyloidosis and synucleinopathy in MPS IIIB. We also detected prion protein (Prnp deposition in the CNS and Prnp dysregulation in the blood in MPS IIIB mice, suggesting the involvement of Prnp aggregation in neuropathology. Systemic delivery of trans-BBB-neurotropic rAAV9-hNAGLU vector mediated not only efficient restoration of functional α-N-acetylglucosaminidase and clearance of lysosomal storage pathology in the central nervous system (CNS and periphery, but also the correction of impaired neurodegenerative molecular pathways in the brain and blood. Our data suggest that molecular changes in blood may reflect pathological status in the CNS and provide a useful tool for identifying potential CNS-specific biomarkers for MPS IIIB and possibly other neurological diseases.

  17. ADULT-ONSET STILL'S DISEASE: DIAGNOSIS AND TREATMENT

    Directory of Open Access Journals (Sweden)

    Rimma Mikhailovna Balabanova

    2009-09-01

    Full Text Available The paper describes adult-onset Still's disease (AOSD, a rare multisystemic disease of unknown etiology that is referred to as seronegative rheumatoid arthritis. It presents the major manifestations of AOSD: long-term fever, arthritis or persistent arthralgias, maculopapular eruption, seronegativity for rheumatoid factor, neutrophilic leukocytosis, and disease onset after 16 years of age, as well as additional signs: lymphadenopathy, hepatosplenomegaly, polyserositis, nasopharyngeal infection. It is noted that particular difficulties in the diagnosis of AOSD emerge when it is complicated by the hematophagocytic syndrome (HPS. The distinctive features of AOSD are the development of cutaneous and articular symptoms in practically 80% of patients and their absence in HPS. It is stated that of greater value in the diagnosis of HPS is examination of aspirate of the bone marrow than its biopsy. Most patients develop refractoriness to glucocorticoids and essential anti-inflammatory drugs. The positive results of using anakinra, rituximab, and tocilizumab are promising.

  18. ADULT-ONSET STILL'S DISEASE: DIAGNOSIS AND TREATMENT

    Directory of Open Access Journals (Sweden)

    Rimma Mikhailovna Balabanova

    2009-01-01

    Full Text Available The paper describes adult-onset Still's disease (AOSD, a rare multisystemic disease of unknown etiology that is referred to as seronegative rheumatoid arthritis. It presents the major manifestations of AOSD: long-term fever, arthritis or persistent arthralgias, maculopapular eruption, seronegativity for rheumatoid factor, neutrophilic leukocytosis, and disease onset after 16 years of age, as well as additional signs: lymphadenopathy, hepatosplenomegaly, polyserositis, nasopharyngeal infection. It is noted that particular difficulties in the diagnosis of AOSD emerge when it is complicated by the hematophagocytic syndrome (HPS. The distinctive features of AOSD are the development of cutaneous and articular symptoms in practically 80% of patients and their absence in HPS. It is stated that of greater value in the diagnosis of HPS is examination of aspirate of the bone marrow than its biopsy. Most patients develop refractoriness to glucocorticoids and essential anti-inflammatory drugs. The positive results of using anakinra, rituximab, and tocilizumab are promising.

  19. Protein Misfolding Cyclic Amplification of Infectious Prions.

    Science.gov (United States)

    Moda, Fabio

    2017-01-01

    Transmissible spongiform encephalopathies, or prion diseases, are a group of incurable disorders caused by the accumulation of an abnormally folded prion protein (PrP Sc ) in the brain. According to the "protein-only" hypothesis, PrP Sc is the infectious agent able to propagate the disease by acting as a template for the conversion of the correctly folded prion protein (PrP C ) into the pathological isoform. Recently, the mechanism of PrP C conversion has been mimicked in vitro using an innovative technique named protein misfolding cyclic amplification (PMCA). This technology represents a great tool for studying diverse aspects of prion biology in the field of basic research and diagnosis. Moreover, PMCA can be expanded for the study of the misfolding process associated to other neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and frontotemporal lobar degeneration. © 2017 Elsevier Inc. All rights reserved.

  20. Effects of solution chemistry and aging time on prion protein adsorption and replication of soil-bound prions.

    Directory of Open Access Journals (Sweden)

    Samuel E Saunders

    2011-04-01

    Full Text Available Prion interactions with soil may play an important role in the transmission of chronic wasting disease (CWD and scrapie. Prions are known to bind to a wide range of soil surfaces, but the effects of adsorption solution chemistry and long-term soil binding on prion fate and transmission risk are unknown. We investigated HY TME prion protein (PrP(Sc adsorption to soil minerals in aqueous solutions of phosphate buffered saline (PBS, sodium chloride, calcium chloride, and deionized water using western blotting. The replication efficiency of bound prions following adsorption in these solutions was also evaluated by protein misfolding cyclic amplification (PMCA. Aging studies investigated PrP(Sc desorption and replication efficiency up to one year following adsorption in PBS or DI water. Results indicate that adsorption solution chemistry can affect subsequent prion replication or desorption ability, especially after incubation periods of 30 d or longer. Observed effects were minor over the short-term (7 d or less. Results of long-term aging experiments demonstrate that unbound prions or prions bound to a diverse range of soil surfaces can readily replicate after one year. Our results suggest that while prion-soil interactions can vary with solution chemistry, prions bound to soil could remain a risk for transmitting prion diseases after months in the environment.

  1. Adult Onset Still's Disease and Rocky Mountain Spotted Fever

    Directory of Open Access Journals (Sweden)

    Paul Persad

    2010-01-01

    Full Text Available Adult Still's Disease was first described in 1971 by Bywaters in fourteen adult female patients who presented with symptoms indistinguishable from that of classic childhood Still's Disease (Bywaters, 1971. George Still in 1896 first recognized this triad of quotidian (daily fevers, evanescent rash, and arthritis in children with what later became known as juvenile inflammatory arthritis (Still, 1990. Adult Onset Still's Disease (AOSD is an inflammatory condition of unknown etiology characterized by an evanescent rash, quotidian fevers, and arthralgias. Numerous infectious agents have been associated with its presentation. This case is to our knowledge the first presentation of AOSD in the setting of Rocky Mountain Spotted Fever. Although numerous infectious agents have been suggested, the etiology of this disorder remains elusive. Nevertheless, infection may in fact play a role in triggering the onset of symptoms in those with this disorder. Our case presentation is, to our knowledge, the first case of Adult Onset Still's Disease associated with Rocky Mountain spotted fever (RMSF.

  2. INFLAMMATORY BOWEL DISEASE WITH A VERY EARLY ONSET

    Directory of Open Access Journals (Sweden)

    E. A. Kornienko

    2016-01-01

    Full Text Available Inflammatory bowel disease (Crohn's disease and ulcerative colitis has a tendency to manifest at earlier age. In childhood (< 6 years of age it has an especially severe course and is characterized by high grade inflammation, predominantly in the colon, by complication and extra-intestinal autoimmune injury. At younger age, Crohn's disease and ulcerative colitis require more aggressive treatment with frequently poor results. From genetic point of view, monogenic mutations controlling the immune response are characteristic for these diseases with an early onset; therefore, they are frequently associated with primary immunodeficiency. This implies various immunologic deficits, such as breakdown of the epithelial barrier, phagocytic dysfunction and dysfunction of Т and В lymphocytes and regulatory Т cells. Depending on this, a number of primary immunodeficiencies are identified associated with monogenic mutations of more than 50 genes. There some age-related specific features at manifestation. Thus, defects in interleukin 10 and FOXP3 manifest in the first months of life, whereas severe combined immunodeficiencies and phagocytosis defects become evident somewhat later. Virtually all 24 children with very early onset of inflammatory bowel disease, whom we examined, had immunologic defects and one child had a XIAP gene mutation. After identification of a specific immunologic defect, one can understand the mechanism of the disease and suspect one or another genetic defect with subsequent reasonable assessment of mutations in candidate genes. Detection of immunologic and genetic defects in children with a very early onset of inflammatory bowel disease allows for choosing an adequate strategy of non-conventional treatment that may differ depending on the mechanism of the disease.

  3. Microscopic and macroscopic models for the onset and progression of Alzheimer's disease

    International Nuclear Information System (INIS)

    Bertsch, Michiel; Franchi, Bruno; Tesi, Maria Carla; Tosin, Andrea

    2017-01-01

    In the first part of this paper we review a mathematical model for the onset and progression of Alzheimer’s disease (AD) that was developed in subsequent steps over several years. The model is meant to describe the evolution of AD in vivo . In Achdou et al (2013 J. Math. Biol . 67 1369–92) we treated the problem at a microscopic scale, where the typical length scale is a multiple of the size of the soma of a single neuron. Subsequently, in Bertsch et al (2017 Math. Med. Biol . 34 193–214) we concentrated on the macroscopic scale, where brain neurons are regarded as a continuous medium, structured by their degree of malfunctioning. In the second part of the paper we consider the relation between the microscopic and the macroscopic models. In particular we show under which assumptions the kinetic transport equation, which in the macroscopic model governs the evolution of the probability measure for the degree of malfunctioning of neurons, can be derived from a particle-based setting. The models are based on aggregation and diffusion equations for β -Amyloid (A β from now on), a protein fragment that healthy brains regularly produce and eliminate. In case of dementia A β monomers are no longer properly washed out and begin to coalesce forming eventually plaques. Two different mechanisms are assumed to be relevant for the temporal evolution of the disease: (i) diffusion and agglomeration of soluble polymers of amyloid, produced by damaged neurons; (ii) neuron-to-neuron prion-like transmission. In the microscopic model we consider mechanism (i), modelling it by a system of Smoluchowski equations for the amyloid concentration (describing the agglomeration phenomenon), with the addition of a diffusion term as well as of a source term on the neuronal membrane. At the macroscopic level instead we model processes (i) and (ii) by a system of Smoluchowski equations for the amyloid concentration, coupled to a kinetic-type transport equation for the distribution

  4. Microscopic and macroscopic models for the onset and progression of Alzheimer's disease

    Science.gov (United States)

    Bertsch, Michiel; Franchi, Bruno; Carla Tesi, Maria; Tosin, Andrea

    2017-10-01

    In the first part of this paper we review a mathematical model for the onset and progression of Alzheimer’s disease (AD) that was developed in subsequent steps over several years. The model is meant to describe the evolution of AD in vivo. In Achdou et al (2013 J. Math. Biol. 67 1369-92) we treated the problem at a microscopic scale, where the typical length scale is a multiple of the size of the soma of a single neuron. Subsequently, in Bertsch et al (2017 Math. Med. Biol. 34 193-214) we concentrated on the macroscopic scale, where brain neurons are regarded as a continuous medium, structured by their degree of malfunctioning. In the second part of the paper we consider the relation between the microscopic and the macroscopic models. In particular we show under which assumptions the kinetic transport equation, which in the macroscopic model governs the evolution of the probability measure for the degree of malfunctioning of neurons, can be derived from a particle-based setting. The models are based on aggregation and diffusion equations for β-Amyloid (Aβ from now on), a protein fragment that healthy brains regularly produce and eliminate. In case of dementia Aβ monomers are no longer properly washed out and begin to coalesce forming eventually plaques. Two different mechanisms are assumed to be relevant for the temporal evolution of the disease: (i) diffusion and agglomeration of soluble polymers of amyloid, produced by damaged neurons; (ii) neuron-to-neuron prion-like transmission. In the microscopic model we consider mechanism (i), modelling it by a system of Smoluchowski equations for the amyloid concentration (describing the agglomeration phenomenon), with the addition of a diffusion term as well as of a source term on the neuronal membrane. At the macroscopic level instead we model processes (i) and (ii) by a system of Smoluchowski equations for the amyloid concentration, coupled to a kinetic-type transport equation for the distribution function of the

  5. Epigenetic dominance of prion conformers.

    Directory of Open Access Journals (Sweden)

    Eri Saijo

    2013-10-01

    Full Text Available Although they share certain biological properties with nucleic acid based infectious agents, prions, the causative agents of invariably fatal, transmissible neurodegenerative disorders such as bovine spongiform encephalopathy, sheep scrapie, and human Creutzfeldt Jakob disease, propagate by conformational templating of host encoded proteins. Once thought to be unique to these diseases, this mechanism is now recognized as a ubiquitous means of information transfer in biological systems, including other protein misfolding disorders such as those causing Alzheimer's and Parkinson's diseases. To address the poorly understood mechanism by which host prion protein (PrP primary structures interact with distinct prion conformations to influence pathogenesis, we produced transgenic (Tg mice expressing different sheep scrapie susceptibility alleles, varying only at a single amino acid at PrP residue 136. Tg mice expressing ovine PrP with alanine (A at (OvPrP-A136 infected with SSBP/1 scrapie prions propagated a relatively stable (S prion conformation, which accumulated as punctate aggregates in the brain, and produced prolonged incubation times. In contrast, Tg mice expressing OvPrP with valine (V at 136 (OvPrP-V136 infected with the same prions developed disease rapidly, and the converted prion was comprised of an unstable (U, diffusely distributed conformer. Infected Tg mice co-expressing both alleles manifested properties consistent with the U conformer, suggesting a dominant effect resulting from exclusive conversion of OvPrP-V136 but not OvPrP-A136. Surprisingly, however, studies with monoclonal antibody (mAb PRC5, which discriminates OvPrP-A136 from OvPrP-V136, revealed substantial conversion of OvPrP-A136. Moreover, the resulting OvPrP-A136 prion acquired the characteristics of the U conformer. These results, substantiated by in vitro analyses, indicated that co-expression of OvPrP-V136 altered the conversion potential of OvPrP-A136 from the S to

  6. Atypical presentation of late-onset Tay-Sachs disease.

    Science.gov (United States)

    Deik, Andres; Saunders-Pullman, Rachel

    2014-05-01

    Late-onset Tay-Sachs disease (LOTS) is a lysosomal storage disease caused by deficient Beta-hexosaminidase A activity. We describe a 53-year-old woman who presented with adult-onset leg weakness, and whose initial diagnosis was progressive muscular atrophy without identifiable etiology. Development of cerebellar ataxia in mid-life prompted reassessment. Beta-hexosaminidase A quantification assay demonstrated absence of the isozyme. Genetic testing identified compound heterozygous mutations in the HEXA gene, confirming the diagnosis of LOTS. The phenotypic spectrum of LOTS includes motor neuronopathy, ataxia, choreoathetosis, neuropathy, and psychiatric symptoms in various combinations. This patient highlights the emergence of different clinical features over many years and emphasizes the need to consider LOTS in the differential diagnosis of progressive muscular atrophy. Copyright © 2013 Wiley Periodicals, Inc.

  7. Anti-prion activity of Brilliant Blue G.

    Directory of Open Access Journals (Sweden)

    Yoshifumi Iwamaru

    Full Text Available BACKGROUND: Prion diseases are fatal neurodegenerative disorders with no effective therapy currently available. Accumulating evidence has implicated over-activation of P2X7 ionotropic purinergic receptor (P2X7R in the progression of neuronal loss in several neurodegenerative diseases. This has led to the speculation that simultaneous blockade of this receptor and prion replication can be an effective therapeutic strategy for prion diseases. We have focused on Brilliant Blue G (BBG, a well-known P2X7R antagonist, possessing a chemical structure expected to confer anti-prion activity and examined its inhibitory effect on the accumulation of pathogenic isoforms of prion protein (PrPres in a cellular and a mouse model of prion disease in order to determine its therapeutic potential. PRINCIPAL FINDINGS: BBG prevented PrPres accumulation in infected MG20 microglial and N2a neural cells at 50% inhibitory concentrations of 14.6 and 3.2 µM, respectively. Administration of BBG in vivo also reduced PrPres accumulation in the brains of mice with prion disease. However, it did not appear to alleviate the disease progression compared to the vehicle-treated controls, implying a complex role of P2X7R on the neuronal degeneration in prion diseases. SIGNIFICANCE: These results provide novel insights into the pathophysiology of prion diseases and have important implications for the treatment.

  8. A closer look at prion strains: characterization and important implications.

    Science.gov (United States)

    Solforosi, Laura; Milani, Michela; Mancini, Nicasio; Clementi, Massimo; Burioni, Roberto

    2013-01-01

    Prions are infectious proteins that are responsible for transmissible spongiform encephalopathies (TSEs) and consist primarily of scrapie prion protein (PrP (Sc) ), a pathogenic isoform of the host-encoded cellular prion protein (PrP (C) ). The absence of nucleic acids as essential components of the infectious prions is the most striking feature associated to these diseases. Additionally, different prion strains have been isolated from animal diseases despite the lack of DNA or RNA molecules. Mounting evidence suggests that prion-strain-specific features segregate with different PrP (Sc) conformational and aggregation states. Strains are of practical relevance in prion diseases as they can drastically differ in many aspects, such as incubation period, PrP (Sc) biochemical profile (e.g., electrophoretic mobility and glycoform ratio) and distribution of brain lesions. Importantly, such different features are maintained after inoculation of a prion strain into genetically identical hosts and are relatively stable across serial passages. This review focuses on the characterization of prion strains and on the wide range of important implications that the study of prion strains involves.

  9. Predicting onset of chronic lung disease using cord blood cytokines.

    Science.gov (United States)

    Takao, Daishi; Ibara, Satoshi; Tokuhisa, Takuya; Ishihara, Chie; Maede, Yoshinobu; Matsui, Takako; Tokumasu, Hironobu; Sato, Kyoko; Hirakawa, Eiji; Kabayama, Chika; Yamamoto, Masakatu

    2014-08-01

    Applicability of cord blood interleukin-6 (IL-6) and interleukin-8 (IL-8) as markers for early prediction of the onset of chronic lung disease (CLD) due to intrauterine infection was investigated in the present study. Eighty very low-birthweight infants with chorioamnionitis were divided into two groups: the CLD group (42 patients) and the non-CLD group (38 patients), according to the presence or absence of CLD, and the clinical background and cord blood IL-6 and IL-8 levels in each group were compared and investigated. The CLD group had significantly longer duration of mechanical ventilation and hospitalization (P CLD group. Using the receiver operating characteristic curves of CLD onset for both IL-6 and IL-8, the cut-off value of IL-6 for predicting onset of CLD was 48.0 pg/mL, and its sensitivity and specificity were 76% and 96%, respectively. The cut-off value for IL-8 was 66.0 pg/mL, and its sensitivity and specificity were 71% and 82%, respectively. The cord blood levels of both IL-6 and IL-8 were significantly higher in the CLD group, indicating that both IL-6 and IL-8 are useful predictors of onset of CLD. © 2014 Japan Pediatric Society.

  10. Usual interstitial pneumonia in adult-onset still's disease

    International Nuclear Information System (INIS)

    Rodelo, Joaquin; Gonzalez, Luis Alonso; Velasquez, Monica Patricia; Vasquez, Gloria; Uribe, Oscar; Perez, Maria del Pilar; Ramirez, Luis Alberto

    2005-01-01

    Adult-onset still's disease (AOSD) is a multi-system inflammatory disorder of unknown origin, characterized by high spiking fevers, evanescent salmon colored rash, arthralgias or arthritis, hepatospleno-megaly, Iymphadenopathy and sore throat. It is not uncommon for AOSD to involve other organs, such as the liver, the kidney; the bone marrow and less often the lungs. Pulmonary involvement ranges from 30 to 40 % (0 to 53 %), the pulmonary manifestations of AOSD include pleurisy, acute pneumonitis and even the acute respiratory distress syndrome. We present a case of a patient with AOSD who developed an interstitial lung disease and reviewed the literature on it

  11. PrionScan: an online database of predicted prion domains in complete proteomes.

    Science.gov (United States)

    Espinosa Angarica, Vladimir; Angulo, Alfonso; Giner, Arturo; Losilla, Guillermo; Ventura, Salvador; Sancho, Javier

    2014-02-05

    Prions are a particular type of amyloids related to a large variety of important processes in cells, but also responsible for serious diseases in mammals and humans. The number of experimentally characterized prions is still low and corresponds to a handful of examples in microorganisms and mammals. Prion aggregation is mediated by specific protein domains with a remarkable compositional bias towards glutamine/asparagine and against charged residues and prolines. These compositional features have been used to predict new prion proteins in the genomes of different organisms. Despite these efforts, there are only a few available data sources containing prion predictions at a genomic scale. Here we present PrionScan, a new database of predicted prion-like domains in complete proteomes. We have previously developed a predictive methodology to identify and score prionogenic stretches in protein sequences. In the present work, we exploit this approach to scan all the protein sequences in public databases and compile a repository containing relevant information of proteins bearing prion-like domains. The database is updated regularly alongside UniprotKB and in its present version contains approximately 28000 predictions in proteins from different functional categories in more than 3200 organisms from all the taxonomic subdivisions. PrionScan can be used in two different ways: database query and analysis of protein sequences submitted by the users. In the first mode, simple queries allow to retrieve a detailed description of the properties of a defined protein. Queries can also be combined to generate more complex and specific searching patterns. In the second mode, users can submit and analyze their own sequences. It is expected that this database would provide relevant insights on prion functions and regulation from a genome-wide perspective, allowing researches performing cross-species prion biology studies. Our database might also be useful for guiding experimentalists

  12. Adult onset Hallervorden-Spatz disease with psychotic symptoms.

    Science.gov (United States)

    del Valle-López, Pilar; Pérez-García, Rosa; Sanguino-Andrés, Rosa; González-Pablos, Emilio

    2011-01-01

    Hallervorden-Spatz disease is a rare neurological disorder characterized by pyramidal and extrapyramidal manifestations, dysarthria and dementia. Its onset is usually in childhood and most patients have a fatal outcome in few years. A high percentage of cases are hereditary with a recessive autosomal pattern. In the majority of the patients reported, a mutation of the gene that encodes the pantothenate kinase (PANK2) located in the 20p13-p12.3 chromosome that causes iron storage in the basal ganglia of the brain has been found. Its diagnosis is based on clinical symptoms as well as specific MRI imaging findings. The most common psychiatric features are cognitive impairment as well as depressive symptoms. There are few documented cases with psychotic disorders. We present the case of a patient with late onset Hallervorden-Spatz disease and psychotic symptoms that preceded the development of neurological manifestations. The pathophysiology and the treatment of psychotic symptomatology are presented and discussed. Key words: Psicosis, Hallervorden-Spatz, late onset, Basal ganglia.

  13. Late-onset Pompe disease: first clinical description in Russia

    Directory of Open Access Journals (Sweden)

    S. S. Nikitin

    2014-01-01

    Full Text Available Late-onset Pompe-disease (LOPD is an adult form of the glycogenosis type II. The age of onset ranges from 1 till 75 y.o. and older. The diagnosis of LOPD is based on the presence of trunk and limb-girdle muscle weakness with hyperlordosis, respiratory failure, ocasionally accompanied by cardiomyopathy, persistent mild elevation of creatine kinase, dry blood spot test of the enzyme activity and DNA-analysis of GAA-gene. Early recognition of the LOPD and beginning of the enzyme replacement therapy is important in preventing severe motor and respiratory deficit, the patient disability and in increasing the survival in those patients.

  14. Prevalence of Comorbidity in Patients With Young-Onset Alzheimer Disease Compared With Late-Onset: A Comparative Cohort Study

    NARCIS (Netherlands)

    Gerritsen, A.A.J.; Bakker, C.; Verhey, F.R.J.; Vugt, M.E. de; Melis, R.J.; Koopmans, R.T.

    2016-01-01

    OBJECTIVES: With the lack of a cure for Alzheimer disease (AD), the identification of comorbidity is important to reduce the possibility of excess disability. Although comorbidity in patients with late-onset AD (LO-AD) is common, for people with young-onset AD (YO-AD), it is unclear how often

  15. Adult-onset Still's disease: current challenges and future prospects

    Directory of Open Access Journals (Sweden)

    Siddiqui M

    2016-03-01

    Full Text Available Mariam Siddiqui,1 Michael S Putman,2 Anisha B Dua,11Department of Rheumatology, 2Department of Internal Medicine, The University of Chicago Medical Center, Chicago, IL, USA Abstract: Adult-onset Still's disease (AOSD – a multi-systemic inflammatory condition characterized by high fevers, polyarthritis, an evanescent rash, and pharyngitis – has been a challenging condition to diagnose expediently and treat effectively. Questions remain regarding the underlying pathophysiology and etiology of AOSD. Pathognomonic diagnostic tests and reliable biomarkers remain undiscovered. Over the past decade, important progress has been made. Diagnostic criteria employing glycosylated ferritin have improved specificity. More important, novel biologic therapies have offered important clues to AOSD's underlying pathophysiology. Cytokine-specific biologic therapies have been instrumental in providing more effective treatment for disease refractory to conventional treatment. While IL-1 therapy has demonstrated efficacy in refractory disease, novel therapies targeting IL-6 and IL-18 show great promise and are currently under investigation. Keywords: adult-onset Still's disease, biomarkers, therapeutics

  16. Protease resistance of infectious prions is suppressed by removal of a single atom in the cellular prion protein.

    Science.gov (United States)

    Leske, Henning; Hornemann, Simone; Herrmann, Uli Simon; Zhu, Caihong; Dametto, Paolo; Li, Bei; Laferriere, Florent; Polymenidou, Magdalini; Pelczar, Pawel; Reimann, Regina Rose; Schwarz, Petra; Rushing, Elisabeth Jane; Wüthrich, Kurt; Aguzzi, Adriano

    2017-01-01

    Resistance to proteolytic digestion has long been considered a defining trait of prions in tissues of organisms suffering from transmissible spongiform encephalopathies. Detection of proteinase K-resistant prion protein (PrPSc) still represents the diagnostic gold standard for prion diseases in humans, sheep and cattle. However, it has become increasingly apparent that the accumulation of PrPSc does not always accompany prion infections: high titers of prion infectivity can be reached also in the absence of protease resistant PrPSc. Here, we describe a structural basis for the phenomenon of protease-sensitive prion infectivity. We studied the effect on proteinase K (PK) resistance of the amino acid substitution Y169F, which removes a single oxygen atom from the β2-α2 loop of the cellular prion protein (PrPC). When infected with RML or the 263K strain of prions, transgenic mice lacking wild-type (wt) PrPC but expressing MoPrP169F generated prion infectivity at levels comparable to wt mice. The newly generated MoPrP169F prions were biologically indistinguishable from those recovered from prion-infected wt mice, and elicited similar pathologies in vivo. Surprisingly, MoPrP169F prions showed greatly reduced PK resistance and density gradient analyses showed a significant reduction in high-density aggregates. Passage of MoPrP169F prions into mice expressing wt MoPrP led to full recovery of protease resistance, indicating that no strain shift had taken place. We conclude that a subtle structural variation in the β2-α2 loop of PrPC affects the sensitivity of PrPSc to protease but does not impact prion replication and infectivity. With these findings a specific structural feature of PrPC can be linked to a physicochemical property of the corresponding PrPSc.

  17. Genetics Home Reference: inclusion body myopathy with early-onset Paget disease and frontotemporal dementia

    Science.gov (United States)

    ... Share: Email Facebook Twitter Home Health Conditions IBMPFD Inclusion body myopathy with early-onset Paget disease and ... Javascript to view the expand/collapse boxes. Description Inclusion body myopathy with early-onset Paget disease and ...

  18. Endocrine Disruptor Vinclozolin Induced Epigenetic Transgenerational Adult-Onset Disease

    Science.gov (United States)

    Anway, Matthew D.; Leathers, Charles; Skinner, Michael K.

    2018-01-01

    The fetal basis of adult disease is poorly understood on a molecular level and cannot be solely attributed to genetic mutations or a single etiology. Embryonic exposure to environmental compounds has been shown to promote various disease states or lesions in the first generation (F1). The current study used the endocrine disruptor vinclozolin (antiandrogenic compound) in a transient embryonic exposure at the time of gonadal sex determination in rats. Adult animals from the F1 generation and all subsequent generations examined (F1–F4) developed a number of disease states or tissue abnormalities including prostate disease, kidney disease, immune system abnormalities, testis abnormalities, and tumor development (e.g. breast). In addition, a number of blood abnormalities developed including hypercholesterolemia. The incidence or prevalence of these transgenerational disease states was high and consistent across all generations (F1–F4) and, based on data from a previous study, appears to be due in part to epigenetic alterations in the male germ line. The observations demonstrate that an environmental compound, endocrine disruptor, can induce transgenerational disease states or abnormalities, and this suggests a potential epigenetic etiology and molecular basis of adult onset disease. PMID:16973726

  19. Correlation of cellular factors and differential scrapie prion permissiveness in ovine microglia

    Science.gov (United States)

    Prion diseases are fatal neurodegenerative disorders by which the native cellular prion protein (PrP-C) is misfolded into an accumulating, disease-associated isoform (PrP-D). To improve the understanding of prion pathogenesis and develop effective treatments, it is essential to elucidate factors con...

  20. Adult onset still's disease; a rare disease in Nigeria? | Ohagwu ...

    African Journals Online (AJOL)

    This is to highlight the fact that the disease while rare, requires a high index of suspicion for diagnosis. Both patients were males. The ages of the patients were 19 and 62 years. Both patients had high grade fever, symmetrical inflammatory polyarthritis and weight loss. The first patient had sore throat. On examination, both ...

  1. Molecular Modeling of Prion Transmission to Humans

    Directory of Open Access Journals (Sweden)

    Etienne Levavasseur

    2014-10-01

    Full Text Available Using different prion strains, such as the variant Creutzfeldt-Jakob disease agent and the atypical bovine spongiform encephalopathy agents, and using transgenic mice expressing human or bovine prion protein, we assessed the reliability of protein misfolding cyclic amplification (PMCA to model interspecies and genetic barriers to prion transmission. We compared our PMCA results with in vivo transmission data characterized by attack rates, i.e., the percentage of inoculated mice that developed the disease. Using 19 seed/substrate combinations, we observed that a significant PMCA amplification was only obtained when the mouse line used as substrate is susceptible to the corresponding strain. Our results suggest that PMCA provides a useful tool to study genetic barriers to transmission and to study the zoonotic potential of emerging prion strains.

  2. Prions and lymphoid organs

    Science.gov (United States)

    O’Connor, Tracy; Aguzzi, Adriano

    2013-01-01

    Prion colonization of secondary lymphoid organs (SLOs) is a critical step preceding neuroinvasion in prion pathogenesis. Follicular dendritic cells (FDCs), which depend on both tumor necrosis factor receptor 1 (TNFR1) and lymphotoxin β receptor (LTβR) signaling for maintenance, are thought to be the primary sites of prion accumulation in SLOs. However, prion titers in RML-infected TNFR1−/− lymph nodes and rates of neuroinvasion in TNFR1−/− mice remain high despite the absence of mature FDCs. Recently, we discovered that TNFR1-independent prion accumulation in lymph nodes relies on LTβR signaling. Loss of LTβR signaling in TNFR1−/− lymph nodes coincided with the de-differentiation of high endothelial venules (HEVs)—the primary sites of lymphocyte entry into lymph nodes. These findings suggest that HEVs are the sites through which prions initially invade lymph nodes from the bloodstream. Identification of HEVs as entry portals for prions clarifies a number of previous observations concerning peripheral prion pathogenesis. However, a number of questions still remain: What is the mechanism by which prions are taken up by HEVs? Which cells are responsible for delivering prions to lymph nodes? Are HEVs the main entry site for prions into lymph nodes or do alternative routes also exist? These questions and others are considered in this article. PMID:23357827

  3. Prion Protein on Astrocytes or in Extracellular Fluid Impedes Neurodegeneration Induced by Truncated Prion Protein

    OpenAIRE

    Race, Brent; Meade-White, Kimberly; Race, Richard; Baumann, Frank; Aguzzi, Adriano; Chesebro, Bruce

    2009-01-01

    Prion protein (PrP) is a host-encoded membrane-anchored glycoprotein which is required for susceptibility to prion disease. PrP may also be important for normal brain functions such as hippocampal spatial memory. Previously transgenic mice expressing amino terminally truncated mouse PrP (Δ32–134) spontaneously developed a fatal disease associated with degeneration of cerebellar granular neurons as well as vacuolar degeneration of deep cerebellar and brain stem white matter. This disease could...

  4. Generic amyloidogenicity of mammalian prion proteins from species susceptible and resistant to prions.

    Science.gov (United States)

    Nyström, Sofie; Hammarström, Per

    2015-05-11

    Prion diseases are lethal, infectious diseases associated with prion protein (PrP) misfolding. A large number of mammals are susceptible to both sporadic and acquired prion diseases. Although PrP is highly conserved and ubiquitously expressed in all mammals, not all species exhibit prion disease. By employing full length recombinant PrP from five known prion susceptible species (human, cattle, cat, mouse and hamster) and two species considered to be prion resistant (pig and dog) the amyloidogenicity of these PrPs has been delineated. All the mammalian PrPs, even from resistant species, were swiftly converted from the native state to amyloid-like structure when subjected to a native condition conversion assay. The PrPs displayed amyloidotypic tinctorial and ultrastructural hallmarks. Self-seeded conversion of the PrPs displayed significantly decreased lag phases demonstrating that nucleation dependent polymerization is a dominating mechanism in the fibrillation process. Fibrils from Aβ1-40, Aβ1-42, Lysozyme, Insulin and Transthyretin did not accelerate conversion of HuPrP whereas fibrils from HuPrP90-231 and HuPrP121-231 as well as full length PrPs of all PrPs efficiently seeded conversion showing specificity of the assay requiring the C-terminal PrP sequence. Our findings have implications for PrP misfolding and could have ramifications in the context of prion resistant species and silent carriers.

  5. Elucidation of Prion Protein Conformational Changes Associated with Infectivity by Fluorescence Spectroscopy

    Science.gov (United States)

    2007-06-01

    is not known. Obtaining structural information on the misfolded isoform of prion may lead to preventative therapies and treatments of prion diseases...the misfolded prion isoform may allow for the development of drug therapies or early detection systems for prion diseases, or illuminate mechanistic...showing fluorescence intensity as a function of time and energy for 2,6-p-toluidinonapththalene adsorbed to egg L-α- lecithin vesicles. The steady

  6. New cardiovascular targets to prevent late onset Alzheimer disease.

    Science.gov (United States)

    Claassen, Jurgen A H R

    2015-09-15

    The prevalence of dementia rises to between 20% and 40% with advancing age. The dominant cause of dementia in approximately 70% of these patients is Alzheimer disease. There is no effective disease-modifying pharmaceutical treatment for this neurodegenerative disease. A wide range of Alzheimer drugs that appeared effective in animal models have recently failed to show clinical benefit in patients. However, hopeful news has emerged from recent studies that suggest that therapeutic strategies aimed at reducing cardiovascular disease may also reduce the prevalence of dementia due to Alzheimer disease. This review summarizes the evidence for this link between cardiovascular disease and late onset Alzheimer dementia. Only evidence from human research is considered here. Longitudinal studies show an association between high blood pressure and pathological accumulation of the protein amyloid-beta42, and an even stronger association between vascular stiffness and amyloid accumulation, in elderly subjects. Amyloid-beta42 accumulation is considered to be an early marker of Alzheimer disease, and increases the risk of subsequent cognitive decline and development of dementia. These observations could provide an explanation for recent observations of reduced dementia prevalence associated with improved cardiovascular care. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Prion-based memory of heat stress in yeast.

    Science.gov (United States)

    Chernova, Tatiana A; Chernoff, Yury O; Wilkinson, Keith D

    2017-05-04

    Amyloids and amyloid-based prions are self-perpetuating protein aggregates which can spread by converting a normal protein of the same sequence into a prion form. They are associated with diseases in humans and mammals, and control heritable traits in yeast and other fungi. Some amyloids are implicated in biologically beneficial processes. As prion formation generates reproducible memory of a conformational change, prions can be considered as molecular memory devices.  We have demonstrated that in yeast, stress-inducible cytoskeleton-associated protein Lsb2 forms a metastable prion in response to high temperature. This prion promotes conversion of other proteins into prions and can persist in a fraction of cells for a significant number of cell generations after stress, thus maintaining the memory of stress in a population of surviving cells. Acquisition of an amino acid substitution required for Lsb2 to form a prion coincides with acquisition of increased thermotolerance in the evolution of Saccharomyces yeast. Thus the ability to form an Lsb2 prion in response to stress coincides with yeast adaptation to growth at higher temperatures. These findings intimately connect prion formation to the cellular response to environmental stresses.

  8. Prions amplify through degradation of the VPS10P sorting receptor sortilin.

    Science.gov (United States)

    Uchiyama, Keiji; Tomita, Mitsuru; Yano, Masashi; Chida, Junji; Hara, Hideyuki; Das, Nandita Rani; Nykjaer, Anders; Sakaguchi, Suehiro

    2017-06-01

    Prion diseases are a group of fatal neurodegenerative disorders caused by prions, which consist mainly of the abnormally folded isoform of prion protein, PrPSc. A pivotal pathogenic event in prion disease is progressive accumulation of prions, or PrPSc, in brains through constitutive conformational conversion of the cellular prion protein, PrPC, into PrPSc. However, the cellular mechanism by which PrPSc is progressively accumulated in prion-infected neurons remains unknown. Here, we show that PrPSc is progressively accumulated in prion-infected cells through degradation of the VPS10P sorting receptor sortilin. We first show that sortilin interacts with PrPC and PrPSc and sorts them to lysosomes for degradation. Consistently, sortilin-knockdown increased PrPSc accumulation in prion-infected cells. In contrast, overexpression of sortilin reduced PrPSc accumulation in prion-infected cells. These results indicate that sortilin negatively regulates PrPSc accumulation in prion-infected cells. The negative role of sortilin in PrPSc accumulation was further confirmed in sortilin-knockout mice infected with prions. The infected mice had accelerated prion disease with early accumulation of PrPSc in their brains. Interestingly, sortilin was reduced in prion-infected cells and mouse brains. Treatment of prion-infected cells with lysosomal inhibitors, but not proteasomal inhibitors, increased the levels of sortilin. Moreover, sortilin was reduced following PrPSc becoming detectable in cells after infection with prions. These results indicate that PrPSc accumulation stimulates sortilin degradation in lysosomes. Taken together, these results show that PrPSc accumulation of itself could impair the sortilin-mediated sorting of PrPC and PrPSc to lysosomes for degradation by stimulating lysosomal degradation of sortilin, eventually leading to progressive accumulation of PrPSc in prion-infected cells.

  9. Rapid onset of efficacy of rasagiline in early Parkinson's disease.

    Science.gov (United States)

    Zambito Marsala, Sandro; Vitaliani, Roberta; Volpe, Daniele; Capozzoli, Francesca; Baroni, Luciana; Belgrado, Enrico; Borsato, Carlo; Gioulis, Manuela; Marchini, Corrado; Antonini, Angelo

    2013-11-01

    Rasagiline is a monoamine oxidase type-B inhibitor used as monotherapy or in addition to levodopa in the treatment of Parkinson's disease (PD). This naturalistic single-blind study was aimed at evaluating the rapidity of onset effect of rasagiline on motor symptoms in a cohort of early relatively elderly PD patients. 102 outpatients (55 males, median age 71 years) have been selected: 26 were PD therapy-naive and 76 received rasagiline as add-on therapy. The third section of the Unified Parkinson's Disease Rating Scale (UPDRSIII) and the Hoehn-Yahr (HY) scale were assessed at baseline and after 1 and 4 weeks thereafter. The mean UPDRS III total score (-6.7 at week 1 and -8.9 at week 4) and single items, as well as mean HY score (-0.40 at week 1 and -0.67 at week 4), significantly decreased from baseline (p or ≤71 years. Rasagiline had a rapid therapeutic effect from the first week of therapy, which further improved at 4 weeks. The rapid onset of action and the absence of a dose titration are important issues in the management of the PD patient.

  10. Prion infectivity detected in swine challenged with chronic wasting disease via the intracerebral or oral route

    Science.gov (United States)

    Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of North American cervids. The potential for swine to serve as a host for the agent of chronic wasting disease is unknown. In the US, feeding of ruminant by-products to ruminants is prohibited, but feeding of rum...

  11. Live-cell FRET imaging reveals clustering of the prion protein at the cell surface induced by infectious prions.

    Science.gov (United States)

    Tavares, Evandro; Macedo, Joana A; Paulo, Pedro M R; Tavares, Catarina; Lopes, Carlos; Melo, Eduardo P

    2014-07-01

    Prion diseases are associated to the conversion of the prion protein into a misfolded pathological isoform. The mechanism of propagation of protein misfolding by protein templating remains largely unknown. Neuroblastoma cells were transfected with constructs of the prion protein fused to both CFP-GPI-anchored and to YFP-GPI-anchored and directed to its cell membrane location. Live-cell FRET imaging between the prion protein fused to CFP or YFP was measured giving consistent values of 10±2%. This result was confirmed by fluorescence lifetime imaging microscopy and indicates intermolecular interactions between neighbor prion proteins. In particular, considering that a maximum FRET efficiency of 17±2% was determined from a positive control consisting of a fusion CFP-YFP-GPI-anchored. A stable cell clone expressing the two fusions containing the prion protein was also selected to minimize cell-to-cell variability. In both, stable and transiently transfected cells, the FRET efficiency consistently increased in the presence of infectious prions - from 4±1% to 7±1% in the stable clone and from 10±2% to 16±1% in transiently transfected cells. These results clearly reflect an increased clustering of the prion protein on the membrane in the presence of infectious prions, which was not observed in negative control using constructs without the prion protein and upon addition of non-infected brain. Our data corroborates the recent view that the primary site for prion conversion is the cell membrane. Since our fluorescent cell clone is not susceptible to propagate infectivity, we hypothesize that the initial event of prion infectivity might be the clustering of the GPI-anchored prion protein. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Structural characterization of POM6 Fab and mouse prion protein complex identifies key regions for prions conformational conversion.

    Science.gov (United States)

    Baral, Pravas Kumar; Swayampakula, Mridula; Aguzzi, Adriano; James, Michael N G

    2018-05-01

    Conversion of the cellular prion protein PrP C into its pathogenic isoform PrP S c is the hallmark of prion diseases, fatal neurodegenerative diseases affecting many mammalian species including humans. Anti-prion monoclonal antibodies can arrest the progression of prion diseases by stabilizing the cellular form of the prion protein. Here, we present the crystal structure of the POM6 Fab fragment, in complex with the mouse prion protein (moPrP). The prion epitope of POM6 is in close proximity to the epitope recognized by the purportedly toxic antibody fragment, POM1 Fab also complexed with moPrP. The POM6 Fab recognizes a larger binding interface indicating a likely stronger binding compared to POM1. POM6 and POM1 exhibit distinct biological responses. Structural comparisons of the bound mouse prion proteins from the POM6 Fab:moPrP and POM1 Fab:moPrP complexes reveal several key regions of the prion protein that might be involved in initiating mis-folding events. The structural data of moPrP:POM6 Fab complex are available in the PDB under the accession number www.rcsb.org/pdb/search/structidSearch.do?structureId=6AQ7. © 2018 Federation of European Biochemical Societies.

  13. The celecoxib derivatives AR-12 and AR-14 induce autophagy and clear prion-infected cells from prions.

    Science.gov (United States)

    Abdulrahman, Basant A; Abdelaziz, Dalia; Thapa, Simrika; Lu, Li; Jain, Shubha; Gilch, Sabine; Proniuk, Stefan; Zukiwski, Alexander; Schatzl, Hermann M

    2017-12-14

    Prion diseases are fatal infectious neurodegenerative disorders that affect both humans and animals. The autocatalytic conversion of the cellular prion protein (PrP C ) into the pathologic isoform PrP Sc is a key feature in prion pathogenesis. AR-12 is an IND-approved derivative of celecoxib that demonstrated preclinical activity against several microbial diseases. Recently, AR-12 has been shown to facilitate clearance of misfolded proteins. The latter proposes AR-12 to be a potential therapeutic agent for neurodegenerative disorders. In this study, we investigated the role of AR-12 and its derivatives in controlling prion infection. We tested AR-12 in prion infected neuronal and non-neuronal cell lines. Immunoblotting and confocal microscopy results showed that AR-12 and its analogue AR-14 reduced PrP Sc levels after only 72 hours of treatment. Furthermore, infected cells were cured of PrP Sc after exposure of AR-12 or AR-14 for only two weeks. We partially attribute the influence of the AR compounds on prion propagation to autophagy stimulation, in line with our previous findings that drug-induced stimulation of autophagy has anti-prion effects in vitro and in vivo. Taken together, this study demonstrates that AR-12 and the AR-14 analogue are potential new therapeutic agents for prion diseases and possibly protein misfolding disorders involving prion-like mechanisms.

  14. Soil clay content underlies prion infection odds

    Science.gov (United States)

    David, Walter W.; Walsh, D.P.; Farnsworth, Matthew L.; Winkelman, D.L.; Miller, M.W.

    2011-01-01

    Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  15. Mapping of possible prion protein self interaction domains using peptide arrays

    NARCIS (Netherlands)

    Rigter, A.; Langeveld, J.P.M.; Timmers-Parohi, D.; Jacobs, J.G.; Moonen, P.L.J.M.; Bossers, A.

    2007-01-01

    Background The common event in transmissible spongiform encephalopathies (TSEs) or prion diseases is the conversion of host-encoded protease sensitive cellular prion protein (PrPC) into strain dependent isoforms of scrapie associated protease resistant isoform (PrPSc) of prion protein (PrP). These

  16. Therapeutic Approaches to Delay the Onset of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2011-01-01

    Full Text Available The key cytopathologies in the brains of Alzheimer's disease (AD patients include mitochondrial dysfunction and energy hypometabolism, which are likely caused by the accumulation of small aggregates of amyloid-β (Aβ peptides. Thus, targeting these two abnormalities of the AD brain may hold promising therapeutic value for delaying the onset of AD. In his paper, we discuss two potential approaches to delay the onset of AD. The first is the use of low dose of diaminophenothiazins (redox active agents to prevent mitochondrial dysfunction and to attenuate energy hypometabolism. Diaminophenothiazines enhance mitochondrial metabolic activity and heme synthesis, both key factors in intermediary metabolism of the AD brain.The second is to use the naturally occurring osmolytes to prevent the formation of toxic forms of Aβ and prevent oxidative stress. Scientific evidence suggests that both approaches may change course of the basic mechanism of neurodegeneration in AD. Osmolytes are brain metabolites which accumulate in tissues at relatively high concentrations following stress conditions. Osmolytes enhance thermodynamic stability of proteins by stabilizing natively-folded protein conformation, thus preventing aggregation without perturbing other cellular processes. Osmolytes may inhibit the formation of Aβ oligomers in vivo, thus preventing the formation of soluble oligomers. The potential significance of combining diaminophenothiazins and osmolytes to treat AD is discussed.

  17. Exploring Genetic Factors Involved in Huntington Disease Age of Onset

    DEFF Research Database (Denmark)

    Valcárcel-Ocete, Leire; Alkorta-Aranburu, Gorka; Iriondo, Mikel

    2015-01-01

    age (motor AO or mAO). Multiple linear regression analyses were performed between genetic variation within 20 candidate genes and eAO or mAO, using DNA and clinical information of 253 HD patients from REGISTRY project. Gene expression analyses were carried out by RT-qPCR with an independent sample......Age of onset (AO) of Huntington disease (HD) is mainly determined by the length of the CAG repeat expansion (CAGexp) in exon 1 of the HTT gene. Additional genetic variation has been suggested to contribute to AO, although the mechanism by which it could affect AO is presently unknown. The aim...... of this study is to explore the contribution of candidate genetic factors to HD AO in order to gain insight into the pathogenic mechanisms underlying this disorder. For that purpose, two AO definitions were used: the earliest age with unequivocal signs of HD (earliest AO or eAO), and the first motor symptoms...

  18. Chronic Progressive Neurodegeneration in a transgenic mouse model of Prion disease

    Directory of Open Access Journals (Sweden)

    Nina Fainstein

    2016-11-01

    Full Text Available Neurodegenerative diseases present pathologically with progressive structural destruction of neurons and accumulation of mis-folded proteins specific for each condition leading to brain atrophy and functional disability. Many animal models exert deposition of pathogenic protein without accompanying neurodegeneration pattern. The lack of a comprehensive model hinders the efforts to develop treatment. We performed longitudinal quantification of cellular, neuronal and synaptic density, as well as of neurogenesis in brains of mice, mimicking for genetic Creutzfeldt-Jacob disease as compared to age matched wild type mice. Mice exhibited a neurodegenerative process indicated by progressive reduction in cortical neurons and synapses, starting at age of 4-6 months, in accordance with neurologic disability. This was accompanied by significant decrease in subventricular/subependymal zone neurogenesis. Although increased hippocampal neurogenesis was detected in mice, a neurodegenerative process of CA1 and CA3 regions associated with impaired hippocampal-dependent memory function was observed. In conclusion, mice exhibit pathological neurodegeneration concomitant with progressive neurological disease, indicating these mice can serve as a model for neurodegenerative diseases.

  19. Chronic Progressive Neurodegeneration in a Transgenic Mouse Model of Prion Disease.

    Science.gov (United States)

    Fainstein, Nina; Dori, Dvir; Frid, Kati; Fritz, Alexa T; Shapiro, Ilona; Gabizon, Ruth; Ben-Hur, Tamir

    2016-01-01

    Neurodegenerative diseases present pathologically with progressive structural destruction of neurons and accumulation of mis-folded proteins specific for each condition leading to brain atrophy and functional disability. Many animal models exert deposition of pathogenic proteins without an accompanying neurodegeneration pattern. The lack of a comprehensive model hinders efforts to develop treatment. We performed longitudinal quantification of cellular, neuronal and synaptic density, as well as of neurogenesis in brains of mice mimicking for genetic Creutzfeldt-Jacob disease as compared to age-matched wild-type mice. Mice exhibited a neurodegenerative process of progressive reduction in cortical neurons and synapses starting at age of 4-6 months, in accord with neurologic disability. This was accompanied by significant decrease in subventricular/subependymal zone neurogenesis. Although increased hippocampal neurogenesis was detected in mice, a neurodegenerative process of CA1 and CA3 regions associated with impaired hippocampal-dependent memory function was observed. In conclusion, mice exhibit pathological neurodegeneration concomitant with neurological disease progression, indicating these mice can serve as a model for neurodegenerative diseases.

  20. Do prion protein gene polymorphisms induce apoptosis in non ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Genetic variations such as single nucleotide polymorphisms (SNPs) in prion protein coding gene, Prnp, greatly affect susceptibility to prion diseases in mammals. Here, the coding region of Prnp was screened for polymorphisms in redeared turtle, Trachemys scripta. Four polymorphisms, L203V, N205I, ...

  1. Ovine recombinant PrP as an inhibitor of ruminant prion propagation in vitro.

    Science.gov (United States)

    Workman, Rob G; Maddison, Ben C; Gough, Kevin C

    2017-07-04

    Prion diseases are fatal and incurable neurodegenerative diseases of humans and animals. Despite years of research, no therapeutic agents have been developed that can effectively manage or reverse disease progression. Recently it has been identified that recombinant prion proteins (rPrP) expressed in bacteria can act as inhibitors of prion replication within the in vitro prion replication system protein misfolding cyclic amplification (PMCA). Here, within PMCA reactions amplifying a range of ruminant prions including distinct Prnp genotypes/host species and distinct prion strains, recombinant ovine VRQ PrP displayed consistent inhibition of prion replication and produced IC50 values of 122 and 171 nM for ovine scrapie and bovine BSE replication, respectively. These findings illustrate the therapeutic potential of rPrPs with distinct TSE diseases.

  2. Chronic wasting disease and atypical forms of bovine spongiform encephalopathy and scrapie are not transmissible to mice expressing wild-type levels of human prion protein.

    Science.gov (United States)

    Wilson, Rona; Plinston, Chris; Hunter, Nora; Casalone, Cristina; Corona, Cristiano; Tagliavini, Fabrizio; Suardi, Silvia; Ruggerone, Margherita; Moda, Fabio; Graziano, Silvia; Sbriccoli, Marco; Cardone, Franco; Pocchiari, Maurizio; Ingrosso, Loredana; Baron, Thierry; Richt, Juergen; Andreoletti, Olivier; Simmons, Marion; Lockey, Richard; Manson, Jean C; Barron, Rona M

    2012-07-01

    The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans. In recent years, several novel TSEs in sheep, cattle and deer have been described and the risk posed to humans by these agents is currently unknown. In this study, we inoculated two forms of atypical BSE (BASE and H-type BSE), a chronic wasting disease (CWD) isolate and seven isolates of atypical scrapie into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP). Upon challenge with these ruminant TSEs, gene-targeted Tg mice expressing human PrP did not show any signs of disease pathology. These data strongly suggest the presence of a substantial transmission barrier between these recently identified ruminant TSEs and humans.

  3. Molecular genetics of early-onset Alzheimer's disease revisited.

    Science.gov (United States)

    Cacace, Rita; Sleegers, Kristel; Van Broeckhoven, Christine

    2016-06-01

    As the discovery of the Alzheimer's disease (AD) genes, APP, PSEN1, and PSEN2, in families with autosomal dominant early-onset AD (EOAD), gene discovery in familial EOAD came more or less to a standstill. Only 5% of EOAD patients are carrying a pathogenic mutation in one of the AD genes or a apolipoprotein E (APOE) risk allele ε4, most of EOAD patients remain unexplained. Here, we aimed at summarizing the current knowledge of EOAD genetics and its role in ongoing approaches to understand the biology of AD and disease symptomatology as well as developing new therapeutics. Next, we explored the possible molecular mechanisms that might underlie the missing genetic etiology of EOAD and discussed how the use of massive parallel sequencing technologies triggered novel gene discoveries. To conclude, we commented on the relevance of reinvestigating EOAD patients as a means to explore potential new avenues for translational research and therapeutic discoveries. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Arthropathy of neonatal onset multisystem inflammatory disease (NOMID/CINCA)

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Suvimol C.; Dwyer, Andrew [Warren G. Magnuson Clinical Center, Diagnostic Radiology, National Institutes of Health (NIH), Bethesda, MD (United States); Namde, Madjimbaye; Canna, Scott; Goldbach-Mansky, Raphaela [National Institutes of Health (NIH), National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD (United States); Poznanski, Andrew [Northwestern University, Department of Radiology, Medical Imaging, Children' s Memorial Hospital, Chicago, IL (United States)

    2007-02-15

    Neonatal onset multisystem inflammatory disease (NOMID), an autoinflammatory disease, is characterized by fever, chronic urticarial rash, CNS manifestations, and arthropathy. Approximately 50% of patients with NOMID have de novo missense mutations in CIAS1, which is associated with modulation of the IL-1b and apoptotic pathways. Approximately 60% of NOMID patients have prominent arthropathy, most commonly involving the knees, the cause of which remains poorly understood. To more fully describe the findings of NOMID arthropathy on MRI and radiography and to provide a better understanding of the origin of the bony lesions. We imaged 20 patients with NOMID to further investigate NOMID-associated bony lesions. Bony abnormalities were seen in the knees of 11/20 patients. The knee findings included enlarged, deformed femora and patellae in all and tibiae in the majority, without evidence of synovitis. Some patients had other joint involvement. Most had short stature and valgus or varus knee deformities. No association was noted between bony abnormalities and CIAS1 mutations. The abnormalities appeared to be the result of a mass-producing process. The resulting heterogeneously calcified masses appeared to originate in the physis and deformed the adjacent metaphysis and epiphysis. These findings suggest that the arthropathy of NOMID is the result of abnormal endochondral bone growth. Further investigation is needed to determine whether this deformity is triggered by inflammation early in development or by CIAS1 mutations causing abnormal chondrocyte apoptosis. (orig.)

  5. Arthropathy of neonatal onset multisystem inflammatory disease (NOMID/CINCA)

    International Nuclear Information System (INIS)

    Hill, Suvimol C.; Dwyer, Andrew; Namde, Madjimbaye; Canna, Scott; Goldbach-Mansky, Raphaela; Poznanski, Andrew

    2007-01-01

    Neonatal onset multisystem inflammatory disease (NOMID), an autoinflammatory disease, is characterized by fever, chronic urticarial rash, CNS manifestations, and arthropathy. Approximately 50% of patients with NOMID have de novo missense mutations in CIAS1, which is associated with modulation of the IL-1b and apoptotic pathways. Approximately 60% of NOMID patients have prominent arthropathy, most commonly involving the knees, the cause of which remains poorly understood. To more fully describe the findings of NOMID arthropathy on MRI and radiography and to provide a better understanding of the origin of the bony lesions. We imaged 20 patients with NOMID to further investigate NOMID-associated bony lesions. Bony abnormalities were seen in the knees of 11/20 patients. The knee findings included enlarged, deformed femora and patellae in all and tibiae in the majority, without evidence of synovitis. Some patients had other joint involvement. Most had short stature and valgus or varus knee deformities. No association was noted between bony abnormalities and CIAS1 mutations. The abnormalities appeared to be the result of a mass-producing process. The resulting heterogeneously calcified masses appeared to originate in the physis and deformed the adjacent metaphysis and epiphysis. These findings suggest that the arthropathy of NOMID is the result of abnormal endochondral bone growth. Further investigation is needed to determine whether this deformity is triggered by inflammation early in development or by CIAS1 mutations causing abnormal chondrocyte apoptosis. (orig.)

  6. Early Onset Alzheimer’s Disease and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Marco Antonio Meraz-Ríos

    2014-01-01

    Full Text Available Alzheimer’s disease (AD is the most common cause of dementia in elderly adults. It is estimated that 10% of the world’s population aged more than 60–65 years could currently be affected by AD, and that in the next 20 years, there could be more than 30 million people affected by this pathology. One of the great challenges in this regard is that AD is not just a scientific problem; it is associated with major psychosocial and ethical dilemmas and has a negative impact on national economies. The neurodegenerative process that occurs in AD involves a specific nervous cell dysfunction, which leads to neuronal death. Mutations in APP, PS1, and PS2 genes are causes for early onset AD. Several animal models have demonstrated that alterations in these proteins are able to induce oxidative damage, which in turn favors the development of AD. This paper provides a review of many, although not all, of the mutations present in patients with familial Alzheimer’s disease and the association between some of these mutations with both oxidative damage and the development of the pathology.

  7. Prion search and cellular prion protein expression in stranded dolphins.

    Science.gov (United States)

    Di Guardo, G; Cocumelli, C; Meoli, R; Barbaro, K; Terracciano, G; Di Francesco, C E; Mazzariol, S; Eleni, C

    2012-01-01

    The recent description of a prion disease (PD) case in a free-ranging bottlenose dolphin (Tursiops truncatus) prompted us to carry out an extensive search for the disease-associated isoform (PrPSc) of the cellular prion protein (PrPC) in the brain and in a range of lymphoid tissues from 23 striped dolphins (Stenella coeruleoalba), 5 bottlenose dolphins and 2 Risso s dolphins (Grampus griseus) found stranded between 2007 and 2012 along the Italian coastline. Three striped dolphins and one bottlenose dolphin showed microscopic lesions of encephalitis, with no evidence of spongiform brain lesions being detected in any of the 30 free-ranging cetaceans investigated herein. Nevertheless, we could still observe a prominent PrPC immunoreactivity in the brain as well as in lymphoid tissues from these dolphins. Although immunohistochemical and Western blot investigations yielded negative results for PrPSc deposition in all tissues from the dolphins under study, the reported occurrence of a spontaneous PD case in a wild dolphin is an intriguing issue and a matter of concern for both prion biology and intra/inter-species transmissibility, as well as for cetacean conservation medicine.

  8. Prions and animal transmissible spongiform encephalopathies

    Directory of Open Access Journals (Sweden)

    Juntes Polona

    2017-01-01

    Full Text Available Background. Transmissible spongiform encephalopathies (TSEs or prion diseases are a unique group of neurodegenerative diseases of animals and humans, which always have a fatal outcome and are transmissible among animals of the same or different species. Scope and Approach. The aim of this work is to review some recent data about animal TSEs, with the emphasis on their causative agents and zoonotic potential, and to discuss why the surveillance and control measures over animal TSEs should remain in force. Key Findings and Conclusions. We still have incomplete knowledge of prions and prion diseases. Scrapie has been present for a very long time and controlled with varied success. Bovine spongiform encephalopathy (BSE emerged unnoticed, and spread within a few years to epidemic proportions, entailing enormous economic consequences and public concerns. Currently, the classical BSE epidemic is under control, but atypical cases do, and probably will, persist in bovine populations. The Chronic Wasting Disease (CWD of the cervids has been spreading in North America and has recently been detected in Europe. Preventive measures for the control of classical BSE remain in force, including the feed ban and removal of specified risk materials. However, active BSE surveillance has considerably decreased. In the absence of such preventive and control measures, atypical BSE cases in healthy slaughtered bovines might persist in the human food chain, and BSE prions might resurface. Moreover, other prion strains might emerge and spread undetected if the appropriate preventive and surveillance measures were to cease, leaving behind inestimable consequences.

  9. Lions and prions and deer demise.

    Directory of Open Access Journals (Sweden)

    Michael W Miller

    Full Text Available BACKGROUND: Contagious prion diseases--scrapie of sheep and chronic wasting disease of several species in the deer family--give rise to epidemics that seem capable of compromising host population viability. Despite this prospect, the ecological consequences of prion disease epidemics in natural populations have received little consideration. METHODOLOGY/PRINCIPAL FINDINGS: Using a cohort study design, we found that prion infection dramatically lowered survival of free-ranging adult (>2-year-old mule deer (Odocoileus hemionus: estimated average life expectancy was 5.2 additional years for uninfected deer but only 1.6 additional years for infected deer. Prion infection also increased nearly fourfold the rate of mountain lions (Puma concolor preying on deer, suggesting that epidemics may alter predator-prey dynamics by facilitating hunting success. Despite selective predation, about one fourth of the adult deer we sampled were infected. High prevalence and low survival of infected deer provided a plausible explanation for the marked decline in this deer population since the 1980s. CONCLUSION: Remarkably high infection rates sustained in the face of intense predation show that even seemingly complete ecosystems may offer little resistance to the spread and persistence of contagious prion diseases. Moreover, the depression of infected populations may lead to local imbalances in food webs and nutrient cycling in ecosystems in which deer are important herbivores.

  10. Thermodynamic Stabilization of the Folded Domain of Prion Protein Inhibits Prion Infection in Vivo

    Directory of Open Access Journals (Sweden)

    Qingzhong Kong

    2013-07-01

    Full Text Available Prion diseases, or transmissible spongiform encephalopathies (TSEs, are associated with the conformational conversion of the cellular prion protein, PrPC, into a protease-resistant form, PrPSc. Here, we show that mutation-induced thermodynamic stabilization of the folded, α-helical domain of PrPC has a dramatic inhibitory effect on the conformational conversion of prion protein in vitro, as well as on the propagation of TSE disease in vivo. Transgenic mice expressing a human prion protein variant with increased thermodynamic stability were found to be much more resistant to infection with the TSE agent than those expressing wild-type human prion protein, in both the primary passage and three subsequent subpassages. These findings not only provide a line of evidence in support of the protein-only model of TSEs but also yield insight into the molecular nature of the PrPC→PrPSc conformational transition, and they suggest an approach to the treatment of prion diseases.

  11. Enzyme replacement therapy for infantile-onset Pompe disease.

    Science.gov (United States)

    Chen, Min; Zhang, Lingli; Quan, Shuyan

    2017-11-20

    Infantile-onset Pompe disease is a rare and progressive autosomal-recessive disorder caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). Current treatment involves enzyme replacement therapy (with recombinant human alglucosidase alfa) and symptomatic therapies (e.g. to control secretions). Children who are cross-reactive immunological material (CRIM)-negative require immunomodulation prior to commencing enzyme replacement therapy.Enzyme replacement therapy was developed as the most promising therapeutic approach for Pompe disease; however, the evidence is lacking, especially regarding the optimal dose and dose frequency. To assess the effectiveness, safety and appropriate dose regimen of enzyme replacement therapy for treating infantile-onset Pompe disease. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Inborn Errors of Metabolism Trials Register, which is compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the Cochrane Central Register of Controlled Trials (CENTRAL), Embase (Ovid), PubMed and LILACS, and CBM, CNKI, VIP, and WANFANG for literature published in Chinese. In addition, we searched three online registers: WHO International Clinical Trials Registry Platform ClinicalTrials.gov, and www.genzymeclinicalresearch.com. We also searched the reference lists of relevant articles and reviews.Date of last search of the Group's Inborn Errors of Metabolism Trials Register: 24 November 2016. Randomized and quasi-randomized controlled trials of enzyme replacement therapy in children with infantile-onset Pompe disease. Two authors independently selected relevant trials, assessed the risk of bias and extracted data. We contacted investigators to obtain important missing information. We found no trials comparing the effectiveness and safety of enzyme replacement therapy to another intervention, no intervention or placebo.We found one trial (18 participants

  12. Adult human microglia secrete cytokines when exposed to neurotoxic prion protein peptide: no intermediary role for prostaglandin E2

    NARCIS (Netherlands)

    Veerhuis, Robert; Hoozemans, Jeroen J. M.; Janssen, Ingrid; Boshuizen, Ronald S.; Langeveld, Jan P. M.; Eikelenboom, Piet

    2002-01-01

    Prion diseases are characterized by accumulation of protease resistant isoforms of prion protein (termed PrP(SC)), glial activation and neurodegeneration. The time course of PrP deposition, appearance of activated microglia, and of neuronal apoptosis in experimentally-induced prion disease suggests

  13. Overlap between age-at-onset and disease-progression determinants in Huntington disease.

    Science.gov (United States)

    Aziz, N Ahmad; van der Burg, Jorien M M; Tabrizi, Sarah J; Landwehrmeyer, G Bernhard

    2018-05-09

    A fundamental but still unresolved issue regarding Huntington disease (HD) pathogenesis is whether the factors that determine age at onset are the same as those that govern disease progression. Because elucidation of this issue is crucial for the development as well as optimal timing of administration of novel disease-modifying therapies, we aimed to assess the extent of overlap between age-at-onset and disease-progression determinants in HD. Using observational data from Enroll-HD, the largest cohort of patients with HD worldwide, in this study we present, validate, and apply an intuitive method based on linear mixed-effect models to quantify the variability in the rate of disease progression in HD. A total of 3,411 patients with HD met inclusion criteria. We found that (1) about two-thirds of the rate of functional, motor, and cognitive progression in HD is determined by the same factors that also determine age at onset, with CAG repeat-dependent mechanisms having by far the largest effect; (2) although expanded HTT CAG repeat size had a large influence on average body weight, the rate of weight loss was largely independent of factors that determine age at onset in HD; and (3) about one-third of the factors that determine the rate of functional, motor, and cognitive progression are different from those that govern age at onset and need further elucidation. Our findings imply that targeting of CAG repeat-dependent mechanisms, for example through gene-silencing approaches, is likely to affect the rate of functional, motor, and cognitive impairment, but not weight loss, in manifest HD mutation carriers. Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  14. Differential Disease Progression in Atrophic Age-Related Macular Degeneration and Late-Onset Stargardt Disease.

    Science.gov (United States)

    Lindner, Moritz; Lambertus, Stanley; Mauschitz, Matthias M; Bax, Nathalie M; Kersten, Eveline; Lüning, Anna; Nadal, Jennifer; Schmitz-Valckenberg, Steffen; Schmid, Matthias; Holz, Frank G; Hoyng, Carel B; Fleckenstein, Monika

    2017-02-01

    To compare the disease course of retinal pigment epithelium (RPE) atrophy secondary to age-related macula degeneratio (AMD) and late-onset Stargardt disease (STGD1). Patients were examined longitudinally by fundus autofluorescence, near-infrared reflectance imaging, and best-corrected visual acuity (BCVA). Areas of RPE atrophy were quantified using semi-automated software, and the status of the fovea was evaluated based on autofluorescence and near-infrared reflectance images. Mixed-effects models were used to compare atrophy progression rates. BCVA loss and loss of foveal integrity were analyzed using Turnbull's estimator. A total of 151 patients (226 eyes) with RPE atrophy secondary to AMD and 38 patients (66 eyes) with RPE atrophy secondary to late-onset STGD1 were examined for a median time of 2.3 years (interquartile range, 2.7). Mean baseline age was 74.2 years (SD, 7.6) in AMD and 63.4 (SD, 9.9) in late-onset STGD1 (P = 1.1 × 10-7). Square root atrophy progression was significantly faster in AMD when compared with late-onset STGD1 (0.28 mm/year [SE, 0.01] vs. 0.23 [SE, 0.03]; P = 0.030). In late-onset STGD1, the median survival of the fovea was significantly longer when compared with eyes with AMD (8.60 vs. 3.35 years; P = 0.005) with a trend to a later BCVA loss of ≥3 lines (5.97 vs. 4.37 years; P = 0.382). These natural history data indicate differential disease progression in AMD versus late-onset STGD1. The results underline the relevance of refined phenotyping in elderly patients presenting with RPE atrophy in regard to prognosis and design of interventional trials.

  15. Biological and biochemical characterization of mice expressing prion protein devoid of the octapeptide repeat region after infection with prions.

    Science.gov (United States)

    Yamaguchi, Yoshitaka; Miyata, Hironori; Uchiyama, Keiji; Ootsuyama, Akira; Inubushi, Sachiko; Mori, Tsuyoshi; Muramatsu, Naomi; Katamine, Shigeru; Sakaguchi, Suehiro

    2012-01-01

    Accumulating lines of evidence indicate that the N-terminal domain of prion protein (PrP) is involved in prion susceptibility in mice. In this study, to investigate the role of the octapeptide repeat (OR) region alone in the N-terminal domain for the susceptibility and pathogenesis of prion disease, we intracerebrally inoculated RML scrapie prions into tg(PrPΔOR)/Prnp(0/0) mice, which express mouse PrP missing only the OR region on the PrP-null background. Incubation times of these mice were not extended. Protease-resistant PrPΔOR, or PrP(Sc)ΔOR, was easily detectable but lower in the brains of these mice, compared to that in control wild-type mice. Consistently, prion titers were slightly lower and astrogliosis was milder in their brains. However, in their spinal cords, PrP(Sc)ΔOR and prion titers were abundant and astrogliosis was as strong as in control wild-type mice. These results indicate that the role of the OR region in prion susceptibility and pathogenesis of the disease is limited. We also found that the PrP(Sc)ΔOR, including the pre-OR residues 23-50, was unusually protease-resistant, indicating that deletion of the OR region could cause structural changes to the pre-OR region upon prion infection, leading to formation of a protease-resistant structure for the pre-OR region.

  16. Experimental sheep BSE prions generate the vCJD phenotype when serially passaged in transgenic mice expressing human prion protein.

    Science.gov (United States)

    Joiner, Susan; Asante, Emmanuel A; Linehan, Jacqueline M; Brock, Lara; Brandner, Sebastian; Bellworthy, Susan J; Simmons, Marion M; Hope, James; Collinge, John; Wadsworth, Jonathan D F

    2018-03-15

    The epizootic prion disease of cattle, bovine spongiform encephalopathy (BSE), causes variant Creutzfeldt-Jakob disease (vCJD) in humans following dietary exposure. While it is assumed that all cases of vCJD attributed to a dietary aetiology are related to cattle BSE, sheep and goats are susceptible to experimental oral challenge with cattle BSE prions and farmed animals in the UK were undoubtedly exposed to BSE-contaminated meat and bone meal during the late 1980s and early 1990s. Although no natural field cases of sheep BSE have been identified, it cannot be excluded that some BSE-infected sheep might have entered the European human food chain. Evaluation of the zoonotic potential of sheep BSE prions has been addressed by examining the transmission properties of experimental brain isolates in transgenic mice that express human prion protein, however to-date there have been relatively few studies. Here we report that serial passage of experimental sheep BSE prions in transgenic mice expressing human prion protein with methionine at residue 129 produces the vCJD phenotype that mirrors that seen when the same mice are challenged with vCJD prions from patient brain. These findings are congruent with those reported previously by another laboratory, and thereby strongly reinforce the view that sheep BSE prions could have acted as a causal agent of vCJD within Europe. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Prions: Protein Rebels with a Cause!

    Science.gov (United States)

    Marshall, Karen E.; Serpell, Louise C.

    2017-01-01

    Traditionally we consider infection to arise from viruses, bacteria and parasites. Prions are infectious proteins without any nucleic acids, and therefore do not represent living things. Despite this, they have the ability to replicate themselves and cause diseases such as mad cow disease (bovine spongiform encepthalopathy) and human…

  18. Expression of cellular prion protein in the frontal and occipital lobe in Alzheimer's disease, diffuse Lewy body disease, and in normal brain: an immunohistochemical study.

    Science.gov (United States)

    Rezaie, Payam; Pontikis, Charlie C; Hudson, Lance; Cairns, Nigel J; Lantos, Peter L

    2005-08-01

    Cellular prion protein (PrP(c)) is a glycoprotein expressed at low to moderate levels within the nervous system. Recent studies suggest that PrP(c) may possess neuroprotective functions and that its expression is upregulated in certain neurodegenerative disorders. We investigated whether PrP(c) expression is altered in the frontal and occipital cortex in two well-characterized neurodegenerative disorders--Alzheimer's disease (AD) and diffuse Lewy body disease (DLBD)--compared with that in normal human brain using immunohistochemistry and computerized image analysis. The distribution of PrP(c) was further tested for correlation with glial reactivity. We found that PrP(c) was localized mainly in the gray matter (predominantly in neurons) and expressed at higher levels within the occipital cortex in the normal human brain. Image analysis revealed no significant variability in PrP(c) expression between DLBD and control cases. However, blood vessels within the white matter of DLBD cases showed immunoreactivity to PrP(c). By contrast, this protein was differentially expressed in the frontal and occipital cortex of AD cases; it was markedly overexpressed in the former and significantly reduced in the latter. Epitope specificity of antibodies appeared important when detecting PrP(c). The distribution of PrP(c) did not correlate with glial immunoreactivity. In conclusion, this study supports the proposal that regional changes in expression of PrP(c) may occur in certain neurodegenerative disorders such as AD, but not in other disorders such as DLBD.

  19. Synthetic prions and other human neurodegenerative proteinopathies.

    Science.gov (United States)

    Le, Nhat Tran Thanh; Narkiewicz, Joanna; Aulić, Suzana; Salzano, Giulia; Tran, Hoa Thanh; Scaini, Denis; Moda, Fabio; Giachin, Gabriele; Legname, Giuseppe

    2015-09-02

    Transmissible spongiform encephalopathies (TSE) are a heterogeneous group of neurodegenerative disorders. The common feature of these diseases is the pathological conversion of the normal cellular prion protein (PrP(C)) into a β-structure-rich conformer-termed PrP(Sc). The latter can induce a self-perpetuating process leading to amplification and spreading of pathological protein assemblies. Much evidence suggests that PrP(Sc) itself is able to recruit and misfold PrP(C) into the pathological conformation. Recent data have shown that recombinant PrP(C) can be misfolded in vitro and the resulting synthetic conformers are able to induce the conversion of PrP(C) into PrP(Sc)in vivo. In this review we describe the state-of-the-art of the body of literature in this field. In addition, we describe a cell-based assay to test synthetic prions in cells, providing further evidence that synthetic amyloids are able to template conversion of PrP into prion inclusions. Studying prions might help to understand the pathological mechanisms governing other neurodegenerative diseases. Aggregation and deposition of misfolded proteins is a common feature of several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and other disorders. Although the proteins implicated in each of these diseases differ, they share a common prion mechanism. Recombinant proteins are able to aggregate in vitro into β-rich amyloid fibrils, sharing some features of the aggregates found in the brain. Several studies have reported that intracerebral inoculation of synthetic aggregates lead to unique pathology, which spread progressively to distal brain regions and reduced survival time in animals. Here, we review the prion-like features of different proteins involved in neurodegenerative disorders, such as α-synuclein, superoxide dismutase-1, amyloid-β and tau. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Prion protein in milk.

    Directory of Open Access Journals (Sweden)

    Nicola Franscini

    Full Text Available BACKGROUND: Prions are known to cause transmissible spongiform encephalopathies (TSE after accumulation in the central nervous system. There is increasing evidence that prions are also present in body fluids and that prion infection by blood transmission is possible. The low concentration of the proteinaceous agent in body fluids and its long incubation time complicate epidemiologic analysis and estimation of spreading and thus the risk of human infection. This situation is particularly unsatisfactory for food and pharmaceutical industries, given the lack of sensitive tools for monitoring the infectious agent. METHODOLOGY/PRINCIPAL FINDINGS: We have developed an adsorption matrix, Alicon PrioTrap, which binds with high affinity and specificity to prion proteins. Thus we were able to identify prion protein (PrP(C--the precursor of prions (PrP(Sc--in milk from humans, cows, sheep, and goats. The absolute amount of PrP(C differs between the species (from microg/l range in sheep to ng/l range in human milk. PrP(C is also found in homogenised and pasteurised off-the-shelf milk, and even ultrahigh temperature treatment only partially diminishes endogenous PrP(C concentration. CONCLUSIONS/SIGNIFICANCE: In view of a recent study showing evidence of prion replication occurring in the mammary gland of scrapie infected sheep suffering from mastitis, the appearance of PrP(C in milk implies the possibility that milk of TSE-infected animals serves as source for PrP(Sc.

  1. Estrogen use and early onset Alzheimer's disease: a population-based study

    NARCIS (Netherlands)

    A.J.C. Slooter (Arjen); J.B. Bronzova (Juliana); J.C.M. Witteman (Jacqueline); C.M. van Duijn (Cornelia); C. van Broeckhoven (Christine); A. Hofman (Albert)

    1999-01-01

    textabstractEstrogen use may be protective for Alzheimer's disease with late onset. However, the effects on early onset Alzheimer's disease are unclear. This issue was studied in a population based setting. For each female patient, a female control was matched on age (within 5

  2. Resistance of soil-bound prions to rumen digestion.

    Directory of Open Access Journals (Sweden)

    Samuel E Saunders

    Full Text Available Before prion uptake and infection can occur in the lower gastrointestinal system, ingested prions are subjected to anaerobic digestion in the rumen of cervids and bovids. The susceptibility of soil-bound prions to rumen digestion has not been evaluated previously. In this study, prions from infectious brain homogenates as well as prions bound to a range of soils and soil minerals were subjected to in vitro rumen digestion, and changes in PrP levels were measured via western blot. Binding to clay appeared to protect noninfectious hamster PrP(c from complete digestion, while both unbound and soil-bound infectious PrP(Sc proved highly resistant to rumen digestion. In addition, no change in intracerebral incubation period was observed following active rumen digestion of unbound hamster HY TME prions and HY TME prions bound to a silty clay loam soil. These results demonstrate that both unbound and soil-bound prions readily survive rumen digestion without a reduction in infectivity, further supporting the potential for soil-mediated transmission of chronic wasting disease (CWD and scrapie in the environment.

  3. Resistance of Soil-Bound Prions to Rumen Digestion

    Science.gov (United States)

    Saunders, Samuel E.; Bartelt-Hunt, Shannon L.; Bartz, Jason C.

    2012-01-01

    Before prion uptake and infection can occur in the lower gastrointestinal system, ingested prions are subjected to anaerobic digestion in the rumen of cervids and bovids. The susceptibility of soil-bound prions to rumen digestion has not been evaluated previously. In this study, prions from infectious brain homogenates as well as prions bound to a range of soils and soil minerals were subjected to in vitro rumen digestion, and changes in PrP levels were measured via western blot. Binding to clay appeared to protect noninfectious hamster PrPc from complete digestion, while both unbound and soil-bound infectious PrPSc proved highly resistant to rumen digestion. In addition, no change in intracerebral incubation period was observed following active rumen digestion of unbound hamster HY TME prions and HY TME prions bound to a silty clay loam soil. These results demonstrate that both unbound and soil-bound prions readily survive rumen digestion without a reduction in infectivity, further supporting the potential for soil-mediated transmission of chronic wasting disease (CWD) and scrapie in the environment. PMID:22937149

  4. Biosafety of Prions.

    Science.gov (United States)

    Bistaffa, Edoardo; Rossi, Martina; De Luca, Chiara M G; Moda, Fabio

    2017-01-01

    Prions are the infectious agents that cause devastating and untreatable disorders known as Transmissible Spongiform Encephalopathies (TSEs). The pathologic events and the infectious nature of these transmissible agents are not completely understood yet. Due to the difficulties in inactivating prions, working with them requires specific recommendations and precautions. Moreover, with the advent of innovative technologies, such as the Protein Misfolding Cyclic Amplification (PMCA) and the Real Time Quaking-Induced Conversion (RT-QuIC), prions could be amplified in vitro and the infectious features of the amplified products need to be carefully assessed. © 2017 Elsevier Inc. All rights reserved.

  5. Role of Prion Replication in the Strain-dependent Brain Regional Distribution of Prions.

    Science.gov (United States)

    Hu, Ping Ping; Morales, Rodrigo; Duran-Aniotz, Claudia; Moreno-Gonzalez, Ines; Khan, Uffaf; Soto, Claudio

    2016-06-10

    One intriguing feature of prion diseases is their strain variation. Prion strains are differentiated by the clinical consequences they generate in the host, their biochemical properties, and their potential to infect other animal species. The selective targeting of these agents to specific brain structures have been extensively used to characterize prion strains. However, the molecular basis dictating strain-specific neurotropism are still elusive. In this study, isolated brain structures from animals infected with four hamster prion strains (HY, DY, 139H, and SSLOW) were analyzed for their content of protease-resistant PrP(Sc) Our data show that these strains have different profiles of PrP deposition along the brain. These patterns of accumulation, which were independent of regional PrP(C) production, were not reproduced by in vitro replication when different brain regions were used as substrate for the misfolding-amplification reaction. On the contrary, our results show that in vitro replication efficiency depended exclusively on the amount of PrP(C) present in each part of the brain. Our results suggest that the variable regional distribution of PrP(Sc) in distinct strains is not determined by differences on prion formation, but on other factors or cellular pathways. Our findings may contribute to understand the molecular mechanisms of prion pathogenesis and strain diversity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Speech disorders did not correlate with age at onset of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Alice Estevo Dias

    2016-02-01

    Full Text Available ABSTRACT Speech disorders are common manifestations of Parkinson´s disease. Objective To compare speech articulation in patients according to age at onset of the disease. Methods Fifty patients was divided into two groups: Group I consisted of 30 patients with age at onset between 40 and 55 years; Group II consisted of 20 patients with age at onset after 65 years. All patients were evaluated based on the Unified Parkinson’s Disease Rating Scale scores, Hoehn and Yahr scale and speech evaluation by perceptual and acoustical analysis. Results There was no statistically significant difference between the two groups regarding neurological involvement and speech characteristics. Correlation analysis indicated differences in speech articulation in relation to staging and axial scores of rigidity and bradykinesia for middle and late-onset. Conclusions Impairment of speech articulation did not correlate with age at onset of disease, but was positively related with disease duration and higher scores in both groups.

  7. Rapid antemortem detection of CWD prions in deer saliva.

    Directory of Open Access Journals (Sweden)

    Davin M Henderson

    Full Text Available Chronic wasting disease (CWD is an efficiently transmitted prion disease of cervids, now identified in 22 United States, 2 Canadian provinces and Korea. One hallmark of CWD is the shedding of infectious prions in saliva, as demonstrated by bioassay in deer. It is also clear that the concentration of prions in saliva, blood, urine and feces is much lower than in the nervous system or lymphoid tissues. Rapid in vitro detection of CWD (and other prions in body fluids and excreta has been problematic due to the sensitivity limits of direct assays (western blotting, ELISA and the presence of inhibitors in these complex biological materials that hamper detection. Here we use real-time quaking induced conversion (RT-QuIC to demonstrate CWD prions in both diluted and prion-enriched saliva samples from asymptomatic and symptomatic white-tailed deer. CWD prions were detected in 14 of 24 (58.3% diluted saliva samples from CWD-exposed white-tailed deer, including 9 of 14 asymptomatic animals (64.2%. In addition, a phosphotungstic acid enrichment enhanced the RT-QuIC assay sensitivity, enabling detection in 19 of 24 (79.1% of the above saliva samples. Bioassay in Tg[CerPrP] mice confirmed the presence of infectious prions in 2 of 2 RT-QuIC-positive saliva samples so examined. The modified RT-QuIC analysis described represents a non-invasive, rapid ante-mortem detection of prions in complex biologic fluids, excreta, or environmental samples as well as a tool for exploring prion trafficking, peripheralization, and dissemination.

  8. The role of monogenic disease in children with very early onset inflammatory bowel disease.

    Science.gov (United States)

    Kelsen, Judith R; Baldassano, Robert N

    2017-10-01

    Inflammatory bowel disease (IBD) is a multifactorial disease caused by dysregulated immune responses to commensal or pathogenic intestinal microbes, resulting in chronic intestinal inflammation. Patients diagnosed with IBD occurring before the age of 5 are a unique population, known as very early onset (VEO)-IBD and can be phenotypically and genetically distinct from older-onset IBD. We aim to review the clinical presentation of children with VEO-IBD and recent discoveries that point to genomic drivers of disease that may impact our therapeutic decisions. VEO-IBD is increasing in incidence and is associated with more severe disease, aggressive progression and poor response to most conventional therapies. This article will review the advances in sequencing technology that have led to identification of novel gene variants associated with disease and potentially new targeted therapeutic options. Children with VEO-IBD may present with a different phenotype and more severe disease than older children and adults. Identification of the causal gene or pathways, these children may allow for true precision medicine with targeted therapy and improved disease course.

  9. How do PrPSc Prions Spread between Host Species, and within Hosts?

    Directory of Open Access Journals (Sweden)

    Neil A. Mabbott

    2017-11-01

    Full Text Available Prion diseases are sub-acute neurodegenerative diseases that affect humans and some domestic and free-ranging animals. Infectious prion agents are considered to comprise solely of abnormally folded isoforms of the cellular prion protein known as PrPSc. Pathology during prion disease is restricted to the central nervous system where it causes extensive neurodegeneration and ultimately leads to the death of the host. The first half of this review provides a thorough account of our understanding of the various ways in which PrPSc prions may spread between individuals within a population, both horizontally and vertically. Many natural prion diseases are acquired peripherally, such as by oral exposure, lesions to skin or mucous membranes, and possibly also via the nasal cavity. Following peripheral exposure, some prions accumulate to high levels within the secondary lymphoid organs as they make their journey from the site of infection to the brain, a process termed neuroinvasion. The replication of PrPSc prions within secondary lymphoid organs is important for their efficient spread to the brain. The second half of this review describes the key tissues, cells and molecules which are involved in the propagation of PrPSc prions from peripheral sites of exposure (such as the lumen of the intestine to the brain. This section also considers how additional factors such as inflammation and aging might influence prion disease susceptibility.

  10. Inactivation of prion infectivity by ionizing rays

    Energy Technology Data Exchange (ETDEWEB)

    Gominet, M. [Ionisos, ZI les Chatinieres, F01120 Dagneux (France); Vadrot, C.; Austruy, G. [Paris V University, Central Pharmacy of Hospitals, 4 avenue de l' Observatoire, F-75006, Paris (France); Darbord, J.C. [Paris V University, Central Pharmacy of Hospitals, 4 avenue de l' Observatoire, F-75006, Paris (France)], E-mail: darbord@pharmacie.univ-paris5.fr

    2007-11-15

    Inactivation of prion deposits on medical devices or prion contamination in pharmaceutical raw materials is considered as impossible by using gamma irradiation. Early, the guideline WHO/CDS/CSR/APH/2000 has described irradiation as an ineffective process. But, in 2003, S. Miekka et al. noted radiation inactivation of prions in a particular application to purify human albumin, shown by the physical denaturation of the infectious protein (PrP). The aim of our study was to determine the inactivation of prions with a scrapie model (strain C506M3) by irradiating standardised preparations. Results: Gamma irradiation was partially effective, showing a 4-5 log reduction on exposure to 50 kGy. A characteristic effect-dose curve was not observed (25, 50 and 100 kGy), only an increase in the incubation period of the murine disease (229 days with 25 kGy to 290 days with 100 kGy) compared with 170 days without irradiation. Since the inactivation was not a total one, the observed effect is significant. It is proposed that further work be undertaken with the model to investigate the application of gamma radiation known levels of prion contamination.

  11. Inactivation of prion infectivity by ionizing rays

    International Nuclear Information System (INIS)

    Gominet, M.; Vadrot, C.; Austruy, G.; Darbord, J.C.

    2007-01-01

    Inactivation of prion deposits on medical devices or prion contamination in pharmaceutical raw materials is considered as impossible by using gamma irradiation. Early, the guideline WHO/CDS/CSR/APH/2000 has described irradiation as an ineffective process. But, in 2003, S. Miekka et al. noted radiation inactivation of prions in a particular application to purify human albumin, shown by the physical denaturation of the infectious protein (PrP). The aim of our study was to determine the inactivation of prions with a scrapie model (strain C506M3) by irradiating standardised preparations. Results: Gamma irradiation was partially effective, showing a 4-5 log reduction on exposure to 50 kGy. A characteristic effect-dose curve was not observed (25, 50 and 100 kGy), only an increase in the incubation period of the murine disease (229 days with 25 kGy to 290 days with 100 kGy) compared with 170 days without irradiation. Since the inactivation was not a total one, the observed effect is significant. It is proposed that further work be undertaken with the model to investigate the application of gamma radiation known levels of prion contamination

  12. Truncated forms of the prion protein PrP demonstrate the need for complexity in prion structure

    Energy Technology Data Exchange (ETDEWEB)

    Wan, William; Stöhr, Jan; Kendall, Amy; Stubbs, Gerald

    2015-09-01

    Self-propagation of aberrant protein folds is the defining characteristic of prions. Knowing the structural basis of self-propagation is essential to understanding prions and their related diseases. Prion rods are amyloid fibrils, but not all amyloids are prions. Prions have been remarkably intractable to structural studies, so many investigators have preferred to work with peptide fragments, particularly in the case of the mammalian prion protein PrP. We compared the structures of a number of fragments of PrP by X-ray fiber diffraction, and found that although all of the peptides adopted amyloid conformations, only the larger fragments adopted conformations that modeled the complexity of self-propagating prions, and even these fragments did not always adopt the PrP structure. It appears that the relatively complex structure of the prion form of PrP is not accessible to short model peptides, and that self-propagation may be tied to a level of structural complexity unobtainable in simple model systems. The larger fragments of PrP, however, are useful to illustrate the phenomenon of deformed templating (heterogeneous seeding), which has important biological consequences.

  13. Truncated forms of the prion protein PrP demonstrate the need for complexity in prion structure.

    Science.gov (United States)

    Wan, William; Stöhr, Jan; Kendall, Amy; Stubbs, Gerald

    2015-01-01

    Self-propagation of aberrant protein folds is the defining characteristic of prions. Knowing the structural basis of self-propagation is essential to understanding prions and their related diseases. Prion rods are amyloid fibrils, but not all amyloids are prions. Prions have been remarkably intractable to structural studies, so many investigators have preferred to work with peptide fragments, particularly in the case of the mammalian prion protein PrP. We compared the structures of a number of fragments of PrP by X-ray fiber diffraction, and found that although all of the peptides adopted amyloid conformations, only the larger fragments adopted conformations that modeled the complexity of self-propagating prions, and even these fragments did not always adopt the PrP structure. It appears that the relatively complex structure of the prion form of PrP is not accessible to short model peptides, and that self-propagation may be tied to a level of structural complexity unobtainable in simple model systems. The larger fragments of PrP, however, are useful to illustrate the phenomenon of deformed templating (heterogeneous seeding), which has important biological consequences.

  14. Associations between DSM-IV mental disorders and subsequent heart disease onset: beyond depression

    Science.gov (United States)

    Scott, Kate M.; de Jonge, Peter; Alonso, Jordi; Viana, Maria Carmen; Liu, Zhaorui; O’Neill, Siobhan; Aguilar-Gaxiola, Sergio; Bruffaerts, Ronny; Caldas-de-Almeida, Jose Miguel; Stein, Dan J.; de Girolamo, Giovanni; Florescu, Silvia E.; Hu, Chiyi; Taib, Nezar Ismet; Lépine, Jean-Pierre; Levinson, Daphna; Matschinger, Herbert; Medina-Mora, Maria Elena; Piazza, Marina; Posada-Villa, José A.; Uda, Hidenori; Wojtyniak, Bogdan J.; Lim, Carmen C. W.; Kessler, Ronald C.

    2013-01-01

    Background Prior studies on the depression-heart disease association have not usually used diagnostic measures of depression, nor taken other mental disorders into consideration. As a result, it is not clear whether the association between depression and heart disease onset reflects a specific association, or the comorbidity between depression and other mental disorders. Additionally, the relative magnitude of associations of a range of mental disorders with heart disease onset is unknown. Methods Face-to-face household surveys were conducted in 19 countries (n=52,095; person years=2,141,194). The Composite International Diagnostic Interview retrospectively assessed lifetime prevalence and age at onset of 16 DSM-IV mental disorders. Heart disease was indicated by self-report of physician’s diagnosis, or self-report of heart attack, together with their timing (year). Survival analyses estimated associations between first onset of mental disorders and subsequent heart disease onset. Results After comorbidity adjustment, depression, panic disorder, specific phobia, post-traumatic stress disorder and alcohol use disorders were associated with heart disease onset (ORs 1.3–1.6). Increasing number of mental disorders was associated with heart disease in a dose-response fashion. Mood disorders and alcohol abuse were more strongly associated with earlier onset than later onset heart disease. Associations did not vary by gender. Conclusions Depression, anxiety and alcohol use disorders were significantly associated with heart disease onset; depression was the weakest predictor. If confirmed in future prospective studies, the breadth of psychopathology’s links with heart disease onset has substantial clinical and public health implications. PMID:23993321

  15. Associations between DSM-IV mental disorders and subsequent heart disease onset: beyond depression.

    Science.gov (United States)

    Scott, Kate M; de Jonge, Peter; Alonso, Jordi; Viana, Maria Carmen; Liu, Zhaorui; O'Neill, Siobhan; Aguilar-Gaxiola, Sergio; Bruffaerts, Ronny; Caldas-de-Almeida, Jose Miguel; Stein, Dan J; de Girolamo, Giovanni; Florescu, Silvia E; Hu, Chiyi; Taib, Nezar Ismet; Lépine, Jean-Pierre; Levinson, Daphna; Matschinger, Herbert; Medina-Mora, Maria Elena; Piazza, Marina; Posada-Villa, José A; Uda, Hidenori; Wojtyniak, Bogdan J; Lim, Carmen C W; Kessler, Ronald C

    2013-10-15

    Prior studies on the depression-heart disease association have not usually used diagnostic measures of depression, or taken other mental disorders into consideration. As a result, it is not clear whether the association between depression and heart disease onset reflects a specific association, or the comorbidity between depression and other mental disorders. Additionally, the relative magnitude of associations of a range of mental disorders with heart disease onset is unknown. Face-to-face household surveys were conducted in 19 countries (n=52,095; person years=2,141,194). The Composite International Diagnostic Interview retrospectively assessed lifetime prevalence and age at onset of 16 DSM-IV mental disorders. Heart disease was indicated by self-report of physician's diagnosis, or self-report of heart attack, together with their timing (year). Survival analyses estimated associations between first onset of mental disorders and subsequent heart disease onset. After comorbidity adjustment, depression, panic disorder, specific phobia, post-traumatic stress disorder and alcohol use disorders were associated with heart disease onset (ORs 1.3-1.6). Increasing number of mental disorders was associated with heart disease in a dose-response fashion. Mood disorders and alcohol abuse were more strongly associated with earlier onset than later onset heart disease. Associations did not vary by gender. Depression, anxiety and alcohol use disorders were significantly associated with heart disease onset; depression was the weakest predictor. If confirmed in future prospective studies, the breadth of psychopathology's links with heart disease onset has substantial clinical and public health implications. © 2013.

  16. An inducible mouse model of late onset Tay-Sachs disease.

    Science.gov (United States)

    Jeyakumar, Mylvaganam; Smith, David; Eliott-Smith, Elena; Cortina-Borja, Mario; Reinkensmeier, Gabriele; Butters, Terry D; Lemm, Thorsten; Sandhoff, Konrad; Perry, V Hugh; Dwek, Raymond A; Platt, Frances M

    2002-08-01

    Mouse models of the G(M2) gangliosidoses, Tay-Sachs and Sandhoff disease, are null for the hexosaminidase alpha and beta subunits respectively. The Sandhoff (Hexb-/-) mouse has severe neurological disease and mimics the human infantile onset variant. However, the Tay-Sachs (Hexa-/-) mouse model lacks an overt phenotype as mice can partially bypass the blocked catabolic pathway and escape disease. We have investigated whether a subset of Tay-Sachs mice develop late onset disease. We have found that approximately 65% of the mice develop one or more clinical signs of the disease within their natural life span (n = 52, P disease at an earlier age (n = 21, P Tay-Sachs mice confirmed that pregnancy induces late onset Tay-Sachs disease. Onset of symptoms correlated with reduced up-regulation of hexosaminidase B, a component of the bypass pathway.

  17. Comparative analysis of the prion protein gene sequences in African lion.

    Science.gov (United States)

    Wu, Chang-De; Pang, Wan-Yong; Zhao, De-Ming

    2006-10-01

    The prion protein gene of African lion (Panthera Leo) was first cloned and polymorphisms screened. The results suggest that the prion protein gene of eight African lions is highly homogenous. The amino acid sequences of the prion protein (PrP) of all samples tested were identical. Four single nucleotide polymorphisms (C42T, C81A, C420T, T600C) in the prion protein gene (Prnp) of African lion were found, but no amino acid substitutions. Sequence analysis showed that the higher homology is observed to felis catus AF003087 (96.7%) and to sheep number M31313.1 (96.2%) Genbank accessed. With respect to all the mammalian prion protein sequences compared, the African lion prion protein sequence has three amino acid substitutions. The homology might in turn affect the potential intermolecular interactions critical for cross species transmission of prion disease.

  18. Scrapie susceptibility-linked polymorphisms modulate the in vitro conversion of sheep prion protein to protease-resistant forms

    NARCIS (Netherlands)

    Bossers, A.; Belt, P.B.G.M.; Raymond, G.J.; Caughey, B.; Vries, de R.; Smits, M.

    1997-01-01

    Prion diseases are natural transmissible neurodegenerative disorders in humans and animals. They are characterized by the accumulation of a protease-resistant scrapie-associated prion protein (PrPSc) of the host-encoded cellular prion protein (PrPC) mainly in the central nervous system.

  19. Estimating Prion Adsorption Capacity of Soil by BioAssay of Subtracted Infectivity from Complex Solutions (BASICS)

    Science.gov (United States)

    Wyckoff, A. Christy; Lockwood, Krista L.; Meyerett-Reid, Crystal; Michel, Brady A.; Bender, Heather; VerCauteren, Kurt C.; Zabel, Mark D.

    2013-01-01

    Prions, the infectious agent of scrapie, chronic wasting disease and other transmissible spongiform encephalopathies, are misfolded proteins that are highly stable and resistant to degradation. Prions are known to associate with clay and other soil components, enhancing their persistence and surprisingly, transmissibility. Currently, few detection and quantification methods exist for prions in soil, hindering an understanding of prion persistence and infectivity in the environment. Variability in apparent infectious titers of prions when bound to soil has complicated attempts to quantify the binding capacity of soil for prion infectivity. Here, we quantify the prion adsorption capacity of whole, sandy loam soil (SLS) typically found in CWD endemic areas in Colorado; and purified montmorillonite clay (Mte), previously shown to bind prions, by BioAssay of Subtracted Infectivity in Complex Solutions (BASICS). We incubated prion positive 10% brain homogenate from terminally sick mice infected with the Rocky Mountain Lab strain of mouse-adapted prions (RML) with 10% SLS or Mte. After 24 hours samples were centrifuged five minutes at 200×g and soil-free supernatant was intracerebrally inoculated into prion susceptible indicator mice. We used the number of days post inoculation to clinical disease to calculate the infectious titer remaining in the supernatant, which we subtracted from the starting titer to determine the infectious prion binding capacity of SLS and Mte. BASICS indicated SLS bound and removed ≥ 95% of infectivity. Mte bound and removed lethal doses (99.98%) of prions from inocula, effectively preventing disease in the mice. Our data reveal significant prion-binding capacity of soil and the utility of BASICS to estimate prion loads and investigate persistence and decomposition in the environment. Additionally, since Mte successfully rescued the mice from prion disease, Mte might be used for remediation and decontamination protocols. PMID:23484043

  20. Role of Prion Protein Aggregation in Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Tullio Florio

    2012-07-01

    Full Text Available In several neurodegenerative diseases, such as Parkinson, Alzheimer’s, Huntington, and prion diseases, the deposition of aggregated misfolded proteins is believed to be responsible for the neurotoxicity that characterizes these diseases. Prion protein (PrP, the protein responsible of prion diseases, has been deeply studied for the peculiar feature of its misfolded oligomers that are able to propagate within affected brains, inducing the conversion of the natively folded PrP into the pathological conformation. In this review, we summarize the available experimental evidence concerning the relationship between aggregation status of misfolded PrP and neuronal death in the course of prion diseases. In particular, we describe the main findings resulting from the use of different synthetic (mainly PrP106-126 and recombinant PrP-derived peptides, as far as mechanisms of aggregation and amyloid formation, and how these different spatial conformations can affect neuronal death. In particular, most data support the involvement of non-fibrillar oligomers rather than actual amyloid fibers as the determinant of neuronal death.

  1. Onset of Impaired Sleep and Cardiovascular Disease Risk Factors

    DEFF Research Database (Denmark)

    Clark, Alice Jessie; Salo, Paula; Lange, Theis

    2016-01-01

    , and dyslipidemia). METHODS: In a longitudinal cohort study with 3 survey waves (2000, 2004, 2008) from the Finnish Public Sector study we used repeated information on sleep duration and disturbances to determine onset of impaired sleep. Information on development of CVD risk factors, as indicated by initiation...... of medication for hypertension, diabetes, and dyslipidemia was derived from electronic medical records within 8 years of follow-up. Data on 45,647 participants was structured as two data-cycles to examine the effect of change in sleep (between two waves) on incident CVD events. We applied strict inclusion...... and exclusion criteria to determine temporality between changes in sleep and the outcomes. RESULTS: While we did not find consistent effects of onset of short or long sleep, we found onset of disturbed sleep to predict subsequent risk of hypertension (hazard ratio = 1.22, 95% CI: 1.04-1.44) and dyslipidemia (HR...

  2. All Clinically-Relevant Blood Components Transmit Prion Disease following a Single Blood Transfusion: A Sheep Model of vCJD

    Science.gov (United States)

    de Wolf, Christopher; Tan, Boon Chin; Smith, Antony; Groschup, Martin H.; Hunter, Nora; Hornsey, Valerie S.; MacGregor, Ian R.; Prowse, Christopher V.; Turner, Marc; Manson, Jean C.

    2011-01-01

    Variant CJD (vCJD) is an incurable, infectious human disease, likely arising from the consumption of BSE-contaminated meat products. Whilst the epidemic appears to be waning, there is much concern that vCJD infection may be perpetuated in humans by the transfusion of contaminated blood products. Since 2004, several cases of transfusion-associated vCJD transmission have been reported and linked to blood collected from pre-clinically affected donors. Using an animal model in which the disease manifested resembles that of humans affected with vCJD, we examined which blood components used in human medicine are likely to pose the greatest risk of transmitting vCJD via transfusion. We collected two full units of blood from BSE-infected donor animals during the pre-clinical phase of infection. Using methods employed by transfusion services we prepared red cell concentrates, plasma and platelets units (including leucoreduced equivalents). Following transfusion, we showed that all components contain sufficient levels of infectivity to cause disease following only a single transfusion and also that leucoreduction did not prevent disease transmission. These data suggest that all blood components are vectors for prion disease transmission, and highlight the importance of multiple control measures to minimise the risk of human to human transmission of vCJD by blood transfusion. PMID:21858015

  3. DHA supplementation for late onset Stargardt disease: NAT-3 study

    Directory of Open Access Journals (Sweden)

    Giuseppe Querques

    2010-06-01

    Full Text Available Giuseppe Querques1, Pascale Benlian1, Bernard Chanu2, Nicolas Leveziel1, Gabriel Coscas1, Gisele Soubrane1, Eric H Souied11Department of Ophthalmology, University of Paris XII, Centre Hospitalier Intercommunal de Creteil, 2Department of Nutrition, University of Paris XII, Hopital Henry Mondor, Creteil, FranceBackground: We analyzed the effects of a docosahexaenoic acid (DHA supplementation in patients affected with late onset Stargardt disease (STGD.Methods: DHA (840 mg/day was given to 20 STGD patients for six months. A complete ophthalmologic examination, including best-corrected visual acuity (BCVA and multifocal electroretinogram (mfERG, was performed at inclusion day 0 (D0 and at month 6 (M6.Results: Overall, no statistical differences have been observed at M6 vs D0 as regards BCVA and mfERG (P > 0.05. Mild Improvement of BCVA and improvement of mfERG was noted in seven/40 eyes of four/20 patients. In the first patient, the peak of the a wave increased from 66 nV/deg² to 75.4 nV/deg² in the right eye (RE and 24.5 nV/deg² to 49.1 nV/deg² in the left eye (LE. The peak of the b wave improved from 122 nV/deg² to 157 nV/deg² in the RE, and 102 nV/deg² to 149 nV/deg² in the LE. In the second patient peaks of the a and b waves respectively increased from 11.8 nV/deg² to 72.1 nV/deg² and 53 nV/deg² to 185 nV/deg² in the RE. In the third patient the peak of the a wave increased from 37 nV/deg² to 43 nV/deg² in the RE, and from 31 nV/deg² to 45 nV/deg² in the LE; the peak of the b wave improved from 70 nV/deg² to 89 nV/deg² in the RE, and from 101 nV/deg² to 108 nV/deg² in the LE. In the fourth patient, the peak of the a wave increased from 39 nV/deg² to 42 nV/deg² in the RE, and from 40 nV/deg² to 43 nV/deg² in the LE; the peak of the b wave improved from 86 nV/deg² to 94 nV/deg² in the RE, and from 87 nV/deg² to 107 nV/deg² in the LE.Conclusion: DHA seems to influence some functional parameters in patients affected with

  4. Spontaneous generation of rapidly transmissible prions in transgenic mice expressing wild-type bank vole prion protein.

    Science.gov (United States)

    Watts, Joel C; Giles, Kurt; Stöhr, Jan; Oehler, Abby; Bhardwaj, Sumita; Grillo, Sunny K; Patel, Smita; DeArmond, Stephen J; Prusiner, Stanley B

    2012-02-28

    Currently, there are no animal models of the most common human prion disorder, sporadic Creutzfeldt-Jakob disease (CJD), in which prions are formed spontaneously from wild-type (WT) prion protein (PrP). Interestingly, bank voles (BV) exhibit an unprecedented promiscuity for diverse prion isolates, arguing that bank vole PrP (BVPrP) may be inherently prone to adopting misfolded conformations. Therefore, we constructed transgenic (Tg) mice expressing WT BVPrP. Tg(BVPrP) mice developed spontaneous CNS dysfunction between 108 and 340 d of age and recapitulated the hallmarks of prion disease, including spongiform degeneration, pronounced astrogliosis, and deposition of alternatively folded PrP in the brain. Brain homogenates of ill Tg(BVPrP) mice transmitted disease to Tg(BVPrP) mice in ∼35 d, to Tg mice overexpressing mouse PrP in under 100 d, and to WT mice in ∼185 d. Our studies demonstrate experimentally that WT PrP can spontaneously form infectious prions in vivo. Thus, Tg(BVPrP) mice may be useful for studying the spontaneous formation of prions, and thus may provide insight into the etiology of sporadic CJD.

  5. Breast cancer onset in twins and women with bilateral disease

    DEFF Research Database (Denmark)

    Hartman, Mikael; Hall, Per; Edgren, Gustaf

    2008-01-01

    PURPOSE: Little is known of the onset of breast cancer in high-risk populations. We investigated the risk of breast cancer in twin sisters and in the contralateral breast taking family history into consideration. PATIENTS AND METHODS: We analyzed a Scandinavian population-based cohort of 2,499 fe...

  6. Selective propagation of mouse-passaged scrapie prions with long incubation period from a mixed prion population using GT1-7 cells.

    Directory of Open Access Journals (Sweden)

    Kohtaro Miyazawa

    Full Text Available In our previous study, we demonstrated the propagation of mouse-passaged scrapie isolates with long incubation periods (L-type derived from natural Japanese sheep scrapie cases in murine hypothalamic GT1-7 cells, along with disease-associated prion protein (PrPSc accumulation. We here analyzed the susceptibility of GT1-7 cells to scrapie prions by exposure to infected mouse brains at different passages, following interspecies transmission. Wild-type mice challenged with a natural sheep scrapie case (Kanagawa exhibited heterogeneity of transmitted scrapie prions in early passages, and this mixed population converged upon one with a short incubation period (S-type following subsequent passages. However, when GT1-7 cells were challenged with these heterologous samples, L-type prions became dominant. This study demonstrated that the susceptibility of GT1-7 cells to L-type prions was at least 105 times higher than that to S-type prions and that L-type prion-specific biological characteristics remained unchanged after serial passages in GT1-7 cells. This suggests that a GT1-7 cell culture model would be more useful for the economical and stable amplification of L-type prions at the laboratory level. Furthermore, this cell culture model might be used to selectively propagate L-type scrapie prions from a mixed prion population.

  7. Transmission Properties of Human PrP 102L Prions Challenge the Relevance of Mouse Models of GSS.

    Science.gov (United States)

    Asante, Emmanuel A; Grimshaw, Andrew; Smidak, Michelle; Jakubcova, Tatiana; Tomlinson, Andrew; Jeelani, Asif; Hamdan, Shyma; Powell, Caroline; Joiner, Susan; Linehan, Jacqueline M; Brandner, Sebastian; Wadsworth, Jonathan D F; Collinge, John

    2015-07-01

    Inherited prion disease (IPD) is caused by autosomal-dominant pathogenic mutations in the human prion protein (PrP) gene (PRNP). A proline to leucine substitution at PrP residue 102 (P102L) is classically associated with Gerstmann-Sträussler-Scheinker (GSS) disease but shows marked clinical and neuropathological variability within kindreds that may be caused by variable propagation of distinct prion strains generated from either PrP 102L or wild type PrP. To-date the transmission properties of prions propagated in P102L patients remain ill-defined. Multiple mouse models of GSS have focused on mutating the corresponding residue of murine PrP (P101L), however murine PrP 101L, a novel PrP primary structure, may not have the repertoire of pathogenic prion conformations necessary to accurately model the human disease. Here we describe the transmission properties of prions generated in human PrP 102L expressing transgenic mice that were generated after primary challenge with ex vivo human GSS P102L or classical CJD prions. We show that distinct strains of prions were generated in these mice dependent upon source of the inoculum (either GSS P102L or CJD brain) and have designated these GSS-102L and CJD-102L prions, respectively. GSS-102L prions have transmission properties distinct from all prion strains seen in sporadic and acquired human prion disease. Significantly, GSS-102L prions appear incapable of transmitting disease to conventional mice expressing wild type mouse PrP, which contrasts strikingly with the reported transmission properties of prions generated in GSS P102L-challenged mice expressing mouse PrP 101L. We conclude that future transgenic modeling of IPDs should focus exclusively on expression of mutant human PrP, as other approaches may generate novel experimental prion strains that are unrelated to human disease.

  8. New variant of Creutzfeldt-Jakob (vCJD) disease and other human prion diseases under epidemiological surveillance in Brazil

    OpenAIRE

    Gattás, Vera Lúcia; Lima Neto, Antonio Silva; Dimech, George Santiago; Mancini, Denise; Cantarino, Ligia Maria; Marins, José Ricardo Pio; Luna, Expedito José Albuquerque

    2007-01-01

    Abstract To increase the timeliness of detection of human cases of the new variant of Creutzfeldt-Jakob disease (vCJD) and to reduce the risk of transmission, the Brazilian Ministry of Health has established and standardized rules and control measures. These include the definition of criteria for suspect cases, reporting, monitoring, and control measures for illness prevention and transmission. Guidelines to be used by the team of health care staff were published and distributed to health wor...

  9. Genetics of Pediatric-Onset Motor Neuron and Neuromuscular Diseases

    Science.gov (United States)

    2015-08-24

    Spinal Muscular Atrophy; Charcot-Marie-Tooth Disease; Muscular Dystrophy; Spinal Muscular Atrophy With Respiratory Distress 1; Amyotrophic Lateral Sclerosis; Motor Neuron Disease; Neuromuscular Disease; Peroneal Muscular Atrophy; Fragile X Syndrome

  10. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    Science.gov (United States)

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  11. Protease-resistant prions selectively decrease Shadoo protein.

    Directory of Open Access Journals (Sweden)

    Joel C Watts

    2011-11-01

    Full Text Available The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C into PrP(Sc, a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho, a protein that resembles the flexibly disordered N-terminal domain of PrP(C, were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc. Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc. Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc during prion disease.

  12. CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion

    DEFF Research Database (Denmark)

    Lee, J-M; Ramos, E M; Lee, J-H

    2012-01-01

    Age at onset of diagnostic motor manifestations in Huntington disease (HD) is strongly correlated with an expanded CAG trinucleotide repeat. The length of the normal CAG repeat allele has been reported also to influence age at onset, in interaction with the expanded allele. Due to profound...

  13. 4p16.3 haplotype modifying age at onset of Huntington disease

    DEFF Research Database (Denmark)

    Nørremølle, A; Budtz-Jørgensen, E; Fenger, K

    2009-01-01

    Huntington disease (HD) is caused by an expanded CAG repeat sequence in the HD gene. Although the age at onset is correlated to the CAG repeat length, this correlation only explains approximately half of the variation in onset age. Less variation between siblings indicates that the variation is, ...

  14. Phenotype and natural history of elderly onset inflammatory bowel disease: a multicentre, case-control study.

    Science.gov (United States)

    Mañosa, M; Calafat, M; de Francisco, R; García, C; Casanova, M J; Huelín, P; Calvo, M; Tosca, J; Fernández-Salazar, L; Arajol, C; Zabana, Y; Bastida, G; Hinojosa, J; Márquez, L; Barreiro-de-Acosta, M; Calvet, X; Monfort, D; Gómez-Garcia, M R; Rodríguez, E; Huguet, J M; Rojas-Feria, M; Hervias, D; Atienza, R; Busquets, D; Zapata, E; Dueñas, C; Charro, M; Martínez-Cerezo, F J; Plaza, R; Vázquez, J M; Gisbert, J P; Cañete, F; Cabré, E; Domènech, E

    2018-03-01

    Onset during old age has been reported in upto 10% of total cases of inflammatory bowel disease (IBD). To evaluate phenotypic characteristics and the use of therapeutic resources in patients with elderly onset IBD. Case-control study including all those patients diagnosed with IBD over the age of 60 years since 2000 who were followed-up for >12 months, identified from the IBD databases. Elderly onset cases were compared with IBD patients aged 18 to 40 years at diagnosis, matched by year of diagnosis, gender and type of IBD (adult-onset). One thousand three hundred and seventy-four elderly onset and 1374 adult-onset cases were included (62% ulcerative colitis (UC), 38% Crohn's disease (CD)). Among UC patients, elderly onset cases had a lower proportion of extensive disease (33% vs 39%; P < 0.0001). In CD, elderly onset cases showed an increased rate of stenosing pattern (24% vs 13%; P < 0.0001) and exclusive colonic location (28% vs 16%; P < 0.0001), whereas penetrating pattern (12% vs 19%; P < 0.0001) was significantly less frequent. Regarding the use of therapeutic resources, there was a significantly lower use of corticosteroids (P < 0.0001), immunosuppressants (P < 0.0001) and anti-TNFs agents (P < 0.0001) in elderly onset cases. Regarding surgery, we found a significantly higher surgery rate among elderly onset UC cases (8.3% vs 5.1%; P < 0.009). Finally, elderly onset cases were characterised by a higher rate of hospitalisations (66% vs 49%; P < 0.0001) and neoplasms (14% vs 0.5%; P < 0.0001). Elderly onset IBD shows specific characteristics and they are managed differently, with a lower use of immunosuppressants and a higher rate of surgery in UC. © 2018 John Wiley & Sons Ltd.

  15. Animal models for testing anti-prion drugs.

    Science.gov (United States)

    Fernández-Borges, Natalia; Elezgarai, Saioa R; Eraña, Hasier; Castilla, Joaquín

    2013-01-01

    Prion diseases belong to a group of fatal infectious diseases with no effective therapies available. Throughout the last 35 years, less than 50 different drugs have been tested in different experimental animal models without hopeful results. An important limitation when searching for new drugs is the existence of appropriate models of the disease. The three different possible origins of prion diseases require the existence of different animal models for testing anti-prion compounds. Wild type, over-expressing transgenic mice and other more sophisticated animal models have been used to evaluate a diversity of compounds which some of them were previously tested in different in vitro experimental models. The complexity of prion diseases will require more pre-screening studies, reliable sporadic (or spontaneous) animal models and accurate chemical modifications of the selected compounds before having an effective therapy against human prion diseases. This review is intended to put on display the more relevant animal models that have been used in the search of new antiprion therapies and describe some possible procedures when handling chemical compounds presumed to have anti-prion activity prior to testing them in animal models.

  16. Prevalence of Comorbidity in Patients With Young-Onset Alzheimer Disease Compared With Late-Onset: A Comparative Cohort Study.

    Science.gov (United States)

    Gerritsen, Adrie A J; Bakker, Christian; Verhey, Frans R J; de Vugt, Marjolein E; Melis, René J F; Koopmans, Raymond T C M

    2016-04-01

    With the lack of a cure for Alzheimer disease (AD), the identification of comorbidity is important to reduce the possibility of excess disability. Although comorbidity in patients with late-onset AD (LO-AD) is common, for people with young-onset AD (YO-AD), it is unclear how often comorbidity occurs. Furthermore, it is uncertain whether comorbidity in patients with YO-AD differs from that in patients with LO-AD. The aim of this study was to explore the prevalence, types of morbidity, and morbidity profiles in patients with YO-AD compared with those of patients with LO-AD. Explorative cohort study from 2 separate Dutch cohorts (Needs in Young-onset Dementia [NeedYD] and the Clinical Course of Cognition and Comorbidity-Dementia Study [4C-Dementia study]). Participants were recruited in 2007 and 2008 from (1) the memory clinics of 3 Dutch Alzheimer centers, (2) the memory clinics of general hospitals, (3) mental health services in the southern part of the Netherlands, and (4) young-onset dementia specialized day care facilities. A comparison group of community-dwelling, elderly patients with AD was selected from the 4C-Dementia study. Patients in this study were recruited in 2010 and 2011 from the aforementioned Alzheimer centers. The prevalence rates of comorbidity were compared between 177 patients with YO-AD and 155 patients with LO-AD. Comorbidity was classified using the International Classification of Diseases, 10th Revision (ICD-10). The total amount of comorbidity was established by counting the number of existing diseases (ICD categories or chapters) and comorbidity was also dichotomized as present or absent. Furthermore, a hierarchical cluster analysis was performed to study clusters of comorbidity. Compared with LO-AD, patients with YO-AD showed less (P < .001) overall comorbidity (58.2% vs 86.5%) and had lower prevalence rates of diabetes, obesity, and circulatory diseases; however, the prevalence rates of diseases of the nervous system in YO-AD (6

  17. Development of a blood-based molecular biomarker test for identification of schizophrenia before disease onset

    NARCIS (Netherlands)

    M.K. Chan (Man K.); M.-O. Krebs (M-O); D. Cox; P.C. Guest (Paul); R.H. Yolken; H. Rahmoune (Hassan); M. Rothermundt (Matthias); J. Steiner (Johann); F.M. Leweke (Marcus); N.J.M. van Beveren (Nico); D. Niebuhr (David); N. Weber (Natalya); D. Cowan (David); P. Suarez-Pinilla; B. Crespo-Facorro (Benedicto); C. Mam-Lam-Fook; J. Bourgin; R.J. Wenstrup (Richard); R.R. Kaldate; J.D. Cooper (Jason); S. Bahn (Sabine)

    2015-01-01

    markdownabstractRecent research efforts have progressively shifted towards preventative psychiatry and prognostic identification of individuals before disease onset. We describe the development of a serum biomarker test for the identification of individuals at risk of developing schizophrenia based

  18. Ethnicity and Onset of Cardiovascular Disease: A CALIBER Study

    Science.gov (United States)

    2017-06-07

    Abdominal Aortic Aneurysm; Coronary Heart Disease; Sudden Cardiac Death; Intracerebral Haemorrhage; Heart Failure; Ischemic Stroke; Myocardial Infarction; Stroke; Peripheral Arterial Disease; Stable Angina Pectoris; Subarachnoid Haemorrhage; Transient Ischemic Attack; Unstable Angina; Cardiac Arrest

  19. Huntington disease: a case study of early onset presenting as depression.

    Science.gov (United States)

    Duesterhus, Pia; Schimmelmann, Benno Graf; Wittkugel, Oliver; Schulte-Markwort, Michael

    2004-10-01

    Huntington disease is a dominantly inherited, neurodegenerative disease characterized by choreiform movement disturbances and dementia, usually with adult onset. The rare juvenile-onset Huntington disease differs from the adult phenotype. A case presenting twice, at age 10 with all the signs of a major depression and age 14 with mutism and rigidity, is reported. Meanwhile, the father developed the adult variant of Huntington disease. The boy's diagnosis was confirmed by molecular genetic analysis and magnetic resonance imaging. It is important to be aware of hereditary conditions such as Huntington disease and to provide family counseling before genetic testing and after the diagnosis is confirmed.

  20. Aerosols transmit prions to immunocompetent and immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Johannes Haybaeck

    Full Text Available Prions, the agents causing transmissible spongiform encephalopathies, colonize the brain of hosts after oral, parenteral, intralingual, or even transdermal uptake. However, prions are not generally considered to be airborne. Here we report that inbred and crossbred wild-type mice, as well as tga20 transgenic mice overexpressing PrP(C, efficiently develop scrapie upon exposure to aerosolized prions. NSE-PrP transgenic mice, which express PrP(C selectively in neurons, were also susceptible to airborne prions. Aerogenic infection occurred also in mice lacking B- and T-lymphocytes, NK-cells, follicular dendritic cells or complement components. Brains of diseased mice contained PrP(Sc and transmitted scrapie when inoculated into further mice. We conclude that aerogenic exposure to prions is very efficacious and can lead to direct invasion of neural pathways without an obligatory replicative phase in lymphoid organs. This previously unappreciated risk for airborne prion transmission may warrant re-thinking on prion biosafety guidelines in research and diagnostic laboratories.

  1. Reduction in mitochondrial DNA copy number in peripheral leukocytes after onset of Huntington's disease

    DEFF Research Database (Denmark)

    Petersen, Maria Hvidberg; Budtz-Jørgensen, Esben; Sørensen, Sven Asger

    2014-01-01

    Huntington's disease (HD) is an inherited neurodegenerative disorder characterised by movement disorder, cognitive symptoms and psychiatric symptoms with predominantly adult-onset. The mutant huntingtin protein leads to mitochondrial dysfunction in blood leukocytes. This discovery led to the inve......Huntington's disease (HD) is an inherited neurodegenerative disorder characterised by movement disorder, cognitive symptoms and psychiatric symptoms with predominantly adult-onset. The mutant huntingtin protein leads to mitochondrial dysfunction in blood leukocytes. This discovery led...

  2. Widespread disruption of functional brain organization in early-onset Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Sofie M Adriaanse

    Full Text Available Early-onset Alzheimer's disease (AD patients present a different clinical profile than late-onset AD patients. This can be partially explained by cortical atrophy, although brain organization might provide more insight. The aim of this study was to examine functional connectivity in early-onset and late-onset AD patients. Resting-state fMRI scans of 20 early-onset (<65 years old, 28 late-onset (≥65 years old AD patients and 15 "young" (<65 years old and 31 "old" (≥65 years old age-matched controls were available. Resting-state network-masks were used to create subject-specific maps. Group differences were examined using a non-parametric permutation test, accounting for gray-matter. Performance on five cognitive domains were used in a correlation analysis with functional connectivity in AD patients. Functional connectivity was not different in any of the RSNs when comparing the two control groups (young vs. old controls, which implies that there is no general effect of aging on functional connectivity. Functional connectivity in early-onset AD was lower in all networks compared to age-matched controls, where late-onset AD showed lower functional connectivity in the default-mode network. Functional connectivity was lower in early-onset compared to late-onset AD in auditory-, sensory-motor, dorsal-visual systems and the default mode network. Across patients, an association of functional connectivity of the default mode network was found with visuoconstruction. Functional connectivity of the right dorsal visual system was associated with attention across patients. In late-onset AD patients alone, higher functional connectivity of the sensory-motor system was associated with poorer memory performance. Functional brain organization was more widely disrupted in early-onset AD when compared to late-onset AD. This could possibly explain different clinical profiles, although more research into the relationship of functional connectivity and cognitive

  3. Motor and non-motor symptoms in old-age onset Parkinson's disease patients.

    Science.gov (United States)

    Mendonça, Marcelo D; Lampreia, Tania; Miguel, Rita; Caetano, André; Barbosa, Raquel; Bugalho, Paulo

    2017-07-01

    Advancing age is a well-known risk factor for Parkinson's disease (PD). With population ageing it is expected that the total number of patients with PD onset at oldage increases. Information on the motor but particularly on non-motor phenotype of this late-onset population is lacking. We recruited 24 patients with PD onset at or over 75 years. Each patient was matched with 1 control patient with PD onset between the ages of 40 and 65 and matched for disease duration. Both groups were assessed with the UPDRS, the Non-motor symptoms scale (NMSS) and other scales to assess non-motor symptoms. Groups were compared with conditional logistic regression analysis. Old-age onset PD was, on average, 80 years at the time of PD onset while middle-age onset were 59. Disease duration was approximately 5 years in both groups. While no difference was observed in the total UPDRS-III scores, old-age onset PD was associated with higher axial symptoms (7.42 vs. 4.63, p = 0.011) and a higher frequency of dementia (7/24 vs. 0/24, p = 0.009). While no difference in the total number of non-motor symptoms was observed (6.79 vs. 6.22, p = 0.310), old-age onset patients had a higher prevalence of gastrointestinal symptoms (20/24 vs. 12/24, p = 0.037). For the same disease duration, older age onset is associated with worse axial motor dysfunction and dementia in PD patients. Beside gastrointestinal symptoms, non-motor symptoms are not associated with age.

  4. Region-specific protein misfolding cyclic amplification reproduces brain tropism of prion strains.

    Science.gov (United States)

    Privat, Nicolas; Levavasseur, Etienne; Yildirim, Serfildan; Hannaoui, Samia; Brandel, Jean-Philippe; Laplanche, Jean-Louis; Béringue, Vincent; Seilhean, Danielle; Haïk, Stéphane

    2017-10-06

    Human prion diseases such as Creutzfeldt-Jakob disease are transmissible brain proteinopathies, characterized by the accumulation of a misfolded isoform of the host cellular prion protein (PrP) in the brain. According to the prion model, prions are defined as proteinaceous infectious particles composed solely of this abnormal isoform of PrP (PrP Sc ). Even in the absence of genetic material, various prion strains can be propagated in experimental models. They can be distinguished by the pattern of disease they produce and especially by the localization of PrP Sc deposits within the brain and the spongiform lesions they induce. The mechanisms involved in this strain-specific targeting of distinct brain regions still are a fundamental, unresolved question in prion research. To address this question, we exploited a prion conversion in vitro assay, protein misfolding cyclic amplification (PMCA), by using experimental scrapie and human prion strains as seeds and specific brain regions from mice and humans as substrates. We show here that region-specific PMCA in part reproduces the specific brain targeting observed in experimental, acquired, and sporadic Creutzfeldt-Jakob diseases. Furthermore, we provide evidence that, in addition to cellular prion protein, other region- and species-specific molecular factors influence the strain-dependent prion conversion process. This important step toward understanding prion strain propagation in the human brain may impact research on the molecular factors involved in protein misfolding and the development of ultrasensitive methods for diagnosing prion disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Repetitive immunization enhances the susceptibility of mice to peripherally administered prions.

    Directory of Open Access Journals (Sweden)

    Juliane Bremer

    Full Text Available The susceptibility of humans and animals to prion infections is determined by the virulence of the infectious agent, by genetic modifiers, and by hitherto unknown host and environmental risk factors. While little is known about the latter two, the activation state of the immune system was surmised to influence prion susceptibility. Here we administered prions to mice that were repeatedly immunized by two initial injections of CpG oligodeoxynucleotides followed by repeated injections of bovine serum albumin/alum. Immunization greatly reduced the required dosage of peripherally administered prion inoculum necessary to induce scrapie in 50% of mice. No difference in susceptibility was observed following intracerebral prion challenge. Due to its profound impact onto scrapie susceptibility, the host immune status may determine disease penetrance after low-dose prion exposure, including those that may give rise to iatrogenic and variant Creutzfeldt-Jakob disease.

  6. Cerebral glucose metabolic patterns in Alzheimer's disease. Effect of gender and age at dementia onset

    International Nuclear Information System (INIS)

    Small, G.W.; Kuhl, D.E.; Riege, W.H.; Fujikawa, D.G.; Ashford, J.W.; Metter, E.J.; Mazziotta, J.C.

    1989-01-01

    No previous study of Alzheimer's disease has, to our knowledge, assessed the effect of both age at dementia onset and gender on cerebral glucose metabolic patterns. To this end, we used positron emission tomography (fludeoxyglucose F 18 method) to study 24 patients with clinical diagnoses of probable Alzheimer's disease. Comparisons of the 13 patients with early-onset dementia (less than 65 years of age) with the 11 patients with late-onset dementia (greater than 65 years of age) revealed significantly lower left parietal metabolic ratios (left posterior parietal region divided by the hemispheric average) in the early-onset group. The metabolic ratio of posterior parietal cortex divided by the relatively disease-stable average of caudate and thalamus also separated patients with early-onset dementia from those with late-onset dementia, but not men from women. Further comparisons between sexes showed that, in all brain regions studied, the 9 postmenopausal women had higher nonweighted mean metabolic rates than the 15 men from the same age group, with hemispheric sex differences of 9% on the right and 7% on the left. These results demonstrate decreased parietal ratios in early-onset dementia of Alzheimer's disease, independent of a gender effect

  7. Disease awareness may increase risk of suicide in young onset dementia: A case report

    Directory of Open Access Journals (Sweden)

    Maria Alice Tourinho Baptista

    Full Text Available ABSTRACT Studies report that people with young onset Alzheimer's disease (YOAD have higher levels of disease awareness compared to those with late onset AD. We report a case of a man with YOAD who had preserved awareness of disease, depression and risk of suicide associated with the development of the dementia. Cognitive functioning, disease severity, depressive symptoms and awareness of disease were assessed using validated measures. The person with YOAD showed a moderate level of disease severity and high degree of dependence for activities of daily living. There was recognition of memory problems and routine changes with presence of intense pessimism, low self-esteem and suicidal ideation. This case points to the existence of specific issues related to young onset dementia and the clinical importance of identifying and treating patients who might be aware of their condition.

  8. Climate change influences on the annual onset of Lyme disease in the United States

    Science.gov (United States)

    Monaghan, A. J.; Moore, S. M.; Sampson, K. M.; Beard, C. B.; Eisen, R. J.

    2015-12-01

    Lyme disease is the most commonly reported vector-borne illness in the United States. Lyme disease occurrence is highly seasonal and the annual springtime onset of cases is modulated by meteorological conditions in preceding months. A meteorological-based empirical model for Lyme disease onset week in the United States is driven with downscaled simulations from five global climate models and four greenhouse gas emissions scenarios to project the impacts of 21st century climate change on the annual onset week of Lyme disease. Projections are made individually and collectively for the 12 eastern States where >90% of cases occur. The national average annual onset week of Lyme disease is projected to become 0.4-0.5 weeks earlier for 2025-2040 (pLyme disease spirochete Borrelia burgdorferi in the eastern United States, may alter the disease transmission cycle in unforeseen ways. The results suggest 21st century climate change will make environmental conditions suitable for earlier annual onset of Lyme disease cases in the United States with possible implications for the timing of public health interventions.

  9. Early increase and late decrease of purkinje cell dendritic spine density in prion-infected organotypic mouse cerebellar cultures.

    Science.gov (United States)

    Campeau, Jody L; Wu, Gengshu; Bell, John R; Rasmussen, Jay; Sim, Valerie L

    2013-01-01

    Prion diseases are infectious neurodegenerative diseases associated with the accumulation of protease-resistant prion protein, neuronal loss, spongiform change and astrogliosis. In the mouse model, the loss of dendritic spines is one of the earliest pathological changes observed in vivo, occurring 4-5 weeks after the first detection of protease-resistant prion protein in the brain. While there are cell culture models of prion infection, most do not recapitulate the neuropathology seen in vivo. Only the recently developed prion organotypic slice culture assay has been reported to undergo neuronal loss and the development of some aspects of prion pathology, namely small vacuolar degeneration and tubulovesicular bodies. Given the rapid replication of prions in this system, with protease-resistant prion protein detectable by 21 days, we investigated whether the dendritic spine loss and altered dendritic morphology seen in prion disease might also develop within the lifetime of this culture system. Indeed, six weeks after first detection of protease-resistant prion protein in tga20 mouse cerebellar slice cultures infected with RML prion strain, we found a statistically significant loss of Purkinje cell dendritic spines and altered dendritic morphology in infected cultures, analogous to that seen in vivo. In addition, we found a transient but statistically significant increase in Purkinje cell dendritic spine density during infection, at the time when protease-resistant prion protein was first detectable in culture. Our findings support the use of this slice culture system as one which recapitulates prion disease pathology and one which may facilitate study of the earliest stages of prion disease pathogenesis.

  10. Follicular dendritic cell-specific prion protein (PrP expression alone is sufficient to sustain prion infection in the spleen.

    Directory of Open Access Journals (Sweden)

    Laura McCulloch

    2011-12-01

    Full Text Available Prion diseases are characterised by the accumulation of PrP(Sc, an abnormally folded isoform of the cellular prion protein (PrP(C, in affected tissues. Following peripheral exposure high levels of prion-specific PrP(Sc accumulate first upon follicular dendritic cells (FDC in lymphoid tissues before spreading to the CNS. Expression of PrP(C is mandatory for cells to sustain prion infection and FDC appear to express high levels. However, whether FDC actively replicate prions or simply acquire them from other infected cells is uncertain. In the attempts to-date to establish the role of FDC in prion pathogenesis it was not possible to dissociate the Prnp expression of FDC from that of the nervous system and all other non-haematopoietic lineages. This is important as FDC may simply acquire prions after synthesis by other infected cells. To establish the role of FDC in prion pathogenesis transgenic mice were created in which PrP(C expression was specifically "switched on" or "off" only on FDC. We show that PrP(C-expression only on FDC is sufficient to sustain prion replication in the spleen. Furthermore, prion replication is blocked in the spleen when PrP(C-expression is specifically ablated only on FDC. These data definitively demonstrate that FDC are the essential sites of prion replication in lymphoid tissues. The demonstration that Prnp-ablation only on FDC blocked splenic prion accumulation without apparent consequences for FDC status represents a novel opportunity to prevent neuroinvasion by modulation of PrP(C expression on FDC.

  11. Unusual Phenotype of the Brownell-Oppenheimer Variant of Sporadic Creutzfeldt-Jakob Disease

    Directory of Open Access Journals (Sweden)

    Dronacharya Lamichhane

    2016-03-01

    Full Text Available Creutzfeldt-Jakob disease is a rare, transmissible, neurodegenerative disease caused by conformationally changed abnormal prion protein. Most patients present with cognitive impairment, myoclonus, ataxia, visual impairment alone or in combination. Patients who present with ataxia only at the onset are said to have Brownell-Oppenheimer variant of the disease. However, here we present a case where visual symptoms preceded the clinical presentation and hallucinations accompanied the ataxia at the onset of the disease.

  12. Whole Exome Analysis of Early Onset Alzheimer’s Disease

    Science.gov (United States)

    2017-04-01

    Alzheimer’s Disease 5a. CONTRACT NUMBER W81XWH-12-1-0013 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Margaret A. Pericak-Vance, Ph.D...Gerald D. Schellenberg, Goldie S . Byrd, Jonathan L. Haines, Margaret A. Pericak-Vance, and the Alzheimer Disease Genetics Consortium. ABCA7 Frameshift...Alzheimer’s & Parkinson’s Diseases (AD/PD), Vienna, Austria, Mar 29-Apr 2, 2017: Cukier HN, Gross SP, Kunkle BW, Rolati S , Hamilton-Nelson KL, Whitehead PL

  13. Medulla oblongata transcriptome changes during presymptomatic natural scrapie and their associaition with prion-related lesions.

    NARCIS (Netherlands)

    Filali, H.; Martin-Burriel, I.; Harders, F.; Varona, L.; Serrano, C.; Acín, C.; Badiola, J.J.; Bossers, A.; Bolea, R.

    2012-01-01

    Background The pathogenesis of natural scrapie and other prion diseases is still poorly understood. Determining the variations in the transcriptome in the early phases of the disease might clarify some of the molecular mechanisms of the prion-induced pathology and allow for the development of new

  14. Incunabular Immunological Events in Prion Trafficking

    Science.gov (United States)

    Michel, Brady; Meyerett-Reid, Crystal; Johnson, Theodore; Ferguson, Adam; Wyckoff, Christy; Pulford, Bruce; Bender, Heather; Avery, Anne; Telling, Glenn; Dow, Steven; Zabel, Mark D.

    2012-01-01

    While prions probably interact with the innate immune system immediately following infection, little is known about this initial confrontation. Here we investigated incunabular events in lymphotropic and intranodal prion trafficking by following highly enriched, fluorescent prions from infection sites to draining lymph nodes. We detected biphasic lymphotropic transport of prions from the initial entry site upon peripheral prion inoculation. Prions arrived in draining lymph nodes cell autonomously within two hours of intraperitoneal administration. Monocytes and dendritic cells (DCs) required Complement for optimal prion delivery to lymph nodes hours later in a second wave of prion trafficking. B cells constituted the majority of prion-bearing cells in the mediastinal lymph node by six hours, indicating intranodal prion reception from resident DCs or subcapsulary sinus macrophages or directly from follicular conduits. These data reveal novel, cell autonomous prion lymphotropism, and a prominent role for B cells in intranodal prion movement. PMID:22679554

  15. Adult-onset celiac disease for the primary care physician

    Directory of Open Access Journals (Sweden)

    Kamil Naidoo

    2017-10-01

    Full Text Available Celiac disease is a common autoimmune condition with a prevalence of 1%–2%. In recent years there has been a paradigm shift in management from tertiary care into the community. With a wide array of manifestations, including nonspecific and extraintestinal symptoms, this disorder can be difficult to diagnose, prolonging morbidity for patients. This review article aims to augment the primary physician’s knowledge of the common presentation, diagnosis, management, and follow-up of this disease.

  16. Generating Bona Fide Mammalian Prions with Internal Deletions.

    Science.gov (United States)

    Munoz-Montesino, Carola; Sizun, Christina; Moudjou, Mohammed; Herzog, Laetitia; Reine, Fabienne; Chapuis, Jérôme; Ciric, Danica; Igel-Egalon, Angelique; Laude, Hubert; Béringue, Vincent; Rezaei, Human; Dron, Michel

    2016-08-01

    Mammalian prions are PrP proteins with altered structures causing transmissible fatal neurodegenerative diseases. They are self-perpetuating through formation of beta-sheet-rich assemblies that seed conformational change of cellular PrP. Pathological PrP usually forms an insoluble protease-resistant core exhibiting beta-sheet structures but no more alpha-helical content, loosing the three alpha-helices contained in the correctly folded PrP. The lack of a high-resolution prion structure makes it difficult to understand the dynamics of conversion and to identify elements of the protein involved in this process. To determine whether completeness of residues within the protease-resistant domain is required for prions, we performed serial deletions in the helix H2 C terminus of ovine PrP, since this region has previously shown some tolerance to sequence changes without preventing prion replication. Deletions of either four or five residues essentially preserved the overall PrP structure and mutant PrP expressed in RK13 cells were efficiently converted into bona fide prions upon challenge by three different prion strains. Remarkably, deletions in PrP facilitated the replication of two strains that otherwise do not replicate in this cellular context. Prions with internal deletion were self-propagating and de novo infectious for naive homologous and wild-type PrP-expressing cells. Moreover, they caused transmissible spongiform encephalopathies in mice, with similar biochemical signatures and neuropathologies other than the original strains. Prion convertibility and transfer of strain-specific information are thus preserved despite shortening of an alpha-helix in PrP and removal of residues within prions. These findings provide new insights into sequence/structure/infectivity relationship for prions. Prions are misfolded PrP proteins that convert the normal protein into a replicate of their own abnormal form. They are responsible for invariably fatal neurodegenerative

  17. Early-Onset Chronic Inflammatory Disease Associated with Maternal Microchimerism

    Directory of Open Access Journals (Sweden)

    Tomoaki Ishikawa

    2012-01-01

    Full Text Available Maternal microchimerism (mMc refers to the presence of a small population of cells originating from the mother. Whether mMc leads to autoimmune responses in children remains controversial. We describe here an 11-year-old boy with persistent fever and elevated levels of C-reactive protein from infancy onward. During infancy, the patient presented with high fever, skin rashes, and hepatic dysfunction. Careful examination including a liver biopsy failed to reveal the cause. At 4 years old, petechiae developed associated with thrombocytopenia and positive anti-dsDNA autoantibodies. Steroid pulse therapy was effective, but the effect of low-dose prednisone was insufficient. At age 9, an extensive differential diagnosis was considered especially for infantile onset autoinflammatory disorders but failed to make a definitive diagnosis. On admission, the patient exhibited short stature, hepatosplenomegaly, generalized superficial lymphadenopathy, and rashes. Laboratory findings revealed anemia, elevated levels of inflammation markers, and hypergammaglobulinemia. Serum complement levels were normal. Serum levels of IL-6 and B-cell activating factor were elevated. Viral infections were not identified. Although HLA typing revealed no noninherited maternal antigens in lymphocytes, female cells were demonstrated in the patient’s skin and lymph nodes, suggesting that maternal microchimerism might be involved in the pathogenesis of fever without source in infants.

  18. Alzheimer's Disease Brain-Derived Amyloid-{beta}-Mediated Inhibition of LTP In Vivo Is Prevented by Immunotargeting Cellular Prion Protein.

    LENUS (Irish Health Repository)

    Barry, Andrew E

    2011-05-18

    Synthetic amyloid-β protein (Aβ) oligomers bind with high affinity to cellular prion protein (PrP(C)), but the role of this interaction in mediating the disruption of synaptic plasticity by such soluble Aβ in vitro is controversial. Here we report that intracerebroventricular injection of Aβ-containing aqueous extracts of Alzheimer\\'s disease (AD) brain robustly inhibits long-term potentiation (LTP) without significantly affecting baseline excitatory synaptic transmission in the rat hippocampus in vivo. Moreover, the disruption of LTP was abrogated by immunodepletion of Aβ. Importantly, intracerebroventricular administration of antigen-binding antibody fragment D13, directed to a putative Aβ-binding site on PrP(C), prevented the inhibition of LTP by AD brain-derived Aβ. In contrast, R1, a Fab directed to the C terminus of PrP(C), a region not implicated in binding of Aβ, did not significantly affect the Aβ-mediated inhibition of LTP. These data support the pathophysiological significance of SDS-stable Aβ dimer and the role of PrP(C) in mediating synaptic plasticity disruption by soluble Aβ.

  19. Diagnostic approaches for viruses and prions in stem cell banks

    International Nuclear Information System (INIS)

    Cobo, Fernando; Talavera, Paloma; Concha, Angel

    2006-01-01

    Some stem cell lines may contain an endogenous virus or can be contaminated with exogenous viruses (even of animal origin) and may secrete viral particles or express viral antigens on their surface. Moreover, certain biotechnological products (e.g. bovine fetal serum, murine feeder cells) may contain prion particles. Viral and prion contamination of cell cultures and 'feeder' cells, which is a common risk in all biotechnological products derived from the cell lines, is the most challenging and potentially serious outcome to address, due to the difficulty involved in virus and prion detection and the potential to cause serious disease in recipients of these cell products. Stem cell banks should introduce adequate quality assurance programs like the microbiological control program and can provide researchers with valuable support in the standardization and safety of procedures and protocols used for the viral and prion testing and in validation programs to assure the quality and safety of the cells

  20. Molecular modeling of the conformational dynamics of the cellular prion protein

    Science.gov (United States)

    Nguyen, Charles; Colling, Ian; Bartz, Jason; Soto, Patricia

    2014-03-01

    Prions are infectious agents responsible for transmissible spongiform encephalopathies (TSEs), a type of fatal neurodegenerative disease in mammals. Prions propagate biological information by conversion of the non-pathological version of the prion protein to the infectious conformation, PrPSc. A wealth of knowledge has shed light on the nature and mechanism of prion protein conversion. In spite of the significance of this problem, we are far from fully understanding the conformational dynamics of the cellular isoform. To remedy this situation we employ multiple biomolecular modeling techniques such as docking and molecular dynamics simulations to map the free energy landscape and determine what specific regions of the prion protein are most conductive to binding. The overall goal is to characterize the conformational dynamics of the cell form of the prion protein, PrPc, to gain insight into inhibition pathways against misfolding. NE EPSCoR FIRST Award to Patricia Soto.

  1. Clinical and genetic study of a juvenile-onset Huntington disease

    Directory of Open Access Journals (Sweden)

    HAO Ying

    2012-06-01

    Full Text Available Background Huntington's disease (HD is an autosomal dominant hereditary progressive neurodegenerative disorder with a distinct phenotype characterized by chorea, dementia, cognitive and affective impairment. There are selective neural cell loss and atrophy in the caudate and putamen. Dr. George Huntington firstly described the disease accurately and insightfully, which led to a widespread recognition of the inherited chorea that now bears his name. Huntington disease gene (IT15 locus on chromosome 4p16.3, and encompasses 67 exons with a trinucleotide repeat (CAG in the first exon. The CAG repeat length is highly polymorphic in the population and expanded on at least one chromosome of individuals with HD. Clinically, patient with HD are often onset in adulthood. Juvenile-onset HD is relatively rare. Adult-onset HD patients usually have a CAG expansion from 40 to 55 whereas those with juvenile-onset greater than 60 which are often inherited from the father. We investigated the clinical features of a juvenile-onset case with Huntington disease and dynamic mutation of his family. Methods The CAG repeats of IT15 gene were detected using polymerase chain reaction and capillary electrophoresis in 115 individuals with preliminary diagnosis as Huntington disease. The repeat numbers of some samples carried expanded or intermediate alleles were verified by the pMD18-T vector clone sequencing. Results Fragment analysis showed that one juvenile-onset case presenting with cognitive dysfunction and hypokinesis carried 15/68 CAG repeats of IT15. His father carried 17/37 and mother carried 15/17. Conclusion 1 The juvenile-onset case of HD presented with different clinical features compared with adult-onset cases. The typical signs of adult-onset cases include progressive chorea, rigidity and dementia. The most common sign of juvenile-onset Huntington disease is cognitive decline. 2 The dynamic mutation of IT15 gene expansion of the CAG repeats in the

  2. Exercise and Early-Onset Alzheimer’s Disease: Theoretical Considerations

    Directory of Open Access Journals (Sweden)

    Astrid M. Hooghiemstra

    2012-04-01

    Full Text Available Background/Aims: Although studies show a negative relationship between physical activity and the risk for cognitive impairment and late-onset Alzheimer’s disease, studies concerning early-onset Alzheimer’s disease (EOAD are lacking. This review aims to justify the value of exercise interventions in EOAD by providing theoretical considerations that include neurobiological processes. Methods: A literature search on key words related to early-onset dementia, exercise, imaging, neurobiological mechanisms, and cognitive reserve was performed. Results/Conclusion: Brain regions and neurobiological processes contributing to the positive effects of exercise are affected in EOAD and, thus, provide theoretical support for exercise interventions in EOAD. Finally, we present the design of a randomized controlled trial currently being conducted in early-onset dementia patients.

  3. Cognitive Development in Infantile-Onset Pompe Disease Under Very Early Enzyme Replacement Therapy.

    Science.gov (United States)

    Lai, Chih-Jou; Hsu, Ting-Rong; Yang, Chia-Feng; Chen, Shyi-Jou; Chuang, Ya-Chin; Niu, Dau-Ming

    2016-12-01

    Most patients with infantile-onset Pompe disease die in early infancy before beginning enzyme replacement therapy, which has made it difficult to evaluate the impact of Pompe disease on cognitive development. Patients with infantile-onset Pompe disease can survive with enzyme replacement therapy, and physicians can evaluate cognitive development in these patients. We established an effective newborn screening program with quick clinical diagnostic criteria. Cognitive and motor development were evaluated using the Bayley Scales of Infant and Toddler Development-Third Edition at 6, 12, and 24 months of age. The patients who were treated very early demonstrate normal cognitive development with no significant change in cognition during this period (P = .18 > .05). The cognitive development was positively correlated with motor development (r = 0.533, P = .011). The results indicated that very early enzyme replacement therapy could protect cognitive development in patients with infantile-onset Pompe disease up to 24 months of age. © The Author(s) 2016.

  4. [Adult-onset Still's disease with pulmonary and cardiac involvement and response to intravenous immunoglobulin].

    Science.gov (United States)

    Neto, Nilton Salles Rosa; Waldrich, Leandro; de Carvalho, Jozélio Freire; Pereira, Rosa Maria Rodrigues

    2009-01-01

    Cardiopulmonary manifestations of adult-onset Still's disease (AOSD) include pericarditis, pleural effusion, transient pulmonary infiltrates, pulmonary interstitial disease and myocarditis. Serositis are common but pneumonitis and myocarditis are not and bring elevated risk of mortality. They may manifest on disease onset or flares. Previously reported cases were treated with high-dose glucocorticoids and immunosupressants and, when refractory, intravenous immunoglobulin (IVIG). We report an AOSD patient whose flare presented with severe pleupneumonitis and myopericarditis and, following nonresponse to a methylprednisolone pulse, high dose of prednisone and cyclosporine A, recovered after a 2-day 1g/kg/day IVIG infusion.

  5. GST polymorphisms and early-onset coronary artery disease in ...

    African Journals Online (AJOL)

    Dysfunctional detoxification enzymes are responsible for prolonged exposure to reactive molecules and can contribute to endothelial damage, an underlying factor in coronary artery disease (CAD). Objectives. We aimed to assess 2 common polymorphic variant isoforms in GSTM1 and GSTP1 of GST in young CAD patients ...

  6. Low copper and high manganese levels in prion protein plaques

    Science.gov (United States)

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  7. Reduction of prion infectivity in packed red blood cells

    International Nuclear Information System (INIS)

    Morales, Rodrigo; Buytaert-Hoefen, Kimberley A.; Gonzalez-Romero, Dennisse; Castilla, Joaquin; Hansen, Eric T.; Hlavinka, Dennis; Goodrich, Raymond P.; Soto, Claudio

    2008-01-01

    The link between a new variant form of Creutzfeldt-Jakob disease (vCJD) and the consumption of prion contaminated cattle meat as well as recent findings showing that vCJD can be transmitted by blood transfusion have raised public health concerns. Currently, a reliable test to identify prions in blood samples is not available. The purpose of this study was to evaluate the possibility to remove scrapie prion protein (PrP Sc ) and infectivity from red blood cell (RBC) suspensions by a simple washing procedure using a cell separation and washing device. The extent of prion removal was assessed by Western blot, PMCA and infectivity bioassays. Our results revealed a substantial removal of infectious prions (≥3 logs of infectivity) by all techniques used. These data suggest that a significant amount of infectivity present in RBC preparations can be removed by a simple washing procedure. This technology may lead to increased safety of blood products and reduce the risk of further propagation of prion diseases.

  8. Prevalence of chronic diseases at the onset of inflammatory arthritis: a population-based study.

    NARCIS (Netherlands)

    Ursum, J.; Korevaar, J.C.; Twisk, J.W.R.; Peters, M.J.L.; Schellevis, F.G.; Nurmohamed, M.T.; Nielen, M.M.J.

    2013-01-01

    Objective. Little is known about the presence of chronic morbidity in inflammatory arthritis (IA) patients at disease onset. Previous studies have been mainly performed in established IA patients or they focus on isolated co-morbid diseases. Our aim was to determine the prevalence of chronic

  9. Thoracic CT findings of adult-onset still's disease: a case report

    International Nuclear Information System (INIS)

    Choi, Sun Young; Kim, Ki Jun; Lee, Jung Whee; Lee, Sung Yong; Hong, Yeon Sik

    2006-01-01

    Adult-onset of Still's disease is a rare systemic rheumatic disorder. It involves various organs including the lungs and pleura. We report here the CT findings of a patient with the thoracic manifestations of Still's disease, including axillary and mediastinal lymphadenopathies, pleural and pericardial effusions and infiltrations in both lung bases

  10. New cases of adult-onset Sandhoff disease with a cerebellar or lower motor neuron phenotype.

    NARCIS (Netherlands)

    Delnooz, C.C.S.; Lefeber, D.J.; Langemeijer, S.M.C.; Hoffjan, S.; Dekomien, G.; Zwarts, M.J.; Engelen, B.G.M. van; Wevers, R.A.; Schelhaas, H.J.; Warrenburg, B.P.C. van de

    2010-01-01

    Sandhoff disease is a lipid-storage disorder caused by a defect in ganglioside metabolism. It is caused by a lack of functional N-acetyl-beta-d-glucosaminidase A and B due to mutations in the HEXB gene. Typical, early-onset Sandhoff disease presents before 9 months of age with progressive

  11. Enzyme replacement therapy in late-onset Pompe's disease : A three-year follow-up

    NARCIS (Netherlands)

    Winkel, LPF; Van den Hout, JMP; Kamphoven, JHJ; Disseldorp, JAM; Remmerswaal, M; Arts, WFM; Loonen, MCB; Vulto, AG; Van Doorn, PA; De Jong, G; Hop, W; Smit, GPA; Shapira, SK; Boer, MA; van Diggelen, OP; Reuser, AJJ; Van der Ploeg, AT

    Pompe's disease is an autosomal recessive myopathy. The characteristic lysosomal storage of glycogen is caused by acid et-glucosidase deficiency. Patients with late-onset Pompe's disease present with progressive muscle weakness also affecting pulmonary function. In search of a treatment, we

  12. Very early onset inflammatory bowel disease: Investigation of the IL-10 signaling pathway in Iranian children

    NARCIS (Netherlands)

    Nemati, Shahram; Teimourian, Shahram; Tabrizi, Mina; Najafi, Mehri; Dara, Naghi; Imanzadeh, Farid; Ahmadi, Mitra; Aghdam, Maryam Kazemi; Tavassoli, Mohmoud; Rohani, Pejman; Madani, Seyyed Ramin; de Boer, Martin; Kuijpers, T. W.; Roos, Dirk

    2017-01-01

    Background & aim: Comparing to adult inflammatory bowel disease (IBD), those with early onset manifestations have different features in terms of the underlying molecular pathology, the course of disease and the response to therapy. We investigated the IL-10 signaling pathway previously reported as

  13. Associations between DSM-IV mental disorders and subsequent heart disease onset : Beyond depression

    NARCIS (Netherlands)

    Scott, Kate M.; de Jonge, Peter; Alonso, Jordi; Viana, Maria Carmen; Liu, Zhaorui; O'Neill, Siobhan; Aguilar-Gaxiola, Sergio; Bruffaerts, Ronny; Caldas-de-Almeida, Jose Miguel; Stein, Dan J.; de Girolamo, Giovanni; Florescu, Silvia E.; Hu, Chiyi; Taib, Nezar Ismet; Lepine, Jean-Pierre; Levinson, Daphna; Matschinger, Herbert; Elena Medina-Mora, Maria; Piazza, Marina; Posada-Villa, Jose A.; Uda, Hidenori; Wojtyniak, Bogdan J.; Lim, Carmen C. W.; Kessler, Ronald C.

    2013-01-01

    Background: Prior studies on the depression-heart disease association have not usually used diagnosticmeasures of depression, or taken other mental disorders into consideration. As a result, it is not clear whether the association between depression and heart disease onset reflects a specific

  14. Medical Cost Trajectories and Onsets of Cancer and NonCancer Diseases in US Elderly Population

    Directory of Open Access Journals (Sweden)

    Igor Akushevich

    2011-01-01

    Full Text Available Time trajectories of medical costs-associated with onset of twelve aging-related cancer and chronic noncancer diseases were analyzed using the National Long-Term Care Survey data linked to Medicare Service Use files. A special procedure for selecting individuals with onset of each disease was developed and used for identification of the date at disease onset. Medical cost trajectories were found to be represented by a parametric model with four easily interpretable parameters reflecting: (i prediagnosis cost (associated with initial comorbidity, (ii cost of the disease onset, (iii population recovery representing reduction of the medical expenses associated with a disease since diagnosis was made, and (iv acquired comorbidity representing the difference between post- and pre diagnosis medical cost levels. These parameters were evaluated for the entire US population as well as for the subpopulation conditional on age, disability and comorbidity states, and survival (2.5 years after the date of onset. The developed approach results in a family of new forecasting models with covariates.

  15. Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers.

    Science.gov (United States)

    Guerrero-Bosagna, Carlos; Covert, Trevor R; Haque, Md M; Settles, Matthew; Nilsson, Eric E; Anway, Matthew D; Skinner, Michael K

    2012-12-01

    The endocrine disruptor vinclozolin has previously been shown to promote epigenetic transgenerational inheritance of adult onset disease in the rat. The current study was designed to investigate the transgenerational actions of vinclozolin on the mouse. Transient exposure of the F0 generation gestating female during gonadal sex determination promoted transgenerational adult onset disease in F3 generation male and female mice, including spermatogenic cell defects, testicular abnormalities, prostate abnormalities, kidney abnormalities and polycystic ovarian disease. Pathology analysis demonstrated 75% of the vinclozolin lineage animals developed disease with 34% having two or more different disease states. Interestingly, the vinclozolin induced transgenerational disease was observed in the outbred CD-1 strain, but not the inbred 129 mouse strain. Analysis of the F3 generation sperm epigenome identified differential DNA methylation regions that can potentially be utilized as epigenetic biomarkers for transgenerational exposure and disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Seeded amplification of chronic wasting disease prions in nasal brushings and recto-anal mucosal associated lymphoid tissues from elk by real time quaking-induced conversion

    Science.gov (United States)

    Haley, Nicholas J.; Siepker, Chris; Hoon-Hanks , Laura L.; Mitchell, Gordon; Walter, W. David; Manca, Matteo; Monello, Ryan J.; Powers, Jenny G.; Wild, Margaret A.; Hoover, Edward A.; Caughey, Byron; Richt, Jürgen a.; Fenwick, B.W.

    2016-01-01

    Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, was first documented nearly 50 years ago in Colorado and Wyoming and has since been detected across North America and the Republic of Korea. The expansion of this disease makes the development of sensitive diagnostic assays and antemortem sampling techniques crucial for the mitigation of its spread; this is especially true in cases of relocation/reintroduction or prevalence studies of large or protected herds, where depopulation may be contraindicated. This study evaluated the sensitivity of the real-time quaking-induced conversion (RT-QuIC) assay of recto-anal mucosa-associated lymphoid tissue (RAMALT) biopsy specimens and nasal brushings collected antemortem. These findings were compared to results of immunohistochemistry (IHC) analysis of ante- and postmortem samples. RAMALT samples were collected from populations of farmed and free-ranging Rocky Mountain elk (Cervus elaphus nelsoni; n = 323), and nasal brush samples were collected from a subpopulation of these animals (n = 205). We hypothesized that the sensitivity of RT-QuIC would be comparable to that of IHC analysis of RAMALT and would correspond to that of IHC analysis of postmortem tissues. We found RAMALT sensitivity (77.3%) to be highly correlative between RT-QuIC and IHC analysis. Sensitivity was lower when testing nasal brushings (34%), though both RAMALT and nasal brush test sensitivities were dependent on both the PRNP genotype and disease progression determined by the obex score. These data suggest that RT-QuIC, like IHC analysis, is a relatively sensitive assay for detection of CWD prions in RAMALT biopsy specimens and, with further investigation, has potential for large-scale and rapid automated testing of antemortem samples for CWD.

  17. Common variants at five new loci associated with early-onset inflammatory bowel disease.

    Science.gov (United States)

    Imielinski, Marcin; Baldassano, Robert N; Griffiths, Anne; Russell, Richard K; Annese, Vito; Dubinsky, Marla; Kugathasan, Subra; Bradfield, Jonathan P; Walters, Thomas D; Sleiman, Patrick; Kim, Cecilia E; Muise, Aleixo; Wang, Kai; Glessner, Joseph T; Saeed, Shehzad; Zhang, Haitao; Frackelton, Edward C; Hou, Cuiping; Flory, James H; Otieno, George; Chiavacci, Rosetta M; Grundmeier, Robert; Castro, Massimo; Latiano, Anna; Dallapiccola, Bruno; Stempak, Joanne; Abrams, Debra J; Taylor, Kent; McGovern, Dermot; Silber, Gary; Wrobel, Iwona; Quiros, Antonio; Barrett, Jeffrey C; Hansoul, Sarah; Nicolae, Dan L; Cho, Judy H; Duerr, Richard H; Rioux, John D; Brant, Steven R; Silverberg, Mark S; Taylor, Kent D; Barmuda, M Michael; Bitton, Alain; Dassopoulos, Themistocles; Datta, Lisa Wu; Green, Todd; Griffiths, Anne M; Kistner, Emily O; Murtha, Michael T; Regueiro, Miguel D; Rotter, Jerome I; Schumm, L Philip; Steinhart, A Hillary; Targan, Stephen R; Xavier, Ramnik J; Libioulle, Cécile; Sandor, Cynthia; Lathrop, Mark; Belaiche, Jacques; Dewit, Olivier; Gut, Ivo; Heath, Simon; Laukens, Debby; Mni, Myriam; Rutgeerts, Paul; Van Gossum, André; Zelenika, Diana; Franchimont, Denis; Hugot, J P; de Vos, Martine; Vermeire, Severine; Louis, Edouard; Cardon, Lon R; Anderson, Carl A; Drummond, Hazel; Nimmo, Elaine; Ahmad, Tariq; Prescott, Natalie J; Onnie, Clive M; Fisher, Sheila A; Marchini, Jonathan; Ghori, Jilur; Bumpstead, Suzannah; Gwillam, Rhian; Tremelling, Mark; Delukas, Panos; Mansfield, John; Jewell, Derek; Satsangi, Jack; Mathew, Christopher G; Parkes, Miles; Georges, Michel; Daly, Mark J; Heyman, Melvin B; Ferry, George D; Kirschner, Barbara; Lee, Jessica; Essers, Jonah; Grand, Richard; Stephens, Michael; Levine, Arie; Piccoli, David; Van Limbergen, John; Cucchiara, Salvatore; Monos, Dimitri S; Guthery, Stephen L; Denson, Lee; Wilson, David C; Grant, Straun F A; Daly, Mark; Silverberg, Mark S; Satsangi, Jack; Hakonarson, Hakon

    2009-12-01

    The inflammatory bowel diseases (IBD) Crohn's disease and ulcerative colitis are common causes of morbidity in children and young adults in the western world. Here we report the results of a genome-wide association study in early-onset IBD involving 3,426 affected individuals and 11,963 genetically matched controls recruited through international collaborations in Europe and North America, thereby extending the results from a previous study of 1,011 individuals with early-onset IBD. We have identified five new regions associated with early-onset IBD susceptibility, including 16p11 near the cytokine gene IL27 (rs8049439, P = 2.41 x 10(-9)), 22q12 (rs2412973, P = 1.55 x 10(-9)), 10q22 (rs1250550, P = 5.63 x 10(-9)), 2q37 (rs4676410, P = 3.64 x 10(-8)) and 19q13.11 (rs10500264, P = 4.26 x 10(-10)). Our scan also detected associations at 23 of 32 loci previously implicated in adult-onset Crohn's disease and at 8 of 17 loci implicated in adult-onset ulcerative colitis, highlighting the close pathogenetic relationship between early- and adult-onset IBD.

  18. Borderlines between sarcopenia and mild late-onset muscle disease

    Directory of Open Access Journals (Sweden)

    Johanna ePalmio

    2014-09-01

    Full Text Available Numerous natural or disease-related alterations occur in different tissues of the body with advancing age. Sarcopenia is defined as age-related decrease of muscle mass and strength beginning in mid-adulthood and accelerating in people older than 60 years. Pathophysiology of sarcopenia involves both neural and muscle dependent mechanisms and is enhanced by multiple factors. Aged muscles show loss in fiber number, fiber atrophy and gradual increase in the number of ragged red fibers and cytochrome c oxidase-negative fibers. Generalized loss of muscle tissue and increased amount of intramuscular fat is seen on muscle imaging. However, the degree of these changes vary greatly between individuals and the distinction between normal age-related weakening of muscle strength and clinically significant muscle disease is not always obvious. Because some of the genetic myopathies can present at a very late age and be mild in severity, the correct diagnosis is easily missed. We highlight this difficult borderline zone between sarcopenia and muscle disease by two examples: LGMD1D and myotonic dystrophy type 2. Muscle MRI is a useful tool to help differentiate myopathies from sarcopenia and to reach the correct diagnosis also in the elderly.

  19. Dioxin (TCDD induces epigenetic transgenerational inheritance of adult onset disease and sperm epimutations.

    Directory of Open Access Journals (Sweden)

    Mohan Manikkam

    Full Text Available Environmental compounds can promote epigenetic transgenerational inheritance of adult-onset disease in subsequent generations following ancestral exposure during fetal gonadal sex determination. The current study examined the ability of dioxin (2,3,7,8-tetrachlorodibenzo[p]dioxin, TCDD to promote epigenetic transgenerational inheritance of disease and DNA methylation epimutations in sperm. Gestating F0 generation females were exposed to dioxin during fetal day 8 to 14 and adult-onset disease was evaluated in F1 and F3 generation rats. The incidences of total disease and multiple disease increased in F1 and F3 generations. Prostate disease, ovarian primordial follicle loss and polycystic ovary disease were increased in F1 generation dioxin lineage. Kidney disease in males, pubertal abnormalities in females, ovarian primordial follicle loss and polycystic ovary disease were increased in F3 generation dioxin lineage animals. Analysis of the F3 generation sperm epigenome identified 50 differentially DNA methylated regions (DMR in gene promoters. These DMR provide potential epigenetic biomarkers for transgenerational disease and ancestral environmental exposures. Observations demonstrate dioxin exposure of a gestating female promotes epigenetic transgenerational inheritance of adult onset disease and sperm epimutations.

  20. Evolution of disease phenotype in adult and pediatric onset Crohn’s disease in a population-based cohort

    Science.gov (United States)

    Lovasz, Barbara Dorottya; Lakatos, Laszlo; Horvath, Agnes; Szita, Istvan; Pandur, Tunde; Mandel, Michael; Vegh, Zsuzsanna; Golovics, Petra Anna; Mester, Gabor; Balogh, Mihaly; Molnar, Csaba; Komaromi, Erzsebet; Kiss, Lajos Sandor; Lakatos, Peter Laszlo

    2013-01-01

    AIM: To investigate the evolution of disease phenotype in adult and pediatric onset Crohn’s disease (CD) populations, diagnosed between 1977 and 2008. METHODS: Data of 506 incident CD patients were analyzed (age at diagnosis: 28.5 years, interquartile range: 22-38 years). Both in- and outpatient records were collected prospectively with a complete clinical follow-up and comprehensively reviewed in the population-based Veszprem province database, which included incident patients diagnosed between January 1, 1977 and December 31, 2008 in adult and pediatric onset CD populations. Disease phenotype according to the Montreal classification and long-term disease course was analysed according to the age at onset in time-dependent univariate and multivariate analysis. RESULTS: Among this population-based cohort, seventy-four (12.8%) pediatric-onset CD patients were identified (diagnosed ≤ 17 years of age). There was no significant difference in the distribution of disease behavior between pediatric (B1: 62%, B2: 15%, B3: 23%) and adult-onset CD patients (B1: 56%, B2: 21%, B3: 23%) at diagnosis, or during follow-up. Overall, the probability of developing complicated disease behaviour was 49.7% and 61.3% in the pediatric and 55.1% and 62.4% in the adult onset patients after 5- and 10-years of follow-up. Similarly, time to change in disease behaviour from non stricturing, non penetrating (B1) to complicated, stricturing or penetrating (B2/B3) disease was not significantly different between pediatric and adult onset CD in a Kaplan-Meier analysis. Calendar year of diagnosis (P = 0.04), ileal location (P < 0.001), perianal disease (P < 0.001), smoking (P = 0.038) and need for steroids (P < 0.001) were associated with presence of, or progression to, complicated disease behavior at diagnosis and during follow-up. A change in disease location was observed in 8.9% of patients and it was associated with smoking status (P = 0.01), but not with age at diagnosis. CONCLUSION: Long

  1. Prion remains infectious after passage through digestive system of American crows (Corvus brachyrhynchos.

    Directory of Open Access Journals (Sweden)

    Kurt C VerCauteren

    Full Text Available Avian scavengers, such as American crows (Corvus brachyrhynchos, have potential to translocate infectious agents (prions of transmissible spongiform encephalopathy (TSE diseases including chronic wasting disease, scrapie, and bovine spongiform encephalopathy. We inoculated mice with fecal extracts obtained from 20 American crows that were force-fed material infected with RML-strain scrapie prions. These mice all evinced severe neurological dysfunction 196-231 d postinoculation (x =198; 95% CI: 210-216 and tested positive for prion disease. Our results suggest a large proportion of crows that consume prion-positive tissue are capable of passing infectious prions in their feces (ˆp=1.0; 95% CI: 0.8-1.0. Therefore, this common, migratory North American scavenger could play a role in the geographic spread of TSE diseases.

  2. Pin1 and neurodegeneration: a new player for prion disorders?

    Directory of Open Access Journals (Sweden)

    Elisa Isopi

    2015-07-01

    Full Text Available Pin1 is a peptidyl-prolyl isomerase that catalyzes the cis/trans conversion of phosphorylated proteins at serine or threonine residues which precede a proline. The peptidyl-prolyl isomerization induces a conformational change of the proteins involved in cell signaling process. Pin1 dysregulation has been associated with some neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Proline-directed phosphorylation is a common regulator of these pathologies and a recent work showed that it is also involved in prion disorders. In fact, prion protein phosphorylation at the Ser-43-Pro motif induces prion protein conversion into a disease-associated form. Furthermore, phosphorylation at Ser-43-Pro has been observed to increase in the cerebral spinal fluid of sporadic Creutzfeldt-Jakob Disease patients. These findings provide new insights into the pathogenesis of prion disorders, suggesting Pin1 as a potential new player in the disease. In this paper, we review the mechanisms underlying Pin1 involvement in the aforementioned neurodegenerative pathologies focusing on the potential role of Pin1 in prion disorders.

  3. An Italian multicentre study on adult atopic dermatitis: persistent versus adult-onset disease.

    Science.gov (United States)

    Megna, Matteo; Patruno, Cataldo; Balato, Anna; Rongioletti, Franco; Stingeni, Luca; Balato, Nicola

    2017-08-01

    Atopic dermatitis (AD) is a chronic, recurrent, inflammatory skin disease which predominantly affects children. However, AD may persist until adulthood (persistent AD), or directly start in adults (adult-onset AD). AD often shows a non-flexural rash distribution, and atypical morphologic variants in adults and specific diagnostic criteria are lacking. Moreover, adult AD prevalence as well as detailed data which can characterize persistent vs adult-onset subtype are scant. The aim of this study was to investigate on the main features of adult AD particularly highlighting differences between persistent vs adult-onset form. An Italian multicentre observational study was conducted between April 2015-July 2016 through a study-specific digital database. 253 adult AD patients were enrolled. Familiar history of AD was negative in 81.0%. Erythemato-desquamative pattern was the most frequent clinical presentation (74.3%). Flexural surface of upper limbs was most commonly involved (47.8%), followed by eyelid/periocular area (37.9%), hands (37.2%), and neck (32%). Hypertension (7.1%) and thyroiditis (4.3%) were the most frequent comorbidities. A subgroup analysis between persistent (59.7%) vs adult-onset AD patients (40.3%) showed significant results only regarding AD severity (severe disease was more common in persistent group, p adult-onset disease), and comorbidities (hypertension was more frequent in adult-onset group, p Adult AD showed uncommon features such as significant association with negative AD family history and lacking of association with systemic comorbidities respect to general population. No significant differences among persistent vs adult-onset subgroup were registered except for hypertension, itch intensity, and disease severity.

  4. Endogenous proteolytic cleavage of disease-associated prion protein to produce C2 fragments is strongly cell- and tissue-dependent.

    Science.gov (United States)

    Dron, Michel; Moudjou, Mohammed; Chapuis, Jérôme; Salamat, Muhammad Khalid Farooq; Bernard, Julie; Cronier, Sabrina; Langevin, Christelle; Laude, Hubert

    2010-04-02

    The abnormally folded form of the prion protein (PrP(Sc)) accumulating in nervous and lymphoid tissues of prion-infected individuals can be naturally cleaved to generate a N-terminal-truncated fragment called C2. Information about the identity of the cellular proteases involved in this process and its possible role in prion biology has remained limited and controversial. We investigated PrP(Sc) N-terminal trimming in different cell lines and primary cultured nerve cells, and in the brain and spleen tissue from transgenic mice infected by ovine and mouse prions. We found the following: (i) the full-length to C2 ratio varies considerably depending on the infected cell or tissue. Thus, in primary neurons and brain tissue, PrP(Sc) accumulated predominantly as untrimmed species, whereas efficient trimming occurred in Rov and MovS cells, and in spleen tissue. (ii) Although C2 is generally considered to be the counterpart of the PrP(Sc) proteinase K-resistant core, the N termini of the fragments cleaved in vivo and in vitro can actually differ, as evidenced by a different reactivity toward the Pc248 anti-octarepeat antibody. (iii) In lysosome-impaired cells, the ratio of full-length versus C2 species dramatically increased, yet efficient prion propagation could occur. Moreover, cathepsin but not calpain inhibitors markedly inhibited C2 formation, and in vitro cleavage by cathepsins B and L produced PrP(Sc) fragments lacking the Pc248 epitope, strongly arguing for the primary involvement of acidic hydrolases of the endolysosomal compartment. These findings have implications on the molecular analysis of PrP(Sc) and cell pathogenesis of prion infection.

  5. Endogenous Proteolytic Cleavage of Disease-associated Prion Protein to Produce C2 Fragments Is Strongly Cell- and Tissue-dependent*

    Science.gov (United States)

    Dron, Michel; Moudjou, Mohammed; Chapuis, Jérôme; Salamat, Muhammad Khalid Farooq; Bernard, Julie; Cronier, Sabrina; Langevin, Christelle; Laude, Hubert

    2010-01-01

    The abnormally folded form of the prion protein (PrPSc) accumulating in nervous and lymphoid tissues of prion-infected individuals can be naturally cleaved to generate a N-terminal-truncated fragment called C2. Information about the identity of the cellular proteases involved in this process and its possible role in prion biology has remained limited and controversial. We investigated PrPSc N-terminal trimming in different cell lines and primary cultured nerve cells, and in the brain and spleen tissue from transgenic mice infected by ovine and mouse prions. We found the following: (i) the full-length to C2 ratio varies considerably depending on the infected cell or tissue. Thus, in primary neurons and brain tissue, PrPSc accumulated predominantly as untrimmed species, whereas efficient trimming occurred in Rov and MovS cells, and in spleen tissue. (ii) Although C2 is generally considered to be the counterpart of the PrPSc proteinase K-resistant core, the N termini of the fragments cleaved in vivo and in vitro can actually differ, as evidenced by a different reactivity toward the Pc248 anti-octarepeat antibody. (iii) In lysosome-impaired cells, the ratio of full-length versus C2 species dramatically increased, yet efficient prion propagation could occur. Moreover, cathepsin but not calpain inhibitors markedly inhibited C2 formation, and in vitro cleavage by cathepsins B and L produced PrPSc fragments lacking the Pc248 epitope, strongly arguing for the primary involvement of acidic hydrolases of the endolysosomal compartment. These findings have implications on the molecular analysis of PrPSc and cell pathogenesis of prion infection. PMID:20154089

  6. A Neuronal Culture System to Detect Prion Synaptotoxicity.

    Directory of Open Access Journals (Sweden)

    Cheng Fang

    2016-05-01

    Full Text Available Synaptic pathology is an early feature of prion as well as other neurodegenerative diseases. Although the self-templating process by which prions propagate is well established, the mechanisms by which prions cause synaptotoxicity are poorly understood, due largely to the absence of experimentally tractable cell culture models. Here, we report that exposure of cultured hippocampal neurons to PrPSc, the infectious isoform of the prion protein, results in rapid retraction of dendritic spines. This effect is entirely dependent on expression of the cellular prion protein, PrPC, by target neurons, and on the presence of a nine-amino acid, polybasic region at the N-terminus of the PrPC molecule. Both protease-resistant and protease-sensitive forms of PrPSc cause dendritic loss. This system provides new insights into the mechanisms responsible for prion neurotoxicity, and it provides a platform for characterizing different pathogenic forms of PrPSc and testing potential therapeutic agents.

  7. Yeast prions form infectious amyloid inclusion bodies in bacteria

    Directory of Open Access Journals (Sweden)

    Espargaró Alba

    2012-06-01

    Full Text Available Abstract Background Prions were first identified as infectious proteins associated with fatal brain diseases in mammals. However, fungal prions behave as epigenetic regulators that can alter a range of cellular processes. These proteins propagate as self-perpetuating amyloid aggregates being an example of structural inheritance. The best-characterized examples are the Sup35 and Ure2 yeast proteins, corresponding to [PSI+] and [URE3] phenotypes, respectively. Results Here we show that both the prion domain of Sup35 (Sup35-NM and the Ure2 protein (Ure2p form inclusion bodies (IBs displaying amyloid-like properties when expressed in bacteria. These intracellular aggregates template the conformational change and promote the aggregation of homologous, but not heterologous, soluble prionogenic molecules. Moreover, in the case of Sup35-NM, purified IBs are able to induce different [PSI+] phenotypes in yeast, indicating that at least a fraction of the protein embedded in these deposits adopts an infectious prion fold. Conclusions An important feature of prion inheritance is the existence of strains, which are phenotypic variants encoded by different conformations of the same polypeptide. We show here that the proportion of infected yeast cells displaying strong and weak [PSI+] phenotypes depends on the conditions under which the prionogenic aggregates are formed in E. coli, suggesting that bacterial systems might become useful tools to generate prion strain diversity.

  8. Adult onset Niemann-Pick type C disease: A clinical, neuroimaging and molecular genetic study.

    Science.gov (United States)

    Battisti, Carla; Tarugi, Patrizla; Dotti, Maria Teresa; De Stefano, Nicola; Vattimo, Angelo; Chierichetti, Francesea; Calandra, Sebastiano; Federico, Antonio

    2003-11-01

    We report on a patient with adult-onset Niemann-Pick type C (NPC) disease, carrying the mutations P1007 and I1061T in the NPC1 gene, presenting with marked psychiatric changes followed by dystonia and cognitive impairment. Filipin staining, single photon emission computed tomography perfusional, positron emission tomography metabolic, conventional magnetic resonance imaging, and magnetic resonance spectroscopy findings suggested a pathophysiological correlation with phenotype expression. This case expands the clinical and genetic spectrum of the rare adult-onset NPC disease phenotype.

  9. A bovine cell line that can be infected by natural sheep scrapie prions.

    Directory of Open Access Journals (Sweden)

    Anja M Oelschlegel

    Full Text Available Cell culture systems represent a crucial part in basic prion research; yet, cell lines that are susceptible to prions, especially to field isolated prions that were not adapted to rodents, are very rare. The purpose of this study was to identify and characterize a cell line that was susceptible to ruminant-derived prions and to establish a stable prion infection within it. Based on species and tissue of origin as well as PrP expression rate, we pre-selected a total of 33 cell lines that were then challenged with natural and with mouse propagated BSE or scrapie inocula. Here, we report the successful infection of a non-transgenic bovine cell line, a sub-line of the bovine kidney cell line MDBK, with natural sheep scrapie prions. This cell line retained the scrapie infection for more than 200 passages. Selective cloning resulted in cell populations with increased accumulation of PrPres, although this treatment was not mandatory for retaining the infection. The infection remained stable, even under suboptimal culture conditions. The resulting infectivity of the cells was confirmed by mouse bioassay (Tgbov mice, Tgshp mice. We believe that PES cells used together with other prion permissive cell lines will prove a valuable tool for ongoing efforts to understand and defeat prions and prion diseases.

  10. Inactivation of animal and human prions by hydrogen peroxide gas plasma sterilization.

    Science.gov (United States)

    Rogez-Kreuz, C; Yousfi, R; Soufflet, C; Quadrio, I; Yan, Z-X; Huyot, V; Aubenque, C; Destrez, P; Roth, K; Roberts, C; Favero, M; Clayette, P

    2009-08-01

    Prions cause various transmissible spongiform encephalopathies. They are highly resistant to the chemical and physical decontamination and sterilization procedures routinely used in healthcare facilities. The decontamination procedures recommended for the inactivation of prions are often incompatible with the materials used in medical devices. In this study, we evaluated the use of low-temperature hydrogen peroxide gas plasma sterilization systems and other instrument-processing procedures for inactivating human and animal prions. We provide new data concerning the efficacy of hydrogen peroxide against prions from in vitro or in vivo tests, focusing on the following: the efficiency of hydrogen peroxide sterilization and possible interactions with enzymatic or alkaline detergents, differences in the efficiency of this treatment against different prion strains, and the influence of contaminating lipids. We found that gaseous hydrogen peroxide decreased the infectivity of prions and/or the level of the protease-resistant form of the prion protein on different surface materials. However, the efficiency of this treatment depended strongly on the concentration of hydrogen peroxide and the delivery system used in medical devices, because these effects were more pronounced for the new generation of Sterrad technology. The Sterrad NX sterilizer is 100% efficient (0% transmission and no protease-resistant form of the prion protein signal detected on the surface of the material for the mouse-adapted bovine spongiform encephalopathy 6PB1 strain and a variant Creutzfeldt-Jakob disease strain). Thus, gaseous or vaporized hydrogen peroxide efficiently inactivates prions on the surfaces of medical devices.

  11. Prion pathogenesis is unaltered in the absence of SIRPα-mediated "don't-eat-me" signaling.

    Directory of Open Access Journals (Sweden)

    Mario Nuvolone

    Full Text Available Prion diseases are neurodegenerative conditions caused by misfolding of the prion protein, leading to conspicuous neuronal loss and intense microgliosis. Recent experimental evidence point towards a protective role of microglia against prion-induced neurodegeneration, possibly through elimination of prion-containing apoptotic bodies. The molecular mechanisms by which microglia recognize and eliminate apoptotic cells in the context of prion diseases are poorly defined. Here we investigated the possible involvement of signal regulatory protein α (SIRPα, a key modulator of host cell phagocytosis; SIRPα is encoded by the Sirpa gene that is genetically linked to the prion gene Prnp. We found that Sirpa transcripts are highly enriched in microglia cells within the brain. However, Sirpa mRNA levels were essentially unaltered during the course of experimental prion disease despite upregulation of other microglia-enriched transcripts. To study the involvement of SIRPα in prion pathogenesis in vivo, mice expressing a truncated SIRPα protein unable to inhibit phagocytosis were inoculated with rodent-adapted scrapie prions of the 22L strain. Homozygous and heterozygous Sirpa mutants and wild-type mice experienced similar incubation times after inoculation with either of two doses of 22L prions. Moreover, the extent of neuronal loss, microgliosis and abnormal prion protein accumulation was not significantly affected by Sirpa genotypes. Collectively, these data indicate that SIRPα-mediated phagocytosis is not a major determinant in prion disease pathogenesis. It will be important to search for additional candidates mediating prion phagocytosis, as this mechanism may represent an important target of antiprion therapies.

  12. Determining the relative susceptibility of four prion protein genotypes to atypical scrapie

    Science.gov (United States)

    Atypical scrapie is a sheep prion (PrPSc) disease whose epidemiology is consistent with a sporadic origin and is associated with specific polymorphisms of the normal cellular prion protein (PrPC). We describe a mass spectrometry-based method of detecting and quantifying the polymorphisms of sheep P...

  13. Molecular dynamics study of the dominant-negative E219K polymorphism in human prion protein

    NARCIS (Netherlands)

    Jahandideh, Samad; Jamalan, Mostafa; Faridounnia, Maryam|info:eu-repo/dai/nl/338666923

    2015-01-01

    Human prion diseases are associated with misfolding or aggregation of the Human Prion Protein (HuPrP). Missense mutations in the HuPrP gene, contribute to conversion of HuPrP(C) to HuPrP(Sc) and amyloid formation. Based on our previous comprehensive study, three missense mutations, from two

  14. Nonparametric modeling and analysis of association between Huntington's disease onset and CAG repeats.

    Science.gov (United States)

    Ma, Yanyuan; Wang, Yuanjia

    2014-04-15

    Huntington's disease (HD) is a neurodegenerative disorder with a dominant genetic mode of inheritance caused by an expansion of CAG repeats on chromosome 4. Typically, a longer sequence of CAG repeat length is associated with increased risk of experiencing earlier onset of HD. Previous studies of the association between HD onset age and CAG length have favored a logistic model, where the CAG repeat length enters the mean and variance components of the logistic model in a complex exponential-linear form. To relax the parametric assumption of the exponential-linear association to the true HD onset distribution, we propose to leave both mean and variance functions of the CAG repeat length unspecified and perform semiparametric estimation in this context through a local kernel and backfitting procedure. Motivated by including family history of HD information available in the family members of participants in the Cooperative Huntington's Observational Research Trial (COHORT), we develop the methodology in the context of mixture data, where some subjects have a positive probability of being risk free. We also allow censoring on the age at onset of disease and accommodate covariates other than the CAG length. We study the theoretical properties of the proposed estimator and derive its asymptotic distribution. Finally, we apply the proposed methods to the COHORT data to estimate the HD onset distribution using a group of study participants and the disease family history information available on their family members. Copyright © 2013 John Wiley & Sons, Ltd.

  15. The Etiology and Clinical Course of Chronic Pancreatitis in Children With Early Onset of the Disease.

    Science.gov (United States)

    Wejnarska, Karolina; Kolodziejczyk, Elwira; Wertheim-Tysarowska, Katarzyna; Dadalski, Maciej; Sobczynska-Tomaszewska, Agnieszka; Kierkus, Jarosław; Bal, Jerzy; Rygiel, Agnieszka Magdalena; Oracz, Grzegorz

    2016-12-01

    The etiological factors of chronic pancreatitis (CP) in children differ from those in adults. To date, no study has assessed the clinical course of CP in young children. The aim of our study was to evaluate the etiology and the clinical presentation of the disease in children with disease onset before 5 years of age in comparison to later-onset of CP. A total of 276 children with CP, hospitalized from 1988 to 2015, were enrolled in the study. Data on presentation, diagnostic findings, and treatment were reviewed. Two hundred sixty patients were screened for the most frequent mutations in major pancreatitis-associated genes, such as cationic trypsinogen/serine protease gene (PRSS1), serine protease inhibitor, Kazal type 1 gene (SPINK1), and cystic fibrosis transmembrane conductance regulator gene (CFTR). The disease onset before the age of 5 years occurred in 51 patients (group 1), the later onset in 225 patients (group 2). We found no significant discrepancies in distribution of the etiological factors between groups. The youngest patients (group 1) had more pancreatitis episodes (median 5.0 vs 3.00; P pancreatic function. Early- and later-onset pancreatitis have similar etiological factors with predominance of gene mutations. The most frequent mutation found was p.Asn34Ser (N34S) in SPINK1 gene. The clinical presentation differed in number of pancreatitis episodes and frequency of surgeries.

  16. Effects of age of onset on disease characteristics in non-segmental vitiligo.

    Science.gov (United States)

    Solak, Berna; Dikicier, Bahar Sevimli; Cosansu, Nur C; Erdem, Teoman

    2017-03-01

    In patients with vitiligo, the clinical and laboratory features of the disease may vary according to time of onset. This is addressed in the literature by only a few studies with conflicting results. The aim of this study was to determine the demographic and clinical features of patients with non-segmental vitiligo and to establish the association between vitiligo and autoimmune diseases with a focus on time of disease onset. A total of 224 vitiligo patients for whom complete medical records were available were evaluated retrospectively. Demographic data, scores on the Vitiligo Area Score Index (VASI), clinical features, vitiligo disease activity, repigmentation status, presence of any accompanying autoimmune disease, antinuclear antibody (ANA) titers, serum levels of glucose, thyroid-stimulating hormone (TSH), thyroxine (T4) hormone, anti-thyroid peroxidase (anti-TPO), and anti-thyroglobulin (anti-TG) were recorded. The prevalence of halo nevi was significantly higher (P vitiligo. © 2017 The International Society of Dermatology.

  17. Encephalopathy for prions

    International Nuclear Information System (INIS)

    Colegial, Carlos; Silva, Federico; Perez, Carlos

    1999-01-01

    The encephalopathy spongyform for prions are neuro degenerative illness that can be sporadic or transferable, for infectious or hereditary mechanisms. Their investigation has outlined enormous challenges and in the historical journey in search of its cause two doctors have received the Nobel prize of medicine Carleton Gajdusek, for its works in New Guinea where it described the infectious transmission for cannibalistic rites that it took to studies of experimental transmission in chimpanzees and to its theory of the slow virus; later on, Stanley Prusiner developed its experimental works in hamsters, throwing to the neurobiology the prion concept (particles infectious proteinaceous not viral). The paper narrates the history of a patient that died in the San Juan de Dios of Bogota Hospital by cause of this prionic illness and clinical and pathological aspects are discussed

  18. Prion Protein Self Interactions; a gateway to novel therapeutic strategies?

    NARCIS (Netherlands)

    Rigter, A.; Langeveld, J.P.M.; Zijderveld, van F.G.; Bossers, A.

    2010-01-01

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are fatal neurodegenerative disorders and include among others Creutzfeldt–Jakob disease in humans, bovine spongiform encephalopathy (BSE) in cattle, and scrapie in sheep. The central event in disease development in TSEs is the

  19. Oromandibular Dyskinesia as the Initial Manifestation of Late-Onset Huntington Disease

    Directory of Open Access Journals (Sweden)

    Dong-Seok Oh

    2011-10-01

    Full Text Available Huntington’s disease (HD is a neurodegenerative disorder characterized by a triad of choreoathetosis, dementia and dominant inheritance. The cause of HD is an expansion of CAG trinucleotide repeats in the HD gene. Typical age at onset of symptoms is in the 40s, but the disorder can manifest at any time. Late-onset (≥ 60 years HD is clinically different from other adult or juvenile onset HD and characterized by mild motor problem as the initial symptoms, shorter disease duration, frequent lack of family history, and relatively low CAG repeats expansion. We report a case of an 80-year-old female with oromandibular dyskinesia as an initial manifestation of HD and 40 CAG repeats.

  20. Methods and Protocols for Developing Prion Vaccines.

    Science.gov (United States)

    Marciniuk, Kristen; Taschuk, Ryan; Napper, Scott

    2016-01-01

    Prion diseases denote a distinct form of infectivity that is based in the misfolding of a self-protein (PrP(C)) into a pathological, infectious conformation (PrP(Sc)). Efforts to develop vaccines for prion diseases have been complicated by the potential dangers that are associated with induction of immune responses against a self-protein. As a consequence, there is considerable appeal for vaccines that specifically target the misfolded prion conformation. Such conformation-specific immunotherapy is made possible through the identification of vaccine targets (epitopes) that are exclusively presented as a consequence of misfolding. An immune response directed against these targets, termed disease-specific epitopes (DSEs), has the potential to spare the function of the native form of the protein while clearing, or neutralizing, the infectious isomer. Although identification of DSEs represents a critical first step in the induction of conformation-specific immune responses, substantial efforts are required to translate these targets into functional vaccines. Due to the poor immunogenicity that is inherent to self-proteins, and that is often associated with short peptides, substantial efforts are required to overcome tolerance-to-self and maximize the resultant immune response following DSE-based immunization. This often includes optimization of target sequences in terms of immunogenicity and development of effective formulation and delivery strategies for the associated peptides. Further, these vaccines must satisfy additional criteria from perspectives of specificity (PrP(C) vs. PrP(Sc)) and safety (antibody-induced template-driven misfolding of PrP(C)). The emphasis of this report is on the steps required to translate DSEs into prion vaccines and subsequent evaluation of the resulting immune responses.

  1. Structural determinants of phenotypic diversity and replication rate of human prions.

    Directory of Open Access Journals (Sweden)

    Jiri G Safar

    2015-04-01

    Full Text Available The infectious pathogen responsible for prion diseases is the misfolded, aggregated form of the prion protein, PrPSc. In contrast to recent progress in studies of laboratory rodent-adapted prions, current understanding of the molecular basis of human prion diseases and, especially, their vast phenotypic diversity is very limited. Here, we have purified proteinase resistant PrPSc aggregates from two major phenotypes of sporadic Creutzfeldt-Jakob disease (sCJD, determined their conformational stability and replication tempo in vitro, as well as characterized structural organization using recently emerged approaches based on hydrogen/deuterium (H/D exchange coupled with mass spectrometry. Our data clearly demonstrate that these phenotypically distant prions differ in a major way with regard to their structural organization, both at the level of the polypeptide backbone (as indicated by backbone amide H/D exchange data as well as the quaternary packing arrangements (as indicated by H/D exchange kinetics for histidine side chains. Furthermore, these data indicate that, in contrast to previous observations on yeast and some murine prion strains, the replication rate of sCJD prions is primarily determined not by conformational stability but by specific structural features that control the growth rate of prion protein aggregates.

  2. Maintaining Intestinal Health: The Genetics and Immunology of Very Early Onset Inflammatory Bowel DiseaseSummary

    Directory of Open Access Journals (Sweden)

    Judith R. Kelsen

    2015-09-01

    Full Text Available Inflammatory bowel disease (IBD is a multifactoral disease caused by dysregulated immune responses to commensal or pathogenic microbes in the intestine, resulting in chronic intestinal inflammation. An emerging population of patients with IBD younger than 5 years of age represent a unique form of disease, termed very early onset IBD (VEO-IBD, which is phenotypically and genetically distinct from older-onset IBD. VEO-IBD is associated with increased disease severity, aggressive progression, and poor responsiveness to most conventional therapies. Further investigation into the causes and pathogenesis of VEO-IBD will help improve treatment strategies and may lead to a better understanding of the mechanisms that are essential to maintain intestinal health or provoke the development of targeted therapeutic strategies to limit intestinal inflammation and promote tissue repair. Here, we discuss the phenotypic nature of VEO-IBD, the recent identification of novel gene variants associated with disease, and functional immunologic studies interrogating the contribution of specific genetic variants to the development of chronic intestinal inflammation. Keywords: Inflammatory Bowel Disease, Very Early Onset Inflammatory Bowel Disease, Whole Exome Sequencing, Mucosal Immunology

  3. Early onset of coronary artery disease after prenatal exposure to the Dutch famine

    NARCIS (Netherlands)

    Painter, Rebecca C.; de Rooij, Susanne R.; Bossuyt, Patrick M.; Simmers, Timothy A.; Osmond, Clive; Barker, David J.; Bleker, Otto P.; Roseboom, Tessa J.

    2006-01-01

    BACKGROUND: Limited evidence suggests that maternal undernutrition at the time of conception is associated with increased cardiovascular disease risk in adult offspring. OBJECTIVE: We investigated whether persons conceived during the Dutch famine of World War II had an early onset of coronary artery

  4. Late-onset Tay-Sachs disease: adverse effects of medications and implications for treatment.

    Science.gov (United States)

    Shapiro, B E; Hatters-Friedman, S; Fernandes-Filho, J A; Anthony, K; Natowicz, M R

    2006-09-12

    The authors conducted a retrospective and brief prospective study of adverse effects of approximately 350 medications in 44 adults with late-onset Tay-Sachs disease (LOTS). Some medications were relatively safe, whereas others, particularly haloperidol, risperidone, and chlorpromazine, were associated with neurologic worsening.

  5. CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion

    Science.gov (United States)

    Lee, J.-M.; Ramos, E.M.; Lee, J.-H.; Gillis, T.; Mysore, J.S.; Hayden, M.R.; Warby, S.C.; Morrison, P.; Nance, M.; Ross, C.A.; Margolis, R.L.; Squitieri, F.; Orobello, S.; Di Donato, S.; Gomez-Tortosa, E.; Ayuso, C.; Suchowersky, O.; Trent, R.J.A.; McCusker, E.; Novelletto, A.; Frontali, M.; Jones, R.; Ashizawa, T.; Frank, S.; Saint-Hilaire, M.H.; Hersch, S.M.; Rosas, H.D.; Lucente, D.; Harrison, M.B.; Zanko, A.; Abramson, R.K.; Marder, K.; Sequeiros, J.; Paulsen, J.S.; Landwehrmeyer, G.B.; Myers, R.H.; MacDonald, M.E.; Durr, Alexandra; Rosenblatt, Adam; Frati, Luigi; Perlman, Susan; Conneally, Patrick M.; Klimek, Mary Lou; Diggin, Melissa; Hadzi, Tiffany; Duckett, Ayana; Ahmed, Anwar; Allen, Paul; Ames, David; Anderson, Christine; Anderson, Karla; Anderson, Karen; Andrews, Thomasin; Ashburner, John; Axelson, Eric; Aylward, Elizabeth; Barker, Roger A.; Barth, Katrin; Barton, Stacey; Baynes, Kathleen; Bea, Alexandra; Beall, Erik; Beg, Mirza Faisal; Beglinger, Leigh J.; Biglan, Kevin; Bjork, Kristine; Blanchard, Steve; Bockholt, Jeremy; Bommu, Sudharshan Reddy; Brossman, Bradley; Burrows, Maggie; Calhoun, Vince; Carlozzi, Noelle; Chesire, Amy; Chiu, Edmond; Chua, Phyllis; Connell, R.J.; Connor, Carmela; Corey-Bloom, Jody; Craufurd, David; Cross, Stephen; Cysique, Lucette; Santos, Rachelle Dar; Davis, Jennifer; Decolongon, Joji; DiPietro, Anna; Doucette, Nicholas; Downing, Nancy; Dudler, Ann; Dunn, Steve; Ecker, Daniel; Epping, Eric A.; Erickson, Diane; Erwin, Cheryl; Evans, Ken; Factor, Stewart A.; Farias, Sarah; Fatas, Marta; Fiedorowicz, Jess; Fullam, Ruth; Furtado, Sarah; Garde, Monica Bascunana; Gehl, Carissa; Geschwind, Michael D.; Goh, Anita; Gooblar, Jon; Goodman, Anna; Griffith, Jane; Groves, Mark; Guttman, Mark; Hamilton, Joanne; Harrington, Deborah; Harris, Greg; Heaton, Robert K.; Helmer, Karl; Henneberry, Machelle; Hershey, Tamara; Herwig, Kelly; Howard, Elizabeth; Hunter, Christine; Jankovic, Joseph; Johnson, Hans; Johnson, Arik; Jones, Kathy; Juhl, Andrew; Kim, Eun Young; Kimble, Mycah; King, Pamela; Klimek, Mary Lou; Klöppel, Stefan; Koenig, Katherine; Komiti, Angela; Kumar, Rajeev; Langbehn, Douglas; Leavitt, Blair; Leserman, Anne; Lim, Kelvin; Lipe, Hillary; Lowe, Mark; Magnotta, Vincent A.; Mallonee, William M.; Mans, Nicole; Marietta, Jacquie; Marshall, Frederick; Martin, Wayne; Mason, Sarah; Matheson, Kirsty; Matson, Wayne; Mazzoni, Pietro; McDowell, William; Miedzybrodzka, Zosia; Miller, Michael; Mills, James; Miracle, Dawn; Montross, Kelsey; Moore, David; Mori, Sasumu; Moser, David J.; Moskowitz, Carol; Newman, Emily; Nopoulos, Peg; Novak, Marianne; O'Rourke, Justin; Oakes, David; Ondo, William; Orth, Michael; Panegyres, Peter; Pease, Karen; Perlman, Susan; Perlmutter, Joel; Peterson, Asa; Phillips, Michael; Pierson, Ron; Potkin, Steve; Preston, Joy; Quaid, Kimberly; Radtke, Dawn; Rae, Daniela; Rao, Stephen; Raymond, Lynn; Reading, Sarah; Ready, Rebecca; Reece, Christine; Reilmann, Ralf; Reynolds, Norm; Richardson, Kylie; Rickards, Hugh; Ro, Eunyoe; Robinson, Robert; Rodnitzky, Robert; Rogers, Ben; Rosenblatt, Adam; Rosser, Elisabeth; Rosser, Anne; Price, Kathy; Price, Kathy; Ryan, Pat; Salmon, David; Samii, Ali; Schumacher, Jamy; Schumacher, Jessica; Sendon, Jose Luis Lópenz; Shear, Paula; Sheinberg, Alanna; Shpritz, Barnett; Siedlecki, Karen; Simpson, Sheila A.; Singer, Adam; Smith, Jim; Smith, Megan; Smith, Glenn; Snyder, Pete; Song, Allen; Sran, Satwinder; Stephan, Klaas; Stober, Janice; Sü?muth, Sigurd; Suter, Greg; Tabrizi, Sarah; Tempkin, Terry; Testa, Claudia; Thompson, Sean; Thomsen, Teri; Thumma, Kelli; Toga, Arthur; Trautmann, Sonja; Tremont, Geoff; Turner, Jessica; Uc, Ergun; Vaccarino, Anthony; van Duijn, Eric; Van Walsem, Marleen; Vik, Stacie; Vonsattel, Jean Paul; Vuletich, Elizabeth; Warner, Tom; Wasserman, Paula; Wassink, Thomas; Waterman, Elijah; Weaver, Kurt; Weir, David; Welsh, Claire; Werling-Witkoske, Chris; Wesson, Melissa; Westervelt, Holly; Weydt, Patrick; Wheelock, Vicki; Williams, Kent; Williams, Janet; Wodarski, Mary; Wojcieszek, Joanne; Wood, Jessica; Wood-Siverio, Cathy; Wu, Shuhua; Yastrubetskaya, Olga; de Yebenes, Justo Garcia; Zhao, Yong Qiang; Zimbelman, Janice; Zschiegner, Roland; Aaserud, Olaf; Abbruzzese, Giovanni; Andrews, Thomasin; Andrich, Jurgin; Antczak, Jakub; Arran, Natalie; Artiga, Maria J. Saiz; Bachoud-Lévi, Anne-Catherine; Banaszkiewicz, Krysztof; di Poggio, Monica Bandettini; Bandmann, Oliver; Barbera, Miguel A.; Barker, Roger A.; Barrero, Francisco; Barth, Katrin; Bas, Jordi; Beister, Antoine; Bentivoglio, Anna Rita; Bertini, Elisabetta; Biunno, Ida; Bjørgo, Kathrine; Bjørnevoll, Inga; Bohlen, Stefan; Bonelli, Raphael M.; Bos, Reineke; Bourne, Colin; Bradbury, Alyson; Brockie, Peter; Brown, Felicity; Bruno, Stefania; Bryl, Anna; Buck, Andrea; Burg, Sabrina; Burgunder, Jean-Marc; Burns, Peter; Burrows, Liz; Busquets, Nuria; Busse, Monica; Calopa, Matilde; Carruesco, Gemma T.; Casado, Ana Gonzalez; Catena, Judit López; Chu, Carol; Ciesielska, Anna; Clapton, Jackie; Clayton, Carole; Clenaghan, Catherine; Coelho, Miguel; Connemann, Julia; Craufurd, David; Crooks, Jenny; Cubillo, Patricia Trigo; Cubo, Esther; Curtis, Adrienne; De Michele, Giuseppe; De Nicola, A.; de Souza, Jenny; de Weert, A. Marit; de Yébenes, Justo Garcia; Dekker, M.; Descals, A. Martínez; Di Maio, Luigi; Di Pietro, Anna; Dipple, Heather; Dose, Matthias; Dumas, Eve M.; Dunnett, Stephen; Ecker, Daniel; Elifani, F.; Ellison-Rose, Lynda; Elorza, Marina D.; Eschenbach, Carolin; Evans, Carole; Fairtlough, Helen; Fannemel, Madelein; Fasano, Alfonso; Fenollar, Maria; Ferrandes, Giovanna; Ferreira, Jaoquim J.; Fillingham, Kay; Finisterra, Ana Maria; Fisher, K.; Fletcher, Amy; Foster, Jillian; Foustanos, Isabella; Frech, Fernando A.; Fullam, Robert; Fullham, Ruth; Gago, Miguel; García, RocioGarcía-Ramos; García, Socorro S.; Garrett, Carolina; Gellera, Cinzia; Gill, Paul; Ginestroni, Andrea; Golding, Charlotte; Goodman, Anna; Gørvell, Per; Grant, Janet; Griguoli, A.; Gross, Diana; Guedes, Leonor; BascuñanaGuerra, Monica; Guerra, Maria Rosalia; Guerrero, Rosa; Guia, Dolores B.; Guidubaldi, Arianna; Hallam, Caroline; Hamer, Stephanie; Hammer, Kathrin; Handley, Olivia J.; Harding, Alison; Hasholt, Lis; Hedge, Reikha; Heiberg, Arvid; Heinicke, Walburgis; Held, Christine; Hernanz, Laura Casas; Herranhof, Briggitte; Herrera, Carmen Durán; Hidding, Ute; Hiivola, Heli; Hill, Susan; Hjermind, Lena. E.; Hobson, Emma; Hoffmann, Rainer; Holl, Anna Hödl; Howard, Liz; Hunt, Sarah; Huson, Susan; Ialongo, Tamara; Idiago, Jesus Miguel R.; Illmann, Torsten; Jachinska, Katarzyna; Jacopini, Gioia; Jakobsen, Oda; Jamieson, Stuart; Jamrozik, Zygmunt; Janik, Piotr; Johns, Nicola; Jones, Lesley; Jones, Una; Jurgens, Caroline K.; Kaelin, Alain; Kalbarczyk, Anna; Kershaw, Ann; Khalil, Hanan; Kieni, Janina; Klimberg, Aneta; Koivisto, Susana P.; Koppers, Kerstin; Kosinski, Christoph Michael; Krawczyk, Malgorzata; Kremer, Berry; Krysa, Wioletta; Kwiecinski, Hubert; Lahiri, Nayana; Lambeck, Johann; Lange, Herwig; Laver, Fiona; Leenders, K.L.; Levey, Jamie; Leythaeuser, Gabriele; Lezius, Franziska; Llesoy, Joan Roig; Löhle, Matthias; López, Cristobal Diez-Aja; Lorenza, Fortuna; Loria, Giovanna; Magnet, Markus; Mandich, Paola; Marchese, Roberta; Marcinkowski, Jerzy; Mariotti, Caterina; Mariscal, Natividad; Markova, Ivana; Marquard, Ralf; Martikainen, Kirsti; Martínez, Isabel Haro; Martínez-Descals, Asuncion; Martino, T.; Mason, Sarah; McKenzie, Sue; Mechi, Claudia; Mendes, Tiago; Mestre, Tiago; Middleton, Julia; Milkereit, Eva; Miller, Joanne; Miller, Julie; Minster, Sara; Möller, Jens Carsten; Monza, Daniela; Morales, Blas; Moreau, Laura V.; Moreno, Jose L. López-Sendón; Münchau, Alexander; Murch, Ann; Nielsen, Jørgen E.; Niess, Anke; Nørremølle, Anne; Novak, Marianne; O'Donovan, Kristy; Orth, Michael; Otti, Daniela; Owen, Michael; Padieu, Helene; Paganini, Marco; Painold, Annamaria; Päivärinta, Markku; Partington-Jones, Lucy; Paterski, Laurent; Paterson, Nicole; Patino, Dawn; Patton, Michael; Peinemann, Alexander; Peppa, Nadia; Perea, Maria Fuensanta Noguera; Peterson, Maria; Piacentini, Silvia; Piano, Carla; Càrdenas, Regina Pons i; Prehn, Christian; Price, Kathleen; Probst, Daniela; Quarrell, Oliver; Quiroga, Purificacion Pin; Raab, Tina; Rakowicz, Maryla; Raman, Ashok; Raymond, Lucy; Reilmann, Ralf; Reinante, Gema; Reisinger, Karin; Retterstol, Lars; Ribaï, Pascale; Riballo, Antonio V.; Ribas, Guillermo G.; Richter, Sven; Rickards, Hugh; Rinaldi, Carlo; Rissling, Ida; Ritchie, Stuart; Rivera, Susana Vázquez; Robert, Misericordia Floriach; Roca, Elvira; Romano, Silvia; Romoli, Anna Maria; Roos, Raymond A.C.; Røren, Niini; Rose, Sarah; Rosser, Elisabeth; Rosser, Anne; Rossi, Fabiana; Rothery, Jean; Rudzinska, Monika; Ruíz, Pedro J. García; Ruíz, Belan Garzon; Russo, Cinzia Valeria; Ryglewicz, Danuta; Saft, Carston; Salvatore, Elena; Sánchez, Vicenta; Sando, Sigrid Botne; Šašinková, Pavla; Sass, Christian; Scheibl, Monika; Schiefer, Johannes; Schlangen, Christiane; Schmidt, Simone; Schöggl, Helmut; Schrenk, Caroline; Schüpbach, Michael; Schuierer, Michele; Sebastián, Ana Rojo; Selimbegovic-Turkovic, Amina; Sempolowicz, Justyna; Silva, Mark; Sitek, Emilia; Slawek, Jaroslaw; Snowden, Julie; Soleti, Francesco; Soliveri, Paola; Sollom, Andrea; Soltan, Witold; Sorbi, Sandro; Sorensen, Sven Asger; Spadaro, Maria; Städtler, Michael; Stamm, Christiane; Steiner, Tanja; Stokholm, Jette; Stokke, Bodil; Stopford, Cheryl; Storch, Alexander; Straßburger, Katrin; Stubbe, Lars; Sulek, Anna; Szczudlik, Andrzej; Tabrizi, Sarah; Taylor, Rachel; Terol, Santiago Duran-Sindreu; Thomas, Gareth; Thompson, Jennifer; Thomson, Aileen; Tidswell, Katherine; Torres, Maria M. Antequera; Toscano, Jean; Townhill, Jenny; Trautmann, Sonja; Tucci, Tecla; Tuuha, Katri; Uhrova, Tereza; Valadas, Anabela; van Hout, Monique S.E.; van Oostrom, J.C.H.; van Vugt, Jeroen P.P.; vanm, Walsem Marleen R.; Vandenberghe, Wim; Verellen-Dumoulin, Christine; Vergara, Mar Ruiz; Verstappen, C.C.P.; Verstraelen, Nichola; Viladrich, Celia Mareca; Villanueva, Clara; Wahlström, Jan; Warner, Thomas; Wehus, Raghild; Weindl, Adolf; Werner, Cornelius J.; Westmoreland, Leann; Weydt, Patrick; Wiedemann, Alexandra; Wild, Edward; Wild, Sue; Witjes-Ané, Marie-Noelle; Witkowski, Grzegorz; Wójcik, Magdalena; Wolz, Martin; Wolz, Annett; Wright, Jan; Yardumian, Pam; Yates, Shona; Yudina, Elizaveta; Zaremba, Jacek; Zaugg, Sabine W.; Zdzienicka, Elzbieta; Zielonka, Daniel; Zielonka, Euginiusz; Zinzi, Paola; Zittel, Simone; Zucker, Birgrit; Adams, John; Agarwal, Pinky; Antonijevic, Irina; Beck, Christopher; Chiu, Edmond; Churchyard, Andrew; Colcher, Amy; Corey-Bloom, Jody; Dorsey, Ray; Drazinic, Carolyn; Dubinsky, Richard; Duff, Kevin; Factor, Stewart; Foroud, Tatiana; Furtado, Sarah; Giuliano, Joe; Greenamyre, Timothy; Higgins, Don; Jankovic, Joseph; Jennings, Dana; Kang, Un Jung; Kostyk, Sandra; Kumar, Rajeev; Leavitt, Blair; LeDoux, Mark; Mallonee, William; Marshall, Frederick; Mohlo, Eric; Morgan, John; Oakes, David; Panegyres, Peter; Panisset, Michel; Perlman, Susan; Perlmutter, Joel; Quaid, Kimberly; Raymond, Lynn; Revilla, Fredy; Robertson, Suzanne; Robottom, Bradley; Sanchez-Ramos, Juan; Scott, Burton; Shannon, Kathleen; Shoulson, Ira; Singer, Carlos; Tabbal, Samer; Testa, Claudia; van, Kammen Dan; Vetter, Louise; Walker, Francis; Warner, John; Weiner, illiam; Wheelock, Vicki; Yastrubetskaya, Olga; Barton, Stacey; Broyles, Janice; Clouse, Ronda; Coleman, Allison; Davis, Robert; Decolongon, Joji; DeLaRosa, Jeanene; Deuel, Lisa; Dietrich, Susan; Dubinsky, Hilary; Eaton, Ken; Erickson, Diane; Fitzpatrick, Mary Jane; Frucht, Steven; Gartner, Maureen; Goldstein, Jody; Griffith, Jane; Hickey, Charlyne; Hunt, Victoria; Jaglin, Jeana; Klimek, Mary Lou; Lindsay, Pat; Louis, Elan; Loy, Clemet; Lucarelli, Nancy; Malarick, Keith; Martin, Amanda; McInnis, Robert; Moskowitz, Carol; Muratori, Lisa; Nucifora, Frederick; O'Neill, Christine; Palao, Alicia; Peavy, Guerry; Quesada, Monica; Schmidt, Amy; Segro, Vicki; Sperin, Elaine; Suter, Greg; Tanev, Kalo; Tempkin, Teresa; Thiede, Curtis; Wasserman, Paula; Welsh, Claire; Wesson, Melissa; Zauber, Elizabeth

    2012-01-01

    Objective: Age at onset of diagnostic motor manifestations in Huntington disease (HD) is strongly correlated with an expanded CAG trinucleotide repeat. The length of the normal CAG repeat allele has been reported also to influence age at onset, in interaction with the expanded allele. Due to profound implications for disease mechanism and modification, we tested whether the normal allele, interaction between the expanded and normal alleles, or presence of a second expanded allele affects age at onset of HD motor signs. Methods: We modeled natural log-transformed age at onset as a function of CAG repeat lengths of expanded and normal alleles and their interaction by linear regression. Results: An apparently significant effect of interaction on age at motor onset among 4,068 subjects was dependent on a single outlier data point. A rigorous statistical analysis with a well-behaved dataset that conformed to the fundamental assumptions of linear regression (e.g., constant variance and normally distributed error) revealed significance only for the expanded CAG repeat, with no effect of the normal CAG repeat. Ten subjects with 2 expanded alleles showed an age at motor onset consistent with the length of the larger expanded allele. Conclusions: Normal allele CAG length, interaction between expanded and normal alleles, and presence of a second expanded allele do not influence age at onset of motor manifestations, indicating that the rate of HD pathogenesis leading to motor diagnosis is determined by a completely dominant action of the longest expanded allele and as yet unidentified genetic or environmental factors. Neurology® 2012;78:690–695 PMID:22323755

  6. Can Better Management of Periodontal Disease Delay the Onset and Progression of Alzheimer's Disease?

    Science.gov (United States)

    Harding, Alice; Robinson, Sarita; Crean, StJohn; Singhrao, Sim K

    2017-01-01

    A risk factor relationship exists between periodontal disease and Alzheimer's disease (AD) via tooth loss, and improved memory following dental intervention. This links the microbial contribution from indigenous oral periodontal pathogens to the manifestation of chronic conditions, such as AD. Here, we use Porphyromonas gingivalis infection to illustrate its effect on mental health. P. gingivalis infection, in its primary sub-gingival niche, can cause polymicrobial synergy and dysbiosis. Dysbiosis describes the residency of select commensals from the oral cavity following co-aggregation around the dominant keystone pathogen, such as P. gingivalis, to gain greater virulence. The initial process involves P. gingivalis disturbing neutrophil mediated innate immune responses in the healthy gingivae and then downregulating adaptive immune cell differentiation and development to invade, and subsequently, establish new dysbiotic bacterial communities. Immune responses affect the host in general and functionally via dietary adjustments caused by tooth loss. Studies from animals orally infected with P. gingivalis confirm this bacterium can transmigrate to distant organ sites (the brain) and contribute toward peripheral and intracerebral inflammation, and compromise vascular and microvascular integrity. In another study, P. gingivalis infec