WorldWideScience

Sample records for online liquid separation

  1. Optimizing separations in online comprehensive two-dimensional liquid chromatography.

    Science.gov (United States)

    Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J

    2018-01-01

    Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.

  2. Optimizing separations in online comprehensive two‐dimensional liquid chromatography

    Science.gov (United States)

    Gargano, Andrea F.G.; Schoenmakers, Peter J.

    2017-01-01

    Abstract Online comprehensive two‐dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two‐dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two‐dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high‐molecular‐weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one‐dimensional liquid chromatography, two‐dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two‐dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two‐dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two‐dimensional liquid chromatography separations. PMID:29027363

  3. Development of an on-line mixed-mode gel liquid chromatography×reversed phase liquid chromatography method for separation of water extract from Flos Carthami.

    Science.gov (United States)

    Wang, Yu-Qing; Tang, Xu; Li, Jia-Fu; Wu, Yun-Long; Sun, Yu-Ying; Fang, Mei-Juan; Wu, Zhen; Wang, Xiu-Min; Qiu, Ying-Kun

    2017-10-13

    A novel on-line comprehensive two-dimensional liquid chromatography (2D-LC) method by coupling mixed-mode gel liquid chromatography (MMG-LC) with reversed phase liquid chromatography (RPLC) was developed. A mixture of 17 reference compounds was used to study the separation mechanism. A crude water extract of Flos Carthami was applied to evaluate the performance of the novel 2D-LC system. In the first dimension, the extract was eluted with a gradient of water/methanol over a cross-linked dextran gel Sephadex LH-20 column. Meanwhile, the advantages of size exclusion, reversed phase partition and adsorption separation mechanism were exploited before further on-line reversed phase purification on the second dimension. This novel on-line mixed-mode Sephadex LH-20×RPLC method provided higher peak resolution, sample processing ability (2.5mg) and better orthogonality (72.9%) versus RPLC×RPLC and hydrophilic interaction liquid chromatography (HILIC)×RPLC. To the best of our knowledge, this is the first report of a mixed-mode Sephadex LH-20×RPLC separation method with successful applications in on-line mode, which might be beneficial for harvesting targets from complicated medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Optimizing separations in online comprehensive two‐dimensional liquid chromatography

    OpenAIRE

    Pirok, Bob W.J.; Gargano, Andrea F.G.; Schoenmakers, Peter J.

    2017-01-01

    Abstract Online comprehensive two‐dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two‐dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two‐dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass...

  5. Application and recovery of ionic liquids in the preparative separation of four flavonoids from Rhodiola rosea by on-line three-dimensional liquid chromatography.

    Science.gov (United States)

    Ma, Shufeng; Hu, Liming; Ma, Chaoyang; Lv, Wenping; Wang, Hongxin

    2014-09-01

    A novel on-line three-dimensional liquid chromatography method was developed to separate four main flavonoids from Rhodiola rosea. Ethyl acetate/0.5 mol/L ionic liquid 1-butyl-3-methylimidazolium chloride aqueous solution was selected as the solvent system. In the first-dimension separation, the target flavonoids were entrapped and subsequently desorbed into the second-dimension high-speed countercurrent chromatographic column for separation. In the third-dimension chromatography, the residual ionic liquid in the four separated flavonoids was removed and the used ionic liquid was recovered. As a result, 35.1 mg of compound 1, 20.4 mg of compound 2, 8.5 mg of compound 3, and 10.6 mg of compound 4 were obtained from 1.53 g R. rosea extract. They were identified as rhodiosin, rhodionin, herbacetin, and kaempferol, respectively. The recovery of ionic liquid reached 99.1% of the initial amount. The results showed that this method is a powerful technology for the separation of R. rosea flavonoids and that the ionic-liquid-based solvent system has advantages over traditional solvent systems in renewable and environmentally friendly properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Isotopic nuclear reactor with on-line separation

    International Nuclear Information System (INIS)

    Liviu, Popa-Simil

    2007-01-01

    In the new reactor-waste cycle design the nuclear reactor gets features of the living beings - resembling the plants/vegetation -. The separation of waste starts inside the fuel by using the fission reaction to separate the fission products from the fuel. The fuel, which is preferred to be highly isotopic enriched, is fabricated in beads smaller than the fission product range, immersed in a gentle flowing liquid drain. If this liquid is Lead Bismuth (LBE) the fission products will be lighter, while in Sodium-Potassium (NaK) will be heavier, except for gases. This drain liquid will collect both the fission products and the collision damage, drawing them slow to give time to short lives disintegration chains to take place inside the shielded nuclear reactor area outside the reactor core in a separation unit. While the drain liquid with the fission products is outside the reactor core few choices are available: - To solidify the drain liquid freezing all elements inside and transport the metal in cryogenic conditions to a remote separation unit, or to apply a separation partitioning process online stabilizing and packing the fission products only, or a combination of these two. The radioactivity of this drain liquid is smaller than that of the actual used fuel because it represents the accumulation of a very short period (about 1 month or less) and had enough time to cool down all the short lives. The separation unit on-line with the nuclear reactor is composed of a density separation unit, followed by a phase interface concentration unit which moves out of the LBE the fission products as lighter impurities, and an electrochemical separation unit for the fission products. Further, chemical separation, stabilization processes are applied and the fission products are delivered partitioned on groups of chemical compatible products. Finally the specific waste is about 1 Kg/Gw*day, to which the stabilization products have to be added which increases this mass by 10 times

  7. Fraction transfer process in on-line comprehensive two-dimensional liquid phase separations

    Czech Academy of Sciences Publication Activity Database

    Česla, P.; Křenková, Jana

    2017-01-01

    Roč. 40, č. 1 (2017), s. 109-123 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA14-06319S Institutional support: RVO:68081715 Keywords : capillary electrophoresis * comprehensive liquid chromatography * fraction transfer * two-dimensional separations * liquid chromatography Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.557, year: 2016

  8. Sb(III) and Sb(V) separation and analytical speciation by a continuous tandem on-line separation device in connection with inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Menendez Garcia, A. [Oviedo Univ. (Spain). Dept. of Phys. and Anal. Chem.; Perez Rodriguez, M.C. [Oviedo Univ. (Spain). Dept. of Phys. and Anal. Chem.; Sanchez Uria, J.F. [Oviedo Univ. (Spain). Dept. of Phys. and Anal. Chem.; Sanz-Medel, A. [Oviedo Univ. (Spain). Dept. of Phys. and Anal. Chem.

    1995-09-01

    A sensitive, precise and automated non-chromatographic method for Sb(III) and Sb(V) analytical speciation based on a continuous tandem on-line separation device in connection with inductively coupled plasma-atomic emission (ICP-AES) detection is proposed. Two on-line successive separation steps are included into this method: a continuous liquid-liquid extraction of Sb(III) with ammonium pyrrolidine dithiocarbamate (APDC) into methylisobuthylketone (MIBK), followed by direct stibine generation from the organic phase. Both separation steps are carried out in a continuous mode and on-line with the ICP-AES detector. Optimization of experimental conditions for the tandem separation and ICP-AES detection are investigated in detail. Detection limits for Sb(III) were 3 ng.mL{sup -1} and for Sb(V) 8 ng.mL{sup -1}. Precisions observed are in the range {+-} 5%. The proposed methodology has been applied to Sb(III) and Sb(V) speciation in sea-water samples. (orig.)

  9. Magnetically Enhanced Solid-Liquid Separation

    Science.gov (United States)

    Rey, C. M.; Keller, K.; Fuchs, B.

    2005-07-01

    DuPont is developing an entirely new method of solid-liquid filtration involving the use of magnetic fields and magnetic field gradients. The new hybrid process, entitled Magnetically Enhanced Solid-Liquid Separation (MESLS), is designed to improve the de-watering kinetics and reduce the residual moisture content of solid particulates mechanically separated from liquid slurries. Gravitation, pressure, temperature, centrifugation, and fluid dynamics have dictated traditional solid-liquid separation for the past 50 years. The introduction of an external field (i.e. the magnetic field) offers the promise to manipulate particle behavior in an entirely new manner, which leads to increased process efficiency. Traditional solid-liquid separation typically consists of two primary steps. The first is a mechanical step in which the solid particulate is separated from the liquid using e.g. gas pressure through a filter membrane, centrifugation, etc. The second step is a thermal drying process, which is required due to imperfect mechanical separation. The thermal drying process is over 100-200 times less energy efficient than the mechanical step. Since enormous volumes of materials are processed each year, more efficient mechanical solid-liquid separations can be leveraged into dramatic reductions in overall energy consumption by reducing downstream drying requirements have a tremendous impact on energy consumption. Using DuPont's MESLS process, initial test results showed four very important effects of the magnetic field on the solid-liquid filtration process: 1) reduction of the time to reach gas breakthrough, 2) less loss of solid into the filtrate, 3) reduction of the (solids) residual moisture content, and 4) acceleration of the de-watering kinetics. These test results and their potential impact on future commercial solid-liquid filtration is discussed. New applications can be found in mining, chemical and bioprocesses.

  10. Effect of geometric parameters of liquid-gas separator units on phase separation performance

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Songping; Chen, Xueqing; Chen, Ying [Guangdong University of Technology, Seoul (China); Yang, Zhen [Tsinghua University, Beijing (China)

    2015-07-15

    Five liquid-gas separator units were designed and constructed based on a new concept of a validated high-performance condenser. Each separator unit consists of two united T-junctions and an apertured baffle. The separator units have different header diameters or different baffles with different diameters of the liquid-gas separation hole. The phase separation characteristics of the units were investigated at inlet air superficial velocities from 1.0m/s to 33.0m/s and water superficial velocities from 0.0015 m/s to 0..50 m/s. The experimental results showed that the liquid height, liquid flow rate through the separation hole, and liquid separation efficiency increased with increased header diameter and decreased diameter of the separation hole. The geometric structures of the separator units affected the phase separation characteristics by influencing the liquid height in the header and the liquid flow rate through the separation hole.

  11. Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: Two-dimensional liquid chromatography-mass spectrometry vs. liquid chromatography-trapped-ion-mobility-mass spectrometry.

    Science.gov (United States)

    Baglai, Anna; Gargano, Andrea F G; Jordens, Jan; Mengerink, Ynze; Honing, Maarten; van der Wal, Sjoerd; Schoenmakers, Peter J

    2017-12-29

    Recent advancements in separation science have resulted in the commercialization of multidimensional separation systems that provide higher peak capacities and, hence, enable a more-detailed characterization of complex mixtures. In particular, two powerful analytical tools are increasingly used by analytical scientists, namely online comprehensive two-dimensional liquid chromatography (LC×LC, having a second-dimension separation in the liquid phase) and liquid chromatography-ion mobility-spectrometry (LC-IMS, second dimension separation in the gas phase). The goal of the current study was a general assessment of the liquid-chromatography-trapped-ion-mobility-mass spectrometry (LC-TIMS-MS) and comprehensive two-dimensional liquid chromatography-mass spectrometry (LC×LC-MS) platforms for untargeted lipid mapping in human plasma. For the first time trapped-ion-mobility spectrometry (TIMS) was employed for the separation of the major lipid classes and ion-mobility-derived collision-cross-section values were determined for a number of lipid standards. The general effects of a number of influencing parameters have been inspected and possible directions for improvements are discussed. We aimed to provide a general indication and practical guidelines for the analyst to choose an efficient multidimensional separation platform according to the particular requirements of the application. Analysis time, orthogonality, peak capacity, and an indicative measure for the resolving power are discussed as main characteristics for multidimensional separation systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Ionic Liquid-Liquid Chromatography: A New General Purpose Separation Methodology.

    Science.gov (United States)

    Brown, Leslie; Earle, Martyn J; Gîlea, Manuela A; Plechkova, Natalia V; Seddon, Kenneth R

    2017-08-10

    Ionic liquids can form biphasic solvent systems with many organic solvents and water, and these solvent systems can be used in liquid-liquid separations and countercurrent chromatography. The wide range of ionic liquids that can by synthesised, with specifically tailored properties, represents a new philosophy for the separation of organic, inorganic and bio-based materials. A customised countercurrent chromatograph has been designed and constructed specifically to allow the more viscous character of ionic liquid-based solvent systems to be used in a wide variety of separations (including transition metal salts, arenes, alkenes, alkanes, bio-oils and sugars).

  13. Aerospace gas/liquid separator for terrestrial applications

    International Nuclear Information System (INIS)

    Mondt, J.F.

    1996-01-01

    The space gas/liquid separator, a key component in the heat transport subsystem of a space reactor power system, was developed to remove helium gas from liquid lithium in zero gravity. Helium is generated from lithium irradiation in the reactor core and would reach saturation in lithium after 48 hours of full power operations. The gas/liquid separator is also applicable for large commercial powerplants to deaerate the water before and after the feedwater heaters. Another terrestrial application is for industrial companies to use the gas/liquid separator and wet chemistry to remove all the gases from the air and only discharge clean air to the atmosphere. An additional application that resulted from this gas/liquid separator technology, was separating liquid carbon dioxide from nitrogen. This application is opposite from the space application in that it is removing a liquid from a gas rather than a gas from a liquid

  14. Separating particles from a liquid

    International Nuclear Information System (INIS)

    Leslie, C.M.; Watson, J.H.P.; Williams, J.A.

    1980-01-01

    An apparatus for separating particles suspended in a liquid from the liquid, is described, in which a flow of the liquid is passed through a filter bed of ferromagnetic bodies which acts as a coarse filter to trap the larger particles in the flow. The filter bed is arranged within a truncated core between the poles of an electromagnet. To cleanse the bed and flush out the trapped particles a wash liquid is passed through the bed and the electromagnet is energised to levitate the bed to allow the wash liquid to remove the particles. The liquid flow from the coarse filter can be passed to a high gradient magnetic separator at which remaining small particles in the flow are filtered magnetically. (U.K.)

  15. On-line radiometry in high-performance liquid chromatography using a storage loop

    International Nuclear Information System (INIS)

    Nieuwkerk, H.J. van.

    1987-01-01

    Difficulty with radiometric chromatography is that large measured volumes are required for accurate detections, but large volumes cause band widening and thus poor separation capacity. The solution proposed here is based on the use of a capillary storage loop for temporary residence of the column eluate. To avoid back mixing, the liquid is interspaced with a second, immiscible, phase ('spacer') so as to form a sequence of small 10-50 μl separate segments. This train passes the on-line radiometric detector to obtain a first scan of the chromatogram, called the 'direct' measurement. It then reaches the storage loop. The usual on-line UV measurement is done in the same run. The eluate cum spacer is, at a later stage, pumped through the detector at a greatly reduced flow rate to obtain the 'reversed' or 'delayed' measurement. Beta-detection is based on liquid scintillation. Accordingly, the (organic) liquid scintillant is used as the 'spacer'. In most cases it is possible to extract the analyte from the aqueous eluate into the organic phase during transport to and storage in the loop. This ensures a high counting efficiency. If the analyte is non-extractable, the counting efficiency is considerably less but the number of counts collected is still sufficient for quantitative assay, due to the extended counting time. The report is divided into 5 chapters, each dealing with a radiometric HPCL separation making use of this method. 36 figs.; 124 refs.; 16 tables

  16. Ionic Liquid-Liquid Chromatography: A New General Purpose Separation Methodology

    OpenAIRE

    Brown, Leslie; Earle, Martyn J; Gilea, Manuela; Plechkova, Natalia V; Seddon, Kenneth R

    2017-01-01

    Ionic liquids can form biphasic solvent systems with many organic solvents and water, and these solvent systems can be used in liquid-liquid separations and countercurrent chromatography. The wide range of ionic liquids that can by synthesised, with specifically tailored properties, represents a new philosophy for the separation of organic, inorganic and bio-based materials. A customised countercurrent chromatograph has been designed and constructed specifically to allow the more viscous char...

  17. Liquid-phase separation with the rotational particle separator

    NARCIS (Netherlands)

    Kemenade, van H.P.; Mondt, E.; Hendriks, A.J.A.M.; Verbeek, P.H.J.

    2003-01-01

    Recently, the rotational particle separator (RPS) was introduced as a new technique for separating solid and/or liquid particles of 0.1 m and larger from gases. In this patented technique the principles of centrifugation are exploited to enhance separation of small-sized phases and particulate

  18. On-line comprehensive two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography for preparative isolation of Peucedanum praeruptorum.

    Science.gov (United States)

    Wang, Xin-Yuan; Li, Jia-Fu; Jian, Ya-Mei; Wu, Zhen; Fang, Mei-Juan; Qiu, Ying-Kun

    2015-03-27

    A new on-line comprehensive preparative two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography (2D NPLC × RPLC) system was developed for the separation of complicated natural products. It was based on the use of a silica gel packed medium-pressure column as the first dimension and an ODS preparative HPLC column as the second dimension. The two dimensions were connected with normal-phase (NP) and reversed-phase (RP) enrichment units, involving a newly developed airflow assisted adsorption (AAA) technique. The instrument operation and the performance of this NPLC × RPLC separation method were illustrated by gram-scale isolation of ethanol extract from the roots of Peucedanum praeruptorum. In total, 19 compounds with high purity were obtained via automated multi-step preparative separation in a short period of time using this system, and their structures were comprehensively characterized by ESI-MS, (1)H NMR, and (13)C NMR. Including two new compounds, five isomers in two groups with identical HPLC and TLC retention values were also obtained and identified by 1D NMR and 2D NMR. This is the first report of an NPLC × RPLC system successfully applied in an on-line preparative process. This system not only solved the interfacing problem of mobile-phase immiscibility caused by NP and RP separation, it also exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Continuous-flow liquid microjunction surface sampling probe connected on-line with high-performance liquid chromatography/mass spectrometry for spatially resolved analysis of small molecules and proteins.

    Science.gov (United States)

    Van Berkel, Gary J; Kertesz, Vilmos

    2013-06-30

    A continuous-flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by mass spectrometry. Demonstrated here is the on-line coupling of such a probe with high-performance liquid chromatography/mass spectrometry (HPLC/MS) enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. A continuous-flow liquid microjunction surface sampling probe was connected to a six-port, two-position valve for extract collection and injection to an HPLC column. A QTRAP® 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V™ ion source operated in positive electrospray ionization (ESI) mode was used for all experiments. The system operation was tested with the extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues, caffeine from a coffee bean, cocaine from paper currency, and proteins from dried sheep blood spots on paper. Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin α and β chains. Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous-flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  20. The Daresbury On-Line Isotope Separator (DOLIS)

    International Nuclear Information System (INIS)

    Grant, I.S.; Eastham, D.A.; Groves, J.; Tolfree, D.W.L.; Walker, P.M.; Green, V.R.; Rikovska, J.; Stone, N.J.; Hamilton, W.D.

    1987-01-01

    The isotope separator DOLIS, which is on-line to the Daresbury Laboratory's 20-MV tandem accelerator, is used to measure nuclear moments and decay schemes. Separated beams may be collected on a tape and transported to a counting station, implanted directly into a host lattice at on-line temperatures down to less than 10 mK, or allowed to interact with a collinear laser beam. The present status of DOLIS and its ancillary equipment is described

  1. The Daresbury on-line isotope separator (DOLIS)

    International Nuclear Information System (INIS)

    Grant, I.S.; Eastham, D.A.; Groves, J.; Tolfree, D.W.L.; Walker, P.M.; Green, V.R.; Rikovska, J.; Stone, N.J.; Hamilton, W.D.

    1987-01-01

    The isotope separator DOLIS, which is on-line to the Daresbury Laboratory's 20-MV tandem accelerator, is used to measure nuclear moments and decay schemes. Separated beams may be collected on a tape and transported to a counting station, implanted directly into a host lattice at on-line temperatures down to less than 10 mK, or allowed to interact with a collinear laser beam. The present status of DOLIS and its ancillary equipment is described. (orig.)

  2. Membrane separation of ionic liquid solutions

    Science.gov (United States)

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  3. New on-line separation workflow of microbial metabolites via hyphenation of analytical and preparative comprehensive two-dimensional liquid chromatography.

    Science.gov (United States)

    Yan, Xia; Wang, Li-Juan; Wu, Zhen; Wu, Yun-Long; Liu, Xiu-Xiu; Chang, Fang-Rong; Fang, Mei-Juan; Qiu, Ying-Kun

    2016-10-15

    Microbial metabolites represent an important source of bioactive natural products, but always exhibit diverse of chemical structures or complicated chemical composition with low active ingredients content. Traditional separation methods rely mainly on off-line combination of open-column chromatography and preparative high performance liquid chromatography (HPLC). However, the multi-step and prolonged separation procedure might lead to exposure to oxygen and structural transformation of metabolites. In the present work, a new two-dimensional separation workflow for fast isolation and analysis of microbial metabolites from Chaetomium globosum SNSHI-5, a cytotoxic fungus derived from extreme environment. The advantage of this analytical comprehensive two-dimensional liquid chromatography (2D-LC) lies on its ability to analyze the composition of the metabolites, and to optimize the separation conditions for the preparative 2D-LC. Furthermore, gram scale preparative 2D-LC separation of the crude fungus extract could be performed on a medium-pressure liquid chromatograph×preparative high-performance liquid chromatography system, under the optimized condition. Interestingly, 12 cytochalasan derivatives, including two new compounds named cytoglobosin Ab (3) and isochaetoglobosin Db (8), were successfully obtained with high purity in a short period of time. The structures of the isolated metabolites were comprehensively characterized by HR ESI-MS and NMR. To be highlighted, this is the first report on the combination of analytical and preparative 2D-LC for the separation of microbial metabolites. The new workflow exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Optimizing gradient conditions in online comprehensive two-dimensional reversed-phase liquid chromatography by use of the linear solvent strength model

    DEFF Research Database (Denmark)

    Græsbøll, Rune; Janssen, Hans-Gerd; Christensen, Jan H.

    2017-01-01

    The linear solvent strength model was used to predict coverage in online comprehensive two-dimensional reversed-phase liquid chromatography. The prediction model uses a parallelogram to describe the separation space covered with peaks in a system with limited orthogonality. The corners of the par......The linear solvent strength model was used to predict coverage in online comprehensive two-dimensional reversed-phase liquid chromatography. The prediction model uses a parallelogram to describe the separation space covered with peaks in a system with limited orthogonality. The corners...... of the parallelogram are assumed to behave like chromatographic peaks and the position of these pseudo-compounds was predicted. A mix of 25 polycyclic aromatic compounds were used as a test. The precision of the prediction, span 0-25, was tested by varying input parameters, and was found to be acceptable with root...... factors were low, or when gradient conditions affected parameters not included in the model, e.g. second dimension gradient time affects the second dimension equilibration time. The concept shows promise as a tool for gradient optimization in online comprehensive two-dimensional liquid chromatography...

  5. Online combination of reversed-phase/reversed-phase and porous graphitic carbon liquid chromatography for multicomponent separation of proteomics and glycoproteomics samples.

    Science.gov (United States)

    Lam, Maggie P Y; Lau, Edward; Siu, S O; Ng, Dominic C M; Kong, Ricky P W; Chiu, Philip C N; Yeung, William S B; Lo, Clive; Chu, Ivan K

    2011-11-01

    In this paper, we describe an online combination of reversed-phase/reversed-phase (RP-RP) and porous graphitic carbon (PGC) liquid chromatography (LC) for multicomponent analysis of proteomics and glycoproteomics samples. The online RP-RP portion of this system provides comprehensive 2-D peptide separation based on sequence hydrophobicity at pH 2 and 10. Hydrophilic components (e.g. glycans, glycopeptides) that are not retained by RP are automatically diverted downstream to a PGC column for further trapping and separation. Furthermore, the RP-RP/PGC system can provide simultaneous extension of the hydropathy range and peak capacity for analysis. Using an 11-protein mixture, we found that the system could efficiently separate native peptides and released N-glycans from a single sample. We evaluated the applicability of the system to the analysis of complex biological samples using 25 μg of the lysate of a human choriocarcinoma cell line (BeWo), confidently identifying a total of 1449 proteins from a single experiment and up to 1909 distinct proteins from technical triplicates. The PGC fraction increased the sequence coverage through the inclusion of additional hydrophilic sequences that accounted for up to 6.9% of the total identified peptides from the BeWo lysate, with apparent preference for the detection of hydrophilic motifs and proteins. In addition, RP-RP/PGC is applicable to the analysis of complex glycomics samples, as demonstrated by our analysis of a concanavalin A-extracted glycoproteome from human serum; in total, 134 potentially N-glycosylated serum proteins, 151 possible N-glycosylation sites, and more than 40 possible N-glycan structures recognized by concanavalin A were simultaneously detected. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Efficiency of an on-line isotope separator system employing cooled and NaCl-loaded He-jet methods

    International Nuclear Information System (INIS)

    Aeystoe, J.; Rantala, V.; Valli, K.; Hillebrand, S.; Kortelahti, M.; Eskola, K.; Raunemaa, T.

    1976-01-01

    A pure helium-jet at liquid nitrogen temperature coupled to a Nielsen type ion source, and a NaCl-loaded helium-jet coupled to a hollow-cathode ion source have been investigated as means to connect a cyclotron target chamber on-line to a mass separator. Technical details and performances of some critical parts of the system are described. Total separation efficiencies measured under various experimental conditions for several nuclides vary between 0.01 and 1.0%. (Auth.)

  7. Liquid-liquid extraction and separation studies of uranium(VI)

    International Nuclear Information System (INIS)

    Langade, A.D.; Shinde, V.M.

    1980-01-01

    Separation of uranium(VI) from iron(III), molybdenum(VI), vanadium(V), bismuth(III), zirconium(IV) and thorium(IV) is achieved by liquid-liquid extraction with 4-methyl-3-pentene-2-one (mesityl oxide; MeO) from sodium salicylate media (0.1M, pH 6.0). The extracted species is UO 2 (HO.C 6 H 4 COO) 2 .2MeO. A procedure for separating 50 μg of uranium from mg amounts of the other metals is described. (author)

  8. Gas-Liquid Separator design of SWRPRS in PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jung; Lee, Tae-ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    There is the Sodium-Water Reaction Pressure Relief System (SWRPRS) in PGSFR to prevent the Sodium- Water Reaction (SWR) due to the break of the steam generator tube. The piping to atmosphere includes several components such as gasliquid separator, backpressure rupture disk, and hydrogen igniter. Among these components, gas-liquid separator separates the liquid sodium which is included in gas SWR products not to react sodium and air. In this study, the size of gas-liquid separator, which is based on the hydrogen volume which is exhausted in the sodium dump tank, is determined. To determine the gas-liquid separator for the separation of gas and sodium particle dumped the SDT, Stairmand's model which has high performance among standard cyclone separator models is selected. The body diameter is determined, and other dimensions are determined due to the ratio about the body diameter. Shepherd and Lapple's model is selected as the pressure drop calculation model considering the conservation.

  9. Metal–organic frameworks based membranes for liquid separation

    KAUST Repository

    Li, Xin

    2017-11-07

    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  10. Metal-organic frameworks based membranes for liquid separation.

    Science.gov (United States)

    Li, Xin; Liu, Yuxin; Wang, Jing; Gascon, Jorge; Li, Jiansheng; Van der Bruggen, Bart

    2017-11-27

    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  11. Protein separations using enhanced-fluidity liquid chromatography.

    Science.gov (United States)

    Bennett, Raffeal; Olesik, Susan V

    2017-11-10

    Enhanced-fluidity liquid chromatography (EFLC) methods using methanol/H 2 O/CO 2 and hydrophilic interaction liquid chromatography (HILIC) were explored for the separation of proteins and peptides. EFLC is a separation mode that uses a mobile phase made of conventional solvents combined with liquid carbon dioxide (CO 2 ) in subcritical conditions. The addition of liquid CO 2 enhances diffusivity and decreases viscosity while maintaining mixture polarity, which typically results in reduced time of analysis. TFA additive and elevated temperature were leveraged as key factors in the separation of a 13-analyte intact protein mixture in under 5min. Under these conditions EFLC showed modest improvement in terms of peak asymmetry and analysis time over the competing ACN/H 2 O separation. Protein analytes detected by electrospray ionization - quadrupole time of flight, were shown to be unaffected by the addition of CO 2 in the mobile phase. Herein, the feasibility of separating hydrophilic proteins up to 80kDa (with transferrin) is demonstrated for CO 2 -containing mobile phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Development of High Throughput Salt Separation System with Integrated Liquid Salt Separation - Salt Distillation Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sangwoon; Park, K. M.; Kim, J. G.; Jeong, J. H.; Lee, S. J.; Park, S. B.; Kim, S. S.

    2013-01-15

    The capacity of a salt distiller should be sufficiently large to reach the throughput of uranium electro-refining process. In this study, an assembly composing a liquid separation sieve and a distillation crucible was developed for the sequential operation of a liquid salt separation and a vacuum distillation in the same tower. The feasibility of the sequential salt separation was examined by the rotation test of the sieve-crucible assembly and sequential operation of a liquid salt separation and a vacuum distillation. The adhered salt in the uranium deposits was removed successfully. The salt content in the deposits was below 0.1 wt% after the sequential operation of the liquid salt separation - salt distillation. From the results of this study, it could be concluded that efficient salt separation can be realized by the sequential operation of liquid salt separation and vacuum distillation in one distillation tower since the operation procedures are simplified and no extra operation of cooling and reheating is necessary.

  13. Comparison of ultra-violet and inductively coupled plasma-atomic emission spectrometry for the on-line quantification of selenium species after their separation by reversed-phase liquid chromatography

    International Nuclear Information System (INIS)

    Tsopelas, Fotios N.; Ochsenkuehn-Petropoulou, Maria Th.; Mergias, Ioannis G.; Tsakanika, Lambrini V.

    2005-01-01

    An analytical approach for selenium speciation using liquid chromatography (LC) coupled with ultra-violet (UV) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) was developed. The separation of the investigated selenium species, selenites, selenates, selenomethionine, selenocystine, selenocystamine and dimethyldiselenide was accomplished in less than 6 min on a BIO Wide Pore RP-18 column using sodium salt of n-octanesulfonic acid as ion-pairing modifier. The on-line detection of the separated selenium species was performed using UV spectrometry at the optimum wavelength of 192 nm, obtained by the UV spectra of the investigated individual selenium species. ICP-AES was also used as element specific on-line detector, after its coupling with the chromatographic system. The UV and ICP-AES detectors were compared for their suitability, including sensitivity and detection limits, for the on-line quantification of the six selenium species. The developed LC-UV as well as LC-ICP-AES techniques were successfully applied to a selenized yeast candidate reference material, after its enzymatic extraction with protease XIV. It was found that the described LC-UV technique is suitable for the determination of selenomethionine, the main selenium compound in the yeast, with an accuracy of 5%, although the UV detector is not element specific and it is rarely used for selenium speciation. This finding can prove valuable for routine laboratories to perform selenium speciation in such materials

  14. Supported ionic liquids: versatile reaction and separation media

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco

    2006-01-01

    The latest developments in supported ionic liquid phase (SILP) systems for catalysis and separation technology are surveyed. The SILP concept combines the advantages of homogeneous catalysis with heterogeneous process technology, and a variety of reactions have been studied where supported ionic ...... liquid catalysts proved to be more active and selective than common systems. In separation applications the use of supported ionic liquids can facilitate selective transport of substrates across membranes.......The latest developments in supported ionic liquid phase (SILP) systems for catalysis and separation technology are surveyed. The SILP concept combines the advantages of homogeneous catalysis with heterogeneous process technology, and a variety of reactions have been studied where supported ionic...

  15. Separation of alcohols from organic liquid mixtures by pervaporation

    NARCIS (Netherlands)

    Park, Hyun-Chae

    1993-01-01

    In the chemical industry, distillation is generally the preferred technique to separate a liquid mixture. However some liquid mixtures such as azeotropic mixtures, close-boiling hydrocarbons, and various isomers are difficult to separate by simple distillation. For the separation of these mixtures

  16. The separation of solid and liquid components of mixtures

    International Nuclear Information System (INIS)

    Hunter, W.M.

    1980-01-01

    An improved method of separating solid and liquid components of mixtures is described which is particularly suited for use in automated radioimmunoassay systems in the analysis of bound and free fractions. A second liquid, having a density intermediate between those of the solid and liquid components, is delivered to the solid/ liquid mixture to form a discrete layer below the mixture and the solid separates into this lower liquid layer assisted by centrifugal force. The second liquid of intermediate density is an aqueous solution of a highly hydrophilic and electrically non-polar solute, such as an aqueous sucrose solution. Further liquids of intermediate density and progressively higher density may be delivered to form further discrete layers below the initial layer of the second dense liquid. After separation of the solid and liquid components of the mixture, the supernatant liquid component of the original mixture is removed in a controlled and non-turbulent manner. The method is illustrated in radioimmunoassays for platelet β-thromboglobulin and human follicle stimulating hormone. (U.K.)

  17. Tandem on-line continuous separations for atomic spectroscopic indirect analysis: iodide determination by ICP-AES

    International Nuclear Information System (INIS)

    Garcia, A.M.; Sanchez Uria, J.E.; Sanz-Medel, A.; Quintero Ortega, M.C.; Bautista, J.C.

    1992-01-01

    A sensitive and selective indirect determination of iodide by inductively coupled plasma emission spectrometry (ICP-AES) based on the principle of tandem on-line continuous separations as an alternative means of introducing samples into plasmas is proposed. Iodide is continuously extracted as an ion-pair into xylene by mixing the sample with Hg(II) and dipyridil solutions. The organic phase (containing the analyte in [Hg(Dipy) 2 ]I 2 form) is on-line continuously mixed with NaBH 4 (in DMF) and acetic acid solutions. Mercury vapour continuously generated from this organic phase is separated in a classical U-type gas-liquid separation device. The system has been optimized for the continuous extraction of KI, for the direct generation of cold mercury vapour from xylene and for the final ICP-AES determination of mercury. The optimised method has been applied to the determination of iodide (detection limit 20 ng/ml of iodide) in table salt and in synthetic samples. Very good agreement between found and certified results was observed. The usefulness and convenience of such alternative sample chemical pretreatment/presentation to the ICP is thus demonstrated for indirect determinations to be carried out by atomic spectroscopy methods. (authors)

  18. Ionizable polyethers as specific metal ion carriers in liquid-liquid extraction and liquid membrane separations

    International Nuclear Information System (INIS)

    Walkowiak, W.; Charewicz, W.A.; Bartsch, R.A.; Ndip, G.M.

    1988-01-01

    Consideration is given to results of investigations into competitive extraction and penetration through a liquid membrane of alkali and alkaline earth cations from aqueous solutions by a series of lipophilic and ionizable acyclic polyethers of various molecular structure. It is shown that specificity and selectiviy of cation carriers in liquid-liquid extraction and liquid membrane separation depend on molecular structure of acyclic polyethers

  19. Separation of rare earths by liquid-liquid extraction

    International Nuclear Information System (INIS)

    Helgorsky, M.; Leveque, M.

    1978-01-01

    The elements of the rare earth family are characterised by very similar chemical properties connected with their special electronic structure. The purification of the rare earths sold by RHONE-POULENC is now done by the liquid-liquid extraction technique. The development of different extracting agents and also counter-current techniques have led to solvent extraction replacing the other fractionation techniques because of its efficiency and low cost. There are usually several possible solutions to the main problem of choosing the extracting agent and its mode of use. The difficulty is to find the most economical one taking account of the thermodynamic and hydrodynamic constraints of the solvent. It is shown how ideas about the separation have changed over the course of the development of the uses of the rare earths, ending finally in an integrated scheme that makes RHONE-POULENC a world leader of manufacturers of separated rare earths [fr

  20. Ionic-Liquid Based Separation of Azeotropic Mixtures

    DEFF Research Database (Denmark)

    Kulajanpeng, Kusuma; Suriyapraphadilok, Uthaiporn; Gani, Rafiqul

    2014-01-01

    methodology for the screening of ionic liquids (ILs) as entrainers for ILs-based separation processes in binary aqueous azeotropic systems (e.g., water + ethanol and water + isopropanol) is presented. Ionic liquids as entrainers were first screened based on a combination of criteria such as stabi......methodology for the screening of ionic liquids (ILs) as entrainers for ILs-based separation processes in binary aqueous azeotropic systems (e.g., water + ethanol and water + isopropanol) is presented. Ionic liquids as entrainers were first screened based on a combination of criteria...... [C1MIM][DMP]. For the final evaluation, the best candidates for aqueous systems were used as entrainers, and then the vapor-liquid equilibrium (VLE) of the ternary systems containing ILs was predicted by the Non Random Two Liquids (NRTL) model to confirm the breaking of the azeotrope. Based...... on minimum concentration of the ILs required to break the given azeotrope, the best ILs as entrainers for water + ethanol and water + isopropanol azeotropic mixtures were [C1MIM][DMP] and [C2MIM][N(CN)2], respectively....

  1. [Advances of poly (ionic liquid) materials in separation science].

    Science.gov (United States)

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.

  2. Why have we stopped research on liquid centrifugal separation

    International Nuclear Information System (INIS)

    Li, N.

    1996-01-01

    Using high-temperature high-speed liquid centrifuges for lanthanides and actinides separation was originally proposed as a physical separation method in the Los Alamos ADTT/ATW concept [C. Bowman, LA-UR-92-1065 (1992)]. The authors investigated centrifugal separation in a concerted effort of experiments, theoretical analysis and numerical simulations. They discovered that owing to the ionic-composition-dependence of the sedimentation coefficients for the fission products and actinides, separation by grouping of molecular densities would not work in general in the molten salt environment. Alternatively the lanthanides and actinides could be transferred to a liquid metal carrier (e.g. bismuth) via reductive extraction and then separated by liquid centrifuges, but the material and technical challenges are severe. Meanwhile the authors have established that the reductive extraction procedure itself can be used for desired separations. Unlike conventional aqueous-based reprocessing technologies, reductive extraction separation uses only reagent (Li) that reconstitutes carrier salts (LiF-BeF 2 ) and a processing medium (Bi) that can be continuously recycled and reused, with a nearly-pure fission products waste stream. The processing units are compact and reliable, and can be built at relatively low cost while maintaining high throughput. Therefore the research effort on developing liquid centrifuges for separations in ADTT/ATW was terminated in late 1995. This paper will discuss the various aspects involved in reaching this decision

  3. Convective instabilities in liquid centrifugation for nuclear wastes separation

    Energy Technology Data Exchange (ETDEWEB)

    Camassa, R. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The separation of fission products from liquid solutions using centrifugal forces may prove an effective alternative to chemical processing in cases where radioactive materials necessitate minimal mixed-waste products or when allowing access to sophisticated chemical processing is undesirable. This investigation is a part of the effort to establish the feasibility of using liquid centrifugation for nuclear waste separation in the Accelerator Driven Energy Production (ADEP) program. A number of fundatmental issues in liquid centrifugation with radioactive elements need to be addressed in order to validate the approach and provide design criteria for experimental liquid salt (LiF and BeF{sub 2}) centrifuge. The author concentrates on one such issue, the possible onset of convective instabilities which could inhibit separation.

  4. Stabilized ultrathin liquid membranes for gas separations

    International Nuclear Information System (INIS)

    Deetz, D.W.

    1987-01-01

    Although immobilized liquid membranes have the desirable properties of high selectivity and permeability, their practical application to gas phase separations is hindered because of the instability of the liquid phase and the relative thickness of current membranes. The problem of liquid instability, which is due to both liquid volatilization and flooding, can be reduced, or eliminated, by immobilizing the liquid phase in pores small enough to significantly reduce the molar free energy of the solution via the Kelvin effect. The obstacle of membrane thickness can be overcome by selectively immobilizing the liquid phase into the skin of a porous asymmetric membranes

  5. Separation of thiophene from heptane with ionic liquids

    International Nuclear Information System (INIS)

    Domańska, Urszula; Lukoshko, Elena Vadimovna; Królikowski, Marek

    2013-01-01

    Highlights: ► The ternary (liquid + liquid) equilibria in 1-butyl-1-methylpyrrolidinium-based ILs was measured. ► High selectivity and distribution ratio for the extraction of thiophene was found. ► [BMPYR][TCM] was proposed as entrainer for the separation process. ► Extraction of sulphur-compounds from alkanes was proposed. -- Abstract: Ionic liquids (ILs) are well known novel green solvents, which can be used for removing sulfur compounds from gasoline and diesel oils. Ternary (liquid + liquid) equilibrium data are presented for mixtures of {ionic liquid (1) + thiophene (2) + heptane (3)} at T = 298.15 K and ambient pressure to analyze the performance of the ionic liquid (IL) in the extraction of thiophene from the alkanes. Three pyrrolidinium-based ionic liquids have been studied: 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate, ([BMPYR][FAP]), 1-butyl-1-methylpyrrolidinium tetracyanoborate, [BMPYR][TCB] and 1-butyl-1-methylpyrrolidinium tricyanomethanide, [BMPYR][TCM]. The results are discussed in terms of the selectivity and distribution ratio of separation of related systems. The immiscibility in the binary liquid systems of (thiophene + heptane) with all used ILs was observed. The [TCM] − anion in comparison with [TCB] − and [FAP] − anions shows much higher selectivity and slightly lower distribution ratio for extraction of thiophene. The non-random two liquid NRTL model was used successfully to correlate the experimental tie-lines and to calculate the phase composition error in mole fraction in the ternary systems. The average root mean square deviation (RMSD) of the phase composition was 0.047. The densities of [BMPYR][TCM] in temperature range from (298.15 to 348.15) K were measured. The data presented here show that the [BMPYR][TCM] ionic liquid can be used as an alternative solvent for the separation of thiophene from the hydrocarbon stream using solvent liquid–liquid extraction at ambient conditions

  6. Application of solid-liquid extraction separation in analytical chemistry: Pt. 1

    International Nuclear Information System (INIS)

    Xu Zulan; Dai Lixin

    1985-01-01

    Low m.p. waxes as solid solvents for solid-liquid extraction separation are advanced. Uranium in aqueous phase is extracted by homogeneous organic phase which is composed of waxes and various kinds of extractants. Various parameters of this extraction separation method are studied and compared with one of liquid-liquid extraction. The characteristic of wax as solvent, speciality and applicability of solid-liquid extraction separation method are evaluated

  7. On-line separation of refractory hafnium and tantalum isotopes at the ISOCELE separator

    CERN Document Server

    Liang, C F; Obert, J; Paris, P; Putaux, J C

    1981-01-01

    By chemical evaporation technique, neutron deficient hafnium nuclei have been on-line separated at the ISOCELE facility, from the isobar rare-earth elements, in the metal-fluoride HfF/sub 3//sup +/ ion form. Half-lives of /sup 162-165/Hf have been measured. Similarly, tantalum has been selectively separated on the TaF/sub 4//sup +/ form. (4 refs) .

  8. Pharmaceutical Perspective on Opalescence and Liquid-Liquid Phase Separation in Protein Solutions.

    Science.gov (United States)

    Raut, Ashlesha S; Kalonia, Devendra S

    2016-05-02

    Opalescence in protein solutions reduces aesthetic appeal of a formulation and can be an indicator of the presence of aggregates or precursor to phase separation in solution signifying reduced product stability. Liquid-liquid phase separation of a protein solution into a protein-rich and a protein-poor phase has been well-documented for globular proteins and recently observed for monoclonal antibody solutions, resulting in physical instability of the formulation. The present review discusses opalescence and liquid-liquid phase separation (LLPS) for therapeutic protein formulations. A brief discussion on theoretical concepts based on thermodynamics, kinetics, and light scattering is presented. This review also discusses theoretical concepts behind intense light scattering in the vicinity of the critical point termed as "critical opalescence". Both opalescence and LLPS are affected by the formulation factors including pH, ionic strength, protein concentration, temperature, and excipients. Literature reports for the effect of these formulation factors on attractive protein-protein interactions in solution as assessed by the second virial coefficient (B2) and the cloud-point temperature (Tcloud) measurements are also presented. The review also highlights pharmaceutical implications of LLPS in protein solutions.

  9. On-line coupling of size exclusion chromatography with mixed-mode liquid chromatography for comprehensive profiling of biopharmaceutical drug product.

    Science.gov (United States)

    He, Yan; Friese, Olga V; Schlittler, Michele R; Wang, Qian; Yang, Xun; Bass, Laura A; Jones, Michael T

    2012-11-02

    A methodology based on on-line coupling of size exclusion chromatography (SEC) with mixed-mode liquid chromatography (LC) has been developed. The method allows for simultaneous measurement of a wide range of components in biopharmaceutical drug products. These components include the active pharmaceutical ingredient (protein) and various kinds of excipients such as cations, anions, nonionic hydrophobic surfactant and hydrophilic sugars. Dual short SEC columns are used to separate small molecule excipients from large protein molecules. The separated protein is quantified using a UV detector at 280 nm. The isolated excipients are switched, online, to the Trinity P1 mixed-mode column for separation, and detected by an evaporative light scattering detector (ELSD). Using a stationary phase with 1.7 μm particles in SEC allows for the use of volatile buffers for both SEC and mix-mode separation. This facilitates the detection of different excipients by ELSD and provides potential for online characterization of the protein with mass spectrometry (MS). The method has been applied to quantitate protein and excipients in different biopharmaceutical drug products including monoclonal antibodies (mAb), antibody drug conjugates (ADC) and vaccines. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Two-dimensional preparative liquid chromatography system for preparative separation of minor amount components from complicated natural products

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Ying-Kun, E-mail: qyk@xmu.edu.cn; Chen, Fang-Fang; Zhang, Ling-Ling; Yan, Xia; Chen, Lin; Fang, Mei-Juan; Wu, Zhen, E-mail: wuzhen@xmu.edu.cn

    2014-04-01

    Highlights: • Preparative MDLC system was developed for separation of complicated natural products. • Medium-pressure LC and preparative HPLC were connected by interface of SPE. • Automated multi-step preparative separation of 25 compounds was achieved by using this system. - Abstract: An on-line comprehensive two-dimensional preparative liquid chromatography system was developed for preparative separation of minor amount components from complicated natural products. Medium-pressure liquid chromatograph (MPLC) was applied as the first dimension and preparative HPLC as the second one, in conjunction with trapping column and makeup pump. The performance of the trapping column was evaluated, in terms of column size, dilution ratio and diameter-height ratio, as well as system pressure from the view of medium pressure liquid chromatograph. Satisfactory trapping efficiency can be achieved using a commercially available 15 mm × 30 mm i.d. ODS pre-column. The instrument operation and the performance of this MPLC × preparative HPLC system were illustrated by gram-scale isolation of crude macro-porous resin enriched water extract of Rheum hotaoense. Automated multi-step preparative separation of 25 compounds, whose structures were identified by MS, {sup 1}H NMR and even by less-sensitive {sup 13}C NMR, could be achieved in a short period of time using this system, exhibiting great advantages in analytical efficiency and sample treatment capacity compared with conventional methods.

  11. Application of ionic liquids in liquid chromatography and electrodriven separation.

    Science.gov (United States)

    Huang, Yi; Yao, Shun; Song, Hang

    2013-08-01

    Ionic liquids (ILs) are salts in the liquid state at ambient temperature, which are nonvolatile, nonflammable with high thermal stability and dissolve easily for a wide range of inorganic and organic materials. As a kind of potential green solvent, they show high efficiency and selectivity in the field of separation research, especially in instrumental analysis. Thus far, ILs have been successfully applied by many related researchers in high-performance liquid chromatography and capillary electrophoresis as chromatographic stationary phases, mobile phase additives or electroosmotic flow modifiers. This paper provides a detailed review of these applications in the study of natural products, foods, drugs and other fine chemicals. Furthermore, the prospects of ILs in liquid chromatographic and electrodriven techniques are discussed.

  12. Sampling and sample preparation development for analytical and on-line measurement techniques of process liquids; Naeytteenoton ja kaesittelyn kehittaeminen prosessinesteiden analytiikan ja on-line mittaustekniikan tarpeisiin - MPKT 11

    Energy Technology Data Exchange (ETDEWEB)

    Karttunen, K. [Oulu Univ. (Finland)

    1998-12-31

    Main goal of the research project is to develop sampling and sample handling methods and techniques for pulp and paper industry to be used for analysis and on-line purposes. The research focus specially on the research and development of the classification and separation methods and techniques needed for liquid and colloidal substances as well as in ion analysis. (orig.)

  13. Sampling and sample preparation development for analytical and on-line measurement techniques of process liquids; Naeytteenoton ja kaesittelyn kehittaeminen prosessinesteiden analytiikan ja on-line mittaustekniikan tarpeisiin - MPKT 11

    Energy Technology Data Exchange (ETDEWEB)

    Karttunen, K [Oulu Univ. (Finland)

    1999-12-31

    Main goal of the research project is to develop sampling and sample handling methods and techniques for pulp and paper industry to be used for analysis and on-line purposes. The research focus specially on the research and development of the classification and separation methods and techniques needed for liquid and colloidal substances as well as in ion analysis. (orig.)

  14. Viability of Ascaris suum eggs in stored raw and separated liquid slurry

    DEFF Research Database (Denmark)

    Katakam, Kiran Kumar; Roepstorff, Allan Knud; Popovic, Olga

    2013-01-01

    SUMMARY Separation of pig slurry into solid and liquid fractions is gaining importance as a way to manage increasing volumes of slurry. In contrast to solid manure and slurry, little is known about pathogen survival in separated liquid slurry. The viability of Ascaris suum eggs, a conservative...... indicator of fecal pollution, and its association with ammonia was investigated in separated liquid slurry in comparison with raw slurry. For this purpose nylon bags with 6000 eggs each were placed in 1 litre bottles containing one of the two fractions for 308 days at 5 °C or 25 °C. Initial analysis...... of helminth eggs in the separated liquid slurry revealed 47 Ascaris eggs per gramme. At 25 °C, egg viability declined to zero with a similar trend in both raw slurry and the separated liquid slurry by day 308, a time when at 5 °C 88% and 42% of the eggs were still viable in separated liquid slurry and raw...

  15. Liquid membranes: an emerging area in separation science

    International Nuclear Information System (INIS)

    Mohapatra, P.K.; Manchanda, V.K.

    2010-01-01

    Full text: With the ever increasing energy demands, nuclear energy is poised to make a significant contribution as one of the major clean energy resources. The public acceptability of the nuclear energy programme, however, depends largely on the management of radioactive waste by mitigating its long term adverse impact on the environment. Separation of long-lived radionuclides such as actinides and fission products from high level radioactive waste is a challenging task for the chemists involved at the back end of the nuclear fuel cycle. Amongst the various separation techniques, liquid membrane based separation methods are becoming increasingly popular due to factors such as ligand economy, high efficiency and low power consumption. Techniques such as emulsion liquid membrane (ELM) and hollow fibre supported liquid membrane (HFSLM) methods are reported to be more efficient than the solvent extraction based separation methods which have limitations of emulsion/third phase or crud formation. HFSLM technique offers the advantages of active transport, possible usage of exotic carriers and easy scale-up. For the past few years, Radiochemistry Division has been actively involved in the development of HFSLM separation processes for actinide partitioning, lanthanide/actinide separation, Sr/Y separation as well as recovery of radio-cesium from nuclear waste solutions. Similarly, ELM has major advantages of fast processing and large volume reduction factors. This lecture will give an overview of the HFSLM and ELM work carried out at Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai

  16. Solution processing of polymer semiconductor: Insulator blends-Tailored optical properties through liquid-liquid phase separation control

    KAUST Repository

    Hellmann, Christoph; Treat, Neil D.; Scaccabarozzi, Alberto D.; Razzell Hollis, Joseph; Fleischli, Franziska D.; Bannock, James H.; de Mello, John; Michels, Jasper J.; Kim, Ji-Seon; Stingelin, Natalie

    2014-01-01

    © 2014 Wiley Periodicals, Inc. It has been demonstrated that the 0-0 absorption transition of poly(3-hexylthiophene) (P3HT) in blends with poly(ethylene oxide) (PEO) could be rationally tuned through the control of the liquid-liquid phase separation process during solution deposition. Pronounced J-like aggregation behavior, characteristic for systems of a low exciton band width, was found for blends where the most pronounced liquid-liquid phase separation occurred in solution, leading to domains of P3HT and PEO of high phase purity. Since liquid-liquid phase separation could be readily manipulated either by the solution temperature, solute concentration, or deposition temperature, to name a few parameters, our findings promise the design from the out-set of semiconductor:insulator architectures of pre-defined properties by manipulation of the interaction parameter between the solutes as well as the respective solute:solvent system using classical polymer science principles.

  17. Solution processing of polymer semiconductor: Insulator blends-Tailored optical properties through liquid-liquid phase separation control

    KAUST Repository

    Hellmann, Christoph

    2014-12-17

    © 2014 Wiley Periodicals, Inc. It has been demonstrated that the 0-0 absorption transition of poly(3-hexylthiophene) (P3HT) in blends with poly(ethylene oxide) (PEO) could be rationally tuned through the control of the liquid-liquid phase separation process during solution deposition. Pronounced J-like aggregation behavior, characteristic for systems of a low exciton band width, was found for blends where the most pronounced liquid-liquid phase separation occurred in solution, leading to domains of P3HT and PEO of high phase purity. Since liquid-liquid phase separation could be readily manipulated either by the solution temperature, solute concentration, or deposition temperature, to name a few parameters, our findings promise the design from the out-set of semiconductor:insulator architectures of pre-defined properties by manipulation of the interaction parameter between the solutes as well as the respective solute:solvent system using classical polymer science principles.

  18. Process for separating liquid hydrocarbons from waxes

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, F J

    1948-03-08

    A process is described for the separation of liquid hydrocarbons from waxes comprising adding to a mixture of liquid hydrocarbons and waxes a sufficient quantity of an organo-silicon compound to cause the separation of the hydrocarbon and wax. The organo-silicon compounds are selected from the class of organic silicanes and their hydrolysis products and polymers. The silicanes have the formula R/sub y/SiX/sub z/, in which R is a saturated or unsaturated hydrocarbon radical, X is a halogen or another hydrocarbon radical or an -OR group, y has a value 1, 2, or 3 and z has a value 1, 2, or 3.

  19. Investigation of a separation process involving liquid-water-coal systems

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jr, D V; Burry, W

    1987-01-01

    A liquid-liquid-solid separation procedure wherein a water-oil-coal-mineral matter slurry is allowed to come to equilibrium through mechanical agitation has for many years been applied to the separation of coal from mineral matter. The product is a black cottage cheese-like mass of agglomerated coal particles and oil suspended in the excess water which supports the dispersed mineral matter particles. A liquid bridge model which was proposed by earlier investigators is reviewed critically and used to estimate the free energy per unit area of the separation of coals of different ranks. Observations of the kinetics of the process suggest that the simple liquid bridge model is insufficient, probably due to the heterogeneous surfaces of the coal. An alternative model is proposed. 14 references.

  20. Simultaneous Design of Ionic Liquids and Azeotropic Separation Processes

    DEFF Research Database (Denmark)

    Roughton, Brock C.; White, John; Camarda, Kyle V.

    2011-01-01

    A methodology for the design of azeotrope separation processes using ionic liquids as entrainers is outlined. A Hildebrand solubility parameter group contribution model has been developed to screen for or design an ionic liquid entrainer that is soluble with the azeotropic components. Using the b...... % [BMPy][BF4] added. The driving force concept is used to design an extractive distillation process that minimizes energy inputs. The methodology given can be expanded to the use of ionic liquids as entrainers in any azeotropic system of interest.......A methodology for the design of azeotrope separation processes using ionic liquids as entrainers is outlined. A Hildebrand solubility parameter group contribution model has been developed to screen for or design an ionic liquid entrainer that is soluble with the azeotropic components. Using...

  1. Selective on-line detection of boronic acids and derivatives in high-performance liquid chromatography eluates by post-column reaction with alizarin

    NARCIS (Netherlands)

    Duval, F.L.; Wardani, P.A.; Zuilhof, H.; Beek, van T.A.

    2015-01-01

    An on-line high-performance liquid chromatography (HPLC) method for the rapid and selective detection of boronic acids in complex mixtures was developed. After optimization experiments at an HPLC flow rate of 0.40 mL/min, the HPLC-separated analytes were mixed post-column with a solution of 75 µM

  2. Ionic liquids in separations of azeotropic systems – A review

    International Nuclear Information System (INIS)

    Pereiro, A.B.; Araújo, J.M.M.; Esperança, J.M.S.S.; Marrucho, I.M.; Rebelo, L.P.N.

    2012-01-01

    Highlights: ► This paper provides a review of methods using ionic liquids as azeotrope breakers. ► Azeotrope breaking potential of ILs was compared to that of conventional solvents. ► The influence of ILs structure on the azeotrope breaking capacity was accomplished. ► Guidelines to select the most suitable ILs as azeotrope breakers were established. - Abstract: Efforts to make existing separation methods more efficient and eco-friendly may get a boost from the use of a relatively new class of compounds known as ionic liquids (ILs). The separation of azeotropic mixtures has conventionally been one of the most challenging tasks in industrial processes due to the fact that their separation by simple distillation is basically impossible. This paper provides a critical review of methods using ILs as azeotrope breakers. Three separation processes were addressed: liquid–liquid extraction, extractive distillation, and supported liquid membranes. We examine the azeotrope breaking potential of ILs and compare their performance to that of conventional solvents. A systematic analysis of the influence of the structure of ILs on their azeotrope breaking capacity contributes to the establishment of guidelines for selecting the most suitable ILs for the separation of specific azeotropic mixtures.

  3. A technical review of liquid/liquid and solid/liquid separation equipment in the field of nuclear-fuel reprocessing

    International Nuclear Information System (INIS)

    Vassallo, G.

    1981-01-01

    Liquid/liquid extraction is generally accepted as the preferred method in nuclear-fuel reprocessing. However, although many types of liquid/liquid contactors are available, only a few meet the stringent specifications set by the nuclear industry. This report discusses the criteria for contactor selection and then reviews the most important types, namely packed columns, pulsed columns, mixer-setters and centrifugal contactors. Finally, a short section concerned with solid/liquid separations is included because of the possible deleterious effects caused by solids in liquid/liquid contactors

  4. Subcooled Liquid Oxygen Cryostat for Magneto-Archimedes Particle Separation by Density

    Science.gov (United States)

    Hilton, D. K.; Celik, D.; Van Sciver, S. W.

    2008-03-01

    An instrument for the separation of particles by density (sorting) is being developed that uses the magneto-archimedes effect in liquid oxygen. With liquid oxygen strongly paramagnetic, the magneto-archimedes effect is an extension of diamagnetic levitation in the sense of increasing the effective buoyancy of a particle. The instrument will be able to separate ensembles of particles from 100 μm to 100 nm in size, and vertically map or mechanically deliver the separated particles. The instrument requires a column of liquid oxygen that is nearly isothermal, free of thermal convection, subcooled to prevent nucleate boiling, and supported against the strong magnetic field used. Thus, the unique cryostat design that meets these requirements is described in the present article. It consists in part of a column of liquid nitrogen below for cooling the liquid oxygen, with the liquid oxygen pressurized by helium gas to prevent nucleate boiling.

  5. Review of online coupling of sample preparation techniques with liquid chromatography.

    Science.gov (United States)

    Pan, Jialiang; Zhang, Chengjiang; Zhang, Zhuomin; Li, Gongke

    2014-03-07

    Sample preparation is still considered as the bottleneck of the whole analytical procedure, and efforts has been conducted towards the automation, improvement of sensitivity and accuracy, and low comsuption of organic solvents. Development of online sample preparation techniques (SP) coupled with liquid chromatography (LC) is a promising way to achieve these goals, which has attracted great attention. This article reviews the recent advances on the online SP-LC techniques. Various online SP techniques have been described and summarized, including solid-phase-based extraction, liquid-phase-based extraction assisted with membrane, microwave assisted extraction, ultrasonic assisted extraction, accelerated solvent extraction and supercritical fluids extraction. Specially, the coupling approaches of online SP-LC systems and the corresponding interfaces have been discussed and reviewed in detail, such as online injector, autosampler combined with transport unit, desorption chamber and column switching. Typical applications of the online SP-LC techniques have been summarized. Then the problems and expected trends in this field are attempted to be discussed and proposed in order to encourage the further development of online SP-LC techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A novel two-dimensional liquid chromatographic system for the online toxicity prediction of pharmaceuticals and related substances

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Xu, Li [Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030 (China); Shi, Zhi-guo, E-mail: shizg@whu.edu.cn [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Hu, Min [Hubei Instrument for Food and Drug Control, Wuhan (China)

    2015-08-15

    Highlights: • A novel two-dimensional liquid chromatographic system was developed. • The 1st dimension was ODS to separate components in the sample. • The 2nd dimension was biopartitioning micellar chromatography to predict toxicity. • The system was used to screen toxicity of pharmaceuticals and related substances. • It was promising for fast online toxicity screening of complex sample in one step. - Abstract: In this study, a novel two-dimensional liquid chromatographic (2D-LC) system was developed for simultaneous separation and toxicity prediction of pharmaceutical and its related substances. A conventional ODS column was used on the 1st-D to separate the sample; while, bio-partitioning micellar chromatography served as the 2nd-D to predict toxicity of the components. The established system was tested for the toxicity of ibuprofen and its impurities with known toxicity. With only one injection, ibuprofen and its impurities were separated on the 1st-D; and LC50 values of individual impurity were obtained based on the quantitative retention–activity relationships, which agreed well with the reported data. Furthermore, LC50 values of photolysis transformation products (TPs) of carprofen, ketoprofen and diclofenac acid (as unknown compounds) were screened in this 2D-LC system, which could be an indicator of the toxicity of these TPs and was meaningful for the environmental monitoring and drinking water treatment. The established 2D-LC system was cost-effective, time-saving and reliable, and was promising for fast online screening of toxicity of known and unknown analytes in the complex sample in a single step. It may find applications in environment, pharmaceutical and food, etc.

  7. A novel two-dimensional liquid chromatographic system for the online toxicity prediction of pharmaceuticals and related substances

    International Nuclear Information System (INIS)

    Li, Jian; Xu, Li; Shi, Zhi-guo; Hu, Min

    2015-01-01

    Highlights: • A novel two-dimensional liquid chromatographic system was developed. • The 1st dimension was ODS to separate components in the sample. • The 2nd dimension was biopartitioning micellar chromatography to predict toxicity. • The system was used to screen toxicity of pharmaceuticals and related substances. • It was promising for fast online toxicity screening of complex sample in one step. - Abstract: In this study, a novel two-dimensional liquid chromatographic (2D-LC) system was developed for simultaneous separation and toxicity prediction of pharmaceutical and its related substances. A conventional ODS column was used on the 1st-D to separate the sample; while, bio-partitioning micellar chromatography served as the 2nd-D to predict toxicity of the components. The established system was tested for the toxicity of ibuprofen and its impurities with known toxicity. With only one injection, ibuprofen and its impurities were separated on the 1st-D; and LC50 values of individual impurity were obtained based on the quantitative retention–activity relationships, which agreed well with the reported data. Furthermore, LC50 values of photolysis transformation products (TPs) of carprofen, ketoprofen and diclofenac acid (as unknown compounds) were screened in this 2D-LC system, which could be an indicator of the toxicity of these TPs and was meaningful for the environmental monitoring and drinking water treatment. The established 2D-LC system was cost-effective, time-saving and reliable, and was promising for fast online screening of toxicity of known and unknown analytes in the complex sample in a single step. It may find applications in environment, pharmaceutical and food, etc

  8. Use of membrane separation processes for the separation of radionuclides from liquid and gas streams

    International Nuclear Information System (INIS)

    Vladisavljevic, G.T.; Rajkovic, M.B.

    1999-01-01

    Use of membranes for the separation and recovery of radionuclides from contaminated liquid and gas streams has been discussed in this paper. The special attention has been paid to the use of ion-exchange membranes for electrodialysis and Donnan dialysis, as well as the use of facilitated liquid membranes for liquid pertraction. (author)

  9. Liquid-liquid reductive extraction in molten fluoride salt/liquid aluminium as a core of process for the An/Ln group separation

    International Nuclear Information System (INIS)

    Conocar, O.

    2007-06-01

    This report concerns a pyrochemical process based on liquid-liquid extraction in a molten fluoride/liquid aluminium system as a core process for actinide (An)/lanthanide (Ln) group separation, studied at CEA. The basic and demonstrative experiments have established the feasibility of the An/Ln group separation in the molten fluoride/liquid aluminium system (U, Pu, Np, Am, Cm traces from Nd, Ce, Eu, Sm, Eu, La - An/Ln separation factors over 1000 - An recovery yield over 98 % in one batch). The main experimental efforts must now be targeted on the recovery of actinides from the Al matrix. A thermodynamic and bibliographical survey has been done. It shows that back-extraction in a molten chloride melt could be a promising technique for this purpose

  10. Liquid-liquid reductive extraction in molten fluoride salt/liquid aluminium as a core of process for the An/Ln group separation

    Energy Technology Data Exchange (ETDEWEB)

    Conocar, O

    2007-06-15

    This report concerns a pyrochemical process based on liquid-liquid extraction in a molten fluoride/liquid aluminium system as a core process for actinide (An)/lanthanide (Ln) group separation, studied at CEA. The basic and demonstrative experiments have established the feasibility of the An/Ln group separation in the molten fluoride/liquid aluminium system (U, Pu, Np, Am, Cm traces from Nd, Ce, Eu, Sm, Eu, La - An/Ln separation factors over 1000 - An recovery yield over 98 % in one batch). The main experimental efforts must now be targeted on the recovery of actinides from the Al matrix. A thermodynamic and bibliographical survey has been done. It shows that back-extraction in a molten chloride melt could be a promising technique for this purpose.

  11. Gas/liquid separator for BWR type reactor

    International Nuclear Information System (INIS)

    Soma, Naoshi; Akimoto, Seiichi; Yokoyama, Iwao.

    1993-01-01

    A two phase gas/liquid flow generated at a heating portion of a nuclear reactor is swirled by inlet vanes. The phase gas/liquid flow uprises as a vortex flow in a vortex cylinder, and a liquid phase of a high density gathers at the outer circumference of the vortex cylinder. The liquid phase gathered at the outer circumference is collected at the inlet of a discharge flow channel which protrude into the vortex cylinder and in a three-step structure, and introduced into a recycling liquid phase passing through the discharge flow channel for liquid phase. There is provided a structure that separated liquid collected at the lowermost state in the inlet of the three-step discharge flow channel inlet descends in the discharge flow channel, then uprises in an uprising flow channel and is introduced into the recycling liquid phase by way of a discharge flow channel exit. The height of the discharge flow channel exit is determined equal to that of a liquid level of the recycling liquid phase during rated operation of the reactor. Accordingly, even in a case where the liquid level in the recycling liquid phase is lowered, the liquid level of the uprising flow channel is kept equal to that during rated operation. (I.N.)

  12. Alpha/beta separation in liquid scintillation gel samples

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.

    1994-01-01

    The pulse shape analysis commonly used in liquid scintillation alpha/beta separations is satisfactory for moderate quench levels. However, for gel samples, the alpha particle counting efficiency is never greater than 10%, and an optimum separation of the alpha component cannot be achieved when beta to alpha counting rate ratios are greater than 100. In such cases, it is better to use a spectrum analysis method for alpha/beta separation. ((orig.))

  13. Experimental study of liquid carryover in a separator drum

    International Nuclear Information System (INIS)

    Prabhudharwadkar, Deoras M.; More, Rahul Z.; Iyer, Kannan N.

    2010-01-01

    The phenomenon of carryover, i.e. entrainment of liquid along with separated steam is observed in all the steam separators. Due to the risks, such as turbine blade erosion and radioactivity leakage, associated with it, it is desired to have an estimate of the carryover value. This is all the more important when the separation is only under the influence of gravity as proposed in some of the new generation natural circulation reactors. Experiments were carried out in an air-water facility at atmospheric conditions to characterize the entrainment in drums with ratio of the drum diameter to riser diameter varying from 1 to 6. Various parameters influencing the liquid entrainment were identified. The vapour superficial velocity and the drum diameter to riser diameter ratio were found to be the most influencing parameters. A dimensionless prediction correlation was evolved for the liquid entrainment and it was found to agree with previous works in the literature for drum to riser diameter ratio equal to 1.

  14. On-line immunoaffinity column-liquid chromatography-tandem mass spectrometry method for trace analysis of diuron in wastewater treatment plant effluent sample.

    Science.gov (United States)

    Zhang, Xiuli; Martens, Dieter; Krämer, Petra M; Kettrup, Antonius A; Liang, Xinmiao

    2006-11-10

    An on-line immunoaffinity column with liquid chromatography/tandem mass spectrometry (IAC-LC-MS/MS) method for the determination of diuron in water matrices was described. This method used a sol-gel immunoaffinity column (20 mm x 4 mm I.D.) for on-line sample cleanup and enrichment, a monolithic analytical column (100 mm x 4.6 mm I.D.) for separation, and a triple quadrupole mass spectrometer for quantitation. The major challenges for the on-line set-up were discussed. The optimized on-line protocol was emphasized by the fact that low limit of quantitation (LOQ) of 1.0 ng/L was achieved with only 2.5-mL sample. In addition, a satisfactory accuracy ( approximately 90% of recovery) and precision (effect, the on-line IAC-LC-MS/MS analysis method can reliably determine diuron in wastewater treatment plant effluent sample.

  15. Laser-induced separation of hydrogen isotopes in the liquid phase

    International Nuclear Information System (INIS)

    Beattie, W.; Freund, S.; Holland, R.; Maier, W.

    1980-01-01

    A process for separating hydrogen isotopes which comprises (A) forming a liquid phase of hydrogen-bearing feedstock compound at a temperature at which the spectral features of the feedstock compound are narrow enough or the absorption edges sharp enough to permit spectral features corresponding to the different hydrogen isotopes to be separated to be distinguished, (B) irradiating the liquid phase at said temperature with monochromatic radiation of a first wavelength which selectively or at least preferentially excites those molecules of said feedstock compound containing a first hydrogen isotope, and (C) subjecting the excited molecules to physical or chemical processes or a combination thereof whereby said first hydrogen isotope contained in said excited molecules is separated from other hydrogen isotopes contained in the unexcited molecules in said liquid phase

  16. Meniscus and viscous forces during normal separation of liquid-mediated contacts

    International Nuclear Information System (INIS)

    Cai Shaobiao; Bhushan, Bharat

    2007-01-01

    Menisci form between two solid surfaces with the presence of an ultra-thin liquid film. Meniscus and viscous forces contribute to an adhesive force when two surfaces are separated. The adhesive force can be very large and can result in high friction, stiction and possibly high wear. The situation may become more pronounced when the contacting surfaces are ultra-smooth and the normal load is small, as is common for micro-/nanodevices. In this study, equations for meniscus and viscous forces during separation of two flat surfaces, and a sphere and a flat surface, are developed, and the corresponding adhesive forces contributed by these two types of forces are examined. The geometric meniscus curvatures and break point are theoretically determined, and the role of meniscus and viscous forces is evaluated during separation. The influence of separation distance, liquid thickness, meniscus area, separation time, liquid properties and contact angles are analyzed. Critical meniscus areas at which transition in the dominance of meniscus to viscous forces occurs for different given conditions, i.e. various initial liquid thicknesses, contact angles and designated separation time, are identified. The analysis provides a fundamental understanding of the physics of separation process, and insights into the relationships between meniscus and viscous forces. It is also valuable for the design of the interface for various devices

  17. Pump Propels Liquid And Gas Separately

    Science.gov (United States)

    Harvey, Andrew; Demler, Roger

    1993-01-01

    Design for pump that handles mixtures of liquid and gas efficiently. Containing only one rotor, pump is combination of centrifuge, pitot pump, and blower. Applications include turbomachinery in powerplants and superchargers in automobile engines. Efficiencies lower than those achieved in separate components. Nevertheless, design is practical and results in low consumption of power.

  18. On-Line Ion Exchange Liquid Chromatography as a Process Analytical Technology for Monoclonal Antibody Characterization in Continuous Bioprocessing.

    Science.gov (United States)

    Patel, Bhumit A; Pinto, Nuno D S; Gospodarek, Adrian; Kilgore, Bruce; Goswami, Kudrat; Napoli, William N; Desai, Jayesh; Heo, Jun H; Panzera, Dominick; Pollard, David; Richardson, Daisy; Brower, Mark; Richardson, Douglas D

    2017-11-07

    Combining process analytical technology (PAT) with continuous production provides a powerful tool to observe and control monoclonal antibody (mAb) fermentation and purification processes. This work demonstrates on-line liquid chromatography (on-line LC) as a PAT tool for monitoring a continuous biologics process and forced degradation studies. Specifically, this work focused on ion exchange chromatography (IEX), which is a critical separation technique to detect charge variants. Product-related impurities, including charge variants, that impact function are classified as critical quality attributes (CQAs). First, we confirmed no significant differences were observed in the charge heterogeneity profile of a mAb through both at-line and on-line sampling and that the on-line method has the ability to rapidly detect changes in protein quality over time. The robustness and versatility of the PAT methods were tested by sampling from two purification locations in a continuous mAb process. The PAT IEX methods used with on-line LC were a weak cation exchange (WCX) separation and a newly developed shorter strong cation exchange (SCX) assay. Both methods provided similar results with the distribution of percent acidic, main, and basic species remaining unchanged over a 2 week period. Second, a forced degradation study showed an increase in acidic species and a decrease in basic species when sampled on-line over 7 days. These applications further strengthen the use of on-line LC to monitor CQAs of a mAb continuously with various PAT IEX analytical methods. Implementation of on-line IEX will enable faster decision making during process development and could potentially be applied to control in biomanufacturing.

  19. Combination downflow-upflow vapor-liquid separator

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, John H. (Uniontown, OH); Prueter, William P. (Alliance, OH); Eaton, Andrew M. (Alliance, OH)

    1987-03-10

    An improved vapor-liquid separator having a vertically disposed conduit for flow of a mixture. A first, second and third plurality of curved arms penetrate and extend within the conduit. A cylindrical member is radially spaced from the conduit forming an annulus therewith and having perforations and a retaining lip at its upper end.

  20. Rapid chemical separations

    CERN Document Server

    Trautmann, N

    1976-01-01

    A survey is given on the progress of fast chemical separation procedures during the last few years. Fast, discontinuous separation techniques are illustrated by a procedure for niobium. The use of such techniques for the chemical characterization of the heaviest known elements is described. Other rapid separation methods from aqueous solutions are summarized. The application of the high speed liquid chromatography to the separation of chemically similar elements is outlined. The use of the gas jet recoil transport method for nuclear reaction products and its combination with a continuous solvent extraction technique and with a thermochromatographic separation is presented. Different separation methods in the gas phase are briefly discussed and the attachment of a thermochromatographic technique to an on-line mass separator is shown. (45 refs).

  1. Combination downflow-upflow vapor-liquid separator

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, J.H.; Prueter, W.P.; Eaton, A.M.

    1987-03-10

    An improved vapor-liquid separator is described having a vertically disposed conduit for flow of a mixture. A first, second and third plurality of curved arms penetrate and extend within the conduit. A cylindrical member is radially spaced from the conduit forming an annulus therewith and having perforations and a retaining lip at its upper end. 11 figs.

  2. Separation of phosphorous by liquid-liquid extraction for the measurement of 32P

    International Nuclear Information System (INIS)

    Lee, H.N.; Yang, S.D.

    2010-01-01

    Phosphorous containing radioisotope waste was separated and determined by liquid-liquid extraction method through liquid scintillation counter (LSC). In this process, ammonium phosphate was converted to phosphomolybdate (PMo) by the reaction of ammonium molybdate (Mo) in HCl solution (0.02 M) and maximum UV/VIS absorbance (λ max ) 218 nm was observed. The PMo solution was extracted with TOA (Tri-n-Octylamine)/xylene mixture and λ max 290 nm was found for this organic layer. Absorbance of aqueous and organic layer was linear through concentration. The impurities such as Co, Cr, Gd, etc. remain in aqueous layer by treating with Mo which was determined by ICP-AES and AAS. The quenching correction curve for 32 P was calculated using LSC results. No counting change was observed as the volume of quenchers increased. The recovery was 98% and 81% for the extraction and separation process from the test using H 3 32 PO 4 as standard tracer. (author)

  3. Novel Fission-Product Separation Based on Room-Temperature Ionic Liquids

    International Nuclear Information System (INIS)

    Rogers, Robin D.

    2004-01-01

    This project has demonstrated that Sr2+ and Cs+ can be selectively extracted from aqueous solutions into ionic liquids using crown ethers and that unprecedented large distribution coefficients can be achieved for these fission products. The volume of secondary wastes can be significantly minimized with this new separation technology. Through the current EMSP funding, the solvent extraction technology based on ionic liquids has been shown to be viable and can potentially provide the most efficient separation of problematic fission products from high level wastes. The key results from the current funding period are the development of highly selective extraction process for cesium ions based on crown ethers and calixarenes, optimization of selectivities of extractants via systematic change of ionic liquids, and investigation of task-specific ionic liquids incorporating both complexant and solvent characteristics

  4. Qualification of a novel deepwater gas / liquid separator

    Energy Technology Data Exchange (ETDEWEB)

    Abrand, Stephanie

    2010-07-01

    The implementation of subsea boosting and processing systems is becoming a common development scheme for the development of deep and ultra-deep water fields. Those subsea processing systems shall address the mechanical and functional constraints that are imposed by the deepwater installation and operation along with the obvious reliability requirements. Saipem has developed a deepwater gas separation and liquid boosting system that encompasses a good flexibility in handling a wide range of steady and unsteady multiphase input streams and a relatively simple mechanical arrangement. The system is composed of an array of vertical pipes that contributes in providing the required separation and liquid hold up volumes. The reduced diameter and wall thickness of the vertical pipes, as compared with the equivalent single separation vessel, is particularly suited in deep and ultra-deep water applications and/or high pressure services. Furthermore, the system relies on the gravity separation whose efficiency is ensured by its ability to accommodate large variety of input flowrate and un-steady regimes. In the continuous effort of providing reliable and proven process solutions to the market, Saipem has undertaken a qualification program focused to characterise and demonstrate the system versatility and separation performances, that will involve model testing in multiphase conditions. (Author)

  5. Separation of short-lived fission products

    International Nuclear Information System (INIS)

    Tamai, Tadaharu; Ohyoshi, Emiko; Ohyoshi, Akira; Kiso, Yoshiyuki; Shinagawa, Mutsuaki.

    1976-01-01

    A rbief review is presented on the various methods of separation available for both gaseous and liquid states, for the separation of short-lived fission products formed by binary fission of neutron irradiated uranium. The means available for gaseous state are the hot atom reaction, the hydride method and on-line mass separation. For liquid state, use can be made of precipitation, ionic or atomic exchange, solvent extraction and paper electrophoresis. Particular reference is made to electrophoretic separation of ions produced by fission in aqueous solution of uranium. The principle of electrophoretic separation and the procedures for separating the element of interest from the other fission products are outlined, with reference made to the results obtained with the method by the present authors. The elements in question are alkalines, alkaline earths, rare earths, halogens, selenium and

  6. Progress in Separation of Gases by Permeation and Liquids by Pervaporation Using Ionic Liquids: A Review

    OpenAIRE

    Kárászová, M. (Magda); Kačírková, M. (Marie); Friess, K.; Izák, P. (Pavel)

    2014-01-01

    The effective separation of gases and liquids by membranes containing ionic liquids actually belongs to one of the challenging topics in membrane community. During last decade, a plenty of new kinds of ionic liquids (IL), their combinations, different types of polymerized ionic liquids and polymer–IL composite membranes were developed and tested. This review summarizes the most important achievements and findings connected with the ionic liquid based membranes research and tries to answer h...

  7. High-performance liquid chromatography on-line coupled to high-field NMR and mass spectrometry for structure elucidation of constituents of Hypericum perforatum L

    DEFF Research Database (Denmark)

    Hansen, S. H.; Jensen, A. G.; Cornett, Claus

    1999-01-01

    The on-line separation and structure elucidation of naphthodianthrones, flavonoids, and other constituents of an extract from Hypericum perforatum L, using high performance liquid chromatography (HPLC) coupled on-line with ultraviolet-visible, nuclear magnetic resonance (NMR), and mass spectrometry...... (MS) is described. A conventional reversed-phase HPLC system using ammonium acetate as the buffer substance in the eluent tvas used, and proton NMR spectra were obtained on a 500 MHz NMR instrument. The MS and MS/MS analyses were performed using negative electrospray ionization, In the present study...

  8. On-line mass separator of superheavy atoms

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.

    2002-01-01

    The concept is presented of an on-line Mass Analyzer of SuperHeavy Atoms (MASHA) dedicated to the separation and determination of the mass and decay properties of new elements and isotopes produced in heavy-ion induced reactions. The new nuclides with half-lives T 1/2 ≥ 1 s are transported to an ECR-source working at a frequency of 2.45 GHz and are separated by mass with a mass resolution of M/ΔM ∼ 1500. In the focal plane of the magnetic analyzer a front strip detector surrounded by side detectors will be placed to determine the mass according to the signals from the detected α-particles or fission fragments with efficiency of about 90 %. In comparison to other existing in-flight recoil separators, the present setup will be characterized by higher efficiency and high selectivity relative to background reaction products. The setup MASHA may be used also in the investigation of nuclear reactions of different type induced by stable and radioactive beams

  9. On-Line Mass Separator of Superheavy Atoms

    CERN Document Server

    Oganessian, Yu T

    2002-01-01

    The concept is presented of an on-line Mass Analyzer of SuperHeavy Atoms (MASHA) dedicated to the separation and determination of the mass and decay properties of new elements and isotopes produced in heavy-ion induced reactions. The new nuclides with half-lives T_{1/2}\\ge 1 s are transported to an ECR-source working at a frequency of 2.45 GHz and are separated by mass with a mass resolution of M/\\Delta M\\sim 1500. In the focal plane of the magnetic analyzer a front strip detector surrounded by side detectors will be placed to determine the mass according to the signals from the detected alpha-particles or fission fragments with efficiency of about 90 %. In comparison to other existing in-flight recoil separators, the present setup will be characterized by higher efficiency and high selectivity relative to background reaction products. The setup MASHA may be used also in the investigation of nuclear reactions of different type induced by stable and radioactive beams.

  10. Determination of the total concentration of highly protein-bound drugs in plasma by on-line dialysis and column liquid chromatography: application to non-steroidal anti-inflammatory drugs.

    NARCIS (Netherlands)

    Herraez-Hernandez, R.; van de Merbel, N.C.; Brinkman, U.A.T.

    1995-01-01

    The potential of on-line dialysis as a sample preparation procedure for compounds highly bound to plasma proteins is evaluated, using non-steroidal anti-inflammatory drugs as model compounds and column liquid chromatography as the separation technique. Different strategies to reduce the degree of

  11. Determination of the total concentration of highly protein-bound drugs in plasma by on-line dialysis and column liquid chromatography : application to non-steroidal anti-inflammatory drugs

    NARCIS (Netherlands)

    Herráez-Hernández, R; van de Merbel, N C; Brinkman, U A

    1995-01-01

    The potential of on-line dialysis as a sample preparation procedure for compounds highly bound to plasma proteins is evaluated, using non-steroidal anti-inflammatory drugs as model compounds and column liquid chromatography as the separation technique. Different strategies to reduce the degree of

  12. Nano-liquid chromatography applied to enantiomers separation.

    Science.gov (United States)

    Fanali, Salvatore

    2017-02-24

    This paper presents the state of the art concerning the separation of chiral compounds by means of nano-liquid chromatography (nano-LC). The enantiomers' separation and determination are a subject of fundamental importance in various application fields such as pharmaceutical industry, biomedicine, food, agrochemical etc. Nano-LC is a miniaturized chromatographic technique offering some advantages over conventional ones such as low consumption of mobile phase, sample volume and amount of chiral stationary phase, reduced costs etc. This is reported in the first part of the paper illustrating the features of the nano-LC. In addition, chiral resolution methods are briefly illustrated. Some chiral selectors, used in high-performance liquid chromatography have also been applied in nano-LC including cyclodextrins, glycopeptide antibiotics, modified polysaccharides etc. This is discussed in the second part of the review. Finally some examples of the applications available in literature are reported. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Ionic liquid-based materials: a platform to design engineered CO2 separation membranes.

    Science.gov (United States)

    Tomé, Liliana C; Marrucho, Isabel M

    2016-05-21

    During the past decade, significant advances in ionic liquid-based materials for the development of CO2 separation membranes have been accomplished. This review presents a perspective on different strategies that use ionic liquid-based materials as a unique tuneable platform to design task-specific advanced materials for CO2 separation membranes. Based on compilation and analysis of the data hitherto reported, we provide a judicious assessment of the CO2 separation efficiency of different membranes, and highlight breakthroughs and key challenges in this field. In particular, configurations such as supported ionic liquid membranes, polymer/ionic liquid composite membranes, gelled ionic liquid membranes and poly(ionic liquid)-based membranes are detailed, discussed and evaluated in terms of their efficiency, which is attributed to their chemical and structural features. Finally, an integrated perspective on technology, economy and sustainability is provided.

  14. Gas Separation Ability of the Liquid Bubble Film.

    Czech Academy of Sciences Publication Activity Database

    Řezníčková Čermáková, Jiřina; Petričkovič, Roman; Vejražka, Jiří; Setničková, Kateřina; Uchytil, Petr

    2016-01-01

    Roč. 166, JUN 22 (2016), s. 26-33 ISSN 1383-5866 Institutional support: RVO:67985858 Keywords : liquid film membrane * bubble * gas separation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  15. Liquid-liquid phase separation in internally mixed magnesium sulfate/glutaric acid particles

    Science.gov (United States)

    Wu, Feng-Min; Wang, Xiao-Wei; Jing, Bo; Zhang, Yun-Hong; Ge, Mao-Fa

    2018-04-01

    The confocal Raman microscopy is utilized to investigate the liquid-liquid phase separation (LLPS) of mixed magnesium sulfate/glutaric acid (MgSO4/GA) droplets deposited on a hydrophobic polytetrafluoroethylene (PTFE) substrate and a hydrophilic quartz substrate. Raman spectra collected from different regions of the mixed droplets provide detailed information of component distributions for MgSO4 and GA. During the dehydration process, the MgSO4/GA mixed particles show the initial liquid-liquid phase separation between 85% and 80% relative humidity (RH) on both the hydrophobic and hydrophilic substrates. For the droplets deposited on the two substrates, the inner phase of droplets is dominated by aqueous MgSO4, which is surrounded by a rich GA organic layer due to the surface tension effects. In addition, the crystallization of GA could be observed in the organic aqueous phase while it is inhibited in the inner MgSO4 phase due to the effects of gel formation of MgSO4 at low RH. The Raman spectra reveal that with decreasing RH the morphology of the mixed droplet evolves from a uniform droplet to the structure of LLPS with the GA crystallizing in the outer layer and MgSO4 gel formed in the inner phase. These findings contribute to the further understanding of the role of interactions between inorganic salts and organic acids on the morphological evolution and environmental effects of atmospheric aerosols under ambient RH conditions.

  16. Liquid-Liquid Phase Separation in Model Nuclear Waste Glasses: A Solid-State Double-Resonance NMR Study

    Energy Technology Data Exchange (ETDEWEB)

    Martineau, Ch.; Michaelis, V.K.; Kroeker, S. [Univ Manitoba, Dept Chem, Winnipeg, MB R3T 2N2 (Canada); Schuller, S. [CEA Valrho Marcoule, LDMC, SECM, DTCD, DEN, F-30207 Bagnols Sur Ceze (France)

    2010-07-01

    Double-resonance nuclear magnetic resonance (NMR) techniques are used in addition to single-resonance NMR experiments to probe the degree of mixing between network-forming cations Si and B, along with the modifier cations Cs{sup +} and Na{sup +} in two molybdenum-bearing model nuclear waste glasses. The double-resonance experiments involving {sup 29}Si in natural abundance are made possible by the implementation of a CPMG pulse-train during the acquisition period of the usual REDOR experiments. For the glass with lower Mo content, the NMR results show a high degree of Si-B mixing, as well as an homogeneous distribution of the cations within the borosilicate network, characteristic of a non-phase-separated glass. For the higher-Mo glass, a decrease of B-Si(Q{sup 4}) mixing is observed, indicating phase separation. {sup 23}Na and {sup 133}Cs NMR results show that although the Cs{sup +} cations, which do not seem to be influenced by the molybdenum content, are spread within the borate network, there is a clustering of the Na{sup +} cations, very likely around the molybdate units. The segregation of a Mo-rich region with Na{sup +} cations appears to shift the bulk borosilicate glass composition toward the metastable liquid liquid immiscibility region and induce additional phase separation. Although no crystallization is observed in the present case, this liquid liquid phase separation is likely to be the first stage of crystallization that can occur at higher Mo loadings or be driven by heat treatment. From this study emerges a consistent picture of the nature and extent of such phase separation phenomena in Mo-bearing glasses, and demonstrates the potential of double-resonance NMR methods for the investigation of phase separation in amorphous materials. (authors)

  17. Vitrification and Crystallization of Phase-Separated Metallic Liquid

    Directory of Open Access Journals (Sweden)

    Yun Cheng

    2017-02-01

    Full Text Available The liquid–liquid phase separation (LLPS behavior of Fe50Cu50 melt from 3500 K to 300 K with different rapid quenching is investigated by molecular dynamics (MD simulation based on the embedded atom method (EAM. The liquid undergoes metastable phase separation by spinodal decomposition in the undercooled regime and subsequently solidifies into three different Fe-rich microstructures: the interconnected-type structure is kept in the glass and crystal at a higher cooling rate, while the Fe-rich droplets are found to crystalize at a lower cooling rate. During the crystallization process, only Fe-rich clusters can act as the solid nuclei. The twinning planes can be observed in the crystal and only the homogeneous atomic stacking shows mirror symmetry along the twinning boundary. Our present work provides atomic-scale understanding of LLPS melt during the cooling process.

  18. Ion source development for the on-line isotope separator at GSI

    International Nuclear Information System (INIS)

    Kirchner, R.; Burkard, K.; Hueller, W.; Klepper, O.

    1991-08-01

    The progress in the understanding of ion sources for isotope separation on-line and the feasibility of bunched beams of relatively refractory elements is reported. The ultra-high temperature FEBIAD-H ion source, facilitating the mounting of catchers and window compared to the earlier F-version, enables bunched beams of the elements with adsorption enthalpies up to almost 6 eV, e.g. of Be, Al, Ca, Cr, Fe, Co, Ni, Sr, Pd, Ba, Yb, and Au. This way also chemical selectivity for these elements may be achieved, at least to some extent, for isotopes with halflives > or approx.1 minute, including especially the difficult separation of alkaline-earth isotopes from isobaric alkalines. These studies reveal, however, also a principal difficulty in the on-line separation of refractory elements, namely their tendency, increasing with ΔH a , to re-diffuse after release from the catcher into the bulk of the hot source enclosure. (orig.)

  19. Phase separation and structure formation in gadolinium based liquid and glassy metallic alloys

    International Nuclear Information System (INIS)

    Han, Junhee

    2014-01-01

    In this PhD research the liquid-liquid phase separation phenomena in Gd-based alloys was investigated in terms of phase equilibria, microstructure formation upon quenching the melt and corresponding magnetic properties of phase-separated metallic glasses. The phase diagrams of the binary subsystems Gd-Zr and Gd-Ti were experimentally reassessed. Especially the phase equilibria with the liquid phase could be determined directly by combining in situ high energy synchrotron X-ray diffraction with electrostatic levitation of the melt. The Gd-Zr system is of eutectic type with a metastable miscibility gap. The eutectic composition at 18 ± 2 at.% Zr, the liquidus line and the coexistence of bcc-Zr and bcc-Gd at elevated temperature could be determined. The Gd-Ti system is a monotectic system. The experimental observations in this work led to improved new Gd-Zr and Gd-Ti phase diagrams. The phase equilibria of the ternary Gd-Ti-Co system were analyzed for two alloy compositions. The XRD patterns for molten Gd 35 Ti 35 Co 30 gave direct evidence for the coexistence of two liquid phases formed by liquid-liquid phase separation. The first experimental and thermodynamic assessment of the ternary Gd-Ti-Co system revealed that the stable miscibility gap of binary Gd-Ti extends into the ternary Gd-Ti-Co system (up to about 30 at.% Co). New phase-separated metallic glasses were synthesized in Gd-TM-Co-Al (TM = Hf, Ti or Zr) alloys. The microstructure was characterized in terms of composition and cooling rate dependence of phase separation. Due to large positive enthalpy of mixing between Gd on the one side and Hf, Ti or Zr on the other side, the alloys undergo liquid-liquid phase separation during rapid quenching the melt. The parameters determining the microstructure development during phase separation are the thermodynamic properties of the liquid phase, kinetic parameters and quenching conditions. By controlling these parameters and conditions the microstructure can be

  20. Liquid-liquid extraction to lithium isotope separation based on room-temperature ionic liquids containing 2,2'-binaphthyldiyl-17-crown-5

    International Nuclear Information System (INIS)

    Sun Xiaoli; Zhou Wen; Gu Lin; Qiu Dan; Ren Donghong; Gu Zhiguo; Li Zaijun

    2015-01-01

    A novel liquid-liquid extraction system was investigated for the selective separation of lithium isotopes using ionic liquids (ILs = C 8 mim + PF 6 - , C 8 mim + BF 4 - , and C 8 mim + NTf 2 - ) as extraction solvent and 2,2'-binaphthyldiyl-17-crown-5 (BN-17-5) as extractant. The effects of the concentration of lithium salt, counter anion of lithium salt, initial pH of aqueous phase, extraction temperature, and time on the lithium isotopes separation were discussed. Under optimized conditions, the maximum single-stage separation factor α of 6 Li/ 7 Li obtained in the present study was 1.046 ± 0.002, indicating the lighter isotope 6 Li was enriched in IL phase while the heavier isotope 7 Li was concentrated in the solution phase. The formation of 1:1 complex Li(BN-17-5) + in the IL phase was determined on the basis of slope analysis method. The large value of the free energy change (-ΔG° = 92.89 J mol -1 ) indicated the high separation capability of the Li isotopes by BN-17-5/IL system. Lithium in Li(BN-17-5) + complex was stripped by 1 mol L -1 HCl solution. The extraction system offers high efficiency, simplicity, and green application prospect to lithium isotope separation. (author)

  1. Experimental investigation of rotating-drum separators for liquid-metal MHD applications

    International Nuclear Information System (INIS)

    Lenzo, C.S.; Dauzvardis, P.V.; Hantman, R.G.

    1978-01-01

    For the past several years, Argonne National Laboratory has been active in the development of closed-cycle two-phase-flow MHD power systems. One of the key components in such systems is an effective and efficient gas-liquid separator-diffuser. On the basis of an assessment of present technology, it was decided to study the characteristics of a rotating drum type of separator, and a multitask research and development program was initiated within the overall liquid-metal MHD research program. The first task, now completed, centered on the investigation of single-phase flow (liquid) deposited by a flow nozzle on the inner surface of freely-rotating cylinders or drums of 423 mm and 282 mm diam. The tests were designed to study the recovery of energy in the liquid layer deposited on the drum; the torque transmitted to the drum by the liquid as the result of shear stress between the liquid and the drum surface; the characteristics of the liquid layer; and the effects of drum size, nozzle shape and orientation, and nozzle velocity. The test results showed that a stable liquid film was formed on the drum and that the kinetic energy of the liquid layer was high enough to be potentially useful in two-phase-flow MHD power systems

  2. Metal–organic frameworks based membranes for liquid separation

    KAUST Repository

    Li, Xin; Liu, Yuxin; Wang, Jing; Gascon, Jorge; Li, Jiansheng; Van der Bruggen, Bart

    2017-01-01

    , the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes

  3. Separation of density and viscosity influence on liquid-loaded surface acoustic wave devices

    Science.gov (United States)

    Herrmann, F.; Hahn, D.; Büttgenbach, S.

    1999-05-01

    Love-mode sensors are reported for separate measurement of liquid density and viscosity. They combine the general merits of Love-mode devices, e.g., ease of sensitivity adjustment and robustness, with a highly effective procedure of separate determination of liquid density and viscosity. A model is proposed to describe the frequency response of the devices to liquid loading. Moreover, design rules are given for further optimization and sensitivity enhancement.

  4. Utility of reversed phase high performance liquid chromatography for on-line yield determination of radiochemical separations: Studies with cobalt

    International Nuclear Information System (INIS)

    Subramanian, S.; Woittiez, J.R.W.

    1993-01-01

    This article indicates the potentials of high performance liquid chromatography (HPLC) as a radiochemical technique for multielement separation of neutron irradiated samples. The focus lies on the convenience to use the detector signal of the eluted components to indicate the chemical yield of the analyte, which has often proved to be a crucial step in radiochemical separations. Two signals have been utilized. The UV signal of the metal-ligand complexes separated by reversed phase HPLC and the radioactive response as a result of sample irradiation of carrier-tracer addition. Change in ratio is discussed between the two signals, if any, for a specific sample. Losses of metal as much as 65% were simulated and corrected using the individual UV response. The method promises improved accuracy for elemental analysis despite losses suffered during the various chemical steps. The procedure omits the necessity of additional analytical steps for yield determination. The present article aims at the chromatographic part of the study. Cobalt as cobalt diethyldithiocarbamate has been used to demonstrate the viability of the concept. The separation was developed on c C18 reverse phase analytical column and optimized on a semi preparative one

  5. Comprehensive two-dimensional liquid chromatography: Ion chromatography × reversed-phase liquid chromatography for separation of low-molar-mass organic acids

    NARCIS (Netherlands)

    Brudin, S.S.; Shellie, R.A.; Haddad, P.R.; Schoenmakers, P.J.

    2010-01-01

    In the work presented here a novel approach to comprehensive two-dimensional liquid chromatography is evaluated. Ion chromatography is chosen for the first-dimension separation and reversed-phase liquid chromatography is chosen for the second-dimension separation mode. The coupling of these modes is

  6. On-line separation of iodine species in reactor water using mixer-settlers

    International Nuclear Information System (INIS)

    Malmbeck, R.; Skarnemark, G.

    1995-01-01

    A method for separation of iodine species from water has been developed. It is based on liquid-liquid extraction and separation is achieved in four extraction steps. A system based on this method for continuous separation of iodine species using mixer-settlers has been developed. It consists of four mixer-settler batteries with 4,4,6 and 6 mixer-settler stages each. As organic phase an aliphatic kerosene is used and the separation is improved if the organic solvent has been pretreated with iodine carrier, stripped and washed. With an aqueous feed flowrate of 10 ml/min and mixer-settler battery phase flowratios of approximately 0.1 except for the elementary iodine strip battery with a phase flowratio of 1, the system separation performance is 92% for methyl iodide, 97% for iodate and elementary iodine and 99% for iodide. (orig.)

  7. Equipment to separate liquid droplets from the cooling air stream of a liquid cooling tower

    International Nuclear Information System (INIS)

    Thompson, S.E.; Schwinn, J.M.

    1977-01-01

    In order to separate off liquid droplets from the air stream of a cooling tower, one uses separator blades that are secured to the supporting construction. An improvement on this is proposed to make the repairs easier. According to the invention, the separator blades should be fabricated from springy material with self-supporting strength and can be fitted onto the supporting construction by means of slits and notches. (RW) [de

  8. Application of liquid-liquid extraction in separation of rare earths [Paper No. : V-6

    International Nuclear Information System (INIS)

    Deshpande, S.M.; Krishnan, N.P.K.; Murthy, T.K.S.; Swaminathan, T.V.

    1979-01-01

    The rare earths consist of fifteen elements which have very similar chemical properties and are difficult to separate from each other. Since they exist together in all naturally occurring minerals their separation is one of the important and difficult aspects of their technology. Liquid-liquid extraction has proved to be an efficient technique for their separation. The two important extraction systems that find practical and large scale application, the nitric acid + tri-n-butyl phosphate, and mineral acid (particularly hydrochloric acid) + organo phosphoric acid (like di-2-ethyl hexyl phosphoric acid), are briefly reviewed. The factors affecting the extraction and separation of rare earths in the two systems are discussed. On an industrial scale the extraction process is very often employed for an initial concentration of the desired rare earths from complex mixtures. The final purification is generally achieved by the ion exchange method. The utility of the solvent extraction process for the upgrading of selected rare earths-europium, samarium and gadolinium-from a mixed rare earth chloride, derived from monazite, is illustrated by the work carried out in this laboratory and pilot plant operation at the Alwaye plant of M/s. Indian Rare Earths Ltd. (author)

  9. On-line control of a liquid-liquid extraction column by the modal control method

    International Nuclear Information System (INIS)

    Bonnefoi, P.; Poujol, A.; Zwingelstein, G.; Dargier, C.; Rouyer, H.

    1977-02-01

    The application of modal analysis to the on-line control of a liquid-liquid extraction column is presented. This process is used in reprocessing for U purification. U in the aqueous acid phase is extracted by a solvent flowing at counter-current. The process is described by 4 nonlinear equations and gives the U and acid concentrations in the two phases. An approximative model is established adapted to the control of the column. Some results of a numerical simulation are given when a single mode is controled. They show that a single sensor allows a good control [fr

  10. Simultaneous Design of Ionic Liquids and Azeotropic Separation for Systems Containing Water

    DEFF Research Database (Denmark)

    Roughton, Brock; Camarda, Kyle V.; Gani, Rafiqul

    Separation of azeotropic mixtures is a very common but challenging task, covering a wide range of industrial sectors and issues. For example, most down-stream separation problems following a synthesis step of pharmaceutical and/or biochemical processes, involve the separation of azeotropes. Also......, many separation tasks in the petrochemical and chemical industries involve separation of azeotropic mixtures. A common issue with the design and operation of these separation tasks is whether or not to use solvents? And, if solvents are to be used, what kind of solvent should be used and what would....... Since a large number of azeotropes encountered include water as one of the compounds, the use of ionic liquids in solvent-based separation of water in azeotropic systems has been investigated. Along with the design of the ionic liquid being used to entrain water, the extractive distillation process has...

  11. Chiral separation of substituted phenylalanine analogues using chiral palladium phosphine complexes with enantioselective liquid-liquid extraction

    NARCIS (Netherlands)

    Verkuijl, B.J.V.; Schuur, B.; Minnaard, A.J.; Vries, de J.G.; Feringa, B.L.

    2010-01-01

    Chiral palladium phosphine complexes have been employed in the chiral separation of amino acids and phenylalanine analogues in particular. The use of (S)-xylyl-BINAP as a ligand for the palladium complex in enantioselective liquid–liquid extraction allowed the separation of the phenylalanine

  12. How to separate ionic liquids: Use of Hydrophilic Interaction Liquid Chromatography and mixed mode phases

    International Nuclear Information System (INIS)

    Lamouroux, C.

    2011-01-01

    This chromatographic study deals with the development of a convenient and versatile method to separate Room Temperature Ionic Liquids. Different modes of chromatography were studied. The study attempts to answer the following question: 'what were the most important interactions for the separation of ionic liquids?'. The results show that the essential interactions to assure a good retention of RTILs are the ionic ones and that hydrophobic interactions play a role in the selectivity of the separation. The separation of five imidazolium salt with a traditional dial columns in Hydrophilic Interaction Chromatography (HILIC) was demonstrated. It shows that neutral diol grafted column allows an important retention that we assume is due to the capability of diol to develop a thick layer of water. Furthermore, stationary phase based on mixed interaction associating ion exchange and hydrophobic properties were studied. Firstly, it will be argued that it is possible to separate RTILs with a convenient retention and resolution according to a reverse phase elution with the Primesep columns made of a brush type long alkyl chain with an embedded negatively charged functional group. Secondly, a successful separation of RTILs in HILIC mode with a mixed phase column containing a cationic exchanger and a hydrophobic octyl chain length will be demonstrated. (author)

  13. Chiral ionic liquids in chromatographic and electrophoretic separations.

    Science.gov (United States)

    Kapnissi-Christodoulou, Constantina P; Stavrou, Ioannis J; Mavroudi, Maria C

    2014-10-10

    This report provides an overview of the application of chiral ionic liquids (CILs) in separation technology, and particularly in capillary electrophoresis and both gas and liquid chromatography. There is a large number of CILs that have been synthesized and designed as chiral agents. However, only a few have successfully been applied in separation technology. Even though this application of CILs is still in its early stages, the scientific interest is increasing dramatically. This article is focused on the use of CILs as chiral selectors, background electrolyte additives, chiral ligands and chiral stationary phases in electrophoretic and chromatographic techniques. Different examples of CILs, which contain either a chiral cation, a chiral anion or both, are presented in this review article, and their major advantages along with their potential applications in chiral electrophoretic and chromatographic recognition are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The isotope separator on-line at the INS-SF cyclotron

    International Nuclear Information System (INIS)

    Yonehara, H.; Kawakami, H.; Tanaka, J.; Omata, K.; Shida, Y.

    1981-02-01

    The Isotope Separator On-Line at the SF Cyclotron has been improved. Some details of improvements are described on the target-ion source, rapid extraction with aluminized tape, tape transport system and data aquisition. The performance of the improved SF-ISOL is discussed. (author)

  15. Spectroscopic and physicochemical measurements for on-line monitoring of used nuclear fuel separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Nee, Ko; Nilsson, M. [Department of Chemical Engineering and Material Science, University of California, 916 Engineering Tower, Irvine, CA 92697-2575 (United States); Bryan, S.; Levitskaia, T. [Pacific Northwest National Laboratory, PO BOX 999, Richland, CA 99352 (United States)

    2013-07-01

    Separation processes for used nuclear fuel are often complicated and challenging due to the high constraints in purity of the products and safeguards of the process streams. In order to achieve a safe, secure and efficient separation process, the liquid streams in the separation process require close monitoring. Due to the high radiation environment, sampling of the materials is difficult. Availability of a detection technique that is remote, non-destructive and can avoid time-delay caused by retrieving samples would be beneficial and could minimize the exposure to personnel and provide material accountancy to avoid diversion (non-proliferation). For example, Ultra Violet (UV), Visible (Vis), Near-Infrared (NIR) and Raman spectroscopy that detect and quantify elements present in used nuclear fuel, e.g. lanthanides, actinides and molecules such as nitrate, can be used. In this work, we have carried out NIR and Raman spectroscopy to study aqueous solutions composed of different concentrations of nitric acid, sodium nitrate, and neodymium at varied temperatures. A chemometric model for online monitoring based on the PLS-Toolbox (MATLAB) software has been developed and validated to provide chemical composition of process streams based on spectroscopic data. In conclusion, both of our NIR and Raman spectra were useful for H{sup +} and NO{sub 3} prediction, and only NIR was helpful for the Nd{sup 3+} prediction.

  16. Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2012-05-01

    Full Text Available The partitioning of semivolatile organic compounds between the gas phase and aerosol particles is an important source of secondary organic aerosol (SOA. Gas-particle partitioning of organic and inorganic species is influenced by the physical state and water content of aerosols, and therefore ambient relative humidity (RH, as well as temperature and organic loading levels. We introduce a novel combination of the thermodynamic models AIOMFAC (for liquid mixture non-ideality and EVAPORATION (for pure compound vapor pressures with oxidation product information from the Master Chemical Mechanism (MCM for the computation of gas-particle partitioning of organic compounds and water. The presence and impact of a liquid-liquid phase separation in the condensed phase is calculated as a function of variations in relative humidity, organic loading levels, and associated changes in aerosol composition. We show that a complex system of water, ammonium sulfate, and SOA from the ozonolysis of α-pinene exhibits liquid-liquid phase separation over a wide range of relative humidities (simulated from 30% to 99% RH. Since fully coupled phase separation and gas-particle partitioning calculations are computationally expensive, several simplified model approaches are tested with regard to computational costs and accuracy of predictions compared to the benchmark calculation. It is shown that forcing a liquid one-phase aerosol with or without consideration of non-ideal mixing bears the potential for vastly incorrect partitioning predictions. Assuming an ideal mixture leads to substantial overestimation of the particulate organic mass, by more than 100% at RH values of 80% and by more than 200% at RH values of 95%. Moreover, the simplified one-phase cases stress two key points for accurate gas-particle partitioning calculations: (1 non-ideality in the condensed phase needs to be considered and (2 liquid-liquid phase separation is a consequence of considerable deviations

  17. Analysis of lignans in Magnoliae Flos by turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Zhou, Xuan; Chen, Cen; Ye, Xiaolan; Song, Fenyun; Fan, Guorong; Wu, Fuhai

    2016-04-01

    In this study, a method coupling turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry was developed for analyzing the lignans in Magnoliae Flos. By the online pretreatment of turbulent flow chromatography solid-phase extraction, the impurities removal and analytes concentration were automatically processed, and the lignans were separated rapidly and well. Seven lignans of Magnoliae Flos including epieudesmin, magnolin, 1-irioresinol-B-dimethyl ether, epi-magnolin, fargesin aschantin, and demethoxyaschantin were identified by comparing their retention behavior, UV spectra, and mass spectra with those of reference substances or literature data. The developed method was validated, and the good results showed that the method was not only automatic and rapid, but also accurate and reliable. The turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry method holds a high potential to become an effective method for the quality control of lignans in Magnoliae Flos and a useful tool for the analysis of other complex mixtures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Evaluation and ranking of the tank focus area solid liquid separation needs

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, D.J.

    1995-08-17

    The Tank Focus Area (TFA) of the Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) addresses remediation of liquid waste currently stored in underground tanks. Several baseline technologies for treatment of tank waste can be categorized into three types of solid liquid separation: (a) removal of radioactive species that have been absorbed or precipitated, (b) pretreatment for ion exchange, and (c) volume reduction of sludge and wash water. The solids formed from precipitation or absorption of radioactive ions require separation from the liquid phase to permit treatment of the liquid as Low Level Waste. Prior to ion exchange of radioactive ions, removal of insoluble solids is needed to prevent bed fouling and downstream contamination. Volume reduction of washed sludge solids would reduce the tank space required for interim storage. The scope of this document is to evaluate the solid/liquid separations needed to permit treatment of tank wastes to accomplish these goals. The document summarizes previous alkaline waste testing, with an emphasis on crossflow filtration, to-obtain a general understanding of the behavior of radioactive wastes on available equipment. The document also provides general information about filtration and a path forward for testing.

  19. Evaluation and ranking of the tank focus area solid liquid separation needs

    International Nuclear Information System (INIS)

    McCadbe, D.J.

    1995-01-01

    The Tank Focus Area (TFA) of the Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) addresses remediation of liquid waste currently stored in underground tanks. Several baseline technologies for treatment of tank waste can be categorized into three types of solid liquid separation: (a) removal of radioactive species that have been absorbed or precipitated, (b) pretreatment for ion exchange, and (c) volume reduction of sludge and wash water. The solids formed from precipitation or absorption of radioactive ions require separation from the liquid phase to permit treatment of the liquid as Low Level Waste. Prior to ion exchange of radioactive ions, removal of insoluble solids is needed to prevent bed fouling and downstream contamination. Volume reduction of washed sludge solids would reduce the tank space required for interim storage. The scope of this document is to evaluate the solid/liquid separations needed to permit treatment of tank wastes to accomplish these goals. The document summarizes previous alkaline waste testing, with an emphasis on crossflow filtration, to-obtain a general understanding of the behavior of radioactive wastes on available equipment. The document also provides general information about filtration and a path forward for testing

  20. Supported liquid inorganic membranes for nuclear waste separation

    Science.gov (United States)

    Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K

    2015-04-07

    A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.

  1. Development of On-Line High Performance Liquid Chromatography (HPLC)-Biochemical Detection Methods as Tools in the Identification of Bioactives

    Science.gov (United States)

    Malherbe, Christiaan J.; de Beer, Dalene; Joubert, Elizabeth

    2012-01-01

    Biochemical detection (BCD) methods are commonly used to screen plant extracts for specific biological activities in batch assays. Traditionally, bioactives in the most active extracts were identified through time-consuming bio-assay guided fractionation until single active compounds could be isolated. Not only are isolation procedures often tedious, but they could also lead to artifact formation. On-line coupling of BCD assays to high performance liquid chromatography (HPLC) is gaining ground as a high resolution screening technique to overcome problems associated with pre-isolation by measuring the effects of compounds post-column directly after separation. To date, several on-line HPLC-BCD assays, applied to whole plant extracts and mixtures, have been published. In this review the focus will fall on enzyme-based, receptor-based and antioxidant assays. PMID:22489144

  2. Characterization of sodium stibogluconate by online liquid separation cell technology monitored by ICPMS and ESMS and computational chemistry

    DEFF Research Database (Denmark)

    Hansen, Helle Rusz; Hansen, Claus; Kepp, Kasper Planeta

    2008-01-01

    High-performance liquid chromatography (HPLC), mass spectrometry (MS), and computational chemistry has been applied to resolve the composition and structure of the Sb species present in dilutions of Pentostam, a first-line treatment drug against Leishmania parasites. Using HPLC-inductively coupled......(V)-glyconate complexes of various stoichiometry (1:1, 1:2, 1:3, 2:2, 2:3, 2:4, 3:3, 3:4). The 1:1 complex became the most abundant low molecular mass Sb(V) complex with dilution time. A novel mixed-mode chromatographic system was applied in order to separate complexes of various stoichiometry and isomers. Density...

  3. An on-line push/pull perfusion-based hollow-fiber liquid-phase microextraction system for high-performance liquid chromatographic determination of alkylphenols in water samples.

    Science.gov (United States)

    Chao, Yu-Ying; Jian, Zhi-Xuan; Tu, Yi-Ming; Wang, Hsaio-Wen; Huang, Yeou-Lih

    2013-06-07

    In this study, we employed a novel on-line method, push/pull perfusion hollow-fiber liquid-phase microextraction (PPP-HF-LPME), to extract 4-tert-butylphenol, 2,4-di-tert-butylphenol, 4-n-nonylphenol, and 4-n-octylphenol from river and tap water samples; we then separated and quantified the extracted analytes through high-performance liquid chromatography (HPLC). Using this approach, we overcame the problem of fluid loss across the porous HF membrane to the donor phase, permitting on-line coupling of HF-LPME to HPLC. In our PPP-HF-LPME system, we used a push/pull syringe pump as the driving source to perfuse the acceptor phase, while employing a heating mantle and an ultrasonic probe to accelerate mass transfer. We optimized the experimental conditions such as the nature of the HF supported intermediary phase and the acceptor phase, the composition of the donor and acceptor phases, the sample temperature, and the sonication conditions. Our proposed method provided relative standard deviations of 3.1-6.2%, coefficients of determination (r(2)) of 0.9989-0.9998, and limits of detection of 0.03-0.2 ng mL(-1) for the analytes under the optimized conditions. When we applied this method to analyses of river and tap water samples, our results confirmed that this microextraction technique allows reliable monitoring of alkylphenols in water samples.

  4. Deuterium isotope separation factor between hydrogen and liquid water

    International Nuclear Information System (INIS)

    Rolston, J.H.; den Hartog, J.; Butler, J.P.

    1976-01-01

    The overall deuterium isotope separation factor between hydrogen and liquid water, α, has been measured directly for the first time between 280 and 370 0 K. The data are in good agreement with values of α calculated from literature data on the equilibrium constant for isotopic exchange between hydrogen and water vapor, K 1 , and the liquid-vapor separation factor, α/sub V/. The temperature dependence of α over the range 273-473 0 K based upon these new experimental results and existing literature data is given by the equation ln α = -0.2143 + (368.9/T) + (27,870/T 2 ). Measurements on α/sub V/ given in the literature have been surveyed and the results are summarized over the same temperature range by the equation ln α/sub V/ = 0.0592 - (80.3/T) +

  5. Phase separation temperatures of a liquid mixture: Dynamic light scattering technique

    International Nuclear Information System (INIS)

    Dangudom, K.; Wongtawatnugool, C.; Lacharojana, S.

    2010-01-01

    Light scattering intensity measurements and photon correlation spectroscopy (PCS) techniques were employed in an investigation of liquid-liquid phase separation behaviour of a mixture of cyclohexane and methanol at seven different compositions. It was found that, except for one composition (29% methanol), the temperature at which the scattering intensity was a maximum did not coincide with the one where the diffusion coefficient was a minimum, as would be for the case of a vapour-liquid system. The difference may be explained in terms of the local density fluctuation and the random walk problem responsible for the peak intensity and the minimum in the diffusion coefficient, respectively. The definition of phase separation temperature, as determined from diffusion process, was also proposed in this work.

  6. Liquid-liquid phase separation in aerosol particles: Imaging at the Nanometer Scale

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Rachel; Wang, Bingbing; Kelly, Stephen T.; Lundt, Nils; You, Yuan; Bertram, Allan K.; Leone, Stephen R.; Laskin, Alexander; Gilles, Mary K.

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission x-ray microscopy (STXM) to investigate the LLPS of micron sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), a, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS with apparent core-shell particle morphology were observed for all samples with both techniques. Chemical imaging with STXM showed that both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH’s above the deliquescence point and that the majority of the organic component was located in the shell. The shell composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 50:50% organic to inorganic mix in the shell. These two chemical imaging techniques are well suited for in-situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.

  7. Pyrohydrolytic separation technique for fluoride and chloride from radioactive liquid wastes

    International Nuclear Information System (INIS)

    Sawant, R.M.; Mahajan, M.A.; Shah, D.J.; Thakur, U.K.; Ramakumar, K.L.

    2009-01-01

    A rapid method for simultaneous determination of fluorine and chlorine in liquid samples with ion chromatography after pyrohydrolysis separation was proposed for routine analysis. The elements were separated from radioactive liquid sample by pyrohydrolysis and were subsequently determined with ion chromatography. Total time taken to determine these elements is about 45 min including 30 min for the pyrohydrolysis and 15 min for ion chromatography. The results of recovery tests ranged 95% or above. The limits of detection for F and Cl are 0.5 and 0.8 mgkg -1 , respectively. (author)

  8. Pyrohydrolytic separation technique for fluoride and chloride from radioactive liquid wastes

    International Nuclear Information System (INIS)

    Sawant, R.M.; Mahajan, M.A.; Shah, D.J.; Thakur, U.K.; Ramakumar, K.L.

    2011-01-01

    A rapid method for simultaneous determination of fluorine and chlorine in radioactive liquid wastes with ion chromatography after pyrohydrolysis separation was proposed for routine analysis. The elements were separated from radioactive liquid wastes by pyrohydrolysis and were subsequently determined with ion chromatography. Total time taken to determine these elements is about 45 min including 30 min for the pyrohydrolysis and 15 min for ion chromatography. The results of recovery tests ranged 95% or above. The limits of detection for F and Cl are 0.5 and 0.8 mg kg -1 , respectively. (author)

  9. On-line hyphenation of centrifugal partition chromatography and high pressure liquid chromatography for the fractionation of flavonoids from Hippophaë rhamnoides L. berries.

    Science.gov (United States)

    Michel, Thomas; Destandau, Emilie; Elfakir, Claire

    2011-09-09

    Centrifugal Partition Chromatography (CPC), a liquid-liquid preparative chromatography using two immiscible solvent systems, benefits from numerous advantages for the separation or purification of synthetic or natural products. This study presents the on-line hyphenation of CPC-Evaporative Light Scattering Detector (CPC-ELSD) with High Performance Liquid Chromatography-UV (HPLC-UV) for the fractionation of flavonols from a solvent-free microwave extract of sea buckthorn (Hippophaë rhamnoides L., Elaeagnaceae) berries. An Arizona G system was used for the fractionation of flavonoids by CPC and a fused core Halo C18 column allowed the on-line analyses of collected fractions by HPLC. The on-line CPC/HPLC procedure allowed the simultaneous fractionation step at preparative scale combined with the HPLC analyses which provide direct fingerprint of collected fractions. Thus the crude extract was simplified and immediate information on the composition of fractions could be obtained. Furthermore, this methodology reduced the time of post-fractionation steps and facilitated identification of main molecules by Mass Spectrometry (MS). Rutin, isorhamnetin-3-O-rutinoside, isorhamnetin-3-O-glucoside, quercetin-3-O-glucoside, isorhamnetin-rhamnoside, quercetin and isorhamnetin were identified. CPC-ELSD/HPLC-UV could be considered as a high-throughput technique for the guided fractionation of bioactive natural products from complex crude extracts. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, J.M.; DePaolo, D.J.; Ryerson, F.J.; Peterson, B.

    2011-03-01

    Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl{sub 2}Si{sub 2}O{sub 8}; denoted AN), albite (NaAlSi{sub 3}O{sub 8}; denoted AB), and diopside (CaMgSi{sub 2}O{sub 6}; denoted DI) were held at 1450°C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB–AN experiment, D{sub Ca}/D{sub Si} ~ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D{sub Ca}/D{sub Si} ~ 1. In the AB–DI experiment, D{sub Ca}/D{sub Si} ~ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB–AN experiment. In the AB–DI experiment, D{sub Mg}/D{sub Si} ~ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity—the ratio of the diffusivity of the cation (D{sub Ca}) to the diffusivity of silicon (D{sub Si}). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D{sub cation

  11. Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    Science.gov (United States)

    Watkins, James M.; DePaolo, Donald J.; Ryerson, Frederick J.; Peterson, Brook T.

    2011-06-01

    Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl 2Si 2O 8; denoted AN), albite (NaAlSi 3O 8; denoted AB), and diopside (CaMgSi 2O 6; denoted DI) were held at 1450 °C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB-AN experiment, D Ca/ D Si ≈ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D Ca/ D Si ≈ 1. In the AB-DI experiment, D Ca/ D Si ≈ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB-AN experiment. In the AB-DI experiment, D Mg/ D Si ≈ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity - the ratio of the diffusivity of the cation ( D Ca) to the diffusivity of silicon ( D Si). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D cation/ D Si. Cations diffusing in aqueous solutions display a similar relationship

  12. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends.

    Science.gov (United States)

    Ventura, Sónia P M; E Silva, Francisca A; Quental, Maria V; Mondal, Dibyendu; Freire, Mara G; Coutinho, João A P

    2017-05-24

    Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid-liquid extractions, IL-based liquid-liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations.

  13. Separation phenomena in Liquids and Gases

    Energy Technology Data Exchange (ETDEWEB)

    Louvet, P; Soubbaramayer, [CEA Saclay, Dept. des Lasers et de la Physico-Chimie, DESICP/DLPC/SPP, 91 - Gif-sur-Yvette (France); Noe, P

    1989-07-01

    The Proceedings of the 1989 Workshop are presented in two volumes: volume 1 contains 4 papers on plasma processes and 7 papers on centrifugation. The papers on plasma processes deal with two main methods: ion cyclotron resonance and rotating plasmas. A survey lecture reviews extensively the physics of the two processes, the published experimental results and includes an abundant bibliography of about 200 references. The 3 other papers communicate original and recent experiments carried out by the authors. The plasma process remains as a possible technology to separate stable isotopes and isotopes of metals located in the middle of the Mendeleev Table. Regarding the stable isotopes, the ion cyclotron resonance might be an alternative to the Calutron process. The sessions on centrifugation include 2 review papers by URENCO authors and 5 specialized communications. The review papers take stock of the centrifuge research and gives the current status of the centrifuge technology in URENCO. The authors say that the centrifugation is presently an established industrial and commercial process ready to enter in competition for any new construction of enrichment capacity. Volume 2 contains the papers on 3 topics: basic studies (11 papers), chemical process (2 papers) and laser processes (7 papers). The papers on basic studies include investigations on rotating flows. A special attention is given to studies on convection flows, driven by acceleration field or (and) capillary forces. The interest of convection is obvious, as it has applications in important fields: the hydrodynamics of liquid uranium in the evaporation crucible of AVLIS Process, the crystal growth experiments on earth or under microgravity conditions (future experiments planned in space-labs) and the welding by electron or photon beams. Two papers are presented on the chemical process and both of them are by French authors. The French CEA has, in the past, developed with success the CHEMEX process. The

  14. Separation phenomena in Liquids and Gases

    International Nuclear Information System (INIS)

    Louvet, P.; Dr Soubbaramayer; Noe, P.

    1989-01-01

    The Proceedings of the 1989 Workshop are presented in two volumes: volume 1 contains 4 papers on plasma processes and 7 papers on centrifugation. The papers on plasma processes deal with two main methods: ion cyclotron resonance and rotating plasmas. A survey lecture reviews extensively the physics of the two processes, the published experimental results and includes an abundant bibliography of about 200 references. The 3 other papers communicate original and recent experiments carried out by the authors. The plasma process remains as a possible technology to separate stable isotopes and isotopes of metals located in the middle of the Mendeleev Table. Regarding the stable isotopes, the ion cyclotron resonance might be an alternative to the Calutron process. The sessions on centrifugation include 2 review papers by URENCO authors and 5 specialized communications. The review papers take stock of the centrifuge research and gives the current status of the centrifuge technology in URENCO. The authors say that the centrifugation is presently an established industrial and commercial process ready to enter in competition for any new construction of enrichment capacity. Volume 2 contains the papers on 3 topics: basic studies (11 papers), chemical process (2 papers) and laser processes (7 papers). The papers on basic studies include investigations on rotating flows. A special attention is given to studies on convection flows, driven by acceleration field or (and) capillary forces. The interest of convection is obvious, as it has applications in important fields: the hydrodynamics of liquid uranium in the evaporation crucible of AVLIS Process, the crystal growth experiments on earth or under microgravity conditions (future experiments planned in space-labs) and the welding by electron or photon beams. Two papers are presented on the chemical process and both of them are by French authors. The French CEA has, in the past, developed with success the CHEMEX process. The

  15. Two-dimensional materials for novel liquid separation membranes

    Science.gov (United States)

    Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng

    2016-08-01

    Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as

  16. Two-dimensional materials for novel liquid separation membranes.

    Science.gov (United States)

    Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng

    2016-08-19

    Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as

  17. Detection of radiation-induced hydrocarbons in Camembert irradiated before and after the maturing process-comparison of florisil column chromatography and on-line coupled liquid chromatography-gas chromatography

    International Nuclear Information System (INIS)

    Schulzki, G.; Spiegelberg, A.; Bögl, K.W.; Schreiber, G.A.

    1995-01-01

    The influence of the maturing process on the detection of radiation-induced volatile hydrocarbons in the fat of Camembert has been investigated. Two analytical methods for separation of the hydrocarbon fraction from the lipid were applied: Florisil column chromatography with subsequent gas chromatographic-mass spectrometric (GC-MS) determination as well as on-line coupled liquid chromatography-GC-MS. The maturing process had no influence on the detection of radiation-induced volatiles. Comparable results were achieved with both analytical methods. However, preference is given to the more effective on-line coupled LC-GC method

  18. Emerging trends in chemical separations with liquid membranes: an overview

    International Nuclear Information System (INIS)

    Shukla, J.P.

    1997-01-01

    It can be concluded that varied configurations of liquid membranes (LMs) will definitely play an important role in metal separations particularly in situations where other conventional chemical separation techniques fail to deliver goods. Potential areas include decontamination of biotoxic/ radioactive wastes, recovery of precious and strategic metals from lean/ extremely dilute solutions, add on to existing units, hydrometallurgy, etc

  19. High-efficiency technology for lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi; Terai, Takayuki

    2011-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. New lithium isotope separation technique using ionic-liquid impregnated organic membranes (Ionic-Liquid-i-OMs) have been developed. Lithium ions are able to move by electrodialysis through certain Ionic-Liquid-i-OMs between the cathode and the anode in lithium solutions. In this report, the effects of protection cover and membrane thickness on the durability of membrane and the efficiency of isotope separation were evaluated. In order to improve the durability of the Ionic-Liquid-i-OM, we developed highly-durable Ionic-Liquid-i-OM. Both surfaces of the Ionic-Liquid-i-OM were covered by a nafion 324 overcoat or a cation exchange membrane (SELEMION TM CMD) to prevent the outflow of the ionic liquid. It was observed that the durability of the Ionic-Liquid-i-OM was improved by a nafion 324 overcoat. On the other hand, the organic membrane selected was 1, 2 or 3 mm highly-porous Teflon film, in order to efficiently impregnate the ionic liquid. The 6 Li isotope separation factor by electrodialysis using highly-porous Teflon film of 3 mm thickness was larger than using that of 1 or 2 mm thickness.

  20. Ionic liquids used in extraction and separation of metal ions

    International Nuclear Information System (INIS)

    Shen Xinghai; Xu Chao; Liu Xinqi; Chu Taiwei

    2006-01-01

    Ionic liquids as green solvents now have become a research hotspot in the field of separation of metal ions by solvent extraction. Experimental results of extraction of various metal ions with ionic liquids as solvents, including that of alkali metals, alkaline earths, transition metals rare earths and actinides are introduced. The extraction of uranium, plutonium and fission products that are involved in spent nuclear fuel reprocessing is also reviewed. The possible extraction mechanisms are discussed. Finally, the prospect of replacement of volatile and/or toxic organic solvents with environmentally benign ionic liquids for solvent extraction and the potency of applications of ionic liquids in solvent extraction are also commented. (authors)

  1. On-line liquid chromatography-gas chromatography: A novel approach for the analysis of phytosterol oxidation products in enriched foods.

    Science.gov (United States)

    Scholz, Birgit; Wocheslander, Stefan; Lander, Vera; Engel, Karl-Heinz

    2015-05-29

    A novel methodology for the automated qualitative and quantitative determination of phytosterol oxidation products in enriched foods via on-line liquid chromatography-gas chromatography (LC-GC) was established. The approach is based on the LC pre-separation of acetylated phytosterols and their corresponding oxides using silica as stationary phase and a mixture of n-hexane/methyl tert-butyl ether/isopropanol as eluent. Two LC-fractions containing (i) 5,6-epoxy- and 7-hydroxyphytosterols, and (ii) 7-ketophytosterols are transferred on-line to the GC for the analysis of their individual compositions on a medium polar trifluoropropylmethyl polysiloxane capillary column. Thus, conventionally employed laborious off-line purification and enrichment steps can be avoided. Validation data, including recovery, repeatability, and reproducibility of the method, were elaborated using an enriched margarine as example. The margarine was subjected to a heating procedure in order to exemplarily monitor the formation of phytosterol oxidation products. Quantification was performed using on-line LC-GC-FID, identification of the analytes was based on on-line LC-GC-MS. The developed approach offers a new possibility for the reliable and fast analysis of phytosterol oxidation products in enriched foods. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Membraneless laminar flow cell for electrocatalytic CO2 reduction with liquid product separation

    International Nuclear Information System (INIS)

    Monroe, Morgan M; Lobaccaro, Peter; Lum, Yanwei; Ager, Joel W

    2017-01-01

    The production of liquid fuel products via electrochemical reduction of CO 2 is a potential path to produce sustainable fuels. However, to be practical, a separation strategy is required to isolate the fuel-containing electrolyte produced at the cathode from the anode and also prevent the oxidation products (i.e. O 2 ) from reaching the cathode. Ion-conducting membranes have been applied in CO 2 reduction reactors to achieve this separation, but they represent an efficiency loss and can be permeable to some product species. An alternative membraneless approach is developed here to maintain product separation through the use of a laminar flow cell. Computational modelling shows that near-unity separation efficiencies are possible at current densities achievable now with metal cathodes via optimization of the spacing between the electrodes and the electrolyte flow rate. Laminar flow reactor prototypes were fabricated with a range of channel widths by 3D printing. CO 2 reduction to formic acid on Sn electrodes was used as the liquid product forming reaction, and the separation efficiency for the dissolved product was evaluated with high performance liquid chromatography. Trends in product separation efficiency with channel width and flow rate were in qualitative agreement with the model, but the separation efficiency was lower, with a maximum value of 90% achieved. (paper)

  3. Progress in Separation of Gases by Permeation and Liquids by Pervaporation Using Ionic Liquids: A Review

    Czech Academy of Sciences Publication Activity Database

    Kárászová, Magda; Kačírková, Marie; Friess, K.; Izák, Pavel

    2014-01-01

    Roč. 132, AUG 20 (2014), s. 93-101 ISSN 1383-5866 R&D Projects: GA ČR GA14-12695S; GA ČR GAP106/10/1194; GA MŠk LH14006; GA MŠk(CZ) LD14094 Institutional support: RVO:67985858 Keywords : gas separations * ionic liquid * supported ionic liquid membranes Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.091, year: 2014

  4. Experimental and Model Studies on Continuous Separation of 2-Phenylpropionic Acid Enantiomers by Enantioselective Liquid-Liquid Extraction in Centrifugal Contactor Separators.

    Science.gov (United States)

    Feng, Xiaofeng; Tang, Kewen; Zhang, Pangliang; Yin, Shuangfeng

    2016-03-01

    Multistage enantioselective liquid-liquid extraction (ELLE) of 2-phenylpropionic acid (2-PPA) enantiomers using hydroxypropyl-β-cyclodextrin (HP-β-CD) as extractant was studied experimentally in a counter-current cascade of centrifugal contactor separators (CCSs). Performance of the process was evaluated by purity (enantiomeric excess, ee) and yield (Y). A multistage equilibrium model was established on the basis of single-stage model for chiral extraction of 2-PPA enantiomers and the law of mass conservation. A series of experiments on the extract phase/washing phase ratio (W/O ratio), extractant concentration, the pH value of aqueous phase, and the number of stages was conducted to verify the multistage equilibrium model. It was found that model predictions were in good agreement with the experimental results. The model was applied to predict and optimize the symmetrical separation of 2-PPA enantiomers. The optimal conditions for symmetric separation involves a W/O ratio of 0.6, pH of 2.5, and HP-β-CD concentration of 0.1 mol L(-1) at a temperature of 278 K, where eeeq (equal enantiomeric excess) can reach up to 37% and Yeq (equal yield) to 69%. By simulation and optimization, the minimum number of stages was evaluated at 98 and 106 for eeeq > 95% and eeeq > 97%. © 2016 Wiley Periodicals, Inc.

  5. Organosilica Membrane with Ionic Liquid Properties for Separation of Toluene/H₂ Mixture.

    Science.gov (United States)

    Hirota, Yuichiro; Maeda, Yohei; Yamamoto, Yusuke; Miyamoto, Manabu; Nishiyama, Norikazu

    2017-08-03

    In this study, we present a new concept in chemically stabilized ionic liquid membranes: an ionic liquid organosilica (ILOS) membrane, which is an organosilica membrane with ionic liquid-like properties. A silylated ionic liquid was used as a precursor for synthesis. The permselectivity, permeation mechanism, and stability of the membrane in the H₂/toluene binary system were then compared with a supported ionic liquid membrane. The membrane showed a superior separation factor of toluene/H₂ (>17,000) in a binary mixture system based on a solution-diffusion mechanism with improved durability over the supported ionic liquid membrane.

  6. Glycerol-based deep eutectic solvents as extractants for the separation of MEK and ethanol via liquid-liquid extraction

    NARCIS (Netherlands)

    Rodriguez, N.R.; Ferré Güell, J.; Kroon, M.C.

    2016-01-01

    Four different glycerol-based deep eutectic solvents (DESs) were tested as extracting agents for the separation of the azeotropic mixture {methyl ethyl ketone + ethanol} via liquid-liquid extraction. The selected DESs for this work were: glycerol/choline chloride with molar ratios (4:1) and (2:1),

  7. Sensitive, automatic method for the determination of diazepam and its five metabolites in human oral fluid by online solid-phase extraction and liquid chromatography with tandem mass spectrometry

    DEFF Research Database (Denmark)

    Jiang, Fengli; Rao, Yulan; Wang, Rong

    2016-01-01

    A novel and simple online solid-phase extraction liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous determination of diazepam and its five metabolites including nordazepam, oxazepam, temazepam, oxazepam glucuronide, and temazepam glucuronide...... in human oral fluid. Human oral fluid was obtained using the Salivette(®) collection device, and 100 μL of oral fluid samples were loaded onto HySphere Resin GP cartridge for extraction. Analytes were separated on a Waters Xterra C18 column and quantified by liquid chromatography with tandem mass...

  8. Dimple coalescence and liquid droplets distributions during phase separation in a pure fluid under microgravity.

    Science.gov (United States)

    Oprisan, Ana; Oprisan, Sorinel A; Hegseth, John J; Garrabos, Yves; Lecoutre-Chabot, Carole; Beysens, Daniel

    2014-09-01

    Phase separation has important implications for the mechanical, thermal, and electrical properties of materials. Weightless conditions prevent buoyancy and sedimentation from affecting the dynamics of phase separation and the morphology of the domains. In our experiments, sulfur hexafluoride (SF6) was initially heated about 1K above its critical temperature under microgravity conditions and then repeatedly quenched using temperature steps, the last one being of 3.6 mK, until it crossed its critical temperature and phase-separated into gas and liquid domains. Both full view (macroscopic) and microscopic view images of the sample cell unit were analyzed to determine the changes in the distribution of liquid droplet diameters during phase separation. Previously, dimple coalescences were only observed in density-matched binary liquid mixture near its critical point of miscibility. Here we present experimental evidences in support of dimple coalescence between phase-separated liquid droplets in pure, supercritical, fluids under microgravity conditions. Although both liquid mixtures and pure fluids belong to the same universality class, both the mass transport mechanisms and their thermophysical properties are significantly different. In supercritical pure fluids the transport of heat and mass are strongly coupled by the enthalpy of condensation, whereas in liquid mixtures mass transport processes are purely diffusive. The viscosity is also much smaller in pure fluids than in liquid mixtures. For these reasons, there are large differences in the fluctuation relaxation time and hydrodynamics flows that prompted this experimental investigation. We found that the number of droplets increases rapidly during the intermediate stage of phase separation. We also found that above a cutoff diameter of about 100 microns the size distribution of droplets follows a power law with an exponent close to -2, as predicted from phenomenological considerations.

  9. The Separate Spheres of Online Health: Gender, Parenting, and Online Health Information Searching in the Information Age

    Science.gov (United States)

    Stern, Michael J.; Cotten, Shelia R.; Drentea, Patricia

    2012-01-01

    The objective of this article is to explore how parental status, gender, and their interaction influence a variety of aspects of searching for online health information. Drawing on nationally representative survey data, the results show that in a number of ways parenting and gender have separate but significant influences on the following: online…

  10. Liquid-liquid phase separation and solidification behavior of Al55Bi36Cu9 monotectic alloy with different cooling rates

    Science.gov (United States)

    Bo, Lin; Li, Shanshan; Wang, Lin; Wu, Di; Zuo, Min; Zhao, Degang

    2018-03-01

    The cooling rate has a significant effect on the solidification behavior and microstructure of monotectic alloy. In this study, different cooling rate was designed through casting in the copper mold with different bore diameters. The effects of different cooling rate on the solidification behavior of Al55Bi36Cu9 (at.%) immiscible alloy have been investigated. The liquid-liquid phase separation of Al55Bi36Cu9 immiscible alloy melt was investigated by resistivity test. The solidification microstructure and phase analysis of Al55Bi36Cu9 immiscible alloy were performed by the SEM and XRD, respectively. The results showed that the liquid-liquid phase separation occurred in the solidification of Al55Bi36Cu9 monotectic melt from 917 °C to 653 °C. The monotectic temperature, liquid phase separation temperature and immiscibility zone of Al55Bi36Cu9 monotectic alloy was lower than those of Al-Bi binary monotectic alloy. The solidification morphology of Al55Bi36Cu9 monotectic alloy was very sensitive to the cooling rate. The Al/Bi core-shell structure formed when Al55Bi36Cu9 melt was cast in the copper mold with a 8 mm bore diameter.

  11. A New Class of Solvents for TRU Dissolution and Separation: Ionic Liquids. Project No. 81891

    International Nuclear Information System (INIS)

    Rogers, Robin D.

    2004-01-01

    Through the current EMSP funding, solvent extraction technologies based on liquid-liquid partitioning of TRU to an Ionic Liquid phase containing conventional complexants has been shown to be viable. The growing understanding of the role that the different components of an ionic liquid can have on the partitioning mechanism, and on the nature of the subsequent dissolved species indicates strongly that ionic liquids are not necessarily direct replacements for volatile or otherwise hazardous organic solvents. Separations and partitioning can be exceptionally complex with competing solvent extraction, cation, anion and sacrificial ion exchange mechanisms are all important, depending on the selection of components for formation of the ionic liquid phase, and that control of these competing mechanisms can be utilized to provide new, alternative separations schemes

  12. Production of exotic beams by separation of online isotope

    International Nuclear Information System (INIS)

    Hosni, Faouzi; Farah, K.

    2013-01-01

    The studies in physics, concerned until now, approximately two thousand five hundred radioactive nuclide. These nuclides with 263 stable nucleus constitute the current nuclear field. This field is far from being complete because there are more than three thousand radioactive isotopes to be discovered. Materials and Methods: To reach these radio-isotopes there are two complementary methods which are the on-line separation (ISOL) and the fragmentation in times of flight. The latter has the advantage to allow the study of the elements of very short period (lower than 10-3 s). It supplies beams having a big dispersal in energy and in angle. In the case of the separation of on-line isotope, a target is run to produce the radioactive atoms. This allows producing beams much more intense than the fragmentation in times of flight. To obtain radioactive beams in the required intensities or for the research or medical applications, it is essential to end in thick targets or the products of reaction can go out as fast as possible. That is to realize targets which can maintain a porous and sluggish structure counterpart in the produced elements. This is one of the main technological challenges to be solved. The works concerning this domain will be presented as well as the got advantage if the nuclear reactions are led by protons reaching 30 MeV of energy. (Author)

  13. Nuclide separation modeling through reverse osmosis membranes in radioactive liquid waste

    OpenAIRE

    Lee, Byung-Sik

    2015-01-01

    The aim of this work is to investigate the transport mechanism of radioactive nuclides through the reverse osmosis (RO) membrane and to estimate its effectiveness for nuclide separation from radioactive liquid waste. An analytical model is developed to simulate the RO separation, and a series of experiments are set up to confirm its estimated separation behavior. The model is based on the extended Nernst–Plank equation, which handles the convective flux, diffusive flux, and electromigration f...

  14. Incorporation of ionic liquid into porous polymer monoliths to enhance the separation of small molecules in reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Wang, Jiafei; Bai, Ligai; Wei, Zhen; Qin, Junxiao; Ma, Yamin; Liu, Haiyan

    2015-06-01

    An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Separation of thorium and uranium by liquid-liquid extraction from mixed aqueous nitric acidic-methanolic solutions

    International Nuclear Information System (INIS)

    Schmid, E.R.; Kenndler, E.

    1976-01-01

    A method is described for the separation of Th and U from each other and from other elements, usually occuring in minerals, by liquid-liquid extraction with Aliquat Nitrate (tricaprylmethyl ammoniumnitrate, 6 vol%) in benzene from a mixed solution of 2.5 M HNO 3 and methanol (1:1 volume ratio). Permissible upper concentration ratios of interfering elements, such as Li, Na, K, Mg, Ca, Al, Cu, Co(II), Fe(III), Mn(II), Ti(IV), La(III), U(VI), Cl - , ClO 4 - , SO 4 2- , PO 4 3- , have been determined. Following the separation, Th has been determined by spectrophotometry using Thorin, and U by fluorometry. Results for yield under varying conditions, together with elemental concentrations in the ppm range for U and Th in minerals, are given. (B.T.)

  16. Nuclide separation modeling through reverse osmosis membranes in radioactive liquid waste

    Directory of Open Access Journals (Sweden)

    Byung-Sik Lee

    2015-12-01

    Full Text Available The aim of this work is to investigate the transport mechanism of radioactive nuclides through the reverse osmosis (RO membrane and to estimate its effectiveness for nuclide separation from radioactive liquid waste. An analytical model is developed to simulate the RO separation, and a series of experiments are set up to confirm its estimated separation behavior. The model is based on the extended Nernst–Plank equation, which handles the convective flux, diffusive flux, and electromigration flux under electroneutrality and zero electric current conditions. The distribution coefficient which arises due to ion interactions with the membrane material and the electric potential jump at the membrane interface are included as boundary conditions in solving the equation. A high Peclet approximation is adopted to simplify the calculation, but the effect of concentration polarization is included for a more accurate prediction of separation. Cobalt and cesium are specifically selected for the experiments in order to check the separation mechanism from liquid waste composed of various radioactive nuclides and nonradioactive substances, and the results are compared with the estimated cobalt and cesium rejections of the RO membrane using the model. Experimental and calculated results are shown to be in excellent agreement. The proposed model will be very useful for the prediction of separation behavior of various radioactive nuclides by the RO membrane.

  17. Nuclide separation modeling through reverse osmosis membranes in radioactive liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Sik [KEPCO Engineering and Construction, Gimcheon (Korea, Republic of)

    2015-12-15

    The aim of this work is to investigate the transport mechanism of radioactive nuclides through the reverse osmosis (RO) membrane and to estimate its effectiveness for nuclide separation from radioactive liquid waste. An analytical model is developed to simulate the RO separation, and a series of experiments are set up to confirm its estimated separation behavior. The model is based on the extended Nernst-Plank equation, which handles the convective flux, diffusive flux, and electromigration flux under electroneutrality and zero electric current conditions. The distribution coefficient which arises due to ion interactions with the membrane material and the electric potential jump at the membrane interface are included as boundary conditions in solving the equation. A high Peclet approximation is adopted to simplify the calculation, but the effect of concentration polarization is included for a more accurate prediction of separation. Cobalt and cesium are specifically selected for the experiments in order to check the separation mechanism from liquid waste composed of various radioactive nuclides and nonradioactive substances, and the results are compared with the estimated cobalt and cesium rejections of the RO membrane using the model. Experimental and calculated results are shown to be in excellent agreement. The proposed model will be very useful for the prediction of separation behavior of various radioactive nuclides by the RO membrane.

  18. A chip-type thin-layer electrochemical cell coupled with capillary electrophoresis for online separation of electrode reaction products

    Energy Technology Data Exchange (ETDEWEB)

    He, Jian-Bo, E-mail: jbhe@hfut.edu.cn; Cui, Ting; Zhang, Wen-Wen; Deng, Ning

    2013-07-05

    Graphical abstract: -- Highlights: •A new coupling of thin-layer electrolysis with capillary electrophoresis (CE). •Rapid electrolysis, direct sampling followed by online CE separation. •At least 13 products of quercetin oxidation were separated. •Thermodynamic and kinetic parameters were determined from CE peak areas. -- Abstract: A coupling technique of thin-layer electrolysis with high-performance capillary electrophoresis/UV–vis technique(EC/HPCE/UV–vis) is developed for online separation and determination of electrode reaction products. A chip-type thin-layer electrolytic (CTE) cell was designed and fabricated, which contains a capillary channel and a background electrolyte reservoir, allowing rapid electrolysis, direct sampling and online electrophoretic separation. This chip-type setup was characterized based on an electrophoresis expression of Nernst equation that was applied to the redox equilibrium of o-tolidine at different potentials. The utility of the method was demonstrated by separating and determining the electro-oxidation products of quercetin in different pH media. Two main products were always found in the studied time, potential and pH ranges. The variety of products increased not only with increasing potential but also with increasing pH value, and in total, at least 13 products were observed in the electropherograms. This work illustrates a novel example of capillary electrophoresis used online with thin-layer electrolysis to separate and detect electrode reaction products.

  19. A chip-type thin-layer electrochemical cell coupled with capillary electrophoresis for online separation of electrode reaction products

    International Nuclear Information System (INIS)

    He, Jian-Bo; Cui, Ting; Zhang, Wen-Wen; Deng, Ning

    2013-01-01

    Graphical abstract: -- Highlights: •A new coupling of thin-layer electrolysis with capillary electrophoresis (CE). •Rapid electrolysis, direct sampling followed by online CE separation. •At least 13 products of quercetin oxidation were separated. •Thermodynamic and kinetic parameters were determined from CE peak areas. -- Abstract: A coupling technique of thin-layer electrolysis with high-performance capillary electrophoresis/UV–vis technique(EC/HPCE/UV–vis) is developed for online separation and determination of electrode reaction products. A chip-type thin-layer electrolytic (CTE) cell was designed and fabricated, which contains a capillary channel and a background electrolyte reservoir, allowing rapid electrolysis, direct sampling and online electrophoretic separation. This chip-type setup was characterized based on an electrophoresis expression of Nernst equation that was applied to the redox equilibrium of o-tolidine at different potentials. The utility of the method was demonstrated by separating and determining the electro-oxidation products of quercetin in different pH media. Two main products were always found in the studied time, potential and pH ranges. The variety of products increased not only with increasing potential but also with increasing pH value, and in total, at least 13 products were observed in the electropherograms. This work illustrates a novel example of capillary electrophoresis used online with thin-layer electrolysis to separate and detect electrode reaction products

  20. Impact of sludge properties on solid-liquid separation of activated sludge

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard

    2016-01-01

    Solid-liquid separation of activated sludge is important both directly after the biological treatment of wastewater and for sludge dewatering. The separation of solid from the treated wastewater can be done by clarifiers (conventional plants) or membrane (MBR). Further, part of the sludge is taken...... out from the proces and usually dewatered before further handling. The separation process is costly. Moreover, the separation process depends on the composition and the properties of the sludge. The best separation is obtained for sludge that contains strong, compact flocs without single cells...... and dissolved extracellular polymeric substances (EPS). Polyvalent ions improve the floc strangth and improve the separation whereas monovalent ions (e.g. from road salt, sea water intrusion and industry) reduces impair the separation. Further high pH impairs the separation process due to floc disintegration...

  1. Ionic Liquid Membranes for Carbon Dioxide-Methane Separation

    Czech Academy of Sciences Publication Activity Database

    Uchytil, Petr; Schauer, Jan; Petričkovič, Roman; Setničková, Kateřina; Suen, S.Y.

    2011-01-01

    Roč. 383, 1-2 (2011), s. 262-271 ISSN 0376-7388 R&D Projects: GA ČR GA104/09/1165; GA ČR GCP106/10/J038; GA MŠk ME 889 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40500505 Keywords : ionic liquid membrane * gas separation * gas transport Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.850, year: 2011

  2. Separation of enantiomers of new psychoactive substances by high-performance liquid chromatography.

    Science.gov (United States)

    Kadkhodaei, Kian; Forcher, Lisa; Schmid, Martin G

    2018-03-01

    New psychoactive substances are defined as compounds with consciousness-changing effects and have been developed simultaneously with classical drugs. They arise through structural modifications of illegal substances and are mainly produced to circumvent laws. Availability is simple, since new psychoactive substances can be purchased from the Internet. Among them many chemical drug compound classes are chiral and thus the two resulting enantiomers can differ in their effects. The aim of this study is to develop a suitable chiral high-performance liquid chromatography separation method for a broad spectrum of new psychoactive substances using cellulose tris(3,5-dichlorophenylcarbamate) as a chiral selector. Experiments were performed by high-performance liquid chromatography in normal-phase mode under isocratic conditions using ultraviolet detection. Direct separation was carried out on a high-performance liquid chromatography column (Lux® i-Cellulose-5, 3.5 μm, Phenomenex®), available since 2016. Excellent separation results were obtained for cathinones. After further optimization, even 47 instead of 39 out of 52 cathinones showed baseline separation. For amphetamine derivatives, satisfactory results were not achieved. Further, new psychoactive substances from other compound classes such as benzofuranes, thiophenes, phenidines, phenidates, morpholines, and ketamines were partially resolved, depending on the polarity and degree of substitution. All analytes, which were mainly purchased from the Internet, were proven to be traded as racemates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Freeze-drying technology: A separation technique for liquid nuclear materials

    International Nuclear Information System (INIS)

    Musgrave, J.A.; Efurd, D.W.; Banar, J.C.

    1997-01-01

    Freeze-drying technology (FDT) has been around for several decades as a separation technology. Most commonly, FDT is associated with the processing of food, but the largest industrial-scale use of FDT is in the pharmaceutical industry. Through a Cooperative Research and Development Agreement (CRADA) with BOC Edwards Calumatic, we are demonstrating the feasibility of FDT as a waste minimization and pollution prevention technology. This is a novel and innovative application of FDT. In addition, we plan to demonstrate that the freeze-dried residue is an ideal feed material for ceramic stabilization of radioactive waste and excess fissile material. The objective of this work is to demonstrate the feasibility of FDT for the separation of complex radioactive and nonradioactive materials, including liquids, slurries, and sludges containing a wide variety of constituents in which the separation factors are >10 8 . This is the first application of FDT in which the condensate is of primary importance. Our focus is applying this technology to the elimination of radioactive liquid discharges from facilities at Los Alamos National Laboratory (LANL) and within the U.S. Department of Energy complex; however, successful demonstration will lead to nuclear industry-wide applications

  4. Operation manual for the INEL on-line mass-separator facility

    International Nuclear Information System (INIS)

    Anderl, R.A.

    1984-06-01

    This report is an operation manual for an on-line mass-separator facility which is located in Building 661 at the Test Reactor Area of the Idaho National Engineering Laboratory. The facility provides mass-separated sources of short-lived fission-product radionuclides whose decay properties can be studied using a variety of nuclear spectroscopic techniques. This facility is unique in that it utilizes the gas-jet technique to transport fission products from a 252 Cf source located in a hot cell to the ion source of the mass separator. This document includes the following: (a) a detailed description of the facility, (b) identification of equipment hazards and safety controls, (c) detailed operating procedures for startup, continuous operation and shutdown, (d) operating procedures for the californium hot cell, and (e) an operator's manual for the automated moving tape collector/data acquisition system. 7 references, 16 figures, 8 tables

  5. Design of Separation Processes with Ionic Liquids

    DEFF Research Database (Denmark)

    Peng-noo, Worawit; Kulajanpeng, Kusuma; Gani, Rafiqul

    2015-01-01

    A systematic methodology for screening and designing of Ionic Liquid (IL)-based separation processes is proposed and demonstrated using several case studies of both aqueous and non-aqueous systems, for instance, ethanol + water, ethanol + hexane, benzene + hexane, and toluene + methylcyclohexane....... The best four ILs of each mixture are [mmim][dmp], [emim][bti], [emim][etso4] and [hmim][tcb], respectively. All of them were used as entrainers in the extractive distillation. A process simulation of each system was carried out and showed a lower both energy requirement and solvent usage as compared...

  6. Separation of Poly(styrene-block-t-butyl methacrylate) Copolymers by Various Liquid Chromatography Techniques

    Science.gov (United States)

    Šmigovec Ljubič, Tina; Pahovnik, David; Žigon, Majda; Žagar, Ema

    2012-01-01

    The separation of a mixture of three poly(styrene-block-t-butyl methacrylate) copolymers (PS-b-PtBMA), consisting of polystyrene (PS) blocks of similar length and t-butyl methacrylate (PtBMA) blocks of different lengths, was performed using various chromatographic techniques, that is, a gradient liquid chromatography on reversed-phase (C18 and C8) and normal-phase columns, a liquid chromatography under critical conditions for polystyrene as well as a fully automated two-dimensional liquid chromatography that separates block copolymers by chemical composition in the first dimension and by molar mass in the second dimension. The results show that a partial separation of the mixture of PS-b-PtBMA copolymers can be achieved only by gradient liquid chromatography on reversed-phase columns. The coelution of the two block copolymers is ascribed to a much shorter PtBMA block length, compared to the PS block, as well as a small difference in the length of the PtBMA block in two of these copolymers, which was confirmed by SEC-MALS and NMR spectroscopy. PMID:22489207

  7. High-Efficiency On-Line Solid-Phase Extraction Coupling to 15-150 um I.D. Column Liquid Chromatography for Proteomic Analysis

    International Nuclear Information System (INIS)

    Shen, Yufeng; Moore, Ronald J.; Zhao, Rui; Blonder, Josip; Auberry, Deanna L.; Masselon, Christophe D.; Pasa Tolic, Ljiljana; Hixson, Kim K.; Auberry, Kenneth J.; Smith, Richard D.

    2003-01-01

    Flexible manipulation of various properties of proteomic samples is important for proteomic analyses, but it has been little explored for newly developed approaches based on liquid chromatography (LC) in combination with mass spectrometry (MS). With miniaturization of the LC column inner diameter dimensions (required for improving the analysis sensitivity), this issue becomes more challenging due to the small flow rates and the increasing effects of extra column volume on the separation quality and its use for resolving complex proteomic mixtures. In this study, we used commercial switching valves (150-mm channels) to implement the on-line coupling of capillary LC columns with relatively large solid phase extraction (SPE) columns operated at 10,000 psi. With optimized column connections, switching modes, and SPE column dimensions, high-efficiency on-line SPE-capillary and nanoscale LC separations were obtained with peak capacities of ∼1000 for capillaries having inner diameters between 15 to 150 mm. The on-line coupled SPE columns increased the sample processing capabilities by ∼400-fold for sample solution volume and ∼10-fold for sample mass. The proteomic applications of this on-line SPE-capillary LC system were evaluated for analysis of both soluble and membrane protein tryptic digests. Used with an ion trap tandem MS we could typically identify 1100-1500 peptides for analyses in a single 5-hour run. Peptides extracted on the SPE column and eluted from the LC column covered a hydrophilicity/hydrophobicity range that include an estimated ∼98% of all the tryptic peptides. The present implementation also facilitates automation and enables use of both disposable SPE columns and electrospray emitters, providing a robust basis for routine proteomic analyses.

  8. Ionic liquids for separation of olefin-paraffin mixtures

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2013-09-17

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  9. Separation of uranium from aqueous solutions using calix[6]arenes in liquid-liquid extraction as well as solid phase extraction

    International Nuclear Information System (INIS)

    Schmeide, K.; Geipel, G.; Bernhard, G.

    2004-11-01

    The suitability of different calyx[n] arene types for uranyl extraction from liquid solutions was examined by means of liquid-liquid extraction using aqueous phases and organic solvents of varying compositions. It was found that COOH-derivatised calyx[6] arenes have good extraction properties and can even be used in the acid pH range. The use of calixarene-modified fleeces for the separation of uranyl from aqueous phases was examined in batch experiments with pH and uranyl concentration as variables and in the presence or absence of competing ions. The results showed that calixarene-modified fleeces can be used for uranium separation starting from pH 4. At pH 5, up to a maximum of 7.6 x 10 -7 mol uranium can be bound per 1 g of calixarene-modified fleece. The separation of uranyl from synthetic pit waters was examined as a means of testing the separation capacity of calixarene-modified fleeces in environmentally sensitive waters. Studies on the reversibility of uranium bonding to calixarene-treated polyester fleeces have shown that under environmentally realistic conditions (neutral pH range) the uranium is firmly bound to the calixarene-modified fleeces and cannot be mobilised. By contrast, in acidic environments calixarene-modified fleeces are capable of near-complete regeneration. Such regenerated textile filter materials can then be used for further uranium separation cycles [de

  10. Applications of hydrophobic Pt catalysts in separation of tritium from liquid effluents

    International Nuclear Information System (INIS)

    Ionita, Gheorghe; Popescu, Irina; Stefanescu, Ioan; Varlam, Carmen

    2003-01-01

    Hydrophobic Pt catalysts were first prepared and used in deuterium or tritium separation while after their application was extended to chemical reactions occurring in liquid water or saturated humidity environments. Capillary condensing produced at the contact with liquid water or vapors engenders in classical hydrophilic catalysts a decrease in activity what makes them inefficient. Consequently, liquid water 'repealing' catalysts are to be used allowing, at the same time gaseous reactants and reaction products to diffuse to and fro the catalytic active centers. These catalysts were successfully applied in deuterium enrichment and tritium separation based on hydrogen- liquid water isotopic exchange at both pilot and industrial scale. High activity and a prolonged stability were demonstrated and checked in: - detritiation of the heavy water used as both moderator and coolant in CANDU type reactors; removing of tritium from light water recirculated in nuclear fuel reprocessing facilities; removal and recovery of tritium from atmosphere and tritium processing installations. Due to their incontestable advantages the use of these catalysts was recently extended to other chemical processes occurring in the presence of liquid water or in high humidity environment or else when water occurs as a reaction product, such as catalytic hydrogen - oxygen recombination at room temperature or removal of stable organic pollutants from waste waters

  11. Chiral separation of pharmaceutical compounds using electrochemically modulated liquid chromatography (EMLC)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S. [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    This research explores the application of a new technique, termed electrochemically modulated liquid chromatography (EMLC), to the chiral separations of pharmaceutical compounds. The introduction section provides a literature review of the technique and its applications, as well as brief overview of the research described in each of the next two chapters. Chapter 2 investigates the EMLC-based enantiomeric separation of a group of chiral benzodiazepines with β-cyclodextrin as a chiral mobile phase additive. Chapter 3 demonstrates the effects of several experimental parameters on the separation efficiency of drug enantiomers. The author concludes with a general summary and possible directions for future studies. Chapters 2 and 3 are processed separately.

  12. Preparation and Characterization of Silicone Liquid Core/Polymer Shell Microcapsules via Internal Phase Separation

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Kostrzewska, Malgorzata; Ma, Baoguang

    2014-01-01

    Microcapsules with a silicone liquid core surrounded by a polymeric shell were synthesisedthrough the controlled phase separation. The dispersed silicone phase consisted of the shellpolymer PMMA, a good solvent for the PMMA (dichloromethane, DCM) and a poor solvent(methylhydrosiloxane dimethylsil......Microcapsules with a silicone liquid core surrounded by a polymeric shell were synthesisedthrough the controlled phase separation. The dispersed silicone phase consisted of the shellpolymer PMMA, a good solvent for the PMMA (dichloromethane, DCM) and a poor solvent...

  13. Self-Supporting, Hydrophobic, Ionic Liquid-Based Reference Electrodes Prepared by Polymerization-Induced Microphase Separation.

    Science.gov (United States)

    Chopade, Sujay A; Anderson, Evan L; Schmidt, Peter W; Lodge, Timothy P; Hillmyer, Marc A; Bühlmann, Philippe

    2017-10-27

    Interfaces of ionic liquids and aqueous solutions exhibit stable electrical potentials over a wide range of aqueous electrolyte concentrations. This makes ionic liquids suitable as bridge materials that separate in electroanalytical measurements the reference electrode from samples with low and/or unknown ionic strengths. However, methods for the preparation of ionic liquid-based reference electrodes have not been explored widely. We have designed a convenient and reliable synthesis of ionic liquid-based reference electrodes by polymerization-induced microphase separation. This technique allows for a facile, single-pot synthesis of ready-to-use reference electrodes that incorporate ion conducting nanochannels filled with either 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-dodecyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide as ionic liquid, supported by a mechanically robust cross-linked polystyrene phase. This synthesis procedure allows for the straightforward design of various reference electrode geometries. These reference electrodes exhibit a low resistance as well as good reference potential stability and reproducibility when immersed into aqueous solutions varying from deionized, purified water to 100 mM KCl, while requiring no correction for liquid junction potentials.

  14. Separation of {sup 195(m,g),197m}Hg from bulk gold target by liquid-liquid extraction using hydrophobic ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Kaustab; Lahiri, Susanta [Saha Institute of Nuclear Physics, Kolkata (India). Chemical Sciences Div.; Maiti, Moumita [Indian Institute of Technology Roorkee, Roorkee (India). Dept. of Physics

    2017-07-01

    The {sup 195(m,g),197m}Hg radionuclides were produced in accelerator when natural Au foil was irradiated with 23 MeV protons. The no-carrier-added (NCA) Hg radioisotopes were separated from the bulk Au target by liquid-liquid extraction (LLX) employing hydrophobic RTILs 1-butyl-3-methylimidazolium hexafluorophosphate([C{sub 4}mim][PF{sub 6}]) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([bmim][Tf{sub 2}N]) as extractant with HNO{sub 3} and HCl. In each case, bulk Au was extracted into the RTIL phase leaving NCA Hg-radionuclides in the aqueous phase. The RTILs were recovered by washing with 1 M K{sub 2}S{sub 2}O{sub 5} and freshly prepared 1 M FeSO{sub 4}. The reported separation methods follow green chemistry approach as it does not involve any volatile reagents.

  15. Variation in pH of Model Secondary Organic Aerosol during Liquid-Liquid Phase Separation.

    Science.gov (United States)

    Dallemagne, Magda A; Huang, Xiau Ya; Eddingsaas, Nathan C

    2016-05-12

    The majority of atmospheric aerosols consist of both organic and inorganic components. At intermediate relative humidity (RH), atmospheric aerosol can undergo liquid-liquid phase separation (LLPS) in which the organic and inorganic fractions segregate from each other. We have extended the study of LLPS to the effect that phase separation has on the pH of the overall aerosols and the pH of the individual phases. Using confocal microscopy and pH sensitive dyes, the pH of internally mixed model aerosols consisting of polyethylene glycol 400 and ammonium sulfate as well as the pH of the organic fraction during LLPS have been directly measured. During LLPS, the pH of the organic fraction was observed to increase to 4.2 ± 0.2 from 3.8 ± 0.1 under high RH when the aerosol was internally mixed. In addition, the high spatial resolution of the confocal microscope allowed us to characterize the composition of each of the phases, and we have observed that during LLPS the organic shell still contains large quantities of water and should be characterized as an aqueous organic-rich phase rather than simply an organic phase.

  16. Determination of Peroxide-Based Explosives Using Liquid Chromatography with On-Line Infrared Detection

    NARCIS (Netherlands)

    Schulte-Ladbeck, Rasmus; Edelmann, Andrea; Quintas, Guillermo; Lendl, Bernhard; Karst, U.

    2006-01-01

    A nondestructive analytical method for peroxide-based explosives determination in solid samples is described. Reversed-phase high-performance liquid chromatography in combination with on-line Fourier transform infrared (FT-IR) detection is used for the analysis of triacetonetriperoxide (TATP) and

  17. Process intensification of catalytic liquid-liquid solid processes : Continuous biodiesel production using an immobilized lipase in a centrifugal contactor separator

    NARCIS (Netherlands)

    Ilmi, M.; Kloekhorst, A.; Winkelman, J. G. M.; Euverink, G. J. W.; Hidayat, C.; Heeres, H. J.

    Biodiesel or fatty acid methyl ester (FAME) synthesis from sunflower oil and methanol using an immobilized lipase, an example of a liquid-liquid solid reaction, was studied in batch and various continuous reactor set-ups including the use of a centrifugal contactor separator (CCCS). The latter is an

  18. Engineering evaluation of solids/liquids separation processes applicable to sludge treatment project

    International Nuclear Information System (INIS)

    Duncan, J.B.

    1998-01-01

    This engineering study looks at the solids/liquids separation unit operations after the acid dissolution of the K Basin sludge treatment. Unit operations considered were centrifugation, filtration (cartridge, cross flow, and high shear filtration) and gravity settling. The recommended unit operations for the solids/liquids separations are based upon the efficiency, complexity, and off-the-shelf availability and adaptability. The unit operations recommended were a Robatel DPC 900 centrifuge followed by a nuclearized 31WM cartridge filter. The Robatel DPC 900 has been successfully employed in the nuclear industry on a world wide scale. The 31WM cartridge filter has been employed for filtration campaigns in both the government and civilian nuclear arenas

  19. Solid-liquid separation in the mining industry

    CERN Document Server

    Concha A , Fernando

    2014-01-01

    This book covers virtually all of the engineering science and technological aspects of separating water from particulate solids in the mining industry. It starts with an introduction to the field of mineral processing and the importance of water in mineral concentrators. The consumption of water in the various stages of concentration is discussed, as is the necessity of recovering the majority of that water for recycling. The book presents the fundamentals under which processes of solid-liquid separation are studied, approaching mixtures of discrete finely divided solid particles in water as a basis for dealing with sedimentation in particulate systems. Suspensions, treated as continuous media, provide the basis of sedimentation, flows through porous media and filtration. The book also considers particle aggregations, and thickening is analyzed in depth. Lastly, two chapters cover the fundamentals and application of rheology and the transport of suspensions.  This work is suitable for researchers and profess...

  20. The on-line graph processing study on phase separation of two-phase flow in T-tube

    International Nuclear Information System (INIS)

    Qian Yong; Xu Jijun; Yang Zhilin; Chen Yifen

    1997-01-01

    The on-line graph processing measure system is equipped with and experimental study of phase separation of air-water bubbly flow in the horizontal T-junction is carried out. For the first time, the author have found and defined the new type of complete phase separation, by the visual experiment, which shows that under certain conditions, the air flow entering the T junction will flow into the run outlet completely, which had never been reported in the literature Also, the pressure wave feed back effect and the branch bubble flow reorganization effect were found and analyzed. The complexity of this phase separation phenomenon in the T junction has been further revealed via the on-line graph processing technology. Meanwhile the influences of the inlet mass flow rate W1, the inlet mass quality X1, and the mass extraction rate G3/G1 on phase separation were analyzed

  1. Liquid phase separation of proteins based on electrophoretic effects in an electrospray setup during sample introduction into a gas-phase electrophoretic mobility molecular analyzer (CE–GEMMA/CE–ES–DMA)

    Science.gov (United States)

    Weiss, Victor U.; Kerul, Lukas; Kallinger, Peter; Szymanski, Wladyslaw W.; Marchetti-Deschmann, Martina; Allmaier, Günter

    2014-01-01

    Nanoparticle characterization is gaining importance in food technology, biotechnology, medicine, and pharmaceutical industry. An instrument to determine particle electrophoretic mobility (EM) diameters in the single-digit to double-digit nanometer range receiving increased attention is the gas-phase electrophoretic mobility molecular analyzer (GEMMA) separating electrophoretically single charged analytes in the gas-phase at ambient pressure. A fused-silica capillary is used for analyte transfer to the gas-phase by means of a nano electrospray (ES) unit. The potential of this capillary to separate analytes electrophoretically in the liquid phase due to different mobilities is, at measurement conditions recommended by the manufacturer, eliminated due to elevated pressure applied for sample introduction. Measurements are carried out upon constant feeding of analytes to the system. Under these conditions, aggregate formation is observed for samples including high amounts of non-volatile components or complex samples. This makes the EM determination of individual species sometimes difficult, if not impossible. With the current study we demonstrate that liquid phase electrophoretic separation of proteins (as exemplary analytes) occurs in the capillary (capillary zone electrophoresis, CE) of the nano ES unit of the GEMMA. This finding was consecutively applied for on-line desalting allowing EM diameter determination of analytes despite a high salt concentration within samples. The present study is to our knowledge the first report on the use of the GEMMA to determine EM diameters of analytes solubilized in the ES incompatible electrolyte solutions by the intended use of electrophoresis (in the liquid phase) during sample delivery. Results demonstrate the proof of concept of such an approach and additionally illustrate the high potential of a future on-line coupling of a capillary electrophoresis to a GEMMA instrument. PMID:25109866

  2. Foam films as thin liquid gas separation membranes.

    Science.gov (United States)

    Ramanathan, Muruganathan; Müller, Hans Joachim; Möhwald, Helmuth; Krastev, Rumen

    2011-03-01

    In this letter, we testify the feasibility of using freestanding foam films as a thin liquid gas separation membrane. Diminishing bubble method was used as a tool to measure the permeability of pure gases like argon, nitrogen, and oxygen in addition to atmospheric air. All components of the foam film including the nature of the tail (fluorocarbon vs hydrocarbon), charge on the headgroup (anionic, cationic, and nonionic) and the thickness of the water core (Newton black film vs Common black film) were systematically varied to understand the permeation phenomena of pure gases. Overall results indicate that the permeability values for different gases are in accordance with magnitude of their molecular diameter. A smaller gaseous molecule permeates faster than the larger ones, indicating a new realm of application for foam films as size selective separation membranes.

  3. Liquid chromatographic separation of terpenoid pigments in foods and food products.

    Science.gov (United States)

    Cserháti, T; Forgács, E

    2001-11-30

    The newest achievements in the use of various liquid chromatographic techniques such as adsorption and reversed-phase thin-layer chromatography and HPLC employed for the separation and quantitative determination of terpenoid-based color substances in foods and food products are reviewed. The techniques applied for the analysis of individual pigments and pigments classes are surveyed and critically evaluated. Future trends in the separation and identification of pigments in foods and food products are delineated.

  4. Hydrogen Sulfide and Ionic Liquids: Absorption, Separation, and Oxidation.

    Science.gov (United States)

    Chiappe, Cinzia; Pomelli, Christian Silvio

    2017-06-01

    Economical and environmental concerns are the main motivations for development of energy-efficient processes and new eco-friendly materials for the capture of greenhouse gases. Currently, H 2 S capture is dominated by physical and/or chemical absorption technologies, which are, however, energy intensive and often problematic from an environmental point of view due to emission of volatile solvent components. Ionic liquids have been proposed as a promising alternative to conventional solvents because of their low volatility and other interesting properties. The aim of the present review paper is to provide a detailed overview of the achievements and difficulties that have been encountered in finding suitable ionic liquids for H 2 S capture. The effect of ionic liquid anions, cations, and functional groups on the H 2 S absorption, separation, and oxidation are highlighted. Recent developments on yet scarcely available molecular simulations and on the development of robust predictive methods are also discussed.

  5. Hydrogen isotope separation in hydrophobic catalysts between hydrogen and liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Linsen, E-mail: yls2005@mail.ustc.edu.cn [China Academy of Engineering Physics, Mianyang 621900 (China); Luo, Deli [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621907 (China); Tang, Tao; Yang, Wan; Yang, Yong [China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-11-15

    Hydrogen isotope catalytic exchange between hydrogen and liquid water is a very effective process for deuterium-depleted potable water production and heavy water detritiation. To improve the characteristics of hydrophobic catalysts for this type of reaction, foamed and cellular structures of hydrophobic carbon-supported platinum catalysts were successfully prepared. Separation of deuterium or tritium from liquid water was carried out by liquid-phase catalytic exchange. At a gas–liquid ratio of 1.53 and exchange temperature of 70 °C, the theoretical plate height of the hydrophobic catalyst (HETP = 34.2 cm) was slightly lower than previously reported values. Changing the concentration of the exchange column outlet water yielded nonlinear changes in the height of the packing layer. Configurations of deuterium-depleted potable water and detritiation of heavy water provide references for practical applications.

  6. Determination of organic and inorganic mercury species in Sungai Kinta, Perak by reversed-phase high performance liquid chromatography (HPLC) on-line coupled with ICP-MS

    International Nuclear Information System (INIS)

    Norshidah Baharuddin; Norashikin Saim; Rozita Osman; Sharifuddin Mohd Zain

    2012-01-01

    This paper describes a simple method for mercury speciation in river water samples of Sungai Kinta, Perak. Separation and measurement were done by high-performance liquid chromatography on-line with inductively coupled plasma mass spectrometry (HPLC/ ICP-MS). Separation of mercury species was accomplished within 6 minutes on an AQ C18 4.6 mm i.d x 150 mm, 5 μm reversed phase column with 0.1 % (w/ v) L-cysteine as mobile phase. Under the optimum instrumental conditions, recoveries of 101-104 % for MeHg + and 96 - 104 % for Hg 2+ were obtained with experimental detection limits of 1ngL -1 for inorganic mercury and 1.5 μgL -1 for organic mercury. (author)

  7. Column liquid chromatography applied to concentrating, separating, and determining platinum metals

    International Nuclear Information System (INIS)

    Alimarin, I.P.; Basova, E.M.; Bol'shova, T.A.; Ivanov, V.M.

    1986-01-01

    The present survey deals with high-performance liquid chromatography (HPLC) in relation to the chromatographic behavior of the platinum metals, including separation and determination. The data shows that HPLC is the most promising and effective method of separating metals, including platinum ones. The method provides efficient separation of microgram amoounts of mixtures with a resolving power 3-20 times that of thin-layer chromatography. It is shown that the most promising line of advance in HPLC for inorganic systems lies in the separation and determination of metals as chelates by absorption or ion-pair chromatography. Examples of using HPLC for determining noble metals in particular cases indicate that the metrological characteristics are favorable

  8. Actinide separations by supported liquid membranes

    International Nuclear Information System (INIS)

    Danesi, P.R.; Horwitz, E.P.; Rickert, P.; Chiarizia, R.

    1984-01-01

    The work has demonstrated that actinide removal from synthetic waste solutions using both flat-sheet and hollow-fiber SLM's is a feasible chemical process at the laboratory scale level. The process is characterized by the typical features of SLM's processes: very small quantities of extractant required; the potential for operations with high feed/strip volume ratios, resulting in a corresponding concentration factor of the actinides; and simplicity of operation. Major obstacles to the implementation of the SLM technology to the decontamination of liquid nuclear wastes are the probable low resistance of polypropylene supports to high radiation fields, which may prevent the application to high-level nuclear wastes; the unknown lifetime of the SLM; and the high Na content of the separated actinide solution

  9. Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes

    DEFF Research Database (Denmark)

    Roughton, Brock C.; Christian, Brianna; White, John

    2012-01-01

    A methodology and tool set for the simultaneous design of ionic liquid entrainers and azeotropic separation processes is presented. By adjusting the cation, anion, and alkyl chain length on the cation, the properties of the ionic liquid can be adjusted to design an entrainer for a given azeotropic...... mixture. Several group contribution property models available in literature have been used along with a newly developed group contribution solubility parameter model and UNIFAC model for ionic liquids (UNIFAC-IL). For a given azeotropic mixture, an ionic liquid is designed using a computer-aided molecular...... design (CAMD) method and the UNIFAC-IL model is used to screen design candidates based on minimum ionic liquid concentration needed to break the azeotrope. Once the ionic liquid has been designed, the extractive distillation column for the azeotropic mixture is designed using the driving force method...

  10. Miniaturized protein separation using a liquid chromatography column on a flexible substrate

    International Nuclear Information System (INIS)

    Yang Yongmo; Chae, Junseok

    2008-01-01

    We report a prototype protein separator that successfully miniaturizes existing technology for potential use in biocompatible health monitoring implants. The prototype is a liquid chromatography (LC) column (LC mini-column) fabricated on an inexpensive, flexible, biocompatible polydimethylsiloxane (PDMS) enclosure. The LC mini-column separates a mixture of proteins using size exclusion chromatography (SEC) with polydivinylbenzene beads (5–20 µm in diameter with 10 nm pore size). The LC mini-column is smaller than any commercially available LC column by a factor of ∼11 000 and successfully separates denatured and native protein mixtures at ∼71 psi of the applied fluidic pressure. Separated proteins are analyzed using NuPAGE-gel electrophoresis, high-performance liquid chromatography (HPLC) and an automated electrophoresis system. Quantitative HPLC results demonstrate successful separation based on intensity change: within 12 min, the intensity between large and small protein peaks changed by a factor of ∼20. In further evaluation using the automated electrophoresis system, the plate height of the LC mini-column is between 36 µm and 100 µm. The prototype LC mini-column shows the potential for real-time health monitoring in applications that require inexpensive, flexible implant technology that can function effectively under non-laboratory conditions

  11. Separation of lanthanum from nuclear fuel solutions by high performance liquid chromatography

    International Nuclear Information System (INIS)

    Lazar, G. C.; Petre, M.; Androne, G.; Benga, A.

    2016-01-01

    This paper presents the separation of uranium, praseodymium and lanthanum from nuclear fuel solutions by high performance liquid chromatography (HPLC). The aim of this study is to establish a minimum concentration of lanthanum which can be analyzed by high performance liquid chromatography, and also to study the effect of uranium concentration on the separation of praseodymium and lanthanum. Optimum gradient mode was established for mixture standard stoc solutions with uranium in a concentration of 1 mg/ml, praseodymium and lanthanum in a concentration range of 1-5 μg/ml from each element. These conditions were applied for the separation of lanthanum from a nuclear fuel solution in which praseodymium and lanthanum were added in a concentration of 3 μg/ml from each element. The elution behavior of lanthanum as a function of the pH and the concentration of the mobile phase, using a mixture of 1-octanesulfonic acid sodium salt with a-hidroxyisobutiric acid is presented. (authors)

  12. Studies on Three Liquid Phase Extraction (TLPE) system for separation of rare earths

    International Nuclear Information System (INIS)

    Yadav, Kartikey K.; Singh, D.K.; Anitha, M.; Singh, H.

    2014-01-01

    Three-liquid-phase extraction (TLPE) is relatively a new separation technique, which takes the advantage of the differences in physicochemical properties of three coexisted phases to achieve multi-phase liquid separation of two or more components in one-step extraction. TLPE system consists of three liquid layers namely an organic solvent phase (organophosphorous type) and two aqueous phases one rich in polymer phase (poly alkylene glycol) and other a salt solution. To study the feasibility of using such system for separation of rare earths, it is important to optimize the preparatory conditions by selective suitable polymer and salt solutions at an appropriate pH to obtain a stable three phase layers to effect the separation. D2EHPA (di-2-ethyl hexyl phosphoric acid) is a well- established extractant in the rare earth industry and has been chosen in the present work to form a TLPE with polymer and salt solution. In the present investigation after preparing the stable three phase, the feasibility of using TLPE has been examined to separate rare earths from a multicomponent solutions. This study has demonstrated the ability of TLPE having D2EHPA as organic phase to separate rare earths from a multicomponent system. Effect of pH, concentration and types of polymer, complexing agent and D2EHPA concentration has been studied. Variation in pH study indicated that 4.0 leads to extraction of rare earths in the polymer phase. PEG 600 was found to be best amongst the polymer investigated. Presence of DTPA as complexing agent in the salt solution having pH >4.0 resulted in enhanced extraction of rare earths in PEG phase

  13. Automated 2D peptide separation on a 1D nano-LC-MS system

    DEFF Research Database (Denmark)

    Taylor, Paul; Nielsen, Peter A; Trelle, Morten Beck

    2009-01-01

    the on-line separation of highly complex peptide mixtures directly coupled with mass spectrometry-based identification. Here, we present a variation of the traditional MudPIT protocol, combining highly sensitive chromatography using a nanoflow liquid chromatography system (nano-LC) with a two...

  14. Separate density and viscosity measurements of unknown liquid using quartz crystal microbalance

    Directory of Open Access Journals (Sweden)

    Feng Tan

    2016-09-01

    Full Text Available Aqueous liquids have a wide range of applications in many fields. Basic physical properties like the density and the viscosity have great impacts on the functionalities of a given ionic liquid. For the millions kinds of existing liquids, only a few have been systematically measured with the density and the viscosity using traditional methods. However, these methods are limited to measure the density and the viscosity of an ionic liquid simultaneously especially in processing micro sample volumes. To meet this challenge, we present a new theoretical model and a novel method to separate density and viscosity measurements with single quartz crystal microbalance (QCM in this work. The agreement of experimental results and theocratical calculations shows that the QCM is capable to measure the density and the viscosity of ionic liquids.

  15. Continuous Hydrolysis and Liquid–Liquid Phase Separation of an Active Pharmaceutical Ingredient Intermediate Using a Miniscale Hydrophobic Membrane Separator

    DEFF Research Database (Denmark)

    Cervera Padrell, Albert Emili; Morthensen, Sofie Thage; Lewandowski, Daniel Jacob

    2012-01-01

    Continuous hydrolysis of an active pharmaceutical ingredient intermediate, and subsequent liquid–liquid (L-L) separation of the resulting organic and aqueous phases, have been achieved using a simple PTFE tube reactor connected to a miniscale hydrophobic membrane separator. An alkoxide product......, obtained in continuous mode by a Grignard reaction in THF, reacted with acidic water to produce partially miscible organic and aqueous phases containing Mg salts. Despite the partial THF–water miscibility, the two phases could be separated at total flow rates up to 40 mL/min at different flow ratios, using...

  16. Transport of Cryptosporidium parvum oocysts in soil columns following applications of raw and separated liquid slurry

    DEFF Research Database (Denmark)

    Petersen, Heidi Huus; Enemark, Heidi L.; Olsen, Annette

    2012-01-01

    to determine the effectiveness of different slurry separation technologies to remove oocysts and other pathogens, as well as whether application of separated liquid slurry to agricultural land may represent higher risks for ground water contamination as compared to application of raw slurry.......The potential for transport of viable Cryptosporidium parvum oocysts through soil to land drains and groundwater was studied using simulated rainfall and intact soil columns which were applied raw slurry or separated liquid slurry. Following irrigation and weekly samplings over a four week period......, C. parvum oocysts were detected from all soil columns regardless of slurry type and application method although recovery rates were low (liquid slurry leached 73% and 90% more oocysts compared with columns with injected and surface applied raw slurry, respectively...

  17. Nanoparticle Analysis by Online Comprehensive Two-Dimensional Liquid Chromatography combining Hydrodynamic Chromatography and Size-Exclusion Chromatography with Intermediate Sample Transformation

    Science.gov (United States)

    2017-01-01

    Polymeric nanoparticles have become indispensable in modern society with a wide array of applications ranging from waterborne coatings to drug-carrier-delivery systems. While a large range of techniques exist to determine a multitude of properties of these particles, relating physicochemical properties of the particle to the chemical structure of the intrinsic polymers is still challenging. A novel, highly orthogonal separation system based on comprehensive two-dimensional liquid chromatography (LC × LC) has been developed. The system combines hydrodynamic chromatography (HDC) in the first-dimension to separate the particles based on their size, with ultrahigh-performance size-exclusion chromatography (SEC) in the second dimension to separate the constituting polymer molecules according to their hydrodynamic radius for each of 80 to 100 separated fractions. A chip-based mixer is incorporated to transform the sample by dissolving the separated nanoparticles from the first-dimension online in tetrahydrofuran. The polymer bands are then focused using stationary-phase-assisted modulation to enhance sensitivity, and the water from the first-dimension eluent is largely eliminated to allow interaction-free SEC. Using the developed system, the combined two-dimensional distribution of the particle-size and the molecular-size of a mixture of various polystyrene (PS) and polyacrylate (PACR) nanoparticles has been obtained within 60 min. PMID:28745485

  18. Ionic liquids in separations: applications for pyrolysis oil and emulsion systems

    NARCIS (Netherlands)

    Li, X.

    2017-01-01

    Solvent extraction is one of the main separation techniques and has been developed for a wide range of industrial applications. Ionic liquids (ILs) are often considered as environmentally friendly solvents and have been studied widely in various laboratory applications. Aiming to design effective

  19. Template-mediated synthesis of periodic membranes for improved liquid-phase separations

    International Nuclear Information System (INIS)

    Groger, H.

    1997-01-01

    Solid/liquid separations of particulates in waste streams will benefit from design and development of ultrafiltration (UF) membranes with uniform, tailorable pore size and chemical, thermal, and mechanical stability. Such membranes will perform solid/liquid separations with high selectivity, permeance, lifetime, and low operating costs. Existing organic and inorganic membrane materials do not adequately meet all these requirements. An innovative solution to the need for improved inorganic membranes is the application of mesoporous ceramics with narrow pore-size distributions and tailorable pore size (1.5 to 10 nm) that have recently been shown to form with the use of organic surfactant molecules and surfactant assemblies as removable templates. This series of porous ceramics, designated MCM-41, consists of silica or aluminosilicates distinguished by periodic arrays of uniform channels. In this Phase I Small Business Innovation Research program, American Research Corporation of Virginia will demonstrate the use of supported MCM-41 thin films deposited by a proprietary technique, as UF membranes. Technical objectives include deposition in thin, defect-free periodic mesoporous MCM-41 membranes on porous supports; measurement of membrane separation factors, permeance, and fouling; and measurement of membrane lifetime as part of an engineering and economic analysis

  20. Template-mediated synthesis of periodic membranes for improved liquid-phase separations

    Energy Technology Data Exchange (ETDEWEB)

    Groger, H. [American Research Corp. of Virginia, Radford, VA (United States)

    1997-10-01

    Solid/liquid separations of particulates in waste streams will benefit from design and development of ultrafiltration (UF) membranes with uniform, tailorable pore size and chemical, thermal, and mechanical stability. Such membranes will perform solid/liquid separations with high selectivity, permeance, lifetime, and low operating costs. Existing organic and inorganic membrane materials do not adequately meet all these requirements. An innovative solution to the need for improved inorganic membranes is the application of mesoporous ceramics with narrow pore-size distributions and tailorable pore size (1.5 to 10 nm) that have recently been shown to form with the use of organic surfactant molecules and surfactant assemblies as removable templates. This series of porous ceramics, designated MCM-41, consists of silica or aluminosilicates distinguished by periodic arrays of uniform channels. In this Phase I Small Business Innovation Research program, American Research Corporation of Virginia will demonstrate the use of supported MCM-41 thin films deposited by a proprietary technique, as UF membranes. Technical objectives include deposition in thin, defect-free periodic mesoporous MCM-41 membranes on porous supports; measurement of membrane separation factors, permeance, and fouling; and measurement of membrane lifetime as part of an engineering and economic analysis.

  1. Integration of electrochemistry with ultra-performance liquid chromatography/mass spectrometry.

    Science.gov (United States)

    Cai, Yi; Zheng, Qiuling; Liu, Yong; Helmy, Roy; Loo, Joseph A; Chen, Hao

    2015-01-01

    This study presents the development of ultra-performance liquid chromatography (UPLC) mass spectrometry (MS) combined with electrochemistry (EC) for the first time and its application for the structural analysis of proteins/peptides that contain disulfide bonds. In our approach, a protein/peptide mixture sample undergoes a fast UPLC separation and subsequent electrochemical reduction in an electrochemical flow cell followed by online MS and tandem mass spectrometry (MS/MS) analyses. The electrochemical cell is coupled to the mass spectrometer using our recently developed desorption electrospray ionization (DESI) interface. Using this UPLC/EC/DESI-MS method, peptides that contain disulfide bonds can be differentiated from those without disulfide bonds, as the former are electroactive and reducible. MS/MS analysis of the disulfide-reduced peptide ions provides increased information on the sequence and disulfide-linkage pattern. In a reactive DESI- MS detection experiment in which a supercharging reagent was used to dope the DESI spray solvent, increased charging was obtained for the UPLC-separated proteins. Strikingly, upon online electrolytic reduction, supercharged proteins (e.g., α-lactalbumin) showed even higher charging, which will be useful in top- down protein structure MS analysis as increased charges are known to promote protein ion dissociation. Also, the separation speed and sensitivity are enhanced by approximately 1(~)2 orders of magnitude by using UPLC for the liquid chromatography (LC)/EC/MS platform, in comparison to the previously used high- performance liquid chromatography (HPLC). This UPLC/EC/DESI-MS method combines the power of fast UPLC separation, fast electrochemical conversion, and online MS structural analysis for a potentially valuable tool for proteomics research and bioanalysis.

  2. Separation of water from organic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Meldrum, I.G.; Villiers Naylor, T. de.

    1990-04-10

    This invention relates to the separation of water from fluids by the pervaporation process using a membrane. The invention is characterized in that the membrane has an active layer which consists essentially only of polymers of an unsaturated organic acid, the acid having not more than 6 carbon atoms for every acid group (not counting any carbon atoms in the acid groups), and the polymer having at least a substantial proportion of the acid groups in the form of a salt. The preferred fluids for use in the process of the invention are organic fluids, such as a hydrocarbon gas (in particular, methane) or a liquid. The process is especially suitable for separating water from mixtures with alkanols, in particular alkanols having 1 to 5 carbon atoms in the molecule, such as ethanol and isopropanol. The unsaturated organic acid may be a sulfur acid, such as a sulfonate or a sulfate or a phosphorus acid, but is preferably a carboxylic acid. Thus, the active layer may be poly(acrylic acid) or poly(maleic acid). The cation of the salt form of the acid groups is preferably an alkali metal, especially cesium. Experiments are described to illustrate the invention. 13 tabs.

  3. Development of an Inclined Plate Extractor-Separator for Immiscible Liquids

    Directory of Open Access Journals (Sweden)

    Syed Zahoor ul Hassan Rizvi

    2009-10-01

    Full Text Available A new inclined plates extractor-separator is developed for operation with immiscible liquids in which extraction and separation is achieved in one unit contrary to mixer settlers. The inclined plates extractor-separator combines turbulent jets for contacting, and an inclined plate for separation of the two phases. The inclined plates extractor-separator does not have any moving part inside the vessel. This feature makes it free from the mechanical problems associated with conventional apparatus. The proposed inclined plates extractor-separator was operated in batch mode under various operating conditions to evaluate its performance on the basis of extraction efficiency. Water (light phase was used as solvent to extract ethyl acetate from a heavy phase pool of tetrachloroethylene and ethyl acetate. The ethyl acetate content was analysed using chromatography. A hydrodynamic study was carried out using high speed photography to understand the mechanisms occurring during mass transfer across the two phases. Furthermore, it was found that the proposed inclined plate extractor-separator reduces the overall operating time by 67% and consumes only 13% of the power in comparison to a mixer-settler. A hydraulic power consumption comparison with a mixer settler and a gullwing extractor-separator is also presented.

  4. Evaluation of the air quality in pig housing facilities equipped with a liquid-solid separation system

    International Nuclear Information System (INIS)

    Lavoie, J.; Beaudet, Y.; Letourneau, C.; Godbout, S.; Lemay, S.; Belzile, M.; Lachance, I.; Pouliot, F.

    2006-01-01

    A new regulation regarding agricultural operations in Quebec was passed in June 2002. It stated the new standards for managing phosphorous generated from animal livestock. The regulation is intended to protect the environment, more specifically, water, soil and air quality. This new regulation stipulates that agricultural producers acquire a balanced phosphorous assessment by 2010. In order to achieve this, a system is needed to separate solid and liquid pig manure on a daily basis. Producers must also comply with environmental requirements on odour elimination and atmospheric control. The proposed solid-liquid separation system would improve the indoor and outdoor air quality at pig housing facilities by reducing toxic gas and bioaerosol formation. In addition, it would contribute to stream purification. The solid-liquid separation technique was successfully tested in a pilot project at a mini pig housing facility. It was concluded that type of separation equipment system could readily used for other types of animal farming, such as cattle raising. 41 refs., 13 tabs., 12 figs

  5. Recent advances on ionic liquid uses in separation techniques.

    Science.gov (United States)

    Berthod, A; Ruiz-Ángel, M J; Carda-Broch, S

    2018-07-20

    The molten organic salts with melting point below 100°C, commonly called ionic liquids (ILs) have found numerous uses in separation sciences due to their exceptional properties as non molecular solvents, namely, a negligible vapor pressure, a high thermal stability, and unique solvating properties due to polarity and their ionic character of molten salts. Other properties, such as viscosity, boiling point, water solubility, and electrochemical window, are adjustable playing with which anion is associated with which cation. This review focuses on recent development of the uses of ILs in separation techniques actualizing our 2008 article (same authors, J. Chromatogr. A, 1184 (2008) 6-18) focusing on alkyl methylimidazolium salts. These developments include the use of ILs in nuclear waste reprocessing, highly thermally stable ILs that allowed for the introduction of polar gas chromatography capillary columns able to work at temperature never seen before (passing 300°C), the use of ILs in liquid chromatography and capillary electrophoresis, and the introduction of tailor-made ILs for mass spectrometry detection of trace anions at the few femtogram level. The recently introduced deep eutectic solvents are not exactly ILs, they are related enough so that their properties and uses in countercurrent chromatography are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Transport of Cryptosporidium parvum oocysts in soil columns following applications of raw and separated liquid slurries.

    Science.gov (United States)

    Petersen, Heidi H; Enemark, Heidi L; Olsen, Annette; Amin, M G Mostofa; Dalsgaard, Anders

    2012-09-01

    The potential for the transport of viable Cryptosporidium parvum oocysts through soil to land drains and groundwater was studied using simulated rainfall and intact soil columns which were applied raw slurry or separated liquid slurry. Following irrigation and weekly samplings over a 4-week period, C. parvum oocysts were detected from all soil columns regardless of slurry type and application method, although recovery rates were low (vertical distribution of oocysts, with more oocysts recovered from soil columns added liquid slurry irrespective of the irrigation status. Further studies are needed to determine the effectiveness of different slurry separation technologies to remove oocysts and other pathogens, as well as whether the application of separated liquid slurry to agricultural land may represent higher risks for groundwater contamination compared to application of raw slurry.

  7. Recent developments in the extraction separation method for treatment of high-level liquid waste

    International Nuclear Information System (INIS)

    Jiao Rongzhou; Song Chongli; Zhu Yongjun

    2000-01-01

    A description and review of the recent developments in the extraction separation method for partitioning transuranium elements from high-level liquid waste (HLLW) is presented. The extraction separation processes such as TRUEX process, DIAMEX process, DIDPA process, CTH process, TRPO process are briefly discussed

  8. High-performance liquid chromatographic separation of biologically important arsenic species utilizing on-line inductively coupled argon plasma atomic emission spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Spall, W.D.; Lynn, J.G.; Andersen, J.L.; Valdez, J.G.; Gurley, L.R.

    1986-06-01

    An anion exchange, high-performance liquid chromatography technique using a 15-min linear gradient from water to 0.5 M ammonium carbonate to separate arsenite, arsenate, methylarsonic acid, and dimethylarsinic acid from neutral arsenic containing compounds was developed for application to a study of arsenic metabolism in cultured cell suspensions. Arsenic detection was accomplished by the direct coupling of the column effluent to an inductively coupled argon plasma atomic emission spectrometer (ICAP-AES) set to monitor the arsenic emission line at 197.19 nm. The analysis requires 20 min and is sensitive to as low as 60 ng of arsenic injected to the column.

  9. Urea functionalized surface-bonded sol-gel coating for on-line hyphenation of capillary microextraction with high-performance liquid chromatography.

    Science.gov (United States)

    Jillani, Shehzada Muhammad Sajid; Alhooshani, Khalid

    2018-03-30

    Sol-gel urea functionalized-[bis(hydroxyethyl)amine] terminated polydimethylsiloxane coating was developed for capillary microextraction-high performance liquid chromatographic analysis from aqueous samples. A fused silica capillary is coated from the inside with surface bonded coating material and is created through in-situ sol-gel reaction. The urea-functionalized coating was immobilized to the inner surface of the capillary by the condensation reaction of silanol groups of capillary and sol-solution. The characterization of the coating material was successfully done by using X-ray photoelectron spectroscopy, thermogravimetric analysis, field emission scanning electron microscope, and energy dispersive X-ray spectrometer. To make a setup of online capillary microextraction-high performance liquid chromatography, the urea functionalized capillary was installed in the HPLC manual injection port. The analytes of interest were pre-concentrated in the coated sampling loop, desorbed by the mobile phase, chromatographically separated on C-18 column, and analyzed by UV detector. Sol-gel coated capillaries were used for online extraction and high-performance liquid chromatographic analysis of phenols, ketones, aldehydes, and polyaromatic hydrocarbons. This newly developed coating showed excellent extraction for a variety of analytes ranging from highly polar to non-polar in nature. The analysis using sol-gel coating showed excellent overall sensitivity in terms of lower detection limits (S/N = 3) for the analytes (0.10 ng mL -1 -14.29 ng mL -1 ) with acceptable reproducibility that is less than 12.0%RSD (n = 3). Moreover, the capillary to capillary reproducibility of the analysis was also tested by changing the capillary of the same size. This provided excellent%RSD of less than 10.0% (n = 3). Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent

    NARCIS (Netherlands)

    Altena, Frank W.; Smolders, C.A.

    1982-01-01

    A numerical method for the calculation of the binodal of liquid-liquid phase separation in a ternary system is described. The Flory-Huggins theory for three-component systems is used. Binodals are calculated for polymer/solvent/nonsolvent systems which are used in the preparation of asymmetric

  11. A narrow open tubular column for high efficiency liquid chromatographic separation.

    Science.gov (United States)

    Chen, Huang; Yang, Yu; Qiao, Zhenzhen; Xiang, Piliang; Ren, Jiangtao; Meng, Yunzhu; Zhang, Kaiqi; Juan Lu, Joann; Liu, Shaorong

    2018-04-30

    We report a great feature of open tubular liquid chromatography when it is run using an extremely narrow (e.g., 2 μm inner diameter) open tubular column: more than 10 million plates per meter can be achieved in less than 10 min and under an elution pressure of ca. 20 bar. The column is coated with octadecylsilane and both isocratic and gradient separations are performed. We reveal a focusing effect that may be used to interpret the efficiency enhancement. We also demonstrate the feasibility of using this technique for separating complex peptide samples. This high-resolution and fast separation technique is promising and can lead to a powerful tool for trace sample analysis.

  12. Liquid-liquid phase separation and cluster formation at deposition of metals under inhomogeneous magnetic field

    Science.gov (United States)

    Gorobets, O. Yu; Gorobets, Yu I.; Rospotniuk, V. P.; Grebinaha, V. I.; Kyba, A. A.

    2017-10-01

    The formation and dynamic of expansion and deformation of the liquid-liquid interface of an electrolyte at deposition of metals at the surface of the magnetized steel ball is considered in this paper. The electrochemical processes were investigated in an external magnetic field directed at an arbitrary angle to the force of gravity. These processes are accompanied by the formation of effectively paramagnetic clusters of electrochemical products - magnions. Tyndall effect was used for detection of the presence of magnions near the magnetized steel electrode in a solution. The shape of the interface separating the regions with different concentration of magnions, i.e. different magnetic susceptibilities, was described theoretically based on the equation of hydrostatic equilibrium which takes into account magnetic, hydrostatic and osmotic pressures.

  13. Treatment of liquid separated from sludge by the method using electron beam and ozone in combination

    International Nuclear Information System (INIS)

    Hosono, Masakazu; Arai, Hidehiko; Aizawa, Masaki; Shimooka, Toshio; Shimizu, Ken; Sugiyama, Masashi.

    1995-01-01

    Since the liquid separated from sludge in the dehydration or concentration process of sewer sludge contains considerable amount of organic compositions that are hard to be decomposed by microorganisms, it has become difficult to be treated by conventional activated sludge process. In the case of discharging the separated liquid into closed water areas, the higher quality treatment is required. The method of using electron beam irradiation and ozone oxidation in combination for cleaning the liquid separated from sludge was examined, therefore, the results are reported. The water quality of the sample from the sludge treatment plant in A City is shown. The method of bio-pretreatment, the treatment method by using electron beam and ozone in combination, and the method of analyzing the water quality are described. The effect of the treatment by activated sludge process, as the effect of the treatment by the combined use of electron beam and ozone, the change of COD and TOC, the change of chromaticity, the change of gel chromatogram, and the reaction mechanism are reported. In this paper, only the basic concept on the model plant for applying the method of the combined use of electron beam and ozone to the treatment of the liquid separated from sludge is discussed. (K.I.)

  14. Extraction chromatographic separation of iron from complex liquid samples and the determination of 55Fe

    International Nuclear Information System (INIS)

    Grahek, Z.; Rozmaric Macefat, M.

    2006-01-01

    Iron separation is described from liquid samples with a high concentration of ions that enables simple determination of 55 Fe. One of the described methods consists of iron precipitation from a large volume seawater by sodium hydroxide and/or ammonium carbonate and separation from other elements (Ca, Sr, Cu, Mg, etc.) on a TRU column with 4M HCl or 8M HNO 3 . In the other procedure iron is separated directly from a mixture of seawater samples and HCl on a TRU column. In both methods, the iron recovery is almost 100%. After separation, 55 Fe is determined by counting with a liquid scintillation counter. The binding of Fe and Zn on TEVA, U/TEVA and TRU resins from seawater solutions of HCl and HNO 3 depends on the type of the resin, concentration of acid and other ions. Iron and zinc can be separated from seawater on a U/TEVA column with 2M HCl. (author)

  15. Application of liquid column chromatography to preconcentration, separation and determination of platinum metals

    International Nuclear Information System (INIS)

    Alimarin, I.P.; Basova, E.M.; Bol'shova, T.A.; Ivanov, V.M.

    1986-01-01

    Separation and determination of platimum metals using the methods of adsorption, ion-pair, ion-exchange, distributing and sieve chromatography are discussed in the review of literature in 1971-1984. Separation and determination of metals as chelates using the method of adsorption and ion-pair chromatograpy are noted to be most perspective directions of developing highly effective liquid chromatography of inorganic systems

  16. Dilution and separation of solids and liquids of broiler litter for supply of digester

    Energy Technology Data Exchange (ETDEWEB)

    Aires, Airon Magno; Lucas Junior, Jorge de; Xavier, Cristiane de Almeida Neves; Miranda, Adelia Pereira; Fukayama, Ellen Hatsumi [Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP (Brazil). Fac. de Ciencias Agrarias e Veterinarias

    2008-07-01

    The solid separation techniques indicate that it can promote a support in anaerobic biological process. This trial was realized in FCAV-UNESP, Jaboticabal, Brazil, in Rural Engineering Department. For this trial two tests were developed, using broiler litter water diluted and separated in a 3mm mesh screen: the treatments consisted in (1kg) broiler litter diluted in (2kg) of water, (1kg) broiler litter and (4kg) water, (1kg) broiler litter diluted in (6kg) of water, (1kg) broiler litter and (8kg) of water, (1kg) broiler litter diluted in (10kg) of water, (1kg) broiler litter and (12kg) water and (1kg) broiler litter diluted in (14kg) of water. Total solids (TS), solid and liquid fraction and biogas production were estimated. There were no significant differences related to solid fraction retained in screen. As the broiler litter became more diluted, a raise in the liquid fractions quantities was observed, ranging from 20.9 to 89.4% of the total diluted waste. Biogas production potentials ranged from 0.2364 to 0.4666 m{sup 3} of biogas by 100kg of liquid fraction. Organic carbon numbers ranged from 0.21 to 0.47kg by 100kg of liquid fraction and 5.36 to 6.18kg by 100kg of solid fraction. The highest values obtained for this element in liquid fractions dilutions were 2:1 and 6:1 with 0.46 and 0.47kg by 100kg respectively. The separation of liquid and solid fraction of broiler litter was viable in the smaller dilutions, because those guarantee a reduction in the anaerobic digester implementation costs and dilution water economy. Solid fraction has potential for composting, mainly in a great scale production. (author)

  17. High-performance liquid chromatography separation of unsaturated organic compounds by a monolithic silica column embedded with silver nanoparticles.

    Science.gov (United States)

    Zhu, Yang; Morisato, Kei; Hasegawa, George; Moitra, Nirmalya; Kiyomura, Tsutomu; Kurata, Hiroki; Kanamori, Kazuyoshi; Nakanishi, Kazuki

    2015-08-01

    The optimization of a porous structure to ensure good separation performances is always a significant issue in high-performance liquid chromatography column design. Recently we reported the homogeneous embedment of Ag nanoparticles in periodic mesoporous silica monolith and the application of such Ag nanoparticles embedded silica monolith for the high-performance liquid chromatography separation of polyaromatic hydrocarbons. However, the separation performance remains to be improved and the retention mechanism as compared with the Ag ion high-performance liquid chromatography technique still needs to be clarified. In this research, Ag nanoparticles were introduced into a macro/mesoporous silica monolith with optimized pore parameters for high-performance liquid chromatography separations. Baseline separation of benzene, naphthalene, anthracene, and pyrene was achieved with the theoretical plate number for analyte naphthalene as 36,000 m(-1). Its separation function was further extended to cis/trans isomers of aromatic compounds where cis/trans stilbenes were chosen as a benchmark. Good separation of cis/trans-stilbene with separation factor as 7 and theoretical plate number as 76,000 m(-1) for cis-stilbene was obtained. The trans isomer, however, is retained more strongly, which contradicts the long- established retention rule of Ag ion chromatography. Such behavior of Ag nanoparticles embedded in a silica column can be attributed to the differences in the molecular geometric configuration of cis/trans stilbenes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Separation of hemagglutination-inhibiting immunoglobulin M antibody to rubella virus in human serum by high-performance liquid chromatography.

    OpenAIRE

    Kobayashi, N; Suzuki, M; Nakagawa, T; Matumoto, M

    1986-01-01

    High-performance liquid chromatography was successfully used to separate hemagglutination-inhibiting immunoglobulin M (IgM) rubella virus antibody from IgG rubella virus antibody in human serum. The fractionation by high-performance liquid chromatography was as effective as sucrose density gradient centrifugation in separating IgM antibody from IgG antibody.

  19. Separation of tungsten from molybdenum by liquid-liquid extraction and extraction chromatography using thiocyanate and a quarternary ammonium salt

    International Nuclear Information System (INIS)

    Yonezawa, C.; Onishi, H.

    1977-01-01

    Methods were developed for the separation of tungsten from molybdenum by liquid-liquid extraction and extraction chromatography using thiocyanate and a quaternary ammonium salt, Zephiramine. Tungsten was extracted into chloroform as an ion associate of tungsten(V)-thiocyanate complex and Zephiramine cation was retained on a column of Teflon powder coated with Zephiramine, but molybdenum(III) was neither extracted nor retained. The extraction chromatographic method was succesfully applied to the determination of trace amounts of tungsten in molybdenum by neutron activation analysis. The γ-ray spectrum, observed with the Ge(Li) detector, of tungsten fraction separated from irradiated molybdenum are shown. The peaks of 99 Mo, sup(99m)Tc, and sup(99m)Nb (produced by 92 Mo(n,p)sup(99m)Nb) were seen, but these nuclides did nit interfere with the determination of tungsten using a NaI(Tl) detector. The results of the neutron activation analysis of a sample of ammonium molybdate agreed quite well with that of the spectrophotometric determination after extraction chromatographic separation. (T.G.)

  20. Liquid chromatographic separation of zalcitabine and its stereoisomers.

    Science.gov (United States)

    Scypinski, S; Ross, A J

    1994-10-01

    A liquid chromatographic method capable of separating and quantitating the stereoisomers of zalcitabine has been developed and validated. The separation was achieved with an Astec Cyclobond I--RSP column and a mobile phase of 0.25% triethylamine in water adjusted to a pH of 6.5 with glacial acetic acid. All enantiomers were found to exhibit a linear response in the range of 0.1-10% in the presence of 100% zalcitabine. Precision of analysis was found to be less than 1.5% at a level of 1% relative to zalcitabine. The limit of detection for two of the three enantiomeric impurities was determined to be 0.05% relative to zalcitabine. The detection limit for the third was found to be 0.1%. This method was successfully applied to the analysis of reference standards and several production scale batches. All of these materials were found to be stereochemically pure to a level of 99.8% or better.

  1. Comprehensive two-dimensional liquid chromatography with on-line Fourier-transform-infrared-spectroscopy detection for the characterization of copolymers

    NARCIS (Netherlands)

    Kok, S.J.; Hankemeier, T.; Schoenmakers, P.J.

    2005-01-01

    The on-line coupling of comprehensive two-dimensional liquid chromatography (liquid chromatography × size-exclusion chromatography, LC × SEC) and infrared (IR) spectroscopy has been realized by means of an IR flow cell. The system has been assessed by the functional-group analysis of a series of

  2. Development of a novel heavy element chemistry apparatus using the RIKEN gas-field recoil separator as a pre-separator

    International Nuclear Information System (INIS)

    Haba, H.; Morita, K.; Enomoto, S.; Morimoto, K.; Kaji, D.; Nagame, Yuichiro

    2004-01-01

    A new system was developed, that supplied the super-heavy element separated physically as the former steps to the chemical analysis devices such as a gas or liquid chromatographs. The gas jet transportation device was newly set up on the edge of existing accelerator research facilities in the Institute of Physical and Chemical Research linac building (GARIS). To conduct the chemical separation experiment of a super-heavy element of 112 in future a radioactive isotope of mercury of light homology elements was manufactured with a gas jet uniting type online multi-tracer manufacturing device. The adsorption chromatograph experiment to the gold was performed using this system. (H. Katsuta)

  3. An on-line high performance liquid chromatography-crocin bleaching assay for detection of antioxidants

    NARCIS (Netherlands)

    Bountagkidou, O.; Klift, van der E.J.C.; Tsimidou, M.Z.; Ordoudi, S.A.; Beek, van T.A.

    2012-01-01

    An on-line HPLC (high performance liquid chromatography) method for the rapid screening of individual antioxidants in mixtures was developed using crocin as a substrate (i.e. oxidation probe) and 2,2'-azobis(2-amidinopropane dihydrochloride (AAPH)) in phosphate buffer (pH 7.5) as a radical

  4. Systematic screening methodology and energy efficient design of ionic liquid-based separation processes

    DEFF Research Database (Denmark)

    Kulajanpeng, Kusuma; Suriyapraphadilok, Uthaiporn; Gani, Rafiqul

    2016-01-01

    in size of the target solute was investigated using the same separation process and IL entrainer to obtain the same product purity. The proposed methodology has been evaluated through a case study of binary alcoholic aqueous azeotropic separation: water+ethanol and water+isopropanol.......A systematic methodology for the screening of ionic liquids (ILs) as entrainers and for the design of ILs-based separation processes in various homogeneous binary azeotropic mixtures has been developed. The methodology focuses on the homogeneous binary aqueous azeotropic systems (for example, water...

  5. The multiple gas-liquid subsea separation system: development and qualification of a novel solution for deep water field production

    Energy Technology Data Exchange (ETDEWEB)

    Abrand, Stephanie; Butin, Nicolas; Shaiek, Sadia; Hallot, Raymond [Saipem S.p.A., Milano (Italy)

    2012-07-01

    Subsea processing is more and more considered as a viable solution for the development of deep and ultra deep water fields. SAIPEM has developed a deep water gas separation and liquid boosting system, based on its proprietary 'Multi pipe' separator concept, providing a good flexibility in handling a wide range of steady and un-steady multiphase input streams using a relatively simple mechanical arrangement. The Multi pipe Concept features an array of vertical pipes for gas/liquid separation by gravity and adequate liquid hold up volumes. The operating principle is the same as standard gravity vessels. Specific inlet pipe arrangements have been worked out to enhance the separation efficiency and internals can be implemented to further optimize the performances. The limited diameter and wall thickness of the vertical pipes make the Multi pipe Concept particularly suited for deep and ultra-deep water applications and/or high pressure conditions where the selection of a single separator vessel could lead to unpractical wall thicknesses. In most cases, standard API or ASME pipes can be utilized for the Multi pipe Separator, thus enabling conventional fabrication methods, and in turn reducing cost and delivery time and opening opportunities for local content. The qualification testing program has seen two subsequent phases. The first qualification phase aimed at the confirmation of the hydrodynamic behavior of the system. In particular, the homogeneous distribution of the multiphase stream into the pipes and the stability of the liquid levels under un-steady inlet conditions were continuously assessed during the tests. This first qualification phase gave confidence in the viability of the Multi pipe and in its good hydrodynamic behavior under the different inlet conditions that can be encountered during field production. It proved that, having the same liquid level in all the separator pipes, whatever the inlet conditions are, the Multi pipe separator can be

  6. Opalescence of an IgG2 monoclonal antibody solution as it relates to liquid-liquid phase separation.

    Science.gov (United States)

    Mason, Bruce D; Zhang, Le; Remmele, Richard L; Zhang, Jifeng

    2011-11-01

    Opalescence for a monoclonal antibody solution was systematically studied with respect to temperature, protein concentration, ionic strength (using KCl), and pH conditions. Multiple techniques, including measurement of light scattering at 90° and transmission, Tyndall test, and microscopy, were deployed to examine the opalescence behavior. Near the vicinity of the critical point on the liquid-liquid coexistence curve in the temperature-protein concentration phase diagram, the enhanced concentration fluctuations significantly contributed to the critical opalescence evidently by formation of small liquid droplets. Furthermore, our data confirm that away from the critical point, the opalescence behavior is related to the antibody self-association (agglomeration) caused by the attractive antibody-antibody interactions. As expected, at a pH near the pI of the antibody, the solution became less opalescent as the ionic strength increased. However, at a pH below the pI, the opalescence of the solution became stronger, reached a maximum, and then began to drop as the ionic strength further increased. The change in the opalescence correlated well with the trends of protein-protein interactions revealed by the critical temperature from the liquid-liquid phase separation. Copyright © 2011 Wiley-Liss, Inc.

  7. Can the waiting-point nucleus 78Ni be studied at an on-line mass-separator?

    Science.gov (United States)

    Wöhr, A.; Andreyev, A.; Bijnens, N.; Breitenbach, J.; Franchoo, S.; Huyse, M.; Kudryavtsev, Y. A.; Piechaczek, A.; Raabe, R. R.; Reusen, I.; Vermeeren, L.; Van Duppen, P.

    1997-02-01

    Short-lived nickel isotopes have been studied using a chemically selective Ion Guide Laser Ion Source (IGLIS) based on resonance ionisation of atoms at the Leuven Isotope Separator On-Line (LISOL) separator. The decay properties of different Ni isotopes have been studied using β-γ-coincidences. Experimental production rates of proton induced fission of 238U are obtained for 69,71Ni. These numbers are in a strong disagreement with Silberg-Tsao calculations.

  8. Online stable carbon isotope ratio measurement in formic acid, acetic acid, methanol and ethanol in water by high performance liquid chromatography-isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo

    2008-01-01

    A suitable analysis condition was determined for high performance liquid chromatography-isotope ratio mass spectrometry (HPLC-IRMS) while making sequential measurements of stable carbon isotope ratios of δ 13 C in formic acid, acetic acid, methanol and ethanol dissolved in water. For this online column separation method, organic reagents are not applicable due to carbon contamination; thus, water and KH 2 PO 4 at low concentrations were tested as mobile phase in combination with a HyPURITY AQUASTAR TM column. Formic acid, acetic acid, methanol and ethanol were separated when 2 mM KH 2 PO 4 aqueous solution was used. Under the determined analysis condition for HPLC-IRMS, carbon concentrations could be measured quantitatively as well as carbon isotope ratio when carbon concentration was higher than 0.4 mM L for each chemical

  9. Highly Selective Separation of Carbon Dioxide from Nitrogen and Methane by Nitrile/Glycol-Difunctionalized Ionic Liquids in Supported Ionic Liquid Membranes (SILMs)

    OpenAIRE

    Hojniak, Sandra D.; Silverwood, Ian P.; Laeeq Khan, Asim; Vankelecom, Ivo F.J.; Dehaen, Wim; Kazarian, Sergei G.; Binnemans, Koen

    2014-01-01

    Novel difunctionalized ionic liquids (ILs) containing a triethylene glycol monomethyl ether chain and a nitrile group on a pyrrolidinium or imidazolium cation have been synthesized and incorporated into supported ionic liquid membranes (SILMs). These ILs exhibit ca. 2.3 times higher CO2/N2 and CO2/CH4 gas separation selectivities than analogous ILs functionalized only with a glycol chain. Although the glycol moiety ensures room temperature liquidity of the pyrrolidinium and imidazolium ILs, t...

  10. Separation and quantification of ropinirole and some impurities using capillary liquid chromatography

    NARCIS (Netherlands)

    Coufal, P.; Stulik, K.; Claessens, H.A.; Hardy, M.J.; Webb, M.

    1999-01-01

    Ropinirole, 4-[2-(dipropylamino)ethyl]-1,3-dihydro-2H-indol-2-one, is a potent anti-Parkinson’s disease drug developed by SmithKline Beecham Pharmaceuticals. Capillary liquid chromatography (CLC) was used for the separation and quantification of ropinirole and its five related impurities,

  11. On-line separation of Pu(III) and Am(III) using extraction and ion chromatography

    International Nuclear Information System (INIS)

    Jernstroem, J.; Lehto, J.; Betti, M.

    2007-01-01

    An on-line method developed for separating plutonium and americium was developed. The method is based on the use of HPLC pump with three analytical chromatographic columns. Plutonium is reduced throughout the procedure to trivalent oxidation state, and is recovered in the various separation steps together with americium. Light lanthanides and trivalent actinides are separated with TEVA resin in thiocyanate/formic acid media. Trivalent plutonium and americium are pre-concentrated in a TCC-II cation-exchange column, after which the separation is performed in CS5A ion chromatography column by using two different eluents. Pu(III) is eluted with a dipicolinic acid eluent, and Am(III) with oxalic acid eluent. Radiochemical and chemical purity of the eluted plutonium and americium fractions were ensured with alpha-spectrometry. (author)

  12. Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.

    Science.gov (United States)

    Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan

    2017-01-01

    Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.

  13. An adaptive self-healing ionic liquid nanocomposite membrane for olefin-paraffin separations.

    Science.gov (United States)

    Pitsch, Fee; Krull, Florian F; Agel, Friederike; Schulz, Peter; Wasserscheid, Peter; Melin, Thomas; Wessling, Matthias

    2012-08-16

    An adaptive self-healing ionic liquid nanocomposite membrane comprising a multi-layer support structure hosting the ionic salt [Ag](+) [Tf(2) N](-) is used for the separation of the olefin propylene and the paraffin propane. The ionic salt renders liquid like upon complexation with propylene, resulting in facilitated transport of propylene over propane at benchmark-setting selectivity and permeance levels. The contacting with acetylene causes the ionic salt to liquefy without showing evidence of forming explosive silver acetylide. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Scaling laws for gas–liquid flow in swirl vane separators

    International Nuclear Information System (INIS)

    Liu, Li; Bai, Bofeng

    2016-01-01

    Highlights: • Model for swirl vane separator performance is established with similarity criteria. • Scaling laws are developed to correlate downscale test with prototype separator. • Effects of key similarity criteria on separation performance are studied. • The vital role of droplet size distribution on separation performance is discussed. - Abstract: Laboratory tests on gas–liquid flow in swirl vane separators are usually carried out to help establish an experimental database for separator design and performance improvement. Such model tests are generally performed in the reduced scale and not on the actual working conditions. Though great efficiency is often obtainable in the reduced model, the performance of the full-sized prototype usually cannot be well predicted. To design downscale model tests and apply the experimental results to predict the prototype, a general relationship to correlate them is required. In this paper, the relation of the similitude-criterion concerning the pressure loss is presented by using the dimensionless analysis, and mathematical models for critical droplet diameter, grade efficiency and overall separation efficiency are established by analyzing the features of the droplet trajectory in gas swirling flow field. The essential similarity criteria accounting for pressure loss and separation efficiency are obtained, respectively. On this basis, the scaling laws which enable a comparison between the reduced model and the full-sized prototype under similar conditions are also developed. It is found that the overall separation efficiency is significantly affected by the size distribution of the small droplets, especially when the mean diameter is smaller than the critical droplet diameter.

  15. Separation of Gas Mixtures by New Type of Membranes – Dynamic Liquid Membranes.

    Czech Academy of Sciences Publication Activity Database

    Setničková, Kateřina; Šíma, Vladimír; Petričkovič, Roman; Řezníčková Čermáková, Jiřina; Uchytil, Petr

    2016-01-01

    Roč. 160, FEB 29 (2016), s. 132-135 ISSN 1383-5866 Institutional support: RVO:67985858 Keywords : gas separation * liquid membrane * methane Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  16. The Separation Of The Uranium On The Liquid Radioactive Wastes By Using Zeolites

    International Nuclear Information System (INIS)

    Budiyono, ME; Peornomo, Herry; S, Djoko

    2000-01-01

    The experimental investigation on the separation of uranium of liquid radioactive wastes by using zeolite has been carried out. The aims of this investigation was to separate uranium and to determine the solid content of the liquid radioactive waste. This investigation was carried out because zeolite could be used as a good sorption material. The investigation parameters were the number of zeolites, the pH of wastes and the grain size of zeolites. The number of zeolites was varied from 10-100 g, the waste pH was varied from 1-12 and the grain size of zeolites was varied from 20/40-100/200 mesh, each parameters to included in the waste. The conclusion that could be drawn from this investigation were that the best result of the 80 g zeolites used, pH was 9, and the grain size of zeolites was 60/80 mesh, the solid content was 119,46 g/l and efficiency of separation was 81,74 %. As a rule, the solid content in the evaporator process should be about 200-300 g/l

  17. Research and development of lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi

    2013-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. However, natural Li contains only about 7.6 at.% 6 Li. In Japan, new lithium isotope separation technique using ionic-liquid impregnated organic membranes have been developed. The improvement in the durability of the ionic-liquid impregnated organic membrane is one of the main issues for stable, long-term operation of electrodialysis cells while maintaining good performance. Therefore, we developed highly-durable ionic-liquid impregnated organic membrane. Both ends of the ionic-liquid impregnated organic membrane were covered by a nafion 324 overcoat to prevent the outflow of the ionic liquid. The transmission of Lithium aqueous solution after 10 hours under the highly-durable ionic-liquid impregnated organic membrane is almost 13%. So this highly-durable ionic-liquid impregnated organic membrane for long operating of electrodialysis cells has been developed through successful prevention of ion liquid dissolution. (J.P.N.)

  18. Extraction separation of toluene/cyclohexane with hollow fiber supported ionic liquid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Sun, Wei; Liu, Junteng; Zhang, Weidong; Ren, Zhongqi [Beijing University of Chemical Technology, Beijing (China)

    2014-06-15

    A supported liquid membrane with ionic liquid was used for the separation of toluene/cyclohexane. The interactions of ionic liquid with toluene and cyclohexane were calculated and experimentally studied by quantum chemical calculation and liquid-liquid extraction process. The results showed [BPy][BF{sub 4}] have stronger interaction with toluene than that with cyclohexane. The selectivity of SILM processes was larger than 10 at the temperature of 323 K and the flow rate of 13.5 mL·min{sup -1} on both shell side and lumen side. Due to the higher viscosity of IL, SILM process had good long-term stability. As the effects of mass transfer driving force of SILM process, the flux and removal efficiency increased with increase of initial toluene concentration, while the selectivity decreased because of the competitive transport. Base on the resistance in-series model and experimental results, the mass transfer resistance was mainly lay liquid membrane phase. The influence of flow rates on both sides was slight. The higher temperature could enhance the mass transfer performance significantly. The removal efficiency increased from 28.2% to 45.1% with the increasing of operation temperature from 298 K to 323 K.

  19. High-performance liquid-chromatographic separation of subcomponents of antimycin-A

    Science.gov (United States)

    Abidi, S.L.

    1988-01-01

    Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.

  20. Separation of phenolic acids from sugarcane rind by online solid-phase extraction with high-speed counter-current chromatography.

    Science.gov (United States)

    Geng, Ping; Fang, Yingtong; Xie, Ronglong; Hu, Weilun; Xi, Xingjun; Chu, Qiao; Dong, Genlai; Shaheen, Nusrat; Wei, Yun

    2017-02-01

    Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid-phase extraction with high-speed counter-current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid-phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid-phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two-phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid-phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p-coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution-extrusion counter-current chromatography and back-extrusion counter-current chromatography were compared. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Separation of transuranium elements and fission products from medium activity aqueous liquid wastes

    International Nuclear Information System (INIS)

    Gompper, K.; Kunze, S.; Eden, G.; Loesch, G.; Zemski, C.

    1986-01-01

    In the course of work performed between January 1981 and June 1985 on the separation of TRU elements and fission products three liquid alpha containing waste streams were treated: - medium level waste solutions, - waste solutions from the acid digestion of burnable alpha containing solid residues, - waste solutions from mixed oxide fuel element fabrication. The method of separation was initially developed and optimized with simulating substances. Subesequently it was tested with real waste solutions

  2. Selection of ionic liquids as entrainers for separation of (water + ethanol)

    Energy Technology Data Exchange (ETDEWEB)

    Ge Yun [College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014 (China); Zhang Lianzhong [College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014 (China)], E-mail: zhanglz@zjut.edu.cn; Yuan Xingcai; Geng Wei; Ji Jianbing [College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014 (China)

    2008-08-15

    For selection of ionic liquids (ILs) which can be potentially used as entrainers for separation of the azeotropic mixture of (water + ethanol) by extractive distillation, (vapor + liquid) equilibrium was measured for the ternary systems of (water + ethanol + an IL) using a previously proposed ebulliometer. The experimental measurement was performed at p = 100 kPa and in a way of continuous synthesis, in which analysis of liquid phase composition was avoided. While the mole fraction of ethanol calculated on IL-free basis, x{sub 2}{sup '}, was kept almost unchanged at 0.95, isobaric T, x, y data were measured at different IL mass fractions. Activity coefficients, as well as relative volatilities, of the volatile components were obtained from the experimental data without the need of a thermodynamic model of the liquid phase. There were eight ILs in our investigation: 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF{sub 4}]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF{sub 4}]), 1-butyl-3-methylimidazolium dicyanamide ([bmim][N(CN){sub 2}]), 1-ethyl-3-methylimidazolium dicyanamide ([emim][N(CN){sub 2}]), 1-butyl-3-methylimidazolium chloride ([bmim][Cl]), 1-ethyl-3-methylimidazolium chloride ([emim][Cl]), 1-butyl-3-methylimidazolium acetate ([bmim][OAc]), and 1-ethyl-3-methylimidazolium acetate ([emim][OAc]). The effect of the ILs on the relative volatility of the volatile components was depicted separately by their effect on the activity coefficients. The results indicated that, among the eight ILs studied, [emim][Cl] has the largest effect on enhancement of the relative volatility. Another IL, [emim][OAc], has also significant effect. Considering the relatively low viscosity and melting point of [emim][OAc], this IL might be favorable candidate as entrainer for potential industrial application.

  3. On the implications of aerosol liquid water and phase separation for organic aerosol mass

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains data presented in the figures of the paper "On the implications of aerosol liquid water and phase separation for organic aerosol mass"...

  4. Separation of rate processes for isotopic exchange between hydrogen and liquid water in packed columns 10

    International Nuclear Information System (INIS)

    Butler, J.P.; Hartog, J. den; Goodale, J.W.; Rolston, J.H.

    1977-01-01

    Wetproofed platinum catalysts in packed columns promote isotopic exchange between counter-current streams of hydrogen saturated with water vapour and liquid water. The net rate of deuterium transfer from isotopically enriched hydrogen has been measured and separated into two rate processes involving the transfer of deuterium from hydrogen to water vapour and from water vapour to liquid. These are compared with independent measurements of the two rate processes to test the two-step successive exchange model for trickle bed reactors. The separated transfer rates are independent of bed height and characterize the deuterium concentrations of each stream along the length of the bed. The dependences of the transfer rates upon hydrogen and liquid flow, hydrogen pressure, platinum loading and the effect of dilution of the hydrophobic catalyst with inert hydrophilic packing are reported. The results indicate a third process may be important in the transfer of deuterium between hydrogen and liquid water. (author)

  5. Minor Actinide Separations Using Ion Exchangers Or Ionic Liquids

    International Nuclear Information System (INIS)

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-01-01

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  6. Separation of Asphaltenes by Polarity using Liquid-Liquid Extraction

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar

    1997-01-01

    In order to investigate the nature of petroleum asphaltenes in terms of polarity a process was developed using initial liquid-liquid extraction of the oil phase followed by precipitation of the asphaltenes using n-heptane. The liquid-liquid extraction was performed using toluene-methanol mixtures...... phase. The asphaltenes were analysed using FTir, Elemental analysis, and HPLC-SEC with a diode array detector. With increasing content of toluene in the methanol the molecular weight distribution of the asphaltenes significantly move to higher molecular weights. The content of nitrogen and sulfur...

  7. Separation of anionic oligosaccharides by high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Green, E.D.; Baenziger, J.U.

    1986-01-01

    The authors have developed methods for rapid fractionation of anionic oligosaccharides containing sulfate and/or sialic acid moieties by high-performance liquid chromatography (HPLC). Ion-exchange HPLC on amine-bearing columns (Micropak AX-10 and AX-5) at pH 4.0 is utilized to separate anionic oligosaccharides bearing zero, one, two, three, or four charges, independent of the identity of the anionic moieties (sulfate and/or sialic acid). Ion-exchange HPLC at pH 1.7 allows separation of neutral, mono-, di-, and tetrasialylated, monosulfated, and disulfated oligosaccharides. Oligosaccharides containing three sialic acid residues and those bearing one each of sulfate and sialic acid, however, coelute at pH 1.7. Since the latter two oligosaccharide species separate at pH 4.0, analysis at pH 4.0 followed by analysis at pH 1.7 can be utilized to completely fractionate complex mixtures of sulfated and sialylated oligosaccharides. Ion-suppression amine adsorption HPLC has previously been shown to separate anionic oligosaccharides on the basis of net carbohydrate content (size). In this study they demonstrate the utility of ion-suppression amine adsorption HPLC for resolving sialylated oligosaccharide isomers which differ only in the linkages of sialic acid residues (α2,3 vs α2,6) and/or location of α2,3- and α2,6-linked sialic acid moieties on the peripheral branches of oligosaccharides. These two methods can be used in tandem to separate oligosaccharides, both analytically and preparatively, based on their number, types, and linkages of anionic moieties

  8. Rapid and Convenient Separation of Chitooligosaccharides by Ion-Exchange Chromatography

    Science.gov (United States)

    Wu, Yuxiao; Lu, Wei-Peng; Wang, Jianing; Gao, Yunhua; Guo, Yanchuan

    2017-12-01

    Pervious methods for separation of highly purified chitooligosaccharides was time-consuming and labor-intensive, which limited the large-scale production. This study developed a convenient ion-exchange chromatography using the ÄKTA™ avant 150 chromatographic system. Five fractions were automatically collected under detecting the absorption at 210 nm. The fractions were analyzed by high-performance liquid chromatography. It proved that they primarily comprised chitobiose, chitotriose, chitotetraose, chitopentaose, and chitohexaose, respectively, with chromatographic purities over 90%. The separation process was rapid, convenient and could be monitored on-line, which would be benefit for the mass production of chitooligosaccharides.

  9. Enhanced Gas Separation through Nanoconfined Ionic Liquid in Laminated MoS2 Membrane.

    Science.gov (United States)

    Chen, Danke; Ying, Wen; Guo, Yi; Ying, Yulong; Peng, Xinsheng

    2017-12-20

    Two-dimensional (2D) materials-based membranes show great potential for gas separation. Herein an ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF 4 ]), was confined in the 2D channels of MoS 2 -laminated membranes via an infiltration process. Compared with the corresponding bulk [BMIM][BF 4 ], nanoconfined [BMIM][BF 4 ] shows an obvious incremental increase in freezing point and a shift of vibration bands. The resulting MoS 2 -supported ionic liquid membrane (MoS 2 SILM) exhibits excellent CO 2 separation performance with high CO 2 permeance (47.88 GPU) and superb selectivity for CO 2 /N 2 (131.42), CO 2 /CH 4 (43.52), and CO 2 /H 2 (14.95), which is much better than that of neat [BMIM][BF 4 ] and [BMIM][BF 4 ]-based membranes. The outstanding performance of MoS 2 SILMs is attributed to the nanoconfined [BMIM][BF 4 ], which enables fast transport of CO 2 . Long-term operation also reveals the durability and stability of the prepared MoS 2 SILMs. The method of confining ILs in the 2D nanochannels of 2D materials may pave a new way for CO 2 capture and separation.

  10. An efficient hydrophilic interaction liquid chromatography separation of 7 phospholipid classes based on a diol column

    NARCIS (Netherlands)

    Zhu, C.; Dane, A.; Spijksma, G.; Wang, M.; Greef, J. van der; Luo, G.; Hankemeier, T.; Vreeken, R.J.

    2012-01-01

    A hydrophilic interaction liquid chromatography (HILIC) - ion trap mass spectrometry method was developed for separation of a wide range of phospholipids. A diol column which is often used with normal phase chromatography was adapted to separate different phospholipid classes in HILIC mode using a

  11. Thin-layer chromatography - liquid chromatography, an ideal supplement demonstrated by the separation of lanthanoids

    International Nuclear Information System (INIS)

    Specker, H.; Hufnagel, A.

    1984-01-01

    All lanthanoids have been separated by thin-layer chromatography (TLC) with short retention times by using a mixture of ether/tetrahydrofurane (THF)/bis-(2-ethylhexyl)-phosphate (HDEHP)/nitric acid. The eluent was empirically tested by synergistic effects. The results have been transferred to high-performance liquid chromatography /HPLC). It was possible to use the same eluent in TLC and HPLC both for the analytical separation of all lanthanoids and for the separation of fission products. The experimental experience gained in HPLC could be applied to the pre-concentration of isotopes in TLC. Both methods excellently supplemented each other in the separation of lanthanoids. (orig.) [de

  12. A new liquid-phase-separation glaze containing neodymium oxide

    International Nuclear Information System (INIS)

    Jing, S.; Xianque, C.; Luxing, K.; Pentecost, J.L.

    1986-01-01

    A color-changeable opaque glaze containing neodymium oxide was investigated. Results show that the glaze is a new example of the liquid-phase-separation type. The discrete phase droplets are from 50 to 500 nm in size. They are rich in Nd, Zn, Ca, and Mg and the continuous phase is rich in Si, Al, and K. The concentration of the discrete phase is approx. =45%. The large number of discrete droplets and the zinc oxide in the glaze increase its opacity to cover the selective light absorption and scattering of the neodymium ion and reduce the opalescence effect

  13. Acylhydrazone bond dynamic covalent polymer gel monolithic column online coupling to high-performance liquid chromatography for analysis of sulfonamides and fluorescent whitening agents in food.

    Science.gov (United States)

    Zhang, Chengjiang; Luo, Xialin; Wei, Tianfu; Hu, Yufei; Li, Gongke; Zhang, Zhuomin

    2017-10-13

    A new dynamic covalent polymer (DCP) gel was well designed and constructed based on imine chemistry. Polycondensation of 4,4'-biphenyldicarboxaldehyde and 1,3,5-benzenetricarbohydrazide via Schiff-base reaction resulted in an acylhydrazone bond gel (AB-gel) DCP. AB-gel DCP had three-dimensional network of interconnected nanoparticles with hierarchically porous structure. AB-gel DCP was successfully fabricated as a monolithic column by an in-situ chemical bonding method for online enrichment and separation purpose with excellent permeability. AB-gel DCP based monolithic column showed remarkable adsorption affinity towards target analytes including sulfonamides (SAs) and fluorescent whitening agents (FWAs) due to its strong π-π affinity, hydrophobic effect and hydrogen bonding interaction. Then, AB-gel DCP based monolithic column was applied for online separation and analysis of trace SAs and FWAs in food samples coupled with high-performance liquid chromatography (HPLC). Sulfathiazole (ST) and sulfadimidine (SM2) in one positive weever sample were actually found and determined with concentrations of 273.8 and 286.3μg/kg, respectively. 2,5-Bis(5-tert-butyl-2-benzoxazolyl) thiophene (FWA184) was actually quantified in one tea infusion sample with the concentration of 268.5ng/L. The spiked experiments suggested the good recoveries in range of 74.5-110% for SAs in weever and shrimp samples with relative standard deviations (RSDs) less than 9.7% and in range of 74.0-113% for FWAs in milk and tea infusion samples with RSDs less than 9.0%. AB-gel DCP monolithic column was proved to be a promising sample preparation medium for online separation and analysis of trace analytes in food samples with complex matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Energy of formation for AgIn liquid binary alloys along the line of phase separation

    CERN Document Server

    Bhuiyan, G M; Ziauddin-Ahmed, A Z

    2003-01-01

    We have investigated the energy of formation for AgIn liquid binary alloys along the solid-liquid phase separation line. A microscopic theory based on the first order perturbation has been applied. The interionic interaction and a reference liquid are the fundamental components of the theory. These are described by a local pseudopotential and the hard sphere liquids, respectively. The results of calculations reveal a characteristic feature that the energy of formation becomes minimum at the equiatomic composition, and thus indicates maximal mix-ability at this concentration. The energy of formation at a particular thermodynamic state that is at T 1173 K predicts the experimental trends fairly well.

  15. Flow characteristics of centrifugal gas-liquid separator. Investigation with air-water two-phase flow experiment

    International Nuclear Information System (INIS)

    Yoneda, Kimitoshi; Inada, Fumio

    2004-01-01

    Air-water two-phase flow experiment was conducted to examine the basic flow characteristics of a centrifugal gas-liquid separator. Vertical transparent test section, which is 4 m in height, was used to imitate the scale of a BWR separator. Flow rate conditions of gas and liquid were fixed at 0.1 m 3 /s and 0.033 m 3 /s, respectively. Radial distributions of two-phase flow characteristics, such as void fraction, gas velocity and bubble chord length, were measured by traversing dual optical void probes in the test section, horizontally. The flow in the standpipe reached to quasi-developed state within the height-to-diameter aspect ratio H/D=10, which in turn can mean the maximum value for an ideal height design of a standpipe. The liquid film in the barrel showed a maximum thickness at 0.5 to 1 m in height from the swirler exit, which was a common result for three different standpipe length conditions, qualitatively and quantitatively. The empirical database obtained in this study would contribute practically to the validation of numerical analyses for an actual separator in a plant, and would also be academically useful for further investigations of two-phase flow in large-diameter pipes. (author)

  16. The solid-liquid extraction separation of lithium isotopes by porous composite materials doped with ionic liquids and 2,2'-binaphthyldiyl-17-crown-5

    International Nuclear Information System (INIS)

    Xiao-Li Sun; Ling Gu; Dan Qiu; Dong-Hong Ren; Zaijun Li; Zhi-Guo Gu; Jiangnan University, Wuxi

    2015-01-01

    A green and efficient solid-liquid extraction method of lithium isotopes separation by porous composite materials doped with imidazolium ionic liquids and 2,2'-binaphthyldiyl-17-crown-5 has been reported in this paper. The composite materials of mesoporous silica and impregnated resin were synthesized by sol-gel and direct impregnation process, respectively. Various extraction parameters such as the concentration of lithium salt, anion of lithium salt, initial pH, time and temperature were investigated. Under optimized conditions, the maximum single-stage separation factor of 6 Li/ 7 Li was 1.048 ± 0.002, the maximum extraction efficiency was 15.86 %. The sorbents can be regenerated easily with HCl solution and reused repeatedly. (author)

  17. Study of Separation and Identification of the Active Ingredients in Gardenia jasminoides Ellis Based on a Two-Dimensional Liquid Chromatography by Coupling Reversed Phase Liquid Chromatography and Hydrophilic Interaction Liquid Chromatography.

    Science.gov (United States)

    Zhou, Xuan; Chen, Cen; Ye, Xiaolan; Song, Fenyun; Fan, Guorong; Wu, Fuhai

    2017-01-01

    In this paper, by coupling reversed phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC), a two-dimensional liquid chromatography system was developed for separation and identification of the active ingredients in Gardenia jasminoides Ellis (GJE). By applying the semi-preparative C18 column as the first dimension and the core-shell column as the second dimension, a total of 896 peaks of GJE were separated. Among the 896 peaks, 16 active ingredients including geniposide, gardenoside, gardoside, etc. were identified by mass spectrometry analysis. The results indicated that the proposed two-dimensional RPLC/HILIC system was an effective method for the analysis of GJE and might hold a high potential to become a useful tool for analysis of other complex mixtures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Application of an efficient strategy based on liquid-liquid extraction, high-speed counter-current chromatography, and preparative HPLC for the rapid enrichment, separation, and purification of four anthraquinones from Rheum tanguticum.

    Science.gov (United States)

    Chen, Tao; Liu, Yongling; Zou, Denglang; Chen, Chen; You, Jinmao; Zhou, Guoying; Sun, Jing; Li, Yulin

    2014-01-01

    This study presents an efficient strategy based on liquid-liquid extraction, high-speed counter-current chromatography, and preparative HPLC for the rapid enrichment, separation, and purification of four anthraquinones from Rheum tanguticum. A new solvent system composed of petroleum ether/ethyl acetate/water (4:2:1, v/v/v) was developed for the liquid-liquid extraction of the crude extract from R. tanguticum. As a result, emodin, aloe-emodin, physcion, and chrysophanol were greatly enriched in the organic layer. In addition, an efficient method was successfully established to separate and purify the above anthraquinones by high-speed counter-current chromatography and preparative HPLC. This study supplies a new alternative method for the rapid enrichment, separation, and purification of emodin, aloe-emodin, physcione, and chrysophanol. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. New Liquid Phases for the Gas Chromatographic Separation of Strong Bases on Capillary Columns

    OpenAIRE

    Grob, K.

    2017-01-01

    The current practice of pretreating the solid support with free alkali to increase separation efficiency for basic compounds proved to be unsuitable for capillary columns. Instead of this, homogenous organic materials of high base strength are required. We found polyethylene imine (PEI) and polypropylene imine (PPI) to be very efficient as liquid phases of capillary columns for the separation of bases. The preparation of polymers is mentioned. Silanization or acetylation of the free hydroxyl ...

  20. Magnetic precipitate separation for Ni plating waste liquid using HTS bulk magnets

    Science.gov (United States)

    Oka, T.; Kimura, T.; Mimura, D.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Tsujimura, M.; Terasawa, T.

    2013-01-01

    The magnetic separation experiment for recycling the nickel-bearing precipitates in the waste liquid from the electroless plating processes has been practically conducted under the high gradient magnetic separation technique with use of the face-to-face HTS bulk magnet system. A couple of facing magnetic poles containing Sm123 bulk superconductors were activated through the pulsed field magnetization process to 1.86 T at 38 K and 2.00 T at 37 K, respectively. The weakly magnetized metallic precipitates of Ni crystals and Ni-P compounds deposited from the waste solution after heating it and pH controlling. The high gradient magnetic separation technique was employed with the separation channels filled with the stainless steel balls with dimension of 1 and 3 mm in diameter, which periodically moved between and out of the facing magnetic poles. The Ni-bearing precipitates were effectively attracted to the magnetized ferromagnetic balls. We have succeeded in obtaining the separation ratios over 90% under the flow rates less than 1.35 L/min.

  1. Very low-energy conversion electron detection (VLECED) system at the isocele on-line isotope separator, Orsay

    International Nuclear Information System (INIS)

    Kilcher, P.; Sauvage, J.; Munsch, J.; Obert, J.; Caruette, A.; Ferro, A.; Boissier, G.; Fournet-Fayas, J.; Ducourtieux, M.; Landois, G.

    1988-01-01

    A system designed and installed at the on-line isotope separator ISOCELE II allows the high resolution detection of low-energy conversion electrons (down to 1 keV) emitted by mass separated radioactive sources: the use of a special tape transport permits both the slowing down of the incoming beam of radioactive ions up to a collection point and the acceleration of the electrons emitted by the collected sources brought to a flat magnetic spectrograph. Typical spectra so obtained are presented

  2. A Novel Two-Step Liquid-Liquid Extraction Procedure Combined with Stationary Phase Immobilized Human Serum Albumin for the Chiral Separation of Cetirizine Enantiomers along with M and P Parabens

    Directory of Open Access Journals (Sweden)

    Aleksandra Chmielewska

    2016-12-01

    Full Text Available The research into the separation of drug enantiomers is closely related to the safety and efficiency of the drugs. The aim of this study was to develop a simple and validated HPLC method to analyze cetirizine enantiomers. In the case of liquid dosage forms, besides the active substance in large amounts there are usually also inactive ingredients such as methyl- and propylparaben. Unfortunately, these compounds can interfere with the analyte, inter alia during chiral separation of the analyte enantiomers. The proposed innovative two-step liquid-liquid extraction procedure allowed for the determination of cetirizine enantiomers (along with M and P parabens also in liquid dosage forms. The main focus of this study was the chromatographic activity of cetirizine dihydrochloride on the proteinate-based chiral stationary phase. The chromatographic separation of cetirizine enantiomers was performed on an immobilized human serum albumin (HSA column for the first time. Measurements were performed at a wavelength of 227 nm. Under optimal conditions, baseline separation of two enantiomers was obtained with 1.43 enantioseparation factor (α and 1.82 resolution (Rs. Finally, the proposed method was successfully applied to the selected pharmaceutical formulations.

  3. Liquid-liquid extraction/separation of platinum(IV) and rhodium(III) from acidic chloride solutions using tri-iso-octylamine

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-Young, E-mail: jinlee@kigam.re.kr [Metals Recovery Department, Minerals Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), 92 Gahangno, Yuesong-gu, Daejeon 305-350 (Korea, Republic of); Rajesh Kumar, J., E-mail: rajeshkumarphd@rediffmail.com [Metals Recovery Department, Minerals Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), 92 Gahangno, Yuesong-gu, Daejeon 305-350 (Korea, Republic of); Kim, Joon-Soo; Park, Hyung-Kyu; Yoon, Ho-Sung [Metals Recovery Department, Minerals Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), 92 Gahangno, Yuesong-gu, Daejeon 305-350 (Korea, Republic of)

    2009-08-30

    Liquid-liquid extraction/separation of platinum(IV) and rhodium(III) from acidic chloride solutions was carried out using tri-iso-octylamine (Alamine 308) as an extractant diluted in kerosene. The percentage extraction of platinum(IV) and rhodium(III) increased with increase in acid concentration up to 8 mol L{sup -1}. However, at 10 mol L{sup -1} HCl concentration, the extraction behavior was reversed, indicating the solvation type mechanism during extraction. The quantitative extraction of {approx}98% platinum(IV) and 36% rhodium(III) was achieved with 0.01 mol L{sup -1} Alamine 308. The highest separation factor (S.F. = 184.7) of platinum(IV) and rhodium(III) was achieved with 0.01 mol L{sup -1} Alamine 308 at 1.0 mol L{sup -1} of hydrochloric acid concentration. Alkaline metal salts like sodium chloride, sodium nitrate, sodium thiocyanate, lithium chloride, lithium nitrate, potassium chloride and potassium thiocyanate used for the salting-out effect. LiCl proved as best salt for the extraction of platinum(IV). Temperature effect demonstrates that the extraction process is exothermic. Hydrochloric acid and thiourea mixture proved to be better stripping reagents when compared with other mineral acids and bases.

  4. Total cholesterol in serum determined by isotope dilution/mass spectrometry, with liquid-chromatographic separation

    International Nuclear Information System (INIS)

    Takatsu, Akiko; Nishi, Sueo

    1988-01-01

    We describe an accurate, precise method for determination of total serum cholesterol by isotope dilution/mass spectrometry (IDMS) with liquid chromatographic separation. After adding [3,4- 13 C] cholesterol to serum and hydrolyzing the cholesterol esters, we extract the total cholesterol. High-performance liquid chromatography (HPLC) is used to separate the extracted cholesterol for measurement by electron-impact mass spectrometry with use of a direct-insertion device. To evaluate the specificity and the accuracy of this method, we also studied the conventional IDMS method, which involves converting cholesterol to the trimethylsilyl ether and assay by gas chromatography-mass spectrometry with use of a capillary column. The coefficient of variation for the HPLC method was a little larger than for the conventional method, but mean values by each method agreed within 1% for all sera tested. (author)

  5. Integration of Electrochemistry with Ultra Performance Liquid Chromatography/Mass Spectrometry (UPLC/MS)

    Science.gov (United States)

    Cai, Yi; Zheng, Qiuling; Liu, Yong; Helmy, Roy; Loo, Joseph A.; Chen, Hao

    2015-01-01

    This study presents the development of ultra-performance liquid chromatography/mass spectrometry (UPLC/MS) combined with electrochemistry (EC) for the first time and its application for the structural analysis of disulfide bond-containing proteins/peptides. In our approach, a protein/peptide mixture sample undergoes fast UPLC separation and subsequent electrochemical reduction in an electrochemical flow cell followed by online MS and MS/MS analyses. The electrochemical cell is coupled to MS using our recently developed desorption electrospray ionization (DESI) interface. Using this UPLC/EC/DESI-MS method, disulfide bond-containing peptides can be differentiated from those without disulfide bonds as the former are electroactive and reducible. Tandem MS analysis of the disulfide-reduced peptide ions provides increased sequence and disulfide linkage pattern information. In a reactive DESI-MS detection experiment in which a supercharging reagent was used to dope the DESI spray solvent, increased charging was obtained for the UPLC-separated proteins. Strikingly, upon online electrolytic reduction, supercharged proteins (e.g., α-lactalbumin) showed even higher charging, which would be useful in top-down protein structure analysis as increased charges are known to promote protein ion dissociation. Also, the separation speed and sensitivity are enhanced by approximately 1~2 orders of magnitude by using UPLC for the LC/EC/MS platform, in comparison to the previously used high performance liquid chromatography (HPLC). This UPLC/EC/DESI-MS method combines the power of fast UPLC separation, fast electrochemical conversion and online MS structural analysis for a potentially valuable tool for proteomics research and bioanalysis. PMID:26307715

  6. Separation of some metal ions using coupled transport supported liquid membranes

    International Nuclear Information System (INIS)

    Chaudhary, M.A.

    1993-01-01

    Liquid membrane extraction processes has become very popular due to their superiority in many ways over other separation techniques. In coupled transport membranes the metal ions can be transported across the membrane against their concentration gradient under the influence of chemical potential difference. Liquid membranes consisting of a carrier-cum-diluent, supported in microporous polymeric hydrophobic films have been studied for transport of metal ions like U(VI), Cr(VI), Be(II), V(V), Ti(IV), Zn(II), Cd(II), Hf(IV), W(VI), and Co(II). The present paper presents basic data with respect to flux and permeabilities of these metal ions across membranes based on experimental results and theoretical equations, using different carriers and diluents and provides a brief reference to possibility of such membranes for large scale applications. (author)

  7. Effect of liquid oil additive on lithium-ion battery ceramic composite separator prepared with an aqueous coating solution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Woo [Division of Advanced Materials Engineering, Kongju National University, 1223–24, Cheonan-daero, Cheonan, Chungnam, 31080 (Korea, Republic of); Ryou, Myung-Hyun [Department of Chemical & Biological Engineering, Hanbat National University, 125, Dongseodaero, Yuseong-gu, Daejeon, 34158 (Korea, Republic of); Lee, Yong Min, E-mail: yongmin.lee@hanbat.ac.kr [Department of Chemical & Biological Engineering, Hanbat National University, 125, Dongseodaero, Yuseong-gu, Daejeon, 34158 (Korea, Republic of); Cho, Kuk Young, E-mail: kycho@hanyang.ac.kr [Department of Materials Science and Chemical Engineering, Hanyang University, 55, Hanyangdaehak-ro, Sangrok-gu, Ansan, Gyeonggi-do, 15588 (Korea, Republic of)

    2016-08-05

    Ceramic composite separators (CCSs) play a critical role in ensuring safety for lithium-ion batteries (LIBs), especially for mid- and large-sized devices. However, production of CCSs using organic solvents has some cost and environmental concerns. An aqueous process for fabricating CCSs is attractive because of its cost-effectiveness and environmental-friendliness because organic solvents are not used. The success of an aqueous coating system for LIBs is dependent upon minimizing moisture content, as moisture has a negatively impact on LIB performance. In this study, CCSs were fabricated using an aqueous coating solution containing Al{sub 2}O{sub 3} and an acrylic binder. Compared with polyethylene (PE) separators, CCSs coated with an aqueous coating solution showed improved thermal stability, electrolyte uptake, puncture strength, ionic conductivity, and rate capability. In addition, our new approach of introducing a small amount of an oily liquid to the aqueous coating solution reduced the water adsorption by 11.7% compared with coatings that do not contain the oily liquid additive. - Highlights: • Ceramic composite separator is fabricated using aqueous coating process. • Coated separator showed enhanced mechanical and thermal stability. • Liquid oil additive in coating solution reduce moisture reabsorption of separator. • Oil additive in aqueous coating solution does not deteriorate LIB performance.

  8. Magnetic precipitate separation for Ni plating waste liquid using HTS bulk magnets

    Energy Technology Data Exchange (ETDEWEB)

    Oka, T., E-mail: okat@eng.niigata-u.ac.jp [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Kimura, T.; Mimura, D.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M. [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Yokoyama, K. [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi 326-8558 (Japan); Tsujimura, M. [Aichi Giken Co., 2-1-47 Shiobaru, Minami-ku, Fukuoka 815-8520 (Japan); Terasawa, T. [IMRA Material R and D Co., Ltd., 2-1 Asahimachi, Kariya, Aichi 448-0032 (Japan)

    2013-01-15

    Highlights: ► The magnetic separation was operated for recycling the electroless plating waste. ► The HTS bulk magnet effectively attracted the ferromagnetic precipitates with Ni. ► The separation ratios over 90% were reported under flow rates up to 1.35 L/min. -- Abstract: The magnetic separation experiment for recycling the nickel-bearing precipitates in the waste liquid from the electroless plating processes has been practically conducted under the high gradient magnetic separation technique with use of the face-to-face HTS bulk magnet system. A couple of facing magnetic poles containing Sm123 bulk superconductors were activated through the pulsed field magnetization process to 1.86 T at 38 K and 2.00 T at 37 K, respectively. The weakly magnetized metallic precipitates of Ni crystals and Ni–P compounds deposited from the waste solution after heating it and pH controlling. The high gradient magnetic separation technique was employed with the separation channels filled with the stainless steel balls with dimension of 1 and 3 mm in diameter, which periodically moved between and out of the facing magnetic poles. The Ni-bearing precipitates were effectively attracted to the magnetized ferromagnetic balls. We have succeeded in obtaining the separation ratios over 90% under the flow rates less than 1.35 L/min.

  9. Effect of realgar on extracellular amino acid neurotransmitters in hippocampal CA1 region determined by online microdialysis–dansyl chloride derivatization–high-performance liquid chromatography and fluorescence detection.

    Science.gov (United States)

    Huo, Taoguang; Zhang, Yinghua; Li, Weikai; Yang, Huilei; Jiang, Hong; Sun, Guifan

    2014-09-01

    An online microdialysis (MD)–dansyl chloride (Dns) derivatization–high-performance liquid chromatography (HPLC) and fluorescence detection (FD) system was developed for simultaneous determination of eight extracellular amino acid neurotransmitters in hippocampus. The MD probe was implanted in hippocampal CA1 region. Dialysate and Dns were online mixed and derivatized. The derivatives were separated on an ODS column and detected by FD. The developed online system showed good linearity, precision, accuracy and recovery. This online MD-HPLC system was applied to monitor amino acid neurotransmitters levels in rats exposed to realgar (0.3, 0.9 and 2.7 g/kg body weight). The result shows that glutamate concentrations were significantly increased (p<0.05) in hippocampal CA1 region of rats exposed to three doses of realgar. A decrease in γ-aminobutyric acid concentrations was found in rats exposed to medium and high doses of realgar (p<0.05). Elevation of excitotoxic index (EI) values in hippocampal CA1 region of realgar-exposed rats was observed (p<0.05). Positive correlation was found between EI values and arsenic contents in hippocampus of realgar-exposed rats, which indicates that the change in extracellular EI values is associated with arsenic accumulation in hippocampus. The developed online MD–Dns derivatization–HPLC–FD system provides a new experimental method for studying the effect of toxic Chinese medicines on amino acid neurotransmitters.

  10. A four-detector spectrometer for e--γ PAC on-line with the ISOLDE-CERN isotope separator

    International Nuclear Information System (INIS)

    Marques, J.G.; Correia, J.G.; Melo, A.A.; Silva, M.F. da; Soares, J.C.

    1995-01-01

    A four-detector e - -γ spectrometer has been installed on-line with the ISOLDE isotope separator. The spectrometer consists of two magnetic lenses for detection of conversion electrons, and two BaF 2 scintillators for γ-ray detection. The spectrometer has been equipped with a 20 kV pre-acceleration system which enables detection of conversion electrons down to 2 keV. Implantation and measurement can be performed simultaneously on a large temperature range by heating or cooling the sample holder. The advantages of using the e - -γ PAC technique on-line at ISOLDE are discussed. (orig.)

  11. Effects of temperature and anion species on CO2 permeability and CO2/N2 separation coefficient through ionic liquid membranes

    International Nuclear Information System (INIS)

    Jindaratsamee, Pinyarat; Shimoyama, Yusuke; Morizaki, Hironobu; Ito, Akira

    2011-01-01

    The permeability of carbon dioxide (CO 2 ) through imidazolium-based ionic liquid membranes was measured by a sweep gas method. Six species of ionic liquids were studied in this work as follows: [emim][BF 4 ], [bmim][BF 4 ], [bmim][PF 6 ], [bmim][Tf 2 N], [bmim][OTf], and [bmim][dca]. The ionic liquids were supported with a polyvinylidene fluoride porous membrane. The measurements were performed at T = (303.15 to 343.15) K. The partial pressure difference between feed and permeate sides was 0.121 MPa. The permeability of the CO 2 increases with temperature for the all ionic liquid species. Base on solution diffusion theory, it can be explained that the diffusion coefficient of CO 2 in an ionic liquid affects the temperature dependence more strongly than the solubility coefficient. The greatest permeability was obtained with the [bmim][Tf 2 N] membrane. The membrane of [bmim][PF 6 ] presents the lowest permeability. The separation coefficient between CO 2 and N 2 through the ionic liquid membranes was also investigated at the volume fraction of CO 2 at feed side 0.10. The separation coefficient decreases with the increase of temperature for the all ionic liquid species. The membrane of [emim][BF 4 ] and [bmim][BF 4 ] gives the highest separation coefficient at constant temperature. The lowest separation coefficient was obtained from [bmim][Tf 2 N] membrane which presents the highest permeability of CO 2 .

  12. Robust optimization of psychotropic drug mixture separation in hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Rakić, Tijana; Jovanović, Marko; Dumić, Aleksandra; Pekić, Marina; Ribić, Sanja; Stojanović, Biljana Jancić

    2013-01-01

    This paper presents multiobjective optimization of complex mixtures separation in hydrophilic interaction liquid chromatography (HILIC). The selected model mixture consisted of five psychotropic drugs: clozapine, thioridazine, sulpiride, pheniramine and lamotrigine. Three factors related to the mobile phase composition (acetonitrile content, pH of the water phase and concentration of ammonium acetate) were optimized in order to achieve the following goals: maximal separation quality, minimal total analysis duration and robustness of an optimum. The consideration of robustness in early phases of the method development provides reliable methods with low risk for failure in validation phase. The simultaneous optimization of all goals was achieved by multiple threshold approach combined with grid point search. The identified optimal separation conditions (acetonitrile content 83%, pH of the water phase 3.5 and ammonium acetate content in water phase 14 mM) were experimentally verified.

  13. Separations by centrifugal phenomena

    International Nuclear Information System (INIS)

    Hsu, H.W.

    1981-01-01

    The technical information presented herein emphasizes the uniqueness of the centrifugal separations methodology and pertinent theory for various kinds of centrifugation. The topics are arranged according to gas, liquid, and solid phases, in the order of increasing densities. Much space is devoted to liquid centrifugation because of the importance of this technique in chemical and biological laboratories. Many separational and characterizational examples are illustrated in detail. The material has been divided into 7 chapters entitled: 1) Introduction, 2) Basic Theory of Centrifugation, 3) Gas Centrifuges, 4) Preparative Liquid Centrifuges, 5) Analytical Liquid Centrifuges, 6) Liquid Centrifuges in Practice, and 7) Mechanical Separations by Centrifuges. Separate abstracts have been prepared for each chapter except the introduction

  14. Properties important for solid–liquid separations change during the enzymatic hydrolysis of pretreated wheat straw

    DEFF Research Database (Denmark)

    Weiss, Noah Daniel; Felby, Claus; Thygesen, Lisbeth Garbrecht

    2018-01-01

    Objectives The biochemical conversion of lignocellulosic biomass into renewable fuels and chemicals provides new challenges for industrial scale processes. One such process, which has received little attention, but is of great importance for efficient product recovery, is solid–liquid separations......, which may occur both after pretreatment and after the enzymatic hydrolysis steps. Due to the changing nature of the solid biomass during processing, the solid–liquid separation properties of the biomass can also change. The objective of this study was to show the effect of enzymatic hydrolysis...... of cellulose upon the water retention properties of pretreated biomass over the course of the hydrolysis reaction. Results Water retention value measurements, coupled with 1H NMR T2 relaxometry data, showed an increase in water retention and constraint of water by the biomass with increasing levels...

  15. Methods for calculation of engineering parameters for gas separation. [vapor pressure and solubility of gases in organic liquids

    Science.gov (United States)

    Lawson, D. D.

    1979-01-01

    A group additivity method is generated which allows estimation, from the structural formulas alone, of the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. Using these two parameters and appropriate thermodynamic relations, the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids are predicted. It is also possible to use the data to evaluate organic and some inorganic liquids for use in gas separation stages or liquids as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  16. Pattern Formation During Phase Separation of Polymer-Ionic Liquid Co-Solutions

    Science.gov (United States)

    Meng, Zhiyong; Osuji, Chinedum

    2010-03-01

    Co-solutions of polystyrene (PS) with a 1-butyl-3-methylimidazolium based ionic liquid (IL) in DMF phase separated into IL-rich and PS-rich domains on solvent evaporation. Over a limited range of polymer molecular weights and substrate temperatures, a variety of striped and cellular or polygonal structures were found on the resulting film surface, as visualized using bright-field and phase-contrast optical microscopy. This effect appears to be due to a Benard-Marangoni instability at the free surface of the liquid film as it undergoes evaporation, setting up convection rolls inside the fluid which become locked in place as the system vitrifies on solvent removal. Differential scanning calorimetry shows that the IL does not significantly plasticize the polymer, suggesting that the viscosity of the polystyrene solution itself controls the formation of this instability.

  17. [Separation and purification of the components in Trachelospermum jasminoides by two dimensional hydrophilic interaction liquid chromatography- reversed-phase liquid chromatography].

    Science.gov (United States)

    Jia, Youmei; Cai, Jianfeng; Xin, Huaxia; Feng, Jiatao; Fu, Yanhui; Fu, Qing; Jin, Yu

    2017-06-08

    A preparative two dimensional hydrophilic interaction liquid chromatography/reversed-phase liquid chromatography (Pre-2D-HILIC/RPLC) method was established to separate and purify the components in Trachelospermum jasminoides . The pigments and strongly polar components were removed from the crude extract after the active carbon decolorization and solid phase extraction processes. A Click XIon column (250 mm×20 mm, 10 μm) was selected as stationary phase and water-acetonitrile as mobile phases in the first dimensional HILIC. Finally, 15 fractions were collected under UV-triggered mode. In the second dimensional RPLC, a C18 column (250 mm×20 mm, 5 μm) was selected and water-acetonitrile was used as mobile phases. As a result, 14 compounds with high purity were obtained, which were further identified by mass spectrometry (MS) and nuclear magnetic resonance (NMR). Finally, 11 lignan compounds and three flavonoid compounds were obtained. The method has a good orthogonality, and can improve the resolution and the peak capacity. It is significant for the separation of complex components from Trachelospermum jasminoides .

  18. Silver ion chromatography for peak resolution enhancement: Application to the preparative separation of two sesquiterpenes using online heart-cutting LC-LC technique.

    Science.gov (United States)

    Yang, Yang; Zhang, Yongmin; Wei, Chong; Li, Jing; Sun, Wenji

    2018-09-01

    Silver ion chromatography, utilizing columns packed with silver ions bonded to silica gel, has proved to be an invaluable technique for the analysis of some positional isomers. In this work, silver ion chromatography by combination with online heart-cutting LC-LC technique for the preparative separation of two sesquiterpenes positional isomers from a natural product was investigated. On the basis of the evaluation that silver ion content impacts on the separation, the laboratory-made silver ion columns, utilizing silica gel impregnated with 15% silver nitrate as column packing materials, were used for peak resolution improvement of these two isomers and the preparative separation of them in heart-cutting LC-LC. The relationship among the maximal sample load, flow rate and peak resolution in the silver ion column were optimized, and the performance of the silver ion column was compared with conventional C 18 column and silica gel column. Based on the developed chromatographic conditions, online heart-cutting LC-LC chromatographic separation system in combination with a silica gel column and a silver ion column that was applied to preparative separation of these two isomers from a traditional Chinese medicine, Inula racemosa Hook.f., was established. The results showed that the online heart-cutting LC-LC technique by combination of a silica gel column and a silver ion column for the preparative separation of these two positional isomers from this natural plant was superior to the preparative separation performed on a single-column system with C 18 column or silica gel column. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Separate measurement of the density and viscosity of a liquid using a quartz crystal microbalance based on admittance analysis (QCM-A)

    International Nuclear Information System (INIS)

    Itoh, Atsushi; Ichihashi, Motoko

    2011-01-01

    We previously used a quartz crystal microbalance (QCM) to identify a frequency f 2 that allows measurement of the mass load without being affected by the viscous load of a liquid in the liquid phase. Here, we determined that frequency in order to separately measure the density and viscosity of a Newtonian liquid. Martin et al separately measured the density and viscosity of a liquid by immersing two quartz resonators, i.e. a smooth-surface resonator and a textured-surface resonator, in the liquid. We used a QCM based on admittance analysis (QCM-A) in the current study to separately measure the viscosity and density of a liquid using only a textured-surface resonator. In the current experiments, we measured the density and viscosity of 500 µl of 10%, 30%, and 50% aqueous glycerol solutions and compared the measured values to reference values. The density obtained had an error of ±1.5% of reference values and the viscosity had an error of about ±5% of reference values. Similar results were obtained with 500 µl of 10%, 30%, and 50% ethanol solutions. Measurement was possible with a quartz resonator, so measurements were made with even smaller samples. The density and viscosity of a liquid were successfully determined with an extremely small amount of liquid, i.e. 10 µl, with almost the same precision as when using 500 µl of the liquid

  20. Improvements in or relating to apparatus for separating particulate solids from liquids

    International Nuclear Information System (INIS)

    Wace, P.F.; Stcokwell, C.L.; Alder, P.J.; Ellis, J.F.

    1977-01-01

    Apparatus is described for the separation of spheroidal nuclear fuel particles formed by gel precipitation from process liquids such as ammonia, which is used as a precipitating medium, and water, which is used for washing the particles after precipitation. It comprises a container having a number of inclined draining screens and weirs, together with means for vibrating the container. Arrangement of the apparatus is shown schematically. (U.K.)

  1. Analytical method of Kr-85 determination, using cryogenic concentration and separation and liquid scintillation counting

    International Nuclear Information System (INIS)

    Heras Iniquez, M.C.; Perez Garcia, M.M.; Grau Malonda, A.

    1983-01-01

    The method used in the Laboratory of the JEN for the determination of Kr-85 levels in gaseous effluents of nuclear power and in the atmosphere is described. Samples of air, collected in metallic cylinders, are introduced into a gas-solid chromatographic separation system which resolves Kr from the other air components. The separated Kr ia dissolved in a toluene based scintillation cocktail, and the Kr-85 content is determined by liquid scintillation counting. (Author)

  2. Determination of denaturated proteins and biotoxins by on-line size-exclusion chromatography-digestion-liquid chromatography-electrospray mass spectrometry

    NARCIS (Netherlands)

    Carol, J.; Gorseling, M.C.J.K.; Jong, C.F. de; Lingeman, H.; Kientz, C.E.; Baar, B.L.M. van; Irth, H.

    2005-01-01

    A multidimensional analytical method for the rapid determination and identification of proteins has been developed. The method is based on the size-exclusion fractionation of protein-containing samples, subsequent on-line trypsin digestion and desalination, and reversed-phase high-performance liquid

  3. Monitoring gradient profile on-line in micro- and nano-high performance liquid chromatography using conductivity detection.

    Science.gov (United States)

    Zhang, Min; Chen, Apeng; Lu, Joann J; Cao, Chengxi; Liu, Shaorong

    2016-08-19

    In micro- or nano-flow high performance liquid chromatography (HPLC), flow-splitters and gradient elutions are commonly used for reverse phase HPLC separations. When a flow splitter was used at a high split-ratio (e.g., 1000:1 or higher), the actual gradient may deviate away from the programmed gradient. Sometimes, mobile phase concentrations can deviate by as much as 5%. In this work, we noticed that the conductivity (σ) of a gradient decreased with the increasing organic-solvent fraction (φ). Based on the relationship between σ and φ, a method was developed for monitoring gradient profile on-line to record any deviations in these HPLC systems. The conductivity could be measured by a traditional conductivity detector or a capacitively coupled contactless conductivity detector (C(4)D). The method was applied for assessing the performance of an electroosmotic pump (EOP) based nano-HPLC. We also observed that σ value of the gradient changed with system pressure; a=0.0175ΔP (R(2)=0.964), where a is the percentage of the conductivity increase and ΔP is the system pressure in bar. This effect was also investigated. Copyright © 2016. Published by Elsevier B.V.

  4. Online Artifact Removal for Brain-Computer Interfaces Using Support Vector Machines and Blind Source Separation

    OpenAIRE

    Halder, Sebastian; Bensch, Michael; Mellinger, Jürgen; Bogdan, Martin; Kübler, Andrea; Birbaumer, Niels; Rosenstiel, Wolfgang

    2007-01-01

    We propose a combination of blind source separation (BSS) and independent component analysis (ICA) (signal decomposition into artifacts and nonartifacts) with support vector machines (SVMs) (automatic classification) that are designed for online usage. In order to select a suitable BSS/ICA method, three ICA algorithms (JADE, Infomax, and FastICA) and one BSS algorithm (AMUSE) are evaluated to determine their ability to isolate electromyographic (EMG) and electrooculographic...

  5. Online artifact removal for brain-computer interfaces using support vector machines and blind source separation.

    Science.gov (United States)

    Halder, Sebastian; Bensch, Michael; Mellinger, Jürgen; Bogdan, Martin; Kübler, Andrea; Birbaumer, Niels; Rosenstiel, Wolfgang

    2007-01-01

    We propose a combination of blind source separation (BSS) and independent component analysis (ICA) (signal decomposition into artifacts and nonartifacts) with support vector machines (SVMs) (automatic classification) that are designed for online usage. In order to select a suitable BSS/ICA method, three ICA algorithms (JADE, Infomax, and FastICA) and one BSS algorithm (AMUSE) are evaluated to determine their ability to isolate electromyographic (EMG) and electrooculographic (EOG) artifacts into individual components. An implementation of the selected BSS/ICA method with SVMs trained to classify EMG and EOG artifacts, which enables the usage of the method as a filter in measurements with online feedback, is described. This filter is evaluated on three BCI datasets as a proof-of-concept of the method.

  6. Liquid-liquid phase separation in particles containing secondary organic material free of inorganic salts

    Science.gov (United States)

    Song, Mijung; Liu, Pengfei; Martin, Scot T.; Bertram, Allan K.

    2017-09-01

    Particles containing secondary organic material (SOM) are ubiquitous in the atmosphere and play a role in climate and air quality. Recently, research has shown that liquid-liquid phase separation (LLPS) occurs at high relative humidity (RH) (greater than ˜ 95 %) in α-pinene-derived SOM particles free of inorganic salts, while LLPS does not occur in isoprene-derived SOM particles free of inorganic salts. We expand on these findings by investigating LLPS at 290 ± 1 K in SOM particles free of inorganic salts produced from ozonolysis of β-caryophyllene, ozonolysis of limonene, and photo-oxidation of toluene. LLPS was observed at greater than ˜ 95 % RH in the biogenic SOM particles derived from β-caryophyllene and limonene while LLPS was not observed in the anthropogenic SOM particles derived from toluene. This work combined with the earlier work on LLPS in SOM particles free of inorganic salts suggests that the occurrence of LLPS in SOM particles free of inorganic salts is related to the oxygen-to-carbon elemental ratio (O : C) of the organic material. These results help explain the difference between the hygroscopic parameter κ of SOM particles measured above and below water saturation in the laboratory and field, and have implications for predicting the cloud condensation nucleation properties of SOM particles.

  7. Electrochemical separation of cerium and yttrium in molten chlorides on liquid-metallic electrodes

    International Nuclear Information System (INIS)

    Yamshchikov, L.F.; Lebedev, V.A.; Nichkov, I.F.

    1978-01-01

    An estimating calculation of the coefficients of separation of cerium and yttrium in the process of electrolysis in molten salts on liquid electrodes of aluminium, gallium, indium, lead, tin, antimonium and zinc is carried out. The calculation of the separation coefficients was carried out according to the known values of activation coefficients of cerium and yttrium in fusible metals. The electrolysis was carried out at 973 K in the argon air in the cell with an eutectic mixture of NaCl and KCl as an elactrolyte. It is shown that the salten phase is concentrated by yttrium, and the melallic one- by cerium on all the electrodes. The value of the separation coefficient of Ce and Y is considerably high and continuously increases on the fusible metals in the Zn, In, Ga, Al, Pb, Sn, Sb series. The experimental values of the separation coefficients practically coincide with the theoretically calculated ones, testifying to the possibility of the effective separation of elements even in a single-staged possibility of the effective separation of elements even in a single-staged process. An electrolysis of molten salts is not inferior in its selectivity to the universally recognized methods of the fine purification of substances permitting to separate Ce and Y with the Ksub(sep) approximately equal to 10

  8. Application of point-to-point matching algorithms for background correction in on-line liquid chromatography-Fourier transform infrared spectrometry (LC-FTIR).

    Science.gov (United States)

    Kuligowski, J; Quintás, G; Garrigues, S; de la Guardia, M

    2010-03-15

    A new background correction method for the on-line coupling of gradient liquid chromatography and Fourier transform infrared spectrometry has been developed. It is based on the use of a point-to-point matching algorithm that compares the absorption spectra of the sample data set with those of a previously recorded reference data set in order to select an appropriate reference spectrum. The spectral range used for the point-to-point comparison is selected with minimal user-interaction, thus facilitating considerably the application of the whole method. The background correction method has been successfully tested on a chromatographic separation of four nitrophenols running acetonitrile (0.08%, v/v TFA):water (0.08%, v/v TFA) gradients with compositions ranging from 35 to 85% (v/v) acetonitrile, giving accurate results for both, baseline resolved and overlapped peaks. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  9. Revision of the design model for a cryogenic falling liquid film helium separator

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro; Bartlit, J.R.; Sherman, R.H.

    1983-05-01

    The present paper reports revision of the design model previously developed by the authors for the cryogenic falling liquid film helium separator. The revised design procedure is composed of three steps : 1) calculation of distributions of phase flow rates, temperature and phase compositions within the refrigerated section and the packed section ; 2) calculation of more detailed distributions of these variables within the refrigerated section ; and 3) estimation of column dimensions and determination of operating conditions. It is assumed that the vacant refrigerated section has two theoretical stages for hydrogen isotope separation. The mixture within the refrigerated section is considered in step 2) as two component system of He-HD. (author)

  10. Home-made online hyphenation of pressurized liquid extraction, turbulent flow chromatography, and high performance liquid chromatography, Cistanche deserticola as a case study.

    Science.gov (United States)

    Song, Qingqing; Li, Jun; Liu, Xiao; Zhang, Yuan; Guo, Liping; Jiang, Yong; Song, Yuelin; Tu, Pengfei

    2016-03-18

    Incompatibility between the conventional pressurized liquid extraction (PLE) devices and high performance liquid chromatography (HPLC) extensively hinders direct and green chemical analysis of herbal materials. Herein, a facile PLE module was configured, and then it was online hyphenated with HPLC via a turbulent flow chromatography (TFC) column. Regarding PLE module, a long PEEK tube (0.13 × 1000 mm) was employed to generate desired pressure (approximately 13.0 MPa) when warm acidic water (70 °C) was delivered as extraction solvent at a high flow rate (2.5 mL/min), and a hollow guard column (3.0 × 4.0 mm) was implemented to hold crude materials. Effluent was collected from the outlet of PEEK tube, concentrated, and subjected onto HPLC coupled with hybrid ion trap-time of flight mass spectrometer to assess the extraction efficiency and also to profile the chemical composition of Cistanche deserticola (CD) that is honored as "Ginseng of the desert". Afterwards, a TFC column was introduced to accomplish online transmission of low molecule weight components from PLE module to HPLC coupled with diode array detection, and two electronic 6-port/2-channel valves were in charge of alternating the whole system between extraction (0-3.0 min) and elution (3.0-35.0 min) phases. Quantitative method was developed and validated for simultaneous determination of eight primary phenylethanoid glycosides in CD using online PLE-TFC-HPLC. All findings demonstrated that the home-made platform is advantageous at direct chemical analysis, as well as time-, solvent-, and material-savings, suggesting a robust tool for chemical fingerprinting of herbs. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Determination of vitamin K homologues by high-performance liquid chromatography with on-line photoreactor and peroxyoxalate chemiluminescence detection

    International Nuclear Information System (INIS)

    Ahmed, Sameh; Kishikawa, Naoya; Nakashima, Kenichiro; Kuroda, Naotaka

    2007-01-01

    A sensitive and highly selective high-performance liquid chromatography (HPLC) method was developed for the determination of vitamin K homologues including phylloquinone (PK), menaquinone-4 (MK-4) and menaquinone-7 (MK-7) in human plasma using post-column peroxyoxalate chemiluminescence (PO-CL) detection following on-line ultraviolet (UV) irradiation. The method was based on ultraviolet irradiation (254 nm, 15 W) of vitamin K to produce hydrogen peroxide and a fluorescent product at the same time, which can be determined with PO-CL detection. The separation of vitamin K by HPLC was accomplished isocratically on an ODS column within 35 min. The method involves the use of 2-methyl-3-pentadecyl-1,4-naphthoquinone as an internal standard. The detection limits (signal-to-noise ratio = 3) were 32, 38 and 85 fmol for PK, MK-4 and MK-7, respectively. The recoveries of PK, MK-4 and MK-7 were greater than 82% and the inter- and intra-assay R.S.D. values were 1.9-5.4%. The sensitivity and selectivity of this method were sufficient for clinical and nutritional applications

  12. Design concept of cryogenic falling liquid film helium separator

    International Nuclear Information System (INIS)

    Kinoshita, M.; Yamanishi, T.; Bartlit, J.R.; Sherman, R.H.

    1986-01-01

    A design concept is developed for a cryogenic falling liquid film helium separator by clarifying the differences between this process and a cryogenic distillation column. The process characteristics are greatly improved by the idea of adding an H 2 gas flow to a point near the upper end of the packed section. The flow rate of tritium lost from the top is kept extremely low with an adequately short packed section, and the column pressure is reduced to 1 atm. The addition causes no appreciable increase in the protium percentage (approx. =1%) in the bottom liquid flow. A design procedure applying the Colburn-Hougen method is proposed for determining specifications of the refrigerated section. It is shown that the presence of noncondensible helium requires a significantly larger heat transfer area mainly because the mass transfer resistance increases enormously as the condensation of hydrogen isotopes proceeds. Control schemes are also proposed: The tritium concentration in the top gas is controlled by the H 2 gas flow rate. The pressure rise caused by an increase of the helium percentage within the refrigerated section, which cannot readily be eliminated by changing input specifications of the refrigerant gas, is avoided by increasing the top gas flow rate to release more helium from the top

  13. A separator

    Energy Technology Data Exchange (ETDEWEB)

    Prokopyuk, S.G.; Dyachenko, A.Ye.; Mukhametov, M.N.; Prokopov, O.I.

    1982-01-01

    A separator is proposed which contains separating slanted plates and baffle plates installed at a distance to them at an acute angle to them. To increase the effectiveness of separating a gas and liquid stream and the throughput through reducing the secondary carry away of the liquid drops and to reduce the hydraulic resistance, as well, openings are made in the plates. The horizontal projections of each opening from the lower and upper surfaces of the plate do not overlap each other.

  14. Trace analysis of three antihistamines in human urine by on-line single drop liquid-liquid-liquid microextraction coupled to sweeping micellar electrokinetic chromatography and its application to pharmacokinetic study.

    Science.gov (United States)

    Gao, Wenhua; Chen, Yunsheng; Chen, Gaopan; Xi, Jing; Chen, Yaowen; Yang, Jianying; Xu, Ning

    2012-09-01

    A rapid and efficient dual preconcentration method of on-line single drop liquid-liquid-liquid microextraction (SD-LLLME) coupled to sweeping micellar electrokinetic chromatography (MEKC) was developed for trace analysis of three antihistamines (mizolastine, chlorpheniramine and pheniramine) in human urine. Three analytes were firstly extracted from donor phase (4 mL urine sample) adjusted to alkaline condition (0.5 M NaOH). The unionized analytes were subsequently extracted into a drop of n-octanol layered over the urine sample, and then into a microdrop of acceptor phase (100 mM H(3)PO(4)) suspended from a capillary inlet. The enriched acceptor phase was on-line injected into capillary with a height difference and then analyzed directly by sweeping MEKC. Good linear relationships were obtained for all analytes in a range of 6.25 × 10(-6) to 2.5 × 10(-4)g/L with correlation coefficients (r) higher than 0.987. The proposed method achieved limits of detections (LOD) varied from 1.2 × 10(-7) to 9.5 × 10(-7)g/L based on a signal-to-noise of 3 (S/N=3) with 751- to 1372-fold increases in detection sensitivity for analytes, and it was successfully applied to the pharmacokinetic study of three antihistamines in human urine after an oral administration. The results demonstrated that this method was a promising combination for the rapid trace analysis of antihistamines in human urine with the advantages of operation simplicity, high enrichment factor and little solvent consumption. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. High-Pressure Liquid Chromatography of Irradiated Nuclear Fue - Separation of Neodymium for Burn-up Determination

    DEFF Research Database (Denmark)

    Larsen, N. R.

    1979-01-01

    Neodymium is separated from solutions of spent nuclear fuel by high-pressure liquid chromatography in methanol-nitric acid-water media using an anion-exchange column. Chromatograms obtained by monitoring at 280 nm, illustrate the difficulties especially with the fission product ruthenium in nuclear...

  16. Simulated Moving Bed Chromatography: Separation and Recovery of Sugars and Ionic Liquid from Biomass Hydrolysates

    Science.gov (United States)

    Caes, Benjamin R.; Van Oosbree, Thomas R.; Lu, Fachuang; Ralph, John; Maravelias, Christos T.

    2015-01-01

    Simulated moving bed chromatography, a continuous separation method, enables the nearly quantitative recovery of sugar products and ionic liquid solvent from chemical hydrolysates of biomass. The ensuing sugars support microbial growth, and the residual lignin from the process is intact. PMID:23939991

  17. Comment on "Spontaneous liquid-liquid phase separation of water".

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2015-01-01

    Yagasaki et al. [Phys. Rev. E 89, 020301 (2014)] present results from a molecular dynamics trajectory illustrating coarsening of ice, which they interpret as evidence of transient coexistence between two distinct supercooled phases of liquid water. We point out that neither two distinct liquids nor criticality are demonstrated in this simulation study. Instead, the illustrated trajectory is consistent with coarsening behaviors analyzed and predicted in earlier work by others.

  18. Application of ionic liquid for extraction and separation of bioactive compounds from plants.

    Science.gov (United States)

    Tang, Baokun; Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-09-01

    In recent years, ionic liquids (ILs), as green and designer solvents, have accelerated research in analytical chemistry. This review highlights some of the unique properties of ILs and provides an overview of the preparation and application of IL or IL-based materials to extract bioactive compounds in plants. IL or IL-based materials in conjunction with liquid-liquid extraction (LLE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), high performance liquid chromatography (HPLC) and solid-phase extraction (SPE) analytical technologies etc., have been applied successfully to the extraction or separation of bioactive compounds from plants. This paper reviews the available data and references to examine the advantages of IL and IL-based materials in these applications. In addition, the main target compounds reviewed in this paper are bioactive compounds with multiple therapeutic effects and pharmacological activities. Based on the importance of the targets, this paper reviews the applications of ILs, IL-based materials or co-working with analytical technologies. The exploitation of new applications of ILs on the extraction of bioactive compounds from plant samples is expected to increase. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations.

    Science.gov (United States)

    Cowan, Matthew G; Gin, Douglas L; Noble, Richard D

    2016-04-19

    -films (ca. 100-nm-thick active layer). Traditional polymeric membrane materials are limited by a trade-off between permeability and selectivity empirically described by the "Robeson upper bound"-placing the desired membrane properties beyond reach. Therefore, the investigation of advanced and composite materials that can overcome the limitations of traditional polymeric materials is the focus of significant academic and industrial research. In particular, there has been substantial work on ionic-liquid (IL)-based materials due to their gas transport properties. This review provides an overview of our collaborative work on developing poly(ionic liquid)/ionic liquid (PIL/IL) ion-gel membrane technology. We detail developmental work on the preparation of PIL/IL composites and describe how this chemical technology was adapted to allow the roll-to-roll processing and preparation of membranes with defect-free active layers ca. 100 nm thick, CO2 permeances of over 6000 GPU, and CO2/N2 selectivity of ≥20-properties with the potential to reduce the cost of CO2 removal from coal-fired power plant flue gas to ca. $15 per ton of CO2 captured. Additionally, we examine the materials developments that have produced advanced PIL/IL composite membranes. These advancements include cross-linked PIL/IL blends, step-growth PIL/IL networks with facilitated transport groups, and PIL/IL composites with microporous additives for CO2/CH4 separations.

  20. Nitrogen Fertilizer Replacement Value of Concentrated Liquid Fraction of Separated Pig Slurry Applied to Grassland

    NARCIS (Netherlands)

    Middelkoop, Van J.C.; Holshof, G.

    2017-01-01

    Seven grassland experiments on sandy and clay soils were performed during a period of 4 years to estimate the nitrogen (N) fertilizer replacement value (NFRV) of concentrated liquid fractions of separated pig slurry (mineral concentrate: MC). The risk of nitrate leaching when applying MC was

  1. Fingerprinting of traditional Chinese medicines on the C18-Diol mixed-mode column in online or offline two-dimensional liquid chromatography on the single column modes.

    Science.gov (United States)

    Wang, Qing; Tong, Ling; Yao, Lin; Zhang, Peng; Xu, Li

    2016-06-05

    In the present study, a mixed-mode stationary phase, C18-Diol, was applied for fingerprint analysis of traditional Chinese medicines. Hydrophobic, hydrogen bonding and electrostatic interactions were demonstrated to contribute the retention separately or jointly, which endowed the C18-Diol stationary phase with distinct selectivity compared to the bare C18 one. The separation of total alkaloids extracted from Fritillaria hupehensis was compared on the C18-Diol and conventional C18 column with the greater resolving power and better symmetry responses on the former one. Besides, a novel two-dimensional liquid chromatography on the single column (2D-LC-1C) was realized on C18-Diol with the offline mode for the alcohol extract of Fritillaria hupehensis and online mode for Ligusticum chuanxiong Hort. The early co-eluted extracted components with great polarity on the first dimension were reinjected on the same column and well separated on the second dimension. The results exhibited that the two complementary RPLC and HILIC modes on C18-Diol stationary phase enhanced the separation capacity and revealed more abundant chemical information of the sample, which was a powerful tool in analyzing complex herbal medicines. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Analytical potential of mid-infrared detection in capillary electrophoresis and liquid chromatography: A review

    International Nuclear Information System (INIS)

    Kuligowski, Julia; Quintas, Guillermo; Guardia, Miguel de la; Lendl, Bernhard

    2010-01-01

    Literature published in the last decade concerning the use of mid-infrared spectrometry as a detection system in separation techniques employing a liquid mobile phase is reviewed. In addition to the continued use of isocratic liquid chromatographic (LC) techniques, advances in chemometric data evaluation techniques now allow the use of gradient techniques on a routine basis, thus significantly broadening the range of possible applications of LC-IR. The general trend towards miniaturized separation systems was also followed for mid-IR detection where two key developments are of special importance. Firstly, concerning on-line detection the advent of micro-fabricated flow-cells with inner volumes of only a few nL for transmission as well as attenuated total reflection measurements enabled on-line mid-IR detection in capillary LC and opened the path for the first successful realization of on-line mid-IR detection in capillary zone electrophoresis as well as micellar electrokinetic chromatography. Secondly, concerning off-line detection the use of micro-flow through dispensers now enables to concentrate eluting analytes on dried spots sized a few tens of micrometers, thus matching the dimensions for sensitive detection by mid-IR microscopy. Finally in an attempt to increase detection sensitivity of on-line mid-IR detection, mid-IR quantum cascade lasers have been used. Applications cover the field of food analysis, environmental analysis and the characterization of explosives among others. Best detection sensitivities for on-line and off-line detection have been achieved in miniaturized systems and are in the order of 50 ng and 2 ng on column, respectively.

  3. Simultaneous quantification of eight bioactive components of Houttuynia cordata and related Saururaceae medicinal plants by on-line high performance liquid chromatography-diode array detector-electrospray mass spectrometry.

    Science.gov (United States)

    Meng, Jiang; Leung, Kelvin Sze-Yin; Dong, Xiao-Ping; Zhou, Yi-Sheng; Jiang, Zhi-Hong; Zhao, Zhong-Zhen

    2009-12-01

    An on-line high performance liquid chromatography (HPLC)-diode array detector (DAD)-electrospray ionization mass spectrometry (ESI-MS) method has been developed to quantify simultaneously eight bioactive chemical components in Houttuynia cordata Thunb and related Saururaceae medicinal plants. Simultaneous separation of these eight compounds was achieved on a C(18) analytical column with gradient elution of acetonitrile and 0.2% acetic acid (v/v) at a flow rate of 0.6 mL/min and being detected at 280 nm. These eight compounds were completely separated within 90 min. Good linear regression relationship (r(2)>0.9978) within test ranges was shown in all calibration curves. Good repeatabilty for the quantification of these eight compounds in H.cordata was also demonstrated in this method, with intra- and inter-day variations less than 3.0%. The method established was successfully applied to quantify eight bioactive compounds in closely related species of H.cordata, which provides a new basis for quality assessment of H.cordata.

  4. Simultaneous analysis of nine aromatic amines in mainstream cigarette smoke using online solid-phase extraction combined with liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Zhang, Jie; Bai, Ruoshi; Zhou, Zhaojuan; Liu, Xingyu; Zhou, Jun

    2017-04-01

    A fully automated analytical method was developed and validated by this present study. The method was based on two-dimensional (2D) online solid-phase extraction liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) to determine nine aromatic amines (AAs) in mainstream smoke (MSS) simultaneously. As a part of validation process, AAs yields for 16 top-selling commercial cigarettes from China market were evaluated by the developed method under both Health Canada Intensive (HCI) and ISO machine smoking regimes. The gas phase of MSS was trapped by 25 mL 0.6 M hydrochloric acid solution, while the particulate phase was collected on a glass fiber filter. Then, the glass fiber pad was extracted with hydrochloric acid solution in an ultrasonic bath. The extract was analyzed with 2D online SPE-LC-MS/MS. In order to minimize the matrix effects of sample on each analyte, two cartridges with different extraction mechanisms were utilized to cleanup disturbances of different polarity, which were performed by the 2D SPE. A phenyl-hexyl analytical column was used to achieve a chromatographic separation. Under the optimized conditions, the isomers of p-toluidine, m-toluidine and o-toluidine, 3-aminobiphenyl and 4-aminobiphenyl, and 1-naphthylamine and 2-naphthylamine were baseline separated with good peak shapes for the first time. The limits of detection for nine AAs ranged from 0.03 to 0.24 ng cig -1 . The recovery of the measurement of nine AAs was from 84.82 to 118.47%. The intra-day and inter-day precisions of nine AAs were less than 10 and 16%, respectively. Compared with ISO machine smoking regime, the AAs yields in MSS were 1.17 to 3.41 times higher under HCI machine smoking regime. Graphical abstract New method using online SPE-LC/MS/MS for analysis of aromatic amines in mainstream cigarette smoke.

  5. Separation and recovery of sodium nitrate from low-level radioactive liquid waste by electrodialysis

    International Nuclear Information System (INIS)

    Meguro, Yoshihiro; Kato, Atsushi; Watanabe, Yoko; Takahashi, Kuniaki

    2011-01-01

    An advanced method, in which electrodialysis separation of sodium nitrate and decomposition of nitrate ion are combined, has been developed to remove nitrate ion from low-level radioactive liquid wastes including nitrate salts of high concentration. In the electrodialysis separation, the sodium nitrate was recovered as nitric acid and sodium hydroxide. When they are reused, it is necessary to reduce the quantity of impurities getting mixed with them from the waste fluid as much as possible. In this study, therefore, a cation exchange membrane with permselectivity for sodium ion and an anion exchange membrane with permselectivity for monovalent anion were employed. Using these membranes sodium and nitrate ions were effectively removed form a sodium nitrate solution of high concentration. And also it was confirmed that sodium ion was successfully separated from cesium and strontium ions and that nitrate ion was separated from sulfate and phosphate ions. (author)

  6. Activity coefficients of plutonium and cerium in liquid gallium at 1073 K: Application to a molten salt/solvent metal separation concept

    International Nuclear Information System (INIS)

    Lambertin, David; Ched'homme, Severine; Bourges, Gilles; Sanchez, Sylvie; Picard, Gerard S.

    2005-01-01

    Activity coefficients in liquid metal and salt phases are important parameters for predicting the separation efficiency of reductive extraction or electrochemical pyrochemical processes. The electrochemical properties of Ce and Pu in gallium metal and chlorides media - CaCl 2 and equimolar NaCl-KCl - have been studied at 1073 K. Cyclic voltammetry and chronoamperometry show the thermodynamic feasibility of using gallium as solvent metal for pyrochemical processes involving Pu and Ce. The activity coefficient of Pu in liquid Ga (log(γ Pu,Ga ) = -7.3 ± 0.5) is deduced from the results and is a basis of assessing the potential for using liquid metals in pyrochemical separation of actinides and lanthanides. Evaluation of literature data for Al, Bi and Cd suggests that Ga is most favorable for selective separation of Pu from Ce near 1073 K

  7. Online liquid chromatography-tandem mass spectrometry cyanide determination in blood.

    Science.gov (United States)

    Lacroix, C; Saussereau, E; Boulanger, F; Goullé, J P

    2011-04-01

    An original liquid chromatography-tandem mass spectrometry (LC-MS-MS) method coupled to online extraction has been developed for cyanide determination in blood. A method involving fluorimetric detection after naphthalene-2,3-dicarboxyaldehyde (NDA) complexation by taurine in the presence of cyanide was previously described. Its performance was limited because of the absence of an internal standard (IS). Using cyanide isotope (13)C(15)N as IS allowed quantification in MS-MS. After the addition of (13)C(15)N, 25 μL of blood were diluted in water and deproteinized with methanol. Following derivatization with NDA and taurine for 10 min at 4°C, 100 μL was injected into the online LC-MS-MS system. An Oasis HLB was used as an extraction column, and a C18 Atlantis was the analytical column. The chromatographic cycle was performed with an ammonium formate (20 mM, pH 2.8) (solvent A) and acetonitrile/solvent A (90:10, v/v) gradient in 6 min. Detection was performed in negative electrospray ionization mode (ESI(-)) with a Quattro Micro. For quantification, transitions of derivatives formed with CN and (13)C(15)N were monitored, respectively, as follows: 299.3/191.3 and 301.3/193.3. The procedure was fully validated, linear from 26 to 2600 ng/mL with limit of detection of 10 ng/mL. This method, using a small blood sample, is not only simple, but also time saving. The specificity and sensitivity of LC-MS-MS coupled to online extraction and using (13)C(15)N as the IS make this method very suitable for cyanide determination in blood and could be useful in forensic toxicology.

  8. Method of separation of fission and corrosion products and of corresponding isotopes from liquid waste

    International Nuclear Information System (INIS)

    Prochazka, H.; Stamberg, K.; Jilek, R.; Hulak, P.; Katzer, J.

    1976-01-01

    A method of separating fission and corrosion products and corresponding stable isotopes from liquid waste is described. Mycelia of fungi are used as sorbents for retaining these products on their surface and within their pores. Methods of activation or regeneration of the sorbent are outlined. 11 claims

  9. Comment on "Spontaneous liquid-liquid phase separation of water"

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2015-01-01

    Yagasaki et al. [Phys. Rev. E 89, 020301 (2014), 10.1103/PhysRevE.89.020301] present results from a molecular dynamics trajectory illustrating coarsening of ice, which they interpret as evidence of transient coexistence between two distinct supercooled phases of liquid water. We point out that neither two distinct liquids nor criticality are demonstrated in this simulation study. Instead, the illustrated trajectory is consistent with coarsening behaviors analyzed and predicted in earlier work by others.

  10. Ionic Liquid Confined in Mesoporous Polymer Membrane with Improved Stability for CO2/N2 Separation

    Directory of Open Access Journals (Sweden)

    Ming Tan

    2017-09-01

    Full Text Available Supported ionic liquid membranes (SILMs have a promising prospect of application in flue gas separation, owing to its high permeability and selectivity of CO2. However, existing SILMs have the disadvantage of poor stability due to the loss of ionic liquid from the large pores of the macroporous support. In this study, a novel SILM with high stability was developed by confining ionic liquid in a mesoporous polymer membrane. First, a mesoporous polymer membrane derived from a soluble, low-molecular-weight phenolic resin precursor was deposited on a porous Al2O3 support, and then 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4] was immobilized inside mesopores of phenolic resin, forming the SILM under vacuum. Effects of trans-membrane pressure difference on the SILM separation performance were investigated by measuring the permeances of CO2 and N2. The SILM exhibits a high ideal CO2/N2 selectivity of 40, and an actual selectivity of approximately 25 in a mixed gas (50% CO2 and 50% N2 at a trans-membrane pressure difference of 2.5 bar. Compared to [emim][BF4] supported by polyethersulfone membrane with a pore size of around 0.45 μm, the [emim][BF4] confined in a mesoporous polymer membrane exhibits an improved stability, and its separation performance remained stable for 40 h under a trans-membrane pressure difference of 1.5 bar in a mixed gas before the measurement was intentionally stopped.

  11. Separation of deuteriated isotopomers of dopamine by ion-pair reversed-phase high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Masters, C.F.; Markey, S.P.; Mefford, I.N.; Duncan, M.W.

    1988-01-01

    The ion-pair reversed-phase separation of dopamine and deuterium-substituted dopamine isotopomers is described. Chromatographic parameters and deuterium isotope effects governing the resolution are examined and compared to the factors regulating the resolution are examined and compared to the factors regulating the resolution of the chemically distinct entities dopamine, norepinephrine, and epinephrine. The potential utility of the [ 2 H 7 ]dopamine, isotopomer as an internal standard for the high-performance liquid chromatography analysis of dopamine is demonstrated by using aluminum oxide extraction prior to chromatographic separation

  12. A comparative evaluation of different ionic liquids for arsenic species separation and determination in wine varietals by liquid chromatography - hydride generation atomic fluorescence spectrometry.

    Science.gov (United States)

    Castro Grijalba, Alexander; Fiorentini, Emiliano F; Martinez, Luis D; Wuilloud, Rodolfo G

    2016-09-02

    The application of different ionic liquids (ILs) as modifiers for chromatographic separation and determination of arsenite [As(III)], arsenate [As(V)], dimethylarsonic acid (DMA) and monomethylarsonic acid (MMA) species in wine samples, by reversed-phase high performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry detection (RP-HPLC-HG-AFS) was studied in this work. Several factors influencing the chromatographic separation of the As species, such as pH of the mobile phase, buffer solution concentration, buffer type, IL concentration and length of alkyl groups in ILs were evaluated. The complete separation of As species was achieved using a C18 column in isocratic mode with a mobile phase composed of 0.5% (v/v) 1-octyl-3-methylimidazolium chloride ([C8mim]Cl) and 5% (v/v) methanol at pH 8.5. A multivariate methodology was used to optimize the variables involved in AFS detection of As species after they were separated by HPLC. The ILs showed remarkable performance for the separation of As species, which was obtained within 18min with a resolution higher than 0.83. The limits of detection for As(III), As(V), MMA and DMA were 0.81, 0.89, 0.62 and 1.00μg As L(-1). The proposed method was applied for As speciation analysis in white and red wine samples originated from different grape varieties. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Combination of solid phase extraction and dispersive liquid-liquid microextraction for separation/preconcentration of ultra trace amounts of uranium prior to its fiber optic-linear array spectrophotometry determination.

    Science.gov (United States)

    Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Shakerian, Farid; Shiralian Esfahani, Golnaz

    2013-12-15

    A simple and sensitive method for the separation and preconcentration of the ultra trace amounts of uranium and its determination by spectrophotometry was developed. The method is based on the combination of solid phase extraction and dispersive liquid-liquid microextraction. Thus, by passing the sample through the basic alumina column, the uranyl ion and some cations are separated from the sample matrix. The retained uranyl ion along with the cations are eluted with 5 mL of nitric acid (2 mol L(-1)) and after neutralization of the eluent, the extracted uranyl ion is converted to its anionic benzoate complex and is separated from other cations by extraction of its ion pair with malachite green into small volume of chloroform using dispersive liquid-liquid microextraction. The amount of uranium is then determined by the absorption measurement of the extracted ion pair at 621 nm using flow injection spectrophotometry. Under the optimum conditions, with 500 mL of the sample, a preconcentration factor of 1980, a detection limit of 40 ng L(-1), and a relative standard deviation of 4.1% (n=6) at 400 ng L(-1) were obtained. The method was successfully applied to the determination of uranium in mineral water, river water, well water, spring water and sea water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Separation of uranium(VI) by liquid-solid extraction with tri-n-octylphosphine oxide diluted with naphthalene

    International Nuclear Information System (INIS)

    Shigetomi, Y.; Kojima, T.; Kamba, H.; Yamamoto, Y.

    1980-01-01

    Liquid-liquid distribution with tri-n-octylphosphine oxide (TOPO) and molten naphthalene has been investigated for the extraction of 20 metals from nitric acid and hydrochloric acid solutions. Uranium is quantitatively extracted from 1 M nitric acid or hydrochloric acid by using 100 mg of TOPO and 200 mg of naphthalene and shaking for 5 min at 80 0 C, and separated from transition metals, alkaline earth metals and rare earth metals (except scandium). Addition of naphthalene increases the extraction efficiency. (Auth.)

  15. Gas separation techniques with liquid Ar for production of 11C ions

    International Nuclear Information System (INIS)

    Hojo, Satoru; Honma, Toshihiro; Kanazawa, Mitsutaka; Muramatsu, Masayuki; Sakamoto, Yukio; Sugiura, Akinori; Suzuki, Naokata; Noda, Koji

    2009-01-01

    Heavy-ion cancer therapy with 12 C-beam has been carried out at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences) since 1994. One of the feasibility study in HIMAC is to use a positron emitter beam such as 11 C-beam for the cancer therapy. A nuclear reaction, 14 N (p,α) 11 C will be applied in the present study; it can be expected to obtain a considerably large number of 11 C-particles by utilizing the commonly used short-lives RI production techniques for PET (Positron Emission Tomography). The amount of 11 C gas is limited in this technique. The 11 CO 2 gas was produced from N 2 gas that is irradiated high-energy proton beam. Therefore, CO 2 gas separation from N 2 gas is very important. The gas-separation techniques with cryogenic system utilizing a liquid Ar were tested by dummy gas (N 2 + 12 CO 2 ). Details of the gas-separation techniques and measurement of CO 2 partial pressure are discussed. (author)

  16. Generating, Separating and Polarizing Terahertz Vortex Beams via Liquid Crystals with Gradient-Rotation Directors

    Directory of Open Access Journals (Sweden)

    Shi-Jun Ge

    2017-10-01

    Full Text Available Liquid crystal (LC is a promising candidate for terahertz (THz devices. Recently, LC has been introduced to generate THz vortex beams. However, the efficiency is intensely dependent on the incident wavelength, and the transformed THz vortex beam is usually mixed with the residual component. Thus, a separating process is indispensable. Here, we introduce a gradient blazed phase, and propose a THz LC forked polarization grating that can simultaneously generate and separate pure THz vortices with opposite circular polarization. The specific LC gradient-rotation directors are implemented by a photoalignment technique. The generated THz vortex beams are characterized with a THz imaging system, verifying features of polarization controllability. This work may pave a practical road towards generating, separating and polarizing THz vortex beams, and may prompt applications in THz communications, sensing and imaging.

  17. Analysis of hydroxamate siderophores in soil solution using liquid chromatography with mass spectrometry and tandem mass spectrometry with on-line sample preconcentration.

    Science.gov (United States)

    Olofsson, Madelen A; Bylund, Dan

    2015-10-01

    A liquid chromatography with electrospray ionization mass spectrometry method was developed to quantitatively and qualitatively analyze 13 hydroxamate siderophores (ferrichrome, ferrirubin, ferrirhodin, ferrichrysin, ferricrocin, ferrioxamine B, D1 , E and G, neocoprogen I and II, coprogen and triacetylfusarinine C). Samples were preconcentrated on-line by a switch-valve setup prior to analyte separation on a Kinetex C18 column. Gradient elution was performed using a mixture of an ammonium formate buffer and acetonitrile. Total analysis time including column conditioning was 20.5 min. Analytes were fragmented by applying collision-induced dissociation, enabling structural identification by tandem mass spectrometry. Limit of detection values for the selected ion monitoring method ranged from 71 pM to 1.5 nM with corresponding values of two to nine times higher for the multiple reaction monitoring method. The liquid chromatography with mass spectrometry method resulted in a robust and sensitive quantification of hydroxamate siderophores as indicated by retention time stability, linearity, sensitivity, precision and recovery. The analytical error of the methods, assessed through random-order, duplicate analysis of soil samples extracted with a mixture of 10 mM phosphate buffer and methanol, appears negligible in relation to between-sample variations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Poly(Ionic Liquid: A New Phase in a Thermoregulated Phase Separated Catalysis and Catalyst Recycling System of Transition Metal-Mediated ATRP

    Directory of Open Access Journals (Sweden)

    Lan Yao

    2018-03-01

    Full Text Available Poly(ionic liquids (PILs have become the frontier domains in separation science because of the special properties of ionic liquids as well as their corresponding polymers. Considering their function in separation, we designed and synthesized a thermoregulated PIL. That is, this kind of PIL could separate with an organic phase which dissolves the monomers at ambient temperature. When heated to the reaction temperature, they become a homogeneous phase, and they separate again when the temperature falls to the ambient temperature after polymerization. Based on this, a thermoregulated phase separated catalysis (TPSC system for Cu-based atom transfer radical polymerization (ATRP was constructed. The copper catalyst (CuBr2 used here is easily separated and recycled in situ just by changing the temperature in this system. Moreover, even when the catalyst had been recycled five times, the controllability over resultant polymers is still satisfying. Finally, only 1~2 ppm metal catalyst was left in the polymer solution phase, which indicates the really high recycling efficiency.

  19. Liquid-liquid and liquid-solid phase separation and flocculation for a charged colloidal dispersion

    International Nuclear Information System (INIS)

    Lai, S.K.; Wu, K.L.

    2002-01-01

    We model the intercolloidal interaction by a hard-sphere Yukawa repulsion to which is added the long-range van der Waals attraction. In comparison with the Derjaguin-Landau-Verwey-Overbeek repulsion, the Yukawa repulsion explicitly incorporates the spatial correlations between colloids and small ions. As a result, the repulsive part can be expressed analytically and has a coupling strength depending on the colloidal volume fraction. By use of this two-body potential of mean force and in conjunction with a second-order thermodynamic perturbation theory, we construct the colloidal Helmholtz free energy and use it to calculate the thermodynamic quantities, pressure and chemical potential, needed in the determination of the liquid-liquid and liquid-solid phase diagrams. We examine, in an aqueous charged colloidal dispersion, the effects of the Hamaker constant and particle size on the conformation of a stable liquid-liquid phase transition calculated with respect to the liquid-solid coexistence phases. We find that there exists a threshold Hamaker constant or particle size whose value demarcates the stable liquid-liquid coexistence phases from their metastable counterparts. Applying the same technique and using the energetic criterion, we extend our calculations to study the flocculation phenomenon in aqueous charged colloids. Here, we pay due attention to determining the loci of a stability curve stipulated for a given temperature T 0 , and obtain the parametric phase diagram of the Hamaker constant vs the coupling strength or, at given surface potential, the particle size. By imposing T 0 to be the critical temperature T c , i.e., setting k B T 0 (=k B T c ) equal to a reasonable potential barrier, we arrive at the stability curve that marks the irreversible reversible phase transition. The interesting result is that there occurs a minimum size for the colloidal particles below (above) which the colloidal dispersion is driven to an irreversible (reversible) phase

  20. Modelling the liquid-liquid extraction of nitric acid and lanthanide nitrates by tributylphosphate. Study of the influence of the aqueous phase composition on the selectivity of rare earth separation

    International Nuclear Information System (INIS)

    Mokili, Bandombele

    1992-01-01

    This research thesis reports the application of advances in the modelling of liquid-liquid extraction to a quantitative processing of the selectivity of separations. It is here applied to the extraction-based separation of lanthanide nitrates by using the tributylphosphate (TBP) in nitric environment as this system is interesting for industrial applications in hydro-metallurgy of rare earths as well as in the processing of irradiated nuclear fuels. Experimental data are acquired and then used in the Mikulin-Sergievskii-Dannus model. Complete modelling is thus obtained which allowed the complex problem of extraction of nitric acid and of lanthanide to be addressed, and the existence of a hybrid solvate to be supported. A mathematical expression of the separation factor of two lanthanides is proposed and used to highlight its influencing parameters, i.e. water activity in the aqueous phase, and the rate of the effective extraction constants of the two elements to be separated. Experimental observations are thus interpreted. The selection of optimal separation conditions is thus justified, and, in some cases, the system selectivity can be predicted [fr

  1. Separation of seven arsenic species by ion-pair and ion-exchange high performance liquid chromatography

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, Sven Hedegaard

    1992-01-01

    Arsenite, arsenate, monomethylarsonate, dimethylarsinate, arsenobetaine, arsenocholine and the tetramethylarsonium ion were subjected to ion-exchange and ion-pair reversed phase HPLC. The ion exchange method was superior in selectivity and time of analysis for the arsenic anions. The ammonium ions...... used for the ion-pair method only resulted in separation of some of the anionic arsenic compounds. Flame atomic absorption spectrometry was used for on-line arsenic-specific detection....

  2. Separation of U and Pu be the method of liquid chromatography with free stationary phase in TBP - white spirit - nitric acid system

    International Nuclear Information System (INIS)

    Litvina, M.N.; Malikov, D.A.; Maryutina, T.A.; Kulyako, Yu.M.; Myasoedov, B.F.

    2006-01-01

    Possibility is studied of the use of liquid chromatography with free stationary phase for U and Pu separation from organic extract obtained by direct dissolution of MOX-fuel in supercritical CO 2 containing TBP·nHNO 3 complex. As stationary phase solutions of TBP in white-spirit of different concentrations are used. Effect of composition of stationary and mobile phases on separation efficiency is investigated. It is shown that use of liquid chromatography with free stationary phase permits to separate U and Pu in conditions of TBP concentration gradient in stationary phase and HNO 3 concentration gradient in mobile one [ru

  3. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Dublin, OH; Litt, Robert D [Westerville, OH; Dongming, Qiu [Dublin, OH; Silva, Laura J [Plain City, OH; Lamont, Micheal Jay [Plain City, OH; Fanelli, Maddalena [Plain City, OH; Simmons, Wayne W [Plain city, OH; Perry, Steven [Galloway, OH

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  4. Applications of liquid-based separation in conjunction with mass spectrometry to the analysis of forensic evidence.

    Science.gov (United States)

    Moini, Mehdi

    2018-03-12

    In the past few years, there has been a significant effort by the forensic science community to develop new scientific techniques for the analysis of forensic evidence. Forensic chemists have been spearheaded to develop information-rich confirmatory technologies and techniques and apply them to a broad array of forensic challenges. The purpose of these confirmatory techniques is to provide alternatives to presumptive techniques that rely on data such as color changes, pattern matching, or retention time alone, which are prone to more false positives. To this end, the application of separation techniques in conjunction with mass spectrometry has played an important role in the analysis of forensic evidence. Moreover, in the past few years the role of liquid separation techniques, such as liquid chromatography and capillary electrophoresis in conjunction with mass spectrometry, has gained significant tractions and have been applied to a wide range of chemicals, from small molecules such as drugs and explosives, to large molecules such as proteins. For example, proteomics and peptidomics have been used for identification of humans, organs, and bodily fluids. A wide range of HPLC techniques including reversed phase, hydrophilic interaction, mixed-mode, supercritical fluid, multidimensional chromatography, and nanoLC, as well as several modes of capillary electrophoresis mass spectrometry, including capillary zone electrophoresis, partial filling, full filling, and micellar electrokenetic chromatography have been applied to the analysis drugs, explosives, and questioned documents. In this article, we review recent (2015-2017) applications of liquid separation in conjunction with mass spectrometry to the analysis of forensic evidence. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Theoretical background and the flow fields in downhole liquid-liquid hydrocyclone (LLHC

    Directory of Open Access Journals (Sweden)

    Osei Harrison

    2014-07-01

    Full Text Available Hydrocyclone system for downhole oil-water separation provides an effective technique of enhancing the economic viability of higher water-cut wells while at the same time reducing the risk of environmental pollution. This paper describes the hydrodynamics of the liquid-liquid hydrocyclones and the flow fields within it are paramount for achieving successful separation process. Some of the important hydrodynamic flow phenomenon within the liquid-liquid hydrocyclone and how they influence the separation efficiency of water/oil was analyzed through analytical solution. The properties of the liquids were based on Bayan offshore field measured properties. The results indicated that there are two swirling zones separated by stagnant flow field. The inner is the light liquid zone, while the outer is the heavy liquid zone.

  6. Advances in the helium-jet coupled on-line mass separator RAMA

    International Nuclear Information System (INIS)

    Moltz, D.M.; Aysto, J.; Cable, M.D.; Parry, R.F.; Haustein, P.E.; Wouters, J.M.; Cerny, J.

    1980-01-01

    General improvements to the on-line mass separator RAMA (Recoil Atom Mass Analyzer) have yielded a greater reliability and efficiency for some elements. A new utilitarian helium-jet chamber has been installed to facilitate quick target and degrader foil changes in addition to a new ion source holder. A higher efficiency hollow-cathode, cathode-extraction ion source, for lower melting point elements ( 0 C) has also been designed. Tests with the beta-delayed proton emitter 37 Ca showed a factor of five increase in yield over the old hollow-cathode, anode-extraction source. A differentially-pumped-tape drive system compatible with both γ-γ and β-γ experiments has been incorporated into the general detection system. All major operating parameters will soon be monitored by a complete stand-alone microprocessor system which will eventually be upgraded to a closed-loop control system

  7. Approaches for on-line coupling of extraction and chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Hyoetylaeinen, Tuulia; Riekkola, Marja-Liisa [Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki (Finland)

    2004-04-01

    This review provides an overview of the approaches available in order to perform on-line coupling of various extraction techniques with liquid and gas chromatography, for the analysis of semivolatile and nonvolatile analytes in liquid and solid samples. The main focus is on the instrumental set-up of these techniques. Selected real applications are described by way of illustration. The extraction methods suitable for on-line coupling covered in this review are: liquid-liquid extraction, solid-phase extraction, membrane-based techniques, pressurised liquid extraction, supercritical fluid extraction, and microwave- and sonication-assisted extractions. The following systems are not covered in this review: on-line coupled solid-phase extraction-liquid chromatography, purge-and-trap-GC, and membrane extraction with a sorbent interface-GC. (orig.)

  8. Measurement of liquid mixing characteristics in large-sized ion exchange column for isotope separation by stepwise response method

    International Nuclear Information System (INIS)

    Fujine, Sachio; Saito, Keiichiro; Iwamoto, Kazumi; Itoi, Toshiaki.

    1981-07-01

    Liquid mixing in a large-sized ion exchange column for isotope separation was measured by the step-wise response method, using NaCl solution as tracer. A 50 cm diameter column was packed with an ion exchange resin of 200 μm in mean diameter. Experiments were carried out for several types of distributor and collector, which were attached to each end of the column. The smallest mixing was observed for the perforated plate type of the collector, coupled with a minimum stagnant volume above the ion exchange resin bed. The 50 cm diameter column exhibited the better characteristics of liquid mixing than the 2 cm diameter column for which the good performance of lithium isotope separation had already been confirmed. These results indicate that a large increment of throughput is attainable by the scale-up of column diameter with the same performance of isotope separation as for the 2 cm diameter column. (author)

  9. The chemistry of molten salt mixtures: application to the reductive extraction of lanthanides and actinides by a liquid metal; Chimie des melanges de sels fondus. Application a l'extraction reductrice d'actinides et de lanthanides par un metal liquide

    Energy Technology Data Exchange (ETDEWEB)

    Finne, J

    2005-10-15

    The design of a process of An/Ln separation by liquid - liquid extraction can be used for on-line purification of the molten salt in a molten salt nuclear reactor (Generation IV) as well as reprocessing various spent fuels. In order to establish the chemical properties of An and Ln in molten salt mediums, E - pO{sub 2} - diagrams were established for the relevant chemical elements. With the purpose of checking the possibilities of separating the An from Ln, the real activity coefficients in liquid metals were measured. An experimental protocol was developed and validated on the Gd/Ga system. It was then transferred to radioactive environment to measure the activity coefficient of Pu in Ga. The results made it possible to estimate the effectiveness of the Pu extraction and its separation from Gd and Ce. The selectivity was shown to decrease with the temperature and Al and Ga showed a good selectivity between Pu and the Ce in fluoride medium. (author)

  10. Séparations par changement de phase. Etude et représentation des équilibres liquide-vapeur Separation by Phase Hange. Study and Computing Liquid-Vapor Equilibria

    Directory of Open Access Journals (Sweden)

    Asselineau L.

    2006-11-01

    Full Text Available Pour concevoir et optimiser les principales opérations de séparation (particulièrement les distillations avec ou sans solvant et l'extraction liquide-liquide on doit disposer de méthodes de corrélation ou, mieux, de prédiction des équilibres entre phases. A basse pression, et pour les mélanges d'hydrocarbures, les résultats présentés permettent la prévision des coefficients d'équilibre, même pour les séparations les plus délicates. En présence de constituants polaires, les données expérimentales d'équilibre liquide-liquide et liquide-vapeur de mélanges binaires et ternaires peuvent être simultanément corrélées dans le but de simuler et d'optimiser les distillations azéotropiques ou extractives. Sous haute pression, et particulièrement aux abords immédiats du point critique, le choix d'une équation d'état conduit à un traitement unitaire des phases en présence et permet, en particulier, la prédiction du lieu des points critiques des mélanges d'hydrocarbures et la corrélation de ce lieu en présence de solvants polaires. To determine and optimize the main separation operations (in particular distillations with or without a solvent, and liquid-liquid extraction correlation methods must be available or, better yet, methods of predicting phase equilibria. At low pressure and for hydrocarbon mixtures, the results described make the prediction of equilibrium coefficients possible, even for the most delicate separation. In the presence of polar constituents, the experimental data for the liquid-liquid and liquid-vapor equilibrium of binary and ternary mixtures can be simultaneously correlaten so as to simulate and optimize azeotropic or extractive distillations. Under high pressure and especially in the immediate vicinityof the critical point, the choice of an equation of state leads ta a unit treatment of the phases present and, in particular, makes it possible to predict the location of critical points in hydrocarbon

  11. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-04-01

    Supported liquid membranes are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties as a direct guide in the development of a capture technology. These membranes also have the advantage of liquid phase diffusivities higher than those observed in polymeric membranes which grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high carbon dioxide solubility relative to light gases such as hydrogen, are an excellent candidate for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of several ionic liquids, including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide, 1-butyl-3-methyl-imidazolium nitrate, and 1-ethyl-3-methyl-imidazolium sulfate in supported ionic liquid membranes for the capture of carbon dioxide from streams containing hydrogen. In a joint project, researchers at the University of Notre Dame lent expertise in ionic liquid synthesis and characterization, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Initial results have been very promising with carbon dioxide permeabilities as high as 950 barrers and significant improvements in carbon dioxide/hydrogen selectivity over conventional polymers at 37C and at elevated temperatures. Results include a comparison of the performance of several ionic liquids and a number of supports as well as a discussion of innovative fabrication techniques currently under development.

  12. The Cryo-Thermochromatographic Separator (CTS) A new rapid separation and alpha-detection system for on-line chemical studies of highly volatile osmium and hassium (Z=108) tetroxides

    CERN Document Server

    Kirbach, U W; Gregorich, K E; Lee, D M; Ninov, V; Omtvedt, J P; Patin, J B; Seward, N K; Strellis, D A; Sudowe, R; Türler, A; Wilk, P A; Zielinski, P M; Hoffman, D C; Nitsche, H

    2002-01-01

    The Cryo-Thermochromatographic Separator (CTS) was designed and constructed for rapid, continuous on-line separation and simultaneous detection of highly volatile compounds of short-lived alpha-decaying isotopes of osmium and hassium (Hs, Z=108). A flowing carrier gas containing the volatile species is passed through a channel formed by two facing rows of 32 alpha-particle detectors, cooled to form a temperature gradient extending from 247 K at the channel entrance down to 176 K at the exit. The volatile species adsorb onto the SiO sub 2 -coated detector surfaces at a characteristic deposition temperature and are identified by their observed alpha-decay energies. The CTS was tested on-line with OsO sub 4 prepared from sup 1 sup 6 sup 9 sup - sup 1 sup 7 sup 3 Os isotopes produced in sup 1 sup 1 sup 8 sup , sup 1 sup 2 sup 0 Sn( sup 5 sup 6 Fe, 3,4,5n) reactions. An adsorption enthalpy for OsO sub 4 of -40.2+-1.5 kJ/mol on SiO sub 2 was deduced by comparing the measured deposition distribution with Monte Carlo...

  13. Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones.

    Science.gov (United States)

    Carnes, Stephanie; O'Brien, Stacey; Szewczak, Angelica; Tremeau-Cayel, Lauriane; Rowe, Walter F; McCord, Bruce; Lurie, Ira S

    2017-09-01

    A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite-5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis of monodisperse silica microspheres and modification with diazoresin for mixed-mode ultra high performance liquid chromatography separations.

    Science.gov (United States)

    Cong, Hailin; Yu, Bing; Tian, Chao; Zhang, Shuai; Yuan, Hua

    2017-11-01

    Monodisperse silica particles with average diameters of 1.9-2.9 μm were synthesized by a modified Stöber method, in which tetraethyl orthosilicate was continuously supplied to the reaction mixture containing KCl electrolyte, water, ethanol, and ammonia. The obtained silica particles were modified by self-assembly with positively charged photosensitive diazoresin on the surface. After treatment with ultraviolet light, the ionic bonding between silica and diazoresin was converted into covalent bonding through a unique photochemistry reaction of diazoresin. Depending on the chemical structure of diazoresin and mobile phase composition, the diazoresin-modified silica stationary phase showed different separation mechanisms, including reversed phase and hydrophilic interactions. Therefore, a variety of baseline separation of benzene analogues and organic acids was achieved by using the diazoresin-modified silica particles as packing materials in ultra high performance liquid chromatography. According to the π-π interactional difference between carbon rings of fullerenes and benzene rings of diazoresin, C 60 and C 70 were also well separated by ultra-high performance liquid chromatography. Because it has a small size, the ∼2.5 μm monodisperse diazoresin-modified silica stationary phase shows ultra-high efficiency compared with the commercial C 18 -silica high-performance liquid chromatography stationary phase with average diameters of ∼5 μm. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Applications of electrochemically-modulated liquid chromatography (EMLC): Separations of aromatic amino acids and polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Li [Iowa State Univ., Ames, IA (United States)

    1998-03-27

    The research in this thesis explores the separation capabilities of a new technique termed electrochemically-modulated liquid chromatography (EMLC). The thesis begins with a general introduction section which provides a literature review of this technique as well as a brief background discussion of the two research projects in each of the next two chapters. The two papers which follow investigate the application of EMLC to the separation of a mixture of aromatic amino acids and of a mixture of polycyclic aromatic hydrocarbons (PAHs). The last section presents general conclusions and summarizes the thesis. References are compiled in the reference section of each chapter. The two papers have been removed for separate processing.

  16. Efficacy of Ultrasonic Homogenization in the Separation of Benzene-n-Heptane Mixture by Liquid Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.S.; Chung, T.S. [Department of Chemical Engineering, Sung Kyun Kwan University, Seoul (Korea)

    1999-04-01

    In the separation of benzene-n-heptane mixture by liquid membrane, the efficacy of ultrasonic homogenization in emulsification was studied with two anionic surfactants. The two anionic surfactants used were triethanolamine lauryl sulfate and sodium polyoxyethylene(2) lauryl ether sulfate. The two anionic surfactants used were triethanolamine lauryl sulfate and sodium polyoxyethylene(2) lauryl ether stifle. The highest value of the separation factor obtained by ultrasonic homogenization was approximately three times as large as that for triethanolamine lauryl sulfate and one and a half times as large as that for sodium polyoxyethylene(2) lauryl sulfate when the mechanical stirring was used on the same operational conditions. The lowest membrane breakup was observed when the highest value of the separation factor was achieved with sodium polyoxyethylene(2) lauryl sulfate. 14 refs., 7 figs., 1 tab.

  17. The separation and determination of fatty acids by isotopic dilution and radiogas-liquid chromatography

    International Nuclear Information System (INIS)

    Beardsley, D.A.

    1981-01-01

    A number of static phases have been evaluated for the GLC separation of fatty acids. Of those investigated, only AT 1200 was capable of resolving the isomeric forms of the acids. A radiogas-liquid chromatographic method incorporating isotopic dilution analysis has been developed for the determination of n-butyric acid. The proposed method has been applied to the determination of the acid in hydrolysed butter fat and milk chocolate extracts. (author)

  18. Online size-exclusion high-performance liquid chromatography light scattering and differential refractometry methods to determine degree of polymer conjugation to proteins and protein-protein or protein-ligand association states.

    Science.gov (United States)

    Kendrick, B S; Kerwin, B A; Chang, B S; Philo, J S

    2001-12-15

    Characterizing the solution structure of protein-polymer conjugates and protein-ligand interactions is important in fields such as biotechnology and biochemistry. Size-exclusion high-performance liquid chromatography with online classical light scattering (LS), refractive index (RI), and UV detection offers a powerful tool in such characterization. Novel methods are presented utilizing LS, RI, and UV signals to rapidly determine the degree of conjugation and the molecular mass of the protein conjugate. Baseline resolution of the chromatographic peaks is not required; peaks need only be sufficiently separated to represent relatively pure fractions. An improved technique for determining the polypeptide-only mass of protein conjugates is also described. These techniques are applied to determining the degree of erythropoietin glycosylation, the degree of polyethylene glycol conjugation to RNase A and brain-derived neurotrophic factor, and the solution association states of these molecules. Calibration methods for the RI, UV, and LS detectors will also be addressed, as well as online methods to determine protein extinction coefficients and dn/dc values both unconjugated and conjugated protein molecules. (c)2001 Elsevier Science.

  19. Design and Development of Gas-Liquid Cylindrical Cyclone Compact Separators for Three-Phase Flow; SEMIANNUAL

    International Nuclear Information System (INIS)

    Mohan, Ram S.; Shoham, Ovadia

    1999-01-01

    The objective of this five-year project (October, 1997-September, 2002) is to expand the current research activities of Tulsa University Separation Technology Projects (TUSTP) to multiphase oil/water/gas separation. This project will be executed in two phases. Phase I (1997-2000) will focus on the investigations of the complex multiphase hydrodynamic flow behavior in a three-phase Gas-Liquid Cylindrical Cyclone (GLCC) Separator. The activities of this phase will include the development of a mechanistic model, a computational fluid dynamics (CFD) simulator, and detailed experimentation on the three-phase GLCC. The experimental and CFD simulation results will be suitably integrated with the mechanistic model. In Phase II (2000-2002), the developed GLCC separator will be tested under high pressure and real crudes conditions. This is crucial for validating the GLCC design for field application and facilitating easy and rapid technology deployment. Design criteria for industrial applications will be developed based on these results and will be incorporated into the mechanistic model by TUSTP

  20. Liquid separation techniques coupled with mass spectrometry for chiral analysis of pharmaceuticals compounds and their metabolites in biological fluids.

    OpenAIRE

    Erny, Guillaume L.; Cifuentes, Alejandro

    2006-01-01

    Determination of the chiral composition of drugs is nowadays a key step in order to determine purity, activity, bioavailability, biodegradation, etc, of pharmaceuticals. In this manuscript, works published for the last 5 years on the analysis of chiral drugs by liquid separation techniques coupled with mass spectrometry are reviewed. Namely, chiral analysis of pharmaceuticals including e.g., antiinflammatories, antihypertensives, relaxants, etc, by liquid chromatography-mass spectrometry and ...

  1. Metal ion separations using reactive membranes

    International Nuclear Information System (INIS)

    Way, J.D.

    1993-01-01

    A membrane is a barrier between two phases. If one component of a mixture moves through the membrane faster than another mixture component, a separation can be accomplished. Membranes are used commercially for many applications including gas separations, water purification, particle filtration, and macromolecule separations (Abelson). There are two points to note concerning this definition. First, a membrane is defined based on its function, not the material used to make the membrane. Secondly, a membrane separation is a rate process. The separation is accomplished by a driving force, not by equilibrium between phases. Liquids that are immiscible with the feed and product streams can also be used as membrane materials. Different solutes will have different solubilities and diffusion coefficients in a liquid. The product of the diffusivity and the solubility is known as the permeability coefficient, which is proportional to the solute flux. Differences in permeability coefficient will produce a separation between solutes at constant driving force. Because the diffusion coefficients in liquids are typically orders of magnitude higher than in polymers, a larger flux can be obtained. Further enhancements can be accomplished by adding a nonvolatile complexation agent to the liquid membrane. One can then have either coupled or facilitated transport of metal ions through a liquid membrane. The author describes two implementations of this concept, one involving a liquid membrane supported on a microporous membrane, and the other an emulsion liquid membrane, where separation occurs to internal receiving phases. Applications and costing studies for this technology are reviewed, and a brief summary of some of the problems with liquid membranes is presented

  2. Ionic Liquid and Supercritical Fluid Hyphenated Techniques for Dissolution and Separation of Lanthanides, Actinides, and Fission Products

    International Nuclear Information System (INIS)

    Wai, Chien M.; Mincher, Bruce

    2012-01-01

    This project is investigating techniques involving ionic liquids (IL) and supercritical (SC) fluids for dissolution and separation of lanthanides, actinides, and fission products. The research project consists of the following tasks: Study direct dissolution of lanthanide oxides, uranium dioxide and other actinide oxides in [bmin][Tf 2 N] with TBP(HNO 3 ) 1.8 (H 2 O) 0.6 and similar types of Lewis acid-Lewis base complexing agents; Measure distributions of dissolved metal species between the IL and the sc-CO 2 phases under various temperature and pressure conditions; Investigate the chemistry of the dissolved metal species in both IL and sc-CO 2 phases using spectroscopic and chemical methods; Evaluate potential applications of the new extraction techniques for nuclear waste management and for other projects. Supercritical carbon dioxide (sc-CO 2 ) and ionic liquids are considered green solvents for chemical reactions and separations. Above the critical point, CO 2 has both gas- and liquid-like properties, making it capable of penetrating small pores of solids and dissolving organic compounds in the solid matrix. One application of sc-CO 2 extraction technology is nuclear waste management. Ionic liquids are low-melting salts composed of an organic cation and an anion of various forms, with unique properties making them attractive replacements for the volatile organic solvents traditionally used in liquid-liquid extraction processes. One type of room temperature ionic liquid (RTIL) based on the 1-alkyl-3-methylimidazolium cation [bmin] with bis(trifluoromethylsulfonyl)imide anion [Tf 2 N] is of particular interest for extraction of metal ions due to its water stability, relative low viscosity, high conductivity, and good electrochemical and thermal stability. Recent studies indicate that a coupled IL sc-CO 2 extraction system can effectively transfer trivalent lanthanide and uranyl ions from nitric acid solutions. Advantages of this technique include operation at

  3. Highly selective separation of carbon dioxide from nitrogen and methane by nitrile/glycol-difunctionalized ionic liquids in supported ionic liquid membranes (SILMs).

    Science.gov (United States)

    Hojniak, Sandra D; Silverwood, Ian P; Khan, Asim Laeeq; Vankelecom, Ivo F J; Dehaen, Wim; Kazarian, Sergei G; Binnemans, Koen

    2014-07-03

    Novel difunctionalized ionic liquids (ILs) containing a triethylene glycol monomethyl ether chain and a nitrile group on a pyrrolidinium or imidazolium cation have been synthesized and incorporated into supported ionic liquid membranes (SILMs). These ILs exhibit ca. 2.3 times higher CO2/N2 and CO2/CH4 gas separation selectivities than analogous ILs functionalized only with a glycol chain. Although the glycol moiety ensures room temperature liquidity of the pyrrolidinium and imidazolium ILs, the two classes of ILs benefit from the presence of a nitrile group in different ways. The difunctionalized pyrrolidinium ILs exhibit an increase in CO2 permeance, whereas the permeances of the contaminant gases rise negligibly, resulting in high gas separation selectivities. In the imidazolium ILs, the presence of a nitrile group does not always increase the CO2 permeance nor does it increase the CO2 solubility, as showed in situ by the ATR-FTIR spectroscopic method. High selectivity of these ILs is caused by the considerably reduced permeances of N2 and CH4, most likely due to the ability of the -CN group to reject the nonpolar contaminant gases. Apart from the CO2 solubility, IL-CO2 interactions and IL swelling were studied with the in situ ATR-FTIR spectroscopy. Different strengths of the IL-CO2 interactions were found to be the major difference between the two classes of ILs. The difunctionalized ILs interacted stronger with CO2 than the glycol-functionalized ILs, as manifested in the smaller bandwidths of the bending mode band of CO2 for the latter.

  4. Holdup of O/W emulsion in a packed column for liquid membrane separation of hydrocarbon; Tankasuiso no ekimaku bunri ni okeru jutento nai no emarushon horudo appu

    Energy Technology Data Exchange (ETDEWEB)

    Egashira, R.; Sugimoto, T.; Kawasaki, J. [Tokyo Inst. of Technology, Tokyo (Japan). Faculty of Engineering

    1993-07-10

    Liquid membrane separation of hydrocarbon is an energy saving separation method that is expected of practical use. If the method uses a packed column, the holdup of O/W emulsion affects the effective contact area and residence time of the emulsion. Therefore, this paper describes an attempt to correlate the dynamic emulsion holdup in a packed column in liquid membrane separation of hydrocarbon with property values of the emulsion and external oil phase, and operation variables. The experiment used a mixture of toluene + n - heptane + n - decane for oil phase in the O/W emulsion and saponin aqueous solution for liquid phase (liquid membrane phase). The packed column with an inner diameter of 37 mm used stainless steel McMahon packing. As a result of the experiment, the dynamic emulsion holdup showed a correlation according to the Reynolds number and Galilei number, regardless of whether the emulsion permeates the liquid membrane. The correlation made it possible to estimate in a simple manner the emulsion holdup in the packed column when this separation method is used. 5 refs., 3 figs., 3 tabs.

  5. The Influence of Lactic Acid Concentration on the Separation of Light Rare Earth Elements by Continuous Liquid-Liquid Extraction with 2-Ethylhexyl Phosphonic Acid Mono-2-ethylhexyl Ester

    Science.gov (United States)

    de Carvalho Gomes, Rafael; Seruff, Luciana Amaral; Scal, Maira Labanca Waineraich; Vera, Ysrael Marrero

    2018-02-01

    The separation of rare earth elements (REEs) using solvent extraction adding complexing agents appears to be an alternative to saponification of the extractant. We evaluated the effect of lactic acid concentration on didymium (praseodymium and neodymium) and lanthanum extraction with 2-ethylhexyl phosphonic acid mono-2-ethyl hexyl ester [HEH(EHP)] as extractant. First, we investigated in batch experiments the separation of lanthanum (La) and didymium (Pr and Nd) using McCabe-Thiele diagrams to estimate the number of extraction stages when the feed solution was or was not conditioned with lactic acid. Additionally, we conducted continuous liquid-liquid extraction experiments and evaluated the influence of lactic acid concentration on the REE extraction and separation. The tests showed that the extraction percentage of REEs and the separation factor Pr/La increased when the lactic acid concentration increased, but the didymium purity decreased. Lanthanum, praseodymium, and neodymium extraction rate were 23.0, 89.7, and 99.2 pct, respectively, with 1:1 aqueous/organic volume flow rate and feed solution doped with 0.52 mol L-1 lactic acid. The highest didymium purity reached was 92.0 pct with 0.26 mol L-1 lactic acid concentration.

  6. FY 1995 separation studies for liquid low-level waste treatment at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Bostick, D.T.; Arnold, W.D.; Burgess, M.W.

    1995-01-01

    During FY 1995, studies were continued to develop improved methods for centralized treatment of liquid low-level waste (LLLW) at Oak Ridge National Laboratory (ORNL). Focus in this reporting period was on (1) identifying the parameters that affect the selective removal of 90 Sr and 137 Cs, two of the principal radioactive contaminants expected in the waste; (2) validating the effectiveness of the treatment methods by testing an ac Melton Valley Storage Tank (MVST) supernate; (3) evaluating the optimum solid/liquid separation techniques for the waste; (4) identifying potential treatment methods for removal of technetium from LLLW; and (5) identifying potential methods for stabilizing the high-activity secondary solid wastes generated by the treatment

  7. Method for separating isotopes

    International Nuclear Information System (INIS)

    Jepson, B.E.

    1976-01-01

    The invention comprises a method for separating different isotopes of elements from each other by contacting a feed solution containing the different isotopes with a macrocyclic polyether to preferentially form a macrocyclic polyether complex with the lighter of the different isotopes. The macrocyclic polyether complex is then separated from the lighter isotope depleted feed solution. A chemical separation of isotopes is carried out in which a constant refluxing system permits a continuous countercurrent liquid-liquid extraction. (LL)

  8. tRNA separation by high-performance liquid chromatography using an aggregate of ODS-Hypersil and trioctylmethylammonium chloride

    NARCIS (Netherlands)

    Bischoff, Rainer; Graeser, E.; Mclaughlin, L.W.

    1983-01-01

    High-performance liquid chromatography on a reversed-phase support treated with a tetraalkylammonium salt was used to separate tRNAs from baker's yeast. While resolution by this column appears to result from both anion-exchange and reversed-phase chromatography, it is the hydrophobic interactions

  9. Separation and identification of corticosterone metabolites by liquid chromatography--electrospray ionization mass spectrometry.

    Science.gov (United States)

    Miksík, I; Vylitová, M; Pácha, J; Deyl, Z

    1999-04-16

    High-performance liquid chromatography coupled to atmospheric pressure ionization-electrospray ionization mass spectrometry (API-ESI-MS) was investigated for the analysis of corticosterone metabolites; their characterization was obtained by combining the separation on Zorbax Eclipse XDB C18 column (eluted with a methanol-water-acetic acid gradient) with identification using positive ion mode API-ESI-MS and selected ion analysis. The applicability of this method was verified by monitoring the activity of steroid converting enzymes (20beta-hydroxysteroid dehydrogenase and 11beta-hydroxysteroid dehydrogenase) in avian intestines.

  10. The high pressure liquid chromatography and its application to the separation of polynuclear aromatic hydrocarbons in atmospheric dust and burning residues

    International Nuclear Information System (INIS)

    Lopez, M.-C.

    1975-09-01

    A new technique of analysis is described: the high speed liquid chromatography or more exactly the high performance liquid chromatography because of the progress achieved on the new packings of the columns. The main types of chromatography, according to the phenomena involved are described: adsorption, partition, ion-exchange and exclusion chromatography. A brief outline is given of the theory for determination of stationary and mobile phases in order to obtain the optimum conditions of separation. Some exemples of possible applications are given, particularly the use of this technique for the separation of polycyclic aromatic hydrocarbons in atmospheric pollution and burning residues [fr

  11. Separation by solvent extraction

    International Nuclear Information System (INIS)

    Holt, C.H. Jr.

    1976-01-01

    In a process for separating fission product values from U and Pu values contained in an aqueous solution, an oxidizing agent is added to the solution to secure U and Pu in their hexavalent state. The aqueous solution is contacted with a substantially water-immiscible organic solvent with agitation while the temperature is maintained at from -1 to -2 0 C until the major part of the water present is frozen. The solid ice phase is continuously separated as it is formed and a remaining aqueous liquid phase containing fission product values and a solvent phase containing Pu and U values are separated from each other. The last obtained part of the ice phase is melted and added to the separated liquid phase. The resulting liquid is treated with a new supply of solvent whereby it is practically depleted of U and Pu

  12. Investigation of gas discharge ion sources for on-line mass separation

    International Nuclear Information System (INIS)

    Kirchner, R.

    1976-03-01

    The development of efficient gas discharge ion sources with axial beam extraction for on-line mass separation is described. The aim of the investigation was to increase the ion source temperature, the lifetime and the ionisation yield in comparison to present low-pressure are discharge ion sources and to reduce the ion current density from usually 1 to 100 mA/cm 3 . In all ion sources the pressure range below the minimal ignition pressure of the arc discharge was investigated. As a result an ion source was developed which works at small changes in geometry and in electric device of a Nielsen source with high ionization yield (up to 50% for xenon) stabil and without ignition difficulties up to 10 -5 Torr. At a typical pressure of 3 x 10 -5 Torr ion current and ion current density are about 1 μA and 0.1 mA/cm 3 respectively besides high yield and a great emission aperture (diameter 1.2 mm). (orig.) [de

  13. Microfluidic emulsion separation-simultaneous separation and sensing by multilayer nanofilm structures

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, P; Truman, P; Stamm, M [Leibniz-Institut fuer Polymerforschung Dresden e V, Hohe Strasse 6, 01069 Dresden (Germany); Varnik, F; Zikos, G [Ruhr Universitaet Bochum, Stiepeler Strasse 129, 44801 Bochum (Germany); Moulin, J-F; Mueller-Buschbaum, P, E-mail: uhlmannp@ipfdd.de [Technische Universitaet Muenchen, Physik-Department, LS E13, James-Franck-Strasse 1, 85748 Garching (Germany)

    2011-05-11

    Emulsion separation is of high relevance for filtration applications, liquid-liquid-partitioning of biomolecules like proteins and recovery of products from droplet microreactors. Selective interaction of various components of an emulsion with substrates is used to design microfluidic flow chambers for efficient separation of emulsions into their individual components. Our lab-on-a-chip device consists of an emulsion separation cell with an integrated silicon sensor chip, the latter allowing the detection of liquid motion via the field-effect signal. Thus, within our lab-on-a-chip device, emulsions can be separated while the separation process is monitored simultaneously. For emulsion separation a surface energy step gradient, namely a sharp interface between the hydrophobic and hydrophilic parts of the separation chamber, is used. The key component of the lab-on-a-chip system is a multilayer and multifunctional nanofilm structure which not only provides the surface energy step gradient for emulsion separation but also constitutes the functional parts of the field-effect transistors. The proof-of-principle was performed using a model emulsion consisting of immiscible aqueous and organic solvent components. Droplet coalescence was identified as a key aspect influencing the separation process, with quite different effects during separation on open surfaces as compared to slit geometry. For a detailed description of this observation, an analytical model was derived and lattice Boltzmann computer simulations were performed. By use of grazing incidence small angle x-ray scattering (GISAXS) interfacial nanostructures during gold nanoparticle deposition in a flow field were probed to demonstrate the potential of GISAXS for in situ investigations during flow.

  14. Ionic liquids, tuneable solvents for intensifying reactions and separations

    NARCIS (Netherlands)

    Meindersma, G.W.; Kuipers, N.J.M.; Haan, de A.B.

    2007-01-01

    An Ionic Liquid (IL), or a Room Temperature Ionic Liquid (RTIL), is commonly defined as a liquid entirely composed of ions, which is a fluid below 100 °C. Due to the fact that an ionic liquid is a salt, it has a negligible vapour pressure. Therefore, ionic liquids are not volatile at ambient process

  15. Determination of thromboxanes, leukotrienes and lipoxins using high-temperature capillary liquid chromatography-tandem mass spectrometry and on-line sample preparation

    DEFF Research Database (Denmark)

    Dahl, Sandra Rinne; Kleiveland, Charlotte Ramstad; Kassem, Moustapha

    2009-01-01

    An on-line strong cation-exchange (SCX)-reversed-phase (RP) capillary liquid chromatographic (cLC) method with ion-trap tandem mass spectrometric (IT-MS/MS) detection for the simultaneous determination of thromboxane (TX) B(2), TXB(3), leukotriene (LT) B(4), LTD(4) and lipoxin (LX) A(4) in cell...

  16. Combination of electromembrane extraction and liquid-phase microextraction in a single step: Simultaneous group separation of acidic and basic drugs

    DEFF Research Database (Denmark)

    Huang, Chuixiu; Seip, Knut Fredrik; Gjelstad, Astrid

    2015-01-01

    at high concentration. This approach was further investigated from human plasma. Extraction recoveries were strongly dependent on dilution of plasma with buffer and on extraction time. Finally, this simultaneous EME/LPME approach was evaluated in combination with liquid chromatography (LC......Electromembrane extraction (EME) and liquid-phase microextraction (LPME) were combined in a single step for the first time to realize simultaneous and clear group separation of basic and acidic drugs. Using 2-nitrophenyl octyl ether as the supported liquid membrane (SLM) for EME and dihexyl ether...

  17. Chiral separation of phenylalanine and tryptophan by capillary electrophoresis using a mixture of β-CD and chiral ionic liquid ([TBA] [L-ASP]) as selectors.

    Science.gov (United States)

    Yujiao, Wu; Guoyan, Wang; Wenyan, Zhao; Hongfen, Zhang; Huanwang, Jing; Anjia, Chen

    2014-05-01

    In this paper, a simple, effective and green capillary electrophoresis separation and detection method was developed for the quantification of underivatized amino acids (dl-phenylalanine; dl-tryptophan) using β-Cyclodextrin and chiral ionic liquid ([TBA] [l-ASP]) as selectors. Separation parameters such as buffer concentrations, pH, β-CD and chiral ionic liquid concentrations and separation voltage were investigated for the enantioseparation in order to achieve the maximum possible resolution. A good separation was achieved in a background electrolyte composed of 15 mm sodium tetraborate, 5 mm β-CD and 4 mm chiral ionic liquid at pH 9.5, and an applied voltage of 10 kV. Under optimum conditions, linearity was achieved within concentration ranges from 0.08 to 10 µg/mL for the analytes with correlation coefficients from 0.9956 to 0.9998, and the analytes were separated in less than 6 min with efficiencies up to 970,000 plates/m. The proposed method was successfully applied to the determination of amino acid enantiomers in compound amino acids injections, such as 18AA-I, 18AA-II and 3AA.

  18. Rapid determination of six carcinogenic primary aromatic amines in mainstream cigarette smoke by two-dimensional online solid phase extraction combined with liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Bie, Zhenying; Lu, Wei; Zhu, You; Chen, Yusong; Ren, Hubo; Ji, Lishun

    2017-01-27

    A fully automated, rapid, and reliable method for simultaneous determination of six carcinogenic primary aromatic amines (AAs), including o-toluidine (o-TOL), 2, 6-dimethylaniline (2, 6-DMA), o-anisidine (o-ASD), 1-naphthylamine (1-ANP), 2-naphthylamine (2-ANP), and 4-aminobiphenyl (4-ABP), in mainstream cigarette smoke was established. The proposed method was based on two-dimensional online solid phase extraction combined with liquid chromatography tandem mass spectrometry (SPE/LC-MS/MS). The particulate phase of the mainstream cigarette smoke was collected on a Cambridge filter pad and pretreated via ultrasonic extraction with 2% formic acid (FA), while the gas phase was trapped by 2% FA without pretreatment for determination. The two-dimensional online SPE comprised of two cartridges with different absorption characteristics was applied for sample pretreatment. Analysis was performed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) under multiple reaction monitoring mode. Each sample required about 0.5h for solid phase extraction and analysis. The limit of detections (LODs) for six AAs ranged from 0.04 to 0.58ng/cig and recoveries were within 84.5%-122.9%. The relative standard deviations of intra- and inter-day tests for 3R4F reference cigarette were less than 6% and 7%, respectively, while no more than 7% and 8% separately for a type of Virginia cigarette. The proposed method enabled minimum sample pretreatment, full automation, and high throughput with high selectivity, sensitivity, and accuracy. As a part of the validation procedure, fifteen brands of cigarettes were tested by the designed method. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Synthesis, Characterization, and Impregnation of Some Ionic Liquids on Polymer Membrane for Separation of Carbon Dioxide from Its Mixture with Methane

    Directory of Open Access Journals (Sweden)

    T. T. L. Bui

    2018-03-01

    Full Text Available Some 1-alkyl-3-methylimidazolium-based ionic liquids were synthesized, characterized, and immobilized on membranes to form supported ionic liquid membranes. The supported ionic liquid membranes were characterized by SEM. The initial transmembrane pressures were investigated for each type of impregnated membrane. The CO2/CH4 single gas and mixed gas permeability (CO2 and CH4 have been investigated. The results showed that the CO2/CH4 ideal selectivities and mixed gas selectivities reached 15.45 – 23.9 and 13.91 – 22.82, respectively (equivalent to separation yields of 93.3 – 95.98 %.mThe 1-alkyl-3-methylimidazolium acetate impregnated membrane leads to a slightly lowermCO2/CH4 selectivity, however, this ionic liquid is stable, free of halogen and has a low price. The impregnated membranes prepared from polyvinylidene fluoride are more stablemthan those from polyethersulfone support, and have a higher affinity for CO2 compared to other gas. The obtained high CO2/CH4 selectivities indicate that immobilized membranes can be used for CO2 separation processes.

  20. The effect of geometry and operation conditions on the performance of a gas-liquid cylindrical cyclone separator with new structure

    Science.gov (United States)

    Han, Qing; Zhang, Chi; Xu, Bo; Chen, Jiangping

    2013-07-01

    The hydrodynamic flow behavior, effects of geometry and working conditions of a gas-liquid cylindrical cyclone separator with a new structure are investigated by computational fluid dynamic and experiment. Gas liquid cylindrical cyclone separator is widely used in oil industry, refrigeration system because of its simple structure, high separating efficiency, little maintenance and no moving parts nor internal devices. In this work, a gas liquid cylindrical cyclone separator with new structure used before evaporator in refrigeration system can remove the vapor from the mixture and make evaporator compact by improving its heat exchange efficiency with the lower inlet quality. It also decreases evaporator pressure drop and reduces compressor work. The two pipes are placed symmetrically which makes each of them can be treated as inlet. It means when the fluids flow reverse, the separator performance will not be influence. Four samples with different geometry parameters are tested by experiment with different inlet quality (0.18-0.33), inlet mass flow rate (65-100kg/h). Compared with the experimental data, CFD simulation results show a good agreement. Eulerian multiphase model and Reynolds Stress Turbulence model are applied in the CFD simulation and obtained the inner flow field such as phase path lines, tangential velocity profiles and pressure and volume of fraction distribution contours. The separator body diameter (24, 36, 48mm) and inlet diameter (3.84, 4.8, 5.76mm) decide the maximum tangential velocity which results in the centrifugal force. The tangential velocity profiles are simulated and compared among different models. The higher tangential velocity makes higher quality of gas outlet but high pressure drop at the same time. Decreasing the inlet diameter increases quality of gas outlet pipe and pressure drop. High gas outlet quality is cost at high pressure drop. Increasing of separator diameter makes gas outlet quality increase first and then decrease but

  1. Simultaneous determination of metolazone and valsartan in plasma by on-line SPE coupled with liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Zhou, Jiezhao; Chen, Meiling; Li, Ying; Yu, Fanglin; Cheng, Xiaohui; Yang, Yang; Liu, Yan; Xie, Xiangyang; Li, Zhiping; Zhang, Hui; Mei, Xingguo

    2017-10-01

    Combination of metolazone (0.5 mg) and valsartan (80 mg) has been verified as a promising therapy treatment for hypertension. In order to facilitate to pharmacokinetic research, it needs a method for the simultaneously determination of metolazone and valsartan in biological samples. However, there are no relative reports so far. In order to facilitate to pharmacokinetic research, an on-line solid phase extraction coupled with liquid chromatography-tandem mass spectrometry method for the simultaneous determination of metolazone and valsartan in beagle dog plasma was developed and validated in this study. An on-line solid phase extraction column Retain PEP Javelin (10 mm × 2.1 mm) was used to remove impurities in plasma samples. The metolazone, valsartan and internal standard (losartan) were separated on a Poroshell 120 SB-C18 column (4.6 mm × 50 mm × 2.7 µm) with a gradient elution procedure. Acidified acetonitrile/water mixture was used as a mobile phase. The selected multiple-reaction monitoring mode in positive ion was performed and the parent to the product transitions m/z 366/259, m/z 436.2/291 and m/z 423.4/207 were used to measure the metolazone, valsartan and losartan. The method was linear over the range of 0.1-100 ng/mL and 1-1000 ng/mL for metolazone and valsartan, respectively. This method was validated in terms of specificity, linearity, sensitivity, precision, accuracy, matrix effect, and stability and then successfully applied to pharmacokinetic studies of the metolazone and valsartan combination tablets in beagle dogs.

  2. Liquid chromatographic separation and indirect detection of non-absorbing aliphatic compounds using m-nitrophenol as a detection agent

    International Nuclear Information System (INIS)

    Lee, Seung Seok; Kang, Sam Woo; Moon, Young Ja

    1991-01-01

    m-Nitrophenol(m-NP) was a detection agent for the use of the detection and separation of non-absorbing compounds such as aliphatic acids, alcohols, amines and tetraalkylammonium salts by indirect photometric detection in reversed-phase liquid chromatography. Response of samples was investigated to the several factors such as pH, temperature, and concentration of MeOH as well as concentration of detection reagent in mobile phase. The separation of several mixtures were attempted under optimum condition. (Author)

  3. Liquid chromatography - mass spectrometry analysis of pharmaceuticals

    International Nuclear Information System (INIS)

    Macasek, F.

    2003-01-01

    The drugs represent mostly non-volatile and thermally labile solutes, often available only in small amounts like it is in case of radiopharmaceuticals. Therefor, the favourable separation techniques for such compounds are HPLC, capillary electrophoresis and also TLC 1. Liquid chromatography with mass spectrometric detector (LC/MS) is especially powerful for their microanalysis. Mass spectrometry separating the ions in high vacuum was presumably used as detector for gas chromatography effluent but the on-line coupling with liquid eluant flow 0.1-1 mL/min is far more challenging. New types of ion sources were constructed for simultaneous removal of solvent and ionisation of solutes at atmospheric pressure (API). At present, a relatively wide choice of successfully designed commercial equipment is available either for small organic molecules and larger biomolecules (Perkin-Elmer, Agilent, Jeol, Bruker Daltonics, ThermoQuest, Shimadzu). The features of the LC/MS systems are presented. LC/MS as a new quality control tool for [F-18]fluorodeoxyglucose (FDG) radiopharmaceutical, which has became the most spread radiopharmaceutical for positron emission tomography (PET), was proposed. Other applications of the LC/MS are reviewed. (author)

  4. A green strategy for lithium isotopes separation by using mesoporous silica materials doped with ionic liquids and benzo-15-crown-5

    International Nuclear Information System (INIS)

    Wen Zhou; Xiao-Li Sun; Lin Gu; Fei-Fei Bao; Xin-Xin Xu; Chun-Yan Pang; Zaijun Li; Zhi-Guo Gu; Jiangnan University, Wuxi

    2014-01-01

    Three new mesoporous silica materials IL15SGs (HF15SG, TF15SG and DF15SG) doped with benzo-15-crown-5 and imidazolium based ionic liquids (C 8 mim + PF 6 - , C 8 mim + BF 4 - or C 8 mim + NTf 2 - ) have been prepared by a simple approach to separating lithium isotopes. The formed mesoporous structures of silica gels have been confirmed by transmission electron microscopy image and N 2 gas adsorption-desorption isotherm. Imidazolium ionic liquids acted as templates to prepare mesoporous materials, additives to stabilize extractant within silica gel, and synergetic agents to separate the lithium isotopes. Factors such as lithium salt concentration, initial pH, counter anion of lithium salt, extraction time, and temperature on the lithium isotopes separation were examined. Under optimized conditions, the extraction efficiency of HF15SG, TF15SG and DF15SG were found to be 11.43, 10.59 and 13.07 %, respectively. The heavier isotope 7 Li was concentrated in the solution phase while the lighter isotope 6 Li was enriched in the gel phase. The solid-liquid extraction maximum single-stage isotopes separation factor of 6 Li- 7 Li in the solid-liquid extraction was up to 1.046 ± 0.002. X-ray crystal structure analysis indicated that the lithium salt was extracted into the solid phase with crown ether forming [(Li 0.5 ) 2 (B 15 ) 2 (H 2 O)] + complexes. IL15SGs were also easily regenerated by stripping with 20 mmol L -1 HCl and reused in the consecutive removal of lithium ion in five cycles. (author)

  5. Separation by liquid-liquid extraction of actinides(III) from lanthanides(III) using new molecules: the picolinamides; Separation par extraction liquide-liquide des actinides(III) des lanthanides(III) par de nouvelles molecules: les picolinamides

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, P Y [CEA Marcoule, Departement de Recherche en Retraitement et en Vitrification, 30 - Bagnols-sur-Ceze (France); [Clermont-Ferrand-2 Univ., 63 - Aubiere (France)

    1996-07-01

    In the field of long-lived radionuclides separation from waste generated during spent fuel reprocessing, the picolinamides have been chosen as potential extractants for the selective extraction of actinides (III) from lanthanides (III). The first studies initiated on the most simple molecule of the picolinamide family, namely 2-pyridinecarboxamide, pointed out that in an aqueous media the complexation stability constant between this ligand and Am(III) is roughly 10 times higher than the ones corresponding to Ln(III). The synthesis of lipophilic derivatives of 2-pyridinecarboxamide leaded to extraction experiments. The extraction of metallic cation by lipophilic picolinamides, according to a solvatation mechanism, is strongly dependent on the nature of the amide function: a primary amide function (group I) leads to a good extraction; on the contrary, there is a decrease for secondary (group II) and tertiary (group III) amide functions. From a theoretical point of view, this work leads finally to the following conclusions: confirmation of the importance of the presence of soft donor atoms within the extractants (nitrogen in our case) for An(III)/Ln(III). Also, sensitivity of this soft donor atom regarding the protonation reaction; prevalence in our case of the affinity of the extractant for the metallic cation over the lipophilia of the extractant to ensure good distribution coefficients. The extraction and Am(III)/Ln(III) separation performances of the picolinamides from pertechnetic media leads to the design of a possible flowsheet for the reprocessing of high level liquid waste, with the new idea of an integrated technetium reflux. (author) 105 refs.

  6. Composites of ionic liquid and amine-modified SAPO 34 improve CO2 separation of CO2-selective polymer membranes

    Science.gov (United States)

    Hu, Leiqing; Cheng, Jun; Li, Yannan; Liu, Jianzhong; Zhang, Li; Zhou, Junhu; Cen, Kefa

    2017-07-01

    Mixed matrix membranes with ionic liquids and molecular sieve particles had high CO2 permeabilities, but CO2 separation from small gas molecules such as H2 was dissatisfied because of bad interfacial interaction between ionic liquid and molecular sieve particles. To solve that, amine groups were introduced to modify surface of molecular sieve particles before loading with ionic liquid. SAPO 34 was adopted as the original filler, and four mixed matrix membranes with different fillers were prepared on the outer surface of ceramic hollow fibers. Both surface voids and hard agglomerations disappeared, and the surface became smooth after SAPO 34 was modified by amine groups and ionic liquid [P66614][2-Op]. Mixed matrix membranes with composites of amine-modified SAPO 34 and ionic liquid exhibited excellent CO2 permeability (408.9 Barrers) and CO2/H2 selectivity (22.1).

  7. Unattended reaction monitoring using an automated microfluidic sampler and on-line liquid chromatography.

    Science.gov (United States)

    Patel, Darshan C; Lyu, Yaqi Fara; Gandarilla, Jorge; Doherty, Steve

    2018-04-03

    In-process sampling and analysis is an important aspect of monitoring kinetic profiles and impurity formation or rejection, both in development and during commercial manufacturing. In pharmaceutical process development, the technology of choice for a substantial portion of this analysis is high-performance liquid chromatography (HPLC). Traditionally, the sample extraction and preparation for reaction characterization have been performed manually. This can be time consuming, laborious, and impractical for long processes. Depending on the complexity of the sample preparation, there can be variability introduced by different analysts, and in some cases, the integrity of the sample can be compromised during handling. While there are commercial instruments available for on-line monitoring with HPLC, they lack capabilities in many key areas. Some do not provide integration of the sampling and analysis, while others afford limited flexibility in sample preparation. The current offerings provide a limited number of unit operations available for sample processing and no option for workflow customizability. This work describes development of a microfluidic automated program (MAP) which fully automates the sample extraction, manipulation, and on-line LC analysis. The flexible system is controlled using an intuitive Microsoft Excel based user interface. The autonomous system is capable of unattended reaction monitoring that allows flexible unit operations and workflow customization to enable complex operations and on-line sample preparation. The automated system is shown to offer advantages over manual approaches in key areas while providing consistent and reproducible in-process data. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. On-line optimal control improves gas processing

    International Nuclear Information System (INIS)

    Berkowitz, P.N.; Papadopoulos, M.N.

    1992-01-01

    This paper reports that the authors' companies jointly funded the first phase of a gas processing liquids optimization project that has the specific purposes to: Improve the return of processing natural gas liquids, Develop sets of control algorithms, Make available a low-cost solution suitable for small to medium-sized gas processing plants, Test and demonstrate the feasibility of line control. The ARCO Willard CO 2 gas recovery processing plant was chosen as the initial test site to demonstrate the application of multivariable on-line optimal control. One objective of this project is to support an R ampersand D effort to provide a standardized solution to the various types of gas processing plants in the U.S. Processes involved in these gas plants include cryogenic separations, demethanization, lean oil absorption, fractionation and gas treating. Next, the proposed solutions had to be simple yet comprehensive enough to allow an operator to maintain product specifications while operating over a wide range of gas input flow and composition. This had to be a supervisors system that remained on-line more than 95% of the time, and achieved reduced plant operating variability and improved variable cost control. It took more than a year to study various gas processes and to develop a control approach before a real application was finally exercised. An initial process for C 2 and CO 2 recoveries was chosen

  9. Wastewater Triad Project: Solid-Liquid Separator FY 2000 Deployment

    International Nuclear Information System (INIS)

    Walker, J.F.

    2001-01-01

    The Wastewater Triad Project (WTP) consists of three operational units: the cesium removal (CsR) system, the out-of-tank evaporator (OTE) system, and the solid/liquid separation (SLS) system. These systems were designed to reduce the volume and radioactivity of low-level liquid waste (LLLW) stored in the Melton Valley Storage Tanks (MVSTs) and are operated independently or in series in order to accomplish the treatment goals. Each is a modular, skid-mounted system that is self-contained, individually shielded, and designed to be decontaminated and removed once the project has been completed. The CsR and OTE systems are installed inside Building 7877; the SLS system is installed adjacent to the east side of the MVST 7830 vault cover. The CsR, which consists of ion-exchange equipment for removing 137 Cs from LLLW, was demonstrated in 1997. During the Cesium Removal Demonstration, 30,853 gal of radioactive supernate was processed and 1142 Ci of 137 Cs was removed from the supernate and loaded onto 70 gal of a crystalline silicotitanate sorbent manufactured by UOP, Inc. The OTE system is a subatmospheric single-stage evaporator system designed to concentrate LLLW to smaller volumes. It was previously demonstrated in 1996 and was operated in 1998 to process about 80,000 gal of LLLW. The SLS system was designed to filter and remove suspended solids from LLLW in order to minimize further accumulation of sludge in new storage tanks or to prevent fouling of CsR and OTE systems. The SLS was installed and demonstrated in 1999; ∼45,000 gal of radioactive supernate was processed during the demonstration

  10. Final Report for Fractionation and Separation of Polydisperse Nanoparticles into Distinct Monodisperse Fractions Using CO2 Expanded Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Chistopher Roberts

    2007-08-31

    The overall objective of this project was to facilitate efficient fractionation and separation of polydisperse metal nanoparticle populations into distinct monodisperse fractions using the tunable solvent properties of gas expanded liquids. Specifically, the dispersibility of ligand-stabilized nanoparticles in an organic solution was controlled by altering the ligand-solvent interaction (solvation) by the addition of carbon dioxide (CO{sub 2}) gas as an antisolvent (thereby tailoring the bulk solvent strength) in a custom high pressure apparatus developed in our lab. This was accomplished by adjusting the CO{sub 2} pressure over the liquid dispersion, resulting in a simple means of tuning the nanoparticle precipitation by size. Overall, this work utilized the highly tunable solvent properties of organic/CO{sub 2} solvent mixtures to selectively size-separate dispersions of polydisperse nanoparticles (ranging from 1 to 20 nm in size) into monodisperse fractions ({+-}1nm). Specifically, three primary tasks were performed to meet the overall objective. Task 1 involved the investigation of the effects of various operating parameters (such as temperature, pressure, ligand length and ligand type) on the efficiency of separation and fractionation of Ag nanoparticles. In addition, a thermodynamic interaction energy model was developed to predict the dispersibility of different sized nanoparticles in the gas expanded liquids at various conditions. Task 2 involved the extension of the experimental procedures identified in task 1 to the separation of other metal particles used in catalysis such as Au as well as other materials such as semiconductor particles (e.g. CdSe). Task 3 involved using the optimal conditions identified in tasks 1 and 2 to scale up the process to handle sample sizes of greater than 1 g. An experimental system was designed to allow nanoparticles of increasingly smaller sizes to be precipitated sequentially in a vertical series of high pressure vessels by

  11. On-line micro-volume introduction system developed for lower density than water extraction solvent and dispersive liquid–liquid microextraction coupled with flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Anthemidis, Aristidis N.; Mitani, Constantina; Balkatzopoulou, Paschalia; Tzanavaras, Paraskevas D.

    2012-01-01

    Highlights: ► A dispersive liquid–liquid micro extraction method for lead and copper determination. ► A micro-volume transportation system for extractant solvent lighter than water. ► Analysis of natural water samples. - Abstract: A simple and fast preconcentration/separation dispersive liquid–liquid micro extraction (DLLME) method for metal determination based on the use of extraction solvent with lower density than water has been developed. For this purpose a novel micro-volume introduction system was developed enabling the on-line injection of the organic solvent into flame atomic absorption spectrometry (FAAS). The effectiveness and efficiency of the proposed system were demonstrated for lead and copper preconcentration in environmental water samples using di-isobutyl ketone (DBIK) as extraction solvent. Under the optimum conditions the enhancement factor for lead and copper was 187 and 310 respectively. For a sample volume of 10 mL, the detection limit (3 s) and the relative standard deviation were 1.2 μg L −1 and 3.3% for lead and 0.12 μg L −1 and 2.9% for copper respectively. The developed method was evaluated by analyzing certified reference material and it was applied successfully to the analysis of environmental water samples.

  12. Synthesis and assessment of imprinted polymers for the separation of f elements. Application to liquid chromatography

    International Nuclear Information System (INIS)

    Vigneau, Olivier

    2002-01-01

    Within the frame of the CEA's SPIN programme which aims at separate lanthanides (Ln) and actinides (An) in order to decrease the volume and activity of nuclear wastes to be stored, and after a presentation of lanthanides and actinides, of the main methods of inter-group and intra-group separation, this research thesis presents the principles and applications of the molecular print and ionic print which are then used to perform the Ln/Ln and Ln/an separation. The author discusses the choice and synthesis of selective complexing monomers which are used for the synthesis of imprinted polymers. The next chapter reports the synthesis of imprinted polymers, the assessment of their properties (selectivity and extraction power) in Ln/Ln competitive extraction in a batch reactor, and the optimization of synthesis conditions. Then, the author reports the assessment of properties of imprinted material in terms of ability to perform an inter-group Am 241 / Eu 152 separation in a batch reactor. The last part addresses Ln/Ln separation by High Performance Liquid Chromatography by using synthesised imprinted polymers as steady phase [fr

  13. Separation of cadmium and lead from wastewater using supported liquid membrane integrated with in-situ electrodeposition

    International Nuclear Information System (INIS)

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar

    2017-01-01

    A novel process for separation of heavy metals from liquid wastes and/or industrial effluents has been developed as described in this paper wherein the technique of supported liquid membrane based extraction and stripping of heavy metals has been augmented with electroplating inside the stripping chamber of SLM. Wastewater, infested with cadmium and lead, has been subject of research in this work. The said process is employed in transporting the heavy metals from the polluted source phase (wastewater) to the sink (or strip) phase while simultaneously depositing the heavy metals in-situ on the electrode placed inside the strip phase, and thereby the strip phase is remained ever-unsaturated. This arrangement yields high gradient of chemical potential across the liquid membrane and thereby facilitates enhanced and faster recovery of said heavy metals and also yields value added component, viz. electroplated items, for suitable end use.

  14. Development of an ion guide coupled to an on-line isotope separation system on Sara. Identification and study of isospin exotic nuclei at Isolde and Sara

    International Nuclear Information System (INIS)

    Bouldjedri, A.

    1992-06-01

    This work is concerned with the study of exotic nuclei located on both sides of the stability-line and known as neutron rich and neutron deficient respectively. For the former, produced by alpha particle-induced fission, an on-line isotope separation with an ion guide (IGISOL) has been developed and submitted to several off-line and on-line optimization tests showing capacity to spectroscopic studies. In the case of neutron deficient nuclei near the magicity Z=82, 182 Tl(3s) has been identified and its decaying modes and those of 183 Tl ground state, studied, using the on-line separator ISOLDE. On the other hand, the β decay of 172,175 Ir produced in 32 S induced reaction is studied using a helium jet system on the SARA accelerator. Existence of isomers is derived from half-lives measurements

  15. Moisture separator for steam generator level measurement system

    International Nuclear Information System (INIS)

    Cantineau, B.J.

    1987-01-01

    A steam generator level measurement system having a reference leg which is kept full of water by a condensation pot, has a liquid/steam separator in the connecting line between the condensation pot and the steam phase in the steam generator to remove excess liquid from the steam externally of the steam generator. This ensures that the connecting line does not become blocked. The separator pot has an expansion chamber which slows down the velocity of the steam/liquid mixture to aid in separation, and a baffle, to avoid liquid flow into the line connected to the condensate pot. Liquid separated is returned to the steam generator below the water level through a drain line. (author)

  16. Exploring Liquid Sequential Injection Chromatography to Teach Fundamentals of Separation Methods: A Very Fast Analytical Chemistry Experiment

    Science.gov (United States)

    Penteado, Jose C.; Masini, Jorge Cesar

    2011-01-01

    Influence of the solvent strength determined by the addition of a mobile-phase organic modifier and pH on chromatographic separation of sorbic acid and vanillin has been investigated by the relatively new technique, liquid sequential injection chromatography (SIC). This technique uses reversed-phase monolithic stationary phase to execute fast…

  17. Photo polymerization-induced vertical phase separation and homeotropic alignment in liquid crystal and polymer mixtures

    International Nuclear Information System (INIS)

    Kang, Hyo; Joo, Sangwoo; Kang, Daeseung

    2012-01-01

    We presented a novel method for the homeotropic alignment of LC by using the irradiation of UV light on the LC/NOA65 mixture cell, in which the photo-initiated-polymerization-induced phase separation lowers the surface energy. When the amount of polymer content is sufficiently small, the gravel and network patterns were formed at the substrates via the vertical phase separation. We found that surface roughness plays an important role in the formation of the homeotropic alignment of LC. We also observed the alignment transition of the cells by varying the mixing ratio of LC/NOA65 or the UV radiation time. Furthermore, the present proposed method has great potential for application in display devices. For decades, studies on the alignment of liquid crystal (LC) molecules have been of significant interest due to their immediate applications for display devices and the intriguing physiochemical properties they exhibit at the surface of mixtures. Usually, homeotropic (or vertical) alignment, in which the long axes of the LC molecules are oriented in a direction perpendicular to the surface, is achieved by using surfactants such as lecithin, silanes or polyimide. Recently homeotropic alignment of liquid crystal molecules was achieved by irradiating photosensitive polymers, by doping nanoparticles into LC, by utilizing nano/micro patterns, or by incorporating self-assembled monolayers (SAMs). However, a clear understanding about the alignment mechanism is still elusive. In this paper, we report a novel method for homeotropic alignment of LC by utilizing the phase separation of LC/polymer mixtures

  18. Bioanalytical Applications of Fluorescence Line-Narrowing and Non-Line-Narrowing Spectroscopy Interfaced with Capillary Electrophoresis and High-Performance Liquid Chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Kenneth Paul [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) are widely used analytical separation techniques with many applications in chemical, biochemical, and biomedical sciences. Conventional analyte identification in these techniques is based on retention/migration times of standards; requiring a high degree of reproducibility, availability of reliable standards, and absence of coelution. From this, several new information-rich detection methods (also known as hyphenated techniques) are being explored that would be capable of providing unambiguous on-line identification of separating analytes in CE and HPLC. As further discussed, a number of such on-line detection methods have shown considerable success, including Raman, nuclear magnetic resonance (NMR), mass spectrometry (MS), and fluorescence line-narrowing spectroscopy (FLNS). In this thesis, the feasibility and potential of combining the highly sensitive and selective laser-based detection method of FLNS with analytical separation techniques are discussed and presented. A summary of previously demonstrated FLNS detection interfaced with chromatography and electrophoresis is given, and recent results from on-line FLNS detection in CE (CE-FLNS), and the new combination of HPLC-FLNS, are shown.

  19. Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy

    Science.gov (United States)

    Schlagen, Kenneth J.

    1992-01-01

    Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.

  20. [Online enrichment ability of restricted-access column coupled with high performance liquid chromatography by column switching technique for benazepril hydrochloride].

    Science.gov (United States)

    Zhang, Xiaohui; Wang, Rong; Xie, Hua; Yin, Qiang; Li, Xiaoyun; Jia, Zhengping; Wu, Xiaoyu; Zhang, Juanhong; Li, Wenbin

    2013-05-01

    The online enrichment ability of the restricted-access media (RAM) column coupled with high performance liquid chromatography by column switching technique for benazepril hydrochloride in plasma was studied. The RAM-HPLC system consisted of an RAM column as enrichment column and a C18 column as analytical column coupled via the column switching technique. The effects of the injection volume on the peak area and the systematic pressure were studied. When the injection volume was less than 100 microL, the peak area increased with the increase of the injection volume. However, when the injection volume was more than 80 microL, the pressure of whole system increased obviously. In order to protect the whole system, 80 microL was chosen as the maximum injection volume. The peak areas of ordinary injection and the large volume injection showed a good linear relationship. The enrichment ability of RAM-HPLC system was satisfactory. The system was successfully used for the separation and detection of the trace benazepril hydrochloride in rat plasma after its administration. The sensitivity of HPLC can be improved by RAM pre-enrichment. It is a simple and economic measurement method.

  1. Overview of online two-dimensional liquid chromatography based on cell membrane chromatography for screening target components from traditional Chinese medicines.

    Science.gov (United States)

    Muhammad, Saqib; Han, Shengli; Xie, Xiaoyu; Wang, Sicen; Aziz, Muhammad Majid

    2017-01-01

    Cell membrane chromatography is a simple, specific, and time-saving technique for studying drug-receptor interactions, screening of active components from complex mixtures, and quality control of traditional Chinese medicines. However, the short column life, low sensitivity, low column efficiency (so cannot resolve satisfactorily mixture of compounds), low peak capacity, and inefficient in structure identification were bottleneck in its application. Combinations of cell membrane chromatography with multidimensional chromatography such as two-dimensional liquid chromatography and high sensitivity detectors like mass have significantly reduced many of the above-mentioned shortcomings. This paper provides an overview of the current advances in online two-dimensional-based cell membrane chromatography for screening target components from traditional Chinese medicines with particular emphasis on the instrumentation, preparation of cell membrane stationary phase, advantages, and disadvantages compared to alternative approaches. The last section of the review summarizes the applications of the online two-dimensional high-performance liquid chromatography based cell membrane chromatography reported since its emergence to date (2010-June 2016). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Determination of rare earth elements by liquid chromatographic separation using inductively coupled plasma mass spectrometric detection

    International Nuclear Information System (INIS)

    Braverman, D.S.

    1992-01-01

    High-performance liquid chromatography (HPLC) is used to separate the rare earth elements (REEs) prior to detection by inductively coupled plasma mass spectrometry (ICP-MS). The use of HPLC-ICP-MS in series combines the separation power and speed of HPLC with the sensitivity, isotopic selectivity and speed of ICP-MS. The detection limits for the REEs are in the sub-ng ml -1 range and the response is linear over four orders of magnitude. A preliminary comparison of isotope dilution and external standard results for the determination of REEs in National Institute of Standards and Technology (NIST) Standard Reference Material (SRM 1633a) Fly Ash is presented. (author)

  3. Characteristics of a gas-jet transport system for an on-line isotope separator

    International Nuclear Information System (INIS)

    Kawade, K.; Yamamoto, H.; Amano, H.; Hanada, M.; Katoh, T.; Okano, K.; Kawase, Y.; Fujiwara, I.

    1982-01-01

    Basic characteristics of a gas-jet transport system for an on-line isotope separator have been investigated using a 252 Cf source and a 235 U fission source. The transport efficiency of fission products through a capillary has been measured to be about 60% for the 235 U fission source. The sweep-out time of fission products through a target chamber and the transit time through a capillary have been measured for He, N 2 and CO 2 gases at several pressures. The measured sweep-out times have been almost equal to the exchange over time of the gas. The transit times have been found to be reasonably predicted by calculations. The transport system has been incorporated into the KUR-ISOL and is used for the study of short-lived nuclei. (orig.)

  4. The effect of liquid phase separation on the Vickers microindentation shear bands evolution in a Fe-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Askari-Paykani, M. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11356-4563 (Iran, Islamic Republic of); Nili Ahmadabadi, M., E-mail: nili@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11356-4563 (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Seiffodini, A. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11356-4563 (Iran, Islamic Republic of); Yazd University, Department of Material Science and Engineering, Yazd 84196 (Iran, Islamic Republic of)

    2013-11-15

    The Vickers microindentation experiments and associated plastic deformation in as-cast and annealed (Fe{sub 0.9}Ni{sub 0.1}){sub 77}Mo{sub 5}P{sub 9}C{sub 7.5}B{sub 1.5} bulk metallic glass was conducted. In addition to the bulk indentation behavior, the shear band morphology underneath the Vickers microindenter was examined by employing the bonded interface technique. Microstructural characterization revealed that a liquid phase separation occurred during melting process. Atomic force microscopy of the glassy matrix of the as-cast specimen reveals the composition inhomogeneity induced by the liquid phase separation. This effect generates shear band branching or deflection during the shear band propagation. For the bulk indentation, the trends in the hardness vs. indentation load were found related to the pressure sensitive index and the phase separation process simultaneously. The results show that the as-cast as well as the annealed specimens are deformed through semi-circular and radial shear bands. In addition, in the partially crystalized specimen, the change in the properties and microstructure of the BMG induced by the partial crystallization treatment and phase separation process resulted in tertiary shear bands formation.

  5. Flexible Bistable Smectic-A Liquid Crystal Device Using Photolithography and Photoinduced Phase Separation

    Directory of Open Access Journals (Sweden)

    Yang Lu

    2012-01-01

    Full Text Available A flexible bistable smectic-A liquid crystal (SmA LC device using pixel-isolated mode was demonstrated, in which SmA LC molecules were isolated in pixels by vertical polymer wall and horizontal polymer layer. The above microstructure was achieved by using ultraviolet (UV photolithography and photoinduced phase separation. The polymer wall was fabricated by photolithography, and then the SmA LC was encapsulated in pixels between polymer wall through UV-induced phase separation, in which the polymer wall acts as supporting structure from mechanical pressure and maintains the cell gap from bending, and the polymer layer acts as adhesive for tight attachment of two substrates. The results demonstrated that all the intrinsic bistable properties of the SmA LC are preserved, and good electrooptical characteristics such as high contrast ratio and excellent stability of the bistable states were characterized. This kind of SmA bistable flexible display has high potential to be used as electronic paper, smart switchable reflective windows, and so forth.

  6. Investigating the Effect of Column Geometry on Separation Efficiency using 3D Printed Liquid Chromatographic Columns Containing Polymer Monolithic Phases.

    Science.gov (United States)

    Gupta, Vipul; Beirne, Stephen; Nesterenko, Pavel N; Paull, Brett

    2018-01-16

    Effect of column geometry on the liquid chromatographic separations using 3D printed liquid chromatographic columns with in-column polymerized monoliths has been studied. Three different liquid chromatographic columns were designed and 3D printed in titanium as 2D serpentine, 3D spiral, and 3D serpentine columns, of equal length and i.d. Successful in-column thermal polymerization of mechanically stable poly(BuMA-co-EDMA) monoliths was achieved within each design without any significant structural differences between phases. Van Deemter plots indicated higher efficiencies for the 3D serpentine chromatographic columns with higher aspect ratio turns at higher linear velocities and smaller analysis times as compared to their counterpart columns with lower aspect ratio turns. Computational fluid dynamic simulations of a basic monolithic structure indicated 44%, 90%, 100%, and 118% higher flow through narrow channels in the curved monolithic configuration as compared to the straight monolithic configuration at linear velocities of 1, 2.5, 5, and 10 mm s -1 , respectively. Isocratic RPLC separations with the 3D serpentine column resulted in an average 23% and 245% (8 solutes) increase in the number of theoretical plates as compared to the 3D spiral and 2D serpentine columns, respectively. Gradient RPLC separations with the 3D serpentine column resulted in an average 15% and 82% (8 solutes) increase in the peak capacity as compared to the 3D spiral and 2D serpentine columns, respectively. Use of the 3D serpentine column at a higher flow rate, as compared to the 3D spiral column, provided a 58% reduction in the analysis time and 74% increase in the peak capacity for the isocratic separations of the small molecules and the gradient separations of proteins, respectively.

  7. Ionic Liquids as the MOFs/Polymer Interfacial Binder for Efficient Membrane Separation.

    Science.gov (United States)

    Lin, Rijia; Ge, Lei; Diao, Hui; Rudolph, Victor; Zhu, Zhonghua

    2016-11-23

    Obtaining strong interfacial affinity between filler and polymer is critical to the preparation of mixed matrix membranes (MMMs) with high separation efficiency. However, it is still a challenge for micron-sized metal organic frameworks (MOFs) to achieve excellent compatibility and defect-free interface with polymer matrix. Thin layer of ionic liquid (IL) was immobilized on micron-sized HKUST-1 to eliminate the interfacial nonselective voids in MMMs with minimized free ionic liquid (IL) in polymer matrix, and then the obtained IL decorated HKUST-1 was incorporated into 4,4'-(hexafluoroisopropylidene)diphthalic anhydride-2,3,5,6-tetramethyl-1,3-phenyldiamine (6FDA-Durene) to fabricate MMMs. Acting as a filler/polymer interfacial binder, the favorable MOF/IL and IL/polymer interaction can facilitate the enhancement of MOF/polymer affinity. Compared to MMM with only HKUST-1 incorporation, MMM with IL decorated HKUST-1 succeeded in restricting the formation of nonselective interfacial voids, leading to an increment in CO 2 selectivity. The IL decoration method can be an effective approach to eliminate interfacial voids in MMMs, extending the filler selection to a wide range of large-sized fillers.

  8. Analysis of recombinant Schistosoma mansoni antigen rSmp28 by on-line liquid chromatography-mass spectrometry combined with sodium dodecyl sulfate polyacrylamide gel electrophoresis

    NARCIS (Netherlands)

    Klarskov, K.; Roecklin, D.; Bouchon, B.; Sabatie, J.; Van Dorsselaer, A.; Bischoff, Rainer

    1994-01-01

    A recombinant Schistosoma mansoni antigen produced in Saccharomyces cerevisiae and purified by glutathione-Sepharose affinity chromatography was analyzed by tryptic peptide mapping using on-line reversed-phase high-performance liquid chromatography pneumatically assisted electrospray mass

  9. Stability of arsenic peptides in plant extracts: off-line versus on-line parallel elemental and molecular mass spectrometric detection for liquid chromatographic separation.

    Science.gov (United States)

    Bluemlein, Katharina; Raab, Andrea; Feldmann, Jörg

    2009-01-01

    The instability of metal and metalloid complexes during analytical processes has always been an issue of an uncertainty regarding their speciation in plant extracts. Two different speciation protocols were compared regarding the analysis of arsenic phytochelatin (As(III)PC) complexes in fresh plant material. As the final step for separation/detection both methods used RP-HPLC simultaneously coupled to ICP-MS and ES-MS. However, one method was the often used off-line approach using two-dimensional separation, i.e. a pre-cleaning step using size-exclusion chromatography with subsequent fraction collection and freeze-drying prior to the analysis using RP-HPLC-ICP-MS and/or ES-MS. This approach revealed that less than 2% of the total arsenic was bound to peptides such as phytochelatins in the root extract of an arsenate exposed Thunbergia alata, whereas the direct on-line method showed that 83% of arsenic was bound to peptides, mainly as As(III)PC(3) and (GS)As(III)PC(2). Key analytical factors were identified which destabilise the As(III)PCs. The low pH of the mobile phase (0.1% formic acid) using RP-HPLC-ICP-MS/ES-MS stabilises the arsenic peptide complexes in the plant extract as well as the free peptide concentration, as shown by the kinetic disintegration study of the model compound As(III)(GS)(3) at pH 2.2 and 3.8. But only short half-lives of only a few hours were determined for the arsenic glutathione complex. Although As(III)PC(3) showed a ten times higher half-life (23 h) in a plant extract, the pre-cleaning step with subsequent fractionation in a mobile phase of pH 5.6 contributes to the destabilisation of the arsenic peptides in the off-line method. Furthermore, it was found that during a freeze-drying process more than 90% of an As(III)PC(3) complex and smaller free peptides such as PC(2) and PC(3) can be lost. Although the two-dimensional off-line method has been used successfully for other metal complexes, it is concluded here that the fractionation and

  10. Cation exchange separation of 16 rare earth metals by microscale high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Ishii, D.; Hirose, A.; Iwasaki, Y.

    1978-01-01

    The separation of rare earth metals has been studied with a microcolumn of 0.5 mm i.d. and 75 mm length, packed with TSK LS-212 high-performance cation exchange resin. A micro-feeder (Model MF-2, from Azumadenki Kogyo) was used to drive carrier and sample solutions through the ion exchange column and detection cell. By combining a 250 μl syringe and a 0.5 mm i.d. sampling tube the micro-feeder, 0.1-1.0 μl rare earth metals were separated within 38 min, using only 304 μl of 0.4M α-hydroxy-isobutyric acid solution adjusted to pH 3.1-6.0 with ammonia solution as gradient carrier solution. The gradient elution was successfully performed by applying a new technique developed for microscale liquid chromatography. (author)

  11. Using the hydrophobic subtraction model to choose orthogonal columns for online comprehensive two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune; Nielsen, Nikoline Juul; Christensen, Jan H.

    2014-01-01

    A method for choosing orthogonal columns for a specific sample set in on-line comprehensive two-dimensional liquid chromatography (LC×LC) was developed on the basis of the hydrophobic subtraction model. The method takes into account the properties of the sample analytes by estimating new F...... neutral and 4 acidic oxygenated polycyclic aromatic compounds (PACs) and 3 nitrogen-containing PAC bases was measured isocratically on 12 columns. The isocratic runs were used to determine the hydrophobic subtraction model analyte parameters, and these were used to estimate new F-weights and predict...

  12. Separation coefficients of liquid-vapor in systems formed by yttrium chloride with some impurities

    International Nuclear Information System (INIS)

    Volkov, V.T.; Nikiforova, T.V.; Nisel'son, L.A.; Telegin, G.F.

    1990-01-01

    Using equilibrium Rayleigh distillation in the 800-950 deg C temperature range, separation coefficients of liquid-vapor for systems, formed by yttrium chloride with Co, Cr, Ni, Mn, Fe, Cu, Na, K, Mg, Ca, Li impurities are determined. The impurity concentration lies within 0.02-0.4 mass. % limits of each impurity, and total impurity concentration does not exceed 1 mass. %. The tested impurities, except for calcium, are more volatile than the base, yttrium trichloride. In most systems negative deviation from the Raoult's law is observed

  13. Recent development of ionic liquid membranes

    Directory of Open Access Journals (Sweden)

    Junfeng Wang

    2016-04-01

    Full Text Available The interest in ionic liquids (IL is motivated by its unique properties, such as negligible vapor pressure, thermal stability, wide electrochemical stability window, and tunability of properties. ILs have been highlighted as solvents for liquid–liquid extraction and liquid membrane separation. To further expand its application in separation field, the ionic liquid membranes (ILMs and its separation technology have been proposed and developed rapidly. This paper is to give a comprehensive overview on the recent applications of ILMs for the separation of various compounds, including organic compounds, mixed gases, and metal ions. Firstly, ILMs was classified into supported ionic liquid membranes (SILMs and quasi-solidified ionic liquid membranes (QSILMs according to the immobilization method of ILs. Then, preparation methods of ILMs, membrane stability as well as applications of ILMs in the separation of various mixtures were reviewed. Followed this, transport mechanisms of gaseous mixtures and organic compounds were elucidated in order to better understand the separation process of ILMs. This tutorial review intends to not only offer an overview on the development of ILMs but also provide a guide for ILMs preparations and applications. Keywords: Ionic liquid membrane, Supported ionic liquid membrane, Qusai-solidified ionic liquid membrane, Stability, Application

  14. Liquid membrane extraction techniques for trace metal analysis and speciation in environmental and biological matrices

    Energy Technology Data Exchange (ETDEWEB)

    Ndungu, Kuria

    1999-04-01

    In this thesis, liquid-membrane-based methods for the analysis of trace metal species in samples of environmental and biological origin were developed. By incorporating extracting reagents in the membrane liquid, trace metal ions were selectively separated from humic-rich natural waters and urine samples, prior to their determination using various instrumental techniques. The extractions were performed in closed flow systems thus allowing easy automation of both the sample clean-up and enrichment. An acidic organophosphorus reagent (DEHPA) and a basic tetraalkylammonium reagent (Aliquat-336) were used as extractants in the membrane liquid to selectively extract and enrich cationic and anionic metal species respectively. A speciation method for chromium species was developed that allowed the determination of cationic Cr(III) species and anionic CR(VI) species in natural water samples without the need of a chromatographic separation step prior to their detection. SLM was also coupled on-line to potentiometric stripping analysis providing a fast and sensitive method for analysis of Pb in urine samples. A microporous membrane liquid-liquid extraction (MMLLE) method was developed for the determination of organotin compounds in natural waters that reduced the number of manual steps involved in the LLE of organotin compounds prior to their CC separation. Clean extracts obtained after running unfiltered humic-rich river water samples through the MMLLE flow system allowed selective determination of all the organotin compounds in a single run using GC-MS in the selected ion monitoring mode (SIM) 171 refs, 9 figs, 4 tabs

  15. Comprehensive two-dimensional liquid chromatographic analysis of poloxamers.

    Science.gov (United States)

    Malik, Muhammad Imran; Lee, Sanghoon; Chang, Taihyun

    2016-04-15

    Poloxamers are low molar mass triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), having number of applications as non-ionic surfactants. Comprehensive one and two-dimensional liquid chromatographic (LC) analysis of these materials is proposed in this study. The separation of oligomers of both types (PEO and PPO) is demonstrated for several commercial poloxamers. This is accomplished at the critical conditions for one of the block while interaction for the other block. Reversed phase LC at CAP of PEO allowed for oligomeric separation of triblock copolymers with regard to PPO block whereas normal phase LC at CAP of PPO renders oligomeric separation with respect to PEO block. The oligomeric separation with regard to PEO and PPO are coupled online (comprehensive 2D-LC) to reveal two-dimensional contour plots by unconventional 2D IC×IC (interaction chromatography) coupling. The study provides chemical composition mapping of both PEO and PPO, equivalent to combined molar mass and chemical composition mapping for several commercial poloxamers. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Recent development of ionic liquid membranes

    OpenAIRE

    Wang, Junfeng; Luo, Jianquan; Feng, Shicao; Li, Haoran; Wan, Yinhua; Zhang, Xiangping

    2016-01-01

    The interest in ionic liquids (IL) is motivated by its unique properties, such as negligible vapor pressure, thermal stability, wide electrochemical stability window, and tunability of properties. ILs have been highlighted as solvents for liquidâliquid extraction and liquid membrane separation. To further expand its application in separation field, the ionic liquid membranes (ILMs) and its separation technology have been proposed and developed rapidly. This paper is to give a comprehensive ov...

  17. Copolymer-grafted silica phase from a cation-anion monomer pair for enhanced separation in reversed-phase liquid chromatography.

    Science.gov (United States)

    Mallik, Abul K; Qiu, Hongdeng; Takafuji, Makoto; Ihara, Hirotaka

    2014-05-01

    This work reports a new imidazolium and L-alanine derived copolymer-grafted silica stationary phase for ready separation of complex isomers using high-performance liquid chromatography (HPLC). For this purpose, 1-allyl-3-octadecylimidazolium bromide ([AyImC18]Br) and N-acryloyl-L-alanine sodium salt ([AAL]Na) ionic liquids (IL) monomers were synthesized. Subsequently, the bromide counteranion was exchanged with the 2-(acrylamido)propanoate organic counteranion by reacting the [AyImC18]Br with excess [AAL]Na in water. The obtained IL cation-anion monomer pair was then copolymerized on mercaptopropyl-modified silica (Sil-MPS) via a surface-initiated radical chain-transfer reaction. The selective retention behaviors of polycyclic aromatic hydrocarbons (PAHs), including some positional isomers, steroids, and nucleobases were investigated using the newly obtained Sil-poly(ImC18-AAL), and octadecyl silylated silica (ODS) was used as the reference column. Interesting results were obtained for the separation of PAHs, steroids, and nucleobases with the new organic phase. The results showed that the Sil-poly(ImC18-AAL) presented multiple noncovalent interactions, including hydrophobic, π-π, carbonyl-π, and ion-dipole interactions for the separation of PAHs and dipolar compounds. Only pure water was sufficient as the mobile phase for the separation of the nucleobases. Ten nucleosides and bases were separated, using only water as the mobile phase, within a very short time using the Sil-poly(ImC18-AAL), which is otherwise difficult to achieve using conventional hydrophobic columns such as ODS. The combination of electrostatic and hydrophobic interactions are important for the effective separation of such basic compounds without the use of any organic additive as the eluent on the Sil-poly(ImC18-AAL) column.

  18. Utilization of Ionic Liquids in Lignocellulose Biorefineries as Agents for Separation, Derivatization, Fractionation, or Pretreatment.

    Science.gov (United States)

    Peleteiro, Susana; Rivas, Sandra; Alonso, José L; Santos, Valentín; Parajó, Juan C

    2015-09-23

    Ionic liquids (ILs) can play multiple roles in lignocellulose biorefineries, including utilization as agents for the separation of selected compounds or as reaction media for processing lignocellulosic materials (LCM). Imidazolium-based ILs have been proposed for separating target components from LCM biorefinery streams, for example, the dehydration of ethanol-water mixtures or the extractive separation of biofuels (ethanol, butanol) or lactic acid from the respective fermentation broths. As in other industries, ILs are potentially suitable for removing volatile organic compounds or carbon dioxide from gaseous biorefinery effluents. On the other hand, cellulose dissolution in ILs allows homogeneous derivatization reactions to be carried out, opening new ways for product design or for improving the quality of the products. Imidazolium-based ILs are also suitable for processing native LCM, allowing the integral benefit of the feedstocks via separation of polysaccharides and lignin. Even strongly lignified materials can yield cellulose-enriched substrates highly susceptible to enzymatic hydrolysis upon ILs processing. Recent developments in enzymatic hydrolysis include the identification of ILs causing limited enzyme inhibition and the utilization of enzymes with improved performance in the presence of ILs.

  19. Chiral stationary phase optimized selectivity liquid chromatography: A strategy for the separation of chiral isomers.

    Science.gov (United States)

    Hegade, Ravindra Suryakant; De Beer, Maarten; Lynen, Frederic

    2017-09-15

    Chiral Stationary-Phase Optimized Selectivity Liquid Chromatography (SOSLC) is proposed as a tool to optimally separate mixtures of enantiomers on a set of commercially available coupled chiral columns. This approach allows for the prediction of the separation profiles on any possible combination of the chiral stationary phases based on a limited number of preliminary analyses, followed by automated selection of the optimal column combination. Both the isocratic and gradient SOSLC approach were implemented for prediction of the retention times for a mixture of 4 chiral pairs on all possible combinations of the 5 commercial chiral columns. Predictions in isocratic and gradient mode were performed with a commercially available and with an in-house developed Microsoft visual basic algorithm, respectively. Optimal predictions in the isocratic mode required the coupling of 4 columns whereby relative deviations between the predicted and experimental retention times ranged between 2 and 7%. Gradient predictions led to the coupling of 3 chiral columns allowing baseline separation of all solutes, whereby differences between predictions and experiments ranged between 0 and 12%. The methodology is a novel tool allowing optimizing the separation of mixtures of optical isomers. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Innovative in-line separators: removal of water or sand in oil/water and gas/liquid/solid pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Jepson, Paul; Cheolho Kang; Gopal, Madan [CC Technologies, Dublin, OH (United States)

    2003-07-01

    In oil and gas production, multiphase mixtures are often separated before downstream processing. The separators are large, often 20 - 40 feet long and large diameter and use sophisticated internals. The costs are in the millions of dollars. Further, the sand and water in the flow can cause severe internal erosion and corrosion respectively before the flow reaches the separators. The CC Technologies/MIST In line Separation System is a cost-effective, efficient device for use in multiphase environments. The device is applicable for gas/solid, gas/liquid/solid and oil/water systems and offers exceptional separation between phases for a fraction of the cost of expensive gravity separators and hydro cyclones. The System contains no moving parts and is designed to be of the same diameter as the pipe, and experiences low shear forces. It can be fabricated with standard pipes. The efficiency of the separator has been determined in an industrial scale, pilot plant test facility at CC Technologies in 4-inch diameter pipes and has been found to be in excess of 98-99% for the removal of sand. Two phase oil/water separation effectiveness is in excess of 90% in 1-stage and 95% in 2 - stage. (author)

  1. Separation and Quantitation of Polyamines in Plant Tissue by High Performance Liquid Chromatography of Their Dansyl Derivatives

    Science.gov (United States)

    Smith, Mary A.; Davies, Peter J.

    1985-01-01

    High performance liquid chromatography in combination with fluorescence spectrophotometry can be used to separate and quantitate polyamines (putrescine, cadaverine, spermidine, spermine), prepared as their dansyl derivatives, from plant tissue. The procedure gives sensitive and consistent results for polyamine determinations in plant tissue. In a standard mixture, the minimal detection level was less than 1 picomole of polyamines. PMID:16664216

  2. Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases.

    Science.gov (United States)

    Khater, Syame; Lozac'h, Marie-Anne; Adam, Isabelle; Francotte, Eric; West, Caroline

    2016-10-07

    Analysis and production of enantiomerically pure compounds is a major topic of interest when active pharmaceutical ingredients are concerned. Enantioselective chromatography has become a favourite both at the analytical and preparative scales. High-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) are dominating the scene and are often seen as complementary techniques. Nowadays, for economic and ecologic reasons, SFC may be preferred over normal-phase HPLC (NPLC) as it allows significant reductions in solvent consumption. However, the transfer of NPLC methods to SFC is not always straightforward. In this study, we compare the retention of achiral molecules and separation of enantiomers under supercritical fluid (carbon dioxide with ethanol or isopropanol) and liquid normal-phase (heptane with ethanol or isopropanol) elution modes with polysaccharide stationary phases in order to explore the differences between the retention and enantioseparation properties between the two modes. Chemometric methods (namely quantitative structure-retention relationships and discriminant analysis) are employed to compare the results obtained on a large set of analytes (171 achiral probes and 97 racemates) and gain some understanding on the retention and separation mechanisms. The results indicate that, contrary to popular belief, carbon dioxide - solvent SFC mobile phases are often weaker eluents than liquid mobile phases. It appears that SFC and NPLC elution modes provide different retention mechanisms. While some enantioseparations are unaffected, facilitating the transfer between the two elution modes, other enantioseparations may be drastically different due to different types and strength of interactions contributing to enantioselectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. R and D of On-line Reprocessing Technology for Molten-Salt Reactor Systems

    International Nuclear Information System (INIS)

    Uhlir, Jan; Tulackova, Radka; Chuchvalcova Bimova, Karolina

    2006-01-01

    The Molten Salt Reactor (MSR) represents one of promising future nuclear reactor concept included in the Generation IV reactors family. The reactor can be operated as the thorium breeder or as the actinide transmuter. However, the future deployment of Molten-Salt Reactors will be significantly dependent on the successful mastering of advanced reprocessing technologies dedicated to their fuel cycle. Here the on-line reprocessing technology connected with the fuel circuit of MSR is of special importance because the reactor cannot be operated for a long run without the fuel salt clean-up. Generally, main MSR reprocessing technologies are pyrochemical, majority of them are fluoride technologies. The proposed flow-sheets of MSR on-line reprocessing are based on a combination of molten-salt / liquid metal extraction and electro-separation processes, which can be added to the gas extraction process already verified during the MSRE project in ORNL. The crucial separation method proposed for partitioning of actinides from fission products is based on successive Anodic dissolution and Cathodic deposition processes in molten fluoride media. (authors)

  4. Experimental, theoretical and numerical interpretation of thermodiffusion separation for a non-associating binary mixture in liquid/porous layers

    International Nuclear Information System (INIS)

    Ahadi, Amirhossein; Jawad, H.; Saghir, M.Z.; Giraudet, C.; Croccolo, F.; Bataller, H.

    2014-01-01

    Thermodiffusion in a hydrocarbon binary mixture has been investigated experimentally and numerically in a liquid-porous cavity. The solutal separation of the 50% toluene and 50% n-hexane binary mixture induced by a temperature difference at atmospheric pressure has been performed in a new thermodiffusion cell. A new optimized cell design is used in this study. The inner part of the cell is a cylindrical porous medium sandwiched between two liquid layers of the same binary hydrocarbon mixture. Experimental measurement and theoretical estimation of the molecular diffusion and thermodiffusion coefficients showed a good agreement. In order to understand the different regimes occurring in the different parts of the cell, a full transient numerical simulation of the solutal separation of the binary mixture has been performed. Numerical results showed that the lighter species, which are of n-hexane migrated toward the hot surface, while the denser species, which is toluene migrated towards the cold surface. Also, it was found that a good agreement has been reached between experimental measurements and numerical calculations for the solutal separation between the hot and cold surface for different medium porosity. In addition, we used the numerical results to analyse convection and diffusion regions in the cell precisely. (authors)

  5. The role of ultrasound in controlling the liquid-liquid phase separation and nucleation of vanillin polymorphs I and II

    Science.gov (United States)

    Parimaladevi, P.; Supriya, S.; Srinivasan, K.

    2018-02-01

    The influence of ultrasound on liquid-liquid phase separation (LLPS) and polymorphism of vanillin in aqueous solution has been investigated for the first time by varying the ultrasonic parameters such as power, pulse rate and insonation time at ambient condition. Results reveal that the application of ultrasound controls the impact of LLPS and accelerates the nucleation of vanillin within a short period at lower levels of ultrasonic process parameters, and also enhances the quality of the nucleated crystals. Moreover, the application of ultrasound induces the nucleation of rare and metastable polymorph of vanillin Form II in aqueous solution. But, at higher levels of power, pulse rate and insonation time, the rate of LLPS is found increased and the quality of the crystals becomes deteriorated. Morphology of the nucleated polymorphs were identified through optical microscopy and confirmed by optical goniometry. The internal structure and thermal stability of the grown stable Form I and metastable Form II of vanillin were confirmed through powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) analyses. Further, results suggest that the ultrasound has profound effect in controlling the LLPS and nucleation of vanillin polymorphs in aqueous solution.

  6. Metastable Phase Separation and Concomitant Solute Redistribution of Liquid Fe-Cu-Sn Ternary Alloy

    International Nuclear Information System (INIS)

    Xiao-Mei, Zhang; Wei-Li, Wang; Ying, Ruan; Bing-Bo, Wei

    2010-01-01

    Liquid Fe-Cu-Sn ternary alloys with lower Sn contents are usually assumed to display a peritectic-type solidification process under equilibrium condition. Here we show that liquid Fe 47.5 Cu 47.5 Sn 5 ternary alloy exhibits a metastable immiscibility gap in the undercooling range of 51–329 K (0.19T L ). Macroscopic phase separation occurs once undercooling exceeds 196 K and causes the formation of a floating Fe-rich zone and a descending Cu-rich zone. Solute redistribution induces the depletion of Sn concentration in the Fe-rich zone and its enrichment in the Cu-rich zone. The primary Fe phase grows dendritically and its growth velocity increases with undercooling until the appearance of notable macrosegregation, but will decrease if undercooling further increases beyond 236 K. The microsegregation degrees of both solutes in Fe and Cu phases vary only slightly with undercooling. (condensed matter: structure, mechanical and thermal properties)

  7. Separation of cesium from intermediate level liquid radioactive waste by solvent extraction with antioxidants

    International Nuclear Information System (INIS)

    Gulis, G.

    1989-01-01

    Antioxidants AO 2246, AO 4, AO 4K, AO 301 (Czechoslovakia) and NOCRAC 2246 (Japan) were tested as extracting agents for the separation of cesiium by solvent extraction with substituted phenols. The following effects on extraction were studied: pH of water phase, influence of diluent and of antioxidant concentration, extraction time, influence of salt content. The extraction of cesium from liquid radioactive waste was tested. The best results were obtained by NOCRAC 2246 in nitrobenzene, the extraction efficiency was 92.3% with pH 13.23. (author) 7 refs.; 5 figs.; 4 tabs

  8. Sludge Water Characteristics Under Different Separation Methods from a Membrane Bioreactor

    KAUST Repository

    Wei, Chunhai

    2013-11-22

    The concept of sludge water was proposed to integrate the relative terminologies and its characteristics under different separation methods from a membrane bioreactor (MBR) were investigated in this study. Based on chemical oxygen demand (COD) and three-dimensional fluorescence excitation-emission matrix (F-EEM), and compared with the control (gravitational sedimentation), some suspended particulate organics or biopolymer clusters (mainly proteins) were released from sludge flocs into the supernatant after centrifugation under low to middle centrifugal forces (10-4000 g) and then aggregated into a pellet under high centrifugal forces (10000-20000 g). Filtration (1.2 μm glass fiber filter) produced sludge water with a lower biopolymers concentration than the control (gravitational sedimentation followed by filtration) due to cake layer formation during filtration. As for centrifugation followed by filtration, low to middle centrifugal forces did not significantly affect sludge water characteristics but high centrifugal forces reduced the concentrations of some proteins in sludge water from advanced analytical protocols including F-EEM and liquid chromatography with on-line organic carbon detection (LC-OCD), demonstrating a low to middle centrifugal force suitable for MBR sludge water separation. From LC-OCD, the main fractions of sludge water were humic substances and building blocks, low molecular weight neutrals and biopolymers (mainly proteins rather than polysaccharides). Supplemental materials are available for this article. Go to the publisher\\'s online edition of Separation Science and Technology to view the supplemental file. © 2013 Copyright Taylor and Francis Group, LLC.

  9. Sludge Water Characteristics Under Different Separation Methods from a Membrane Bioreactor

    KAUST Repository

    Wei, Chunhai; Amy, Gary L.

    2013-01-01

    The concept of sludge water was proposed to integrate the relative terminologies and its characteristics under different separation methods from a membrane bioreactor (MBR) were investigated in this study. Based on chemical oxygen demand (COD) and three-dimensional fluorescence excitation-emission matrix (F-EEM), and compared with the control (gravitational sedimentation), some suspended particulate organics or biopolymer clusters (mainly proteins) were released from sludge flocs into the supernatant after centrifugation under low to middle centrifugal forces (10-4000 g) and then aggregated into a pellet under high centrifugal forces (10000-20000 g). Filtration (1.2 μm glass fiber filter) produced sludge water with a lower biopolymers concentration than the control (gravitational sedimentation followed by filtration) due to cake layer formation during filtration. As for centrifugation followed by filtration, low to middle centrifugal forces did not significantly affect sludge water characteristics but high centrifugal forces reduced the concentrations of some proteins in sludge water from advanced analytical protocols including F-EEM and liquid chromatography with on-line organic carbon detection (LC-OCD), demonstrating a low to middle centrifugal force suitable for MBR sludge water separation. From LC-OCD, the main fractions of sludge water were humic substances and building blocks, low molecular weight neutrals and biopolymers (mainly proteins rather than polysaccharides). Supplemental materials are available for this article. Go to the publisher's online edition of Separation Science and Technology to view the supplemental file. © 2013 Copyright Taylor and Francis Group, LLC.

  10. Pig slurry acidification and separation techniques affect soil N and C turnover and N2O emissions from solid, liquid and biochar fractions

    DEFF Research Database (Denmark)

    Gomez Muñoz, Beatriz; Case, Sean; Jensen, Lars Stoumann

    2016-01-01

    the separated solid fractions in soil, but did not affect N2O and CO2 emissions. However acidification reduced soil N and C turnover from the liquid fraction. The use of more advanced separation techniques (flocculation and drainage > decanting centrifuge > screw press) increased N mineralisation from acidified...... solid fractions, but also increased N2O and CO2 emissions in soil amended with the liquid fraction. Finally, the biochar production from the solid fraction of pig slurry resulted in a very recalcitrant material, which reduced N and C mineralisation in soil compared to the raw solid fractions....

  11. Method of separation of uranium from contaminating ions in an aqueous feed liquid containing uranyl ions

    International Nuclear Information System (INIS)

    Sundar, P.S.; Elikan, L.; Lyon, W.L.

    1975-01-01

    A coupled cationic/anionic method for the separation of uranium from contaminated aqueous solutions which contain uranyl ions is proposed. The fluid is extracted using an organic solvent containing a reagent which, together with the uranyl ions, forms a soluble aggregate in that solvent. As an example, 0.1 - 1 Mol/l Di-2-ethyl-hexyl-phosphorous acid in kerosene is mentioned. The organic solvent is then treated with a sealing liquid (volume ratio 20 - 35). For separation, an aqueous carbonate solution or a sulfuric acid solution can be used; the most favorable pH-values and concentrations for both cases are mentioned. The U +4 -ion at the sulfuric acid separation is subsequently oxidized to the uranyl ion with air. In each case, an extraction with an amine follows; after that, the amine is separated using an ammonium-carbonate solution and the uranium aggregate is precipitated, for example as ammonium uranyl tricarbonate, and then further processed to uranium oxide. The solvents and fluids used are led back in closed circuit; a flow diagram is given. (UWI) [de

  12. A tale of gastric layering and sieving: Gastric emptying of a liquid meal with water blended in or consumed separately.

    Science.gov (United States)

    Camps, Guido; Mars, Monica; de Graaf, Cees; Smeets, Paul A M

    2017-07-01

    The process of gastric emptying determines how fast gastric content is delivered to the small intestine. It has been shown that solids empty slower than liquids and that a blended soup empties slower than the same soup as broth and chunks, due to the liquid fraction emptying more quickly. This process of 'gastric sieving' has not been investigated for liquid foods. To determine whether gastric sieving of water can also occur for liquid foods. Two groups of men participated in a parallel design (n=15, age 22.6±2.4y, BMI 22.6±1.8kg/m 2 , and n=19, age 22.2±2.5y, BMI 21.8±1.5kg/m 2 ) and consumed an isocaloric shake (2093kJ, CARBOHYDRATES: 71g, FAT: 18g, PROTEIN: 34g), either in a 500-mL version (MIXED) or as a 150-mL shake followed by 350mL water (SEPARATE). Participants provided appetite ratings and were scanned using MRI to determine gastric emptying rate and volume at three time-points within 35min post ingestion. Gastric emptying the percentage emptied in 35min was significantly smaller for MIXED (29±19%) than for SEPARATE (57±11%, p<0.001). In the present study we show that gastric sieving can occur for liquid foods; water is able to drain from the stomach while a layer of nutrient rich liquid is retained. In indirect gastric emptying measurements, the behavior of labelling agents may be affected by the layering and confound emptying measurements. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. In-Depth Characterization of Protein Disulfide Bonds by Online Liquid Chromatography-Electrochemistry-Mass Spectrometry

    Science.gov (United States)

    Switzar, Linda; Nicolardi, Simone; Rutten, Julie W.; Oberstein, Saskia A. J. Lesnik; Aartsma-Rus, Annemieke; van der Burgt, Yuri E. M.

    2016-01-01

    Disulfide bonds are an important class of protein post-translational modifications, yet this structurally crucial modification type is commonly overlooked in mass spectrometry (MS)-based proteomics approaches. Recently, the benefits of online electrochemistry-assisted reduction of protein S-S bonds prior to MS analysis were exemplified by successful characterization of disulfide bonds in peptides and small proteins. In the current study, we have combined liquid chromatography (LC) with electrochemistry (EC) and mass analysis by Fourier transform ion cyclotron resonance (FTICR) MS in an online LC-EC-MS platform to characterize protein disulfide bonds in a bottom-up proteomics workflow. A key advantage of a LC-based strategy is the use of the retention time in identifying both intra- and interpeptide disulfide bonds. This is demonstrated by performing two sequential analyses of a certain protein digest, once without and once with electrochemical reduction. In this way, the "parent" disulfide-linked peptide detected in the first run has a retention time-based correlation with the EC-reduced peptides detected in the second run, thus simplifying disulfide bond mapping. Using this platform, both inter- and intra-disulfide-linked peptides were characterized in two different proteins, ß-lactoglobulin and ribonuclease B. In order to prevent disulfide reshuffling during the digestion process, proteins were digested at a relatively low pH, using (a combination of) the high specificity proteases trypsin and Glu-C. With this approach, disulfide bonds in ß-lactoglobulin and ribonuclease B were comprehensively identified and localized, showing that online LC-EC-MS is a useful tool for the characterization of protein disulfide bonds.

  14. Distillation Separation of Hydrofluoric Acid and Nitric Acid from Acid Waste Using the Salt Effect on Vapor-Liquid Equilibrium

    Science.gov (United States)

    Yamamoto, Hideki; Sumoge, Iwao

    2011-03-01

    This study presents the distillation separation of hydrofluoric acid with use of the salt effect on the vapor-liquid equilibrium for acid aqueous solutions and acid mixtures. The vapor-liquid equilibrium of hydrofluoric acid + salt systems (fluorite, potassium nitrate, cesium nitrate) was measured using an apparatus made of perfluoro alkylvinylether. Cesium nitrate showed a salting-out effect on the vapor-liquid equilibrium of the hydrofluoric acid-water system. Fluorite and potassium nitrate showed a salting-in effect on the hydrofluoric acid-water system. Separation of hydrofluoric acid from an acid mixture containing nitric acid and hydrofluoric acid was tested by the simple distillation treatment using the salt effect of cesium nitrate (45 mass%). An acid mixture of nitric acid (5.0 mol · dm-3) and hydrofluoric acid (5.0 mol · dm-3) was prepared as a sample solution for distillation tests. The concentration of nitric acid in the first distillate decreased from 5.0 mol · dm-3 to 1.13 mol · dm-3, and the concentration of hydrofluoric acid increased to 5.41 mol · dm-3. This first distillate was further distilled without the addition of salt. The concentrations of hydrofluoric acid and nitric acid in the second distillate were 7.21 mol · dm-3 and 0.46 mol · dm-3, respectively. It was thus found that the salt effect on vapor-liquid equilibrium of acid mixtures was effective for the recycling of acids from acid mixture wastes.

  15. Determination of Niacinamide in Lotions and Creams Using Liquid-Liquid Extraction and High-Performance Liquid Chromatography

    Science.gov (United States)

    Usher, Karyn M.; Simmons, Carolyn R.; Keating, Daniel W.; Rossi, Henry F., III

    2015-01-01

    Chemical separations are an important part of an undergraduate chemistry curriculum. Sophomore students often get experience with liquid-liquid extraction in organic chemistry classes, but liquid-liquid extraction is not as often introduced as a quantitative sample preparation method in honors general chemistry or quantitative analysis classes.…

  16. [Separation and determination of eight plant hormones by reversed-phase high performance liquid chromatography].

    Science.gov (United States)

    Fang, N; Hou, S; Shao, X; He, Y; Zhao, G

    1998-09-01

    In this paper, reversed-phase high performance liquid chromatographic technique was used for the separation and determination of eight plant hormones. Methanol-water-acetic acid system was chosen as the mobile phase. The effects of different separation conditions, such as the methanol and acetic acid concentrations in mobile phase, on the retention behaviours of eight plant hormones in this system were studied. The general trends in retention behaviours could be correlated to the methanol concentration in mobile phase. The experimental results showed that the optimum separation was achieved with following gradient elution condition: 0-3 minutes, 70% (water percentage in mobile phase), 3-13 minutes, 70%-20%, 13-48 minutes, 20%. Benzene was added to be as the internal standard. Under this experimental condition, the eight plant hormones could be separated completely and detected quantitatively at 260 nm within 16 minutes. The calibration curves for the eight compounds gave linearity over a wide range. The correlation coefficients of each components were r(ZT) = 0.9971, r(GAs) = 0.9999, r(K) = 0.9997, r(BA) = 0.9995, r(IAA) = 0.9998, r(IPA) = 0.9982, r(IBA) = 0.9995 and r(NAA) = 0.9995. The method is rapid, simple and efficient. It is a suitable method for the accurate determination of gibberellic acid (GA) and alpha-naphthaleneacetic acid (alpha-NAA) in products for agricultural use.

  17. Validation of a high performance liquid chromatography analysis for the determination of noradrenaline and adrenaline in human urine with an on-line sample purification

    DEFF Research Database (Denmark)

    Hansen, Åse Marie; Kristiansen, J; Nielsen, J L

    1999-01-01

    A high performance liquid chromatography (HPLC) method with fluorescence detection including an on-line purification was established for determination of catecholamines in human urine. The method was evaluated using samples of pooled urine spiked with catecholamines and validated for measurements...

  18. [Simultaneous determination of vitamins A, D3 and E in infant formula and adult nutritions by online two-dimensional liquid chromatography].

    Science.gov (United States)

    Zhang, Yanhai; Qibule, Hasi; Jin, Yan; Wang, Jia; Ma, Wenli

    2015-03-01

    A rapid method for the simultaneous determination of vitamins A, D3 and E in infant formula and adult nutritions has been developed using online two-dimensional liquid chromatography (2D-LC). First of all, C8 and polar embedded C18 columns were chosen as the first and second dimensional column respectively according to hydrophobic-subtraction model, which constituted excellent orthogonal separation system. The detection wavelengths were set at 263 nm for vitamin D3, 296 nm for vitamin E and 325 nm for vitamin A. The purification of vitamin D3 and quantifications of vitamins A and E were completed simultaneously in the first dimensional separation using the left pump of Dual Gradient LC (DGLC) with methanol, acetonitrile and water as mobile phases. The heart-cutting time window of vitamin D3 was confirmed according to the retention time of vitamin D3 in the first dimensional separation. The elute from the first dimensional column (1-D column) which contained vitamin D3 was collected by a 500 µL sample loop and then taken into the second dimensional column (2-D column) by the right pump of DGLC with methanol, acetonitrile and water as mobile phases. The quantification of vitamin D3 was performed in the second dimensional separation with vitamin D2 as internal standard. At last, this method was applied for the analysis of the three vitamins in milk powder, cheese and yogurt. The injected sample solution with no further purification was pre-treated by hot-saponification using 1. 25 kg/L KOH solution and extracted by petroleum ether solvent. The recoveries of vitamin D3 spiked in all samples were 75.50%-85.00%. There was no statistically significant difference for the results between this method and standard method through t-test. The results indicate that vitamins A, D3 and E in infant formula and adult fortified dairy can be determined rapidly and accurately with this method.

  19. Device for separating ruthenium ion from spent fuel material

    International Nuclear Information System (INIS)

    Izumida, Tatsuo; Sasahira, Akira; Ozawa, Yoshihiro; Kawamura, Fumio.

    1988-01-01

    Purpose: To separate plutonium ions efficiently and selectively from organic solvent containing tributyl phosphate used in the main step of reprocessing process. Constitution: The device comprises, as the main constituent factor, a liquid-liquid contact device for bringing not water soluble organic solvent into contact with a nitric acid solution of spent fuel substances and a liquid-liquid contact-separation device for bringing an organic solvent solution containing spent fuel substances separated with nitric acid into contact again with nitric acid. Then, a device is disposed between two liquid-liquid contact devices for staying ruthenium ions and organic solvent for a sufficient time. In this way, ruthenium ions in the organic solvent containing butyl phosphate are gradually converted into complex compounds combined with tributyl phosphate thereby enabling to separate ruthenium ions efficiently and remarkably reduce the corrosion of equipments. (Horiuchi, T.)

  20. Gas-liquid reactor / separator: dynamics and operability characteristics

    NARCIS (Netherlands)

    Ranade, V.; Kuipers, J.A.M.; Versteeg, Geert

    1999-01-01

    A comprehensive mathematical model is developed to simulate gas¿liquid reactor in which both, reactants as well as products enter or leave the reactor in gas phase while the reactions take place in liquid phase. A case of first-order reaction (isothermal) was investigated in detail using the dynamic

  1. A new system for complete separation of 3He and T2 composed of a falling liquid film condenser and a cryogenic distillation column with a feedback stream

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro; Bartlit, J.R.; Sherman, R.H.

    1982-11-01

    A new system composed of a falling liquid film condenser and a cryogenic distillation column with a feedback stream, is developed for complete separation of 3 He and T 2 . For accomplishment of the separation, a sufficient flow rate of protium is added to the feed mixture. The resultant stream of 3 He, H 2 , HT and T 2 is fed to the falling liquid film condenser, and 3 He is removed almost completely. The H-T mixture from the bottom of the falling liquid film condenser is further processed by the cryogenic distillation column for complete separation of protium and tritium. The tritium recovery percentage of the system is 100%, and the two top streams can be transferred to a tritium waste treatment system. (author)

  2. A high pressure liquid chromatography method for separation of prolactin forms.

    Science.gov (United States)

    Bell, Damon A; Hoad, Kirsten; Leong, Lillian; Bakar, Juwaini Abu; Sheehan, Paul; Vasikaran, Samuel D

    2012-05-01

    Prolactin has multiple forms and macroprolactin, which is thought not to be bioavailable, can cause a raised serum prolactin concentration. Gel filtration chromatography (GFC) is currently the gold standard method for separating macroprolactin, but is labour-intensive. Polyethylene glycol (PEG) precipitation is suitable for routine use but may not always be accurate. We developed a high pressure liquid chromatography (HPLC) assay for macroprolactin measurement. Chromatography was carried out using an Agilent Zorbax GF-250 (9.4 × 250 mm, 4 μm) size exclusion column and 50 mmol/L Tris buffer with 0.15 mmol/L NaCl at pH 7.2 as mobile phase, with a flow rate of 1 mL/min. Serum or plasma was diluted 1:1 with mobile phase and filtered and 100 μL injected. Fractions of 155 μL were collected for prolactin measurement and elution profile plotted. The area under the curve of each prolactin peak was calculated to quantify each prolactin form, and compared with GFC. Clear separation of monomeric-, big- and macroprolactin forms was achieved. Quantification was comparable to GFC and precision was acceptable. Total time from injection to collection of the final fraction was 16 min. We have developed an HPLC method for quantification of macroprolactin, which is rapid and easy to perform and therefore can be used for routine measurement.

  3. Determination of phenols by flow injection and liquid chromatography with on-line quinine-sensitized photo-oxidation and quenched luminol chemiluminescence detection

    International Nuclear Information System (INIS)

    Zhang Wei; Danielson, Neil D.

    2003-01-01

    An on-line quinine-sensitized photo-oxidation with quenched chemiluminescence (CL) detection method is developed for phenols using flow injection (FI) and liquid chromatography (LC). This detection method is based on the decrease of light emission from the luminol CL reaction due to the photo-oxidation of phenols that scavenge the photogenerated reactive oxygen species (e.g. singlet oxygen ( 1 O 2 ) and superoxide (O 2 · - )). On-line photo-oxidation is achieved using a coil photo-reactor made from fluoroethylene-propylene copolymer tubing (3048 mmx0.25 mm i.d.) coiled around a mercury UV lamp. A buffer of pH 7 and a concentration of 350 μM for quinine sulfate are determined optimum for the sensitized photo-oxidation. Using a carrier system flow rate of 60 μl/min, calibration curves taken by FI for 10 phenolic compounds in aqueous solutions showed this decreasing sensitivity order: 4-chlorophenol, phenol, 4-nitrophenol, 3-hydroxy-L-kynurenine, 2-nitrophenol, salicylate, 3-nitrophenol, catechol, 2,4-dinitrophenol, and 2,4-dichlorophenol. This detection method using two tandem coil photo-reactors is also applied for the LC separation of phenol, 4-nitrophenol and 4-chlorophenol on an octadecyl (C18) silica LC column using acetonitrile-H 2 O (40:60, v/v) as a mobile phase. The quenched CL detection limits (about 1 μM or 20 pmol) for phenol and 4-chlorophenol are comparable to those for UV detection at 254 nm. Some selectivity in the quenched CL detection is evident by no interference in the FI phenol response even when benzaldehyde and phenethanol concentrations are 8 and 15 times that of phenol

  4. Easy fabrication and high electrochemical capacitive performance of hierarchical porous carbon by a method combining liquid-liquid phase separation and pyrolysis process

    International Nuclear Information System (INIS)

    Fan, Hui-li; Ran, Fen; Zhang, Xuan-xuan; Song, Hai-ming; Jing, Wen-xia; Shen, Kui-wen; Kong, Ling-bin; Kang, Long

    2014-01-01

    A hierarchical porous carbon membrane was designed and prepared through a method combining liquid-liquid phase separation and then pyrolysis process using polyacrylonitrile (PAN) as precursor. The results of scan electron microscopy, transmission electron microscope and Brunauer-Emmett-Teller characterization reveal that the 3D nanoscaled architecture with hierarchical porous structure was achieved, which not only provide a continuous electron pathway to ensure good electrical contact, but also facilitate ion transport by shortening diffusion pathways. The effect of PAN concentration in casting solution on structure feature of carbon membrane was also studied, indicating that the membrane thickness with different porous structure can be mediated by PAN concentration. As the electrode material for supercapacitor, a high specific capacitance of 277.0 F g −1 was attained at a current density of 5 mA cm −2 and long cycle life of 90.0% capacity retention was obtained after 2000 charge-discharge cycles in 2 mol L −1 KOH solution

  5. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xianlai; Li, Jinhui, E-mail: jinhui@tsinghua.edu.cn

    2014-04-01

    Highlights: • Manual dismantling is superior in spent high-power LiBs recycling. • Heated ionic liquid can effectively separate Al and cathode materials. • Fourier’s law was adopted to determine the heat transfer mechanism. • The process of spent LiBs recycling with heated ionic liquid dismantling was proposed. - Abstract: Because of the increasing number of electric vehicles, there is an urgent need for effective recycling technologies to recapture the significant amount of valuable metals contained in spent lithium-ion batteries (LiBs). Previous studies have indicated, however, that Al and cathode materials were quite difficult to separate due to the strong binding force supplied by the polyvinylidene fluoride (PVDF), which was employed to bind cathode materials and Al foil. This research devoted to seek a new method of melting the PVDF binder with heated ionic liquid (IL) to separate Al foil and cathode materials from the spent high-power LiBs. Theoretical analysis based on Fourier’s law was adopted to determine the heat transfer mechanism of cathode material and to examine the relationship between heating temperature and retention time. All the experimental and theoretic results show that peel-off rate of cathode materials from Al foil could reach 99% when major process parameters were controlled at 180 °C heating temperature, 300 rpm agitator rotation, and 25 min retention time. The results further imply that the application of IL for recycling Al foil and cathode materials from spent high-power LiBs is highly efficient, regardless of the application source of the LiBs or the types of cathode material. This study endeavors to make a contribution to an environmentally sound and economically viable solution to the challenge of spent LiB recycling.

  6. A high-performance liquid chromatography-based radiometric assay for acyl-CoA:alcohol transacylase from jojoba.

    Science.gov (United States)

    Garver, W S; Kemp, J D; Kuehn, G D

    1992-12-01

    Acyl-CoA:alcohol transacylase catalyzes the final step in the biosynthesis of storage liquid wax esters from acyl-CoA fatty acids and fatty alcohols in a limited number of microbes, algae, and Simmondsia chinensis Link (jojoba). An improved and automated method of enzyme assay for this catalyst from cotyledons of jojoba is described. The assay method uses reversed-phase C18 high performance liquid chromatography (HPLC) to separate the labeled C30:1 liquid wax product, [14C]-dodecanyl-octadecenoate, from the unreacted substrate, [14C]octadecenoyl-CoA (oleyl-CoA), and other components produced from enzymes present in the crude homogenate of jojoba cotyledons, including [14C]-octadecenoic acid (oleic acid) and [14C]octadecenol (oleyol). Methods are also described for microscale chemical synthesis in one vessel of 14C-radiolabeled substrates and products for the transacylase. These labeled reagents are required to confirm the HPLC separations of reaction products. The radioactive components are quantitated using an on-line flow-through scintillation detector enabling sensitive and precise analysis of the reaction products.

  7. Separation and quantitation of polyethylene glycols 400 and 3350 from human urine by high-performance liquid chromatography.

    Science.gov (United States)

    Ryan, C M; Yarmush, M L; Tompkins, R G

    1992-04-01

    Polyethylene glycol 3350 (PEG 3350) is useful as an orally administered probe to measure in vivo intestinal permeability to macromolecules. Previous methods to detect polyethylene glycol (PEG) excreted in the urine have been hampered by inherent inaccuracies associated with liquid-liquid extraction and turbidimetric analysis. For accurate quantitation by previous methods, radioactive labels were required. This paper describes a method to separate and quantitate PEG 3350 and PEG 400 in human urine that is independent of radioactive labels and is accurate in clinical practice. The method uses sized regenerated cellulose membranes and mixed ion-exchange resin for sample preparation and high-performance liquid chromatography with refractive index detection for analysis. The 24-h excretion for normal individuals after an oral dose of 40 g of PEG 3350 and 5 g of PEG 400 was 0.12 +/- 0.04% of the original dose of PEG 3350 and 26.3 +/- 5.1% of the original dose of PEG 400.

  8. Integration process of fermentation and liquid biphasic flotation for lipase separation from Burkholderia cepacia.

    Science.gov (United States)

    Sankaran, Revathy; Show, Pau Loke; Lee, Sze Ying; Yap, Yee Jiun; Ling, Tau Chuan

    2018-02-01

    Liquid Biphasic Flotation (LBF) is an advanced recovery method that has been effectively applied for biomolecules extraction. The objective of this investigation is to incorporate the fermentation and extraction process of lipase from Burkholderia cepacia using flotation system. Initial study was conducted to compare the performance of bacteria growth and lipase production using flotation and shaker system. From the results obtained, bacteria shows quicker growth and high lipase yield via flotation system. Integration process for lipase separation was investigated and the result showed high efficiency reaching 92.29% and yield of 95.73%. Upscaling of the flotation system exhibited consistent result with the lab-scale which are 89.53% efficiency and 93.82% yield. The combination of upstream and downstream processes in a single system enables the acceleration of product formation, improves the product yield and facilitates downstream processing. This integration system demonstrated its potential for biomolecules fermentation and separation that possibly open new opportunities for industrial production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Parallel artificial liquid membrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Rasmussen, Knut Einar; Parmer, Marthe Petrine

    2013-01-01

    This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated by an arti......This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated...... by an artificial liquid membrane. Parallel artificial liquid membrane extraction is a modification of hollow-fiber liquid-phase microextraction, where the hollow fibers are replaced by flat membranes in a 96-well plate format....

  10. Separation system

    International Nuclear Information System (INIS)

    Rubin, L.S.

    1986-01-01

    A disposal container is described for use in disposal of radioactive waste materials consisting of: top wall structure, bottom wall structure, and circumferential side wall structure interconnecting the top and bottom wall structures to define an enclosed container, separation structure in the container adjacent the inner surface of the side wall structure for allowing passage of liquid and retention of solids, inlet port structure in the top wall structure, discharge port structure at the periphery of the container in communication with the outer surface of the separation structure for receiving liquid that passes through the separation structure, first centrifugally actuated valve structure having a normal position closing the inlet port structure and a centrifugally actuated position opening the inlet port structure, second centrifugally actuated valve structure having a normal position closing the discharge port structure and a centrifugally actuated position opening the discharge port structure, and coupling structure integral with wall structure of the container for releasable engagement with centrifugal drive structure

  11. Rotational particle separator: A new method for separating fine particles and mist from gases

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    1996-01-01

    An account is given of the patented technique of the rotational particle separator for separating solid and liquid particles of diameter 0.1 µm and larger from gases. Attention is focused on the working principle, fluid mechanical constraints, particle design, separation performance, power

  12. Rotational particle separator: A new method for separating fine particles and mists from gases

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    1996-01-01

    An account is given of the patented technique of the rotational particle separator for separating solid and liquid particles of diameter 0.1 µm and larger from gases. Attention is focussed on the working principle, fluid mechanical constraints, practical designs, separation performance, power

  13. Onward treatment of irradiated liquid egg: Detection in sponge cake mixture after baking by means of LC-GC-MS

    International Nuclear Information System (INIS)

    Grabowski, H.U. von; Schulzki, G.; Pfordt, J.; Spiegelberg, A.; Helle, N.; Boegl, K.W.; Schreiber, G.A.

    1993-01-01

    Irradiated whole liquid egg used for preparation of sponge cake could be identified using gaschromatographic/mass spectrometric detection of the radiation induced hydrocarbons for doses from 1 kGy. Separation of the hydrocarbons out of the fat was carried out by HPLC coupled on-line to the GC. That means, for the first time an irradiated component of a heat treated food could be detected. (orig.) [de

  14. Isocele I, the Orsay synchrocyclotron on-line separator

    International Nuclear Information System (INIS)

    Caruette, A.; Ferro, A.; Foucher, R.

    1976-01-01

    The main characteristics of the isotope separator Isocele 1 are described. This medium current separator was on line with the Orsay synchrocyclotron (155 MeV p, or 210 MeV 3 He) from March 1974 up to May 1975. Results obtained with different targets (Au, Bi, Er, Pt, Sn, Th) are summarized. They confirm the efficiency of medium current separators of this type [fr

  15. [Separation and identification of bovine lactoferricin by high performance liquid chromatography-matrix-assisted laser desorption/ionization time of flight/ time of flight mass spectrometry].

    Science.gov (United States)

    An, Meichen; Liu, Ning

    2010-02-01

    A high performance liquid chromatography-matrix-assisted laser desorption/ionization time of flight/time of flight mass spectrometry (HPLC-MALDI-TOF/TOF MS) method was developed for the separation and identification of bovine lactoferricin (LfcinB). Bovine lactoferrin was hydrolyzed by pepsin and then separated by ion exchange chromatography and reversed-phase liquid chromatography (RP-LC). The antibacterial activities of the fractions from RP-LC separation were determined and the protein concentration of the fraction with the highest activity was measured, whose sequence was indentified by MALDI-TOF/TOF MS. The relative molecular mass of LfcinB was 3 124.89 and the protein concentration was 18.20 microg/mL. The method of producing LfcinB proposed in this study has fast speed, high accuracy and high resolution.

  16. Application of on-line HPLC-ICP-MS for the determination of the nuclide abundances of lanthanides produced via spallation reactions in an irradiated tantalum target of a spallation neutron source

    International Nuclear Information System (INIS)

    Kerl, W.; Becker, J.S.; Dietze, H.J.

    1998-01-01

    An analytical procedure has been developed for the determination of spallation nuclides in an irradiated tantalum target using HPLC coupled on-line to ICP-MS after dissolution and separation of the tantalum matrix. Pieces of tantalum were taken from different locations of the irradiated tantalum target which had been used as the target material in a spallation neutron source. Tantalum was dissolved in a HNO 3 /HF mixture and the tantalum matrix was separated by liquid-liquid extraction so that only the spallation nuclides were left in the sample solutions. The major fraction of the spallation nuclides in the tantalum target are lanthanide metals in the μg g -1 concentration range determined in the present study. Additional reaction products are formed by the irradiation of trace impurities in the original tantalum target. The nuclide abundances of the lanthanide metals measured in the tantalum target differ significantly from the natural isotopic composition so that a lot of isobaric interferences of long-lived radionuclides and stable isotopes in the mass spectrum are to be expected. Therefore, all the lanthanide metals had to be separated chemically prior to their mass spectrometric determination. The separation of all rare earth elements was performed by ion chromatography on-line to ICP-MS. The nuclide abundances of each lanthanide were determined using a sensitive double-focusing sector field inductively coupled plasma mass spectrometer. The nuclide abundances of the lanthanides in the irradiated tantalum target calculated theoretically and the experimental results obtained by on-line HPLC-ICP-MS proved to be in good agreement. (orig.)

  17. Molecular and Thermodynamic Properties of Zwitterions versus Ionic Liquids: A Comprehensive Computational Analysis to Develop Advanced Separation Processes.

    Science.gov (United States)

    Moreno, Daniel; Gonzalez-Miquel, Maria; Ferro, Victor R; Palomar, Jose

    2018-04-05

    Zwitterion ionic liquids (ZIs) are compounds in which both counterions are covalently tethered, conferring them with unique characteristics; however, most of their properties are still unknown, representing a bottleneck to exploit their practical applications. Herein, the molecular and fluid properties of ZIs and their mixtures were explored by means of quantum chemical analysis based on the density functional theory (DFT) and COSMO-RS method, and compared against homologous ionic liquids (ILs) to provide a comprehensive overview of the effect of the distinct structures on their physicochemical and thermodynamic behavior. Overall, ZIs were revealed as compounds with higher polarity and stronger hydrogen-bonding capacity, implying higher density, viscosity, melting point, and even lower volatility than structurally similar ILs. The phase equilibrium of binary and ternary systems supports stronger attractive interactions between ZIs and polar compounds, whereas higher liquid-liquid immiscibility with nonpolar compounds may be expected. Ultimately, the performance of ZIs in the wider context of separation processes is illustrated, while providing molecular insights to allow their selection and design for relevant applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Microbubble Distillation for Ethanol-Water Separation

    Directory of Open Access Journals (Sweden)

    Atheer Al-yaqoobi

    2016-01-01

    Full Text Available In the current study, a novel approach for separating ethanol-water mixture by microbubble distillation technology was investigated. Traditional distillation processes require large amounts of energy to raise the liquid to its boiling point to effect removal of volatile components. The concept of microbubble distillation by comparison is to heat the gas phase rather than the liquid phase to achieve separation. The removal of ethanol from the thermally sensitive fermentation broths was taken as a case of study. Consequently the results were then compared with those which could be obtained under equilibrium conditions expected in an “ideal” distillation unit. Microbubble distillation has achieved vapour compositions higher than that which could be obtained under traditional equilibrium conditions. The separation was achieved at liquid temperature significantly less than the boiling point of the mixture. In addition, it was observed that the separation efficiency of the microbubble distillation could be increased by raising the injected air temperature, while the temperature of the liquid mixture increased only moderately. The separation efficiency of microbubble distillation was compared with that of pervaporation for the recovery of bioethanol from the thermally sensitive fermentation broths. The technology could be controlled to give high separation and energy efficiency. This could contribute to improving commercial viability of biofuel production and other coproducts of biorefinery processing.

  19. DEVELOPMENT OF AN ON-LINE, REAL-TIME ALPHA RADIATION MEASURING INSTRUMENT FOR LIQUID STREAMS

    International Nuclear Information System (INIS)

    1996-01-01

    The Department of Energy (DOE) has expressed a need for an on-line, real-time instrument for assaying alpha-emitting radionuclides (uranium and the transuranics) in effluent waters leaving DOE sites to ensure compliance with regulatory limits. Due to the short range of alpha particles in water (approximately40 Tm), it is necessary now to intermittently collect samples of water and send them to a central laboratory for analysis. A lengthy and costly procedure is used to separate and measure the radionuclides from each sample. Large variations in radionuclide concentrations in the water may go undetected due to the sporadic sampling. Even when detected, the reading may not be representative of the actual stream concentration. To address these issues, Tecogen, a division of Thermo Power Corporation, a Thermo Electron company, is developing a real-time, field-deployable, alpha monitor based on a solid-state silicon wafer semiconductor (patent pending, to be assigned to the Department of Energy). The Thermo Alpha Monitor (TAM) will serve to monitor effluent water streams (Subsurface Contaminants Focus Area) and will be suitable for process control of remediation as well as decontamination and decommissioning operations, such as monitoring scrubber or rinse water radioactivity levels (Mixed Waste Focus Area and D and D Focus Area). It would be applicable for assaying other liquids, such as oil, or solids after proper preconditioning. Rapid isotopic alpha air monitoring is also possible using this technology. This instrument for direct counting of alpha-emitters in aqueous streams is presently being developed by Thermo Power under a development program funded by the DOE Environmental Management program (DOE-EM), administered by the Morgantown Energy Technology Center (METC). Under this contract, Thermo Power has demonstrated a solid-state, silicon-based semiconductor instrument, which uses a proprietary film-based collection system to quantitatively extract the

  20. Post-synthetic modification of MIL-101(Cr) with pyridine for high-performance liquid chromatographic separation of tocopherols.

    Science.gov (United States)

    Yang, Fang; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2015-05-01

    Effective separation of tocopherols is challenging and significant due to their structural similarity and important biological role. Here we report the post-synthetic modification of metal-organic framework (MOF) MIL-101(Cr) with pyridine for high-performance liquid chromatographic (HPLC) separation of tocopherols. Baseline separation of four tocopherols was achieved on a pyridine-grafted MIL-101(Cr) packed column within 10 min using hexane/isopropanol (96:4, v/v) as the mobile phase at a flow rate of 0.5 mL min(-1). The pyridine-grafted MIL-101(Cr) packed column gave high column efficiency (85,000 plates m(-1) for δ-tocopherol) and good precision (0.2-0.3% for retention time, 1.8-3.4% for peak area, 2.6-2.7% for peak height), and also offered much better performance than unmodified MIL-101(Cr) and commercial amino-bonded silica packed column for HPLC separation of tocopherols. The results not only show the promising application of pyridine-grafted MIL-101(Cr) as a novel stationary phase for HPLC separation of tocopherols, but also reveal a facile post-modification of MOFs to expand the application of MOFs in separation sciences. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Liquid metal steam generator

    International Nuclear Information System (INIS)

    Wolowodiuk, W.

    1975-01-01

    A liquid metal heated steam generator is described which in the event of a tube failure quickly exhausts out of the steam generator the products of the reaction between the water and the liquid metal. The steam is generated in a plurality of bayonet tubes which are heated by liquid metal flowing over them between an inner cylinder and an outer cylinder. The inner cylinder extends above the level of liquid metal but below the main tube sheet. A central pipe extends down into the inner cylinder with a centrifugal separator between it and the inner cylinder at its lower end and an involute deflector plate above the separator so that the products of a reaction between the liquid metal and the water will be deflected downwardly by the deflector plate and through the separator so that the liquid metal will flow outwardly and away from the central pipe through which the steam and gaseous reaction products are exhausted. (U.S.)

  2. Two-Order-Parameter Description of Liquids: Critical Phenomena and Phase Separation of Supercooled Liquids

    OpenAIRE

    Tanaka, Hajime

    1997-01-01

    Because of the isotropic and disordered nature of liquids, the anisotropy hidden in intermolecular interactions are often neglected. Accordingly, the order parameter describing a simple liquid has so far been believed to be only density. In contrast to this common sense, we propose that two order parameters, namely, density and bond order parameters, are required to describe the phase behavior of liquids since they intrinsically tend to form local bonds. This model gives us clear physical exp...

  3. A fuzzy controller for the VASPS (Vertical Annular Separation and Pumping System) subsea separation and pumping system; Um controlador fuzzy para o sistema de separacao e bombeamento submarino - VASP (Vertical Annular Separation and Pumping System)

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Alex F.; Mendes, Jose Ricardo P.; Morooka, Celso K. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo; Estevam, Valdir [PETROBRAS, Rio de Janeiro, RJ (Brazil); Guilherme, Ivan R. [UNESP, Rio Claro, SP (Brazil). Inst. de Geociencias e Ciencias Exatas. Dept. de Estatistica, Matematica Aplicada e Computacao; Rigo, Jose Eduardo [Centro Federal de Educacao Tecnologica no Espirito Santo (CEFETES), Vitoria, ES (Brazil)

    2004-07-01

    In this paper the designs of a fuzzy controller for the VASPS (Vertical Annular Separation and Pumping System) liquid level and separation pressure control are presented, as well as a simulation of its work to evaluate the performance of the controller designed. The VASPS is a two-phase subsea separation and pumping system, which is made up of a separation vessel, where the mixture (liquid and gas) enters and suffers the separation process through three levels, the expansion chamber, the helix and the pool. The liquid inside the pool is taken to the platform using a pump that with a choke control the pool liquid level. The pool liquid level control is necessary because if the level exceeds the maximum value allowed, the liquid can invade the space occupied by the helix and hinder the separation process. An the other hand if the level is below the minimum allowed the pump can be damaged. The separation pressure control is important for operational security and efficiency issues, because when we keep the separation pressure near an optimum value we are maximizing its efficiency. With the controller and the simulator, many simulations of the work of system were made to get results that could be used to evaluate if the designed controller solved the problem and if its performance were satisfactory. After, a PID control system was designed to be used as comparison with the results obtained with the fuzzy controller, since the PID is widely used in the industrial environment. (author)

  4. Separation by liquid-liquid extraction of actinides(III) from lanthanides(III) using new molecules: the picolinamides

    International Nuclear Information System (INIS)

    Cordier, P.Y.

    1996-07-01

    In the field of long-lived radionuclides separation from waste generated during spent fuel reprocessing, the picolinamides have been chosen as potential extractants for the selective extraction of actinides (III) from lanthanides (III). The first studies initiated on the most simple molecule of the picolinamide family, namely 2-pyridinecarboxamide, pointed out that in an aqueous media the complexation stability constant between this ligand and Am(III) is roughly 10 times higher than the ones corresponding to Ln(III). The synthesis of lipophilic derivatives of 2-pyridinecarboxamide leaded to extraction experiments. The extraction of metallic cation by lipophilic picolinamides, according to a solvatation mechanism, is strongly dependent on the nature of the amide function: a primary amide function (group I) leads to a good extraction; on the contrary, there is a decrease for secondary (group II) and tertiary (group III) amide functions. From a theoretical point of view, this work leads finally to the following conclusions: confirmation of the importance of the presence of soft donor atoms within the extractants (nitrogen in our case) for An(III)/Ln(III). Also, sensitivity of this soft donor atom regarding the protonation reaction; prevalence in our case of the affinity of the extractant for the metallic cation over the lipophilia of the extractant to ensure good distribution coefficients. The extraction and Am(III)/Ln(III) separation performances of the picolinamides from pertechnetic media leads to the design of a possible flowsheet for the reprocessing of high level liquid waste, with the new idea of an integrated technetium reflux. (author)

  5. Photochemical separation and extraction device

    International Nuclear Information System (INIS)

    Wada, Yukio; Morimoto, Kyoichi.

    1998-01-01

    The present invention concerns a device for separating neptunium and plutonium from highly radioactive liquid wastes, in which valance control by irradiation of UV rays and extraction operation by using an organic solvent can be conducted simultaneously in the same reaction vessel. Namely, a step of irradiating UV rays to the liquid in the reaction vessel to control the valence of predetermined materials and a step of separating the materials by conducting solvent-extraction while stirring with a solvent are conducted simultaneously or successively. Then, facilities for the separation method can be reduced and the operation steps can be simplified. (N.H.)

  6. Detailed monitoring of two biogas plants and mechanical solid-liquid separation of fermentation residues.

    Science.gov (United States)

    Bauer, Alexander; Mayr, Herwig; Hopfner-Sixt, Katharina; Amon, Thomas

    2009-06-01

    The Austrian "green electricity act" (Okostromgesetz) has led to an increase in biogas power plant size and consequently to an increased use of biomass. A biogas power plant with a generating capacity of 500 kW(el) consumes up to 38,000 kg of biomass per day. 260 ha of cropland is required to produce this mass. The high water content of biomass necessitates a high transport volume for energy crops and fermentation residues. The transport and application of fermentation residues to farmland is the last step in this logistic chain. The use of fermentation residues as fertilizer closes the nutrient cycle and is a central element in the efficient use of biomass for power production. Treatment of fermentation residues by separation into liquid and solid phases may be a solution to the transport problem. This paper presents detailed results from the monitoring of two biogas plants and from the analysis of the separation of fermentation residues. Furthermore, two different separator technologies for the separation of fermentation residues of biogas plants were analyzed. The examined biogas plants correspond to the current technological state of the art and have designs developed specifically for the utilization of energy crops. The hydraulic retention time ranged between 45.0 and 83.7 days. The specific methane yields were 0.40-0.43 m(3)N CH(4) per kg VS. The volume loads ranged between 3.69 and 4.00 kg VS/m(3). The degree of degradation was between 77.3% and 82.14%. The screw extractor separator was better suited for biogas slurry separation than the rotary screen separator. The screw extractor separator exhibited a high throughput and good separation efficiency. The efficiency of slurry separation depended on the dry matter content of the fermentation residue. The higher the dry matter content, the higher the proportion of solid phase after separation. In this project, we found that the fermentation residues could be divided into 79.2% fluid phase with a dry matter

  7. Liquid separation techniques coupled with mass spectrometry for chiral analysis of pharmaceuticals compounds and their metabolites in biological fluids.

    Science.gov (United States)

    Erny, G L; Cifuentes, A

    2006-02-24

    Determination of the chiral composition of drugs is nowadays a key step in order to determine purity, activity, bioavailability, biodegradation, etc., of pharmaceuticals. In this article, works published for the last 5 years on the analysis of chiral drugs by liquid separation techniques coupled with mass spectrometry are reviewed. Namely, chiral analysis of pharmaceuticals including, e.g., antiinflammatories, antihypertensives, relaxants, etc., by liquid chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry are included. The importance and interest of the analysis of the enantiomers of the active compound and its metabolites in different biological fluids (plasma, urine, cerebrospinal fluid, etc.) are also discussed.

  8. Transuranium element purification by liquid-liquid extraction

    International Nuclear Information System (INIS)

    Madic, C.; Koehly, G.

    1976-01-01

    In the transuranium element production, the liquid-liquid extraction purification is presented. The affinity of TBP and trilaurylammonium nitrate for these elements is given. Exemples of NP/Pu, Pu/Np, U/Pu, Am/Cm, Am and Cm/Ln separation are presented [fr

  9. High-Throughput Proteomics Using High Efficiency Multiple-Capillary Liquid Chromatography With On-Line High-Performance ESI FTICR Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yufeng (BATTELLE (PACIFIC NW LAB)); Tolic, Nikola (BATTELLE (PACIFIC NW LAB)); Zhao, Rui (ASSOC WESTERN UNIVERSITY); Pasa Tolic, Ljiljana (BATTELLE (PACIFIC NW LAB)); Li, Lingjun (Illinois Univ Of-Urbana/Champa); Berger, Scott J.(ASSOC WESTERN UNIVERSITY); Harkewicz, Richard (BATTELLE (PACIFIC NW LAB)); Anderson, Gordon A.(BATTELLE (PACIFIC NW LAB)); Belov, Mikhail E.(BATTELLE (PACIFIC NW LAB)); Smith, Richard D.(BATTELLE (PACIFIC NW LAB))

    2000-12-01

    We report on the design and application of a high-efficiency multiple-capillary liquid chromatography (LC) system for high-throughput proteome analysis. The multiple-capillary LC system was operated at the pressure of 10,000 psi using commercial LC pumps to deliver the mobile phase and newly developed passive feedback valves to switch the mobile phase flow and introduce samples. The multiple-capillary LC system was composed of several serially connected dual-capillary column devices. The dual-capillary column approach was designed to eliminate the time delay for regeneration (or equilibrium) of the capillary column after its use under the mobile phase gradient condition (i.e. one capillary column was used in separation and the other was washed using mobile phase A). The serially connected dual-capillary columns and ESI sources were operated independently, and could be used for either''backup'' operation or with other mass spectrometer(s). This high-efficiency multiple-capillary LC system uses switching valves for all operations and is highly amenable to automation. The separations efficiency of dual-capillary column device, optimal capillary dimensions (column length and packed particle size), suitable mobile phases for electrospray, and the capillary re-generation were investigated. A high magnetic field (11.5 tesla) Fourier transform ion cyclotron resonance (FTICR) mass spectrometer was coupled on-line with this high-efficiency multiple-capillary LC system through an electrospray ionization source. The capillary LC provided a peak capacity of {approx}600, and the 2-D capillary LC-FTICR provided a combined resolving power of > 6 x 10 7 polypeptide isotopic distributions. For yeast cellular tryptic digests, > 100,000 polypeptides were typically detected, and {approx}1,000 proteins can be characterized in a single run.

  10. Separation of adhered salt from uranium deposits generated in electro-refiner

    International Nuclear Information System (INIS)

    Kwon, S.W.; Park, K.M.; Lee, H.S.; Kim, J.G.; Ahn, H.G.

    2011-01-01

    It is important to increase a throughput of the salt removal process from uranium deposits which is generated on the solid cathode of electro-refiner in pyroprocess. In this study, it was proposed to increase the throughput of the salt removal process by the separation of the liquid salt prior to the distillation of the LiCl-KCl eutectic salt from the uranium deposits. The feasibility of liquid salt separation was examined by salt separation experiments on a stainless steel sieve. It was found that the amount of salt to be distilled could be reduced by the liquid salt separation prior to the salt distillation. The residual salt remained in the deposits after the liquid salt separation was successfully removed further by the vacuum distillation. It was concluded that the combination of a liquid salt separation and a vacuum distillation is an effective route for the achievement of a high throughput performance in the salt separation process. (author)

  11. Influence of solid-liquid separation strategy on biogas yield from a stratified swine production system.

    Science.gov (United States)

    Cestonaro do Amaral, André; Kunz, Airton; Radis Steinmetz, Ricardo Luis; Scussiato, Lucas Antunes; Tápparo, Deisi Cristina; Gaspareto, Taís Carla

    2016-03-01

    As the fourth largest swine producer and exporter, Brazil has increased its participation in the global swine production market. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to prevent environmental impacts, being anaerobic digestion is an interesting alternative for treating these effluents. The low-volatile solid concentration in the manure suggests the need for solid-liquid separation as a tool to improve the biogas generation capacity. This study aimed to determine the influence of simplified and inexpensive solid-liquid separation strategies (screening and settling) and the different manures produced during each swine production phase (gestating and farrowing sow houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sow houses (GSH-a and GSH-b), two farrowing sow houses (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). Biochemical methane potential (BMP) tests were performed according to international standard procedures. The settled sludge fraction comprised 20-30% of the raw manure volume, which comprises 40-60% of the total methane yield. The methane potential of the settled sludge fraction was approximately two times higher than the methane potential of the supernatant fraction. The biogas yield differed among the raw manures from different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH -970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences were relative to the production phase (feed type and feeding techniques) and the management of the effluent inside the facilities (water management). Brazilian swine production has increased his participation in the global market, been the fourth producer and the fourth exporter. The segregation of swine production in multiple sites has increased its importance, due to the possibilities to have more specialized units. Generally, these units

  12. Separation and Recycling for Rare Earth Elements by Homogeneous Liquid-Liquid Extraction (HoLLE Using a pH-Responsive Fluorine-Based Surfactant

    Directory of Open Access Journals (Sweden)

    Shotaro Saito

    2015-08-01

    Full Text Available A selective separation and recycling system for metal ions was developed by homogeneous liquid-liquid extraction (HoLLE using a fluorosurfactant. Sixty-two different elemental ions (e.g., Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, In, Ir, La, Lu, Mg, Mn, Mo, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Re, Rh, Ru, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tl, Tm, V, W, Y, Yb, Zn, and Zr were examined. By changing pH from a neutral or alkaline solution (pH ≥ 6.5 to that of an acidic solution (pH < 4.0, gallium, zirconium, palladium, silver, platinum, and rare earth elements were extracted at >90% efficiency into a sedimented Zonyl FSA® (CF3(CF2n(CH22S(CH22COOH, n = 6–8 liquid phase. Moreover, all rare earth elements were obtained with superior extraction and stripping percentages. In the recycling of rare earth elements, the sedimented phase was maintained using a filter along with a mixed solution of THF and 1 M sodium hydroxide aqueous solution. The Zonyl FSA® was filtrated and the rare earth elements were recovered on the filter as a hydroxide. Furthermore, the filtrated Zonyl FSA was reusable by conditioning the subject pH.

  13. Application of an online post-column derivatization HPLC-DPPH assay to detect compounds responsible for antioxidant activity in Sonchus oleraceus L. leaf extracts.

    Science.gov (United States)

    Ou, Zong-Quan; Schmierer, David M; Rades, Thomas; Larsen, Lesley; McDowell, Arlene

    2013-02-01

    To use an online assay to identify key antioxidants in Sonchus oleraceus leaf extracts and to investigate the effect of leaf position and extraction conditions on antioxidant concentration and activity. Separation of phytochemicals and simultaneous assessment of antioxidant activity were performed online using HPLC and post-column reaction with a free-radical reagent (2, 2-diphenylpicrylhydrazyl, DPPH). Active compounds were identified using nuclear magnetic resonance spectroscopy and mass spectrometry. We applied the online HPLC-DPPH radical assay to evaluate antioxidants in leaves from different positions on the plant and to assess the effect of pre-treatment of leaves with liquid N(2) before grinding, extraction time, extraction temperature and method of concentrating extracts. Key antioxidants identified in S. oleraceus leaf extracts were caftaric acid, chlorogenic acid and chicoric acid. Middle leaves contained the highest total amount of the three key antioxidant compounds, consisting mainly of chicoric acid. Pre-treatment with liquid N(2), increasing the extraction temperature and time and freeze-drying the extract did not enhance the yield of the key antioxidants. The online HPLC-DPPH radical assay was validated as a useful screening tool for investigating individual antioxidants in leaf extracts. Optimized extraction conditions were middle leaves pre-treated with liquid N(2), extraction at 25°C for 0.5 h and solvent removal by rotary evaporation. © 2012 The Authors. JPP © 2012. Royal Pharmaceutical Society.

  14. Separation and quantitation of colour pigments of chili powder (Capsicum frutescens) by high-performance liquid chromatography-diode array detection.

    Science.gov (United States)

    Cserháti, T; Forgács, E; Morais, M H; Mota, T; Ramos, A

    2000-10-27

    The performance of reversed-phase thin-layer (RP-TLC) and reversed-phase high-performance liquid chromatography (RP-HPLC) was compared for the separation and determination of the colour pigments of chili (Capsicum frutescens) powder using a wide variety of eluent systems. No separation of pigments was achieved in RP-TLC, however, it was established that tetrahydrofuran shows an unusually high solvent strength. RP-HPLC using water-methanol-acetonitrile gradient elution separated the chili pigments in many fractions. Diode array detection (DAD) indicated that yellow pigments are eluted earlier than the red ones and chili powder contains more yellow pigments than common paprika powders. It was established that the very different absorption spectra of pigments make the use of DAD necessary.

  15. Isotope effect and isotope separation. A chemist's view

    International Nuclear Information System (INIS)

    Ishida, Takanobu

    2002-01-01

    What causes the isotope effects (IE)? This presentation will be centered around the equilibrium isotope effects due to the differences in the nuclear masses. The occurrence of the equilibrium constant, K, of isotope exchange reactions which differ from the values predicted by the classical theory of statistical mechanics, K cl , is explored. The non-classical K corresponds to the unit-stage separation factor, α, that is different from unity and forms a basis of an isotope separation process involving the chemical exchange reaction. Here, the word 'chemical exchange' includes not only the isotope exchange chemical reactions between two or more chemical species but also the isotope exchanges involving the equilibria between liquid and vapor phases and liquid-gas, liquid solution-gas, liquid-liquid, and solid-liquid phases. In Section I, origins of the isotope effect phenomena will be explored and, in the process, various quantities used in discussions of isotope effect that have often caused confusions will be unambiguously defined. This Section will also correlate equilibrium constant with separation factor. In Section II, various forms of temperature-dependence of IE and separation factor will be discussed. (author)

  16. Dynamic depletion attraction between colloids suspended in a phase-separating binary liquid mixture

    International Nuclear Information System (INIS)

    Araki, Takeaki; Tanaka, Hajime

    2008-01-01

    Understanding interactions between colloids (or nanoparticles) immersed in a phase-separating binary mixture is of both fundamental and technological importance. Here we report a novel type of interparticle attractive interaction of a purely dynamic origin, which is found by a coarse-grained numerical simulation. Due to surface wetting effects, there are strong diffusion fluxes towards particles just after the initiation of phase separation of the matrix binary liquid mixture. The flux in the region between particles soon becomes weaker than that in the other regions since the depletion zones formed around particles overlap selectively between the particles. The resulting imbalance of the diffusion flux induces interparticle attractive interactions, i.e., the osmotic force pushes particles closer. We confirm that this wetting-induced 'dynamic' depletion force can be stronger than a van der Waals force and a capillary force that is induced by the interfacial tension, and thus plays a dominant role in the early stage of particle aggregation. We note that this novel interaction originating from the momentum conservation law may be generic to particles acting as diffusional sinks or sources. (fast track communication)

  17. Separable interactions and liquid 3He

    International Nuclear Information System (INIS)

    Nijhoff, F.W.

    1984-01-01

    In this thesis, the different phases of liquid 3 He are studied in the presence and absence of magnetic field. It offers microscopic calculations starting from BCS hamiltonians with some additional terms (Zeeman-term to include the magnetic field; an Hubbard-term to include spin fluctuations). A systematic determination of the phase diagram is presented. (Auth.)

  18. Separation of transition-metal and 8-hydroxyquinoline-5-sulfonic acid complexes using ion-pair liquid chromatography

    International Nuclear Information System (INIS)

    Basova, E.M.; Demurov, L.M.; Shpigun, O.A.; Van Iyuchun'

    1994-01-01

    The retention of chelates of Fe(3), Cu(2), Co(2), Ni(2), Zn(2), Cd(2), Hg(2), and Pb)(2) with 8-hydroxyquinoline-5-sulfonic acid depending on the concentration of cetyltrimethylammonium bromide, acetonitrile, and pH of the mobile phase was investigated using the ion-pair reversed-phase high-performance liquid chromatography on separon C 18 . Under the optimum conditions, the separation of mixtures of Fe(3), Co(2) and Ni(2) is performed within 8 to 12 min

  19. Determination of lycopene in food by on-line SFE coupled to HPLC using a single monolithic column for trapping and separation

    Czech Academy of Sciences Publication Activity Database

    Pól, Jaroslav; Hyötyläinen, T.; Ranta-Aho, O.; Riekkola, M. L.

    2004-01-01

    Roč. 1052, 1-2 (2004), s. 25-31 ISSN 0021-9673 R&D Projects: GA AV ČR KJB4031405 Grant - others:Academy of Finland Projects(FI) 48867; Academy of Finland Projects(FI) 52746 Institutional research plan: CEZ:AV0Z4031919 Keywords : lycopene * on-line SFE-LC * supercritical fluid extraction Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.359, year: 2004

  20. Development of a new separator oil/water: adaptation of a laboratory prototype envisage an industrial application; Desenvolvimento de um novo separador oleo/agua: adaptacao do prototipo de laboratorio visando aplicacao industrial

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Gustavo de S.; Paulo, Joao B. de A.; Costa Junior, Jose A. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Fernandes Junior, Wilaci E. [PETROBRAS, Natal/Fortaleza, RN/CE (Brazil). Unidade RN/CE

    2008-07-01

    The present work deals with the adaptation of a new separator oil/water called Mixer Settler based on Phase Inversion of (MDIF) in scale of laboratory for future application in industrial scale. The adaptations were carried out by changing of the materials of construction and the substitution of the original system of mechanical mixing by a static or on-line mixer. The equipment works through the unit operation of liquid-liquid extraction associated with the innovative method of phase inversion to separate the fine oil droplets which appear emulsified into produced waters. The extractant solvent was QAV (aviation kerosene). A composed central design was used to evaluate the performance of the equipment, considering the separation efficiency (%) as the response variable in function of the TOG (total oil and greases). Envisaging an industrial application we plotted contour curves to determine the regions which it is possible to operate the equipment on optimized conditions in view of separate oil at low concentrations, minimizing the quantity of extractant solvent. (author)

  1. Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris.

    Science.gov (United States)

    Cha, Kwang Hyun; Kang, Suk Woo; Kim, Chul Young; Um, Byung Hun; Na, Ye Rim; Pan, Cheol-Ho

    2010-04-28

    Chlorella vulgaris is a green microalga that contains various antioxidants, such as carotenoids and chlorophylls. In this study, antioxidants from C. vulgaris were extracted using pressurized liquid extraction (PLE), which has been recently used for bioactive compound extraction. The antioxidant capacity of individual compounds in chlorella was determined by online HPLC ABTS(*+) analysis. According to the antioxidant analysis of total extracts, the extraction yield, radical scavenging activity, and phenolic compounds using PLE were relatively high compared to those obtained using maceration or ultrasound-assisted extraction. On the basis of online HPLC ABTS(*+) analysis, the 15 major antioxidants from chlorella extracts were identified as hydrophilic compounds, lutein and its isomers, chlorophylls, and chlorophyll derivatives. Using PLE at high temperature (85-160 degrees C) significantly increased antioxidant extraction from chlorella, improving the formation of hydrophilic compounds and yielding more antioxidative chlorophyll derivatives. Online HPLC ABTS(*+) analysis was a useful tool for the separation of main antioxidants from PLE extracts and allowed the simultaneous measurement of their antioxidant capacity, which clearly showed that PLE is an excellent method for extracting antioxidants from C. vulgaris.

  2. Apparatus for separating solids from a liquid

    NARCIS (Netherlands)

    Rem, P.C.; Berkhout, S.P.M.

    2007-01-01

    The invention relates to an apparatus and a method for separating a material stream consisting of several materials. The materials to be separated have different densities or density ranges, so that the material of the highest density can be discharged through a screen of the apparatus, while the

  3. Determination of antibiotic compounds in water by on-line SPE-LC/MSD.

    Science.gov (United States)

    Choi, Keun-Joo; Kim, Sang-Goo; Kim, Chang-won; Kim, Seung-Hyun

    2007-01-01

    This study attempts to provide an improved approach for the analysis of antibiotics, which normally exist at low concentration in complex matrices such as receiving streams of wastewater treatment plant discharge. The analytical method developed in this study combines an existing pretreatment technique of solid-phase extraction (SPE) with liquid chromatography mass spectrometry (LC/MSD) through on-line connection. The on-line connection suppressed the target loss by keeping the cartridge from drying, which resulted in improvement of the recovery and saving of the analytical time. For the on-line solid-phase extraction of 10 ml water samples, recoveries were between 74.3% and 116.5% and average LOQ was 0.11 microg l(-1) for the sulfonamide antibiotics (SA) and 0.09 microg l(-1) for the tetracycline antibiotics (TA). Application of the developed method for the analysis of fourteen antibiotics revealed that several antibiotics were detected at concentrations above the LOQ in ARW. Treated and untreated sewage and agricultural wastewater were mostly responsible for the antibiotics contamination of the river. Antibiotics were detected at much higher concentrations in the agricultural wastewater sample than in the sewage sample, implying substantial use of antibiotics in the agricultural industry. Wastewater treatment was generally effective in separation of the antibiotics tested in this study. The extent of the treatment depended on the type of antibiotics. Hydrophobic antibiotics were more effectively separated from the solution than hydrophilic antibiotics.

  4. Evaluation of ionic liquids supported on silica as a sorbent for fully automated online solid-phase extraction with LC-MS determination of sulfonamides in bovine milk samples.

    Science.gov (United States)

    da Silva, Meire Ribeiro; Mauro Lanças, Fernando

    2018-03-10

    Sulfonamides are antibiotics widely used in the treatment of diseases in dairy cattle. However, their indiscriminate use for disease control may lead to their presence in tissues and milk and their determination requires a sample preparation step as part of an analytical approach. Among the several sample preparation techniques available, those based upon the use of sorptive materials have been widely employed. Recently, the application of ionic liquids immobilized on silica surfaces or polymeric materials has been evaluated for such an application. This manuscript addresses the evaluation of silica-based ionic liquid obtained by a sol-gel synthesis process by basic catalysis as sorbent for online solid-phase extraction with liquid chromatography and electrospray ionization time-of-flight mass spectrometry for sulfonamides determination. Infrared vibrational spectroscopy confirmed the presence of the ionic liquid on the silica surface, suggesting that the ionic liquid was anchored on to the silica surface. Other sorbents varying the ionic liquid alkyl chain were also synthesized and evaluated by off-line solid-phase extraction in the sulfonamide extraction. As the length of the alkyl chain increased, the amount of extracted sulfonamides decreased, possibly due to a decrease in the electrostatic interaction caused by the reduction in the polarity, as well as the presence of a hexafluorophosphate anion that increases the hydrophobic character of the material. The use of 1-butyl-3-methylimidazolium hexafluorophosphate as a selective ionic liquid sorbent enabled the isolation and sulfonamide preconcentration in bovine milk by online solid-phase extraction with liquid chromatography and electrospray ionization time-of-flight mass spectrometry. The limit of quantification for the method developed was 5-7, 5 μg/mL, with extraction recoveries ranging between 74 and 93% and intra- and interassay between 1.5-12.5 and 2.3-13.1, respectively. © 2018 WILEY-VCH Verlag Gmb

  5. A chemically selective laser ion source for the on-line isotope separation

    International Nuclear Information System (INIS)

    Scheerer, F.

    1993-03-01

    In this thesis a laser ion source is presented. In a hot chamber the atoms of the elements to be studied are resonantly by light of pulsed dye lasers, which are pumped by pulsed copper-vapor lasers with extremely high pulse repetition rate (ν rep ∼ 10 kHz), stepwise excited and ionized. By the storage of the atoms in a hot chamber and the high pulse repetition rate of the copper-vapor lasers beyond the required high efficiency (ε ∼ 10%) can be reached. First preparing measurements were performed at the off-line separator at CERN with the rare earth elements ytterbium and thulium. Starting from the results of these measurements further tests of the laser ion source were performed at the on-line separator with in a thick tantalum target produced neutron-deficient ytterbium isotopes. Under application of a time-of-flight mass spectrometer in Mainz an efficient excitation scheme on the resonance ionization of tin was found. This excitation scheme is condition for an experiment at the GSI for the production of the extremely neutron-deficient, short-lived nucleus 102 Sn. In the summer 1993 is as first application of the newly developed laser ion source at the PSB-ISOLDE at CERN an astrophysically relevant experiment for the nuclear spectroscopy of the neutron-rich silver isotopes 124-129 Ag is planned. This experiment can because of the lacking selectivity of conventional ion sources only be performed by means of the here presented laser ion source. The laser ion source shall at the PSB-ISOLDE 1993 also be applied for the selective ionization of manganese. (orig./HSI) [de

  6. A general model for membrane-based separation processes

    DEFF Research Database (Denmark)

    Soni, Vipasha; Abildskov, Jens; Jonsson, Gunnar Eigil

    2009-01-01

    behaviour will play an important role. In this paper, modelling of membrane-based processes for separation of gas and liquid mixtures are considered. Two general models, one for membrane-based liquid separation processes (with phase change) and another for membrane-based gas separation are presented....... The separation processes covered are: membrane-based gas separation processes, pervaporation and various types of membrane distillation processes. The specific model for each type of membrane-based process is generated from the two general models by applying the specific system descriptions and the corresponding...

  7. Separation of UO2 powder

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1962-01-01

    This report deals with theoretical approach to separation process and describes the constructed separator with liquid medium. The separator was calibrated and tested with Al 3 O 3 and UO 2 . it has been concluded that it can be used for separation of powders with sufficient accuracy if the separation is performed for a longer period of time. The separated fractions were characterised by microscopic method and the UO 2 fraction additionally by sedimentation method

  8. Microsystems for liquid-liquid extraction of radionuclides in the analytical protocols

    International Nuclear Information System (INIS)

    Helle, Gwendolyne

    2014-01-01

    Radiochemical analyses are necessary to numerous steps for nuclear wastes management and for the control of the environment. An analytical protocol generally includes different steps of chemical separations which are lengthy, manual and complicated to implement because of their confinement in glove boxes and because of the hostile chemical and radiochemical media. Thus there is a huge importance to propose innovative and robust solutions to automate these steps but also to reduce the volumes of the radioactive and chemical wastes at the end of the analytical cycle. One solution consists in the miniaturization of the analyses through the use of lab-on-chip. The objective of this thesis work was to propose a rational approach to the conception of separative microsystems for the liquid-liquid extraction of radionuclides. To achieve this, the hydrodynamic behavior as well as the extraction performances have been investigated in one chip for three different chemical systems: Eu(III)-HNO 3 /DMDBTDMA, Eu(III)-AcO(H,Na)-HNO 3 /HDEHP and U(VI)-HCl/Aliquat336. A methodology has been developed for the implementation of the liquid-liquid extraction in micro-system for each chemical system. The influence of various geometric parameters such as channel length or specific interfacial area has been studied and the comparison of the liquid-liquid extraction performances has led to highlight the influence of the phases viscosities ratio on the flows. Thanks to the modeling of both hydrodynamics and mass transfer in micro-system, the criteria related to physical and kinetic properties of the chemical systems have been distinguished to propose a rational conception of tailor-made chips. Finally, several examples of the liquid-liquid extraction implementation in micro-system have been described for analytical applications in the nuclear field: U/Co separation by Aliquat336, Eu/Sm separation by DMDBTDMA or even the coupling between a liquid-liquid extraction chip and the system of

  9. Simultaneous Determination of Palladium and Platinum by On-line ...

    African Journals Online (AJOL)

    NJD

    using high performance liquid chromatography equipped with an on-line enrichment technique. Prior to ... The on-line enrichment system (Waters Corporation, USA) that was ... Using an appropriate volume (industrial plant effluents 20 mL,.

  10. Liquid-liquid extraction in flow analysis: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, Cristina I.C.; Santos, Joao L.M. [REQUIMTE, Servico de Quimica-Fisica, Faculdade de Farmacia, Universidade do Porto, R. Anibal Cunha, 164, 4099-030 Porto (Portugal); Lima, Jose L.F.C., E-mail: limajlfc@ff.up.pt [REQUIMTE, Servico de Quimica-Fisica, Faculdade de Farmacia, Universidade do Porto, R. Anibal Cunha, 164, 4099-030 Porto (Portugal); Zagatto, Elias A.G. [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, P.O. Box 96, Piracicaba 13400-970 (Brazil)

    2009-10-12

    Liquid-liquid extractions (LLE) are a common sample pre-treatment in many analytical applications. This review aims at providing a critical overview of the distinct automated continuous flow-based approaches that were developed for liquid-liquid extraction with the purpose of pre-concentration and/or separation of multiple analytes, such as ultra-trace metal and metalloid species, phenolic compounds, surfactants, pharmaceuticals, etc., hyphenated with many detection technique such as UV/vis spectrophotometry, atomic spectrometric detection systems and luminescent detectors, including distinct extraction strategies and applications like single and multiple extraction schemes, wetting film extraction, supported liquid membrane extraction, back extraction, closed-loop systems and the utilisation of zone sampling, chromatomembranes and iterative reversal techniques. The analytical performance of the developed flow-based LLE methods and the influence of flow manifold components such as the segmenter, extraction coil and phase separator, is emphasised and object of discussion. An overall presentation of each system components, selectivity, advantages and shortcomings is carried out and exemplified with selected applications.

  11. High performance liquid chromatographic separation of polycyclic aromatic hydrocarbons on microparticulate pyrrolidone and application to the analysis of shale oil

    International Nuclear Information System (INIS)

    Mourey, T.H.; Siggia, S.; Uden, P.C.; Crowley, R.J.

    1980-01-01

    A chemically bonded pyrrolidone substrate is used for the high performance liquid chromatographic separation of polycyclic aromatic hydrocarbons. The cyclic amide phase interacts electronically with the polycyclic aromatic hydrocarbons in both the normal and reversed phase modes. Separation is effected according to the number of aromatic rings and the type of ring condensation. Information obtained is very different from that observed on hydrocarbon substrates, and thus these phases can be used in a complementary fashion to give a profile of polycyclic aromatics in shale oil samples. 7 figures, 1 table

  12. Energy Efficient Hybrid Gas Separation with Ionic Liquids

    DEFF Research Database (Denmark)

    Liu, Xinyan; Liang, Xiaodong; Gani, Rafiqul

    2017-01-01

    Shale gas, like natural gas, contains H2, CO2, CH4 and that light hydrocarbon gases needs processing to separate the gases for conversion to higher value products. Currently, distillation based separation is employed, which is energy intensive. Hybrid gas separation processes, combining absorption...... systems is established for process design-analysis. A strategy for hybrid gas separation process synthesis where distillation and IL-based absorption are employed for energy efficient gas processing is developed and its application is highlighted for a model shale gas processing case study....

  13. Utilization of Ionic Liquids for the Separation of Organic Liquids from ...

    African Journals Online (AJOL)

    NICO

    The concentrations of the aromatic components used were in the range of 2.5–10 % (v/v) for the following ... components in the ionic liquid obtained by gas chromatography were used to determine the capability of .... nitrogen; column flow.

  14. Assessing Online Collaborative Discourse.

    Science.gov (United States)

    Breen, Henny

    2015-01-01

    This qualitative study using transcript analysis was undertaken to clarify the value of Harasim's Online Collaborative Learning Theory as a way to assess the collaborative process within nursing education. The theory incorporated three phases: (a) idea generating; (b) idea organizing; and (c) intellectual convergence. The transcripts of asynchronous discussions from a 2-week module about disaster nursing using a virtual community were analyzed and formed the data for this study. This study supports the use of Online Collaborative Learning Theory as a framework for assessing online collaborative discourse. Individual or group outcomes were required for the students to move through all three phases of the theory. The phases of the Online Collaborative Learning Theory could be used to evaluate the student's ability to collaborate. It is recommended that group process skills, which have more to do with interpersonal skills, be evaluated separately from collaborative learning, which has more to do with cognitive skills. Both are required for practicing nurses. When evaluated separately, the student learning needs are more clearly delineated. © 2014 Wiley Periodicals, Inc.

  15. Active Solvent Modulation: A Valve-Based Approach To Improve Separation Compatibility in Two-Dimensional Liquid Chromatography.

    Science.gov (United States)

    Stoll, Dwight R; Shoykhet, Konstantin; Petersson, Patrik; Buckenmaier, Stephan

    2017-09-05

    Two-dimensional liquid chromatography (2D-LC) is increasingly being viewed as a viable tool for solving difficult separation problems, ranging from targeted separations of structurally similar molecules to untargeted separations of highly complex mixtures. In spite of this performance potential, though, many users find method development challenging and most frequently cite the "incompatibility" between the solvent systems used in the first and second dimensions as a major obstacle. This solvent strength related incompatibility can lead to severe peak distortion and loss of resolution and sensitivity in the second dimension. In this paper, we describe a novel approach to address the incompatibility problem, which we refer to as Active Solvent Modulation (ASM). This valve-based approach enables dilution of 1 D effluent with weak solvent prior to transfer to the 2 D column but without the need for additional instrument hardware. ASM is related to the concept we refer to as Fixed Solvent Modulation (FSM), with the important difference being that ASM allows toggling of the diluent stream during each 2 D separation cycle. In this work, we show that ASM eliminates the major drawbacks of FSM including complex elution solvent profiles, baseline disturbances, and slow 2 D re-equilibration and demonstrate improvements in 2 D separation quality using both simple small molecule probes and degradants of heat-treated bovine insulin as case studies. We believe that ASM will significantly ease method development for 2D-LC, providing a path to practical methods that involve both highly complementary 1 D and 2 D separations and sensitive detection.

  16. Supported Ionic Liquid Membranes and Ion-Jelly® Membranes with [BMIM][DCA]: Comparison of Its Performance for CO2 Separation

    Directory of Open Access Journals (Sweden)

    Ricardo Couto

    2015-01-01

    Full Text Available In this work, a supported ionic liquid membrane (SILM was prepared by impregnating a PVDF membrane with 1-butyl-3-methylimidazolium dicyanamide ([BMIM][DCA] ionic liquid. This membrane was tested for its permeability to pure gases (CO2, N2 and O2 and ideal selectivities were calculated. The SILM performance was also compared to that of Ion-Jelly® membranes, a new type of gelled membranes developed recently. It was found that the PVDF membrane presents permeabilities for pure gases similar or lower to those presented by the Ion-Jelly® membranes, but with increased ideal selectivities. This membrane presents also the highest ideal selectivity (73 for the separation of CO2 from N2 when compared with SILMs using the same PVDF support but with different ionic liquids.

  17. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    International Nuclear Information System (INIS)

    Ma, Y.; Cui, B.; Ma, R.; Tang, B.; Chen, L.; Huang, Q.; Jiang, W.

    2014-01-01

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will be installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article

  18. Solid-Liquid Separation Properties of Thermoregulated Dicationic Ionic Liquid as Extractant of Dyes from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Rui Lv

    2018-01-01

    Full Text Available Two thermoregulated dicationic ionic liquids were synthesized and applied for effective extraction of the common dye malachite green oxalate (MG. The extraction parameters such as amount of ionic liquids, pH of water phase, extraction time, cooling time, and centrifugal time on the extraction efficiency were investigated systematically. It revealed that the dye has been successfully extracted into the ionic liquids, with high extraction efficiency higher than 98%, and recovery of 98.2%–100.8%, respectively. Furthermore, these ionic liquids can be recycled easily after elution. The reusable yields were 87.1% and 88.7%. The extraction of the dye into the thermoregulated ionic liquid provides a method of minimizing pollution of waste water potentially.

  19. Chromatographic separations of stereoisomers

    Energy Technology Data Exchange (ETDEWEB)

    Souter, R.W.

    1985-01-01

    This text covers both diastereomers and enantiomers; describes techniques for GC, HPLC, and other chromatographic methods; and tabulates results of various applications by both techniques and compound class. It provides current knowledge about separation mechanisms and interactions of asymmetric molecules, as well as experimental and commercial materials such as columns, instruments, and derivatization reagents. The contents also include stereoisomer separations by gas chromatography. Stereoisomer separations by high-performance liquid chromatography. Stereoisomer separations by other chromatographic techniques.

  20. Selective ionic liquid ferrofluid based dispersive-solid phase extraction for simultaneous preconcentration/separation of lead and cadmium in milk and biological samples.

    Science.gov (United States)

    Fasih Ramandi, Negin; Shemirani, Farzaneh

    2015-01-01

    For the first time, a selective ionic liquid ferrofluid has been used in dispersive solid phase extraction (IL-FF-D-SPE) for simultaneous preconcentration and separation of lead and cadmium in milk and biological samples combined with flame atomic absorption spectrometry. To improve the selectivity of the ionic liquid ferrofluid, the surface of TiO2 nanoparticles with a magnetic core as sorbent was modified by loading 1-(2-pyridylazo)-2-naphtol. Due to the rapid injection of an appropriate amount of ionic liquid ferrofluid into the aqueous sample by a syringe, extraction can be achieved within a few seconds. In addition, based on the attraction of the ionic liquid ferrofluid to a magnet, no centrifugation step is needed for phase separation. The experimental parameters of IL-FF-D-SPE were optimized using a Box-Behnken design (BBD) after a Plackett-Burman screening design. Under the optimum conditions, the relative standard deviations of 2.2% and 2.4% were obtained for lead and cadmium, respectively (n=7). The limit of detections were 1.21 µg L(-1) for Pb(II) and 0.21 µg L(-1) for Cd(II). The preconcentration factors were 250 for lead and 200 for cadmium and the maximum adsorption capacities of the sorbent were 11.18 and 9.34 mg g(-1) for lead and cadmium, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Mass transfer modeling on the separation of tantalum and niobium from dilute hydrofluoric media through a hollow fiber supported liquid membrane

    International Nuclear Information System (INIS)

    Buachuang, Duenphen; Ramakul, Prakorn; Leepipatpiboon, Natchanun; Pancharoen, Ura

    2011-01-01

    Highlights: → Simultaneous separation of tantalum and niobium from the mixture solution. → An extraction through a hollow fiber supported liquid membrane (HFSLM). → The effect on tantalum removal found from Aliquat 336. → The mathematical model focusing on the extraction side of the liquid membrane system was presented. → The mass transfer coefficients of the aqueous feed (k i ) and the organic membrane phase (k m ) for the system were estimated as 1.19 x 10 -5 and 1.39 x 10 -7 cm/s, respectively. → Experimental data and theoretical values were found to be in good agreement when the concentration of Aliquat336 in the membrane phase was below 4% (v/v). - Abstract: The separation of a mixture of tantalum and niobium in dilute hydrofluoric media via hollow fiber supported liquid membrane (HFSLM) was examined. Quaternary ammonium salt (Aliquat336) diluted in kerosene was used as a carrier. The various effects on the transport and separation of tantalum and niobium were studied: concentration of hydrofluoric acid in the feed solution, concentration of the carrier (Aliquat336) in the membrane phase, types of stripping solutions (NaClO 4 , thiourea and HCl) and their concentration. The extraction of tantalum in the membrane phase from 0.3 M hydrofluoric acid (HF) by 3% (v/v) Aliquat336 was achieved by leaving niobium in the feed solution. Quantitative recovery of tantalum was achieved by 0.2 M NaClO 4 . Furthermore, a mathematical model focusing on the extraction side of the liquid membrane system was presented in order to predict the concentration of tantalum at different times. The mass transfer coefficients of the aqueous feed (k i ) and the organic membrane phase (k m ) were estimated as 1.19 x 10 -5 and 1.39 x 10 -7 cm/s, respectively. Therefore, the mass transfer limiting step is the diffusion of tantalum-Aliquat336 through the liquid membrane. Moreover, mass transfer modeling was performed and the validity of the developed model evaluated. Experimental

  2. Mass transfer modeling on the separation of tantalum and niobium from dilute hydrofluoric media through a hollow fiber supported liquid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Buachuang, Duenphen [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Ramakul, Prakorn [Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000 (Thailand); Leepipatpiboon, Natchanun [Chromatography and Separation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Pancharoen, Ura, E-mail: ura.p.@chula.ac.th [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand)

    2011-09-29

    Highlights: > Simultaneous separation of tantalum and niobium from the mixture solution. > An extraction through a hollow fiber supported liquid membrane (HFSLM). > The effect on tantalum removal found from Aliquat 336. > The mathematical model focusing on the extraction side of the liquid membrane system was presented. > The mass transfer coefficients of the aqueous feed (k{sub i}) and the organic membrane phase (k{sub m}) for the system were estimated as 1.19 x 10{sup -5} and 1.39 x 10{sup -7} cm/s, respectively. > Experimental data and theoretical values were found to be in good agreement when the concentration of Aliquat336 in the membrane phase was below 4% (v/v). - Abstract: The separation of a mixture of tantalum and niobium in dilute hydrofluoric media via hollow fiber supported liquid membrane (HFSLM) was examined. Quaternary ammonium salt (Aliquat336) diluted in kerosene was used as a carrier. The various effects on the transport and separation of tantalum and niobium were studied: concentration of hydrofluoric acid in the feed solution, concentration of the carrier (Aliquat336) in the membrane phase, types of stripping solutions (NaClO{sub 4}, thiourea and HCl) and their concentration. The extraction of tantalum in the membrane phase from 0.3 M hydrofluoric acid (HF) by 3% (v/v) Aliquat336 was achieved by leaving niobium in the feed solution. Quantitative recovery of tantalum was achieved by 0.2 M NaClO{sub 4}. Furthermore, a mathematical model focusing on the extraction side of the liquid membrane system was presented in order to predict the concentration of tantalum at different times. The mass transfer coefficients of the aqueous feed (k{sub i}) and the organic membrane phase (k{sub m}) were estimated as 1.19 x 10{sup -5} and 1.39 x 10{sup -7} cm/s, respectively. Therefore, the mass transfer limiting step is the diffusion of tantalum-Aliquat336 through the liquid membrane. Moreover, mass transfer modeling was performed and the validity of the

  3. Separation of polyethylene glycols and amino-terminated polyethylene glycols by high-performance liquid chromatography under near critical conditions.

    Science.gov (United States)

    Wei, Y-Z; Zhuo, R-X; Jiang, X-L

    2016-05-20

    The separation and characterization of polyethylene glycols (PEGs) and amino-substituted derivatives on common silica-based reversed-phase packing columns using isocratic elution is described. This separation is achieved by liquid chromatography under the near critical conditions (LCCC), based on the number of amino functional end groups without obvious effect of molar mass for PEGs. The mobile phase is acetonitrile in water with an optimal ammonium acetate buffer. The separation mechanism of PEG and amino-substituted PEG under the near LCCC on silica-based packing columns is confirmed to be ion-exchange interaction. Under the LCCC of PEG backbone, with fine tune of buffer concentration, the retention factor ratios for benzylamine and phenol in buffered mobile phases, α(benzylamine/phenol)-values, were used to assess the ion-exchange capacity on silica-based reversed-phase packing columns. To the best of our knowledge, this is the first report on separation of amino-functional PEGs independent of the molar mass by isocratic elution using common C18 or phenyl reversed-phase packing columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Performance and techno-economic assessment of several solid-liquid separation technologies for processing dilute-acid pretreated corn stover.

    Science.gov (United States)

    Sievers, David A; Tao, Ling; Schell, Daniel J

    2014-09-01

    Solid-liquid separation of pretreated lignocellulosic biomass slurries is a critical unit operation employed in several different processes for production of fuels and chemicals. An effective separation process achieves good recovery of solute (sugars) and efficient dewatering of the biomass slurry. Dilute acid pretreated corn stover slurries were subjected to pressure and vacuum filtration and basket centrifugation to evaluate the technical and economic merits of these technologies. Experimental performance results were used to perform detailed process simulations and economic analysis using a 2000 tonne/day biorefinery model to determine differences between the various filtration methods and their process settings. The filtration processes were able to successfully separate pretreated slurries into liquor and solid fractions with estimated sugar recoveries of at least 95% using a cake washing process. A continuous vacuum belt filter produced the most favorable process economics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Novelty detection methods for online health monitoring and post data analysis of turbopumps

    International Nuclear Information System (INIS)

    Lei Hu; Niaoqing, Hu; Xinpeng, Zhang; Fengshou, Gu; Ming, Gao

    2013-01-01

    As novelty detection works when only normal data are available, it is of considerable promise for health monitoring in cases lacking fault samples and prior knowledge. We present two novelty detection methods for health monitoring of turbopumps in large-scale liquid propellant rocket engines. The first method is the adaptive Gaussian threshold model. This method is designed to monitor the vibration of the turbopumps online because it has minimal computational complexity and is easy for implementation in real time. The second method is the one-class support vector machine (OCSVM) which is developed for post analysis of historical vibration signals. Via post analysis the method not only confirms the online monitoring results but also provides diagnostic results so that faults from sensors are separated from those actually from the turbopumps. Both of these two methods are validated to be efficient for health monitoring of the turbopumps.

  6. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixue; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2016-01-25

    Highlights: • Pyrolysis characteristics are conducted for a better understanding of LCDs pyrolysis. • Optimum design is developed which is significant to guide the further industrial process. • Acetic acid and TPP are recycled and separated. - Abstract: Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box–Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min{sup −1} and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry.

  7. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels

    International Nuclear Information System (INIS)

    Wang, Ruixue; Xu, Zhenming

    2016-01-01

    Highlights: • Pyrolysis characteristics are conducted for a better understanding of LCDs pyrolysis. • Optimum design is developed which is significant to guide the further industrial process. • Acetic acid and TPP are recycled and separated. - Abstract: Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box–Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min"−"1 and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry.

  8. Treatment of Mineral Oil Refinery Wastewater in Microbial Fuel Cells Using Ionic Liquid Based Separators

    Directory of Open Access Journals (Sweden)

    Hasna Addi

    2018-03-01

    Full Text Available Microbial fuel cells (MFCs are an environmentally friendly technology that can recover electricity directly from several wastes at ambient temperatures. This work explores the use of mineral oil refinery wastewater as feedstock in single-chamber air-cathode MFC devices. A polymer inclusion membrane based on the ionic liquid methyltrioctylammonium chloride, [MTOA+][Cl−], at a concentration of 70% w/w, was used as separator, showing a good efficiency in power production and chemical oxygen demand (COD removal. The power and the chemical oxygen demand removal reached values of 45 mW/m3 and over 80%, respectively. The evolution of other parameters of the wastewater including nitrites, phosphates and sulphates were also studied. Kjeldahl nitrogen and sulphates were significantly reduced during MFC operation. The results show that mineral oil refinery wastewater can be used as feedstock in air breathing cathode-microbial fuel cells based on polymer ionic liquid inclusion membranes. This configuration could represent a good alternative for wastewater depuration while producing energy during the process.

  9. Separation of toluene from alkanes using 1-ethyl-3-methylpyridinium ethylsulfate ionic liquid at T = 298.15 K and atmospheric pressure

    International Nuclear Information System (INIS)

    Gonzalez, Emilio J.; Calvar, Noelia; Gonzalez, Begona; Dominguez, Angeles

    2010-01-01

    In this paper, the separation of toluene from aliphatic hydrocarbons (heptane, or octane, or nonane) was analyzed by solvent extraction with 1-ethyl-3-methylpyridinium ethylsulfate ionic liquid, [EMpy][ESO 4 ]. Liquid-liquid equilibrium (LLE) data for the ternary systems {heptane (1) + toluene (2) + [EMpy][ESO 4 ] (3)}, {octane (1) + toluene (2) + [EMpy][ESO 4 ] (3)}, and {nonane (1) + toluene (2) + [EMpy][ESO 4 ] (3)} were obtained by measurements at T = 298.15 K and atmospheric pressure. The selectivity, % removal of aromatic, and solute distribution ratio, obtained from experimental equilibrium results, were used to determine the ability of [EMpy][ESO 4 ] as a solvent. The degree of consistency of the experimental LLE values was ascertained using the Othmer-Tobias and Hand equations. The experimental results for the ternary systems were correlated with the NRTL model. Finally, the results obtained were compared with other ionic liquids and other solvents.

  10. Solid-phase extraction and high-performance liquid chromatographic separation of pigments of red wines.

    Science.gov (United States)

    Csiktusnádi Kiss, G A; Forgács, E; Cserháti, T; Candeias, M; Vilas-Boas, L; Bronze, R; Spranger, I

    2000-08-11

    The adsorption and desorption capacities of 11 different solid-phase extraction sorbents were tested for the preconcenration of pigments of various Hungarian red wines. The concentrates were evaluated by multiwavelengh spectrophotometry combined with a spectral mapping technique (SPM) and by reversed-phase high-performance liquid chromatography. The highest (10-fold) concentration of pigments was achieved on octadecylsilica sorbent. It can be used five times without losing adsorption and desorption characteristics. SPM indicated that multiwavelength spectrophotometry can be employed for the differentiation of red wines. Comparison of the chromatograms of pigments with and without preconcentration showed that preconcentration makes possible the separation and detection of pigments present in low concentration in red wines.

  11. Ternary (liquid + liquid) equilibria of {trifluorotris(perfluoroethyl)phosphate based ionic liquids + thiophene + heptane}

    International Nuclear Information System (INIS)

    Marciniak, Andrzej; Królikowski, Marek

    2012-01-01

    Highlights: ► Ternary (liquid + liquid) equilibria for 3 ionic liquid + thiophene + heptane systems. ► The influence of ionic liquid structure on phase diagrams is discussed. ► High selectivity for separation of heptane/thiophene is observed. - Abstract: Ternary (liquid + liquid) equilibria for three systems containing ionic liquids {(4-(2-methoxyethyl)-4-methylmorpholinium trifluorotris(perfluoroethyl)phosphate, 1-(2-methoxyethyl)-1-methylpiperidinium trifluorotris(perfluoroethyl)phosphate, 1-(2-methoxyethyl)-1-methylpyrrolidinium trifluorotris(perfluoroethyl)phosphate) + thiophene + heptane} have been determined at T = 298.15 K. All systems showed high solubility of thiophene in the ionic liquid and low solubility of heptane. The solute distribution coefficient and the selectivity were calculated for all systems. High values of selectivity were obtained. The experimental results have been correlated using NRTL model. The influence of ionic liquid structure on phase equilibria is discussed.

  12. Evaluation and application of a mixed-mode chromatographic stationary phase in two-dimensional liquid chromatography for the separation of traditional Chinese medicine.

    Science.gov (United States)

    Wei, Zhishen; Fu, Qing; Cai, Jianfeng; Huan, Liyun; Zhao, Jianchao; Shi, Hui; Jin, Yu; Liang, Xinmiao

    2016-06-01

    In this study, two mixed-mode chromatography stationary phases (C8SAX and C8SCX) were evaluated and used to establish a two-dimensional liquid chromatography system for the separation of traditional Chinese medicine. The chromatographic properties of the mixed-mode columns were systematically evaluated by comparing with other three columns of C8, strong anion exchanger, and strong cation exchanger. The result showed that C8SAX and C8SCX had a mixed-mode retention mechanism including electrostatic interaction and hydrophobic interaction. Especially, they were suitable for separating acidic and/or basic compounds and their separation selectivities could be easily adjusted by changing pH value. Then, several off-line 2D-LC systems based on the C8SAX in the first dimension and C8SAX, C8SCX, or C8 columns in the second dimension were developed to analyze a traditional Chinese medicine-Uncaria rhynchophylla. The two-dimensional liquid chromatography system of C8SAX (pH 3.0) × C8SAX (pH 6.0) exhibited the most effective peak distribution. Finally, fractions of U. rhynchophylla prepared from the first dimension were successfully separated on the C8SAX column with a gradient pH. Thus, the mixed-mode stationary phase could provide a platform to separate the traditional Chinese medicine in practical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Separation and recovery of ruthenium from radioactive liquid waste for specific medical applications - wealth from waste

    International Nuclear Information System (INIS)

    Pente, A.S.; Ramchandran, M.; Wawale, P.R.; Thorat, Vidya; Gireesan, Prema; Katarni, V.G.; Kumar, Amar; Kaushik, C.P.; Raj, Kanwar

    2010-01-01

    In recent past, 106 Ru has emerged as one of the promising β - emitting radionuclide used in brachytherapy for the treatment of choroidal melanoma and retinoblastoma due to its favorable nuclear decay characteristics. A plaque with low amount of 106 Ru activity of the order of 12 - 26 MBq (0.3 - 0.7 mCi ) is suitable for the above treatment and can be used for an adequate duration of 1-2 years due to suitable half-life (T 1/2 = 1.02 y). In order to undertake the preparation of 106 Ru plaque, an indigenous availability of this radionuclide with acceptable purity was explored from radioactive liquid waste having wide spectrum of fission products in line with wealth from waste strategy. Process methodology has been developed and standardized at Process Control Laboratory of Waste Immobilization Plant (WIP), Trombay for separation of 106 Ru from radioactive liquid waste for intended medical application. (author)

  14. Argentation gas chromatography revisited: Separation of light olefin/paraffin mixtures using silver-based ionic liquid stationary phases.

    Science.gov (United States)

    Nan, He; Zhang, Cheng; Venkatesh, Amrit; Rossini, Aaron J; Anderson, Jared L

    2017-11-10

    Silver ion or argentation chromatography utilizes stationary phases containing silver ions for the separation of unsaturated compounds. In this study, a mixed-ligand silver-based ionic liquid (IL) was evaluated for the first time as a gas chromatographic (GC) stationary phase for the separation of light olefin/paraffin mixtures. The selectivity of the stationary phase toward olefins can be tuned by adjusting the ratio of silver ion and the mixed ligands. The maximum allowable operating temperature of these stationary phases was determined to be between 125°C and 150°C. Nuclear magnetic resonance (NMR) spectroscopy was used to characterize the coordination behavior of the silver-based IL as well as provide an understanding into the retention mechanism of light olefins. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Combined cation-exchange and extraction chromatographic method of pre-concentration and concomitant separation of Cu(II) with high molecular mass liquid cation exchanger after its online detection.

    Science.gov (United States)

    Mandal, B; Roy, U S; Datta, D; Ghosh, N

    2011-08-19

    A selective method has been developed for the extraction chromatographic trace level separation of Cu(II) with Versatic 10 (liquid cation exchanger) coated on silanised silica gel (SSG-V10). Cu(II) has been extracted from 0.1M acetate buffer at the range of pH 4.0-5.5. The effects of foreign ions, pH, flow-rate, stripping agents on extraction and elution have been investigated. Exchange capacity of the prepared exchanger at different temperatures with respect to Cu(II) has been determined. The extraction equilibrium constant (K(ex)) and different standard thermodynamic parameters have also been calculated by temperature variation method. Positive value of ΔH (7.98 kJ mol⁻¹) and ΔS (0.1916 kJ mol⁻¹) and negative value of ΔG (-49.16 kJ mol⁻¹) indicated that the process was endothermic, entropy gaining and spontaneous. Preconcentration factor was optimized at 74.7 ± 0.2 and the desorption constants K(desorption)¹(1.4 × 10⁻²) and K(desorption)²(9.8 × 10⁻²) were determined. The effect of pH on R(f) values in ion exchange paper chromatography has been investigated. In order to investigate the sorption isotherm, two equilibrium models, the Freundlich and Langmuir isotherms, were analyzed. Cu(II) has been separated from synthetic binary and multi-component mixtures containing various metal ions associated with it in ores and alloy samples. The method effectively permits sequential separation of Cu(II) from synthetic quaternary mixture containing its congeners Bi(III), Sn(II), Hg(II) and Cu(II), Cd(II), Pb(II) of same analytical group. The method was found effective for the selective detection, removal and recovery of Cu(II) from industrial waste and standard alloy samples following its preconcentration on the column. A plausible mechanism for the extraction of Cu(II) has been suggested. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Determination of Polycyclic Aromatic Hydrocarbons in Automobile Exhaust by Means of High-Performance Liquid Chromatography with Fluorescence Detection

    DEFF Research Database (Denmark)

    Nielsen, Tom

    1979-01-01

    A chromatographic method has been developed and applied to the determination of polycyclic aromatic hydrocarbons (PAHs) in particulate matter in automobile exhaust, in petrols, and in crankcase oils. The PAHs were purified from other organic compounds by thin-layer chromatography, separated by high......-performance liquid chromatography, and measured by means of on-line fluorescence detection. The identities of the PAHs were verified by comparing the emission spectra obtained by a stop-flow technique with those of standard PAHs...

  17. Uranium dioxide in Fe(III)-containing ionic liquids with DMSO: Dissolution, separation, and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Aining; Chu, Taiwei, E-mail: twchu@pku.edu.cn

    2016-11-15

    UO{sub 2} can be successfully dissolved in imidazolium-based Fe(III)-containing ionic liquids (ILs) with the help of DMSO. Spectroscopic studies and X-ray diffraction show that UO{sub 2}Cl{sub 4}{sup 2−} is the principal product. The dissolved uranyl species can be easily separated from the ILs via a combination of crystallization and solvent extraction. Moreover, even if 15.2 wt% of the rare-earth elements of Sm, Eu, and Gd, compared with the total amount of uranium and the rare-earth elements, exist in the IL, only uranium-containing crystals would be selectively formed and separated from the system. The solvents of acetone and acetonitrile could be used to separate the rare-earth elements from uranium in the IL with the help of imidazolium chloride. Considering the complete process from the dissolution of UO{sub 2} and some rare-earth oxides to the separation of uranium and rare-earth elements in the IL, the facile approach is promising for the spent nuclear fuel reprocessing. - Graphical abstract: UO{sub 2} can be successfully dissolved in Fe-containing ILs with the help of DMSO to form UO{sub 2}Cl{sub 4}{sup 2−}. The rare earth elements of Sm, Eu, and Gd can be separated from uranium in the IL, and meanwhile, the recovery of dissolved uranyl species and Fe-containing IL can also be achieved. - Highlights: • Dissolution of UO{sub 2} can be successfully achieved in imidazolium-based Fe-containing ILs with the help of DMSO without additional oxidants. • Compared with the total amount of uranium and the rare-earth elements, even if 15.2 wt% of the rare-earth elements of Sm, Eu, and Gd exist in the IL, only uranium-containing crystals would be selectively formed and separated from the system. • The separation of the rare-earth elements from uranium has also been achieved via a combination of crystallization and solvent extraction.

  18. Uranium dioxide in Fe(III)-containing ionic liquids with DMSO: Dissolution, separation, and structural characterization

    International Nuclear Information System (INIS)

    Yao, Aining; Chu, Taiwei

    2016-01-01

    UO_2 can be successfully dissolved in imidazolium-based Fe(III)-containing ionic liquids (ILs) with the help of DMSO. Spectroscopic studies and X-ray diffraction show that UO_2Cl_4"2"− is the principal product. The dissolved uranyl species can be easily separated from the ILs via a combination of crystallization and solvent extraction. Moreover, even if 15.2 wt% of the rare-earth elements of Sm, Eu, and Gd, compared with the total amount of uranium and the rare-earth elements, exist in the IL, only uranium-containing crystals would be selectively formed and separated from the system. The solvents of acetone and acetonitrile could be used to separate the rare-earth elements from uranium in the IL with the help of imidazolium chloride. Considering the complete process from the dissolution of UO_2 and some rare-earth oxides to the separation of uranium and rare-earth elements in the IL, the facile approach is promising for the spent nuclear fuel reprocessing. - Graphical abstract: UO_2 can be successfully dissolved in Fe-containing ILs with the help of DMSO to form UO_2Cl_4"2"−. The rare earth elements of Sm, Eu, and Gd can be separated from uranium in the IL, and meanwhile, the recovery of dissolved uranyl species and Fe-containing IL can also be achieved. - Highlights: • Dissolution of UO_2 can be successfully achieved in imidazolium-based Fe-containing ILs with the help of DMSO without additional oxidants. • Compared with the total amount of uranium and the rare-earth elements, even if 15.2 wt% of the rare-earth elements of Sm, Eu, and Gd exist in the IL, only uranium-containing crystals would be selectively formed and separated from the system. • The separation of the rare-earth elements from uranium has also been achieved via a combination of crystallization and solvent extraction.

  19. Fission-Product Separation Based on Room-Temperature Ionic-Liquids

    International Nuclear Information System (INIS)

    Hussey, Charles L.

    2005-01-01

    During the previous funding cycle for this project, we investigated the electrochemistry of Cs(I) in air and moisture-stable ionic liquids both with and without the addition of BOBCalixC6. These investigations revealed that the electrochemical windows of the dialkylimidazolium bis[(trifluoromethyl)sulfonyl]imide ionic liquids do not permit the direct electrochemical reduction of Cs(I), even when Hg electrodes are employed, because these organic cations are reduced at less negative potentials than Cs(I). However, Cs(I) coordinated by BOBCalixC6 can be electrolytically reduced to Cs(Hg) in tetraalkylammonium-based room-temperature ionic liquids such as tri-1-butylmethylammonium bis[(trifluoromethyl)sulfonyl]imide (Bu3MeN+Tf2N-) at Hg electrodes. Because this reduction process does not harm either the ionic liquid or the macrocycle, it is a promising method for recycling the cesium extraction system. The previous studies mentioned above were carried out under an inert atmosphere, i.e., in the absence of H2O and O2. However, it may not be economically feasible or even possible to carry out the recycling process in the absence of these contaminants during large-scale processing of aqueous tank waste. Thus, as described in our proposal, we have begun an investigation of the electrochemical recovery of Cs from the Bu3MeN+Tf2N- + BOBCalixC6 extraction system in an air atmosphere containing various amounts of water and oxygen. Our recent preliminary results were very surprising because they indicated that the electrochemical extraction process is relatively insensitive to the presence of small amounts of moisture even when the moisture content of the ionic liquid approaches 1000 ppm. Furthermore, we have found that the ''wet'' ionic liquid can be easily dehydrated under reduced pressure or by sparging with dry nitrogen gas without the need for heat or any other specialized treatment

  20. Analytical and semipreparative chiral separation of cis-itraconazole on cellulose stationary phases by high-performance liquid chromatography.

    Science.gov (United States)

    Kurka, Ondřej; Kučera, Lukáš; Bednář, Petr

    2016-07-01

    cis-Itraconazole is a chiral antifungal drug administered as a racemate. The knowledge of properties of individual cis-itraconazole stereoisomers is vital information for medicine and biosciences as different stereoisomers of cis-itraconazole may possess different affinity to certain biological pathways in the human body. For this purpose, either chiral synthesis of enantiomers or chiral separation of racemate can be used. This paper presents a two-step high-performance liquid chromatography approach for the semipreparative isolation of four stereoisomers (two enantiomeric pairs) of itraconazole using polysaccharide stationary phases and volatile organic mobile phases without additives in isocratic mode. The approach used involves the separation of the racemate into three fractions (i.e. two pure stereoisomers and one mixed fraction containing the remaining two stereoisomers) in the first run and consequent separation of the collected mixed fraction in the second one. For this purpose, combination of cellulose tris-(4-methylbenzoate) and cellulose tris-(3,5-dimehylphenylcarbamate) columns with complementary selectivity for cis-itraconazole provided full separation of all four stereoisomers (with purity of each isomer > 97%). The stereoisomers were collected, their optical rotation determined and their identity confirmed based on the results of a previously published study. Pure separated stereoisomers are subjected to further biological studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.