WorldWideScience

Sample records for ongoing dendritic oscillations

  1. Democracy-Independence Trade-Off in Oscillating Dendrites and Its Implications for Grid Cells

    Science.gov (United States)

    Remme, Michiel W.H.; Lengyel, Máté; Gutkin, Boris S.

    2010-01-01

    Summary Dendritic democracy and independence have been characterized for near-instantaneous processing of synaptic inputs. However, a wide class of neuronal computations requires input integration on long timescales. As a paradigmatic example, entorhinal grid fields have been thought to be generated by the democratic summation of independent dendritic oscillations performing direction-selective path integration. We analyzed how multiple dendritic oscillators embedded in the same neuron integrate inputs separately and determine somatic membrane voltage jointly. We found that the interaction of dendritic oscillations leads to phase locking, which sets an upper limit on the timescale for independent input integration. Factors that increase this timescale also decrease the influence that the dendritic oscillations exert on somatic voltage. In entorhinal stellate cells, interdendritic coupling dominates and causes these cells to act as single oscillators. Our results suggest a fundamental trade-off between local and global processing in dendritic trees integrating ongoing signals. PMID:20471355

  2. Pulsed Out of Awareness: EEG Alpha oscillations represent a pulsed inhibition of ongoing cortical processing

    Directory of Open Access Journals (Sweden)

    Kyle Elliott Mathewson

    2011-05-01

    Full Text Available Alpha oscillations are ubiquitous in the brain, but their role in cortical processing remains a matter of debate. Recently, evidence has begun to accumulate in support of a role for alpha oscillations in attention selection and control. Here we first review evidence that 8-12 Hz oscillations in the brain have a general inhibitory role in cognitive processing, with an emphasis on their role in visual processing. Then, we summarize the evidence in support of our recent proposal that alpha represents a pulsed inhibition of ongoing neural activity. The phase of the ongoing EEG can influence evoked activity and subsequent processing, and we propose that alpha exerts its inhibitory role through alternating microstates of inhibition and excitation. Finally, we discuss evidence that this pulsed inhibition can be entrained to rhythmic stimuli in the environment, such that preferential processing occurs for stimuli at predictable moments. The entrainment of preferential phase may provide a mechanism for temporal attention in the brain. This pulsed inhibitory account of alpha has important implications for many common cognitive phenomena, such as the attentional blink, and seems to indicate that our visual experience may at least some times be coming through in waves.

  3. Attention and temporal expectations modulate power, not phase, of ongoing alpha oscillations.

    Science.gov (United States)

    van Diepen, Rosanne M; Cohen, Michael X; Denys, Damiaan; Mazaheri, Ali

    2015-08-01

    The perception of near-threshold visual stimuli has been shown to depend in part on the phase (i.e., time in the cycle) of ongoing alpha (8-13 Hz) oscillations in the visual cortex relative to the onset of that stimulus. However, it is currently unknown whether the phase of the ongoing alpha activity can be manipulated by top-down factors such as attention or expectancy. Using three variants of a cross-modal attention paradigm with constant predictable stimulus onsets, we examined if cues signaling to attend to either the visual or the auditory domain influenced the phase of alpha oscillations in the associated sensory cortices. Importantly, intermixed in all three experiments, we included trials without a target to estimate the phase at target presentation without contamination from the early evoked responses. For these blank trials, at the time of expected target and distractor onset, we examined (1) the degree of the uniformity in phase angles across trials, (2) differences in phase angle uniformity compared with a pretarget baseline, and (3) phase angle differences between visual and auditory target conditions. Across all three experiments, we found that, although the cues induced a modulation in alpha power in occipital electrodes, neither the visual condition nor the auditory cue condition induced any significant phase-locking across trials during expected target or distractor presentation. These results suggest that, although alpha power can be modulated by top-down factors such as attention and expectation, the phase of the ongoing alpha oscillation is not under such control.

  4. Neuroelectric Tuning of Cortical Oscillations by Apical Dendrites in Loop Circuits

    Directory of Open Access Journals (Sweden)

    David LaBerge

    2017-06-01

    Full Text Available Bundles of relatively long apical dendrites dominate the neurons that make up the thickness of the cerebral cortex. It is proposed that a major function of the apical dendrite is to produce sustained oscillations at a specific frequency that can serve as a common timing unit for the processing of information in circuits connected to that apical dendrite. Many layer 5 and 6 pyramidal neurons are connected to thalamic neurons in loop circuits. A model of the apical dendrites of these pyramidal neurons has been used to simulate the electric activity of the apical dendrite. The results of that simulation demonstrated that subthreshold electric pulses in these apical dendrites can be tuned to specific frequencies and also can be fine-tuned to narrow bandwidths of less than one Hertz (1 Hz. Synchronous pulse outputs from the circuit loops containing apical dendrites can tune subthreshold membrane oscillations of neurons they contact. When the pulse outputs are finely tuned, they function as a local “clock,” which enables the contacted neurons to synchronously communicate with each other. Thus, a shared tuning frequency can select neurons for membership in a circuit. Unlike layer 6 apical dendrites, layer 5 apical dendrites can produce burst firing in many of their neurons, which increases the amplitude of signals in the neurons they contact. This difference in amplitude of signals serves as basis of selecting a sub-circuit for specialized processing (e.g., sustained attention within the typically larger layer 6-based circuit. After examining the sustaining of oscillations in loop circuits and the processing of spikes in network circuits, we propose that cortical functioning can be globally viewed as two systems: a loop system and a network system. The loop system oscillations influence the network system’s timing and amplitude of pulse signals, both of which can select circuits that are momentarily dominant in cortical activity.

  5. Rhythmic dendritic Ca2+ oscillations in thalamocortical neurons during slow non-REM sleep-related activity in vitro.

    Science.gov (United States)

    Errington, Adam C; Hughes, Stuart W; Crunelli, Vincenzo

    2012-08-15

    The distribution of T-type Ca2+ channels along the entire somatodendritic axis of sensory thalamocortical (TC) neurons permits regenerative propagation of low threshold spikes (LTS) accompanied by global dendritic Ca2+ influx. Furthermore, T-type Ca2+ channels play an integral role in low frequency oscillatory activity (dynamics of T-type Ca2+ channel-dependent dendritic Ca2+ signalling during slow sleep-associated oscillations remains unknown. Here we demonstrate using patch clamp recording and two-photon Ca2+ imaging of dendrites from cat TC neurons undergoing spontaneous slow oscillatory activity that somatically recorded δ (1–4 Hz) and slow (<1 Hz) oscillations are associated with rhythmic and sustained global oscillations in dendritic Ca2+. In addition, our data reveal the presence of LTS-dependent Ca2+ transients (Δ[Ca2+]) in dendritic spine-like structures on proximal TC neuron dendrites during slow (<1 Hz) oscillations whose amplitudes are similar to those observed in the dendritic shaft. We find that the amplitude of oscillation associated Δ[Ca2+] do not vary significantly with distance from the soma whereas the decay time constant (τdecay) of Δ[Ca2+] decreases significantly in more distal dendrites. Furthermore, τdecay of dendritic Δ[Ca2+] increases significantly as oscillation frequency decreases from δ to slow frequencies where pronounced depolarised UP states are observed. Such rhythmic dendritic Ca2+ entry in TC neurons during sleep-related firing patterns could be an important factor in maintaining the oscillatory activity and associated biochemical signalling processes, such as synaptic downscaling, that occur in non-REM sleep.

  6. Phase-locking of epileptic spikes to ongoing delta oscillations in non-convulsive status epilepticus

    NARCIS (Netherlands)

    Hindriks, Rikkert; Meijer, Hil G.E.; Gils, van Stephan A.; Putten, van Michel J.A.M

    2013-01-01

    The EEG of patients in non-convulsive status epilepticus (NCSE) often displays delta oscillations or generalized spike-wave discharges. In some patients, these delta oscillations coexist with intermittent epileptic spikes. In this study we verify the prediction of a computational model of the thalam

  7. Phase-locking of epileptic spikes to ongoing delta oscillations in non-convulsive status epilepticus.

    Science.gov (United States)

    Hindriks, Rikkert; Meijer, Hil G E; van Gils, Stephan A; van Putten, Michel J A M

    2013-01-01

    The EEG of patients in non-convulsive status epilepticus (NCSE) often displays delta oscillations or generalized spike-wave discharges. In some patients, these delta oscillations coexist with intermittent epileptic spikes. In this study we verify the prediction of a computational model of the thalamo-cortical system that these spikes are phase-locked to the delta oscillations. We subsequently describe the physiological mechanism underlying this observation as suggested by the model. It is suggested that the spikes reflect inhibitory stochastic fluctuations in the input to thalamo-cortical relay neurons and phase-locking is a consequence of differential excitability of relay neurons over the delta cycle. Further analysis shows that the observed phase-locking can be regarded as a stochastic precursor of generalized spike-wave discharges. This study thus provides an explanation of intermittent spikes during delta oscillations in NCSE and might be generalized to other encephathologies in which delta activity can be observed.

  8. The phase of ongoing EEG oscillations predicts the amplitude of peri-saccadic mislocalization

    Science.gov (United States)

    McLelland, Douglas; Lavergne, Louisa; VanRullen, Rufin

    2016-01-01

    Our constant eye movements mean that updating processes, such as saccadic remapping, are essential for the maintenance of a stable spatial representation of the world around us. It has been proposed that, rather than continually update a full spatiotopic map, only the location of a few key objects is updated, suggesting that the process is linked to attention. At the same time, mounting evidence links attention to oscillatory neuronal processes. We therefore hypothesized that updating processes should themselves show oscillatory characteristics, inherited from underlying attentional processes. To test this, we carried out a combined psychophysics and EEG experiment in human participants, using a saccadic mislocalization task as a behaviourally measureable proxy for spatial updating, and simultaneously recording 64-channel EEG. We then used a time-frequency analysis to test for a correlation between oscillation phase and perceptual outcome. We found a significant phase-dependence of mislocalization in a time-frequency region from around 400 ms prior to saccade initiation and peaking at around 7 Hz, principally apparent over occipital electrodes. Thus the degree of perceived mislocalization is correlated with the phase of a theta-frequency oscillation prior to saccade onset. We conclude that spatial updating processes are indeed linked to rhythmic processes in the brain. PMID:27403937

  9. Diffusion and extrusion shape standing calcium gradients during ongoing parallel fiber activity in dendrites of Purkinje neurons.

    Science.gov (United States)

    Schmidt, Hartmut; Arendt, Oliver; Eilers, Jens

    2012-09-01

    Synaptically induced calcium transients in dendrites of Purkinje neurons (PNs) play a key role in the induction of plasticity in the cerebellar cortex (Ito, Physiol Rev 81:1143-1195, 2001). Long-term depression at parallel fiber-PN synapses can be induced by stimulation paradigms that are associated with long-lasting (>1 min) calcium signals. These signals remain strictly localized (Eilers et al., Learn Mem 3:159-168, 1997), an observation that was rather unexpected, given the high concentration of the mobile endogenous calcium-binding proteins parvalbumin and calbindin in PNs (Fierro and Llano, J Physiol (Lond) 496:617-625, 1996; Kosaka et al., Exp Brain Res 93:483-491, 1993). By combining two-photon calcium imaging experiments in acute slices with numerical computer simulations, we found that significant calcium diffusion out of active branches indeed takes places. It is outweighed, however, by rapid and powerful calcium extrusion along the dendritic shaft. The close interplay of diffusion and extrusion defines the spread of calcium between active and inactive dendritic branches, forming a steep gradient in calcium with drop ranges of ~13 μm (interquartile range, 10-18 μm).

  10. Intrinsic Ca2+-dependent theta oscillations in apical dendrites of hippocampal CA1 pyramidal cells in vitro.

    Science.gov (United States)

    Hansen, Allan Kjeldsen; Nedergaard, Steen; Andreasen, Mogens

    2014-08-01

    Behavior-associated theta-frequency oscillation in the hippocampal network involves a patterned activation of place cells in the CA1, which can be accounted for by a somatic-dendritic interference model predicting the existence of an intrinsic dendritic oscillator. Here we describe an intrinsic oscillatory mechanism in apical dendrites of in vitro CA1 pyramidal cells, which is induced by suprathreshold depolarization and consists of rhythmic firing of slow spikes in the theta-frequency band. The incidence of slow spiking (29%) increased to 78% and 100% in the presence of the β-adrenergic agonist isoproterenol (2 μM) or 4-aminopyridine (2 mM), respectively. Prior depolarization facilitated the induction of slow spiking. Applied electrical field polarization revealed a distal dendritic origin of slow spikes. The oscillations were largely insensitive to tetrodotoxin, but blocked by nimodipine (10 μM), indicating that they depend on activation of L-type Ca2+ channels. Antagonists of T-, R-, N-, and P/Q-type Ca2+ channels had no detectable effect. The slow spike dimension and frequency was sensitive to 4-aminopyridine (0.1-2 mM) and TEA (10 mM), suggesting the contribution from voltage-dependent K+ channels to the oscillation mechanism. α-Dendrotoxin (10 μM), stromatoxin (2 μM), iberiotoxin (0.2 μM), apamin (0.5 μM), linorpidine (30 μM), and ZD7288 (20 μM) were without effect. Oscillations induced by sine-wave current injection or theta-burst synaptic stimulation were voltage-dependently attenuated by nimodipine, indicating an amplifying function of L-type Ca2+ channels on imposed signals. These results show that the apical dendrites have intrinsic oscillatory properties capable of generating rhythmic voltage fluctuations in the theta-frequency band.

  11. Distinct gamma oscillations in the distal dendritic fields of the dentate gyrus and the CA1 area of mouse hippocampus.

    Science.gov (United States)

    Lasztóczi, Bálint; Klausberger, Thomas

    2017-04-08

    The molecular layer of the dentate gyrus and the anatomically adjacent stratum lacunosum-moleculare of CA1 area, represent afferent areas at distinct levels of the hippocampal trisynaptic loop. Afferents to the dentate gyrus and CA1 area originate from different cell populations, including projection cells in entorhinal cortex layers two and three, respectively. To determine the organization of oscillatory activities along these terminal fields, we recorded local field potentials from multiple sites in the dentate gyrus and CA1 area of the awake mice, and localized gamma frequency (30-150 Hz) oscillations in different layers by means of current source density analysis. During theta oscillations, we observed different temporal and spectral organization of gamma oscillations in the dendritic layers of the dentate gyrus and CA1 area, with a sharp transition across the hippocampal fissure. In CA1 stratum lacunosum-moleculare, transient mid-frequency gamma oscillations (CA1-gammaM; 80 Hz) occurred on theta cycle peaks, while in the dentate gyrus, fast (DG-gammaF; 110 Hz), and slow (DG-gammaS; 40 Hz) gamma oscillations preferentially occurred on troughs of theta waves. Units in dentate gyrus, in contrast to units in CA1 pyramidal layer, phase-coupled to DG-gammaF, which was largely independent from CA1 fast gamma oscillations (CA1-gammaF) of similar frequency and timing. Spike timing of units recorded in either CA1 area or dentate gyrus were modulated by CA1-gammaM. Our experiments disclosed a set of gamma oscillations that differentially regulate neuronal activity in the dentate gyrus and CA1 area, and may allow flexible segregation and integration of information across different levels of hippocampal circuitry.

  12. Phase-locking of epileptic spikes to ongoing delta oscillations in non-convulsive status-epilepticus

    Directory of Open Access Journals (Sweden)

    Rikkert eHindriks

    2013-12-01

    Full Text Available The EEG of patients in non-convulsive status epilepticus (NCSE often displays delta oscillations or generalized spike-wave discharges. In some patients, these delta oscillations coexist with intermittent epileptic spikes. In this study we verify the prediction of a computational model of the thalamo-cortical system that these spikes are phase-locked to the delta oscillations. We subsequently describe the physiological mechanism underlying this observation as suggested by the model. It is suggested that the spikes reflect inhibitory stochastic fluctuations in the input to thalamo-cortical relay neurons and phase-locking is a consequence of differential excitability of relay neurons over the delta cycle. Further analysis shows that the observed phase-locking can be regarded as a stochastic precursor of generalized spike-wave discharges. This study thus provides an explanation of intermittent spikes during delta oscillations in NCSE and might be generalized to other encephathologies in which delta activity can be observed.

  13. Investigating ongoing brain oscillations and their influence on conscious perception – network states and the window to consciousness

    Directory of Open Access Journals (Sweden)

    Philipp eRuhnau

    2014-10-01

    Full Text Available In cognitive neuroscience, prerequisites of consciousness are of high interest. Within recent years it has become more commonly understood that ongoing brain activity, mainly measured with electrophysiology, can predict whether an upcoming stimulus is consciously perceived. One approach to investigate the relationship between ongoing brain activity and conscious perception is to conduct near-threshold (NT experiments and focus on the pre-stimulus period. The current review will, in the first part, summarize main findings of pre-stimulus research from NT experiments, mainly focusing on the alpha band (8-14 Hz. It is probable that the most prominent finding is that local (mostly sensory areas show enhanced excitatory states prior to detection of upcoming NT stimuli, as putatively reflected by decreased alpha band power. However, the view of a solely local excitability change seems to be too narrow. In a recent paper, using a somatosensory NT task, Weisz et al. (2014 replicated the common alpha finding and, furthermore, conceptually embedded this finding into a more global framework called ‘Windows to Consciousness’ (Win2Con. In this review, we want to further elaborate on the crucial assumption of ‘open windows’ to conscious perception, determined by pre-established pathways connecting sensory and higher order areas. Methodologically, connectivity and graph theoretical analyses are applied to source-imaging magnetoencephalographic data to uncover brain regions with strong network integration as well as their connection patterns. Sensory regions with stronger network integration will more likely distribute information when confronted with weak NT stimuli, favoring its subsequent conscious perception. First experimental evidence confirms our aforementioned ‘open window’ hypothesis. We therefore emphasize that future research on prerequisites of consciousness needs to move on from investigating solely local excitability to a more global

  14. Midazolam and Atropine Alter Theta Oscillations in the Hippocampal CA1 Region by Modulating Both the Somatic and Distal Dendritic Dipoles

    Science.gov (United States)

    Balakrishnan, Shilpashree; Pearce, Robert A.

    2014-01-01

    Theta (4-12 Hz) oscillations in the hippocampus play an important role in learning and memory. They are altered by a wide variety of drugs that impair memory, and these effects may underlie or contribute to drug-induced amnesia. However, the network mechanisms linking drug actions with changes in memory formation remain poorly defined. Here, we used a multisite linear electrode array to measure local field potentials simultaneously across the CA1 layers of the hippocampus during active exploration, and employed current source density analysis and computational modeling to investigate how midazolam and atropine – two amnestic drugs that are used clinically and experimentally – change the relative timing and strength of the drivers of θ-oscillations. We found that two dipoles are present, with active inputs that are centered at the soma and the distal apical dendrite and passive return pathways that overlap in the mid-apical dendrite. Both drugs shifted the position of the phase reversal in the local field potential that occurred in the mid-apical dendritic region, but in opposite directions, by changing the strength of the dendritic pole, without altering the somatic pole or relative timing. Computational modeling showed that this constellation of changes, as well as an additional effect on a variably present mid-apical pole, could be produced by simultaneous changes in the active somatic and distal dendritic inputs. These network-level changes, produced by two amnestic drugs that target different types of receptors, may thus serve as a common basis for impaired memory encoding. PMID:24862458

  15. Sleeping dendrites: fiber-optic measurements of dendritic calcium activity in freely moving and sleeping animals

    Directory of Open Access Journals (Sweden)

    Julie Seibt

    2014-03-01

    Full Text Available Dendrites are the post-synaptic sites of most excitatory and inhibitory synapses in the brain, making them the main location of cortical information processing and synaptic plasticity. Although current hypotheses suggest a central role for sleep in proper cognitive function and brain plasticity, virtually nothing is known about changes in dendritic activity across the sleep-wake cycle and how waking experience modifies this activity. To start addressing these questions, we developed a method that allows long-term recordings of EEGs/EMG combined with in vivo cortical calcium (Ca2+ activity in freely moving and sleeping rats. We measured Ca2+ activity from populations of dendrites of layer (L 5 pyramidal neurons (n = 13 rats that we compared with Ca2+ activity from populations of neurons in L2/3 (n = 11 rats. L5 and L2/3 neurons were labelled using bolus injection of OGB1-AM or GCaMP6 (1. Ca2+ signals were detected using a fiber-optic system (cannula diameter = 400µm, transmitting the changes in fluorescence to a photodiode. Ca2+ fluctuations could then be correlated with ongoing changes in brain oscillatory activity during 5 major brain states: active wake [AW], quiet wake [QW], NREM, REM and NREM-REM transition (or intermediate state, [IS]. Our Ca2+ recordings show large transients in L5 dendrites and L2/3 neurons that oscillate predominantly at frequencies In summary, we show that this technique is successful in monitoring fluctuations in ongoing dendritic Ca2+ activity during natural brain states and allows, in principle, to combine behavioral measurement with imaging from various brain regions (e.g. deep structures in freely behaving animals. Using this method, we show that Ca2+ transients from populations of L2/3 neurons and L5 dendrites are deferentially regulated across the sleep/wake cycle, with dendritic activity being the highest during the IS sleep. Our correlation analysis suggests that specific sleep EEG activity during NREM and IS

  16. Initiation of voluntary movements at free will and ongoing 0.1-Hz BOLD oscillations in the insula – a pilot study

    Directory of Open Access Journals (Sweden)

    Gert ePfurtscheller

    2014-12-01

    Full Text Available Recently we hypothesized that the intention to initiate a voluntary movement at free will may be related to the dynamics of hemodynamic variables, which may be supported by the intertwining of networks for the timing of voluntary movements and the control of cardiovascular variables in the insula. In the present study voluntary movements of 3 healthy subjects were analyzed using fMRI scans at 1.83-s intervals along with the time course of slow hemodynamic changes in sensorimotor networks. For the analyses of BOLD time courses the Wavelet transform coherence (WTC and calculation of phase-locking values were used. Analyzed was the frequency band between 0.07 and 0.13 Hz in the supplementary motor area (SMA and insula, two widely separated regions co-active in motor behavior. BOLD signals displayed slow fluctuations, concentrated around 0.1 Hz whereby the intrinsic oscillations in the insula preceded those in the SMA by 0.5 to 1 seconds. These preliminary results suggest that slow hemodynamic changes in SMA and insula may condition the initiation of a voluntary movement at free will.

  17. Dendritic Cell

    OpenAIRE

    Sevda Söker

    2005-01-01

    Dendritic cells, a member of family of antigen presenting cells, are most effective cells in the primary immune response. Dendritic cells originated from dendron, in mean of tree in the Greek, because of their long and elaborate cytoplasmic branching processes. Dendritic cells constitute approximately 0.1 to 1 percent of the blood’s mononuclear cell. Dendritic cells are widely distributed, and specialized for antigen capture and T cell stimulation. In this article, structures and functions of...

  18. The Ongoing Catastrophe

    DEFF Research Database (Denmark)

    Kublitz, Anja

    intimacy, however, never seemed intimate but rather excessive: the sweets too sweet, the colours too bright, and the laughter too high-pitched. The stark contrast between the light chit-chat and the ongoing suffering of the individual women made these public get together not only pleasant but also...

  19. [Inflammatory dendritic cells].

    Science.gov (United States)

    Segura, Elodie; Amigorena, Sebastian

    2014-01-01

    Dendritic cells are a rare and heterogeneous population of professional antigen-presenting cells. Several murine dendritic cell subpopulations have been identified that differ in their phenotype and functional properties. In the steady state, committed dendritic cell precursors differentiate into lymphoid organ-resident dendritic cells and migratory tissue dendritic cells. During inflammation appears an additional dendritic cell subpopulation that has been termed « inflammatory dendritic cells ». Inflammatory dendritic cells differentiate in situ from monocytes recruited to the site of inflammation. Here, we discuss how mouse inflammatory dendritic cells differ from macrophages and from other dendritic cell populations. Finally, we review recent work on human inflammatory dendritic cells.

  20. [Ongoing Health Education in Brazil:education or ongoing management?].

    Science.gov (United States)

    Lemos, Cristiane Lopes Simão

    2016-03-01

    The scope of this study was to analyze the concept and principles of Ongoing Health Education (OHE) - the Brazilian acronym is PNEPS. The methodology was based on the analysis of documents from the Ministry of Health and related scientific articles. It was revealed that the concept of OHE transcends its pedagogical significance and is undergoing a service restructuring process in the face of the new demands of the model. Precisely at the time in which jobs are increasingly unstable and precarious, the Ministry of Health engages in discourse regarding innovative management, focusing on the issue of OHE. The idea is not one of ongoing education, but of ongoing management. Rather than being an instrument for radical transformation, OHE becomes an attractive ideology due to its appearance as a pedagogical novelty.

  1. Isothermal Dendritic Growth Experiment - PVA Dendrites

    Science.gov (United States)

    1997-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to those inside metal alloys. Comparing Earth-based and space-based dendrite growth velocity, tip size and shape provides a better understanding of the fundamentals of dentritic growth, including gravity's effects. Shalowgraphic images of pivalic acid (PVA) dendrites forming from the melt show the subtle but distinct effects of gravity-driven heat convection on dentritic growth. In orbit, the dendrite grows as its latent heat is liberated by heat conduction. This yields a blunt dendrite tip. On Earth, heat is carried away by both conduction and gravity-driven convection. This yields a sharper dendrite tip. In addition, under terrestrial conditions, the sidebranches growing in the direction of gravity are augmented as gravity helps carry heat out of the way of the growing sidebranches as opposed to microgravity conditions where no augmentation takes place. IDGE was developed by Rensselaer Polytechnic Institute and NASA/Glenn Research Center. Advanced follow-on experiments are being developed for flight on the International Space Station. Photo Credit: NASA/Glenn Research Center

  2. Free dendritic growth

    Science.gov (United States)

    Glicksman, M. E.

    1984-01-01

    Free dendritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical 'dendrite problem'. Great strides have been taken in recent years in both the theoretical understanding of dendritic growth and its experimental status. The development of this field will be sketched, showing that transport theory and interfacial thermodynamics (capillarity theory) were sufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of 'maximum velocity' was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip. The overall development of cast microstructures, such as equiaxed zone formation, rapidly solidified microstructures, etc., also seems to contain additional non-deterministic features which lie outside the current theories discussed here.

  3. Dendritic polyurea polymers.

    Science.gov (United States)

    Tuerp, David; Bruchmann, Bernd

    2015-01-01

    Dendritic polymers, subsuming dendrimers as well as hyperbranched or highly branched polymers are well established in the field of polymer chemistry. This review article focuses on urea based dendritic polymers and summarizes their synthetic routes through both isocyanate and isocyanate-free processes. Furthermore, this article highlights applications where dendritic polyureas show their specific chemical and physical potential. For these purposes scientific publications as well as patent literature are investigated to generate a comprehensive overview on this topic.

  4. Ongoing Projects on Serious Games

    Directory of Open Access Journals (Sweden)

    Carlos Vaz de Carvalho

    2014-08-01

    Full Text Available This number of the EAI Transactions on Serious Games is dedicated to a set of ongoing research and development projects in this area. The selected articles represent very well the diversity of approaches, contexts and objectives that foster and render highly dynamic this area of study. In Europe, several funding programmes like the 7th Framework Programme, the Lifelong Learning Programme and the most recent Horizon 2020 made specific provisions to support Serious Games projects. At the same time, enterprises are recognizing more and more the potential of SG to train and to motivate their workforce and are therefore joining forces with the academy and SG producers to design specific SG. Serious Games became one of the most interesting “places to be” due to its growing scientific and practitioner community. We can say that the motivating and addictive character of games has been successfully transmitted to the research and development of Serious Games.

  5. Dendritic orientation and branching distinguish a class of multifunctional turtle spinal interneurons.

    Science.gov (United States)

    Holmes, Jonathan R; Berkowitz, Ari

    2014-01-01

    Spinal interneurons can integrate diverse propriospinal and supraspinal inputs that trigger or modulate locomotion and other limb movements. These synaptic inputs can occur on distal dendrites and yet must remain effective at the soma. Active dendritic conductances may amplify distal dendritic inputs, but appear to play a minimal role during scratching, at least. Another possibility is that spinal interneurons that integrate inputs on distal dendrites have unusually simple dendritic trees that effectively funnel current to the soma. We previously described a class of spinal interneurons, called transverse interneurons (or T neurons), in adult turtles. T neurons were defined as having dendrites that extend further in the transverse plane than rostrocaudally and a soma that extends further mediolaterally than rostrocaudally. T neurons are multifunctional, as they were activated during both swimming and scratching motor patterns. T neurons had higher peak firing rates and larger membrane potential oscillations during scratching than scratch-activated interneurons with different dendritic morphologies ("non-T" neurons). These characteristics make T neurons good candidates to play an important role in integrating diverse inputs and generating or relaying rhythmic motor patterns. Here, we quantitatively investigated additional dendritic morphological characteristics of T neurons as compared to non-T neurons. We found that T neurons have less total dendritic length, a greater proportion of dendritic length in primary dendrites, and dendrites that are oriented more mediolaterally. Thus, T neuron dendritic trees extend far mediolaterally, yet are unusually simple, which may help channel synaptic current from distal dendrites in the lateral and ventral funiculi to the soma. In combination with T neuron physiological properties, these dendritic properties may help integrate supraspinal and propriospinal inputs and generate and/or modulate rhythmic limb movements.

  6. Ongoing incestuous abuse during adulthood.

    Science.gov (United States)

    Middleton, Warwick

    2013-01-01

    Individual cases of adult incestuous abuse have surfaced repeatedly in the lay and professional literature of the past 1.5 centuries without it occasioning systematic investigation, such as the reporting of a case series of individuals subjected to such extreme abuse. Yet substantial numbers of patients with dissociative identity disorder at the time of presentation report incestuous abuse continuing into the adult years, and for many the abuse is ongoing. Data relating to a series of 10 such incestuously abused women are presented. These patients were sexually abused from a very early age (typically from before age 3), with the manipulation of their sexual response a key component in conditioning an enduring sexualized attachment. Shame and fear were also used to ensure compliance and silence. The women, when able to speak of it, describe the induction by their paternal abuser of orgasm at an early age, typically around the age of 6. The women have high indices of self-harm and suicidality and are prone to placing themselves in dangerous reenactment scenarios. The average duration of incestuous abuse for this group of women was 31 years, and the average estimate of total episodes of sexual abuse was 3,320. Most women do not feel that they own their body and experience being "fused" to their father. Their mother was reported as an active participant in the sexual abuse or as having done nothing to protect their daughter despite seeing obvious evidence of incest. The fathers, despite a propensity to use or threaten violence, were generally outwardly productively employed, financially comfortable, and stably married and half had close church involvement. However, suicide and murder occurred within the 1st- or 2nd-degree relatives of these women at a high frequency. All 10 had been sexually abused by various groupings of individuals connected to their fathers.

  7. Optimization principles of dendritic structure

    Directory of Open Access Journals (Sweden)

    Borst Alexander

    2007-06-01

    Full Text Available Abstract Background Dendrites are the most conspicuous feature of neurons. However, the principles determining their structure are poorly understood. By employing cable theory and, for the first time, graph theory, we describe dendritic anatomy solely on the basis of optimizing synaptic efficacy with minimal resources. Results We show that dendritic branching topology can be well described by minimizing the path length from the neuron's dendritic root to each of its synaptic inputs while constraining the total length of wiring. Tapering of diameter toward the dendrite tip – a feature of many neurons – optimizes charge transfer from all dendritic synapses to the dendritic root while housekeeping the amount of dendrite volume. As an example, we show how dendrites of fly neurons can be closely reconstructed based on these two principles alone.

  8. RAB-10 Regulates Dendritic Branching by Balancing Dendritic Transport.

    Directory of Open Access Journals (Sweden)

    Caitlin A Taylor

    2015-12-01

    Full Text Available The construction of a large dendritic arbor requires robust growth and the precise delivery of membrane and protein cargoes to specific subcellular regions of the developing dendrite. How the microtubule-based vesicular trafficking and sorting systems are regulated to distribute these dendritic development factors throughout the dendrite is not well understood. Here we identify the small GTPase RAB-10 and the exocyst complex as critical regulators of dendrite morphogenesis and patterning in the C. elegans sensory neuron PVD. In rab-10 mutants, PVD dendritic branches are reduced in the posterior region of the cell but are excessive in the distal anterior region of the cell. We also demonstrate that the dendritic branch distribution within PVD depends on the balance between the molecular motors kinesin-1/UNC-116 and dynein, and we propose that RAB-10 regulates dendrite morphology by balancing the activity of these motors to appropriately distribute branching factors, including the transmembrane receptor DMA-1.

  9. Neurodynamic oscillators

    Science.gov (United States)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  10. Active properties of neuronal dendrites.

    Science.gov (United States)

    Johnston, D; Magee, J C; Colbert, C M; Cristie, B R

    1996-01-01

    Dendrites of neurons in the central nervous system are the principal sites for excitatory synaptic input. Although little is known about their function, two disparate perspectives have arisen to describe the activity patterns inherent to these diverse tree-like structures. Dendrites are thus considered either passive or active in their role in integrating synaptic inputs. This review follows the history of dendritic research from before the turn of the century to the present, with a primary focus on the hippocampus. A number of recent techniques, including high-speed fluorescence imaging and dendritic patch clamping, have provided new information and perspectives about the active properties of dendrites. The results support previous notions about the dendritic propagation of action potentials and also indicate which types of voltage-gated sodium and calcium channels are expressed and functionally active in dendrites. Possible roles for the active properties of dendrites in synaptic plasticity and integration are also discussed.

  11. Meixner oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Atakishiyev, N.M. [Instituto de Matematicas. Universidad Nacional Autonoma de Mexico. Cuernavaca, Morelos (Mexico); Jafarov, E.I.; Nagiyev, S.M. [Institute of Physics, Azerbaijan Academy of Sciences. Baku, Azerbaijan (Azerbaijan); Wolf, K.B. [Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas. Universidad Nacional Autonoma de Mexico. Cuernavaca, Morelos (Mexico)

    1998-10-01

    Meixner oscillators have a ground state and an energy spectrum that is equally spaced; they are a two-parameter family of models that satisfy a Hamiltonian equation with a difference operator. Meixner oscillators include as limits and particular cases the Charlier, Kravchuk and Hermite (common quantum-mechanical) harmonic oscillators. By the Sommerfeld-Watson transformation they are also related with a relativistic model of the linear harmonic oscillator, built in terms of the Meixner-Pollaczek polynomials, and their continuous weight function. We construct explicitly the corresponding coherent states with the dynamical symmetry group Sp(2,R). The reproducing kernel for the wavefunctions of these models is also found. (Author)

  12. Isothermal Dendritic Growth Experiment Video

    Science.gov (United States)

    1997-01-01

    This video, captured during the Isothermal Dendritic Growth Experiment (IDGE) flown on STS-87 as a part of the fourth United States Microgravity payload, shows the growth of a dendrite, and the surface solidification that occurred on the front and back windows of the growth chamber. Dendrites are tiny, tree like structures that form as metals solidify.

  13. Spiny Neurons of Amygdala, Striatum and Cortex Use Dendritic Plateau Potentials to Detect Network UP States

    Directory of Open Access Journals (Sweden)

    Katerina D Oikonomou

    2014-09-01

    Full Text Available Spiny neurons of amygdala, striatum, and cerebral cortex share four interesting features: [1] they are the most abundant cell type within their respective brain area, [2] covered by thousands of thorny protrusions (dendritic spines, [3] possess high levels of dendritic NMDA conductances, and [4] experience sustained somatic depolarizations in vivo and in vitro (UP states. In all spiny neurons of the forebrain, adequate glutamatergic inputs generate dendritic plateau potentials (dendritic UP states characterized by (i fast rise, (ii plateau phase lasting several hundred milliseconds and (iii abrupt decline at the end of the plateau phase. The dendritic plateau potential propagates towards the cell body decrementally to induce a long-lasting (longer than 100 ms, most often 200 – 800 ms steady depolarization (~20 mV amplitude, which resembles a neuronal UP state. Based on voltage-sensitive dye imaging, the plateau depolarization in the soma is precisely time-locked to the regenerative plateau potential taking place in the dendrite. The somatic plateau rises after the onset of the dendritic voltage transient and collapses with the breakdown of the dendritic plateau depolarization. We hypothesize that neuronal UP states in vivo reflect the occurrence of dendritic plateau potentials (dendritic UP states. We propose that the somatic voltage waveform during a neuronal UP state is determined by dendritic plateau potentials. A mammalian spiny neuron uses dendritic plateau potentials to detect and transform coherent network activity into a ubiquitous neuronal UP state. The biophysical properties of dendritic plateau potentials allow neurons to quickly attune to the ongoing network activity, as well as secure the stable amplitudes of successive UP states.

  14. Transport Processes in Dendritic Crystallization

    Science.gov (United States)

    Glicksman, M. E.

    1984-01-01

    Free dentritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical dendrite problem. The development of theoretical understanding of dendritic growth and its experimental status is sketched showing that transport theory and interfacial thermodynamics (capillarity theory) are insufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of maximum velocity was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to be able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip.

  15. GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus.

    Science.gov (United States)

    Klausberger, Thomas

    2009-09-01

    The dendrites of pyramidal cells are active compartments capable of independent computations, input/output transformation and synaptic plasticity. Pyramidal cells in the CA1 area of the hippocampus receive 92% of their GABAergic input onto dendrites. How does this GABAergic input participate in dendritic computations of pyramidal cells? One key to understanding their contribution to dendritic computation lies in the timing of GABAergic input in relation to excitatory transmission, back-propagating action potentials, Ca(2+) spikes and subthreshold membrane dynamics. The issue is further complicated by the fact that dendritic GABAergic inputs originate from numerous distinct sources operating with different molecular machineries and innervating different subcellular domains of pyramidal cell dendrites. The GABAergic input from distinct sources is likely to contribute differentially to dendritic computations. In this review, I describe four groups of GABAergic interneuron according to their expression of parvalbumin, cholecystokinin, axonal arborization density and long-range projections. These four interneuron groups contain at least 12 distinct cell types, which innervate mainly or exclusively the dendrites of CA1 pyramidal cells. Furthermore, I summarize the different spike timing of distinct interneuron types during gamma, theta and ripple oscillations in vivo, and I discuss some of the open questions on how GABAergic input modulates dendritic operations in CA1 pyramidal cells.

  16. Oscillate Boiling

    CERN Document Server

    Li, Fenfang; Nguyen, Dang Minh; Ohl, Claus-Dieter

    2016-01-01

    We report about an intriguing boiling regime occurring for small heaters embedded on the boundary in subcooled water. The microheater is realized by focusing a continuous wave laser beam to about $10\\,\\mu$m in diameter onto a 165\\,nm-thick layer of gold, which is submerged in water. After an initial vaporous explosion a single bubble oscillates continuously and repeatably at several $100\\,$kHz. The microbubble's oscillations are accompanied with bubble pinch-off leading to a stream of gaseous bubbles into the subcooled water. The self-driven bubble oscillation is explained with a thermally kicked oscillator caused by the non-spherical collapses and by surface pinning. Additionally, Marangoni stresses induce a recirculating streaming flow which transports cold liquid towards the microheater reducing diffusion of heat along the substrate and therefore stabilizing the phenomenon to many million cycles. We speculate that this oscillate boiling regime may allow to overcome the heat transfer thresholds observed dur...

  17. The Ongoing and Open-Ended Simulation

    Science.gov (United States)

    Cohen, Alexander

    2016-01-01

    This case study explores a novel form of classroom simulation that differs from published examples in two important respects. First, it is ongoing. While most simulations represent a single learning episode embedded within a course, the ongoing simulation is a continuous set of interrelated events and decisions that accompany learning throughout…

  18. Modification of dendritic development.

    Science.gov (United States)

    Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio

    2002-01-01

    Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the

  19. Oscillation death in coupled oscillators

    Institute of Scientific and Technical Information of China (English)

    Wei ZOU; Xin-gang WANG; Qi ZHAO; Meng ZHAN

    2009-01-01

    We study dynamical behaviors in coupled nonlinear oscillators and find that under certain condi- tions, a whole coupled oscillator system can cease oscil- lation and transfer to a globally nonuniform stationary state [I.e., the so-called oscillation death (OD) state], and this phenomenon can be generally observed. This OD state depends on coupling strengths and is clearly differ- ent from previously studied amplitude death (AD) state, which refers to the phenomenon where the whole system is trapped into homogeneously steady state of a fixed point, which already exists but is unstable in the ab- sence of coupling. For larger systems, very rich pattern structures of global death states are observed. These Turing-like patterns may share some essential features with the classical Turing pattern.

  20. Neutrino Oscillations

    Directory of Open Access Journals (Sweden)

    G. Bellini

    2014-01-01

    Full Text Available In the last decades, a very important breakthrough has been brought about in the elementary particle physics by the discovery of the phenomenon of the neutrino oscillations, which has shown neutrino properties beyond the Standard Model. But a full understanding of the various aspects of the neutrino oscillations is far to be achieved. In this paper the theoretical background of the neutrino oscillation phenomenon is described, referring in particular to the paradigmatic models. Then the various techniques and detectors which studied neutrinos from different sources are discussed, starting from the pioneering ones up to the detectors still in operation and to those in preparation. The physics results are finally presented adopting the same research path which has been crossed by this long saga. The problems not yet fixed in this field are discussed, together with the perspectives of their solutions in the near future.

  1. Phase field modeling of dendrite growth

    Institute of Scientific and Technical Information of China (English)

    Yutuo ZHANG; Chengzhi WANG; Dianzhong LI; Yiyi LI

    2009-01-01

    Single dendrite and multi-dendrite growth for A1-2 mol pct Si alloy during isothermal solidification are simulated by phase field method. In the case of single equiaxed dendrite growth, the secondary and the necking phenomenon can be observed. For multi-dendrite growth, there exists the competitive growth among the dendrites dur-ing solidification. As solidification proceeds, growing and coarsening of the primary arms occurs, together with the branching and coarsening of the secondary arms.When the diffusion fields of dendrite tips come into contact with those of the branches growing from the neighboring dendrites, the dendrites stop growing and being to ripen and thicken.

  2. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  3. Antiperiodic oscillations

    Science.gov (United States)

    Freire, Joana G.; Cabeza, Cecilia; Marti, Arturo; Pöschel, Thorsten; Gallas, Jason A. C.

    2013-06-01

    The investigation of regular and irregular patterns in nonlinear oscillators is an outstanding problem in physics and in all natural sciences. In general, regularity is understood as tantamount to periodicity. However, there is now a flurry of works proving the existence of ``antiperiodicity'', an unfamiliar type of regularity. Here we report the experimental observation and numerical corroboration of antiperiodic oscillations. In contrast to the isolated solutions presently known, we report infinite hierarchies of antiperiodic waveforms that can be tuned continuously and that form wide spiral-shaped stability phases in the control parameter plane. The waveform complexity increases towards the focal point common to all spirals, a key hub interconnecting them all.

  4. Ongoing Model Development Analyzing Glass Fracture

    DEFF Research Database (Denmark)

    Molnar, G.; Bojtar, I.; Nielsen, Jens Henrik

    2013-01-01

    Present subject deals with an ongoing experimental and numerical analysis of inplane loaded glass plates. The main goal of the investigation is to develop a hybrid – discrete and finite element – model which could follow the fracture process in annealed and in tempered glass. Measurements...

  5. Placental Development in Ongoing Pregnancy and Miscarriage

    NARCIS (Netherlands)

    A.D. Reus (Averil)

    2015-01-01

    markdownabstract__Abstract__ In this thesis three-dimensional ultrasound, three-dimensional power Doppler ultrasound, virtual reality and histologic examination of the chorionic villous vascularization were used to investigate early placental development in normal ongoing pregnancy as well as misca

  6. Ongoing Model Development Analyzing Glass Fracture

    DEFF Research Database (Denmark)

    Molnar, G.; Bojtar, I.; Nielsen, Jens Henrik

    2013-01-01

    Present subject deals with an ongoing experimental and numerical analysis of inplane loaded glass plates. The main goal of the investigation is to develop a hybrid – discrete and finite element – model which could follow the fracture process in annealed and in tempered glass. Measurements...... an overview of the structure of the research and a summary of current status archived so far....

  7. Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves.

    Science.gov (United States)

    Chiovini, Balázs; Turi, Gergely F; Katona, Gergely; Kaszás, Attila; Pálfi, Dénes; Maák, Pál; Szalay, Gergely; Szabó, Mátyás Forián; Szabó, Gábor; Szadai, Zoltán; Káli, Szabolcs; Rózsa, Balázs

    2014-05-21

    Sharp-wave ripples are transient oscillatory events in the hippocampus that are associated with the reactivation of neuronal ensembles within specific circuits during memory formation. Fast-spiking, parvalbumin-expressing interneurons (FS-PV INs) are thought to provide fast integration in these oscillatory circuits by suppressing regenerative activity in their dendrites. Here, using fast 3D two-photon imaging and a caged glutamate, we challenge this classical view by demonstrating that FS-PV IN dendrites can generate propagating Ca(2+) spikes during sharp-wave ripples. The spikes originate from dendritic hot spots and are mediated dominantly by L-type Ca(2+) channels. Notably, Ca(2+) spikes were associated with intrinsically generated membrane potential oscillations. These oscillations required the activation of voltage-gated Na(+) channels, had the same frequency as the field potential oscillations associated with sharp-wave ripples, and controlled the phase of action potentials. Furthermore, our results demonstrate that the smallest functional unit that can generate ripple-frequency oscillations is a segment of a dendrite.

  8. Sensory-Driven Enhancement of Calcium Signals in Individual Purkinje Cell Dendrites of Awake Mice

    Directory of Open Access Journals (Sweden)

    Farzaneh Najafi

    2014-03-01

    Full Text Available Climbing fibers (CFs are thought to contribute to cerebellar plasticity and learning by triggering a large influx of dendritic calcium in the postsynaptic Purkinje cell (PC to signal the occurrence of an unexpected sensory event. However, CFs fire about once per second whether or not an event occurs, raising the question of how sensory-driven signals might be distinguished from a background of ongoing spontaneous activity. Here, we report that in PC dendrites of awake mice, CF-triggered calcium signals are enhanced when the trigger is a sensory event. In addition, we show that a large fraction of the total enhancement in each PC dendrite can be accounted for by an additional boost of calcium provided by sensory activation of a non-CF input. We suggest that sensory stimulation may modulate dendritic voltage and calcium concentration in PCs to increase the strength of plasticity signals during cerebellar learning.

  9. Building better oscillators using nonlinear dynamics and pattern formation

    Indian Academy of Sciences (India)

    M C Cross; Eyal Kenig; John-Mark A Allen

    2015-03-01

    Frequency and time references play an essential role in modern technology and in living systems. The precision of self-sustained oscillations is limited by the effects of noise, which becomes evermore important as the sizes of the devices become smaller. In this paper, we review our recent theoretical results on using nonlinear dynamics and pattern formation to reduce the effects of noise and improve the frequency precision of oscillators, with particular reference to ongoing experiments on oscillators based on nanomechanical resonators. We discuss using resonator nonlinearity, novel oscillator architectures and the synchronization of arrays of oscillators, to improve the frequency precision.

  10. Dendrite Injury Triggers DLK-Independent Regeneration

    Directory of Open Access Journals (Sweden)

    Michelle C. Stone

    2014-01-01

    Full Text Available Axon injury triggers regeneration through activation of a conserved kinase cascade, which includes the dual leucine zipper kinase (DLK. Although dendrites are damaged during stroke, traumatic brain injury, and seizure, it is not known whether mature neurons monitor dendrite injury and initiate regeneration. We probed the response to dendrite damage using model Drosophila neurons. Two larval neuron types regrew dendrites in distinct ways after all dendrites were removed. Dendrite regeneration was also triggered by injury in adults. Next, we tested whether dendrite injury was initiated with the same machinery as axon injury. Surprisingly, DLK, JNK, and fos were dispensable for dendrite regeneration. Moreover, this MAP kinase pathway was not activated by injury to dendrites. Thus, neurons respond to dendrite damage and initiate regeneration without using the conserved DLK cascade that triggers axon regeneration.

  11. Inherited cortical HCN1 channel loss amplifies dendritic calcium electrogenesis and burst firing in a rat absence epilepsy model.

    Science.gov (United States)

    Kole, Maarten H P; Bräuer, Anja U; Stuart, Greg J

    2007-01-15

    While idiopathic generalized epilepsies are thought to evolve from temporal highly synchronized oscillations between thalamic and cortical networks, their cellular basis remains poorly understood. Here we show in a genetic rat model of absence epilepsy (WAG/Rij) that a rapid decline in expression of hyperpolarization-activated cyclic-nucleotide gated (HCN1) channels (I(h)) precedes the onset of seizures, suggesting that the loss of HCN1 channel expression is inherited rather than acquired. Loss of HCN1 occurs primarily in the apical dendrites of layer 5 pyramidal neurons in the cortex, leading to a spatially uniform 2-fold reduction in dendritic HCN current throughout the entire somato-dendritic axis. Dual whole-cell recordings from the soma and apical dendrites demonstrate that loss of HCN1 increases somato-dendritic coupling and significantly reduces the frequency threshold for generation of dendritic Ca2+ spikes by backpropagating action potentials. As a result of increased dendritic Ca2+ electrogenesis a large population of WAG/Rij layer 5 neurons showed intrinsic high-frequency burst firing. Using morphologically realistic models of layer 5 pyramidal neurons from control Wistar and WAG/Rij animals we show that the experimentally observed loss of dendritic I(h) recruits dendritic Ca2+ channels to amplify action potential-triggered dendritic Ca2+ spikes and increase burst firing. Thus, loss of function of dendritic HCN1 channels in layer 5 pyramidal neurons provides a somato-dendritic mechanism for increasing the synchronization of cortical output, and is therefore likely to play an important role in the generation of absence seizures.

  12. Optimal Current Transfer in Dendrites

    Science.gov (United States)

    Bird, Alex D.

    2016-01-01

    Integration of synaptic currents across an extensive dendritic tree is a prerequisite for computation in the brain. Dendritic tapering away from the soma has been suggested to both equalise contributions from synapses at different locations and maximise the current transfer to the soma. To find out how this is achieved precisely, an analytical solution for the current transfer in dendrites with arbitrary taper is required. We derive here an asymptotic approximation that accurately matches results from numerical simulations. From this we then determine the diameter profile that maximises the current transfer to the soma. We find a simple quadratic form that matches diameters obtained experimentally, indicating a fundamental architectural principle of the brain that links dendritic diameters to signal transmission. PMID:27145441

  13. Electrical advantages of dendritic spines.

    Directory of Open Access Journals (Sweden)

    Allan T Gulledge

    Full Text Available Many neurons receive excitatory glutamatergic input almost exclusively onto dendritic spines. In the absence of spines, the amplitudes and kinetics of excitatory postsynaptic potentials (EPSPs at the site of synaptic input are highly variable and depend on dendritic location. We hypothesized that dendritic spines standardize the local geometry at the site of synaptic input, thereby reducing location-dependent variability of local EPSP properties. We tested this hypothesis using computational models of simplified and morphologically realistic spiny neurons that allow direct comparison of EPSPs generated on spine heads with EPSPs generated on dendritic shafts at the same dendritic locations. In all morphologies tested, spines greatly reduced location-dependent variability of local EPSP amplitude and kinetics, while having minimal impact on EPSPs measured at the soma. Spine-dependent standardization of local EPSP properties persisted across a range of physiologically relevant spine neck resistances, and in models with variable neck resistances. By reducing the variability of local EPSPs, spines standardized synaptic activation of NMDA receptors and voltage-gated calcium channels. Furthermore, spines enhanced activation of NMDA receptors and facilitated the generation of NMDA spikes and axonal action potentials in response to synaptic input. Finally, we show that dynamic regulation of spine neck geometry can preserve local EPSP properties following plasticity-driven changes in synaptic strength, but is inefficient in modifying the amplitude of EPSPs in other cellular compartments. These observations suggest that one function of dendritic spines is to standardize local EPSP properties throughout the dendritic tree, thereby allowing neurons to use similar voltage-sensitive postsynaptic mechanisms at all dendritic locations.

  14. Self-organization of a recurrent network under ongoing synaptic plasticity.

    Science.gov (United States)

    Aoki, Takaaki

    2015-02-01

    We investigated the organization of a recurrent network under ongoing synaptic plasticity using a model of neural oscillators coupled by dynamic synapses. In this model, the coupling weights changed dynamically, depending on the timing between the oscillators. We determined the phase coupling function of the oscillator model, Γ(ϕ), using conductance-based neuron models. Furthermore, we examined the effects of the Fourier zero mode of Γ(ϕ), which has a critical role in the case of spike-time-dependent plasticity-organized recurrent networks. Heterogeneous layered clusters with different frequencies emerged from homogeneous populations as the Fourier zero mode increased. Our findings may provide new insights into the self-assembly mechanisms of neural networks related to synaptic plasticity.

  15. The Isothermal Dendritic Growth Experiment

    Science.gov (United States)

    Glicksman, M. E.; Koss, M. B.; Malarik, D. C.

    1998-01-01

    The growth of dendrites is one of the commonly observed forms of solidification encountered when metals and alloys freeze under low thermal gradients, as occurs in most casting and welding processes. In engineering alloys, the details of the dendritic morphology directly relates to important material responses and properties. Of more generic interest, dendritic growth is also an archetypical problem in morphogenesis, where a complex pattern evolves from simple starting conditions. Thus, the physical understanding and mathematical description of how dendritic patterns emerge during the growth process are of interest to both scientists and engineers. The Isothermal Dendritic Growth Experiment (IDGE) is a basic science experiment designed to measure, for a fundamental test of theory, the kinetics and morphology of dendritic growth without complications induced by gravity-driven convection. The IDGE, a collaboration between Rensselaer Polytechnic Institute, in Troy NY, and NASA's Lewis Research Center (LeRC) was developed over a ten year period from a ground-based research program into a space flight experiment. Important to the success of this flight experiment was provision of in situ near-real-time teleoperations during the spaceflight experiment.

  16. Eye-movements and ongoing task processing.

    Science.gov (United States)

    Burke, David T; Meleger, Alec; Schneider, Jeffrey C; Snyder, Jim; Dorvlo, Atsu S S; Al-Adawi, Samir

    2003-06-01

    This study tests the relation between eye-movements and thought processing. Subjects were given specific modality tasks (visual, gustatory, kinesthetic) and assessed on whether they responded with distinct eye-movements. Some subjects' eye-movements reflected ongoing thought processing. Instead of a universal pattern, as suggested by the neurolinguistic programming hypothesis, this study yielded subject-specific idiosyncratic eye-movements across all modalities. Included is a discussion of the neurolinguistic programming hypothesis regarding eye-movements and its implications for the eye-movement desensitization and reprocessing theory.

  17. Universal patterns underlying ongoing wars and terrorism

    CERN Document Server

    Johnson, N F; Restrepo, J A; Becerra, O; Bohorquez, J C; Suárez, N; Restrepo, E M; Zarama, R; Johnson, Neil F.; Spagat, Mike; Restrepo, Jorge A.; Becerra, Oscar; Bohorquez, Juan Camilo; Suarez, Nicolas; Restrepo, Elvira Maria; Zarama, Roberto

    2006-01-01

    We report a remarkable universality in the patterns of violence arising in three high-profile ongoing wars, and in global terrorism. Our results suggest that these quite different conflict arenas currently feature a common type of enemy, i.e. the various insurgent forces are beginning to operate in a similar way regardless of their underlying ideologies, motivations and the terrain in which they operate. We provide a microscopic theory to explain our main observations. This theory treats the insurgent force as a generic, self-organizing system which is dynamically evolving through the continual coalescence and fragmentation of its constituent groups.

  18. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...

  19. Grid oscillators

    Science.gov (United States)

    Popovic, Zorana B.; Kim, Moonil; Rutledge, David B.

    1988-01-01

    Loading a two-dimensional grid with active devices offers a means of combining the power of solid-state oscillators in the microwave and millimeter-wave range. The grid structure allows a large number of negative resistance devices to be combined. This approach is attractive because the active devices do not require an external locking signal, and the combining is done in free space. In addition, the loaded grid is a planar structure amenable to monolithic integration. Measurements on a 25-MESFET grid at 9.7 GHz show power-combining and frequency-locking without an external locking signal, with an ERP of 37 W. Experimental far-field patterns agree with theoretical results obtained using reciprocity.

  20. Anencephaly: An Ongoing Investigation in Washington State.

    Science.gov (United States)

    Barron, Sara

    2016-03-01

    : In the spring of 2012, a nurse in Washington State detected a cluster of babies born with anencephaly-a fatal condition in which infants are born without parts of the brain or skull. The resulting investigation initially confirmed a rate of anencephaly between January 2010 and January 2013 of 8.4 per 10,000 live births-more than four times the national average. As of November 2015, cases of anencephaly in Washington State have continued to increase, with the current rate estimated at 9.5 per 10,000 live births. While no distinct cause has yet been determined, neural tube defects-including anencephaly-are known to have multiple causes, including folic acid deficit, genetic variants in the folate pathway, and exposure to a variety of environmental and occupational toxins. This article describes many of these risk factors and explores the findings of Washington's ongoing investigation.

  1. The Fukushima nuclear disaster is ongoing.

    Science.gov (United States)

    Marks, Andrew R

    2016-07-01

    The 5th anniversary of the Fukushima disaster and the 30th anniversary of the Chernobyl disaster, the two most catastrophic nuclear accidents in history, both occurred recently. Images of Chernobyl are replete with the international sign of radioactive contamination (a circle with three broad spokes radiating outward in a yellow sign). In contrast, ongoing decontamination efforts at Fukushima lack international warnings about radioactivity. Decontamination workers at Fukushima appear to be poorly protected against radiation. It is almost as if the effort is to make the Fukushima problem disappear. A more useful response would be to openly acknowledge the monumental problems inherent in managing a nuclear plant disaster. Lessons from Chernobyl are the best predictors of what the Fukushima region of Japan is coping with in terms of health and environmental problems following a nuclear catastrophe.

  2. Gap junctions linking the dendritic network of GABAergic interneurons in the hippocampus.

    Science.gov (United States)

    Fukuda, T; Kosaka, T

    2000-02-15

    The network of GABAergic interneurons connected by chemical synapses is a candidate for the generator of synchronized oscillations in the hippocampus. We present evidence that parvalbumin (PV)-containing GABAergic neurons in the rat hippocampal CA1 region, known to form a network by mutual synaptic contacts, also form another network connected by dendrodendritic gap junctions. Distal dendrites of PV neurons run parallel to the alveus (hippocampal white matter) and establish multiple contacts with one another at the border between the stratum oriens and the alveus. In electron microscopic serial section analysis, gap junctions could be identified clearly at 24% of these contact sites. A dendrodendritic chemical synapse and a mixed synapse also were found between PV-immunoreactive dendrites. Three-dimensional reconstruction of the dendritic arborization revealed that both PV neurons of the well known vertical type (presumptive basket cells and axoaxonic cells) and those of another horizontal type constitute the dendritic network at the light microscopic level. The extent of dendritic fields of single PV neurons in the lateral direction was 538 +/- 201 micrometer (n = 5) in the vertical type and 838 +/- 159 micrometer (n = 6) in the horizontal type. Our previous and present observations indicate that PV-containing GABAergic neurons in the hippocampus form the dual networks connected by chemical and electrical synapses located at axosomatic and dendrodendritic contact sites, respectively. Gap junctions linking the dendritic network may mediate coherent synaptic inputs to distant interneurons and thereby facilitate the synchronization of oscillatory activities generated in the interneuron network.

  3. Coding and decoding with dendrites.

    Science.gov (United States)

    Papoutsi, Athanasia; Kastellakis, George; Psarrou, Maria; Anastasakis, Stelios; Poirazi, Panayiota

    2014-02-01

    Since the discovery of complex, voltage dependent mechanisms in the dendrites of multiple neuron types, great effort has been devoted in search of a direct link between dendritic properties and specific neuronal functions. Over the last few years, new experimental techniques have allowed the visualization and probing of dendritic anatomy, plasticity and integrative schemes with unprecedented detail. This vast amount of information has caused a paradigm shift in the study of memory, one of the most important pursuits in Neuroscience, and calls for the development of novel theories and models that will unify the available data according to some basic principles. Traditional models of memory considered neural cells as the fundamental processing units in the brain. Recent studies however are proposing new theories in which memory is not only formed by modifying the synaptic connections between neurons, but also by modifications of intrinsic and anatomical dendritic properties as well as fine tuning of the wiring diagram. In this review paper we present previous studies along with recent findings from our group that support a key role of dendrites in information processing, including the encoding and decoding of new memories, both at the single cell and the network level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Ongoing challenges in the management of malaria.

    Science.gov (United States)

    Kokwaro, Gilbert

    2009-10-12

    This article gives an overview of some of the ongoing challenges that are faced in the prevention, diagnosis and treatment of malaria. Malaria causes approximately 881,000 deaths every year, with nine out of ten deaths occurring in sub-Saharan Africa. In addition to the human burden of malaria, the economic burden is vast. It is thought to cost African countries more than US$12 billion every year in direct losses. However, great progress in malaria control has been made in some highly endemic countries. Vector control is assuming a new importance with the significant reductions in malaria burden achieved using combined malaria control interventions in countries such as Zanzibar, Zambia and Rwanda. The proportion of patients treated for malaria who have a confirmed diagnosis is low in Africa compared with other regions of the world, with the result that anti-malarials could be used to treat patients without malaria, especially in areas where progress has been made in reducing the malaria burden and malaria epidemiology is changing. Inappropriate administration of anti-malarials could contribute to the spread of resistance and incurs unnecessary costs. Parasite resistance to almost all commonly used anti-malarials has been observed in the most lethal parasite species, Plasmodium falciparum. This has presented a major barrier to successful disease management in malaria-endemic areas. ACT (artemisinin-based combination therapy) has made a significant contribution to malaria control and to reducing disease transmission through reducing gametocyte carriage. Administering ACT to infants and small children can be difficult and time consuming. Specially formulating anti-malarials for this vulnerable population is vital to ease administration and help ensure that an accurate dose is received. Education of healthworkers and communities about malaria prevention, diagnosis and treatment is a vital component of effective case management, especially as diagnostic policies change

  5. Dendritic Cells—Ontogeny—

    Directory of Open Access Journals (Sweden)

    Satoshi Takeuchi

    2007-01-01

    Full Text Available Dendritic cells (DC play key rolls in various aspects of immunity. The functions of DC depend on the subsets as well as their location or activation status. Understanding developmental lineages, precursors and inducing factors for various DC subsets would help their clinical application, but despite extensive efforts, the precise ontogeny of various DC, remain unclear and complex. Because of their many functional similarities to macrophages, DC were originally thought to be of myeloid-lineage, an idea supported by many in vitro studies where monocytes or GM-CSF (a key myeloid growth factor has been extensively used for generating DC. However, there has been considerable evidence which suggests the existence of lymphoid-lineage DC. After the confusion of myeloid-/lymphoid-DC concept regarding DC surface markers, we have now reached a consensus that each DC subset can differentiate through both myeloid- and lymphoid-lineages. The identification of committed populations (such as common myeloid- and lymphoid progenitors as precursors for every DC subsets and findings from various knockout (KO mice that have selected lymphoid- or myeloid-lineage deficiency appear to indicate flexibility of DC development rather than their lineage restriction. Why is DC development so flexible unlike other hematopoitic cells? It might be because there is developmental redundancy to maintain such important populations in any occasions, or such developmental flexibility would be advantageous for DC to be able to differentiate from any “available” precursors in situ irrespective of their lineages. This review will cover ontogeny of conventional (CD8+/- DC DC, plasmacytoid DC and skin Langerhans cells, and recently-identified many Pre-DC (immediate DC precursor populations, in addition to monocytes and plasmacytoid DC, will also be discussed.

  6. Oscillators and Eigenvalues

    DEFF Research Database (Denmark)

    Lindberg, Erik

    1997-01-01

    In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos....

  7. The Deterministic Dendritic Cell Algorithm

    CERN Document Server

    Greensmith, Julie

    2010-01-01

    The Dendritic Cell Algorithm is an immune-inspired algorithm orig- inally based on the function of natural dendritic cells. The original instantiation of the algorithm is a highly stochastic algorithm. While the performance of the algorithm is good when applied to large real-time datasets, it is difficult to anal- yse due to the number of random-based elements. In this paper a deterministic version of the algorithm is proposed, implemented and tested using a port scan dataset to provide a controllable system. This version consists of a controllable amount of parameters, which are experimented with in this paper. In addition the effects are examined of the use of time windows and variation on the number of cells, both which are shown to influence the algorithm. Finally a novel metric for the assessment of the algorithms output is introduced and proves to be a more sensitive metric than the metric used with the original Dendritic Cell Algorithm.

  8. Oscillating Permanent Magnets.

    Science.gov (United States)

    Michaelis, M. M.; Haines, C. M.

    1989-01-01

    Describes several ways to partially levitate permanent magnets. Computes field line geometries and oscillation frequencies. Provides several diagrams illustrating the mechanism of the oscillation. (YP)

  9. Solar neutrinos: Oscillations or No-oscillations?

    CERN Document Server

    Smirnov, A Yu

    2016-01-01

    The Nobel prize in physics 2015 has been awarded "... for the discovery of neutrino oscillations which show that neutrinos have mass". While SuperKamiokande (SK), indeed, has discovered oscillations, SNO observed effect of the adiabatic (almost non-oscillatory) flavor conversion of neutrinos in the matter of the Sun. Oscillations are irrelevant for solar neutrinos apart from small $\

  10. Dendritic cells star in Vancouver

    OpenAIRE

    Klechevsky, Eynav; Kato, Hiroki; Sponaas, Anne-Marit

    2005-01-01

    The fast-moving field of dendritic cell (DC) biology is hard to keep pace with. Here we report on advances from the recent Keystone Symposium, “Dendritic Cells at the Center of Innate and Adaptive Immunity,” organized in Vancouver, BC on Feb. 1–7, 2005 by Anne O'Garra, Jacques Banchereau, and Alan Sher. New insights into the molecular mechanisms of DC function and their influence on immune regulation, their role in infectious and autoimmune disease, and new clinical applications are highlight...

  11. Ongoing Mars Missions: Extended Mission Plans

    Science.gov (United States)

    Zurek, Richard; Diniega, Serina; Crisp, Joy; Fraeman, Abigail; Golombek, Matt; Jakosky, Bruce; Plaut, Jeff; Senske, David A.; Tamppari, Leslie; Thompson, Thomas W.; Vasavada, Ashwin R.

    2016-10-01

    Many key scientific discoveries in planetary science have been made during extended missions. This is certainly true for the Mars missions both in orbit and on the planet's surface. Every two years, ongoing NASA planetary missions propose investigations for the next two years. This year, as part of the 2016 Planetary Sciences Division (PSD) Mission Senior Review, the Mars Odyssey (ODY) orbiter project submitted a proposal for its 7th extended mission, the Mars Exploration Rover (MER-B) Opportunity submitted for its 10th, the Mars Reconnaissance Orbiter (MRO) for its 4th, and the Mars Science Laboratory (MSL) Curiosity rover and the Mars Atmosphere and Volatile Evolution (MVN) orbiter for their 2nd extended missions, respectively. Continued US participation in the ongoing Mars Express Mission (MEX) was also proposed. These missions arrived at Mars in 2001, 2004, 2006, 2012, 2014, and 2003, respectively. Highlights of proposed activities include systematic observations of the surface and atmosphere in twilight (early morning and late evening), building on a 13-year record of global mapping (ODY); exploration of a crater rim gully and interior of Endeavour Crater, while continuing to test what can and cannot be seen from orbit (MER-B); refocused observations of ancient aqueous deposits and polar cap interiors, while adding a 6th Mars year of change detection in the atmosphere and the surface (MRO); exploration and sampling by a rover of mineralogically diverse strata of Mt. Sharp and of atmospheric methane in Gale Crater (MSL); and further characterization of atmospheric escape under different solar conditions (MVN). As proposed, these activities follow up on previous discoveries (e.g., recurring slope lineae, habitable environments), while expanding spatial and temporal coverage to guide new detailed observations. An independent review panel evaluated these proposals, met with project representatives in May, and made recommendations to NASA in June 2016. In this

  12. Dry needling versus acupuncture: the ongoing debate.

    Science.gov (United States)

    Zhou, Kehua; Ma, Yan; Brogan, Michael S

    2015-12-01

    Although Western medical acupuncture (WMA) is commonly practised in the UK, a particular approach called dry needling (DN) is becoming increasingly popular in other countries. The legitimacy of the use of DN by conventional non-physician healthcare professionals is questioned by acupuncturists. This article describes the ongoing debate over the practice of DN between physical therapists and acupuncturists, with a particular emphasis on the USA. DN and acupuncture share many similarities but may differ in certain aspects. Currently, little information is available from the literature regarding the relationship between the two needling techniques. Through reviewing their origins, theory, and practice, we found that DN and acupuncture overlap in terms of needling technique with solid filiform needles as well as some fundamental theories. Both WMA and DN are based on modern biomedical understandings of the human body, although DN arguably represents only one subcategory of WMA. The increasing volume of research into needling therapy explains its growing popularity in the musculoskeletal field including sports medicine. To resolve the debate over DN practice, we call for the establishment of a regulatory body to accredit DN courses and a formal, comprehensive educational component and training for healthcare professionals who are not physicians or acupuncturists. Because of the close relationship between DN and acupuncture, collaboration rather than dispute between acupuncturists and other healthcare professionals should be encouraged with respect to education, research, and practice for the benefit of patients with musculoskeletal conditions who require needling therapy.

  13. Methylated spirit burns: an ongoing problem.

    Science.gov (United States)

    Jansbeken, J R H; Vloemans, A F P M; Tempelman, F R H; Breederveld, R S

    2012-09-01

    Despite many educational campaigns we still see burns caused by methylated spirit every year. We undertook a retrospective study to analyse the impact of this problem. We retrospectively collected data of all patients with burns caused by methylated spirit over twelve years from 1996 to 2008. Our main endpoints were: incidence, age, mechanism of injury, total body surface area (TBSA) burned, burn depth, need for surgery and length of hospital stay. Ninety-seven patients with methylated spirit burns were included. During the study period there was no decrease in the number of patients annually admitted to the burn unit with methylated spirit burns. 28% of the patients (n=27) were younger than eighteen years old, 15% (n=15) were ten years old or younger. The most common cause of burns was carelessness in activities involving barbecues, campfires and fondues. Mean TBSA burned was 16% (SD 12.4). 70% (n=68) had full thickness burns. 66% (n=64) needed grafting. Mean length of hospital stay was 23 days (SD 24.7). The use of methylated spirit is an ongoing problem, which continues to cause severe burns in adults and children. Therefore methylated spirit should be banned in households. We suggest sale only in specialised shops, clear labelling and mandatory warnings. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  14. Bioequivalence accomplishments, ongoing initiatives, and remaining challenges.

    Science.gov (United States)

    Martinez, M N

    2014-02-01

    Although bioequivalence (BE) concepts date back to the late 1960s, there has been a steady evolution in the tools applied to the assessment of product comparability. Despite these advancements, we continue to face a multitude of unresolved challenges. Several of these challenges are unique to veterinary medicine due to issues such as multiple species approvals, unique dosage forms (e.g., intramammary infusion and medicated premixes), physiological challenges (e.g., limitations in blood volume and stress reactions), and the need to evaluate product equivalence for products intended to release drug over a duration of months. Thus, while in some instances, we can adopt advancements implemented by our human health counterparts but in other situations, we need to pioneer our own method for resolving these challenges. The purpose of this manuscript is to provide an update on recent advances, achievements, and ongoing initiatives associated with the assessment of product BE in veterinary medicine. This review reflects the highlights of a presentation given at the 2012 meeting of the European Association for Veterinary Pharmacology and Toxicology. Published (2013). This article is a U.S. Government work and is in the public domain in the USA.

  15. OPERA neutrino oscillation search: Status and perspectives

    Science.gov (United States)

    Gornushkin, Yu.

    2016-07-01

    OPERA is a long-baseline neutrino experiment at the Gran Sasso laboratory (LNGS) designed to search for ν_{{μ}}^{} → ν_{{τ}}^{} oscillations in a direct appearance mode on an event by event basis. OPERA took data in 2008-2012 with the CNGS neutrino beam from CERN. The data analysis is ongoing, with the goal of establishing ν_{{τ}}^{} appearance with a high significance. Complementary studies of the ν_{{μ}}^{} → ν_{{e}}^{} oscillations and atmospheric muons fluxes were performed as well. Current results of the experiment are presented and perspectives discussed.

  16. Comparison of the Flow Behavior of Globulitically and Dendritically Solidified Metallic Suspensions

    Science.gov (United States)

    Modigell, M.; Pape, L.; Hufschmidt, M.

    2007-04-01

    The deformation behavior of globulitically and dendritically solidified metallic suspensions is studied at the example of Sn-15%Pb with a fraction solid of 30%. Creep tests with stresses less than 20 Pa serve to identify the deformation properties relevant for the solidification process of castings. It is investigated if thermo-mechanical defects like hot tearing or shape distortion which occur during solidification in conventional casting (dendritic structure) can also be expected for globulitic material as used in Thixoforming. Additionally the flow behavior at higher shear rates and the recovery of structural changes after shear is examined by shear rate jump and oscillation experiments respectively. This aspect is of importance for Rheocasting processes where depending on the cooling conditions globules as well as dendrites are present in the primary material.

  17. Bone marrow-derived dendritic cells.

    Science.gov (United States)

    Roney, Kelly

    2013-01-01

    While much is understood about dendritic cells and their role in the immune system, the study of these cells is critical to gain a more complete understanding of their function. Dendritic cell isolation from mouse body tissues can be difficult and the number of cells isolated small. This protocol describes the growth of large number of dendritic cells from the culture of mouse bone marrow cells. The dendritic cells grown in culture facilitate experiments that may require large number of dendritic cells without great expense or use of large number of mice.

  18. Oscillations of Eccentric Pulsons

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Groenbech-Jensen, Niels; Lomdahl, Peter;

    1997-01-01

    Perturbation theory for elliptic pulsons is developed and predicts pulson and eccentricity oscillations. The pulson oscillation period is predicted qualitatively correct.......Perturbation theory for elliptic pulsons is developed and predicts pulson and eccentricity oscillations. The pulson oscillation period is predicted qualitatively correct....

  19. Consequences of ongoing retrotransposition in mammalian genomes

    Directory of Open Access Journals (Sweden)

    Maxwell PH

    2014-09-01

    Full Text Available Patrick H Maxwell Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA Abstract: Retrotransposons can have significant influences on gene expression and genome stability through their ability to integrate reverse-transcript copies of their sequences at new genomic locations by retrotransposition. These elements have been long known to retrotranspose in mammalian germ cells to give rise to inherited insertion alleles, but more recent work has also shown that retrotransposition can occur in mammalian somatic cells, particularly in brain tissue and tumors. Retrotransposition makes appreciable contributions to spontaneous disease-causing alleles in humans and a more significant contribution to spontaneous mutations in mice. Genome-wide studies have found high levels of polymorphic retrotransposon insertions in human populations that are consistent with ongoing retrotransposition. Many insertions do not disrupt exons, but insertions into introns or flanking genes can alter gene expression patterns, generate truncated or antisense gene transcripts, alter splicing patterns, or result in premature polyadenylation of gene transcripts. Furthermore, the very high genomic copy numbers of these elements can lead to nonallelic homologous recombination events that produce gene deletions/duplications and genome rearrangements, and can also lead to evolution of particular insertions or types of elements to have cellular functions through exaptation. Mobility of these elements occurs despite multiple epigenetic mechanisms to restrict their expression. While the potential for retrotransposons to significantly influence mammalian health and cellular functions is clear, substantial research efforts will be needed to fully elucidate the actual contributions of natural levels of mobility of endogenous elements to the health and development of humans and other mammals. Keywords: retrotransposon, human, mouse, mutations, epigenetics

  20. Ongoing dengue epidemic - Angola, June 2013.

    Science.gov (United States)

    2013-06-21

    On April 1, 2013, the Public Health Directorate of Angola announced that six cases of dengue had been reported to the Ministry of Health of Angola (MHA). As of May 31, a total of 517 suspected dengue cases had been reported and tested for dengue with a rapid diagnostic test (RDT). A total of 313 (60.5%) specimens tested positive for dengue, including one from a patient who died. All suspected cases were reported from Luanda Province, except for two from Malanje Province. Confirmatory diagnostic testing of 49 specimens (43 RDT-positive and six RDT-negative) at the CDC Dengue Branch confirmed dengue virus (DENV) infection in 100% of the RDT-positive specimens and 50% of the RDT-negative specimens. Only DENV-1 was detected by molecular diagnostic testing. Phylogenetic analysis indicated this virus has been circulating in the region since at least 1968, strongly suggesting that dengue is endemic in Angola. Health-care professionals throughout Angola should be aware of the ongoing epidemic, the recommended practices for clinical management of dengue patients, and the need to report cases to MHA. Persons in Angola should seek medical care for acute febrile illness to reduce the risk for developing complications. Laboratory-confirmed dengue also has been reported from seven countries on four continents among persons who had recently traveled to Luanda, including 79 persons from Portugal. Angola is the third of four African countries to report a dengue outbreak in 2013. Persons returning from Africa with acute febrile illness should seek medical care, including testing for DENV infection, and suspected cases should be reported to public health authorities.

  1. Acute melatonin treatment alters dendritic morphology and circadian clock gene expression in the hippocampus of Siberian hamsters.

    Science.gov (United States)

    Ikeno, Tomoko; Nelson, Randy J

    2015-02-01

    In the hippocampus of Siberian hamsters, dendritic length and dendritic complexity increase in the CA1 region whereas dendritic spine density decreases in the dentate gyrus region at night. However, the underlying mechanism of the diurnal rhythmicity in hippocampal neuronal remodeling is unknown. In mammals, most daily rhythms in physiology and behaviors are regulated by a network of circadian clocks. The central clock, located in the hypothalamus, controls melatonin secretion at night and melatonin modifies peripheral clocks by altering expression of circadian clock genes. In this study, we examined the effects of acute melatonin treatment on the circadian clock system as well as on morphological changes of hippocampal neurons. Male Siberian hamsters were injected with melatonin in the afternoon; 4 h later, mRNA levels of hypothalamic and hippocampal circadian clock genes and hippocampal neuron dendritic morphology were assessed. In the hypothalamus, melatonin treatment did not alter Period1 and Bmal1 expression. However, melatonin treatment increased both Period1 and Bmal1 expression in the hippocampus, suggesting that melatonin affected molecular oscillations in the hippocampus. Melatonin treatment also induced rapid remodeling of hippocampal neurons; melatonin increased apical dendritic length and dendritic complexity in the CA1 region and reduced the dendritic spine density in the dentate gyrus region. These data suggest that structural changes in hippocampal neurons are regulated by a circadian clock and that melatonin functions as a nighttime signal to coordinate the diurnal rhythm in neuronal remodeling.

  2. Evidence that dendritic mitochondria negatively regulate dendritic branching in pyramidal neurons in the neocortex.

    Science.gov (United States)

    Kimura, Toshiya; Murakami, Fujio

    2014-05-14

    The precise branching patterns of dendritic arbors have a profound impact on information processing in individual neurons and the brain. These patterns are established by positive and negative regulation of the dendritic branching. Although the mechanisms for positive regulation have been extensively investigated, little is known about those for negative regulation. Here, we present evidence that mitochondria located in developing dendrites are involved in the negative regulation of dendritic branching. We visualized mitochondria in pyramidal neurons of the mouse neocortex during dendritic morphogenesis using in utero electroporation of a mitochondria-targeted fluorescent construct. We altered the mitochondrial distribution in vivo by overexpressing Mfn1, a mitochondrial shaping protein, or the Miro-binding domain of TRAK2 (TRAK2-MBD), a truncated form of a motor-adaptor protein. We found that dendritic mitochondria were preferentially targeted to the proximal portion of dendrites only during dendritic morphogenesis. Overexpression of Mfn1 or TRAK2-MBD depleted mitochondria from the dendrites, an effect that was accompanied by increased branching of the proximal portion of the dendrites. This dendritic abnormality cannot be accounted for by changes in the distribution of membrane trafficking organelles since the overexpression of Mfn1 did not alter the distributions of the endoplasmic reticulum, Golgi, or endosomes. Additionally, neither did these constructs impair neuronal viability or mitochondrial function. Therefore, our results suggest that dendritic mitochondria play a critical role in the establishment of the precise branching pattern of dendritic arbors by negatively affecting dendritic branching.

  3. EIDA Next Generation: ongoing and future developments

    Science.gov (United States)

    Strollo, Angelo; Quinteros, Javier; Sleeman, Reinoud; Trani, Luca; Clinton, John; Stammler, Klaus; Danecek, Peter; Pedersen, Helle; Ionescu, Constantin

    2015-04-01

    The European Integrated Data Archive (EIDA; http://www.orfeus-eu.org/eida/eida.html) is the distributed Data Centre system within ORFEUS, providing transparent access and services to high quality, seismic data across (currently) 9 large data archives in Europe. EIDA is growing, in terms of the number of participating data centres, the size of the archives, the variability of the data in the archives, the number of users, and the volume of downloads. The on-going success of EIDA is thus providing challenges that are the driving force behind the design of the next generation (NG) of EIDA, which is expected to be implemented within EPOS IP. EIDA ORFEUS must cope with further expansion of the system and more complex user requirements by developing new techniques and extended services. The EIDA NG is being designed to work on standard FDSN web services and two additional new web services: Routing Service and QC (quality controlled) service. This presentation highlights the challenges EIDA needs to address during the EPOS IP and focuses on these 2 new services. The Routing Service can be considered as the core of EIDA NG. It was designed to assist users and clients to locate data within a federated, decentralized data centre (e.g. EIDA). A detailed, FDSN-compliant specification of the service has been developed. Our implementation of this service will run at every EIDA node, but is also capable of running on a user's computer, allowing anyone to define virtual or integrate existing data centres. This (meta)service needs to be queried in order to locate the data. Some smart clients (in a beta status) have been also provided to offer the user an integrated view of the whole EIDA, hiding the complexity of its internal structure. The service is open and able to be queried by anyone without the need of credentials or authentication. The QC Service is developed to cope with user requirements to query for relevant data only. The web service provides detailed information on the

  4. Phase field modeling of dendritic coarsening during isothermal

    Directory of Open Access Journals (Sweden)

    Zhang Yutuo

    2011-08-01

    Full Text Available Dendritic coarsening in Al-2mol%Si alloy during isothermal solidification at 880K was investigated by phase field modeling. Three coarsening mechanisms operate in the alloy: (a melting of small dendrite arms; (b coalescence of dendrites near the tips leading to the entrapment of liquid droplets; (c smoothing of dendrites. Dendrite melting is found to be dominant in the stage of dendritic growth, whereas coalescence of dendrites and smoothing of dendrites are dominant during isothermal holding. The simulated results provide a better understanding of dendrite coarsening during isothermal solidification.

  5. Establishing atmospheric neutrino oscillations with Super-Kamiokande

    Science.gov (United States)

    Kajita, T.; Kearns, E.; Shiozawa, M.

    2016-07-01

    In this article we review the discovery of atmospheric neutrino oscillation by the Super-Kamiokande experiment. This review outlines the sequence of observations and their associated publications that solved the atmospheric neutrino anomaly and established the existence of neutrino oscillations with nearly maximal mixing of muon neutrinos and tau neutrinos. We also discuss subsequent and ongoing studies that use atmospheric neutrinos to continue to reveal the nature of the neutrino.

  6. Dendritic cells and contact dermatitis.

    Science.gov (United States)

    Sasaki, Yoshinori; Aiba, Setsuya

    2007-10-01

    Contact dermatitis is a biological response to simple chemicals in the skin. Although it is well known that allergic contact dermatitis is mediated by the immune system, it is still uncertain whether it is a kind of protective response or it is simply an unnecessary response. We have demonstrated the following: (1) haptens activate Langerhans cells in the initiation phase of murine allergic contact dermatitis in vivo, (2) haptens activate human monocyte-derived dendritic cells in vitro, (3) the activation of dendritic cells by haptens is primarily mediated by the activation of p38 mitogen-activated protein kinase (MAPK), and (4) the activation of p38 MAPK is mediated by stimulation related to an imbalance of intracellular redox. Based on these observations, we will discuss the biological significance of contact dermatitis. In addition, we will review some up-to-date findings on Langerhans cell biology.

  7. Lipid dynamics at dendritic spines.

    Science.gov (United States)

    Dotti, Carlos Gerardo; Esteban, Jose Antonio; Ledesma, María Dolores

    2014-01-01

    Dynamic changes in the structure and composition of the membrane protrusions forming dendritic spines underlie memory and learning processes. In recent years a great effort has been made to characterize in detail the protein machinery that controls spine plasticity. However, we know much less about the involvement of lipids, despite being major membrane components and structure determinants. Moreover, protein complexes that regulate spine plasticity depend on specific interactions with membrane lipids for proper function and accurate intracellular signaling. In this review we gather information available on the lipid composition at dendritic spine membranes and on its dynamics. We pay particular attention to the influence that spine lipid dynamism has on glutamate receptors, which are key regulators of synaptic plasticity.

  8. Microtubules in Dendritic Spine Development

    OpenAIRE

    2008-01-01

    It is generally believed that only the actin cytoskeleton resides in dendritic spines and controls spine morphology and plasticity. Here we report that microtubules (MTs) are present in spines and that shRNA knockdown of the MT-plus end binding protein EB3 significantly reduces spine formation. Furthermore, stabilization and inhibition of MTs by low doses of taxol and nocodazole enhance and impair spine formation elicited by BDNF, respectively. Therefore, MTs play an important role in the con...

  9. Melanoma immunotherapy: dendritic cell vaccines

    OpenAIRE

    Lozada-Requena, Ivan; Laboratorios de Inmunología #108, Laboratorio de investigación y Desarrollo, Facultad de Ciencieas y Filosofía, Universidad Cayetano Heredia. Lima, Perú Empresa de Investigación y Desarrollo en Cáncer (EMINDES) SAC. Lima, Perú.; Núñez, César; Empresa de Investigación y Desarrollo en Cáncer (EMINDES) SAC. Lima, Perú.; Aguilar, José Luis; Laboratorios de Inmunología #108, Laboratorio de investigación y Desarrollo, Facultad de Ciencieas y Filosofía, Universidad Cayetano Heredia. Lima, Perú.

    2015-01-01

    This is a narrative review that shows accessible information to the scientific community about melanoma and immunotherapy.Dendritic cells have the ability to participate in innate and adaptive immunity, but are not unfamiliar to the immune evasion oftumors. Knowing the biology and role has led to generate in vitro several prospects of autologous cell vaccines against diversetypes of cancer in humans and animal models. However, given the low efficiency they have shown, we must implementstrateg...

  10. Development of Dendritic Cell System

    Institute of Scientific and Technical Information of China (English)

    LiWu; AleksandarDakic

    2004-01-01

    The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells (pDCs). Both DCs and pDCs are bone marrow derived calls. Although the common functions of DCs are antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human and the developmental processes of these specialized DC subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors, some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown recently that both conventional DCs and pDCs can be generated by the Fit3 expressing hemopoietic progenitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the development of DC system in both human and mouse. Cellular & Molecular Immunology. 2004;1(2):112-118.

  11. Development of Dendritic Cell System

    Institute of Scientific and Technical Information of China (English)

    Li Wu; Aleksandar Dakic

    2004-01-01

    The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells (pDCs). Both DCs and pDCs are bone marrow derived cells. Although the common functions of DCs are antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human and the developmental processes of these specialized DC subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors,some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown recently that both conventional DCs and pDCs can be generated by the Flt3 expressing hemopoietic progenitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the development of DC system in both human and mouse.

  12. Dendritic web silicon for solar cell application

    Science.gov (United States)

    Seidensticker, R. G.

    1977-01-01

    The dendritic web process for growing long thin ribbon crystals of silicon and other semiconductors is described. Growth is initiated from a thin wirelike dendrite seed which is brought into contact with the melt surface. Initially, the seed grows laterally to form a button at the melt surface; when the seed is withdrawn, needlelike dendrites propagate from each end of the button into the melt, and the web portion of the crystal is formed by the solidification of the liquid film supported by the button and the bounding dendrites. Apparatus used for dendritic web growth, material characteristics, and the two distinctly different mechanisms involved in the growth of a single crystal are examined. The performance of solar cells fabricated from dendritic web material is indistinguishable from the performance of cells fabricated from Czochralski grown material.

  13. Active dendrites enhance neuronal dynamic range.

    Directory of Open Access Journals (Sweden)

    Leonardo L Gollo

    2009-06-01

    Full Text Available Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB. Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range.

  14. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites.

    Science.gov (United States)

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E

    2016-03-18

    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca(2+) activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca(2+) activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively.

  15. Sidebranching in the Dendritic Crystal Growth of Ammonium Chloride

    Science.gov (United States)

    Dougherty, Andrew

    2012-02-01

    We report measurements of the dendritic crystal growth of NH4Cl from supersaturated aqueous solution at small supersaturations. Sidebranch growth in this regime is challenging to model well, and the origin of the sidebranches is not fully understood. The early detection of sidebranches requires measurements of small deviations from the smooth steady state shape, but that shape is not well known at the intermediate distances relevant for sidebranch measurements. One model is that sidebranches result from the selective amplification of microscopic noise. We compare measurements of the sidebranch envelope with predictions of the noise-induced sidebranching model of Gonz'alez-Cinca, Ram'irez-Piscina, Casademunt, and Hern'andez-Machado [Phys Rev. E, 63, 051602 (2001)]. We find that the measured amplitude is somewhat larger than predicted, and the shape of the sidebranch envelope is also different. A second model is that sidebranches result from small oscillations of the tip. We have observed no such oscillations, but very small ones can not be ruled out. No measurement of the tip region can be completely free of contamination from early sidebranches, so it can be challenging to distinguish between an oscillating tip and a smooth tip with sidebranches starting nearby.

  16. Dendritic Cells, New Tools for Vaccination

    Science.gov (United States)

    2003-01-01

    Review Dendritic cells , new tools for vaccination Jesus Colino, Clifford M. Snapper * Department of Pathology, Uniformed Services University of the...2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved. Keywords: Vaccines; Immunotherapy; Dendritic cells 1. Introduction During...DATE 2003 2. REPORT TYPE 3. DATES COVERED 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE Dendritic cells , new tools for vaccination 5a

  17. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  18. Phenomenology of neutrino oscillations

    Indian Academy of Sciences (India)

    G Rajasekaran

    2000-07-01

    The phenomenology of solar, atmospheric, supernova and laboratory neutrino oscillations is described. Analytical formulae for matter effects are reviewed. The results from oscillations are confronted with neutrinoless double beta decay.

  19. Quantum Duffing Oscillators

    OpenAIRE

    Sanin, A.; Semyonov, E.

    2012-01-01

    Numerical integration of the non-stationary Schrödinger equation with Duffing potential depending on two coordinates has been carried out. Oscillation types and the influence of coupling between two oscillators on frequency spectra are analyzed in detail.

  20. Low Power Dendritic Computation for Wordspotting

    Directory of Open Access Journals (Sweden)

    Stephen Nease

    2013-05-01

    Full Text Available In this paper, we demonstrate how a network of dendrites can be used to build the state decoding block of a wordspotter similar to a Hidden Markov Model (HMM classifier structure. We present simulation and experimental data for a single line dendrite and also experimental results for a dendrite-based classifier structure. This work builds on previously demonstrated building blocks of a neural network: the channel, synapses and dendrites using CMOS circuits. These structures can be used for speech and pattern recognition. The computational efficiency of such a system is >10 MMACs/μW as compared to Digital Systems which perform 10 MMACs/mW.

  1. Neoplasms derived from plasmacytoid dendritic cells.

    Science.gov (United States)

    Facchetti, Fabio; Cigognetti, Marta; Fisogni, Simona; Rossi, Giuseppe; Lonardi, Silvia; Vermi, William

    2016-02-01

    Plasmacytoid dendritic cell neoplasms manifest in two clinically and pathologically distinct forms. The first variant is represented by nodular aggregates of clonally expanded plasmacytoid dendritic cells found in lymph nodes, skin, and bone marrow ('Mature plasmacytoid dendritic cells proliferation associated with myeloid neoplasms'). This entity is rare, although likely underestimated in incidence, and affects predominantly males. Almost invariably, it is associated with a myeloid neoplasm such as chronic myelomonocytic leukemia or other myeloid proliferations with monocytic differentiation. The concurrent myeloid neoplasm dominates the clinical pictures and guides treatment. The prognosis is usually dismal, but reflects the evolution of the associated myeloid leukemia rather than progressive expansion of plasmacytoid dendritic cells. A second form of plasmacytoid dendritic cells tumor has been recently reported and described as 'blastic plasmacytoid dendritic cell neoplasm'. In this tumor, which is characterized by a distinctive cutaneous and bone marrow tropism, proliferating cells derive from immediate CD4(+)CD56(+) precursors of plasmacytoid dendritic cells. The diagnosis of this form can be easily accomplished by immunohistochemistry, using a panel of plasmacytoid dendritic cells markers. The clinical course of blastic plasmacytoid dendritic cell neoplasm is characterized by a rapid progression to systemic disease via hematogenous dissemination. The genomic landscape of this entity is currently under intense investigation. Recurrent somatic mutations have been uncovered in different genes, a finding that may open important perspectives for precision medicine also for this rare, but highly aggressive leukemia.

  2. Neutrino Masses and Oscillations

    CERN Document Server

    Valle, J W F

    2005-01-01

    I summarize the status of three--neutrino oscillations that follow from combining the relevant world's data. The discussion includes the small parameters Delta_m-sol/Delta_m-atm and \\sin^2\\theta_{13}, which characterize the strength of CP violation in neutrino oscillations, the impact of oscillation data on the prospects for probing the absolute scale of neutrino mass in \

  3. The colpitts oscillator family

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...

  4. Prestimulus neural oscillations inhibit visual perception via modulation of response gain.

    Science.gov (United States)

    Chaumon, Maximilien; Busch, Niko A

    2014-11-01

    The ongoing state of the brain radically affects how it processes sensory information. How does this ongoing brain activity interact with the processing of external stimuli? Spontaneous oscillations in the alpha range are thought to inhibit sensory processing, but little is known about the psychophysical mechanisms of this inhibition. We recorded ongoing brain activity with EEG while human observers performed a visual detection task with stimuli of different contrast intensities. To move beyond qualitative description, we formally compared psychometric functions obtained under different levels of ongoing alpha power and evaluated the inhibitory effect of ongoing alpha oscillations in terms of contrast or response gain models. This procedure opens the way to understanding the actual functional mechanisms by which ongoing brain activity affects visual performance. We found that strong prestimulus occipital alpha oscillations-but not more anterior mu oscillations-reduce performance most strongly for stimuli of the highest intensities tested. This inhibitory effect is best explained by a divisive reduction of response gain. Ongoing occipital alpha oscillations thus reflect changes in the visual system's input/output transformation that are independent of the sensory input to the system. They selectively scale the system's response, rather than change its sensitivity to sensory information.

  5. Neutrino oscillations: theory and phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, E.K., E-mail: akhmedov@ictp.trieste.it [Department of Theoretical Physics, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm (Sweden)

    2011-12-15

    A brief overview of selected topics in the theory and phenomenology of neutrino oscillations is given. These include: oscillations in vacuum and in matter; phenomenology of 3-flavour neutrino oscillations; CP and T violation in neutrino oscillations in vacuum and in matter; matter effects on {nu}{sub {mu}}{r_reversible}{nu}{sub {tau}} oscillations; parametric resonance in neutrino oscillations inside the earth; oscillations below and above the MSW resonance; unsettled issues in the theory of neutrino oscillations.

  6. Covariant harmonic oscillators and coupled harmonic oscillators

    Science.gov (United States)

    Han, Daesoo; Kim, Young S.; Noz, Marilyn E.

    1995-01-01

    It is shown that the system of two coupled harmonic oscillators shares the basic symmetry properties with the covariant harmonic oscillator formalism which provides a concise description of the basic features of relativistic hadronic features observed in high-energy laboratories. It is shown also that the coupled oscillator system has the SL(4,r) symmetry in classical mechanics, while the present formulation of quantum mechanics can accommodate only the Sp(4,r) portion of the SL(4,r) symmetry. The possible role of the SL(4,r) symmetry in quantum mechanics is discussed.

  7. Systematic uncertainties in long-baseline neutrino-oscillation experiments

    CERN Document Server

    Ankowski, Artur M

    2016-01-01

    Thanks to global efforts over the past two decades, the phenomenon of neutrino oscillations is now well established. In ongoing experiments, the parameters driving the oscillations are being determined with rapidly increasing precision. Yet there still are open issues that have implications going well beyond neutrino physics. The next two decades are expected to bring definite answers to the neutrino-mass hierarchy and violation of charge-particle (CP) symmetry in neutrino oscillations. The question of the mass hierarchy---whether the neutrino masses follow the pattern of the charged-lepton masses---is relevant for cosmology, astrophysics and unification theories. On the other hand, CP violating oscillations have the potential to give an important, or event dominant, contribution to the matter-antimatter asymmetry in the Universe. For the success of future neutrino-oscillation studies it is, however, necessary to ensure a significant reduction of uncertainties, particularly those related to neutrino-energy re...

  8. External Drive to Inhibitory Cells Induces Alternating Episodes of High- and Low-Amplitude Oscillations

    NARCIS (Netherlands)

    Gonzalez, Oscar J. Avella; van Aerde, Karlijn I.; van Elburg, Ronald A. J.; Poil, Simon-Shlomo; Mansvelder, Huibert D.; Linkenkaer-Hansen, Klaus; van Pelt, Jaap; van Ooyen, Arjen

    2012-01-01

    Electrical oscillations in neuronal network activity are ubiquitous in the brain and have been associated with cognition and behavior. Intriguingly, the amplitude of ongoing oscillations, such as measured in EEG recordings, fluctuates irregularly, with episodes of high amplitude alternating with epi

  9. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  10. Differential effects of ongoing EEG beta and theta power on memory formation

    Science.gov (United States)

    Scholz, Sebastian; Schneider, Signe Luisa

    2017-01-01

    Recently, elevated ongoing pre-stimulus beta power (13–17 Hz) at encoding has been associated with subsequent memory formation for visual stimulus material. It is unclear whether this activity is merely specific to visual processing or whether it reflects a state facilitating general memory formation, independent of stimulus modality. To answer that question, the present study investigated the relationship between neural pre-stimulus oscillations and verbal memory formation in different sensory modalities. For that purpose, a within-subject design was employed to explore differences between successful and failed memory formation in the visual and auditory modality. Furthermore, associative memory was addressed by presenting the stimuli in combination with background images. Results revealed that similar EEG activity in the low beta frequency range (13–17 Hz) is associated with subsequent memory success, independent of stimulus modality. Elevated power prior to stimulus onset differentiated successful from failed memory formation. In contrast, differential effects between modalities were found in the theta band (3–7 Hz), with an increased oscillatory activity before the onset of later remembered visually presented words. In addition, pre-stimulus theta power dissociated between successful and failed encoding of associated context, independent of the stimulus modality of the item itself. We therefore suggest that increased ongoing low beta activity reflects a memory promoting state, which is likely to be moderated by modality-independent attentional or inhibitory processes, whereas high ongoing theta power is suggested as an indicator of the enhanced binding of incoming interlinked information. PMID:28192459

  11. Buyer-Seller Interaction Patterns During Ongoing Service Exchange

    NARCIS (Netherlands)

    W. van der Valk (Wendy)

    2007-01-01

    textabstractThis dissertation focuses on the ongoing interactions that take place between buyers and sellers of business services after the contract has been signed. This ongoing interaction is important since services are produced and consumed simultaneously; therefore, both buyer and seller have t

  12. The ongoing Digitalization of an Introductory Programming Course

    DEFF Research Database (Denmark)

    Nørmark, Kurt

    2016-01-01

    This paper is about the ongoing digitalization of a C programming course. The paper describes our considerations about the use of video resources, as well as other digital learning resources. In particular, we discuss the ongoing transition from using a number of supplementary videos (in...

  13. Plasmacytoid dendritic cells in antiviral immunity and autoimmunity

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Plasmacytoid dendritic cells (pDCs) represent a unique and crucial immune cell population capable of producing large amounts of type I interferons (IFNs) in response to viral infection.The function of pDCs as the professional type I IFN-producing cells is linked to their selective expression of Toll-like receptor 7 (TLR7) and TLR9,which sense viral nucleic acids within the endosomal compartments.Type I IFNs produced by pDCs not only directly inhibit viral replication but also play an essential role in linking the innate and adaptive immune system.The aberrant activation of pDCs by self nucleic acids through TLR signaling and the ongoing production of type I IFNs do occur in some autoimmune diseases.Therefore,pDC may serve as an attractive target for therapeutic manipulations of the immune system to treat viral infectious diseases and autoimmune diseases.

  14. In vivo dendrite regeneration after injury is different from dendrite development

    Science.gov (United States)

    Li, Tun; Jan, Lily Yeh; Jan, Yuh Nung

    2016-01-01

    Neurons receive information along dendrites and send signals along axons to synaptic contacts. The factors that control axon regeneration have been examined in many systems, but dendrite regeneration has been largely unexplored. Here we report that, in intact Drosophila larvae, a discrete injury that removes all dendrites induces robust dendritic growth that recreates many features of uninjured dendrites, including the number of dendrite branches that regenerate and responsiveness to sensory stimuli. However, the growth and patterning of injury-induced dendrites is significantly different from uninjured dendrites. We found that regenerated arbors cover much less territory than uninjured neurons, fail to avoid crossing over other branches from the same neuron, respond less strongly to mechanical stimuli, and are pruned precociously. Finally, silencing the electrical activity of the neurons specifically blocks injury-induced, but not developmental, dendrite growth. By elucidating the essential features of dendrites grown in response to acute injury, our work builds a framework for exploring dendrite regeneration in physiological and pathological conditions. PMID:27542831

  15. Recrystallization phenomena of solution grown paraffin dendrites

    NARCIS (Netherlands)

    Hollander, F.F.A.; Stasse, O.; Suchtelen, van J.; Enckevort, van W.J.P.

    2001-01-01

    Paraffin crystals were grown from decane solutions using a micro-Bridgman set up for in-situ observation of the morphology at the growth front. It is shown that for large imposed velocities, dendrites are obtained. After dendritic growth, aging or recrystallization processes set in rather quickly, c

  16. A Case of Plasmacytoid Dendritic Cell Leukemia

    Directory of Open Access Journals (Sweden)

    Köpeczi Judit Beáta

    2013-04-01

    Full Text Available Introduction: Plasmacytoid dendritic cell leukemia is a rare subtype of acute leukemia, which has recently been established as a distinct pathologic entity that typically follows a highly aggressive clinical course in adults. The aim of this report is to present a case of plasmacytoid dendritic cell leukemia due to its rarity and difficulty to recognize and diagnose it.

  17. Observational Study of Large Amplitude Longitudinal Oscillations in a Solar Filament

    CERN Document Server

    Knizhnik, K; Muglach, K; Gilbert, H; Kucera, T; Karpen, J

    2013-01-01

    On 20 August 2010 an energetic disturbance triggered damped large-amplitude longitudinal (LAL) oscillations in almost an entire filament. In the present work we analyze this periodic motion in the filament to characterize the damping and restoring mechanism of the oscillation. Our method involves placing slits along the axis of the filament at different angles with respect to the spine of the filament, finding the angle at which the oscillation is clearest, and fitting the resulting oscillation pattern to decaying sinusoidal and Bessel functions. These functions represent the equations of motion of a pendulum damped by mass accretion. With this method we determine the period and the decaying time of the oscillation. Our preliminary results support the theory presented by Luna and Karpen (2012) that the restoring force of LAL oscillations is solar gravity in the tubes where the threads oscillate, and the damping mechanism is the ongoing accumulation of mass onto the oscillating threads. Following an earlier pa...

  18. Early events in axon/dendrite polarization.

    Science.gov (United States)

    Cheng, Pei-lin; Poo, Mu-ming

    2012-01-01

    Differentiation of axons and dendrites is a critical step in neuronal development. Here we review the evidence that axon/dendrite formation during neuronal polarization depends on the intrinsic cytoplasmic asymmetry inherited by the postmitotic neuron, the exposure of the neuron to extracellular chemical factors, and the action of anisotropic mechanical forces imposed by the environment. To better delineate the functions of early signals among a myriad of cellular components that were shown to influence axon/dendrite formation, we discuss their functions by distinguishing their roles as determinants, mediators, or modulators and consider selective degradation of these components as a potential mechanism for axon/dendrite polarization. Finally, we examine whether these early events of axon/dendrite formation involve local autocatalytic activation and long-range inhibition, as postulated by Alan Turing for the morphogenesis of patterned biological structure.

  19. Numerical simulation of facet dendrite growth

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi; CHEN Chang-le; HAO Li-mei

    2008-01-01

    Numerical simulation based on phase field method was performed to describe the solidification of silicon. The effect of anisotropy, undercooling and coupling parameter on dendrite growth shape was investigated. It is indicated that the entire facet dendrite shapes are obtained by using regularized phase field model. Steady state tip velocity of dendrite drives to a fixed value when γ≤0.13. With further increasing the anisotropy value, steady state tip velocity decreases and the size is smaller. With the increase in the undercooling and coupling parameter, crystal grows from facet to facet dendrite. In addition, with increasing coupling parameter, the facet part of facet dendrite decreases gradually, which is in good agreement with Wulff theory.

  20. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  1. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  2. In vivo blockade of neural activity alters dendritic development of neonatal CA1 pyramidal cells.

    Science.gov (United States)

    Groc, Laurent; Petanjek, Zdravko; Gustafsson, Bengt; Ben-Ari, Yehezkel; Hanse, Eric; Khazipov, Roustem

    2002-11-01

    During development, neural activity has been proposed to promote neuronal growth. During the first postnatal week, the hippocampus is characterized by an oscillating neural network activity and a rapid neuronal growth. In the present study we tested in vivo, by injecting tetanus toxin into the hippocampus of P1 rats, whether this neural activity indeed promotes growth of pyramidal cells. We have previously shown that tetanus toxin injection leads to a strong reduction in the frequency of spontaneous GABA and glutamatergic synaptic currents, and to a complete blockade of the early neural network activity during the first postnatal week. Morphology of neurobiotin-filled CA1 pyramidal cells was analyzed at the end of the first postnatal week (P6-10). In activity-reduced neurons, the total length of basal dendritic tree was three times less than control. The number, but not the length, of basal dendritic branches was affected. The growth impairment was restricted to the basal dendrites. The apical dendrite, the axons, or the soma grew normally during activity deprivation. Thus, the in vivo neural activity in the neonate hippocampus seems to promote neuronal growth by initiating novel branches.

  3. Self-oscillation

    Science.gov (United States)

    Jenkins, Alejandro

    2013-04-01

    Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain dynamical systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy into the vibration: no external rate needs to be adjusted to the resonant frequency. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the swaying of the London Millennium Footbridge in 2000. Clocks are self-oscillators, as are bowed and wind musical instruments. The heart is a “relaxation oscillator”, i.e., a non-sinusoidal self-oscillator whose period is determined by sudden, nonlinear switching at thresholds. We review the general criterion that determines whether a linear system can self-oscillate. We then describe the limiting cycles of the simplest nonlinear self-oscillators, as well as the ability of two or more coupled self-oscillators to become spontaneously synchronized (“entrained”). We characterize the operation of motors as self-oscillation and prove a theorem about their limit efficiency, of which Carnot’s theorem for heat engines appears as a special case. We briefly discuss how self-oscillation applies to servomechanisms, Cepheid variable stars, lasers, and the macroeconomic business cycle, among other applications. Our emphasis throughout is on the energetics of self-oscillation, often neglected by the literature on nonlinear dynamical systems.

  4. Dendritic potassium channels in hippocampal pyramidal neurons.

    Science.gov (United States)

    Johnston, D; Hoffman, D A; Magee, J C; Poolos, N P; Watanabe, S; Colbert, C M; Migliore, M

    2000-05-15

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 micrometer of the apical dendrites, so that action potentials recorded farther than 200 micrometer from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials.

  5. Non-linear dendrites can tune neurons

    Directory of Open Access Journals (Sweden)

    Romain Daniel Cazé

    2014-03-01

    Full Text Available A signature of visual, auditory, and motor cortices is the presence of neurons tuned to distinct features of the environment. While neuronal tuning can be observed in most brain areas, its origin remains enigmatic, and new calcium imaging data complicate this problem. Dendritic calcium signals, in a L2/3 neuron from the mouse visual cortex, display a wide range of tunings that could be different from the neuronal tuning (Jia et al 2010. To elucidate this observation we use multi-compartmental models of increasing complexity, from a binary to a realistic biophysical model of L2/3 neuron. These models possess non-linear dendritic subunits inside which the result of multiple excitatory inputs is smaller than their arithmetic sum. While dendritic non-linear subunits are ad-hoc in the binary model, non-linearities in the realistic model come from the passive saturation of synaptic currents. Because of these non-linearities our neuron models are scatter sensitive: the somatic membrane voltage is higher when presynaptic inputs target different dendrites than when they target a single dendrite. This spatial bias in synaptic integration is, in our models, the origin of neuronal tuning. Indeed, assemblies of presynaptic inputs encode the stimulus property through an increase in correlation or activity, and only the assembly that encodes the preferred stimulus targets different dendrites. Assemblies coding for the non-preferred stimuli target single dendrites, explaining the wide range of observed tunings and the possible difference between dendritic and somatic tuning. We thus propose, in accordance with the latest experimental observations, that non-linear integration in dendrites can generate neuronal tuning independently of the coding regime.

  6. Dendritic tellurides acting as antioxidants

    Institute of Scientific and Technical Information of China (English)

    XU Huaping; WANG Yapei; WANG Zhiqiang; LIU Junqiu; Mario Smet; Wim Dehaen

    2006-01-01

    We have described the synthesis of a series of poly(aryl ether) dendrimers with telluride in the core and oligo(ethylene oxide) chains at the periphery which act as glutathione peroxidase (GPx) mimics. These series of compounds were well characterized by 1H-NMR, 13C-NMR and ESI-MS. Using different ROOH (H2O2, cumene hydroperoxide) for testing the antioxidizing properties of these compounds, we have found that from generation 0 to 2, the activity of the dendritic GPx mimics first decreased and then increased. This can be explained on the basis of a greater steric hindrance, going from generation 0 to 1, and stronger binding interactions going from generation 1 to 2. In other words, there exists a balance between binding interactions and steric hindrance that may optimize the GPx activity.

  7. Fate mapping of dendritic cells

    Directory of Open Access Journals (Sweden)

    Barbara Ursula Schraml

    2015-05-01

    Full Text Available Dendritic cells (DCs are a heterogeneous group of mononuclear phagocytes with versatile roles in immunity. They are classified predominantly based on phenotypic and functional properties, namely their stellate morphology, expression of the integrin CD11c and major histocompatibility class II molecules, as well as their superior capacity to migrate to secondary lymphoid organs and stimulate naïve T cells. However, these attributes are not exclusive to DCs and often change within inflammatory or infectious environments. This led to debates over cell identification and questioned even the mere existence of DCs as distinct leukocyte lineage. Here, we review experimental approaches taken to fate map DCs and discuss how these have shaped our understanding of DC ontogeny and lineage affiliation. Considering the ontogenetic properties of DCs will help to overcome the inherent shortcomings of purely phenotypic- and function-based approaches to cell definition and will yield a more robust way of DC classification.

  8. Dendritic Cells for Anomaly Detection

    CERN Document Server

    Greensmith, Julie; Aickelin, Uwe

    2010-01-01

    Artificial immune systems, more specifically the negative selection algorithm, have previously been applied to intrusion detection. The aim of this research is to develop an intrusion detection system based on a novel concept in immunology, the Danger Theory. Dendritic Cells (DCs) are antigen presenting cells and key to the activation of the human signals from the host tissue and correlate these signals with proteins know as antigens. In algorithmic terms, individual DCs perform multi-sensor data fusion based on time-windows. The whole population of DCs asynchronously correlates the fused signals with a secondary data stream. The behaviour of human DCs is abstracted to form the DC Algorithm (DCA), which is implemented using an immune inspired framework, libtissue. This system is used to detect context switching for a basic machine learning dataset and to detect outgoing portscans in real-time. Experimental results show a significant difference between an outgoing portscan and normal traffic.

  9. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper.

    Science.gov (United States)

    Thut, Gregor; Bergmann, Til Ole; Fröhlich, Flavio; Soekadar, Surjo R; Brittain, John-Stuart; Valero-Cabré, Antoni; Sack, Alexander T; Miniussi, Carlo; Antal, Andrea; Siebner, Hartwig Roman; Ziemann, Ulf; Herrmann, Christoph S

    2017-05-01

    Non-invasive transcranial brain stimulation (NTBS) techniques have a wide range of applications but also suffer from a number of limitations mainly related to poor specificity of intervention and variable effect size. These limitations motivated recent efforts to focus on the temporal dimension of NTBS with respect to the ongoing brain activity. Temporal patterns of ongoing neuronal activity, in particular brain oscillations and their fluctuations, can be traced with electro- or magnetoencephalography (EEG/MEG), to guide the timing as well as the stimulation settings of NTBS. These novel, online and offline EEG/MEG-guided NTBS-approaches are tailored to specifically interact with the underlying brain activity. Online EEG/MEG has been used to guide the timing of NTBS (i.e., when to stimulate): by taking into account instantaneous phase or power of oscillatory brain activity, NTBS can be aligned to fluctuations in excitability states. Moreover, offline EEG/MEG recordings prior to interventions can inform researchers and clinicians how to stimulate: by frequency-tuning NTBS to the oscillation of interest, intrinsic brain oscillations can be up- or down-regulated. In this paper, we provide an overview of existing approaches and ideas of EEG/MEG-guided interventions, and their promises and caveats. We point out potential future lines of research to address challenges. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  10. Hyperchaotic Oscillator with Gyrators

    DEFF Research Database (Denmark)

    Tamasevicius, A; Cenys, A; Mykolaitis, G.

    1997-01-01

    A fourth-order hyperchaotic oscillator is described. It contains a negative impedance converter, two gyratots, two capacitors and a diode. The dynamics of the oscillator is shown to be characterised by two positive Lyapunov exponents. The performance of the circuit is investigated by means...

  11. Convection and oscillations

    CERN Document Server

    Houdek, G

    2010-01-01

    In this short review on stellar convection dynamics I address the following, currently very topical, issues: (1) the surface effects of the Reynolds stresses and nonadiabaticity on solar-like pulsation frequencies, and (2) oscillation mode lifetimes of stochastically excited oscillations in red giants computed with different time-dependent convection formulations.

  12. Oscillations at low energies

    CERN Document Server

    Dwyer, D A

    2015-01-01

    A concise summary of the "Oscillation at low energies" parallel session at the 2014 Neutrino Oscillation Workshop is provided. Plans to use man-made neutrinos and antineutrinos to determine the neutrino mass hierarchy, search for sterile neutrinos, and to observe coherent neutrino-nucleus scattering were discussed. Potential measurements of solar neutrinos, supernova neutrinos, and geoneutrinos are also summarized.

  13. Hyperchaotic Oscillator with Gyrators

    DEFF Research Database (Denmark)

    Tamasevicius, A; Cenys, A; Mykolaitis, G.;

    1997-01-01

    A fourth-order hyperchaotic oscillator is described. It contains a negative impedance converter, two gyratots, two capacitors and a diode. The dynamics of the oscillator is shown to be characterised by two positive Lyapunov exponents. The performance of the circuit is investigated by means...

  14. On the Dirac oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Universidade Federal de Campina Grande (UFCG), Cuite, PB (Brazil). Centro de Tecnologia. Unidade Academica de Educacao]. E-mail: rafael@df.ufcg.edu.br; rafaelr@cbpf.br

    2007-07-01

    In the present work we obtain a new representation for the Dirac oscillator based on the Clifford algebra C 7. The symmetry breaking and the energy eigenvalues for our model of the Dirac oscillator are studied in the non-relativistic limit. (author)

  15. Extraction and characterization of essential discharge patterns from multisite recordings of spiking ongoing activity.

    Directory of Open Access Journals (Sweden)

    Riccardo Storchi

    Full Text Available BACKGROUND: Neural activation patterns proceed often by schemes or motifs distributed across the involved cortical networks. As neurons are correlated, the estimate of all possible dependencies quickly goes out of control. The complex nesting of different oscillation frequencies and their high non-stationariety further hamper any quantitative evaluation of spiking network activities. The problem is exacerbated by the intrinsic variability of neural patterns. METHODOLOGY/PRINCIPAL FINDINGS: Our technique introduces two important novelties and enables to insulate essential patterns on larger sets of spiking neurons and brain activity regimes. First, the sampling procedure over N units is based on a fixed spike number k in order to detect N-dimensional arrays (k-sequences, whose sum over all dimension is k. Then k-sequences variability is greatly reduced by a hierarchical separative clustering, that assigns large amounts of distinct k-sequences to few classes. Iterative separations are stopped when the dimension of each cluster comes to be smaller than a certain threshold. As threshold tuning critically impacts on the number of classes extracted, we developed an effective cost criterion to select the shortest possible description of our dataset. Finally we described three indexes (C,S,R to evaluate the average pattern complexity, the structure of essential classes and their stability in time. CONCLUSIONS/SIGNIFICANCE: We validated this algorithm with four kinds of surrogated activity, ranging from random to very regular patterned. Then we characterized a selection of ongoing activity recordings. By the S index we identified unstable, moderatly and strongly stable patterns while by the C and the R indices we evidenced their non-random structure. Our algorithm seems able to extract interesting and non-trivial spatial dynamics from multisource neuronal recordings of ongoing and potentially stimulated activity. Combined with time-frequency analysis of

  16. Disentangling neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Andrew G. [Physics Department, Boston University, Boston, MA 02215 (United States)], E-mail: cohen@bu.edu; Glashow, Sheldon L. [Physics Department, Boston University, Boston, MA 02215 (United States)], E-mail: slg@bu.edu; Ligeti, Zoltan [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)], E-mail: ligeti@lbl.gov

    2009-07-13

    The theory underlying neutrino oscillations has been described at length in the literature. The neutrino state produced by a weak decay is usually portrayed as a linear superposition of mass eigenstates with, variously, equal energies or equal momenta. We point out that such a description is incorrect, that in fact, the neutrino is entangled with the other particle or particles emerging from the decay. We offer an analysis of oscillation phenomena involving neutrinos (applying equally well to neutral mesons) that takes entanglement into account. Thereby we present a theoretically sound proof of the universal validity of the oscillation formulae ordinarily used. In so doing, we show that the departures from exponential decay reported by the GSI experiment cannot be attributed to neutrino mixing. Furthermore, we demonstrate that the 'Moessbauer' neutrino oscillation experiment proposed by Raghavan, while technically challenging, is correctly and unambiguously describable by means of the usual oscillation formalae.

  17. Dendritic cells are stressed out in tumor.

    Science.gov (United States)

    Maj, Tomasz; Zou, Weiping

    2015-09-01

    A recently paper published in Cell reports that dendritic cells (DCs) are dysfunctional in the tumor environment. Tumor impairs DC function through induction of endoplasmic reticulum stress response and subsequent disruption of lipid metabolic homeostasis.

  18. Dendritic ion channelopathy in acquired epilepsy

    Science.gov (United States)

    Poolos, Nicholas P.; Johnston, Daniel

    2012-01-01

    Summary Ion channel dysfunction or “channelopathy” is a proven cause of epilepsy in the relatively uncommon genetic epilepsies with Mendelian inheritance. But numerous examples of acquired channelopathy in experimental animal models of epilepsy following brain injury have also been demonstrated. Our understanding of channelopathy has grown due to advances in electrophysiology techniques that have allowed the study of ion channels in the dendrites of pyramidal neurons in cortex and hippocampus. The apical dendrites of pyramidal neurons comprise the vast majority of neuronal surface membrane area, and thus the majority of the neuronal ion channel population. Investigation of dendritic ion channels has demonstrated remarkable plasticity in ion channel localization and biophysical properties in epilepsy, many of which produce hyperexcitability and may contribute to the development and maintenance of the epileptic state. Here we review recent advances in dendritic physiology and cell biology, and their relevance to epilepsy. PMID:23216577

  19. Dendritic ion channelopathy in acquired epilepsy.

    Science.gov (United States)

    Poolos, Nicholas P; Johnston, Daniel

    2012-12-01

    Ion channel dysfunction or "channelopathy" is a proven cause of epilepsy in the relatively uncommon genetic epilepsies with Mendelian inheritance. But numerous examples of acquired channelopathy in experimental animal models of epilepsy following brain injury have also been demonstrated. Our understanding of channelopathy has grown due to advances in electrophysiology techniques that have allowed the study of ion channels in the dendrites of pyramidal neurons in cortex and hippocampus. The apical dendrites of pyramidal neurons comprise the vast majority of neuronal surface membrane area, and thus the majority of the neuronal ion channel population. Investigation of dendritic ion channels has demonstrated remarkable plasticity in ion channel localization and biophysical properties in epilepsy, many of which produce hyperexcitability and may contribute to the development and maintenance of the epileptic state. Herein we review recent advances in dendritic physiology and cell biology, and their relevance to epilepsy. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  20. Artificial Dendritic Cells: Multi-faceted Perspectives

    CERN Document Server

    Greensmith, Julie

    2009-01-01

    Dendritic cells are the crime scene investigators of the human immune system. Their function is to correlate potentially anomalous invading entities with observed damage to the body. The detection of such invaders by dendritic cells results in the activation of the adaptive immune system, eventually leading to the removal of the invader from the host body. This mechanism has provided inspiration for the development of a novel bio-inspired algorithm, the Dendritic Cell Algorithm. This algorithm processes information at multiple levels of resolution, resulting in the creation of information granules of variable structure. In this chapter we examine the multi-faceted nature of immunology and how research in this field has shaped the function of the resulting Dendritic Cell Algorithm. A brief overview of the algorithm is given in combination with the details of the processes used for its development. The chapter is concluded with a discussion of the parallels between our understanding of the human immune system a...

  1. “Dermal dendritic cells” comprise two distinct populations: CD1+ dendritic cells and CD209+ macrophages

    OpenAIRE

    Ochoa,Maria Teresa; Loncaric, Anya; Krutzik, Stephan R.; Becker, Todd C.; Modlin, Robert L.

    2008-01-01

    A key cell type of the resident skin immune system is the dendritic cell, which in normal skin is located in two distinct microanatomical compartments: Langerhans cells (LC) mainly in the epidermis and dermal dendritic cells (DDC) in the dermis. Here, the lineage of dermal dendritic cells was investigated using monoclonal antibodies and immunohistology. We provide evidence that “dermal dendritic cells” comprise at least two major phenotypic populations of dendritic appearing cells: immature D...

  2. Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo.

    Science.gov (United States)

    Tukker, John J; Fuentealba, Pablo; Hartwich, Katja; Somogyi, Peter; Klausberger, Thomas

    2007-08-01

    Cortical gamma oscillations contribute to cognitive processing and are thought to be supported by perisomatic-innervating GABAergic interneurons. We performed extracellular recordings of identified interneurons in the hippocampal CA1 area of anesthetized rats, revealing that the firing patterns of five distinct interneuron types are differentially correlated to spontaneous gamma oscillations. The firing of bistratified cells, which target dendrites of pyramidal cells coaligned with the glutamatergic input from hippocampal area CA3, is strongly phase locked to field gamma oscillations. Parvalbumin-expressing basket, axo-axonic, and cholecystokinin-expressing interneurons exhibit moderate gamma modulation, whereas the spike timing of distal dendrite-innervating oriens-lacunosum moleculare interneurons is not correlated to field gamma oscillations. Cholecystokinin-expressing interneurons fire earliest in the gamma cycle, a finding that is consistent with their suggested function of thresholding individual pyramidal cells. Furthermore, we show that field gamma amplitude correlates with interneuronal spike-timing precision and firing rate. Overall, our recordings suggest that gamma synchronization in vivo is assisted by temporal- and domain-specific GABAergic inputs to pyramidal cells and is initiated in pyramidal cell dendrites in addition to somata and axon initial segments.

  3. Free energy and dendritic self-organisation

    Directory of Open Access Journals (Sweden)

    Stefan J Kiebel

    2011-10-01

    Full Text Available In this paper, we pursue recent observations that, through selective dendritic filtering, single neurons respond to specific sequences of presynaptic inputs. We try to provide a principled and mechanistic account of this selectivity by applying the free energy principle to a dendrite that is immersed in its neuropil or environment. We assume that neurons self-organize to minimise a free energy bound on the self-information or surprise of presynaptic inputs that are sampled. We model this as a selective pruning of dendritic spines that are expressed on a dendritic branch. This pruning occurs when the optimized postsynaptic gain falls below a threshold. Crucially, postsynaptic gain is itself optimized with respect to free energy. Pruning suppresses free energy as the dendrite selects presynaptic signals that conform to its expectations, specified by a generative model implicit in its intracellular kinetics. Not only does this provide a principled account of how neurons organize and selectively sample the myriad of potential presynaptic inputs they are exposed to, but it also connects the optimization of elemental neuronal (dendritic processing to generic (surprise or evidence-based schemes in statistics and machine learning, such as Bayesian model selection and automatic relevance determination.

  4. Synaptic Control of Secretory Trafficking in Dendrites

    Directory of Open Access Journals (Sweden)

    Cyril Hanus

    2014-06-01

    Full Text Available Localized signaling in neuronal dendrites requires tight spatial control of membrane composition. Upon initial synthesis, nascent secretory cargo in dendrites exits the endoplasmic reticulum (ER from local zones of ER complexity that are spatially coupled to post-ER compartments. Although newly synthesized membrane proteins can be processed locally, the mechanisms that control the spatial range of secretory cargo transport in dendritic segments are unknown. Here, we monitored the dynamics of nascent membrane proteins in dendritic post-ER compartments under regimes of low or increased neuronal activity. In response to activity blockade, post-ER carriers are highly mobile and are transported over long distances. Conversely, increasing synaptic activity dramatically restricts the spatial scale of post-ER trafficking along dendrites. This activity-induced confinement of secretory cargo requires site-specific phosphorylation of the kinesin motor KIF17 by Ca2+/calmodulin-dependent protein kinases (CaMK. Thus, the length scales of early secretory trafficking in dendrites are tuned by activity-dependent regulation of microtubule-dependent transport.

  5. Cell-Autonomous Regulation of Dendritic Spine Density by PirB

    Science.gov (United States)

    2016-01-01

    Synapse density on cortical pyramidal neurons is modulated by experience. This process is highest during developmental critical periods, when mechanisms of synaptic plasticity are fully engaged. In mouse visual cortex, the critical period for ocular dominance (OD) plasticity coincides with the developmental pruning of synapses. At this time, mice lacking paired Ig-like receptor B (PirB) have excess numbers of dendritic spines on L5 neurons; these spines persist and are thought to underlie the juvenile-like OD plasticity observed in adulthood. Here we examine whether PirB is required specifically in excitatory neurons to exert its effect on dendritic spine and synapse density during the critical period. In mice with a conditional allele of PirB (PirBfl/fl), PirB was deleted only from L2/3 cortical pyramidal neurons in vivo by timed in utero electroporation of Cre recombinase. Sparse mosaic expression of Cre produced neurons lacking PirB in a sea of wild-type neurons and glia. These neurons had significantly elevated dendritic spine density, as well as increased frequency of miniature EPSCs, suggesting that they receive a greater number of synaptic inputs relative to Cre– neighbors. The effect of cell-specific PirB deletion on dendritic spine density was not accompanied by changes in dendritic branching complexity or axonal bouton density. Together, results imply a neuron-specific, cell-autonomous action of PirB on synaptic density in L2/3 pyramidal cells of visual cortex. Moreover, they are consistent with the idea that PirB functions normally to corepress spine density and synaptic plasticity, thereby maintaining headroom for cells to encode ongoing experience-dependent structural change throughout life.

  6. Boxing with neutrino oscillations

    Science.gov (United States)

    Wagner, D. J.; Weiler, Thomas J.

    1999-06-01

    We develop a characterization of neutrino oscillations based on the coefficients of the oscillating terms. These coefficients are individually observable; although they are quartic in the elements of the unitary mixing matrix, they are independent of the conventions chosen for the angle and phase parametrization of the mixing matrix. We call these reparametrization-invariant observables ``boxes'' because of their geometric relation to the mixing matrix, and because of their association with the Feynman box diagram that describes oscillations in field theory. The real parts of the boxes are the coefficients for the CP- or T-even oscillation modes, while the imaginary parts are the coefficients for the CP- or T-odd oscillation modes. Oscillation probabilities are linear in the boxes, so measurements can straightforwardly determine values for the boxes (which can then be manipulated to yield magnitudes of mixing matrix elements). We examine the effects of unitarity on the boxes and discuss the reduction of the number of boxes to a minimum basis set. For the three-generation case, we explicitly construct the basis. Using the box algebra, we show that CP violation may be inferred from measurements of neutrino flavor mixing even when the oscillatory factors have averaged. The framework presented here will facilitate general analyses of neutrino oscillations among n>=3 flavors.

  7. Quasi-Fibonacci oscillators

    CERN Document Server

    Gavrilik, A M; Rebesh, A P

    2010-01-01

    We study the properties of sequences of the energy eigenvalues for some generalizations of q-deformed oscillators including the p,q-oscillator, the 3-, 4- and 5-parameter deformed oscillators given in the literature. It is shown that most of the considered models belong to the class of so-called Fibonacci oscillators for which any three consequtive energy levels satisfy the relation E_{n+1}=\\lambda E_n+\\rho E_{n-1} with real constants \\lambda, \\rho. On the other hand, for certain \\mu-oscillator known from 1993 we prove the fact of its non-Fibonacci nature. Possible generalizations of the three-term Fibonacci relation are discussed among which for the \\mu$-oscillator we choose, as the most adequate, the so-called quasi-Fibonacci (or local Fibonacci) property of the energy levels. The property is encoded in the three-term quasi-Fibonacci (QF) relation with non-constant, n-dependent coefficients \\lambda and \\rho. Various aspects of the QF relation are elaborated for the \\mu-oscillator and some of its extensions.

  8. Quasi-Fibonacci oscillators

    Science.gov (United States)

    Gavrilik, A. M.; Kachurik, I. I.; Rebesh, A. P.

    2010-06-01

    We study the properties of the sequences of the energy eigenvalues for some generalizations of q-deformed oscillators including the p, q-oscillator, and the three-, four- and five-parameter deformed oscillators given in the literature. It is shown that most of the considered models belong to the class of so-called Fibonacci oscillators for which any three consecutive energy levels satisfy the relation En + 1 = λEn + ρEn - 1 with real constants λ, ρ. On the other hand, for a certain μ-oscillator known since 1993, we prove its non-Fibonacci nature. Possible generalizations of the three-term Fibonacci relation are discussed, among which for the μ-oscillator we choose, as the most adequate, the so-called quasi-Fibonacci (or local Fibonacci) property of the energy levels. The property is encoded in the three-term quasi-Fibonacci (QF) relation with the non-constant, n-dependent coefficients λ and ρ. Various aspects of the QF relation are elaborated for the μ-oscillator and some of its extensions.

  9. In Situ Observation of Cell-to-Dendrite Transition

    Institute of Scientific and Technical Information of China (English)

    PAN Xiu-Hong; HONG Yong; JIN Wei-Qing

    2005-01-01

    @@ The cell-to-dendrite transition of succinonitrile melt suspended on a loop-shaped Pt heater is observed in real time by a differential interference microscope coupled with Schlieren technique. The transition is divided into two parts: a dendrite coalition process and a subsequent dendrite elimination process. Firstly the dendrites from the same cell are united into a single dendrite. Secondly the competitive growth of dendrites from different cells leads to the elimination of dendrites. The two processes can be understood when involving crystallographic orientation. In addition, the tip velocity and primary spacing of a cell/dendrite are also measured. It turns out that the primary spacing has a significant jump, whereas the growth velocity has no abrupt change during the cell-to-dendrite transition.

  10. Ongoing Slow Fluctuations in V1 Impact on Visual Perception.

    Science.gov (United States)

    Wohlschläger, Afra M; Glim, Sarah; Shao, Junming; Draheim, Johanna; Köhler, Lina; Lourenço, Susana; Riedl, Valentin; Sorg, Christian

    2016-01-01

    The human brain's ongoing activity is characterized by intrinsic networks of coherent fluctuations, measured for example with correlated functional magnetic resonance imaging signals. So far, however, the brain processes underlying this ongoing blood oxygenation level dependent (BOLD) signal orchestration and their direct relevance for human behavior are not sufficiently understood. In this study, we address the question of whether and how ongoing BOLD activity within intrinsic occipital networks impacts on conscious visual perception. To this end, backwardly masked targets were presented in participants' left visual field only, leaving the ipsi-lateral occipital areas entirely free from direct effects of task throughout the experiment. Signal time courses of ipsi-lateral BOLD fluctuations in visual areas V1 and V2 were then used as proxies for the ongoing contra-lateral BOLD activity within the bilateral networks. Magnitude and phase of these fluctuations were compared in trials with and without conscious visual perception, operationalized by means of subjective confidence ratings. Our results show that ipsi-lateral BOLD magnitudes in V1 were significantly higher at times of peak response when the target was perceived consciously. A significant difference between conscious and non-conscious perception with regard to the pre-target phase of an intrinsic-frequency regime suggests that ongoing V1 fluctuations exert a decisive impact on the access to consciousness already before stimulation. Both effects were absent in V2. These results thus support the notion that ongoing slow BOLD activity within intrinsic networks covering V1 represents localized processes that modulate the degree of readiness for the emergence of visual consciousness.

  11. Dendritic cells in melanoma - immunohistochemical study and research trends.

    Science.gov (United States)

    Nedelcu, Roxana Ioana; Ion, Daniela Adriana; Holeab, Cosmin Adrian; Cioplea, Mirela Daniela; Brînzea, Alice; Zurac, Sabina Andrada

    2015-01-01

    Cutaneous dendritic cells play multiple physiological roles and are involved in various pathophysiological processes. Research studies of dendritic cells abound in the medical literature. Nevertheless, the role of dendritic cells in melanoma regression phenomenon is not completely understood. We conducted a scientometric analysis in order to highlight the current state on research regarding dendritic cells and melanoma. We also performed an immunohistochemical study, using specific markers for dendritic cells (CD1a, langerin). We evaluated the frequency and distribution of dendritic cells in areas of tumor regression compared to the areas of inflammatory infiltrate of melanoma without regression. The immunohistochemical study we performed revealed that dendritic cells are more frequent in the regressed areas, comparing with non-regressed ones. In regressed areas, dendritic cells have a predominant nodular pattern (19 cases), followed by diffuse isolate pattern (eight cases) and mixed pattern (diffuse and nodular) (three cases). In melanoma without regression, most cases presented a diffuse pattern (27 cases) of dendritic cells distribution. In conclusion, our immunohistochemical study stressed differences between frequency and distribution of dendritic cells located in the melanoma with regression and melanoma without regression. These data suggest that dendritic cells are involved in the regression phenomenon. Following the literature analysis we obtained, we observed that dendritic cells profile in melanoma with regression was poorly studied. Insights into antitumor immune response and dendritic cells may be essential for the understanding of the potential prognostic role of dendritic cells in melanoma and for the development of new promising therapeutic strategies for melanoma.

  12. Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems.

    Science.gov (United States)

    Escobar, M I; Pimienta, H; Caviness, V S; Jacobson, M; Crandall, J E; Kosik, K S

    1986-04-01

    A monoclonal antibody (5F9) against microtubule-associated protein 2 is a selective and sensitive marker for neocortical dendrites in the mouse. The marker stains all dendrites. It affords a particularly comprehensive picture of the patterns of arrangements of apical dendrites which are most intensely stained with this antibody. Dual systems of apical dendrites arise from the polymorphic neurons of layer VI, on the one hand, and the pyramidal neurons of layers II-V, on the other. Terminal arborization of the former is concentrated principally at the interface of layers V and IV, while that of the latter is in the molecular layer. Apical dendrites of both systems are grouped into fascicles. In supragranular layers and in upper layer VI-lower layer V, where apical dendrites are most abundant, the fascicles coalesce into septa. These generate a honeycomb-like pattern, subdividing these cortical levels into columnar spaces of approximately 20-40 micron diameter. At the level of layer IV, where the number of apical dendrites is greatly reduced, the fascicles are isolated bundles. These bundles have the form of circular, elliptical or rectangular columns in the primary somatosensory, temporal and frontal regions, respectively. Those in the barrel field are preferentially concentrated in the sides of barrels and the interbarrel septa. The configurations of the dendritic fascicles, particularly the midcortical bundles, may conform to the spatial configuration of investing axons of interneurons.

  13. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions

    DEFF Research Database (Denmark)

    Thut, Gregor; Bergmann, Til Ole; Fröhlich, Flavio

    2017-01-01

    Non-invasive transcranial brain stimulation (NTBS) techniques have a wide range of applications but also suffer from a number of limitations mainly related to poor specificity of intervention and variable effect size. These limitations motivated recent efforts to focus on the temporal dimension...... of NTBS with respect to the ongoing brain activity. Temporal patterns of ongoing neuronal activity, in particular brain oscillations and their fluctuations, can be traced with electro- or magnetoencephalography (EEG/MEG), to guide the timing as well as the stimulation settings of NTBS. These novel, online...... and offline EEG/MEG-guided NTBS-approaches are tailored to specifically interact with the underlying brain activity. Online EEG/MEG has been used to guide the timing of NTBS (i.e., when to stimulate): by taking into account instantaneous phase or power of oscillatory brain activity, NTBS can be aligned...

  14. Targeting vaccines to dendritic cells.

    Science.gov (United States)

    Foged, Camilla; Sundblad, Anne; Hovgaard, Lars

    2002-03-01

    Dendritic cells (DC) are specialized antigen presenting cells (APC) with a remarkable ability to take up antigens and stimulate major histocompatibility complex (MHC)-restricted specific immune responses. Recent discoveries have shown that their role in initiating primary immune responses seems to be far superior to that of B-cells and macrophages. DC are localized at strategic places in the body at sites used by pathogens to enter the organism, and are thereby in an optimal position to capture antigens. In general, vaccination strategies try to mimic the invasiveness of the pathogens. DC are considered to play a central role for the provocation of primary immune responses by vaccination. A rational way of improving the potency and safety of new and already existing vaccines could therefore be to direct vaccines specifically to DC. There is a need for developing multifunctional vaccine drug delivery systems (DDS) with adjuvant effect that target DC directly and induce optimal immune responses. This paper will review the current knowledge of DC physiology as well as the progress in the field of novel vaccination strategies that directly or indirectly aim at targeting DC.

  15. Oscillating Filaments: I - Oscillation and Geometrical Fragmentation

    CERN Document Server

    Gritschneder, Matthias; Burkert, Andreas

    2016-01-01

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid based AMR-code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, e.g. with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process `geometrical fragmentation'. In our realization the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristical scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. ...

  16. Synchronization of hyperchaotic oscillators

    DEFF Research Database (Denmark)

    Tamasevicius, A.; Cenys, A.; Mykolaitis, G.

    1997-01-01

    Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...

  17. Neutrino anomalies without oscillations

    Indian Academy of Sciences (India)

    Sandip Pakvasa

    2000-01-01

    I review explanations for the three neutrino anomalies (solar, atmospheric and LSND) which go beyond the `conventional' neutrino oscillations induced by mass-mixing. Several of these require non-zero neutrino masses as well.

  18. High frequency nanotube oscillator

    Science.gov (United States)

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  19. Neural Oscillators Programming Simplified

    Directory of Open Access Journals (Sweden)

    Patrick McDowell

    2012-01-01

    Full Text Available The neurological mechanism used for generating rhythmic patterns for functions such as swallowing, walking, and chewing has been modeled computationally by the neural oscillator. It has been widely studied by biologists to model various aspects of organisms and by computer scientists and robotics engineers as a method for controlling and coordinating the gaits of walking robots. Although there has been significant study in this area, it is difficult to find basic guidelines for programming neural oscillators. In this paper, the authors approach neural oscillators from a programmer’s point of view, providing background and examples for developing neural oscillators to generate rhythmic patterns that can be used in biological modeling and robotics applications.

  20. A novel photonic oscillator

    Science.gov (United States)

    Yao, X. S.; Maleki, L.

    1995-01-01

    We report a novel oscillator for photonic RF systems. This oscillator is capable of generating high-frequency signals up to 70 GHz in both electrical and optical domains and is a special voltage-controlled oscillator with an optical output port. It can be used to make a phase-locked loop (PLL) and perform all functions that a PLL is capable of for photonic systems. It can be synchronized to a reference source by means of optical injection locking, electrical injection locking, and PLL. It can also be self-phase locked and self-injection locked to generate a high-stability photonic RF reference. Its applications include high-frequency reference regeneration and distribution, high-gain frequency multiplication, comb-frequecy and square-wave generation, carrier recovery, and clock recovery. We anticipate that such photonic voltage-controlled oscillators (VCOs) will be as important to photonic RF systems as electrical VCOs are to electrical RF systems.

  1. Atmospheric neutrino oscillations

    CERN Document Server

    Giacomelli, G; Antolini, R; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bloise, C; Bower, C; Brigida, M; Cafagna, F; Campana, D; Carboni, M; Cecchini, S; Cei, F; Chiarella, V; Chiarusi, T; Choudhary, B C; Coutu, S; Cozzi, M; De Cataldo, G; Dekhissi, H; De Marzo, C; De Mitri, I; Derkauoi, J; De Vincenzi, M; Di Credico, A; Esposito, L; Forti, C; Fusco, P; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kumar, A; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Manzoor, S; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Mengucci, A; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R

    2005-01-01

    The latest results from the Soudan 2, MACRO and SuperKamiokande experiments on atmospheric neutrino oscillations are summarised and discussed. In particular a discussion is made on the Monte Carlo simulations used for the atmospheric neutrino flux.

  2. Oscillations in counting statistics

    CERN Document Server

    Wilk, Grzegorz

    2016-01-01

    The very large transverse momenta and large multiplicities available in present LHC experiments on pp collisions allow a much closer look at the corresponding distributions. Some time ago we discussed a possible physical meaning of apparent log-periodic oscillations showing up in p_T distributions (suggesting that the exponent of the observed power-like behavior is complex). In this talk we concentrate on another example of oscillations, this time connected with multiplicity distributions P(N). We argue that some combinations of the experimentally measured values of P(N) (satisfying the recurrence relations used in the description of cascade-stochastic processes in quantum optics) exhibit distinct oscillatory behavior, not observed in the usual Negative Binomial Distributions used to fit data. These oscillations provide yet another example of oscillations seen in counting statistics in many different, apparently very disparate branches of physics further demonstrating the universality of this phenomenon.

  3. Oscillating Filaments. I. Oscillation and Geometrical Fragmentation

    Science.gov (United States)

    Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas

    2017-01-01

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.

  4. Fast adjustments of ongoing movements in spastic hemiparesis

    NARCIS (Netherlands)

    Thiel, E. van; Meulenbroek, R.G.J.; Smeets, J.B.J.; Hulstijn, W.

    2002-01-01

    The present study focuses on the ability of participants with spastic hemiparesis caused by cerebral palsy to adjust an ongoing movement. Typical symptoms associated with the disorder would lead one to expect that people with spastic hemiparesis would be unable to adjust their movements quickly and

  5. Overview of ongoing cohort and dietary studies in the Arctic

    DEFF Research Database (Denmark)

    Weihe, Pál; Bjerregaard, Peter; Bonefeld-Jørgensen, Eva

    2016-01-01

    This article gives an overview of the ongoing cohort and dietary studies underlying the assessment of population health in the Arctic. The emphasis here is on a description of the material, methods and results or preliminary results for each study. Detailed exposure information is available in an...

  6. Fast adjustments of ongoing movements in spastic hemiparesis

    NARCIS (Netherlands)

    Thiel, E. van; Meulenbroek, R.G.J.; Smeets, J.B.J.; Hulstijn, W.

    2002-01-01

    The present study focuses on the ability of participants with spastic hemiparesis caused by cerebral palsy to adjust an ongoing movement. Typical symptoms associated with the disorder would lead one to expect that people with spastic hemiparesis would be unable to adjust their movements quickly and

  7. Trauma-Focused CBT for Youth Who Experience Ongoing Traumas

    Science.gov (United States)

    Cohen, Judith A.; Mannarino, Anthony P.; Murray, Laura K.

    2011-01-01

    Many youth experience ongoing trauma exposure, such as domestic or community violence. Clinicians often ask whether evidence-based treatments containing exposure components to reduce learned fear responses to historical trauma are appropriate for these youth. Essentially the question is, if youth are desensitized to their trauma experiences, will…

  8. Examples of Important Ongoing Research Topics for Offshore Wind Energy

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Bredmose, Henrik; Schløer, Signe

    2011-01-01

    The aim of the paper is to address some challenges related to offshore wind energy. A first example shows some results from an ongoing project on accurate computation of wave loads on monopole foundations. The effects of wave nonlinearity and bottom slope are examined and detailed CFD computation...

  9. Trauma-Focused CBT for Youth Who Experience Ongoing Traumas

    Science.gov (United States)

    Cohen, Judith A.; Mannarino, Anthony P.; Murray, Laura K.

    2011-01-01

    Many youth experience ongoing trauma exposure, such as domestic or community violence. Clinicians often ask whether evidence-based treatments containing exposure components to reduce learned fear responses to historical trauma are appropriate for these youth. Essentially the question is, if youth are desensitized to their trauma experiences, will…

  10. Indirect neutrino oscillations

    CERN Document Server

    Babu, K S; Wilczek, Frank; Pati, Jogesh C; Wilczek, Frank

    1995-01-01

    We show how two different scales for oscillations between e and \\mu neutrinos, characterized by different mixing angles and effective mass scales, can arise in a simple and theoretically attractive framework. One scale characterizes direct oscillations, which can accommodate the MSW approach to the solar neutrino problem, whereas the other can be considered as arising indirectly, through virtual transitions involving the \\tau neutrino with a mass \\sim 1 eV. This indirect transition allows the possibility of observable \\bar \

  11. Neutrino Oscillation Physics

    OpenAIRE

    Kayser, Boris

    2012-01-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also prov...

  12. Ultrastable Multigigahertz Photonic Oscillator

    Science.gov (United States)

    Logan, Ronald T., Jr.

    1996-01-01

    Novel photonic oscillator developed to serve as ultrastable source of microwave and millimeter-wave signals. In system, oscillations generated photonically, then converted to electronic form. Includes self-mode-locked semiconductor laser producing stream of pulses, detected and fed back to laser as input. System also includes fiber-optic-delay-line discriminator, which detects fluctuations of self-mode-locking frequency and generates error signal used in negative-feedback loop to stabilize pulse-repetition frequency.

  13. The Liege Oscillation Code

    CERN Document Server

    Scuflaire, R; Théado, S; Bourge, P -O; Miglio, A; Godart, M; Thoul, A; Noels, A

    2007-01-01

    The Liege Oscillation code can be used as a stand-alone program or as a library of subroutines that the user calls from a Fortran main program of his own to compute radial and non-radial adiabatic oscillations of stellar models. We describe the variables and the equations used by the program and the methods used to solve them. A brief account is given of the use and the output of the program.

  14. Self-oscillation

    CERN Document Server

    Jenkins, Alejandro

    2011-01-01

    Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain linear systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy from the environment into the vibration: no external rate needs to be tuned to the resonant frequency. A paper from 1830 by G. B. Airy gives us the opening to introduce self-oscillation as a sort of "perpetual motion" responsible for the human voice. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the more recent swaying of the London Millenium Footbridge. Clocks are self-oscillators, as are bowed and wind musical instruments, and the heartbeat. We review the criterion that determines whether an arbitrary line...

  15. Frequency of self-oscillations

    CERN Document Server

    Groszkowski, Janusz

    2013-01-01

    Frequency of Self-Oscillations covers the realm of electric oscillations that plays an important role both in the scientific and technical aspects. This book is composed of nine chapters, and begins with the introduction to the alternating currents and oscillation. The succeeding chapters deal with the free oscillations in linear isolated systems. These topics are followed by discussions on self-oscillations in linear systems. Other chapters describe the self-oscillations in non-linear systems, the influence of linear elements on frequency of oscillations, and the electro mechanical oscillato

  16. Nerve Conduction Through Dendrites via Proton Hopping.

    Science.gov (United States)

    Kier, Lemont B

    2017-01-01

    In our previous studies of nerve conduction conducted by proton hopping, we have considered the axon, soma, synapse and the nodes of Ranvier. The role of proton hopping described the passage of information through each of these units of a typical nerve system. The synapse projects information from the axon to the dendrite and their associated spines. We have invoked the passage of protons via a hopping mechanism to illustrate the continuum of the impulse through the system, via the soma following the dendrites. This is proposed to be a continuum invoked by the proton hopping method. With the proposal of the activity through the dendrites, via proton hopping, a complete model of the nerve function is invoked. At each step to the way, a water pathway is present and is invoked in the proposed model as the carrier of the message via proton hopping. The importance of the dendrites is evident by the presence of a vast number of spines, each possessing the possibility to carry unique messages through the nervous system. With this model of the role of dendrites, functioning with the presence of proton hopping, a complete model of the nerve system is presented. The validity of this model will be available for further studies and models to assess it's validity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. The active-bridge oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Wessendorf, K.O.

    1998-07-01

    This paper describes the Active-Bridge Oscillator (ABO), a new concept in high-stability oscillator design. The ABO is ab ridge-type oscillator design that is easly to design and overcomes many of the operational and design difficulties associated with standard bridge oscillator designs. The ABO will oscillate with a very stable output amplitude over a wide range of operating conditions without the use of an automatic-level-control (ALC). A standard bridge oscillator design requires an ALC to maintain the desired amplitude of oscillation. for this and other reasons, bridge oscilaltors are not used in mainstream designs. Bridge oscillators are generally relegated to relatively low-volume, high-performance applications. The Colpitts and Pierce designs are the most popular oscillators but are typically less stable than a bridge-type oscillator.

  18. Coalescence in coupled Duffing oscillators

    Institute of Scientific and Technical Information of China (English)

    YANG Jun-Zhong

    2009-01-01

    The forced Duffing oscillator has a pair of symmetrical attractors in a proper parameter regime. When a lot of Duffing oscillators are coupled linearly, the system tends to form clusters in which the neighboring oscillators fall onto the same attractor. When the coupling strength is strong, all of the oscillators fall onto one attractor. In this work, we investigate coalescence in the coupled forced Duffing oscillators. Some phenomena are found and explanations are presented.

  19. Detecting Danger: The Dendritic Cell Algorithm

    CERN Document Server

    Greensmith, Julie; Cayzer, Steve

    2010-01-01

    The Dendritic Cell Algorithm (DCA) is inspired by the function of the dendritic cells of the human immune system. In nature, dendritic cells are the intrusion detection agents of the human body, policing the tissue and organs for potential invaders in the form of pathogens. In this research, and abstract model of DC behaviour is developed and subsequently used to form an algorithm, the DCA. The abstraction process was facilitated through close collaboration with laboratory- based immunologists, who performed bespoke experiments, the results of which are used as an integral part of this algorithm. The DCA is a population based algorithm, with each agent in the system represented as an 'artificial DC'. Each DC has the ability to combine multiple data streams and can add context to data suspected as anomalous. In this chapter the abstraction process and details of the resultant algorithm are given. The algorithm is applied to numerous intrusion detection problems in computer security including the detection of p...

  20. Single dendrite-targeting interneurons generate branch-specific inhibition.

    Directory of Open Access Journals (Sweden)

    Caleb eStokes

    2014-11-01

    Full Text Available Microcircuits composed of dendrite-targeting inhibitory interneurons and pyramidal cells are fundamental elements of cortical networks, however, the impact of individual interneurons on pyramidal dendrites is unclear. Here, we combine paired recordings and calcium imaging to determine the spatial domain over which single dendrite-targeting interneurons influence pyramidal cells in olfactory cortex. We show that a major action of individual interneurons is to inhibit dendrites in a branch-specific fashion.

  1. Semiautomated analysis of dendrite morphology in cell culture.

    Science.gov (United States)

    Sweet, Eric S; Langhammer, Chris L; Kutzing, Melinda K; Firestein, Bonnie L

    2013-01-01

    Quantifying dendrite morphology is a method for determining the effect of biochemical pathways and extracellular agents on neuronal development and differentiation. Quantification can be performed using Sholl analysis, dendrite counting, and length quantification. These procedures can be performed on dendrite-forming cell lines or primary neurons grown in culture. In this protocol, we describe the use of a set of computer programs to assist in quantifying many aspects of dendrite morphology, including changes in total and localized arbor complexity.

  2. Role of active dendritic conductances in subthreshold input integration

    OpenAIRE

    Rinzel John; Remme Michiel

    2010-01-01

    Dendrites of many types of neurons contain voltage-dependent conductances that are active at subthreshold membrane potentials. To understand the computations neurons perform it is key to understand the role of active dendrites in the subthreshold processing of synaptic inputs. We examine systematically how active dendritic conductances affect the time course of postsynaptic potentials propagating along dendrites, and how they affect the interaction between such signals. Voltage-dependent curr...

  3. Infection of Dendritic Cells by the Maedi-Visna Lentivirus

    OpenAIRE

    Ryan, Susanna; Tiley, Laurence; McConnell, Ian; Blacklaws, Barbara

    2000-01-01

    The early stages of lentivirus infection of dendritic cells have been studied in an in vivo model. Maedi-visna virus (MVV) is a natural pathogen of sheep with a tropism for macrophages, but the infection of dendritic cells has not been proven, largely because of the difficulties of definitively distinguishing the two cell types. Afferent lymphatic dendritic cells from sheep have been phenotypically characterized and separated from macrophages. Dendritic cells purified from experimentally infe...

  4. Actin remodeling and polymerization forces control dendritic spine morphology

    OpenAIRE

    2015-01-01

    Dendritic spines are small membranous structures that protrude from the neuronal dendrite. Each spine contains a synaptic contact site that may connect its parent dendrite to the axons of neighboring neurons. Dendritic spines are markedly distinct in shape and size, and certain types of stimulation prompt spines to evolve, in fairly predictable fashion, from thin nascent morphologies to the mushroom-like shapes associated with mature spines. This striking progression is coincident with the (r...

  5. Resonance energy transfer in self-organized organic/inorganic dendrite structures

    Science.gov (United States)

    Melnikau, D.; Savateeva, D.; Lesnyak, V.; Gaponik, N.; Fernández, Y. Núnez; Vasilevskiy, M. I.; Costa, M. F.; Mochalov, K. E.; Oleinikov, V.; Rakovich, Y. P.

    2013-09-01

    Hybrid materials formed by semiconductor quantum dots and J-aggregates of cyanine dyes provide a unique combination of enhanced absorption in inorganic constituents with large oscillator strength and extremely narrow exciton bands of the organic component. The optical properties of dendrite structures with fractal dimension 1.7-1.8, formed from J-aggregates integrated with CdTe quantum dots (QDs), have been investigated by photoluminescence spectroscopy and fluorescence lifetime imaging microscopy. Our results demonstrate that (i) J-aggregates are coupled to QDs by Förster-type resonant energy transfer and (ii) there are energy fluxes from the periphery to the centre of the structure, where the QD density is higher than in the periphery of the dendrite. Such an anisotropic energy transport can be only observed when dendrites are formed from QDs integrated with J-aggregates. These QD/J-aggregate hybrid systems can have applications in light harvesting systems and optical sensors with extended absorption spectra.

  6. Dendritic Cells Stimulated by Cationic Liposomes.

    Science.gov (United States)

    Vitor, Micaela Tamara; Bergami-Santos, Patrícia Cruz; Cruz, Karen Steponavicius Piedade; Pinho, Mariana Pereira; Barbuto, José Alexandre Marzagão; De La Torre, Lucimara Gaziola

    2016-01-01

    Immunotherapy of cancer aims to harness the immune system to detect and destroy cancer cells. To induce an immune response against cancer, activated dendritic cells (DCs) must present tumor antigens to T lymphocytes of patients. However, cancer patients' DCs are frequently defective, therefore, they are prone to induce rather tolerance than immune responses. In this context, loading tumor antigens into DCs and, at the same time, activating these cells, is a tempting goal within the field. Thus, we investigated the effects of cationic liposomes on the DCs differentiation/maturation, evaluating their surface phenotype and ability to stimulate T lymphocytes proliferation in vitro. The cationic liposomes composed by egg phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium propane and 1,2-dioleoylphosphatidylethanolamine (50/25/25% molar) were prepared by the thin film method followed by extrusion (65 nm, polydispersity of 0.13) and by the dehydration-rehydration method (95% of the population 107 nm, polydispersity of 0.52). The phenotypic analysis of dendritic cells and the analysis of T lymphocyte proliferation were performed by flow cytometry and showed that both cationic liposomes were incorporated and activated dendritic cells. Extruded liposomes were better incorporated and induced higher CD86 expression for dendritic cells than dehydrated-rehydrated vesicles. Furthermore, dendritic cells which internalized extruded liposomes also provided stronger T lymphocyte stimulation. Thus, cationic liposomes with a smaller size and polydispersity seem to be better incorporated by dendritic cells. Hence, these cationic liposomes could be used as a potential tool in further cancer immunotherapy strategies and contribute to new strategies in immunotherapy.

  7. UP states protect ongoing cortical activity from thalamic inputs.

    Directory of Open Access Journals (Sweden)

    Brendon O Watson

    Full Text Available Cortical neurons in vitro and in vivo fluctuate spontaneously between two stable membrane potentials: a depolarized UP state and a hyperpolarized DOWN state. UP states temporally correspond with multineuronal firing sequences which may be important for information processing. To examine how thalamic inputs interact with ongoing cortical UP state activity, we used calcium imaging and targeted whole-cell recordings of activated neurons in thalamocortical slices of mouse somatosensory cortex. Whereas thalamic stimulation during DOWN states generated multineuronal, synchronized UP states, identical stimulation during UP states had no effect on the subthreshold membrane dynamics of the vast majority of cells or on ongoing multineuronal temporal patterns. Both thalamocortical and corticocortical PSPs were significantly reduced and neuronal input resistance was significantly decreased during cortical UP states -- mechanistically consistent with UP state insensitivity. Our results demonstrate that cortical dynamics during UP states are insensitive to thalamic inputs.

  8. Implementation of Sustainability in Ongoing Supply Chain Operations

    DEFF Research Database (Denmark)

    Jørsfeldt, Liliyana Makarowa; Meulengracht Jensen, Peter; Wæhrens, Brian Vejrum

    2012-01-01

    The need to take the sustainable agenda beyond its technological outset and include operational and supply chain practices is well-established, but still very little has happened and the supply chain and operational logics have remained largely unaffected. This paper asks why this may be the case...... and investigates what happens in the translation from ambitious strategic goals to operational practices. To do this an exploratory case study is presented detailing the efforts of a large Danish manufacturing company to introduce an ambitious sustainability agenda in its ongoing supply chain operations. The study...... aims to develop a deeper un-derstanding of the, inter-functional coordination and operational practices related to introducing the sustainable agenda in the supply chain. The study points to a lack of tangible environmental performance measurements related to day-to-day practice in the ongoing supply...

  9. Finite q-oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Atakishiyev, Natig M [Centro de Ciencias FIsicas, UNAM, Apartado Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Klimyk, Anatoliy U [Centro de Ciencias FIsicas, UNAM, Apartado Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Wolf, Kurt Bernardo [Centro de Ciencias FIsicas, UNAM, Apartado Postal 48-3, 62251 Cuernavaca, Morelos (Mexico)

    2004-05-28

    The finite q-oscillator is a model that obeys the dynamics of the harmonic oscillator, with the operators of position, momentum and Hamiltonian being functions of elements of the q-algebra su{sub q}(2). The spectrum of position in this discrete system, in a fixed representation j, consists of 2j + 1 'sensor'-points x{sub s} = 1/2 [2s]{sub q}, s element of {l_brace}-j, -j+1, ..., j{r_brace}, and similarly for the momentum observable. The spectrum of energies is finite and equally spaced, so the system supports coherent states. The wavefunctions involve dual q-Kravchuk polynomials, which are solutions to a finite-difference Schroedinger equation. Time evolution (times a phase) defines the fractional Fourier-q-Kravchuk transform. In the classical limit as q {yields} 1 we recover the finite oscillator Lie algebra, the N = 2j {yields} {infinity} limit returns the Macfarlane-Biedenharn q-oscillator and both limits contract the generators to the standard quantum-mechanical harmonic oscillator.

  10. Finite q-oscillator

    Science.gov (United States)

    Atakishiyev, Natig M.; Klimyk, Anatoliy U.; Wolf, Kurt Bernardo

    2004-05-01

    The finite q-oscillator is a model that obeys the dynamics of the harmonic oscillator, with the operators of position, momentum and Hamiltonian being functions of elements of the q-algebra suq(2). The spectrum of position in this discrete system, in a fixed representation j, consists of 2j + 1 'sensor'-points x_s={\\case12}[2s]_q, s\\in\\{-j,-j+1,\\ldots,j\\} , and similarly for the momentum observable. The spectrum of energies is finite and equally spaced, so the system supports coherent states. The wavefunctions involve dual q-Kravchuk polynomials, which are solutions to a finite-difference Schrödinger equation. Time evolution (times a phase) defines the fractional Fourier-q-Kravchuk transform. In the classical limit as q rarr 1 we recover the finite oscillator Lie algebra, the N = 2j rarr infin limit returns the Macfarlane-Biedenharn q-oscillator and both limits contract the generators to the standard quantum-mechanical harmonic oscillator.

  11. Oscillate boiling from microheaters

    Science.gov (United States)

    Li, Fenfang; Gonzalez-Avila, S. Roberto; Nguyen, Dang Minh; Ohl, Claus-Dieter

    2017-01-01

    We report about an intriguing boiling regime occurring for small heaters embedded on the boundary in subcooled water. The microheater is realized by focusing a continuous wave laser beam to about 10 μ m in diameter onto a 165-nm-thick layer of gold, which is submerged in water. After an initial vaporous explosion a single bubble oscillates continuously and repeatedly at several 100 kHz albeit with constant laser power input. The microbubble's oscillations are accompanied with bubble pinch-off, leading to a stream of gaseous bubbles in the subcooled water. The self-driven bubble oscillation is explained with a thermally kicked oscillator caused by surface attachment and by the nonspherical collapses. Additionally, Marangoni stresses induce a recirculating streaming flow which transports cold liquid towards the microheater, reducing diffusion of heat along the substrate and therefore stabilizing the phenomenon to many million cycles. We speculate that this oscillate boiling regime may overcome the heat transfer thresholds observed during the nucleate boiling crisis and offers a new pathway for heat transfer under microgravity conditions.

  12. Oscillations following periodic reinforcement.

    Science.gov (United States)

    Monteiro, Tiago; Machado, Armando

    2009-06-01

    Three experiments examined behavior in extinction following periodic reinforcement. During the first phase of Experiment 1, four groups of pigeons were exposed to fixed interval (FI 16s or FI 48s) or variable interval (VI 16s or VI 48s) reinforcement schedules. Next, during the second phase, each session started with reinforcement trials and ended with an extinction segment. Experiment 2 was similar except that the extinction segment was considerably longer. Experiment 3 replaced the FI schedules with a peak procedure, with FI trials interspersed with non-food peak interval (PI) trials that were four times longer. One group of pigeons was exposed to FI 20s PI 80s trials, and another to FI 40s PI 160s trials. Results showed that, during the extinction segment, most pigeons trained with FI schedules, but not with VI schedules, displayed pause-peck oscillations with a period close to, but slightly greater than the FI parameter. These oscillations did not start immediately after the onset of extinction. Comparing the oscillations from Experiments 1 and 2 suggested that the alternation of reconditioning and re-extinction increases the reliability and earlier onset of the oscillations. In Experiment 3 the pigeons exhibited well-defined pause-peck cycles since the onset of extinction. These cycles had periods close to twice the value of the FI and lasted for long intervals of time. We discuss some hypotheses concerning the processes underlying behavioral oscillations following periodic reinforcement.

  13. Oscillations in stellar superflares

    CERN Document Server

    Balona, L A; Kosovichev, A; Nakariakov, V M; Pugh, C E; Van Doorsselaere, T

    2015-01-01

    Two different mechanisms may act to induce quasi-periodic pulsations (QPP) in whole-disk observations of stellar flares. One mechanism may be magneto-hydromagnetic (MHD) forces and other processes acting on flare loops as seen in the Sun. The other mechanism may be forced local acoustic oscillations due to the high-energy particle impulse generated by the flare (known as `sunquakes' in the Sun). We analyze short-cadence Kepler data of 257 flares in 75 stars to search for QPP in the flare decay branch or post-flare oscillations which may be attributed to either of these two mechanisms. About 18 percent of stellar flares show a distinct bump in the flare decay branch of unknown origin. The bump does not seem to be a highly-damped global oscillation because the periods of the bumps derived from wavelet analysis do not correlate with any stellar parameter. We detected damped oscillations covering several cycles (QPP), in seven flares on five stars. The periods of these oscillations also do not correlate with any ...

  14. Sequence learning in differentially activated dendrites

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2003-01-01

    . It is proposed that the neural machinery required in such a learning/retrieval mechanism could involve the NMDA receptor, in conjunction with the ability of dendrites to maintain differentially activated regions. In particular, it is suggested that such a parcellation of the dendrite allows the neuron...... to participate in multiple sequences, which can be learned without suffering from the 'wash-out' of synaptic efficacy associated with superimposition of training patterns. This is a biologically plausible solution to the stability-plasticity dilemma of learning in neural networks....

  15. Seaweed to dendrite transition in directional solidification.

    Science.gov (United States)

    Provatas, Nikolas; Wang, Quanyong; Haataja, Mikko; Grant, Martin

    2003-10-10

    We simulate directional solidification using a phase-field model solved with adaptive mesh refinement. For small surface tension anisotropy directed at 45 degrees relative to the pulling direction we observe a crossover from a seaweed to a dendritic morphology as the thermal gradient is lowered, consistent with recent experimental findings. We show that the morphology of crystal structures can be unambiguously characterized through the local interface velocity distribution. We derive semiempirically an estimate for the crossover from seaweed to dendrite as a function of thermal gradient and pulling speed.

  16. Dendritic Cells Endocytose Bacillus Anthracis Spores: Implications for Anthrax Pathogenesis

    Science.gov (United States)

    2007-11-02

    Dendritic Cells Endocytose Bacillus anthracis Spores: Implications for Anthrax Pathogenesis1 Katherine C. Brittingham,* Gordon Ruthel,* Rekha G...germination and dissemination of spores. Found in high frequency throughout the respiratory track, dendritic cells (DCs) routinely take up foreign...COVERED - 4. TITLE AND SUBTITLE Dendritic cells endocytose Bacillus anthracis spores: implications for anthrax pathogenesis, The Journal of

  17. Linear superposition of sensory-evoked and ongoing cortical hemodynamics

    Directory of Open Access Journals (Sweden)

    Mohamad Saka

    2010-08-01

    Full Text Available Modern non-invasive brain imaging techniques utilise changes in cerebral blood flow, volume and oxygenation that accompany brain activation. However, stimulus-evoked hemodynamic responses display considerable inter-trial variability even when identical stimuli are presented and the sources of this variability are poorly understood. One of the sources of this response variation could be ongoing spontaneous hemodynamic fluctuations. To investigate this issue, 2-dimensional optical imaging spectroscopy was used to measure cortical hemodynamics in response to sensory stimuli in anaesthetised rodents Pre-stimulus cortical hemodynamics displayed spontaneous periodic fluctuations and as such, data from individual stimulus presentation trials were assigned to one of four groups depending on the phase angle of pre-stimulus hemodynamic fluctuations and averaged. This analysis revealed that sensory evoked cortical hemodynamics displayed distinctive response characteristics and magnitudes depending on the phase angle of ongoing fluctuations at stimulus onset. To investigate the origin of this phenomenon, ‘null-trails’ were collected without stimulus presentation. Subtraction of phase averaged ‘null trials’ from their phase averaged stimulus-evoked counterparts resulted in four similar time series that resembled the mean stimulus-evoked response. These analyses suggest that linear superposition of evoked and ongoing cortical hemodynamic changes may be a property of the structure of inter-trial variability.

  18. Arbitrary Spin Galilean Oscillator

    CERN Document Server

    Hagen, C R

    2014-01-01

    The so-called Dirac oscillator was proposed as a modification of the free Dirac equation which reproduces many of the properties of the simple harmonic oscillator but accompanied by a strong spin-orbit coupling term. It has yet to be extended successfully to the arbitrary spin S case primarily because of the unwieldiness of general spin Lorentz invariant wave equations. It is shown here using the formalism of totally symmetric multispinors that the Dirac oscillator can, however, be made to accommodate spin by incorporating it into the framework of Galilean relativity. This is done explicitly for spin zero and spin one as special cases of the arbitrary spin result. For the general case it is shown that the coefficient of the spin-orbit term has a 1/S behavior by techniques which are virtually identical to those employed in the derivation of the g-factor carried out over four decades ago.

  19. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  20. Influence of magnetic arc oscillation and current pulsing on microstructure and high temperature tensile strength of alloy 718 TIG weldments

    Energy Technology Data Exchange (ETDEWEB)

    Sivaprasad, K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai (India); Ganesh Sundara Raman, S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai (India)]. E-mail: ganesh@iitm.ac.in; Mastanaiah, P. [Defence Research and Development Laboratory, Hyderabad (India); Madhusudhan Reddy, G. [Defence Metallurgical Research Laboratory, Hyderabad (India)

    2006-07-25

    The aim of the present work is to study the effect of magnetic arc oscillation and current pulsing on the microstructure and high temperature tensile strength of alloy 718 tungsten inert gas weldments. The magnetic arc oscillation technique resulted in refined Laves phase with lesser interconnectivity. The full benefits of current pulsing in breaking the dendrites could not be realized in the present study due to relatively higher heat input used in the welding process. In the direct aged condition weldments prepared using magnetic arc oscillation technique exhibited higher tensile strength due to the presence of refined and lesser-interconnected Laves particles. In the solution treated and aged condition, magnetic arc oscillated weldments exhibited lower tensile strength compared with the weldments made without arc oscillation due to the presence of large amounts of finer {delta} needles.

  1. Nonlinear harmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Calogero, F [Dipartimento di Fisica, Universita di Roma ' La Sapienza' (Italy); Inozemtsev, V I [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2002-12-06

    The existence is noted of assemblies of an arbitrary number of complex oscillators, or equivalently, of an arbitrary even number of real oscillators, characterized by Newtonian equations of motion ('acceleration equal force') with one-body velocity-dependent linear forces and many-body velocity-independent cubic forces, all the nonsingular solutions of which are isochronous (completely periodic with the same period). As for the singular solutions, as usual they emerge, in the context of the initial-value problem, from a closed domain in phase space having lower dimensionality.

  2. Prediction of resonant oscillation

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to methods for prediction of parametric rolling of vessels. The methods are based on frequency domain and time domain information in order do set up a detector able to trigger an alarm when parametric roll is likely to occur. The methods use measurements of e.g. pitch and roll...... oscillations and compare the measured oscillations using FFT analysis of signal correlations, variance analysis of signals and other comparisons. As an example, the presence of a growing peak around a frequency that doubles the roll natural frequency indicates the possibility that parametric roll is going...

  3. Friedel oscillations in graphene

    DEFF Research Database (Denmark)

    Lawlor, J. A.; Power, S. R.; Ferreira, M.S.

    2013-01-01

    Symmetry breaking perturbations in an electronically conducting medium are known to produce Friedel oscillations in various physical quantities of an otherwise pristine material. Here we show in a mathematically transparent fashion that Friedel oscillations in graphene have a strong sublattice...... asymmetry. As a result, the presence of impurities and/or defects may impact the distinct graphene sublattices very differently. Furthermore, such an asymmetry can be used to explain the recent observations that nitrogen atoms and dimers are not randomly distributed in graphene but prefer to occupy one...

  4. Solar-neutrino oscillations

    Science.gov (United States)

    Krauss, L.; Wilczek, F.

    1985-01-01

    The theory of oscillations of solar neutrinos is developed as it applies to the electron-recoil spectrum in neutrino-electron scattering. The spectral information obtained by such measurements (as opposed to counting total event rates) is crucial for allowing observation of neutrino oscillations for masses down to 500 neV. In this regard, the effects of different masses and mixing angles, as well as such subtleties as thermal and pressure broadening, finite solar-core size, and variable indices of refraction are investigated.

  5. Interactions with Astroglia Influence the Shape of the Developing Dendritic Arbor and Restrict Dendrite Growth Independent of Promoting Synaptic Contacts

    Science.gov (United States)

    Farley, Jennifer R.; Sterritt, Jeffrey R.; Crane, Andrés B.; Wallace, Christopher S.

    2017-01-01

    Astroglia play key roles in the development of neurons, ranging from regulating neuron survival to promoting synapse formation, yet basic questions remain about whether astrocytes might be involved in forming the dendritic arbor. Here, we used cultured hippocampal neurons as a simple in vitro model that allowed dendritic growth and geometry to be analyzed quantitatively under conditions where the extent of interactions between neurons and astrocytes varied. When astroglia were proximal to neurons, dendrites and dendritic filopodia oriented toward them, but the general presence of astroglia significantly reduced overall dendrite growth. Further, dendritic arbors in partial physical contact with astroglia developed a pronounced pattern of asymmetrical growth, because the dendrites in direct contact were significantly smaller than the portion of the arbor not in contact. Notably, thrombospondin, the astroglial factor shown previously to promote synapse formation, did not inhibit dendritic growth. Thus, while astroglia promoted the formation of presynaptic contacts onto dendrites, dendritic growth was constrained locally within a developing arbor at sites where dendrites contacted astroglia. Taken together, these observations reveal influences on spatial orientation of growth as well as influences on morphogenesis of the dendritic arbor that have not been previously identified. PMID:28081563

  6. Neutrinos Oscillations with Long-Base-Line Beams (Past, Present and very near Future)

    CERN Document Server

    Stanco, Luca

    2010-01-01

    We overview the status of the studies on neutrino oscillations with accelerators at the present running experiments. Past and present results enlighten the path towards the observation of massive neutrinos and the settling of their oscillations. The very near future may still have addiction from the outcome of the on-going experiments. OPERA is chosen as a relevant example justified by the very recent results released.

  7. Differential GABAB-receptor-mediated effects in perisomatic- and dendrite-targeting parvalbumin interneurons.

    Science.gov (United States)

    Booker, Sam A; Gross, Anna; Althof, Daniel; Shigemoto, Ryuichi; Bettler, Bernhard; Frotscher, Michael; Hearing, Matthew; Wickman, Kevin; Watanabe, Masahiko; Kulik, Ákos; Vida, Imre

    2013-05-01

    Inhibitory parvalbumin-containing interneurons (PVIs) control neuronal discharge and support the generation of theta- and gamma-frequency oscillations in cortical networks. Fast GABAergic input onto PVIs is crucial for their synchronization and oscillatory entrainment, but the role of metabotropic GABA(B) receptors (GABA(B)Rs) in mediating slow presynaptic and postsynaptic inhibition remains unknown. In this study, we have combined high-resolution immunoelectron microscopy, whole-cell patch-clamp recording, and computational modeling to investigate the subcellular distribution and effects of GABA(B)Rs and their postsynaptic effector Kir3 channels in rat hippocampal PVIs. Pre-embedding immunogold labeling revealed that the receptors and channels localize at high levels to the extrasynaptic membrane of parvalbumin-immunoreactive dendrites. Immunoreactivity for GABA(B)Rs was also present at lower levels on PVI axon terminals. Whole-cell recordings further showed that synaptically released GABA in response to extracellular stimulation evokes large GABA(B)R-mediated slow IPSCs in perisomatic-targeting (PT) PVIs, but only small or no currents in dendrite-targeting (DT) PVIs. In contrast, paired recordings demonstrated that GABA(B)R activation results in presynaptic inhibition at the output synapses of both PT and DT PVIs, but more strongly in the latter. Finally, computational analysis indicated that GABA(B) IPSCs can phasically modulate the discharge of PT interneurons at theta frequencies. In summary, our results show that GABA(B)Rs differentially mediate slow presynaptic and postsynaptic inhibition in PVIs and can contribute to the dynamic modulation of their activity during oscillations. Furthermore, these data provide evidence for a compartment-specific molecular divergence of hippocampal PVI subtypes, suggesting that activation of GABA(B)Rs may shift the balance between perisomatic and dendritic inhibition.

  8. Oscillation Baselining and Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-27

    PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).

  9. Flicker regularity is crucial for entrainment of alpha oscillations

    Directory of Open Access Journals (Sweden)

    Annika Notbohm

    2016-10-01

    Full Text Available Previous studies have shown that alpha oscillations (8-13 Hz in human electroencephalogram (EEG modulate perception via phase-dependent inhibition. If entrained to an external driving force, inhibition maxima and minima of the oscillation appear more distinct in time and make potential phase-dependent perception predictable.There is an ongoing debate about whether visual stimulation is suitable to entrain alpha oscillations. On the one hand, it has been argued that a series of light flashes results in transient event-related responses (ERPs superimposed on the ongoing EEG. On the other hand, it has been demonstrated that alpha oscillations become entrained to a series of light flashes if they are presented at a certain temporal regularity. This raises the question under which circumstances a sequence of light flashes causes entrainment, i.e. whether an arrhythmic stream of light flashes would also result in entrainment.Here, we measured detection rates in response to visual targets at two opposing stimulation phases during rhythmic and arrhythmic light stimulation. We introduce a new measure called ‘behavioral modulation depth’ to determine differences in perception. This measure is capable of correcting for inevitable artifacts that occur in visual detection tasks during visual stimulation. The physical concept of entrainment predicts that increased stimulation intensity should produce stronger entrainment. Thus, two experiments with medium (Experiment 1 and high (Experiment 2 stimulation intensity were performed. Data from the first experiment show that the behavioral modulation depth (alpha phase-dependent differences in detection threshold increases with increasing entrainment of alpha oscillations. Furthermore, individual alpha phase delays of entrained alpha oscillations determine the behavioral modulation depth: the largest behavioral modulation depth can be found if targets presented during the minimum of the entrained oscillation

  10. Synchronization Dynamics of Coupled Chemical Oscillators

    Science.gov (United States)

    Tompkins, Nathan

    The synchronization dynamics of complex networks have been extensively studied over the past few decades due to their ubiquity in the natural world. Prominent examples include cardiac rhythms, circadian rhythms, the flashing of fireflies, predator/prey population dynamics, mammalian gait, human applause, pendulum clocks, the electrical grid, and of the course the brain. Detailed experiments have been done to map the topology of many of these systems and significant advances have been made to describe the mathematics of these networks. Compared to these bodies of work relatively little has been done to directly test the role of topology in the synchronization dynamics of coupled oscillators. This Dissertation develops technology to examine the dynamics due to topology within networks of discrete oscillatory components. The oscillatory system used here consists of the photo-inhibitable Belousov-Zhabotinsky (BZ) reaction water-in-oil emulsion where the oscillatory drops are diffusively coupled to one another and the topology is defined by the geometry of the diffusive connections. Ring networks are created from a close-packed 2D array of drops using the Programmable Illumination Microscope (PIM) in order to test Turing's theory of morphogenesis directly. Further technology is developed to create custom planar networks of BZ drops in more complicated topologies which can be individually perturbed using illumination from the PIM. The work presented here establishes the validity of using the BZ emulsion system with a PIM to study the topology induced effects on the synchronization dynamics of coupled chemical oscillators, tests the successes and limitations of Turing's theory of morphogenesis, and develops new technology to further probe the effects of network topology on a system of coupled oscillators. Finally, this Dissertation concludes by describing ongoing experiments which utilize this new technology to examine topology induced transitions of synchronization

  11. Trial-by-trial variations in subjective attentional state are reflected in ongoing prestimulus EEG alpha oscillations

    Directory of Open Access Journals (Sweden)

    James Stuart Peter Macdonald

    2011-05-01

    Full Text Available Parieto-occipital EEG alpha power and subjective reports of attentional state are both associated with visual attention and awareness, but little is currently known about the relationship between these two measures. Here, we bring together these two literatures to explore the relationship between alpha activity and participants’ introspective judgements of attentional state as each varied from trial to trial during performance of a visual detection task. We collected participants’ subjective ratings of perceptual decision confidence and attentional state on continuous scales on each trial of a rapid serial visual presentation (RSVP detection task while recording EEG. We found that confidence and attentional state ratings were largely uncorrelated with each other, but both were strongly associated with task performance and post-stimulus decision-related EEG activity. Crucially, attentional state ratings were also negatively associated with prestimulus EEG alpha power. Attesting to the robustness of this association, we were able to classify attentional state ratings via prestimulus alpha power on a single-trial basis. Moreover, when we repeated these analyses after smoothing the time series of attentional state ratings and alpha power with increasingly large sliding windows, both the correlations and classification performance improved considerably, with the peaks occurring at a sliding window size of approximately seven minutes worth of trials. Our results therefore suggest that slow fluctuations in attentional state in the order of minutes are reflected in spontaneous alpha power. Since these subjective attentional state ratings were associated with objective measures of both behaviour and neural activity, we suggest that they provide a simple and effective estimate of task engagement that could prove useful in operational settings that require human operators to maintain a sustained focus of visual attention.

  12. On dendritic cell-based therapy for cancers

    Institute of Scientific and Technical Information of China (English)

    Morikazu Onji; Sk. Md. Fazle Akbar

    2005-01-01

    Dendritic cells (DCs), the most prevalent antigen-presenting cell in vivo, had been widely characterized in the last three decades. DCs are present in almost all tissues of the body and play cardinal roles in recognition of microbial agents,autoantigens, allergens and alloantigen. DCs process the microbial agents or their antigens and migrate to lymphoid tissues to present the antigenic peptide to lymphocytes. This leads to activation of antigen-specific lymphocytes. Initially, it was assumed that DCs are principally involved in the induction and maintenance of adaptive immune responses, but now it is evident that DCs also have important roles in innate immunity. These features make DCs very good candidates for therapy against various pathological conditions including malignancies. Initially, DC-based therapy was used in animal models of cancers. Data from these studies inspired considerable optimism and DC-based therapies was started in human cancers 8 years ago. In general,DC-based therapy has been found to be safe in patients with cancers, although few controlled trials have been conducted in this regard. Because the fundamentals principles of human cancers and animal models of cancers are different, the therapeutic efficacy of the ongoing regime of DC-based therapy in cancer patients is not satisfactory. In this review, we covered the various aspects that should be considered for developing better regime of DC-based therapy for human cancers.

  13. Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons

    OpenAIRE

    Kim, Sooyun; Guzman, Segundo J.; Hu, Hua; Jonas, Peter

    2012-01-01

    CA3 pyramidal neurons are important for memory formation and pattern completion in the hippocampal network. It is generally thought that proximal synapses from the mossy fibers activate these neurons most efficiently, whereas distal inputs from the perforant path have a weaker modulatory influence. We used confocally targeted patch-clamp recording from dendrites and axons to map the activation of rat CA3 pyramidal neurons at the subcellular level. Our results reveal two distinct dendritic dom...

  14. Numerical Simulations of Equiaxed Dendrite Growth Using Phase Field Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growthin a metallic system. In this paper, the equiaxed dendrite evolution during the solidification of a pure material wasnumerically simulated using the phase field model. The equiaxed dendrite growth in a two-dimensional square domainof undercooled melt (nickel) with four-fold anisotropy was simulated. The phase field model equations was solvedusing the explicit finite difference method on a uniform mesh. The formation of various equiaxed dendrite patternswas shown by a series of simulations, and the effect of anisotropy on equiaxed dendrite morphology was investigated.

  15. The role of dendritic cells in cancer

    DEFF Research Database (Denmark)

    Hansen, Morten; Andersen, Mads Hald

    2017-01-01

    Though present in low numbers, dendritic cells (DCs) are recognized as major players in the control of cancer by adaptive immunity. The roles of cytotoxic CD8+ T-cells and Th1 helper CD4+ T-cells are well-documented in murine models of cancer and associated with a profound prognostic impact when...... treatment regimens against cancer....

  16. Characterization of chicken dendritic cell markers

    Science.gov (United States)

    Animal and Natural Resources Institute, ARS-USDA, Beltsville, MD, USA. New mouse monoclonal antibodies which detect CD80 and CD83 were developed to characterize chicken dendritic cells (DCs). The characteristics of these molecules have been studied in human, swine, ovine, feline, and canine but not ...

  17. ISOLATION OF CHICKEN FOLLICULAR DENDRITIC CELLS

    Science.gov (United States)

    The aim of the present study was to isolate chicken follicular dendritic cells (FDC). A combination of methods involving panning, iodixanol density gradient centrifugation, and magnetic cell separation technology made it possible to obtain functional FDC from the cecal tonsils from chickens, which h...

  18. Dendritic cells in peripheral tolerance and immunity

    DEFF Research Database (Denmark)

    Gad, Monika; Claesson, Mogens Helweg; Pedersen, Anders Elm

    2003-01-01

    Dendritic cells capable of influencing immunity exist as functionally distinct subsets, T cell-tolerizing and T cell-immunizing subsets. The present paper reviews how these subsets of DCs develop, differentiate and function in vivo and in vitro at the cellular and molecular level. In particular...

  19. Ongoing clinical trials of the pleiotropic effects of statins

    Directory of Open Access Journals (Sweden)

    Jean Davignon

    2005-04-01

    Full Text Available Jean Davignon1, Lawrence A Leiter21Clinical Research Institute of Montreal, Montreal, QC, Canada; 2Division of Endocrinology and Metabolism, St Michael’s Hospital, Toronto, ON, CanadaBackground: The multiple effects (ie, pleiotropic effects of statins have received increasing recognition and may have clinical applicability across a broad range of cardiovascular and noncardiovascular conditions. Objective: To determine the relevance and significance of ongoing clinical trials of the pleiotropic effects of statins, focusing on nonlipid effects. Method: Ongoing trials were identified through personal communication, reports presented at scientific meetings (2000–2004, and queries made to AstraZeneca, Bristol-Myers Squibb Co, Merck & Co, Novartis, and Pfizer, manufacturers of the currently marketed statins. Published trials and other source material were identified through electronic searches on MEDLINE (1990–2003, abstract books, and references identified from bibliographies of pertinent articles. Eligible studies were the clinical trials of statins currently under way in which primary or secondary outcomes included the statins’ nonlipid (ie, pleiotropic effect(s. Data were extracted and trial quality was assessed by the authors. Results: Of the 22 ongoing trials of the nonlipid effects of statins identified, 10 assessed inflammatory markers and plaque stabilization, 4 assessed oxidized low density lipoprotein/vascular oxidant stress, 3 assessed end-stage renal disease, 3 assessed fibrinogen/viscosity, 2 assessed endothelial function, 2 assessed acute coronary syndrome, 2 assessed aortic stenosis progression, and 1 each assessed hypertension, osteoporosis, ischemic burden, Alzheimer’s disease, multiple sclerosis, and stroke (outcomes often overlapped. Conclusion: Given the excellent safety and tolerability of statins as a class, full exploration of their pleiotropic effects has the potential to provide additional benefits to many patients

  20. Offsetting Ongoing Methane Emissions --- An Alternative to Emission Equivalence Metrics

    Science.gov (United States)

    Clisby, N.; Enting, I. G.; Lauder, A.; Carter, J.; Cowie, A.; Henry, B.; Raupach, M. R.

    2012-12-01

    The Global Warming Potential (GWP) has been widely adopted as a metric for comparing the climate impact of different greenhouse gases. As has been frequently noted, there are many problems with using GWPs to define emission equivalence in spite of the use of GWPs for this purpose in contexts such as the Kyoto Protocol. We propose that for methane, rather than define emission equivalence, the appropriate comparison is between ongoing emissions of 0.9 to 1.0 kg of CH4 per year and one-off emissions of 1 tonne of carbon. This approach represents an approximate solution to the inverse problem of defining a forcing equivalent index (FEI) that gives exact equivalence of radiative forcing over a range of timescales. In our approach, if ongoing methane emissions are offset by a one-off carbon removal that is built up with 40-year e-folding time, then the result is close to radiatively neutral over periods from years to centuries. In contrast, the GWP provides radiative equivalence (in integrated terms) only at a single time, with large discrepancies at other times. Our approach also follows from consideration of greenhouse gas stabilisation, since stabilising atmospheric CO2 requires an approximate cap on total emissions, while stabilising methane requires stabilisation of ongoing emissions. Our quantitative treatment recognises that, on time scales of centuries, removal of 1 tonne of carbon only lowers the atmospheric carbon content by 0.3 to 0.35 tonnes. We discuss the implications for rangeland grazing systems. In the absence of effective mitigation techniques for methane from rangeland systems, this approach may provide an attractive offset mechanism in spite of requiring that woody vegetation be established and maintained over about 15% of the landscape, or an equivalent amount of carbon storage in soil.

  1. Oscillators and operational amplifiers

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2005-01-01

    A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation...

  2. [Oscillating physiotherapy for secretolysis].

    Science.gov (United States)

    Brückner, U

    2008-03-01

    Assisted coughing and mechanical cough aids compensate for the weak cough flow in patients with neuromuscular diseases (NMD). In cases with preserved respiratory muscles also breathing techniques and special devices, e. g., flutter or acapella can be used for secretion mobilisation during infections of the airways. These means are summarised as oscillating physiotherapy. Their mechanisms are believed to depend on separation of the mucus from the bronchial wall by vibration, thus facilitating mucus transport from the peripheral to the central airways. In mucoviscidosis and chronic obstructive pulmonary disease their application is established, but there is a paucity of data regarding the commitment in patients with neuromuscular diseases. The effective adoption of simple oscillation physiotherapeutic interventions demands usually a sufficient force of the respiratory muscles--exceptions are the application of the percussionaire (intrapulmonary percussive ventilator, IPV) or high frequency chest wall oscillation (HFCWO). In daily practice there is evidence that patients with weak respiratory muscles are overstrained with the use of these physiotherapeutic means, or get exhausted. A general recommendation for the adoption of simple oscillating physiotherapeutic interventions cannot be made in patients with NMDs. Perhaps in the future devices such as IPV or HFCWO will prove to be more effective in NMD patients.

  3. A simple violin oscillator

    Science.gov (United States)

    Jones, R. T.

    1976-01-01

    For acoustic tests the violin is driven laterally at the bridge by a small speaker of the type commonly found in pocket transistor radios. An audio oscillator excites the tone which is picked up by a sound level meter. Gross patterns of vibration modes are obtained by the Chladni method.

  4. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, Sidse M; Hansen, Lars Kai; Parnas, Josef;

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...

  5. Neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, L. [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-11-01

    Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.

  6. Multiphoton coherent population oscillation

    CERN Document Server

    Sharypov, A V

    2014-01-01

    We study the bichromatic driving of a two-level system which displays long-lived coherent population oscillations (CPO). We show that under certain conditions, multiphoton parametric interaction leads to the appearance of CPO resonances at the subharmonic frequencies. In addition, in the region of the CPO resonances, there is strong parametric interaction between the weak sideband components of the electromagnetic field.

  7. From excitability to oscillations

    DEFF Research Database (Denmark)

    Postnov, D. E.; Neganova, A. Y.; Jacobsen, J. C. B.;

    2013-01-01

    One consequence of cell-to-cell communication is the appearance of synchronized behavior, where many cells cooperate to generate new dynamical patterns. We present a simple functional model of vasomotion based on the concept of a two-mode oscillator with dual interactions: via relatively slow...

  8. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.;

    2007-01-01

    to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...

  9. Dendritic mitochondria reach stable positions during circuit development.

    Science.gov (United States)

    Faits, Michelle C; Zhang, Chunmeng; Soto, Florentina; Kerschensteiner, Daniel

    2016-01-07

    Mitochondria move throughout neuronal dendrites and localize to sites of energy demand. The prevailing view of dendritic mitochondria as highly motile organelles whose distribution is continually adjusted by neuronal activity via Ca(2+)-dependent arrests is based on observations in cultured neurons exposed to artificial stimuli. Here, we analyze the movements of mitochondria in ganglion cell dendrites in the intact retina. We find that whereas during development 30% of mitochondria are motile at any time, as dendrites mature, mitochondria all but stop moving and localize stably to synapses and branch points. Neither spontaneous nor sensory-evoked activity and Ca(2+) transients alter motility of dendritic mitochondria; and pathological hyperactivity in a mouse model of retinal degeneration elevates rather than reduces motility. Thus, our findings indicate that dendritic mitochondria reach stable positions during a critical developmental period of high motility, and challenge current views about the role of activity in regulating mitochondrial transport in dendrites.

  10. Ongoing outbreak of invasive listeriosis, Germany, 2012 to 2015.

    Science.gov (United States)

    Ruppitsch, Werner; Prager, Rita; Halbedel, Sven; Hyden, Patrick; Pietzka, Ariane; Huhulescu, Steliana; Lohr, Dorothee; Schönberger, Katharina; Aichinger, Elisabeth; Hauri, Anja; Stark, Klaus; Vygen, Sabine; Tietze, Erhard; Allerberger, Franz; Wilking, Hendrik

    2015-01-01

    Listeriosis patient isolates in Germany have shown a new identical pulsed-field gel electrophoresis (PFGE) pattern since 2012 (n = 66). Almost all isolates (Listeria monocytogenes serotype 1/2a) belonged to cases living in southern Germany, indicating an outbreak with a so far unknown source. Case numbers in 2015 are high (n = 28). No outbreak cases outside Germany have been reported. Next generation sequencing revealed the unique cluster type CT1248 and confirmed the outbreak. Investigations into the source are ongoing.

  11. On the Ongoing Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    in radio frequency transmission equipment helps to overcome those. However those circuits were not designed to meet the same requirements as power converters. This paper summarizes the contributions in recent years in application of very high frequency (VHF) technologies in power electronics, describes......The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...

  12. Overview of ongoing cohort and dietary studies in the Arctic

    Directory of Open Access Journals (Sweden)

    Pál Weihe

    2016-12-01

    Full Text Available This article gives an overview of the ongoing cohort and dietary studies underlying the assessment of population health in the Arctic. The emphasis here is on a description of the material, methods and results or preliminary results for each study. Detailed exposure information is available in an article in this journal, whereas another paper describes the effects associated with contaminant exposure in the Arctic. The cohort descriptions have been arranged geographically, beginning in Norway and moving east to Finland, Sweden, Russia and the other Arctic countries and ultimately to the Faroe Islands. No cohort studies have been reported for Alaska or Iceland.

  13. Overview of ongoing cohort and dietary studies in the Arctic

    Science.gov (United States)

    Weihe, Pál; Bjerregaard, Peter; Bonefeld-Jørgensen, Eva; Dudarev, Alexey; Halling, Jónrit; Hansen, Solrunn; Muckle, Gina; Nøst, Therese; Odland, Jon Øyvind; Petersen, Maria Skaalum; Rautio, Arja; Veyhe, Anna Sofía; Wennberg, Maria; Bergdahl, Ingvar

    2016-01-01

    This article gives an overview of the ongoing cohort and dietary studies underlying the assessment of population health in the Arctic. The emphasis here is on a description of the material, methods and results or preliminary results for each study. Detailed exposure information is available in an article in this journal, whereas another paper describes the effects associated with contaminant exposure in the Arctic. The cohort descriptions have been arranged geographically, beginning in Norway and moving east to Finland, Sweden, Russia and the other Arctic countries and ultimately to the Faroe Islands. No cohort studies have been reported for Alaska or Iceland. PMID:27974135

  14. Preparedness for ongoing Ebola virus infection: how to welcome it?

    Directory of Open Access Journals (Sweden)

    Sora Yasri

    2015-06-01

    Full Text Available The problem of Ebola virus infection is the big global concern. Preparedness for ongoing Ebola virus infection is the topic that should be discussed. In fact, it is necessary to set up a biosecurity system to protect against the present Ebola outbreak. The medical personnel have to prepare for fighting the problem. The management of the present outbreak requires international collaboration and control of cross-border disease transmission is also the big challenge. The good case study is the Hajj scenario.

  15. Neutrino Velocity and Neutrino Oscillations

    CERN Document Server

    Minakata, H

    2012-01-01

    We study distances of propagation and the group velocities of the muon neutrinos in the presence of mixing and oscillations assuming that Lorentz invariance holds. Oscillations lead to distortion of the $\

  16. Microwave transistor oscillator frequency tripling

    OpenAIRE

    B. A. Kotserzhynskyi

    2010-01-01

    The frequency tripler state of the art is consided. The oscillator-frequency tripler design is now at the state of scientific research. Microwave companies release the devices of the such structure: oscillator, buffer, amplifier-tripler.

  17. Microwave transistor oscillator frequency tripling

    Directory of Open Access Journals (Sweden)

    B. A. Kotserzhynskyi

    2010-01-01

    Full Text Available The frequency tripler state of the art is consided. The oscillator-frequency tripler design is now at the state of scientific research. Microwave companies release the devices of the such structure: oscillator, buffer, amplifier-tripler.

  18. Rhythmic light stimulation modifies brain oscillations via entrainment

    Directory of Open Access Journals (Sweden)

    Annika eNotbohm

    2016-02-01

    Full Text Available The functional relevance of brain oscillations in the alpha frequency range (8-13Hz has been repeatedly investigated through the use of rhythmic visual stimulation. The underlying mechanism of the steady-state visual evoked potential (SSVEP measured in EEG during rhythmic stimulation, however, is not known. There are two hypotheses on the origin of the SSVEPs: entrainment of brain oscillations and superposition of event-related responses (ERPs. The entrainment but not the superposition hypothesis justifies rhythmic visual stimulation as a means to manipulate brain oscillations, because superposition assumes a linear summation of single responses, independent from ongoing brain oscillations. Here, we stimulated participants with a rhythmic flickering light of different frequencies and intensities.. We measured entrainment by comparing the phase coupling of brain oscillations stimulated by rhythmic visual flicker with the oscillations induced by arrhythmic jittered stimulation, varying the time, stimulation frequency, and intensity conditions. In line with a theoretical concept of entrainment (the so called Arnold tongue, we found the phase coupling to be more pronounced with increasing stimulation intensity as well as at stimulation frequencies closer to each participant’s intrinsic frequency. Only inside the Arnold tongue did the conditions significantly differ from the jittered stimulation. Furthermore, even in a single sequence of an SSVEP, we found non-linear features (intermittency of phase locking that contradict the linear summation of single responses, as assumed by the superposition hypothesis. Our findings provide unequivocal evidence that visual rhythmic stimulation entrains brain oscillations, thus validating the approach of rhythmic stimulation as a manipulation of brain oscillations.

  19. Litigation Provides Clues to Ongoing Challenges in Implementing Insurance Parity.

    Science.gov (United States)

    Berry, Kelsey N; Huskamp, Haiden A; Goldman, Howard H; Rutkow, Lainie; Barry, Colleen L

    2017-08-11

    Over the past twenty-five years, thirty-seven states and the US Congress have passed mental health and substance use disorder (MH/SUD) parity laws to secure nondiscriminatory insurance coverage for MH/SUD services in the private health insurance market and through certain public insurance programs. However, in the intervening years, litigation has been brought by numerous parties alleging violations of insurance parity. We examine the critical issues underlying these legal challenges as a framework for understanding the areas in which parity enforcement is lacking, as well as ongoing areas of ambiguity in the interpretation of these laws. We identified all private litigation involving federal and state parity laws and extracted themes from a final sample of thirty-seven lawsuits. The primary substantive topics at issue include the scope of services guaranteed by parity laws, coverage of certain habilitative therapies such as applied behavioral analysis for autism spectrum disorders, credentialing standards for MH/SUD providers, determinations regarding the medical necessity of MH/SUD services, and the application of nonquantitative treatment limitations under the 2008 federal parity law. Ongoing efforts to achieve nondiscriminatory insurance coverage for MH/SUDs should attend to the major issues subject to private legal action as important areas for facilitating and monitoring insurer compliance. Copyright © 2017 by Duke University Press.

  20. The Rare Cancer Network: ongoing studies and future strategy

    Directory of Open Access Journals (Sweden)

    Mahmut Ozsahin

    2014-08-01

    Full Text Available The Rare Cancer Network (RCN was formed in the early 1990’s to create a global network that could pool knowledge and resources in the studies of rare malignancies whose infrequency prevented both their study with prospective clinical trials. To date, the RCN has initiated 74 studies resulting in 46 peer reviewed publications. The First International Symposium of the Rare Cancer Network took place in Nice in March of 2014. Status updates and proposals for new studies were heard for fifteen topics. Ongoing studies continue for cardiac sarcomas, thyroid cancers, glomus tumors, and adult medulloblastomas. New proposals were presented at the symposium for primary hepatic lymphoma, solitary fibrous tumors, Rosai-Dorfman disease, tumors of the ampulla of Vater, salivary gland tumors, anorectal melanoma, midline nuclear protein in testes carcinoma, pulmonary lymphoepithelioma-like carcinoma, adenoid cystic carcinoma of the trachea, osteosarcomas of the mandible, and extra-cranial hemangiopericytoma. This manuscript presents the abstracts of those proposals and updates on ongoing studies, as well a brief summary of the vision and future of the RCN.

  1. Neutrino Oscillations with Nil Mass

    Science.gov (United States)

    Floyd, Edward R.

    2016-09-01

    An alternative neutrino oscillation process is presented as a counterexample for which the neutrino may have nil mass consistent with the standard model. The process is developed in a quantum trajectories representation of quantum mechanics, which has a Hamilton-Jacobi foundation. This process has no need for mass differences between mass eigenstates. Flavor oscillations and ν ,bar{ν } oscillations are examined.

  2. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    Science.gov (United States)

    Wu, You Kure; Fujishima, Kazuto; Kengaku, Mineko

    2015-01-01

    Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s) from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  3. Global three-parameter model for neutrino oscillations using Lorentz violation

    Energy Technology Data Exchange (ETDEWEB)

    Katori, Teppei, E-mail: katori@iucf.indiana.edu [Physics Department, Indiana University, Bloomington, IN 47405 (United States); Kostelecky, V.Alan; Tayloe, Rex [Physics Department, Indiana University, Bloomington, IN 47405 (United States)

    2011-12-15

    A model of neutrino oscillations is presented that has only three degrees of freedom and is consistent with existing data. The model is a subset of the renormalizable sector of the Standard-Model Extension (SME), and it offers an alternative to the standard three-neutrino massive model. All classes of neutrino data are described, including solar, reactor, atmospheric, and LSND oscillations. The disappearance of solar neutrinos is obtained without matter-enhanced oscillations. Quantitative predictions are offered for the ongoing MiniBooNE experiment and for the future experiments OscSNS, NOVA, and T2K.

  4. The influence of a microgravity environment on the dendritic morphology during directional solidification of hypoeutectic Al-Si alloys

    Science.gov (United States)

    Grugel, Richard N.

    1993-01-01

    NASA grant NAGW-2540 provided the opportunity to evaluate and extend ongoing studies of directionally solidified Al-Si alloys. Microstructural development was further characterized in terms of solidification processing parameters; novel relationships between processing and development of dendrite trunk diameters and tertiary dendrite arm spacings were found. This has resulted in three publications (one in print, one in press, and one in review). Microstructural development under conditions of controlled acceleration during directional solidification has been investigated; this has culminated in a Master's degree and will be submitted for publication. The above work not only contributes to our understanding of solidification phenomena but also defines the processing parameters for a successful microgravity experiment while providing a data base to which mu g samples can be unequivocally compared and evaluated.

  5. Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness.

    Directory of Open Access Journals (Sweden)

    Stanislas Dehaene

    2005-05-01

    Full Text Available Even in the absence of sensory inputs, cortical and thalamic neurons can show structured patterns of ongoing spontaneous activity, whose origins and functional significance are not well understood. We use computer simulations to explore the conditions under which spontaneous activity emerges from a simplified model of multiple interconnected thalamocortical columns linked by long-range, top-down excitatory axons, and to examine its interactions with stimulus-induced activation. Simulations help characterize two main states of activity. First, spontaneous gamma-band oscillations emerge at a precise threshold controlled by ascending neuromodulator systems. Second, within a spontaneously active network, we observe the sudden "ignition" of one out of many possible coherent states of high-level activity amidst cortical neurons with long-distance projections. During such an ignited state, spontaneous activity can block external sensory processing. We relate those properties to experimental observations on the neural bases of endogenous states of consciousness, and particularly the blocking of access to consciousness that occurs in the psychophysical phenomenon of "inattentional blindness," in which normal subjects intensely engaged in mental activity fail to notice salient but irrelevant sensory stimuli. Although highly simplified, the generic properties of a minimal network may help clarify some of the basic cerebral phenomena underlying the autonomy of consciousness.

  6. Resurgence of oscillation in coupled oscillators under delayed cyclic interaction

    Science.gov (United States)

    Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar

    2017-07-01

    This paper investigates the emergence of amplitude death and revival of oscillations from the suppression states in a system of coupled dynamical units interacting through delayed cyclic mode. In order to resurrect the oscillation from amplitude death state, we introduce asymmetry and feedback parameter in the cyclic coupling forms as a result of which the death region shrinks due to higher asymmetry and lower feedback parameter values for coupled oscillatory systems. Some analytical conditions are derived for amplitude death and revival of oscillations in two coupled limit cycle oscillators and corresponding numerical simulations confirm the obtained theoretical results. We also report that the death state and revival of oscillations from quenched state are possible in the network of identical coupled oscillators. The proposed mechanism has also been examined using chaotic Lorenz oscillator.

  7. Asymmetry in signal propagation between the soma and dendrites plays a key role in determining dendritic excitability in motoneurons.

    Science.gov (United States)

    Kim, Hojeong; Jones, Kelvin E; Heckman, C J

    2014-01-01

    It is widely recognized that propagation of electrophysiological signals between the soma and dendrites of neurons differs depending on direction, i.e. it is asymmetric. How this asymmetry influences the activation of voltage-gated dendritic channels, and consequent neuronal behavior, remains unclear. Based on the analysis of asymmetry in several types of motoneurons, we extended our previous methodology for reducing a fully reconstructed motoneuron model to a two-compartment representation that preserved asymmetric signal propagation. The reduced models accurately replicated the dendritic excitability and the dynamics of the anatomical model involving a persistent inward current (PIC) dispersed over the dendrites. The relationship between asymmetric signal propagation and dendritic excitability was investigated using the reduced models while varying the asymmetry in signal propagation between the soma and the dendrite with PIC density constant. We found that increases in signal attenuation from soma to dendrites increased the activation threshold of a PIC (hypo-excitability), whereas increases in signal attenuation from dendrites to soma decreased the activation threshold of a PIC (hyper-excitability). These effects were so strong that reversing the asymmetry in the soma-to-dendrite vs. dendrite-to-soma attenuation, reversed the correlation between PIC threshold and distance of this current source from the soma. We propose the tight relation of the asymmetric signal propagation to the input resistance in the dendrites as a mechanism underlying the influence of the asymmetric signal propagation on the dendritic excitability. All these results emphasize the importance of maintaining the physiological asymmetry in dendritic signaling not only for normal function of the cells but also for biophysically realistic simulations of dendritic excitability.

  8. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium.

    Directory of Open Access Journals (Sweden)

    Frances Humby

    2009-01-01

    Full Text Available BACKGROUND: Follicular structures resembling germinal centres (GCs that are characterized by follicular dendritic cell (FDC networks have long been recognized in chronically inflamed tissues in autoimmune diseases, including the synovium of rheumatoid arthritis (RA. However, it is debated whether these ectopic structures promote autoimmunity and chronic inflammation driving the production of pathogenic autoantibodies. Anti-citrullinated protein/peptide antibodies (ACPA are highly specific markers of RA, predict a poor prognosis, and have been suggested to be pathogenic. Therefore, the main study objectives were to determine whether ectopic lymphoid structures in RA synovium: (i express activation-induced cytidine deaminase (AID, the enzyme required for somatic hypermutation and class-switch recombination (CSR of Ig genes; (ii support ongoing CSR and ACPA production; and (iii remain functional in a RA/severe combined immunodeficiency (SCID chimera model devoid of new immune cell influx into the synovium. METHODS AND FINDINGS: Using immunohistochemistry (IHC and quantitative Taqman real-time PCR (QT-PCR in synovial tissue from 55 patients with RA, we demonstrated that FDC+ structures invariably expressed AID with a distribution resembling secondary lymphoid organs. Further, AID+/CD21+ follicular structures were surrounded by ACPA+/CD138+ plasma cells, as demonstrated by immune reactivity to citrullinated fibrinogen. Moreover, we identified a novel subset of synovial AID+/CD20+ B cells outside GCs resembling interfollicular large B cells. In order to gain direct functional evidence that AID+ structures support CSR and in situ manufacturing of class-switched ACPA, 34 SCID mice were transplanted with RA synovium and humanely killed at 4 wk for harvesting of transplants and sera. Persistent expression of AID and Igamma-Cmu circular transcripts (identifying ongoing IgM-IgG class-switching was observed in synovial grafts expressing FDCs/CD21L

  9. Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes.

    Directory of Open Access Journals (Sweden)

    Robert C Cannon

    Full Text Available Neuronal activity is mediated through changes in the probability of stochastic transitions between open and closed states of ion channels. While differences in morphology define neuronal cell types and may underlie neurological disorders, very little is known about influences of stochastic ion channel gating in neurons with complex morphology. We introduce and validate new computational tools that enable efficient generation and simulation of models containing stochastic ion channels distributed across dendritic and axonal membranes. Comparison of five morphologically distinct neuronal cell types reveals that when all simulated neurons contain identical densities of stochastic ion channels, the amplitude of stochastic membrane potential fluctuations differs between cell types and depends on sub-cellular location. For typical neurons, the amplitude of membrane potential fluctuations depends on channel kinetics as well as open probability. Using a detailed model of a hippocampal CA1 pyramidal neuron, we show that when intrinsic ion channels gate stochastically, the probability of initiation of dendritic or somatic spikes by dendritic synaptic input varies continuously between zero and one, whereas when ion channels gate deterministically, the probability is either zero or one. At physiological firing rates, stochastic gating of dendritic ion channels almost completely accounts for probabilistic somatic and dendritic spikes generated by the fully stochastic model. These results suggest that the consequences of stochastic ion channel gating differ globally between neuronal cell-types and locally between neuronal compartments. Whereas dendritic neurons are often assumed to behave deterministically, our simulations suggest that a direct consequence of stochastic gating of intrinsic ion channels is that spike output may instead be a probabilistic function of patterns of synaptic input to dendrites.

  10. Inadequate description of educational interventions in ongoing randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Pino Cécile

    2012-05-01

    Full Text Available Abstract Background The registration of clinical trials has been promoted to prevent publication bias and increase research transparency. Despite general agreement about the minimum amount of information needed for trial registration, we lack clear guidance on descriptions of non-pharmacologic interventions in trial registries. We aimed to evaluate the quality of registry descriptions of non-pharmacologic interventions assessed in ongoing randomized controlled trials (RCTs of patient education. Methods On 6 May 2009, we searched for all ongoing RCTs registered in the 10 trial registries accessible through the World Health Organization International Clinical Trials Registry Platform. We included trials evaluating an educational intervention (that is, designed to teach or train patients about their own health and dedicated to participants, their family members or home caregivers. We used a standardized data extraction form to collect data related to the description of the experimental intervention, the centers, and the caregivers. Results We selected 268 of 642 potentially eligible studies and appraised a random sample of 150 records. All selected trials were registered in 4 registers, mainly ClinicalTrials.gov (61%. The median [interquartile range] target sample size was 205 [100 to 400] patients. The comparator was mainly usual care (47% or active treatment (47%. A minority of records (17%, 95% CI 11 to 23% reported an overall adequate description of the intervention (that is, description that reported the content, mode of delivery, number, frequency, duration of sessions and overall duration of the intervention. Further, for most reports (59%, important information about the content of the intervention was missing. The description of the mode of delivery of the intervention was reported for 52% of studies, the number of sessions for 74%, the frequency of sessions for 58%, the duration of each session for 45% and the overall duration for 63

  11. Improvement of human dendritic cell culture for immunotoxicological investigations.

    Science.gov (United States)

    Hymery, N; Sibiril, Y; Parent-Massin, D

    2006-07-01

    A toxic injury such as a decrease in the number of immature dendritic cells caused by a cytotoxic effect or a disturbance in their maturation process can be responsible for immunodepression. There is a need to improve in vitro assays on human dendritic cells used to detect and evaluate adverse effects of xenobiotics. Two aspects were explored in this work: cytotoxic effects of xenobiotics on immature dendritic cells, and the interference of xenobiotics with dendritic cell maturation. Dendritic cells of two different origins were tested. Dendritic cells obtained either from umbilical cord blood CD34(+) cells or, for the first time, from umbilical cord blood monocytes. The cytotoxicity assay on immature dendritic cells has been improved. For the study of the potential adverse effects of xenobiotics on the maturation process of dendritic cells, several parameters were selected such as expression of markers (CD86, CD83, HLA-DR), secretion of interleukins 10 and 12, and proliferation of autologous lymphocytes. The relevance and the efficiency of the protocol applied were tested using two mycotoxins, T-2 toxin and deoxynivalence, DON, which are known to be immunosuppressive, and one phycotoxin, domoic acid, which is known not to have any immunotoxic effect. Assays using umbilical cord monocyte dendritic cell cultures with the protocol defined in this work, which involves a cytotoxicity study followed by evaluation of several markers of adverse effects on the dendritic cell maturation process, revealed their usefulness for investigating xenobiotic immunotoxicity toward immune primary reactions.

  12. Remodeling of monoplanar Purkinje cell dendrites during cerebellar circuit formation.

    Directory of Open Access Journals (Sweden)

    Megumi Kaneko

    Full Text Available Dendrite arborization patterns are critical determinants of neuronal connectivity and integration. Planar and highly branched dendrites of the cerebellar Purkinje cell receive specific topographical projections from two major afferent pathways; a single climbing fiber axon from the inferior olive that extend along Purkinje dendrites, and parallel fiber axons of granule cells that contact vertically to the plane of dendrites. It has been believed that murine Purkinje cell dendrites extend in a single parasagittal plane in the molecular layer after the cell polarity is determined during the early postnatal development. By three-dimensional confocal analysis of growing Purkinje cells, we observed that mouse Purkinje cells underwent dynamic dendritic remodeling during circuit maturation in the third postnatal week. After dendrites were polarized and flattened in the early second postnatal week, dendritic arbors gradually expanded in multiple sagittal planes in the molecular layer by intensive growth and branching by the third postnatal week. Dendrites then became confined to a single plane in the fourth postnatal week. Multiplanar Purkinje cells in the third week were often associated by ectopic climbing fibers innervating nearby Purkinje cells in distinct sagittal planes. The mature monoplanar arborization was disrupted in mutant mice with abnormal Purkinje cell connectivity and motor discoordination. The dendrite remodeling was also impaired by pharmacological disruption of normal afferent activity during the second or third postnatal week. Our results suggest that the monoplanar arborization of Purkinje cells is coupled with functional development of the cerebellar circuitry.

  13. Voltage-controlled photonic oscillator.

    Science.gov (United States)

    Savchenkov, A A; Ilchenko, V S; Liang, W; Eliyahu, D; Matsko, A B; Seidel, D; Maleki, L

    2010-05-15

    We report the development and demonstration of an X-band voltage-controlled photonic oscillator based on a whispering gallery mode resonator made of an electro-optic crystalline material. The oscillator has good spectral purity and wide, agile, linear tunability. We have modified the existing theoretical model of the opto-electronic oscillator to describe the performance of our tunable oscillator and have found a good agreement between the theoretical predictions and the measurement results. We show that the device is promising for higher-frequency applications where high-performance tunable oscillators with wide tunability do not exist.

  14. Neural Oscillations Carry Speech Rhythm through to Comprehension.

    Science.gov (United States)

    Peelle, Jonathan E; Davis, Matthew H

    2012-01-01

    A key feature of speech is the quasi-regular rhythmic information contained in its slow amplitude modulations. In this article we review the information conveyed by speech rhythm, and the role of ongoing brain oscillations in listeners' processing of this content. Our starting point is the fact that speech is inherently temporal, and that rhythmic information conveyed by the amplitude envelope contains important markers for place and manner of articulation, segmental information, and speech rate. Behavioral studies demonstrate that amplitude envelope information is relied upon by listeners and plays a key role in speech intelligibility. Extending behavioral findings, data from neuroimaging - particularly electroencephalography (EEG) and magnetoencephalography (MEG) - point to phase locking by ongoing cortical oscillations to low-frequency information (~4-8 Hz) in the speech envelope. This phase modulation effectively encodes a prediction of when important events (such as stressed syllables) are likely to occur, and acts to increase sensitivity to these relevant acoustic cues. We suggest a framework through which such neural entrainment to speech rhythm can explain effects of speech rate on word and segment perception (i.e., that the perception of phonemes and words in connected speech is influenced by preceding speech rate). Neuroanatomically, acoustic amplitude modulations are processed largely bilaterally in auditory cortex, with intelligible speech resulting in differential recruitment of left-hemisphere regions. Notable among these is lateral anterior temporal cortex, which we propose functions in a domain-general fashion to support ongoing memory and integration of meaningful input. Together, the reviewed evidence suggests that low-frequency oscillations in the acoustic speech signal form the foundation of a rhythmic hierarchy supporting spoken language, mirrored by phase-locked oscillations in the human brain.

  15. Neural oscillations carry speech rhythm through to comprehension

    Directory of Open Access Journals (Sweden)

    Jonathan E Peelle

    2012-09-01

    Full Text Available A key feature of speech is the quasi-regular rhythmic information contained in its slow amplitude modulations. In this article we review the information conveyed by speech rhythm, and the role of ongoing brain oscillations in listeners’ processing of this content. Our starting point is the fact that speech is inherently temporal, and that rhythmic information conveyed by the amplitude envelope contains important markers for place and manner of articulation, segmental information, and speech rate. Behavioral studies demonstrate that amplitude envelope information is relied upon by listeners and plays a key role in speech intelligibility. Extending behavioral findings, data from neuroimaging—particularly electroencephalography (EEG and magnetoencephalography (MEG—point to phase locking by ongoing cortical oscillations to low-frequency information (~4–8 Hz in the speech envelope. This phase modulation effectively encodes a prediction of when important events (such as stressed syllables are likely to occur, and acts to increase sensitivity to these relevant acoustic cues. We suggest a framework through which such neural entrainment to speech rhythm can explain effects of speech rate on word and on segment perception (i.e., that the perception of phonemes and words in connected speech are influenced by preceding speech rate. Neuroanatomically, acoustic amplitude modulations are processed largely bilaterally in auditory cortex, with intelligible speech resulting in additional recruitment of left hemisphere regions. Notable among these is lateral anterior temporal cortex, which we propose functions in a domain-general fashion to support ongoing memory and integration of meaningful input. Together, the reviewed evidence suggests that low frequency oscillations in the acoustic speech signal form the foundation of a rhythmic hierarchy supporting spoken language, mirrored by phase-locked oscillations in the human brain.

  16. Degenerate seaweed to tilted dendrite transition and their growth dynamics in directional solidification of non-axially oriented crystals: a phase-field study

    Science.gov (United States)

    Xing, Hui; Dong, Xianglei; Wu, Hongjing; Hao, Guanhua; Wang, Jianyuan; Chen, Changle; Jin, Kexin

    2016-05-01

    We report the results of a phase-field study of degenerate seaweed to tilted dendrite transition and their growth dynamics during directional solidification of a binary alloy. Morphological selection maps in the planes of (G, Vp) and (ε4, Vp) show that lower pulling velocity, weaker anisotropic strength and higher thermal gradient can enhance the formation of the degenerate seaweed. The tip undercooling shows oscillations in seaweed growth, but it keeps at a constant value in dendritic growth. The M-S instability on the tips and the surface tension anisotropy of the solid-liquid interface are responsible for the formation of the degenerate seaweed. It is evidenced that the place where the interfacial instability occurs determines the morphological transition. The transient transition from degenerate seaweed to tilted dendrite shows that dendrites are dynamically preferred over seaweed. For the tilted dendritic arrays with a large tilted angle, primary spacing is investigated by comparing predicted results with the classical scaling power law, and the growth direction is found to be less sensitive to the pulling velocity and the primary spacing. Furthermore, the effect of the initial interface wavelength on the morphological transition is investigated to perform the history dependence of morphological selection.

  17. Stable local oscillator module.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2007-11-01

    This report gives a description of the development of a Stable Local Oscillator (StaLO) multi-chip module (MCM). It is a follow-on report to SAND2006-6414, Stable Local Oscillator Microcircuit. The StaLO accepts a 100MHz input signal and produces output signals at 1.2, 3.3, and 3.6 GHz. The circuit is built as a multi-chip module (MCM), since it makes use of integrated circuit technologies in silicon and lithium niobate as well as discrete passive components. This report describes the development of an MCM-based version of the complete StaLO, fabricated on an alumina thick film hybrid substrate.

  18. Entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, M.; Dell' Anno, F.; De Siena, S.; Illuminati, F. [Universita degli Studi di Salerno Via Ponte don Melillon, Dipt. di Matematica e Informatica, Fisciano SA (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno - Baronissi SA (Italy); Dell' Anno, F.; De Siena, S.; Illuminati, F. [CNR-INFM Coherentia - Napoli (Italy); Blasone, M. [ISI Foundation for Scientific Interchange, Torino (Italy)

    2009-03-15

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  19. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  20. Physics of Neutrino Oscillation

    CERN Document Server

    Mondal, Spandan

    2015-01-01

    The Standard Model of particle physics describes neutrinos as massless, chargeless elementary particles that come in three different flavours. However, recent experiments indicate that neutrinos not only have mass, but also have multiple mass eigenstates that are not identical to the flavour states, thereby indicating mixing. As an evidence of mixing, neutrinos have been observed to change from one flavour to another during their propagation, a phenomenon called neutrino oscillation. We have studied the reasons and derived the probabilities of neutrino flavour change, both in vacuum and in matter. We have also studied the parameters affecting this probability. We have discussed the special case of two-neutrino oscillations. Lastly, we have discussed some basic properties of neutrinos that are reflected in the previous derivations and highlighted a few relevant open problems. To begin with, we have also studied the relevant topics in introductory High Energy Physics and Quantum Mechanics to familiarize with th...

  1. Neutrino Masses and Oscillations

    CERN Document Server

    CERN. Geneva. Audiovisual Unit; Treille, Daniel

    2002-01-01

    This course will not cover its subject in the customary way. The emphasis will be on the simple theoretical concepts (helicity, handedness, chirality, Majorana masses) which are obscure in most of the literature, and on the quantum mechanics of oscillations, that ALL books get wrong. Which, hopefully, will not deter me from discussing some of the most interesting results from the labs and from the cosmos.

  2. Oscillations in the bispectrum

    CERN Document Server

    Meerburg, P Daniel

    2010-01-01

    There exist several models of inflation that produce primordial bispectra that contain a large number of oscillations. In this paper we discuss these models, and aim at finding a method of detecting such bispectra in the data. We explain how the recently proposed method of mode expansion of bispectra might be able to reconstruct these spectra from separable basis functions. Extracting these basis functions from the data might then lead to observational constraints on these models.

  3. Polychromatic optical Bloch oscillations.

    Science.gov (United States)

    Longhi, Stefano

    2009-07-15

    Bloch oscillations (BOs) of polychromatic beams in circularly curved optical waveguide arrays are smeared out owing to the dependence of the BO spatial period on the wavelength. Here it is shown that restoring of the self-imaging property of the array and approximate BOs over relatively broad spectral ranges can be achieved by the insertion of suitable lumped phase slips uniformly applied across the array.

  4. Ongoing Analysis of Jupiter's Equatorial Hotspots and Plumes from Cassini

    Science.gov (United States)

    Choi, D. S.; Showmwn, A. P.; Vasavada, A. R.; Simon-Miller, A. A.

    2012-01-01

    We present updated results from our ongoing analysis of Cassini observations of Jupiter's equatorial meteorology. For two months preceding the spacecraft's closest approach of the planet, the ISS instrument onboard Cassini regularly imaged the atmosphere of Jupiter. We created time-lapse movies from this period that show the complex activity and interactions of the equatorial atmosphere. During this period, hot spots exhibited significant variations in size and shape over timescales of days and weeks. Some of these changes appear to be a result of interactions with passing vortex systems in adjacent latitudes. Strong anticyclonic gyres to the southeast of the dark areas converge with flow from the west and appear to circulate into a hot spot at its southwestern corner.

  5. Review of EGFR TKIs in metastatic NSCLC, including ongoing trials

    Directory of Open Access Journals (Sweden)

    Barbara eMelosky

    2014-09-01

    Full Text Available Recent clinical trials have demonstrated the efficacy of epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKI in the treatment of patients with advanced metastatic non-small cell lung cancer. Most of these recent trials were conducted in patients with EGFR mutation-positive tumours. As our knowledge of the EGFR mutation and its resistant pathways develops, the complexity of the situation expands. This article briefly reviews the pivotal trials leading to approval of EGFR TKIs in the first-line setting for patients with EGFR mutation-positive non-small cell lung carcinomas. It discusses the historical use of EGFR TKIs after the first line setting in unselected patients and briefly describes ongoing trials.

  6. Ongoing Space Nuclear Systems Development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    S. Bragg-Sitton; J. Werner; S. Johnson; Michael G. Houts; Donald T. Palac; Lee S. Mason; David I. Poston; A. Lou Qualls

    2011-10-01

    Reliable, long-life power systems are required for ambitious space exploration missions. Nuclear power and propulsion options can enable a bold, new set of missions and introduce propulsion capabilities to achieve access to science destinations that are not possible with more conventional systems. Space nuclear power options can be divided into three main categories: radioisotope power for heating or low power applications; fission power systems for non-terrestrial surface application or for spacecraft power; and fission power systems for electric propulsion or direct thermal propulsion. Each of these areas has been investigated in the United States since the 1950s, achieving various stages of development. While some nuclear systems have achieved flight deployment, others continue to be researched today. This paper will provide a brief overview of historical space nuclear programs in the U.S. and will provide a summary of the ongoing space nuclear systems research, development, and deployment in the United States.

  7. Asymptomatic moyamoya disease: literature review and ongoing AMORE study.

    Science.gov (United States)

    Kuroda, Satoshi

    2015-01-01

    Recent development of a non-invasive magnetic resonance examination has increased the opportunity to identify asymptomatic patients with moyamoya disease who have experienced no cerebrovascular events. However, their clinical features, prognosis, and treatment strategy are still unclear because of small number of subjects and short follow-up periods. Therefore, we have designed Asymptomatic Moyamoya Registry (AMORE) study in Japan. The objectives of this nation-wide, multi-center prospective study are to clarify long-term prognosis of asymptomatic patients with moyamoya disease and to determine the risk factors that cause ischemic and hemorrhagic stroke in them. In this article, we review the published data on asymptomatic moyamoya disease and report the on-going multi-center prospective cohort study, AMORE study. We would like to emphasize the importance to determine the clinical features, prognosis, and treatment strategies of asymptomatic moyamoya disease in very near future.

  8. Nonlinear Oscillators in Space Physics

    Science.gov (United States)

    Lester,Daniel; Thronson, Harley

    2011-01-01

    We discuss dynamical systems that produce an oscillation without an external time dependent source. Numerical results are presented for nonlinear oscillators in the Em1h's atmosphere, foremost the quasi-biennial oscillation (QBOl. These fluid dynamical oscillators, like the solar dynamo, have in common that one of the variables in a governing equation is strongly nonlinear and that the nonlinearity, to first order, has particular form. of 3rd or odd power. It is shown that this form of nonlinearity can produce the fundamental li'equency of the internal oscillation. which has a period that is favored by the dynamical condition of the fluid. The fundamental frequency maintains the oscillation, with no energy input to the system at that particular frequency. Nonlinearities of 2nd or even power could not maintain the oscillation.

  9. Temperature sensitive oscillator

    Science.gov (United States)

    Kleinberg, L. L. (Inventor)

    1986-01-01

    An oscillator circuit for sensing and indicating temperature by changing oscillator frequency with temperature comprises a programmable operational amplifier which is operated on the roll-off portion of its gain versus frequency curve and has its output directly connected to the inverting input to place the amplifier in a follower configuration. Its output is also connected to the non-inverting input by a capacitor with a crystal or other tuned circuit also being connected to the non-inverting input. A resistor is connected to the program input of the amplifier to produce a given set current at a given temperature, the set current varying with temperature. As the set current changes, the gain-bandwidth of the amplifier changes and, in turn, the reflected capacitance across the crystal changes, thereby providing the desired change in oscillator frequency by pulling the crystal. There is no requirement that a crystal employed with this circuit display either a linear frequency change with temperature or a substantial frequency change with temperature.

  10. Planned and ongoing projects (pop) database: development and results.

    Science.gov (United States)

    Wild, Claudia; Erdös, Judit; Warmuth, Marisa; Hinterreiter, Gerda; Krämer, Peter; Chalon, Patrice

    2014-11-01

    The aim of this study was to present the development, structure and results of a database on planned and ongoing health technology assessment (HTA) projects (POP Database) in Europe. The POP Database (POP DB) was set up in an iterative process from a basic Excel sheet to a multifunctional electronic online database. The functionalities, such as the search terminology, the procedures to fill and update the database, the access rules to enter the database, as well as the maintenance roles, were defined in a multistep participatory feedback loop with EUnetHTA Partners. The POP Database has become an online database that hosts not only the titles and MeSH categorizations, but also some basic information on status and contact details about the listed projects of EUnetHTA Partners. Currently, it stores more than 1,200 planned, ongoing or recently published projects of forty-three EUnetHTA Partners from twenty-four countries. Because the POP Database aims to facilitate collaboration, it also provides a matching system to assist in identifying similar projects. Overall, more than 10 percent of the projects in the database are identical both in terms of pathology (indication or disease) and technology (drug, medical device, intervention). In addition, approximately 30 percent of the projects are similar, meaning that they have at least some overlap in content. Although the POP DB is successful concerning regular updates of most national HTA agencies within EUnetHTA, little is known about its actual effects on collaborations in Europe. Moreover, many non-nationally nominated HTA producing agencies neither have access to the POP DB nor can share their projects.

  11. Outcomes in registered, ongoing randomized controlled trials of patient education.

    Directory of Open Access Journals (Sweden)

    Cécile Pino

    Full Text Available BACKGROUND: With the increasing prevalence of chronic noncommunicable diseases, patient education is becoming important to strengthen disease prevention and control. We aimed to systematically determine the extent to which registered, ongoing randomized controlled trials (RCTs evaluated an educational intervention focus on patient-important outcomes (i.e., outcomes measuring patient health status and quality of life. METHODS: On May 6, 2009, we searched for all ongoing RCTs registered in the World Health Organization International Clinical Trials Registry platform. We used a standardized data extraction form to collect data and determined whether the outcomes assessed were 1 patient-important outcomes such as clinical events, functional status, pain, or quality of life or 2 surrogate outcomes, such as biological outcome, treatment adherence, or patient knowledge. PRINCIPAL FINDINGS: We selected 268 of the 642 potentially eligible studies and assessed a random sample of 150. Patient-important outcomes represented 54% (178 of 333 of all primary outcomes and 46% (286 of 623 of all secondary outcomes. Overall, 69% of trials (104 of 150 used at least one patient-important outcome as a primary outcome and 66% (99 of 150 as a secondary outcome. Finally, for 31% of trials (46 of 150, primary outcomes were only surrogate outcomes. The results varied by medical area. In neuropsychiatric disorders, patient important outcomes represented 84% (51 of 61 of primary outcomes, as compared with 54% (32 of 59 in malignant neoplasm and 18% (4 of 22 in diabetes mellitus trials. In addition, only 35% assessed the long-term impact of interventions (i.e., >6 months. CONCLUSIONS: There is a need to improve the relevance of outcomes and to assess the long term impact of educational interventions in RCTs.

  12. Coupled oscillator model of the dopaminergic neuron of the substantia nigra.

    Science.gov (United States)

    Wilson, C J; Callaway, J C

    2000-05-01

    Calcium imaging using fura-2 and whole cell recording revealed the effective location of the oscillator mechanism on dopaminergic neurons of the substantia nigra, pars compacta, in slices from rats aged 15-20 days. As previously reported, dopaminergic neurons fired in a slow rhythmic single spiking pattern. The underlying membrane potential oscillation survived blockade of sodium currents with TTX and was enhanced by blockade of voltage-sensitive potassium currents with TEA. Calcium levels increased during the subthreshold depolarizing phase of the membrane potential oscillation and peaked at the onset of the hyperpolarizing phase as expected if the pacemaker potential were due to a low-threshold calcium current and the hyperpolarizing phase to calcium-dependent potassium current. Calcium oscillations were synchronous in the dendrites and soma and were greater in the dendrites than in the soma. Average calcium levels in the dendrites overshot steady-state levels and decayed over the course of seconds after the oscillation was resumed after having been halted by hyperpolarizing currents. Average calcium levels in the soma increased slowly, taking many cycles to achieve steady state. Voltage clamp with calcium imaging revealed the voltage dependence of the somatic calcium current without the artifacts of incomplete spatial voltage control. This showed that the calcium current had little or no inactivation and was half-maximal at -40 to -30 mV. The time constant of calcium removal was measured by the return of calcium to resting levels and depended on diameter. The calcium sensitivity of the calcium-dependent potassium current was estimated by plotting the slow tail current against calcium concentration during the decay of calcium to resting levels at -60 mV. A single compartment model of the dopaminergic neuron consisting of a noninactivating low-threshold calcium current, a calcium-dependent potassium current, and a small leak current reproduced most features of the

  13. Macrophages, Dendritic Cells, and Regression of Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Jonathan E. Feig

    2012-07-01

    Full Text Available Atherosclerosis is the number one cause of death in the Western world. It results from the interaction between modified lipoproteins and monocyte-derived cells such as macrophages, dendritic cells, T cells, and other cellular elements of the arterial wall. This inflammatory process can ultimately lead to the development of complex lesions, or plaques, that protrude into the arterial lumen. Ultimately, plaque rupture and thrombosis can occur leading to the clinical complications of myocardial infarction or stroke. Although each of the cell types plays roles in the pathogenesis of atherosclerosis, in this review, the focus will be primarily on the monocyte derived cells- macrophages and dendritic cells. The roles of these cell types in atherogenesis will be highlighted. Finally, the mechanisms of atherosclerosis regression as it relates to these cells will be discussed.

  14. Dendritic nanocomposite for delivery of antibacterial agent

    Institute of Scientific and Technical Information of China (English)

    Pureti Madhu Kumar; PSrinivasa Babu; Shaik Rasheed; Ramadoss Karthikeyan

    2013-01-01

    Objective: To develop and explore the use of PEGylated poly (propylene imine) dendritic architecture for the delivery of an anti bacterial bioactive, Trimethoprim. Methods: For this study, PEGylated poly(propylene imine) dendritic architecture was synthesized and loaded with Trimethoprim and targeted to the resistant producing strains of both gram positive and gram negative. The antibacterial activity was carried out by agar well-diffusion method to compare zone of inhibition with standard drug and plain PPI dendrimer. Results: The study showed that the Trimethoprim loaded dendrimer has significant antibacterial activity than the plain PPI dendrimer, but standard drug was not shown zone of inhibition upon both microorganisms butKlebsiella pneumoniae (K. pneumoniae) the pure drug showed activity. Conclusions: In this study antibacterial activity of synthesized system is also relatively safer and holds potential to deliver any other antibacterial agent to the resistant producing strains.

  15. Sensitivity of Dendritic Cells to Microenvironment Signals

    Science.gov (United States)

    Motta, Juliana Maria; Rumjanek, Vivian Mary

    2016-01-01

    Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies. PMID:27088097

  16. Sensitivity of Dendritic Cells to Microenvironment Signals

    Directory of Open Access Journals (Sweden)

    Juliana Maria Motta

    2016-01-01

    Full Text Available Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies.

  17. Dendritic Cells for SYN Scan Detection

    CERN Document Server

    Greensmith, Julie

    2010-01-01

    Artificial immune systems have previously been applied to the problem of intrusion detection. The aim of this research is to develop an intrusion detection system based on the function of Dendritic Cells (DCs). DCs are antigen presenting cells and key to activation of the human immune system, behaviour which has been abstracted to form the Dendritic Cell Algorithm (DCA). In algorithmic terms, individual DCs perform multi-sensor data fusion, asynchronously correlating the the fused data signals with a secondary data stream. Aggregate output of a population of cells, is analysed and forms the basis of an anomaly detection system. In this paper the DCA is applied to the detection of outgoing port scans using TCP SYN packets. Results show that detection can be achieved with the DCA, yet some false positives can be encountered when simultaneously scanning and using other network services. Suggestions are made for using adaptive signals to alleviate this uncovered problem.

  18. Divergent Effects of Dendritic Cells on Pancreatitis

    Science.gov (United States)

    2015-09-01

    cells, Gr1+ inflammatory monocytes and neutrophils, or TNF production were induced to develop chronic pancreatitis in the context of DC overexpansion...Z. Yao, W. Cao, and Y.J. Liu. 2005. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp...Public reporting burden for this collection of information is estimated to average 1 hour per response , including the time for reviewing instructions

  19. Signaling in dendritic spines and spine microdomains

    OpenAIRE

    2012-01-01

    The specialized morphology of dendritic spines creates an isolated compartment that allows for localized biochemical signaling. Recent studies have revealed complexity in the function of the spine head as a signaling domain and indicate that (1) the spine is functionally subdivided into multiple independent microdomains and (2) not all biochemical signals are equally compartmentalized within the spine. Here we review these findings as well as the developments in fluorescence microscopy that a...

  20. Dendrite fragmentation by catastrophic elastic remelting

    OpenAIRE

    Ananiev, S.; Nikrityuk, P.; Eckert, K.

    2008-01-01

    The paper proposes a new fragmentation mechanism of dendrite arms. The theoretical basis of this mechanism is a shift in the thermodynamical equilibrium at the solid-liquid interface due to the presence of elastic energy. This effect is modelled by the generalized Gibbs-Thomson condition [1], where each term is calculated analytically using a simple Bernoulli-Euler beam model. The resulting nonlinear system of ordinary differential equations is integrated in time using a fully implicit scheme...

  1. Role of Dendritic Cells in Immune Dysfunction

    Science.gov (United States)

    Savary, Cherylyn A.

    1997-01-01

    Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.

  2. Acquisition of a Nd-Yag Pumped MOPO (Master Oscillator/Power Oscillator) Optical Parametric Oscillator

    Science.gov (United States)

    1997-09-30

    SEP 1997 2. REPORT TYPE 3. DATES COVERED 00-00-1997 to 00-00-1997 4. TITLE AND SUBTITLE Acquisition of a Nd-Yag Pumped MOPO (Master Oscillator...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 ACQUISITION OF A ND-YAG PUMPED MOPO (MASTER OSCILLATOR / POWER OSCILLATOR) OPTICAL...instrument is configured in a master oscillator/power oscillator configuration, hence the designation MOPO . The MOPO will be used in conjunction

  3. The Isothermal Dendritic Growth Experiment Archive

    Science.gov (United States)

    Koss, Matthew

    2009-03-01

    The growth of dendrites is governed by the interplay between two simple and familiar processes---the irreversible diffusion of energy, and the reversible work done in the formation of new surface area. To advance our understanding of these processes, NASA sponsored a project that flew on the Space Shuttle Columbia is 1994, 1996, and 1997 to record and analyze benchmark data in an apparent-microgravity ``laboratory.'' In this laboratory, energy transfer by gravity driven convection was essentially eliminated and one could test independently, for the first time, both components of dendritic growth theory. The analysis of this data shows that although the diffusion of energy can be properly accounted for, the results from interfacial physics appear to be in disagreement and alternate models should receive increased attention. Unfortunately, currently and for the foreseeable future, there is no access or financial support to develop and conduct additional experiments of this type. However, the benchmark data of 35mm photonegatives, video, and all supporting instrument data are now available at the IDGE Archive at the College of the Holy Cross. This data may still have considerable relevance to researchers working specifically with dendritic growth, and more generally those working in the synthesis, growth & processing of materials, multiscale computational modeling, pattern formation, and systems far from equilibrium.

  4. Plasmacytoid dendritic cell role in cutaneous malignancies.

    Science.gov (United States)

    Saadeh, Dana; Kurban, Mazen; Abbas, Ossama

    2016-07-01

    Plasmacytoid dendritic cells (pDCs) correspond to a specialized dendritic cell population that exhibit plasma cell morphology, express CD4, CD123, HLA-DR, blood-derived dendritic cell antigen-2 (BDCA-2), and Toll-like receptor (TLR)7 and TLR9 within endosomal compartments. Through their production of type I interferons (IFNs) and other pro-inflammatory cytokines, pDCs provide anti-viral resistance and link the innate and adaptive immunity by controlling the function of myeloid DCs, lymphocytes, and natural killer (NK) cells. While lacking from normal skin, pDCs are usually recruited to the skin in several cutaneous pathologies where they appear to be involved in the pathogenesis of several infectious, inflammatory/autoimmune, and neoplastic entities. Among the latter group, pDCs have the potential to induce anti-tumour immunity; however, the complex interaction of pDCs with tumor cells and their micro-environment appears to contribute to immunologic tolerance. In this review, we aim at highlighting the role played by pDCs in cutaneous malignancies with special emphasis on the underlying mechanisms.

  5. Probing synaptic function in dendrites with calcium imaging.

    Science.gov (United States)

    Siegel, Friederike; Lohmann, Christian

    2013-04-01

    Calcium imaging has become a widely used technique to probe neuronal activity on the cellular and subcellular levels. In contrast to standard electrophysiological methods, calcium imaging resolves sub- and suprathreshold activation patterns in structures as small as fine dendritic branches and spines. This review highlights recent findings gained on the subcellular level using calcium imaging, with special emphasis on synaptic transmission and plasticity in individual spines. Since imaging allows monitoring activity across populations of synapses, it has recently been adopted to investigate how dendrites integrate information from many synapses. Future experiments, ideally carried out in vivo, will reveal how the dendritic tree integrates and computes afferent signals. For example, it is now possible to directly test the concept that dendritic inputs are clustered and that single dendrites or dendritic stretches act as independent computational units.

  6. Inducible expression of endomorphins in murine dendritic cells.

    Science.gov (United States)

    Yang, Xiaohuai; Xia, Hui; Chen, Yong; Liu, Xiaofen; Zhou, Cheng; Gao, Qin; Li, Zhenghong

    2012-12-15

    Bone marrow precursor cells were extracted from C57BL/6J mice aged 7-8 weeks, and dendritic cells were purified using anti-CD11c (a specific marker for dendritic cells) antibody-coated magnetic beads. Immunofluorescence staining revealed that the expression levels of endomorphin-1 and endomorphin-2 were upregulated in dendritic cells activated by lipopolysaccharide. An enzyme immunoassay showed that lipopolysaccharide and other Toll-like receptor ligands promoted the secretion of endomorphin-1 and endomorphin-2 from activated dendritic cells. [(3)H]-thymidine incorporation demonstrated that endomorphin-1 and endomorphin-2 both inhibited the proliferation of T lymphocyte induced by activated dendritic cells. Furthermore, this immunosuppressive effect was blocked by CTOP, a specific antagonist of µ-opioid receptors. Our experimental findings indicate that activated dendritic cells can induce the expression and secretion of endomorphins, and that endomorphins suppress T lymphocyte proliferation through activation of µ-opioid receptors.

  7. Dendritic spine actin dynamics in neuronal maturation and synaptic plasticity.

    Science.gov (United States)

    Hlushchenko, Iryna; Koskinen, Mikko; Hotulainen, Pirta

    2016-09-01

    The majority of the postsynaptic terminals of excitatory synapses in the central nervous system exist on small bulbous structures on dendrites known as dendritic spines. The actin cytoskeleton is a structural element underlying the proper development and morphology of dendritic spines. Synaptic activity patterns rapidly change actin dynamics, leading to morphological changes in dendritic spines. In this mini-review, we will discuss recent findings on neuronal maturation and synaptic plasticity-induced changes in the dendritic spine actin cytoskeleton. We propose that actin dynamics in dendritic spines decrease through actin filament crosslinking during neuronal maturation. In long-term potentiation, we evaluate the model of fast breakdown of actin filaments through severing and rebuilding through polymerization and later stabilization through crosslinking. We will discuss the role of Ca(2+) in long-term depression, and suggest that actin filaments are dissolved through actin filament severing. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Numerical Modeling of Dendrite Growth in Al Alloys

    Institute of Scientific and Technical Information of China (English)

    许庆彦; 柳百成

    2004-01-01

    Dendritic grains are the most often observed microstructure in metals and alloys. In the past decade, more and more attention has been paid to the modeling and simulation of dendritic microstructures. This paper describes a modified diffusion-limited aggregation model to simulate the complex shape of the dendrite grains during metal solidification. The fractal model was used to simulate equiaxed dendrite growth. The fractal dimensions of simulated Al alloy structures range from 1.63-1.88 which compares well with the experimentally-measured fractal dimension of 1.85; therefore, the model accurately predicts not only the dendritic structure morphology, but also the fractal dimension of the dendrite structure formed during solidification.

  9. Inducible expression of endomorphins in murine dendritic cells

    Institute of Scientific and Technical Information of China (English)

    Xiaohuai Yang; Hui Xia; Yong Chen; Xiaofen Liu; Cheng Zhou; Qin Gao; Zhenghong Li

    2012-01-01

    Bone marrow precursor cells were extracted from C57BL/6J mice aged 7–8 weeks, and dendritic cells were purified using anti-CD11c (a specific marker for dendritic cells) antibody-coated magnetic beads. Immunofluorescence staining revealed that the expression levels of endomorphin-1 and endomorphin-2 were upregulated in dendritic cells activated by lipopolysaccharide. An enzyme immunoassay showed that lipopolysaccharide and other Toll-like receptor ligands promoted the secretion of endomorphin-1 and endomorphin-2 from activated dendritic cells. [3H]-thymidine incorporation demonstrated that endomorphin-1 and endomorphin-2 both inhibited the proliferation of T lymphocyte induced by activated dendritic cells. Furthermore, this immunosuppressive effect was blocked by CTOP, a specific antagonist of μ-opioid receptors. Our experimental findings indicate that activated dendritic cells can induce the expression and secretion of endomorphins, and that endomorphins suppress T lymphocyte proliferation through activation of μ-opioid receptors.

  10. Dendritic spine detection using curvilinear structure detector and LDA classifier.

    Science.gov (United States)

    Zhang, Yong; Zhou, Xiaobo; Witt, Rochelle M; Sabatini, Bernardo L; Adjeroh, Donald; Wong, Stephen T C

    2007-06-01

    Dendritic spines are small, bulbous cellular compartments that carry synapses. Biologists have been studying the biochemical pathways by examining the morphological and statistical changes of the dendritic spines at the intracellular level. In this paper a novel approach is presented for automated detection of dendritic spines in neuron images. The dendritic spines are recognized as small objects of variable shape attached or detached to multiple dendritic backbones in the 2D projection of the image stack along the optical direction. We extend the curvilinear structure detector to extract the boundaries as well as the centerlines for the dendritic backbones and spines. We further build a classifier using Linear Discriminate Analysis (LDA) to classify the attached spines into valid and invalid types to improve the accuracy of the spine detection. We evaluate the proposed approach by comparing with the manual results in terms of backbone length, spine number, spine length, and spine density.

  11. Inducible expression of endomorphins in murine dendritic cells★

    OpenAIRE

    Yang, Xiaohuai; Xia, Hui; Chen, Yong; Liu, Xiaofen; Zhou, Cheng; Gao, Qin; Li, Zhenghong

    2012-01-01

    Bone marrow precursor cells were extracted from C57BL/6J mice aged 7–8 weeks, and dendritic cells were purified using anti-CD11c (a specific marker for dendritic cells) antibody-coated magnetic beads. Immunofluorescence staining revealed that the expression levels of endomorphin-1 and endomorphin-2 were upregulated in dendritic cells activated by lipopolysaccharide. An enzyme immunoassay showed that lipopolysaccharide and other Toll-like receptor ligands promoted the secretion of endomorphin-...

  12. Assessment of scaling factor in modified dendrite growth model

    Institute of Scientific and Technical Information of China (English)

    张瑞丰; 沈宁福; 曹文博

    2002-01-01

    A model for dendrite growth during rapid solidification was established on the basis of BCT model and marginal stability criterion through modified Peclet numbers. Taking into account the interaction of diffusion fields, including solute diffusion field and thermal diffusion field around the dendrite tip, the model obtain a satisfactory results to predict the dendrite velocity and the tip radius, which agrees well with the experimental data from references in Cu-Ni alloy.

  13. Continuously on-going hindcast simulations for impact applications

    Science.gov (United States)

    Anders, Ivonne; Geyer, Beate

    2016-04-01

    Observations for e.g. temperature, precipitation, radiation, or wind are often used as meteorological forcing for different impact models, like e.g. crop models, urban models, economic models and energy system models. To assess a climate signal, the time period covered by the observation is often too short, they have gaps in between, and are inhomogeneous over time, due to changes in the measurements itself or in the near surrounding. Thus output from global and regional climate models can close the gap and provide homogeneous and physically consistent time series of meteorological parameters. CORDEX evaluation runs performed for the IPCC-AR5 provide a good base for the regional scale. However, with respect to climate services, continuously on-going hindcast simulations are required for regularly updated applications. In this study two projects are presented where hindcast-simulations optimized for a region of interest are performed continuously. The hindcast simulation performed by HZG covering Europe includes the EURO-CORDEX domain with a wider extend to the north to cover the ice edge. The simulation under consideration of the coastDat-experiences is available for the period of 1979 - 2015, prolonged ongoing and fulfills the customer's needs with respect of output variables, levels, intervals and statistical measures. CoastDat - customers are dealing e.g. with naval architecture, renewable energies, offshore wind farming, shipping emissions, coastal flood risk and others. The evaluation of the hindcast is done for Europe by using the EVAL-tool of the CCLM community and by comparison with HYRAS - data for Germany and neighbouring countries. The Climate Research group at the national Austrian weather service, ZAMG, is focusing on high mountain regions and, especially on the Alps. The hindcast-simulation is forced by ERA-interim and optimized for the Alpine Region. One of the main tasks is to capture strong precipitation events which often occur during summer when

  14. CTAB-Influenced Electrochemical Dissolution of Silver Dendrites.

    Science.gov (United States)

    O'Regan, Colm; Zhu, Xi; Zhong, Jun; Anand, Utkarsh; Lu, Jingyu; Su, Haibin; Mirsaidov, Utkur

    2016-04-19

    Dendrite formation on the electrodes of a rechargeable battery during the charge-discharge cycle limits its capacity and application due to short-circuits and potential ignition. However, understanding of the underlying dendrite growth and dissolution mechanisms is limited. Here, the electrochemical growth and dissolution of silver dendrites on platinum electrodes immersed in an aqueous silver nitrate (AgNO3) electrolyte solution was investigated using in situ liquid-cell transmission electron microscopy (TEM). The dissolution of Ag dendrites in an AgNO3 solution with added cetyltrimethylammonium bromide (CTAB) surfactant was compared to the dissolution of Ag dendrites in a pure aqueous AgNO3 solution. Significantly, when CTAB was added, dendrite dissolution proceeded in a step-by-step manner, resulting in nanoparticle formation and transient microgrowth stages due to Ostwald ripening. This resulted in complete dissolution of dendrites and "cleaning" of the cell of any silver metal. This is critical for practical battery applications because "dead" lithium is known to cause short circuits and high-discharge rates. In contrast to this, in a pure aqueous AgNO3 solution, without surfactant, dendrites dissolved incompletely back into solution, leaving behind minute traces of disconnected silver particles. Finally, a mechanism for the CTAB-influenced dissolution of silver dendrites was proposed based on electrical field dependent binding energy of CTA(+) to silver.

  15. In vitro effects of trichothecenes on human dendritic cells.

    Science.gov (United States)

    Hymery, N; Sibiril, Y; Parent-Massin, D

    2006-09-01

    The aim of this work was to study the in vitro effects of trichothecenes on human dendritic cells. Trichothecenes are mycotoxins produced by fungi such as Fusarium, Myrothecium, and Stachybotrys. Two aspects have been explored in this work: the cytotoxicity of trichothecenes on immature dendritic cells to determine IC 50 (inhibition concentration), and the effects of trichothecenes on dendritic cell maturation process. Two mycotoxins (T-2 and DON) known to be immunotoxic have been tested on a model of monocyte-derived dendritic cells culture. Cytotoxic effects of T-2 toxin and DON on immature dendritic cells showed that DON is less potent than T-2 toxin. The exposure to trichothecenes during dendritic cell maturation upon addition of LPS or TNF-alpha markedly inhibited the up-regulation of maturation markers such as CD-86, HLA-DR and CCR7. Features of LPS or TNF-alpha -mediated maturation of dendritic cells, such as IL-10 and IL-12 secretions and endocytosis, were also impaired in response to trichothecenes treatment. These results suggest trichothecenes have adverse effects on dendritic cells and dendritic cell maturation process.

  16. Mapping homeostatic synaptic plasticity using cable properties of dendrites.

    Science.gov (United States)

    Queenan, B N; Lee, K J; Tan, H; Huganir, R L; Vicini, S; Pak, D T S

    2016-02-19

    When chronically silenced, cortical and hippocampal neurons homeostatically upregulate excitatory synaptic function. However, the subcellular position of such changes on the dendritic tree is not clear. We exploited the cable-filtering properties of dendrites to derive a parameter, the dendritic filtering index (DFI), to map the spatial distribution of synaptic currents. Our analysis indicates that young rat cortical neurons globally scale AMPA receptor-mediated currents, while mature hippocampal neurons do not, revealing distinct homeostatic strategies between brain regions and developmental stages. The DFI presents a useful tool for mapping the dendritic origin of synaptic currents and the location of synaptic plasticity changes.

  17. Dendritic planarity of Purkinje cells is independent of Reelin signaling.

    Science.gov (United States)

    Kim, Jinkyung; Park, Tae-Ju; Kwon, Namseop; Lee, Dongmyeong; Kim, Seunghwan; Kohmura, Yoshiki; Ishikawa, Tetsuya; Kim, Kyong-Tai; Curran, Tom; Je, Jung Ho

    2015-07-01

    The dendritic planarity of Purkinje cells is critical for cerebellar circuit formation. In the absence of Crk and CrkL, the Reelin pathway does not function resulting in partial Purkinje cell migration and defective dendritogenesis. However, the relationships among Purkinje cell migration, dendritic development and Reelin signaling have not been clearly delineated. Here, we use synchrotron X-ray microscopy to obtain 3-D images of Golgi-stained Purkinje cell dendrites. Purkinje cells that failed to migrate completely exhibited conical dendrites with abnormal 3-D arborization and reduced dendritic complexity. Furthermore, their spines were fewer in number with a distorted morphology. In contrast, Purkinje cells that migrated successfully displayed planar dendritic and spine morphologies similar to normal cells, despite reduced dendritic complexity. These results indicate that, during cerebellar formation, Purkinje cells migrate into an environment that supports development of dendritic planarity and spine formation. While Reelin signaling is important for the migration process, it does not make a direct major contribution to dendrite formation.

  18. Kravchuk oscillator revisited

    Science.gov (United States)

    Atakishiyeva, Mesuma K.; Atakishiyev, Natig M.; Wolf, Kurt Bernardo

    2014-05-01

    The study of irreducible representations of Lie algebras and groups has traditionally considered their action on functions of a continuous manifold (e.g. the 'rotation' Lie algebra so(3) on functions on the sphere). Here we argue that functions of a discrete variable -Kravchuk functions- are on equal footing for that study in the case of so(3). They lead to a discrete quantum model of the harmonic oscillator, and offer a corresponding set of special function relations. The technique is applicable to other special function families of a discrete variable, which stem from low-dimensional Lie algebras and are stationary solutions for the corresponding discrete quantum models.

  19. Modeling microtubule oscillations

    DEFF Research Database (Denmark)

    Jobs, E.; Wolf, D.E.; Flyvbjerg, H.

    1997-01-01

    Synchronization of molecular reactions in a macroscopic volume may cause the volume's physical properties to change dynamically and thus reveal much about the reactions. As an example, experimental time series for so-called microtubule oscillations are analyzed in terms of a minimal model...... for this complex polymerization-depolymerization cycle. The model reproduces well the qualitatively different time series that result from different experimental conditions, and illuminates the role and importance of individual processes in the cycle. Simple experiments are suggested that can further test...... and define the model and the polymer's reaction cycle....

  20. On Oscillating Dark Energy

    CERN Document Server

    Linder, E V

    2006-01-01

    Distance-redshift data can impose strong constraints on dark energy models even when the equation of state is oscillatory. Despite the double integral dependence of the distance on the equation of state, precision measurement of the distance-redshift relation for z=0-2 is more incisive than the linear growth factor, CMB last scattering surface distance, and the age of the universe in distinguishing oscillatory behavior from an average behavior. While oscillating models might help solve the coincidence problem (since acceleration occurs periodically), next generation observations will strongly constrain such possibilities.

  1. On particle oscillations

    CERN Document Server

    Góźdź, Marek

    2013-01-01

    It has been firmly established, that neutrinos change their flavour during propagation. This feature is attributed to the fact, that each flavour eigenstate is a superposition of three mass eigenstates, which propagate with different frequencies. This picture, although widely accepted, is wrong in the simplest approach and requires quite sophisticated treatment based on the wave-packet description within quantum field theory. In this communication we present a novel, much simpler explanation and show, that oscillations among massive particles can be obtained in a natural way. We use the framework of quantum mechanics with time being a physical observable, not just a parameter.

  2. Geoengineering:Basic science and ongoing research efforts in China

    Institute of Scientific and Technical Information of China (English)

    CAO Long; GAO Chao-Chao; ZHAO Li-Yun

    2015-01-01

    Geoengineering (also called climate engineering), which refers to large-scale intervention in the Earth's climate system to counteract greenhouse gas-induced warming, has been one of the most rapidly growing areas of climate research as a potential option for tackling global warming. Here, we provide an overview of the scientific background and research progress of proposed geoengineering schemes. Geo-engineering can be broadly divided into two categories:solar geoengineering (also called solar radiation management, or SRM), which aims to reflect more sunlight to space, and carbon dioxide removal (CDR), which aims to reduce the CO2 content in the atmosphere. First, we review different proposed geoengineering methods involved in the solar radiation management and carbon dioxide removal schemes. Then, we discuss the fundamental science underlying the climate response to the carbon dioxide removal and solar radiation management schemes. We focus on two basic issues:1) climate response to the reduction in solar irradiance and 2) climate response to the reduction in atmospheric CO2. Next, we introduce an ongoing geoengineering research project in China that is supported by National Key Basic Research Program. This research project, being the first coordinated geoengineering research program in China, will systematically investigate the physical mechanisms, climate impacts, and risk and governance of a few targeted geoengineering schemes. It is expected that this research program will help us gain a deep under-standing of the physical science underlying geoengineering schemes and the impacts of geoengineering on global climate, in particular, on the Asia monsoon region.

  3. Milieu matters: Evidence that ongoing lifestyle activities influence health behaviors.

    Science.gov (United States)

    Lowe, Rob; Norman, Paul; Sheeran, Paschal

    2017-01-01

    Health behaviors occur within a milieu of lifestyle activities that could conflict with health actions. We examined whether cognitions about, and performance of, other lifestyle activities augment the prediction of health behaviors, and whether these lifestyle factors are especially influential among individuals with low health behavior engagement. Participants (N = 211) completed measures of past behavior and cognitions relating to five health behaviors (e.g., smoking, getting drunk) and 23 lifestyle activities (e.g., reading, socializing), as well as personality variables. All behaviors were measured again at two weeks. Data were analyzed using neural network and cluster analyses. The neural network accurately predicted health behaviors at follow-up (R2 = .71). As hypothesized, lifestyle cognitions and activities independently predicted health behaviors over and above behavior-specific cognitions and previous behavior. Additionally, lifestyle activities and poor self-regulatory capability were more influential among people exhibiting unhealthy behaviors. Considering ongoing lifestyle activities can enhance prediction and understanding of health behaviors and offer new targets for health behavior interventions.

  4. Milieu matters: Evidence that ongoing lifestyle activities influence health behaviors

    Science.gov (United States)

    Lowe, Rob; Norman, Paul

    2017-01-01

    Health behaviors occur within a milieu of lifestyle activities that could conflict with health actions. We examined whether cognitions about, and performance of, other lifestyle activities augment the prediction of health behaviors, and whether these lifestyle factors are especially influential among individuals with low health behavior engagement. Participants (N = 211) completed measures of past behavior and cognitions relating to five health behaviors (e.g., smoking, getting drunk) and 23 lifestyle activities (e.g., reading, socializing), as well as personality variables. All behaviors were measured again at two weeks. Data were analyzed using neural network and cluster analyses. The neural network accurately predicted health behaviors at follow-up (R2 = .71). As hypothesized, lifestyle cognitions and activities independently predicted health behaviors over and above behavior-specific cognitions and previous behavior. Additionally, lifestyle activities and poor self-regulatory capability were more influential among people exhibiting unhealthy behaviors. Considering ongoing lifestyle activities can enhance prediction and understanding of health behaviors and offer new targets for health behavior interventions. PMID:28662120

  5. Sandia's mentoring program : an ongoing success.

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, Soila

    2003-12-01

    This report summarizes the Mentoring Program at Sandia National Laboratories (SNL), which has been an on-going success since its inception in 1995. The Mentoring Program provides a mechanism to develop a workforce able to respond to changing requirements and complex customer needs. The program objectives are to enhance employee contributions through increased knowledge of SNL culture, strategies, and programmatic direction. Mentoring is a proven mechanism for attracting new employees, retaining employees, and developing leadership. It helps to prevent the loss of corporate knowledge from attrition and retirement, and it increases the rate and level of contributions of new managers and employees, also spurring cross-organizational teaming. The Mentoring Program is structured as a one-year partnership between an experienced staff member or leader and a less experienced one. Mentors and mentees are paired according to mutual objectives and interests. Support is provided to the matched pairs from their management as well as division program coordinators in both New Mexico and California locations. In addition, bi-monthly large-group training sessions are held.

  6. New insights in the ongoing surge of the Austfonna icecap

    Science.gov (United States)

    Schellenberger, T.; Dunse, T.; Kääb, A.; Hagen, J. O.; Schuler, T.; Reijmer, C.

    2014-12-01

    Basin-3, a major drainage basin of the Austfonna icecap in NE-Svalbard switched to full surge mode in autumn 2012 after a multiannual, stepwise acceleration of its northern branch. A time series of velocity maps from repeat TerraSAR-X acquisitions revealed a maximum speed at the terminus of >18 m d-1 around the turn of the year 2012. The frontal ablation of Basin-3 was estimated to 4.2±1.6 Gt a-1 between April 2012 and May 2013, tripling the total dynamic mass loss from the largest icecap in the Eurasian arctic. Today, TerraSAR-X, Radarsat-2 and GPS data show that the surge is still ongoing. While the speed at the calving front dropped to 10 m d-1 until July 2014, areas further inland continued to accelerate after the climax, and 10 m d-1 were also measured ~20 km inland in summer 2014. This development will be further investigated by exploiting a time series of velocity maps based on Radarsat-2 Fine Beam data starting from July 2014, which will, other than the TerraSAR-X data, cover almost the entire fast flowing part of the basin. By combining both datasets we will extend the estimation of the frontal ablation and related sea-level rise contribution of the Basin-3 surge.

  7. Biomarkers for the prediction of acute ongoing arterial plaque rupture

    Directory of Open Access Journals (Sweden)

    Guo YL

    2013-07-01

    Full Text Available Yuan-Lin Guo, Jian-Jun Li Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China Abstract: Acute coronary syndrome (ACS is the main cause of mortality for coronary artery disease (CAD. Accordingly, earlier detection and diagnosis might be a key point for reducing the mortality in patients with ACS. One promising strategy is biomarker measurement in patients with ACS. Biomarkers are generally considered to be plasma measurements of molecules, proteins, or enzymes that provide independent diagnostic and prognostic values that can reflect underlying disease state and condition, especially repeated measurements. Nowadays, the most widely used biomarkers to identify or predict ACS are high sensitivity C-reactive protein (hs-CRP and high sensitivity troponin T/I (hs-TnT/I. The aim of the present review was principally to summarize recent evidence regarding some new biomarkers by which we could directly predict acute ongoing arterial plaque rupture, which may help to identify at-risk patients earlier than hs-CRP or hs-TnT/I. Keywords: matrix metalloproteinase-9, lipoprotein associated phospholipase A2, myeloperoxidase, soluble lectin-like oxidized low-density lipoprotein receptor-1, pregnancy-associated plasma protein A, placental growth factor, acute coronary syndrome

  8. Geoengineering: Basic science and ongoing research efforts in China

    Directory of Open Access Journals (Sweden)

    Long Cao

    2015-09-01

    Full Text Available Geoengineering (also called climate engineering, which refers to large-scale intervention in the Earth's climate system to counteract greenhouse gas-induced warming, has been one of the most rapidly growing areas of climate research as a potential option for tackling global warming. Here, we provide an overview of the scientific background and research progress of proposed geoengineering schemes. Geoengineering can be broadly divided into two categories: solar geoengineering (also called solar radiation management, or SRM, which aims to reflect more sunlight to space, and carbon dioxide removal (CDR, which aims to reduce the CO2 content in the atmosphere. First, we review different proposed geoengineering methods involved in the solar radiation management and carbon dioxide removal schemes. Then, we discuss the fundamental science underlying the climate response to the carbon dioxide removal and solar radiation management schemes. We focus on two basic issues: 1 climate response to the reduction in solar irradiance and 2 climate response to the reduction in atmospheric CO2. Next, we introduce an ongoing geoengineering research project in China that is supported by National Key Basic Research Program. This research project, being the first coordinated geoengineering research program in China, will systematically investigate the physical mechanisms, climate impacts, and risk and governance of a few targeted geoengineering schemes. It is expected that this research program will help us gain a deep understanding of the physical science underlying geoengineering schemes and the impacts of geoengineering on global climate, in particular, on the Asia monsoon region.

  9. Hydrothermal conditions of South Eastern Siberia under the ongoing warming

    Science.gov (United States)

    Voropay, N. N.; Maksyutova, E. V.; Riazanova, A. A.

    2016-11-01

    A great increase in air temperature has been observed since 1976. Siberia is a region with most severe ongoing climate change. To monitor the extreme weather events is important. To evaluate moisture conditions we used the D.A. Ped index (Si). Monthly air temperature and precipitation data from 19 weather stations of South Eastern Siberia (50-60° N 90-120° E) were used for the index calculation during the vegetation period. During 1976-2010 the number of droughts in the study region was more than the number of excessive moisture periods. The maximal statistically significant trend (0.4-0.6 per 10 years) in Eastern Siberia was observed in May. The characteristics of the winter-spring period preceding the vegetation season were analyzed. Significant positive trends exist in the study area for the May temperature (0.5-0.9 °C per 10 years) and the May sum of positive temperatures (14-28 °C per 10 years). There are tendencies to increase the number of days with temperatures above zero in March (1-3 days per 10 years) and the sum of positive temperatures in April (5-16 °C per 10 years). The stable transition of air temperature over 0 °C shifts into early dates by 1-7 days every 10 years.

  10. The ongoing impact of modular localization on particle theory

    CERN Document Server

    Schroer, Bert

    2014-01-01

    Modular localization is the concise conceptual formulation of causal localization in the setting of local quantum physics. Unlike QM it does not refer to individual operators but rather to ensembles of observables which share the same localization region, as a result it explains the probabilistic aspects of QFT in terms of the impure KMS nature arising from the local restriction of the pure vacuum. Whereas it played no important role in the perturbation theory of low spin particles, it becomes indispensible for interactions which involve higher spin s fields, where is leads to the replacement of the operator (BRST) gauge theory setting in Krein space by a new formulation in terms of stringlocal fields in Hilbert space. The main purpose of this paper is to present new results which lead to a rethinking of important issues of the Standard Model concerning massive gauge theories and the Higgs mechanism. We place these new findings into the broader context of ongoing conceptual changes within QFT which already le...

  11. Semi-solid Forming of a Damper Housing with Dendritic and Non-dendritic Al-Si-Mg Alloy

    Institute of Scientific and Technical Information of China (English)

    ChenCM; YangCC; ChaoCG

    2001-01-01

    A motorcycle component of damper housing was made by semi-solid forming process. This was used to investigate the effect of microstructures of feedstock on the formability of semisolid process. The soundness and microstructures of casting parts made by dendritic and non-dendritic feedstock were investigated. Separating of liquid phase was found in the casting produced by dendritic feedstock, which might result in defects of porosity, while uniform microstructures were found in the casting produced by no...

  12. Brain Oscillations, Hypnosis, and Hypnotizability.

    Science.gov (United States)

    Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin

    2015-01-01

    This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.

  13. Olfactory system oscillations across phyla.

    Science.gov (United States)

    Kay, Leslie M

    2015-04-01

    Neural oscillations are ubiquitous in olfactory systems of mammals, insects and molluscs. Neurophysiological and computational investigations point to common mechanisms for gamma or odor associated oscillations across phyla (40-100Hz in mammals, 20-30Hz in insects, 0.5-1.5Hz in molluscs), engaging the reciprocal dendrodendritic synapse between excitatory principle neurons and inhibitory interneurons in the olfactory bulb (OB), antennal lobe (AL), or procerebrum (PrC). Recent studies suggest important mechanisms that may modulate gamma oscillations, including neuromodulators and centrifugal input to the OB and AL. Beta (20Hz) and theta (2-12Hz) oscillations coordinate activity within and across brain regions. Olfactory beta oscillations are associated with odor learning and depend on centrifugal OB input, while theta oscillations are strongly associated with respiration.

  14. Single ICCII Sinusoidal Oscillators Employing Grounded Capacitors

    Directory of Open Access Journals (Sweden)

    J. W. Horng

    2011-09-01

    Full Text Available Two inverting second-generation current conveyors (ICCII based sinusoidal oscillators are presented. The first sinusoidal oscillator is composed of one ICCII, two grounded capacitors and two resistors. The oscillation condition and oscillation frequency can be orthogonally controllable. The second sinusoidal oscillator is composed of one ICCII, two grounded capacitors and three resistors. The oscillation condition and oscillation frequency can be independently controllable through different resistors.

  15. Characterization of colonic dendritic cells in normal and colitic mice

    Institute of Scientific and Technical Information of China (English)

    Sheena M Cruickshank; Nicholas R English; Peter J Felsburg; Simon R Carding

    2005-01-01

    AIM: Recent studies demonstrating the direct involvement of dendritic cells (DC) in the activation of pathogenic T cells in animal models of inflammatory bowel disease identify DC as important antigen presenting cells in the colon. However, very little is known about the properties of colonic DC.METHODS: Using immunohistochemistry, electron microscopy and flow cytometry we have characterized and compared colonic DC in the colon of healthy animals and interleukin-2-deficient (IL2-/-) mice that develop colitis.RESULTS: In the healthy colon, DC resided within the lamina propria and in close association with the basement membrane of colonic villi. Type 1 myeloid (CD11c+, CD11b+,B220-, CD8α-) DC made up the largest (40-45%) population and all DC expressed low levels of CD80, CD86, and CD40,and had high endocytic activity consistent with an immature phenotype. In colitic IL2-/- mice, colonic DC numbers increased four- to five-fold and were localized within the epithelial layer and within aggregates of T and B cells. They were also many more DC in mesenteric lymph nodes (MLN).The majority (>85%) of DC in the colon and MLN of IL2-/-mice were type 1 myeloid, and expressed high levels of MHC class Ⅱ, CD80, CD86, CD 40, DEC 205, and CCR5molecules and were of low endocytic activity consistent with mature DC.CONCLUSION: These findings demonstrate striking changes in the number, distribution and phenotype of DC in the inflamed colon. Their intimate association with lymphocytes in the colon and draining lymph nodes suggest that they may contribute directly to the ongoing inflammation in the colon.

  16. C P -violating baryon oscillations

    Science.gov (United States)

    McKeen, David; Nelson, Ann E.

    2016-10-01

    We enumerate the conditions necessary for C P violation to be manifest in n -n ¯ oscillations and build a simple model that can give rise to such effects. We discuss a possible connection between neutron oscillations and dark matter, provided the mass of the latter lies between mp-me and mp+me. We apply our results to a possible baryogenesis scenario involving C P violation in the oscillations of the Ξ0.

  17. How pervasive are circadian oscillations?

    OpenAIRE

    2014-01-01

    Circadian oscillations play a critical role in coordinating the physiology, homeostasis, and behavior of biological systems. Once thought to only be controlled by a master clock, recent high-throughput experiments suggest many genes and metabolites in a cell are potentially capable of circadian oscillations. Each cell can reprogram itself and select a relatively small fraction of this broad repertoire for circadian oscillations, as a result of genetic, environmental, and even diet changes.

  18. Linearization of conservative nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, A; Alvarez, M L [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E; Pascual, I [Departamento de Optica, FarmacologIa y AnatomIa, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es

    2009-03-11

    A linearization method of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force which allows us to obtain a frequency-amplitude relation which is valid not only for small but also for large amplitudes and, sometimes, for the complete range of oscillation amplitudes. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of the technique.

  19. The Duffing oscillator with damping

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2015-01-01

    An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....

  20. Experiments on Deflecting & Oscillating Waterjet

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new type jet,the oscillating & deflecting jet ,is put forward and its oscillating and deflecting characteristics are investigated.The nozzle of the self-oscillating & deflecting water jet consists of an upstream nozzle,a downstream nozzle,an oscillating chamber and two switches,It is experimentally shown that the deflective angle may reach 9.53 degeree,the generated pressure fluctuation is very regular and the jet can efficiently increase the ability for bradking and cutting by eliminating the water cushion effect associated with a continuous jet.

  1. Unstable oscillators based hyperchaotic circuit

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.;

    1999-01-01

    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...

  2. Nanoscale relaxation oscillator

    Science.gov (United States)

    Zettl, Alexander K.; Regan, Brian C.; Aloni, Shaul

    2009-04-07

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  3. MULTIPLE OSCILLATION STABILIZING CONTROL.

    Energy Technology Data Exchange (ETDEWEB)

    YUE,M.; SCHLUETER,R.; AZARM,M.; BARI,R.

    2004-07-23

    This paper presents a strategy that may be used to guide stabilizing control design for multiple oscillations, which are difficult to control using conventional control design procedures. A multiple oscillation phenomena is observed in an example power system. A local bifurcation and an interarea bifurcation develop in an example power system due to multiple bifurcation parameter variations. The dynamic behaviors of the bifurcating system are complex due to the overlapping of the two different bifurcation subsystems and are shown to be difficult to control. The double bifurcations are studied in this paper and in order to stabilize them, three kind of {mu}-synthesis robust controls are designed, (a) {mu}-synthesis power system stabilizer (MPSS); (b) {mu}-synthesis SVC control (MSVC); and (c) a mixed MPSS/MSVC control. Based on the bifurcation subsystem analysis, the measurement signals and locations of the controls are selected. The control performances of three kind of controls are evaluated and compared. The conclusions are given according to the analysis and time simulation results.

  4. Scanning for oscillations

    Science.gov (United States)

    de Cheveigné, Alain; Arzounian, Dorothée

    2015-12-01

    Objective. Oscillations are an important aspect of brain activity, but they often have a low signal-to-noise ratio (SNR) due to source-to-electrode mixing with competing brain activity and noise. Filtering can improve the SNR of narrowband signals, but it introduces ringing effects that may masquerade as genuine oscillations, leading to uncertainty as to the true oscillatory nature of the phenomena. Likewise, time-frequency analysis kernels have a temporal extent that blurs the time course of narrowband activity, introducing uncertainty as to timing and causal relations between events and/or frequency bands. Approach. Here, we propose a methodology that reveals narrowband activity within multichannel data such as electroencephalography, magnetoencephalography, electrocorticography or local field potential. The method exploits the between-channel correlation structure of the data to suppress competing sources by joint diagonalization of the covariance matrices of narrowband filtered and unfiltered data. Main results. Applied to synthetic and real data, the method effectively extracts narrowband components at unfavorable SNR. Significance. Oscillatory components of brain activity, including weak sources that are hard or impossible to observe using standard methods, can be detected and their time course plotted accurately. The method avoids the temporal artifacts of standard filtering and time-frequency analysis methods with which it remains complementary.

  5. A Matterwave Transistor Oscillator

    CERN Document Server

    Caliga, Seth C; Zozulya, Alex A; Anderson, Dana Z

    2012-01-01

    A triple-well atomtronic transistor combined with forced RF evaporation is used to realize a driven matterwave oscillator circuit. The transistor is implemented using a metalized compound glass and silicon substrate. On-chip and external currents produce a cigar-shaped magnetic trap, which is divided into transistor source, gate, and drain regions by a pair of blue-detuned optical barriers projected onto the magnetic trap through a chip window. A resonant laser beam illuminating the drain portion of the atomtronic transistor couples atoms emitted by the gate to the vacuum. The circuit operates by loading the source with cold atoms and utilizing forced evaporation as a power supply that produces a positive chemical potential in the source, which subsequently drives oscillation. High-resolution in-trap absorption imagery reveals gate atoms that have tunneled from the source and establishes that the circuit emits a nominally mono-energetic matterwave with a frequency of 23.5(1.0) kHz by tunneling from the gate, ...

  6. Ternary eutectic dendrites: Pattern formation and scaling properties

    Energy Technology Data Exchange (ETDEWEB)

    Rátkai, László; Szállás, Attila; Pusztai, Tamás [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest (Hungary); Mohri, Tetsuo [Center for Computational Materials Science, Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Gránásy, László, E-mail: granasy.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest (Hungary); Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom)

    2015-04-21

    Extending previous work [Pusztai et al., Phys. Rev. E 87, 032401 (2013)], we have studied the formation of eutectic dendrites in a model ternary system within the framework of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front lamellae → eutectic colonies → eutectic dendritesdendrites with target pattern → partitionless dendrites → partitionless flat front. We confirm that the two-phase and one-phase dendrites have similar forms and display a similar scaling of the dendrite tip radius with the interface free energy. It is also found that the possible eutectic patterns include the target pattern, and single- and multiarm spirals, of which the thermal fluctuations choose. The most probable number of spiral arms increases with increasing tip radius and with decreasing kinetic anisotropy. Our numerical simulations confirm that in agreement with the assumptions of a recent analysis of two-phase dendrites [Akamatsu et al., Phys. Rev. Lett. 112, 105502 (2014)], the Jackson-Hunt scaling of the eutectic wavelength with pulling velocity is obeyed in the parameter domain explored, and that the natural eutectic wavelength is proportional to the tip radius of the two-phase dendrites. Finally, we find that it is very difficult/virtually impossible to form spiraling two-phase dendrites without anisotropy, an observation that seems to contradict the expectations of Akamatsu et al. Yet, it cannot be excluded that in isotropic systems, two-phase dendrites are rare events difficult to observe in simulations.

  7. Recurrences and Ongoing Complaints of Diverticulitis; Results of a Survey among Gastroenterologists and Surgeons

    NARCIS (Netherlands)

    Stam, M. A W; Draaisma, W. A.; Consten, E. C J; Broeders, I. A M J

    2016-01-01

    Objective: This study aims to investigate the current opinion of gastroenterologists and surgeons on treatment strategies for patients, with recurrences or ongoing complaints of diverticulitis. Background: Treatment of recurrences and ongoing complaints remains a point of debate. No randomized trial

  8. Crosstalk between dendritic cell subsets and implications for dendritic cell-based anticancer immunotherapy

    NARCIS (Netherlands)

    Bakdash, G.; Schreurs, I.; Schreibelt, G.; Tel, J.

    2014-01-01

    Dendritic cells (DCs) are a family of professional antigen-presenting cells that have an indispensable role in the initiation of innate and adaptive immune responses against pathogens and tumor cells. The DC family is very heterogeneous. Two main types of naturally occurring DCs circulate in periphe

  9. Impact of Dendritic Size and Dendritic Topology on Burst Firing in Pyramidal Cells

    NARCIS (Netherlands)

    van Elburg, Ronald A. J.; van Ooyen, Arjen

    2010-01-01

    Neurons display a wide range of intrinsic firing patterns. A particularly relevant pattern for neuronal signaling and synaptic plasticity is burst firing, the generation of clusters of action potentials with short interspike intervals. Besides ion-channel composition, dendritic morphology appears to

  10. CTLA-4 blockade during dendritic cell based booster vaccination influences dendritic cell survival and CTL expansion

    DEFF Research Database (Denmark)

    Pedersen, Anders E; Ronchese, Franca

    2007-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells and critical for the priming of CD8+ T cells. Therefore the use of these cells as adjuvant cells has been tested in a large number of experimental and clinical vaccination studies, in particular cancer vaccine studies. A number of protocols...

  11. Turtles to Terabytes: The Ongoing Revolution in Volcano Geodesy

    Science.gov (United States)

    Dzurisin, D.

    2015-12-01

    Volcano geodesy is in the midst of a revolution. GPS and InSAR, together with extensive ground-based sensor networks, have enabled major advances in understanding how and why volcanoes deform. Surveying techniques that produced a few bytes of information per benchmark per year have been replaced by continuously operating deformation networks and imaging radar satellites that generate terabytes of data at resolutions unattainable only a few decades ago. These developments have enabled more detailed assessments of volcano hazards, more accurate forecasts of volcanic activity, and better insights into how volcanoes behave over a variety of spatial and temporal scales. Forty years ago, repeated leveling surveys showed that the floor of the Yellowstone caldera had risen more than 70 cm in the past 5 decades. Today a network of GPS stations tracks surface movements continuously with millimeter-scale accuracy and the entire deformation field is imaged frequently by a growing number of SAR satellites, revealing a far more complex style of deformation than was recognized previously. At Mount St. Helens, the 1980-1986 eruption taught us that a seemingly quiescent volcano can suddenly become overtly restless, and that accurate eruption predictions are possible at least in some limited circumstances given sufficient observations. The lessons were revisited during the volcano's 2004-2008 eruption, during which a new generation of geodetic sensors and methods detected a range of co-eruptive changes that enabled new insights into the volcano's magma storage and transport system. These examples highlight volcano deformation styles and scales that were unknown just a few decades ago but now have been revealed by a growing number of data types and modeling methods. The rapid evolution that volcano geodesy is currently experiencing provides an ongoing challenge for geodesists, while also demonstrating that geodetic unrest is common, widespread, and illuminating. Vive la révolution!

  12. Early markers of ongoing action-effect learning.

    Science.gov (United States)

    Ruge, Hannes; Krebs, Ruth M; Wolfensteller, Uta

    2012-01-01

    Acquiring knowledge about the relationship between stimulus conditions, one's own actions, and the resulting consequences or effects, is one prerequisite for intentional action. Previous studies have shown that such contextualized associations between actions and their effects (S-R-E associations) can be picked up very quickly. The present study examined how such weakly practiced associations might affect overt behavior during the process of initial learning and during subsequent retrieval, and how these two measures are inter-related. We examined incidental (S-)R-E learning in the context of trial-and-error S-R learning and in the context of instruction-based S-R learning. Furthermore, as a control condition, common outcome (CO) learning blocks were included in which all responses produced one common sound effect, hence precluding differential (S-)R-E learning. Post-learning retrieval of R-E associations was tested by re-using previously produced sound effects as novel imperative stimuli combined with actions that were either compatible or incompatible with the previously encountered R-E mapping. The central result was that the size of the compatibility effect could be predicted by the size of relative response slowing during ongoing learning in the preceding acquisition phase, both in trial-and-error learning and in instruction-based learning. Importantly, this correlation was absent for the CO control condition, precluding accounts based on unspecific factors. Instead, the results suggest that differential outcomes are "actively" integrated into action planning and that this takes additional planning time. We speculate that this might be especially true for weakly practiced (S-)R-E associations before an initial goal-directed action mode transitions into a more stimulus-based action mode.

  13. Early markers of ongoing action-effect learning

    Directory of Open Access Journals (Sweden)

    Hannes eRuge

    2012-11-01

    Full Text Available Acquiring knowledge about the relationship between stimulus conditions, one’s own actions, and the resulting consequences or effects, is one prerequisite for intentional action. Previous studies have shown that such contextualized associations between actions and their effects (S-R-E associations can be picked up very quickly. The present study examined how such weakly practiced associations might affect overt behavior during the process of initial learning and during subsequent retrieval, and how these two measures are inter-related. We examined incidental (S-R-E learning in the context of trial-and-error S-R learning and in the context of instruction-based S-R learning. Furthermore, as a control condition, common outcome (CO learning blocks were included in which all responses produced one common sound effect, hence precluding differential (S-R-E learning. Post-learning retrieval of R-E associations was tested by re-using previously produced sound effects as novel imperative stimuli combined with actions that were either compatible or incompatible with the previously encountered R-E mapping. The central result was that the size of the compatibility effect could be predicted by the size of relative response slowing during ongoing learning in the preceding acquisition phase, both in trial-and-error learning and in instruction-based learning. Importantly, this correlation was absent for the common outcome control condition, precluding accounts based on unspecific factors. Instead, the results suggest that differential outcomes are ‘actively’ integrated into action planning and that this takes additional planning time. We speculate that this might be especially true for weakly practiced (S-R-E associations before an initial goal-directed action mode transitions into a more stimulus-based action mode.

  14. Rootstock breeding in Prunus species: Ongoing efforts and new challenges

    Directory of Open Access Journals (Sweden)

    Felipe Gainza

    2015-08-01

    Full Text Available The current global agricultural challenges imply the need to generate new technologies and farming systems. In this context, rootstocks are an essential component in modern agriculture. Most currently used are those clonally propagated and there are several ongoing efforts to develop this type of plant material. Despite this tendency, lesser number of rootstock breeding programs exists in comparison to the large number of breeding programs for scion cultivars. In the case of rootstocks, traits evaluated in new selection lines are quite different: From the agronomic standpoint vigor is a key issue in order to establish high-density orchards. Other important agronomic traits include compatibility with a wide spectrum of cultivars from different species, good tolerance to root hypoxia, water use efficiency, aptitude to extract or exclude certain soil nutrients, and tolerance to soil or water salinity. Biotic stresses are also important: Resistance/tolerance to pests and diseases, such as nematodes, soil-borne fungi, crown gall, bacterial canker, and several virus, viroids, and phytoplasms. In this sense, the creation of new rootstocks at Centro de Estudios Avanzados en Fruticultura (CEAF offers an alternative to stone fruit crop, particularly in Chile, where just a few alternatives are commercially available, and there are site-specific problems. The implementation of molecular markers in order to give support to the phenotypic evaluation of plant breeding has great potential assisting the selection of new genotypes of rootstocks. Marker-Assisted Selection (MAS can shorten the time required to obtain new cultivars and can make the process more cost-effective than selection based exclusively on phenotype, but more basic research is needed to well understood the molecular and physiological mechanisms behind the studied trait.

  15. The Ongoing Impact of Modular Localization on Particle Theory

    Science.gov (United States)

    Schroer, Bert

    2014-08-01

    Modular localization is the concise conceptual formulation of causal localization in the setting of local quantum physics. Unlike QM it does not refer to individual operators but rather to ensembles of observables which share the same localization region, as a result it explains the probabilistic aspects of QFT in terms of the impure KMS nature arising from the local restriction of the pure vacuum. Whereas it played no important role in the perturbation theory of low spin particles, it becomes indispensible for interactions which involve higher spin s≥1 fields, where is leads to the replacement of the operator (BRST) gauge theory setting in Krein space by a new formulation in terms of stringlocal fields in Hilbert space. The main purpose of this paper is to present new results which lead to a rethinking of important issues of the Standard Model concerning massive gauge theories and the Higgs mechanism. We place these new findings into the broader context of ongoing conceptual changes within QFT which already led to new nonperturbative constructions of models of integrable QFTs. It is also pointed out that modular localization does not support ideas coming from string theory, as extra dimensions and Kaluza-Klein dimensional reductions outside quasiclassical approximations. Apart from hologarphic projections on null-surfaces, holograhic relations between QFT in different spacetime dimensions violate the causal completeness property, this includes in particular the Maldacena conjecture. Last not least, modular localization sheds light onto unsolved problems from QFT's distant past since it reveals that the Einstein-Jordan conundrum is really an early harbinger of the Unruh effect.

  16. Fine structure of synapses on dendritic spines

    Directory of Open Access Journals (Sweden)

    Michael eFrotscher

    2014-09-01

    Full Text Available Camillo Golgi’s Reazione Nera led to the discovery of dendritic spines, small appendages originating from dendritic shafts. With the advent of electron microscopy (EM they were identified as sites of synaptic contact. Later it was found that changes in synaptic strength were associated with changes in the shape of dendritic spines. While live-cell imaging was advantageous in monitoring the time course of such changes in spine structure, EM is still the best method for the simultaneous visualization of all cellular components, including actual synaptic contacts, at high resolution. Immunogold labeling for EM reveals the precise localization of molecules in relation to synaptic structures. Previous EM studies of spines and synapses were performed in tissue subjected to aldehyde fixation and dehydration in ethanol, which is associated with protein denaturation and tissue shrinkage. It has remained an issue to what extent fine structural details are preserved when subjecting the tissue to these procedures. In the present review, we report recent studies on the fine structure of spines and synapses using high-pressure freezing (HPF, which avoids protein denaturation by aldehydes and results in an excellent preservation of ultrastructural detail. In these studies, HPF was used to monitor subtle fine-structural changes in spine shape associated with chemically induced long-term potentiation (cLTP at identified hippocampal mossy fiber synapses. Changes in spine shape result from reorganization of the actin cytoskeleton. We report that cLTP was associated with decreased immunogold labeling for phosphorylated cofilin (p-cofilin, an actin-depolymerizing protein. Phosphorylation of cofilin renders it unable to depolymerize F-actin, which stabilizes the actin cytoskeleton. Decreased levels of p-cofilin, in turn, suggest increased actin turnover, possibly underlying the changes in spine shape associated with cLTP. The findings reviewed here establish HPF as

  17. Observational Study of Large Amplitude Longitudinal Oscillations in a Solar Filament

    Science.gov (United States)

    Knizhnik, Kalman; Luna, Manuel; Muglach, Karin; Gilbert, Holly; Kucera, Therese; Karpen, Judith

    2014-01-01

    On 20 August 2010 an energetic disturbance triggered damped large-amplitude longitudinal (LAL) oscillations in almost an entire filament. In the present work we analyze this periodic motion in the filament to characterize the damping and restoring mechanism of the oscillation. Our method involves placing slits along the axis of the filament at different angles with respect to the spine of the filament, finding the angle at which the oscillation is clearest, and fitting the resulting oscillation pattern to decaying sinusoidal and Bessel functions. These functions represent the equations of motion of a pendulum damped by mass accretion. With this method we determine the period and the decaying time of the oscillation. Our preliminary results support the theory presented by Luna and Karpen (2012) that the restoring force of LAL oscillations is solar gravity in the tubes where the threads oscillate, and the damping mechanism is the ongoing accumulation of mass onto the oscillating threads. Following an earlier paper, we have determined the magnitude and radius of curvature of the dipped magnetic flux tubes hosting a thread along the filament, as well as the mass accretion rate of the filament threads, via the fitted parameters.

  18. Rapid Golgi analysis method for efficient and unbiased classification of dendritic spines.

    Directory of Open Access Journals (Sweden)

    W Christopher Risher

    Full Text Available Dendritic spines are the primary recipients of excitatory synaptic input in the brain. Spine morphology provides important information on the functional state of ongoing synaptic transmission. One of the most commonly used methods to visualize spines is Golgi-Cox staining, which is appealing both due to ease of sample preparation and wide applicability to multiple species including humans. However, the classification of spines is a time-consuming and often expensive task that yields widely varying results between individuals. Here, we present a novel approach to this analysis technique that uses the unique geometry of different spine shapes to categorize spines on a purely objective basis. This rapid Golgi spine analysis method successfully conveyed the maturational shift in spine types during development in the mouse primary visual cortex. This approach, built upon freely available software, can be utilized by researchers studying a broad range of synaptic connectivity phenotypes in both development and disease.

  19. Dendritic Cells as Danger-Recognizing Biosensors

    Directory of Open Access Journals (Sweden)

    Seokmann Hong

    2009-08-01

    Full Text Available Dendritic cells (DCs are antigen presenting cells that are characterized by a potent capacity to initiate immune responses. DCs comprise several subsets with distinct phenotypes. After sensing any danger(s to the host via their innate immune receptors such as Toll-like receptors, DCs become mature and subsequently present antigens to CD4+ T cells. Since DCs possess the intrinsic capacity to polarize CD4+ helper cells, it is critical to understand the immunological roles of DCs for clinical applications. Here, we review the different DC subsets, their danger-sensing receptors and immunological functions. Furthermore, the cytokine reporter mouse model for studying DC activation is introduced.

  20. Viruses, dendritic cells and the lung

    Directory of Open Access Journals (Sweden)

    Graham Barney S

    2001-06-01

    Full Text Available Abstract The interaction between viruses and dendritic cells (DCs is varied and complex. DCs are key elements in the development of a host response to pathogens such as viruses, but viruses have developed survival tactics to either evade or diminish the immune system that functions to kill and eliminate these micro-organisms. In the present review we summarize current concepts regarding the function of DCs in the immune system, our understanding of how viruses alter DC function to attenuate both the virus-specific and global immune response, and how we may be able to exploit DC function to prevent or treat viral infections.

  1. Convective heat transfer during dendritic growth

    Science.gov (United States)

    Glicksman, M. E.; Huang, S. C.

    1979-01-01

    Axial growth rate measurements were carried out at 17 levels of supercooling between 0.043 C and 2 C, a temperature range in which convection, instead of diffusion, becomes the controlling mechanism of heat transfer in the dentritic growth process. The growth velocity, normalized to that expected for pure diffusive heat transfer, displays a dependence on orientation. The ratio of the observed growth velocity to that for convection-free growth and the coefficients of supercooling are formulated. The dependence of normalized growth rate in supercooling is described for downward growing dendrites. These experimental correlations can be justified theoretically only to a limited extent.

  2. Convective heat transfer during dendritic solidification

    Science.gov (United States)

    Glicksman, M. E.; Huang, S. C.

    1978-01-01

    Experiments on succinonitrile are described in which the dependence of dendritic growth velocity is studied as a function of orientation with respect to gravity. Growth rate measurements were carried out at a relatively small supercooling, requiring high specimen purity as well as extreme thermal stability and precision temperature measurement. The normalized growth velocity showed a dependence on orientation described by the ratio of observed growth velocity to that expected for convection-free growth being equal to 3.52 times the n-th power of Cos half the orientation angle, where n lies between 0.5 and 0.75.

  3. Metamaterial absorber with random dendritic cells

    Science.gov (United States)

    Zhu, Weiren; Zhao, Xiaopeng

    2010-05-01

    The metamaterial absorber composed of random dendritic cells has been investigated at microwave frequencies. It is found that the absorptivities come to be weaker and the resonant frequency get red shift as the disordered states increasing, however, the random metamaterial absorber still presents high absorptivity more than 95%. The disordered structures can help understanding of the metamaterial absorber and may be employed for practical design of infrared metamaterial absorber, which may play important roles in collection of radiative heat energy and directional transfer enhancement.

  4. Postnatal dendritic morphogenesis of cerebellar basket and stellate cells in vitro.

    Science.gov (United States)

    Spatkowski, Gabriele; Schilling, Karl

    2003-05-01

    Inhibitory interneurons in the molecular layer of the cerebellar cortex play an essential role in cerebellar physiology by providing feed-forward inhibition to efferent Purkinje cells. Morphologic characteristics have been utilized to classify these cells as either basket cells or stellate cells. Conflicting evidence exists as to whether these cells are of distinct lineage and develop by employing discrete genetic programs, or whether their characteristic morphologic differences result from external cues that they encounter only after they have settled in their final territory in the molecular layer. We used primary dissociated cerebellar cultures established from early postnatal mice to study dendritogenesis of basket/stellate cells, identified by immunostaining for parvalbumin, under experimentally controlled conditions. We find that the radial axonal orientation of stem dendrites is non-random, suggesting a cell-intrinsic component defining this morphologic trait. In contrast, the expanse and complexity of basket/stellate cell dendrites is modulated by the granule cell derived neurotrophin, BDNF. BDNF-induced morphogenetic effects decline with ongoing development. Overall, our data do not provide evidence for a distinct lineage or genetic makeup of cerebellar molecular layer inhibitory interneurons.

  5. Physics of bubble oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Lauterborn, Werner; Kurz, Thomas [Third Physical Institute, University of Goettingen (Germany)

    2010-10-01

    Bubbles in liquids, soft and squeezy objects made of gas and vapour, yet so strong as to destroy any material and so mysterious as at times turning into tiny light bulbs, are the topic of the present report. Bubbles respond to pressure forces and reveal their full potential when periodically driven by sound waves. The basic equations for nonlinear bubble oscillation in sound fields are given, together with a survey of typical solutions. A bubble in a liquid can be considered as a representative example from nonlinear dynamical systems theory with its resonances, multiple attractors with their basins, bifurcations to chaos and not yet fully describable behaviour due to infinite complexity. Three stability conditions are treated for stable trapping of bubbles in standing sound fields: positional, spherical and diffusional stability. Chemical reactions may become important in that respect, when reacting gases fill the bubble, but the chemistry of bubbles is just touched upon and is beyond the scope of the present report. Bubble collapse, the runaway shrinking of a bubble, is presented in its current state of knowledge. Pressures and temperatures that are reached at this occasion are discussed, as well as the light emission in the form of short flashes. Aspherical bubble collapse, as for instance enforced by boundaries nearby, mitigates most of the phenomena encountered in spherical collapse, but introduces a new effect: jet formation, the self-piercing of a bubble with a high velocity liquid jet. Examples of this phenomenon are given from light induced bubbles. Two oscillating bubbles attract or repel each other, depending on their oscillations and their distance. Upon approaching, attraction may change to repulsion and vice versa. When being close, they also shoot self-piercing jets at each other. Systems of bubbles are treated as they appear after shock wave passage through a liquid and with their branched filaments that they attain in standing sound fields. The N

  6. A dendritic mechanism for decoding traveling waves: principles and applications to motor cortex.

    Directory of Open Access Journals (Sweden)

    Stewart Heitmann

    2013-10-01

    Full Text Available Traveling waves of neuronal oscillations have been observed in many cortical regions, including the motor and sensory cortex. Such waves are often modulated in a task-dependent fashion although their precise functional role remains a matter of debate. Here we conjecture that the cortex can utilize the direction and wavelength of traveling waves to encode information. We present a novel neural mechanism by which such information may be decoded by the spatial arrangement of receptors within the dendritic receptor field. In particular, we show how the density distributions of excitatory and inhibitory receptors can combine to act as a spatial filter of wave patterns. The proposed dendritic mechanism ensures that the neuron selectively responds to specific wave patterns, thus constituting a neural basis of pattern decoding. We validate this proposal in the descending motor system, where we model the large receptor fields of the pyramidal tract neurons - the principle outputs of the motor cortex - decoding motor commands encoded in the direction of traveling wave patterns in motor cortex. We use an existing model of field oscillations in motor cortex to investigate how the topology of the pyramidal cell receptor field acts to tune the cells responses to specific oscillatory wave patterns, even when those patterns are highly degraded. The model replicates key findings of the descending motor system during simple motor tasks, including variable interspike intervals and weak corticospinal coherence. By additionally showing how the nature of the wave patterns can be controlled by modulating the topology of local intra-cortical connections, we hence propose a novel integrated neuronal model of encoding and decoding motor commands.

  7. Dopaminergic regulation of dendritic calcium: fast multisite calcium imaging.

    Science.gov (United States)

    Zhou, Wen-Liang; Oikonomou, Katerina D; Short, Shaina M; Antic, Srdjan D

    2013-01-01

    Optimal dopamine tone is required for the normal cortical function; however it is still unclear how cortical-dopamine-release affects information processing in individual cortical neurons. Thousands of glutamatergic inputs impinge onto elaborate dendritic trees of neocortical pyramidal neurons. In the process of ensuing synaptic integration (information processing), a variety of calcium transients are generated in remote dendritic compartments. In order to understand the cellular mechanisms of dopaminergic modulation it is important to know whether and how dopaminergic signals affect dendritic calcium transients. In this chapter, we describe a relatively inexpensive method for monitoring dendritic calcium fluctuations at multiple loci across the pyramidal dendritic tree, at the same moment of time (simultaneously). The experiments have been designed to measure the amplitude, time course and spatial extent of action potential-associated dendritic calcium transients before and after application of dopaminergic drugs. In the examples provided here the dendritic calcium transients were evoked by triggering the somatic action potentials (backpropagation-evoked), and puffs of exogenous dopamine were applied locally onto selected dendritic branches.

  8. Contribution of sublinear and supralinear dendritic integration to neuronal computations.

    Science.gov (United States)

    Tran-Van-Minh, Alexandra; Cazé, Romain D; Abrahamsson, Therése; Cathala, Laurence; Gutkin, Boris S; DiGregorio, David A

    2015-01-01

    Nonlinear dendritic integration is thought to increase the computational ability of neurons. Most studies focus on how supralinear summation of excitatory synaptic responses arising from clustered inputs within single dendrites result in the enhancement of neuronal firing, enabling simple computations such as feature detection. Recent reports have shown that sublinear summation is also a prominent dendritic operation, extending the range of subthreshold input-output (sI/O) transformations conferred by dendrites. Like supralinear operations, sublinear dendritic operations also increase the repertoire of neuronal computations, but feature extraction requires different synaptic connectivity strategies for each of these operations. In this article we will review the experimental and theoretical findings describing the biophysical determinants of the three primary classes of dendritic operations: linear, sublinear, and supralinear. We then review a Boolean algebra-based analysis of simplified neuron models, which provides insight into how dendritic operations influence neuronal computations. We highlight how neuronal computations are critically dependent on the interplay of dendritic properties (morphology and voltage-gated channel expression), spiking threshold and distribution of synaptic inputs carrying particular sensory features. Finally, we describe how global (scattered) and local (clustered) integration strategies permit the implementation of similar classes of computations, one example being the object feature binding problem.

  9. Human plasmacytoid dendritic cells: from molecules to intercellular communication network

    NARCIS (Netherlands)

    Mathan, T.S.M.; Figdor, C.G.; Buschow, S.I.

    2013-01-01

    Plasmacytoid dendritic cells (pDCs) are a specific subset of naturally occurring dendritic cells, that secrete large amounts of Type I interferon and play an important role in the immune response against viral infection. Several studies have highlighted that they are also effective antigen presentin

  10. Cold-induced exodus of postsynaptic proteins from dendritic spines.

    Science.gov (United States)

    Cheng, Hui-Hsuan; Huang, Zu-Han; Lin, Wei-Hsiang; Chow, Wei-Yuan; Chang, Yen-Chung

    2009-02-01

    Dendritic spines are small protrusions on neuronal dendrites and the major target of the excitatory inputs in mammalian brains. Cultured neurons and brain slices are important tools in studying the biochemical and cellular properties of dendritic spines. During the processes of immunocytochemical studies of neurons and the preparation of brain slices, neurons were often kept at temperatures lower than 37 degrees C for varied lengths of time. This study sought to investigate whether and how cold treatment would affect the protein composition of dendritic spines. The results indicated that upon cold treatment four postsynaptic proteins, namely, alpha,beta-tubulins, calcium, calmodulin-dependent protein kinase IIalpha, and cytoplasmic dynein heavy chain and microtubule-associated protein 2, but not PSD-95 or AMPA receptors, exited from the majority of dendritic spines of cultured rat hippocampal neurons in a Gd(3+)-sensitive manner. The cold-induced exit of tubulins from dendritic spines was further found to be an energy-dependent process involving the activation of Gd(3+)-sensitive calcium channels and ryanodine receptors. The results thus indicate that changes in temperature, calcium concentration, and energy supply of the medium surrounding neurons would affect the protein composition of the dendritic spines and conceivably the protein composition of the subcellular organizations, such as the postsynaptic density, in the cytoplasm of dendritic spines.

  11. Barriers in the brain : resolving dendritic spine morphology and compartmentalization

    NARCIS (Netherlands)

    Adrian, Max; Kusters, Remy; Wierenga, Corette J; Storm, Cornelis; Hoogenraad, Casper C; Kapitein, Lukas C

    2014-01-01

    Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50-400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and elec

  12. Contribution of sublinear and supralinear dendritic integration to neuronal computations

    Directory of Open Access Journals (Sweden)

    Alexandra eTran-Van-Minh

    2015-03-01

    Full Text Available Nonlinear dendritic integration is thought to increase the computational ability of neurons. Most studies focus on how supralinear summation of excitatory synaptic responses arising from clustered inputs within single dendrites result in the enhancement of neuronal firing, enabling simple computations such as feature detection. Recent reports have shown that sublinear summation is also a prominent dendritic operation, extending the range of subthreshold input-output transformations conferred by dendrites. Like supralinear operations, sublinear dendritic operations also increase the repertoire of neuronal computations, but feature extraction requires different synaptic connectivity strategies for each of these operations. In this article we will review the experimental and theoretical findings describing the biophysical determinants of the three primary classes of dendritic operations: linear, sublinear, and supralinear. We then review a Boolean algebra-based analysis of simplified neuron models, which provides insight into how dendritic operations influence neuronal computations. We highlight how neuronal computations are critically dependent on the interplay of dendritic properties (morphology and voltage-gated channel expression, spiking threshold and distribution of synaptic inputs carrying particular sensory features. Finally, we describe how global (scattered and local (clustered integration strategies permit the implementation of similar classes of computations, one example being the object feature binding problem.

  13. Channelopathies and dendritic dysfunction in fragile X syndrome.

    Science.gov (United States)

    Brager, Darrin H; Johnston, Daniel

    2014-04-01

    Dendritic spine abnormalities and the metabotropic glutamate receptor theory put the focus squarely on synapses and protein synthesis as the cellular locus of fragile X syndrome. Synapses however, are only partly responsible for information processing in neuronal networks. Neurotransmitter triggered excitatory postsynaptic potentials (EPSPs) are shaped and integrated by dendritic voltage-gated ion channels. These EPSPs, and in some cases the resultant dendritic spikes, are further modified by dendritic voltage-gated ion channels as they propagate to the soma. If the resultant somatic depolarization is large enough, action potential(s) will be triggered and propagate both orthodromically down the axon, where it may trigger neurotransmitter release, and antidromically back into the dendritic tree, where it can activate and modify dendritic voltage-gated and receptor activated ion channels. Several channelopathies, both soma-dendritic (L-type calcium channels, Slack potassium channels, h-channels, A-type potassium channels) and axo-somatic (BK channels and delayed rectifier potassium channels) were identified in the fmr1-/y mouse model of fragile X syndrome. Pathological function of these channels will strongly influence the excitability of individual neurons as well as overall network function. In this chapter we discuss the role of voltage-gated ion channels in neuronal processing and describe how identified channelopathies in models of fragile X syndrome may play a role in dendritic pathophysiology. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Subpanel on accelerator-based neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Neutrinos are among nature`s fundamental constituents, and they are also the ones about which we know least. Their role in the universe is widespread, ranging from the radioactive decay of a single atom to the explosions of supernovae and the formation of ordinary matter. Neutrinos might exhibit a striking property that has not yet been observed. Like the back-and-forth swing of a pendulum, neutrinos can oscillate to-and-from among their three types (or flavors) if nature provides certain conditions. These conditions include neutrinos having mass and a property called {open_quotes}mixing.{close_quotes} The phenomenon is referred to as neutrino oscillations. The questions of the origin of neutrino mass and mixing among the neutrino flavors are unsolved problems for which the Standard Model of particle physics holds few clues. It is likely that the next critical step in answering these questions will result from the experimental observation of neutrino oscillations. The High Energy Physics Advisory Panel (HEPAP) Subpanel on Accelerator-Based Neutrino Oscillation Experiments was charged to review the status and discovery potential of ongoing and proposed accelerator experiments on neutrino oscillations, to evaluate the opportunities for the U.S. in this area of physics, and to recommend a cost-effective plan for pursuing this physics, as appropriate. The complete charge is provided in Appendix A. The Subpanel studied these issues over several months and reviewed all the relevant and available information on the subject. In particular, the Subpanel reviewed the two proposed neutrino oscillation programs at Fermi National Accelerator Laboratory (Fermilab) and at Brookhaven National Laboratory (BNL). The conclusions of this review are enumerated in detail in Chapter 7 of this report. The recommendations given in Chapter 7 are also reproduced in this summary.

  15. Sunspot Umbral Oscillations: Results from SOHO JOP097

    Science.gov (United States)

    O'Shea, E.; Muglach, K.; Fleck, B.

    2003-10-01

    We present results of an ongoing analysis of time series data, which were obtained in the context of the Joint Observing Program (JOP) 97 of the year 2000. This JOP included the Coronal Diagnostic Spectrometer (CDS) and the Michelson Doppler Imager (MDI) instrument, both part of SOHO, the TRACE satellite and various ground based observatories. We show evidence for apparently upwardly propagating in a sunspot umbra which we suggest are due to magnetoacoustic waves. These waves manifest themselves as oscillations in lines ranging in temperature from the upper photosphere/chromosphere to the corona. To our knowledge this is the first time umbral oscillations have been conclusively seen in coronal lines. This research is part of the European Solar Magnetometry Network (ESMN) supported by the EU through the TMR programme.

  16. On The Harmonic Oscillator Group

    CERN Document Server

    Lopez, Raquel M; Vega-Guzman, Jose M

    2011-01-01

    We discuss the maximum kinematical invariance group of the quantum harmonic oscillator from a view point of the Ermakov-type system. The invariance group of generalized driven harmonic oscillator is shown to be isomorphic to the corresponding Schroedinger group of the free particle.

  17. Longitudinal oscillation of launch vehicles

    Science.gov (United States)

    Glaser, R. F.

    1973-01-01

    During powered flight a vehicle may develop longitudinal self-excited oscillations, so-called oscillations, of its structure. The energy supplying the vibration is tapped from the thrust by the activity of the system itself; that is, oscillation of the structure causes oscillation of the propellant system, especially of the pumps. In this way an oscillating thrust can be created that, by a feedback loop, may sustain the structural oscillation under certain circumstances. Two special features of the system proved to be essential for creation of instability. One is the effect of the inherent time interval that the thrust oscillation is lagging behind the structural oscillation. The other is the decreased of system mass caused by the exhausting of gas. The latter feature may cause an initially stable system to become unstable. To examine the stability of the system, a single mass-spring model, which is the result of a one-term Galerkin approach to the equation of motion, has been considered. The Nyquist stability criterion leads to a stability graph that shows the stability conditions in terms of the system parameter and also demonstrates the significance of time lag, feedback magnitude, and loss of mass. An important conclusion can be drawn from the analysis: large relative displacements of the pump-engine masses favor instability. This is also confirmed by flight measurements.

  18. The Wien Bridge Oscillator Family

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2006-01-01

    A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic...

  19. Lorentz violation and neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Mewes, Matthew [Marquette University, P.O. Box 1881, Milwaukee, WI 53201 (United States)

    2011-12-15

    Lorentz violation naturally leads to neutrino oscillations and provides an alternative mechanism that may explain current data. This contribution to the proceedings of The XXII International Conference on Neutrino Physics and Astrophysics provides a brief review of possible signals of Lorentz violation in neutrino-oscillation experiments.

  20. Neutrino Oscillations with Nil Mass

    CERN Document Server

    Floyd, Edward R

    2016-01-01

    An alternative neutrino oscillation process is presented as a counterexample for which the neutrino may have nil mass consistent with the standard model. The process is developed in a quantum trajectories representation of quantum mechanics, which has a Hamilton-Jacobi foundation. This process has no need for mass differences between mass eigenstates. Flavor oscillations and $\\bar{\

  1. Solar Neutrino Oscillation - An Overview

    CERN Document Server

    Roy, D P

    2005-01-01

    After a brief summary of the neutrino oscillation formalism and the solar neutrino sources and experiments I discuss the matter effect on solar neutrino oscillation. Then I discuss how the resulting alternative solutions are experimentally resolved in favour of the LMA solution, with particular exphasis on the SK, SNO and KL data.

  2. Hyperchaos in coupled Colpitts oscillators

    DEFF Research Database (Denmark)

    Cenys, Antanas; Tamasevicius, Arunas; Baziliauskas, Antanas

    2003-01-01

    The paper suggests a simple solution of building a hyperchaotic oscillator. Two chaotic Colpitts oscillators, either identical or non-identical ones are coupled by means of two linear resistors R-k. The hyperchaotic output signal v(t) is a linear combination, specifically the mean of the individual...

  3. Hyperchaotic system with unstable oscillators

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; Mykolaitis, G.;

    2000-01-01

    A simple electronic system exhibiting hyperchaotic behaviour is described. The system includes two nonlinearly coupled 2nd order unstable oscillators, each composed of an LC resonance loop and an amplifier. The system is investigated by means of numerical integration of appropriate differential e...... equations, PSPICE simulations and hardware experiments. The Lyapunov exponents are presented to confirm hyperchaotic mode of the oscillations....

  4. Oscillator With Low Phase Noise

    Science.gov (United States)

    Kleinberg, Leonard L.

    1987-01-01

    Phase errors cancelled for high frequency stability. Radio-frequency oscillator achieves high stability of frequency through parallel, two-amplifier configuration in which effects cause phase noise tend to cancel each other. Circuit includes two amplifiers with resonating elements, each constitutes part of feedback loop of other. Generate same frequency because each circuit provides other with conditions necessary for oscillation.

  5. Collective supernova neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Mirizzi, Alessandro [Max Planck Institute for Physics, Munich (Germany)

    2009-07-01

    Neutrinos emitted by core-collapse supernovae (SNe) represent an important laboratory for both particle physics and astrophysics. While propagating in the dense SN environment, they can feel not only the presence of background matter (via ordinary Mikheev-Smirnov-Wolfenstein effects) but also of the gas of neutrinos and antineutrinos (via neutrino-neutrino interaction effects). The neutrino-neutrino interactions appear to modify the flavor evolution of SN neutrinos in a collective way, completely different from the ordinary matter effects. In these conditions, the flavor evolution equations become highly nonlinear, sometimes resulting in surprising phenomena when the entire neutrino system oscillates coherently as a single collective mode. In this talk, I present the recent results on collective supernova neutrino flavor conversions and I discuss about the sensitivity of these effects to the ordering of the neutrino mass spectrum.

  6. Solar neutrino oscillation phenomenology

    Indian Academy of Sciences (India)

    Srubabati Goswami

    2004-02-01

    This article summarises the status of the solar neutrino oscillation phenomenology at the end of 2002 in the light of the SNO and KamLAND results. We first present the allowed areas obtained from global solar analysis and demonstrate the preference of the solar data towards the large-mixing-angle (LMA) MSW solution. A clear confirmation in favour of the LMA solution comes from the KamLAND reactor neutrino data. the KamLAND spectral data in conjunction with the global solar data further narrows down the allowed LMA region and splits it into two allowed zones - a low $ m^{2}$ region (low-LMA) and high $ m^{2}$ region (high-LMA). We demonstrate through a projected analysis that with an exposure of 3 kton-year (kTy) KamLAND can remove this ambiguity.

  7. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  8. Modeling of dendritic growth in the presence of convection

    Institute of Scientific and Technical Information of China (English)

    ZHU; Mingfang; DAI; Ting; LEE; Sungyoon; HONG; Chunpyo

    2005-01-01

    A two-dimensional coupling modified cellular automaton (MCA)-transport model has been employed to investigate the asymmetrical dendritic growth behavior in a flowing melt. In the present model, the cellular automaton method for crystal growth is incorporated with a transport model, for numerical calculating of the fluid flow and mass transport by both convection and diffusion. The MCA takes into account the effects of the thermal, the constitutional and the curvature undercoolings on dendritic growth. It also considers the preferred growth orientation of crystal and solute redistribution during solidification. In the transport model, the SIMPLE scheme and a fully implicit finite volume method are employed to solve the governing equations of momentum and species transfers. The present model was applied to simulating the evolution of a single dendrite and multi-dendrites of an Al-3mass%Cu alloy in a forced flow. The simulated results show that dendritic growth morphology is strongly influenced by melt convection.

  9. Immune Monitoring Using mRNA-Transfected Dendritic Cells

    DEFF Research Database (Denmark)

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by m......RNA electroporation, ensuring presentation of antigen through major histocompatibility complex I and potentially activating T cells, enabling them to kill the tumor cells. Despite extensive research in the field, only one dendritic cell-based vaccine has been approved. There is therefore a great need to elucidate...... and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA....

  10. Avionics Architectures for Exploration: Ongoing Efforts in Human Spaceflight

    Science.gov (United States)

    Goforth, Montgomery B.; Ratliff, James E.; Hames, Kevin L.; Vitalpur, Sharada V.; Woodman, Keith L.

    2014-01-01

    The field of Avionics is advancing far more rapidly in terrestrial applications than in spaceflight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers, and from industry. It is our intent to develop a common core avionic system that has standard capabilities and interfaces, and contains the basic elements and functionality needed for any spacecraft. This common core will be scalable and tailored to specific missions. It will incorporate hardware and software from multiple vendors, and be upgradeable in order to infuse incremental capabilities and new technologies. It will maximize the use of reconfigurable open source software (e.g., Goddard Space Flight Center's (GSFC's) Core Flight Software (CFS)). Our long-term focus is on improving functionality, reliability, and autonomy, while reducing size, weight, and power. Where possible, we will leverage terrestrial commercial capabilities to drive down development and sustaining costs. We will select promising technologies for evaluation, compare them in an objective manner, and mature them to be available for future programs. The remainder of this paper describes our approach, technical areas of emphasis, integrated test experience and results as of mid-2014, and future plans. As a part of the AES

  11. Ongoing contact activation in patients with hereditary angioedema.

    Directory of Open Access Journals (Sweden)

    Joke Konings

    Full Text Available Hereditary angioedema (HAE is predominantly caused by a deficiency in C1 esterase inhibitor (C1INH (HAE-C1INH. C1INH inhibits activated factor XII (FXIIa, activated factor XI (FXIa, and kallikrein. In HAE-C1INH patients the thrombotic risk is not increased even though activation of the contact system is poorly regulated. Therefore, we hypothesized that contact activation preferentially leads to kallikrein formation and less to activation of the coagulation cascade in HAE-C1INH patients. We measured the levels of C1INH in complex with activated contact factors in plasma samples of HAE-C1INH patients (N=30, 17 during remission and 13 during acute attack and healthy controls (N=10. We did not detect differences in enzyme-inhibitor complexes between samples of controls, patients during remission and patients during an acute attack. Reconstitution with C1INH did not change this result. Next, we determined the potential to form enzyme-inhibitory complexes after complete in vitro activation of the plasma samples with a FXII trigger. In all samples, enzyme-C1INH levels increased after activation even in patients during an acute attack. However, the levels of FXIIa-C1INH, FXIa-C1INH and kallikrein-C1INH were at least 52% lower in samples taken during remission and 70% lower in samples taken during attack compared to samples from controls (p<0.05. Addition of C1INH after activation led to an increase in levels of FXIIa-C1INH and FXIa-C1INH (p<0.05, which were still lower than in controls (p<0.05, while the levels of kallikrein-C1INH did not change. These results are consistent with constitutive activation and attenuated depletion of the contact system and show that the ongoing activation of the contact system, which is present in HAE-C1INH patients both during remission and during acute attacks, is not associated with preferential generation of kallikrein over FXIa.

  12. Risk Stratification in Differentiated Thyroid Cancer: An Ongoing Process.

    Science.gov (United States)

    Omry-Orbach, Gal

    2016-01-28

    Thyroid cancer is an increasingly common malignancy, with a rapidly rising prevalence worldwide. The social and economic ramifications of the increase in thyroid cancer are multiple. Though mortality from thyroid cancer is low, and most patients will do well, the risk of recurrence is not insignificant, up to 30%. Therefore, it is important to accurately identify those patients who are more or less likely to be burdened by their disease over years and tailor their treatment plan accordingly. The goal of risk stratification is to do just that. The risk stratification process generally starts postoperatively with histopathologic staging, based on the AJCC/UICC staging system as well as others designed to predict mortality. These do not, however, accurately assess the risk of recurrence/persistence. Patients initially considered to be at high risk may ultimately do very well yet be burdened by frequent unnecessary monitoring. Conversely, patients initially thought to be low risk, may not respond to their initial treatment as expected and, if left unmonitored, may have higher morbidity. The concept of risk-adaptive management has been adopted, with an understanding that risk stratification for differentiated thyroid cancer is dynamic and ongoing. A multitude of variables not included in AJCC/UICC staging are used initially to classify patients as low, intermediate, or high risk for recurrence. Over the course of time, a response-to-therapy variable is incorporated, and patients essentially undergo continuous risk stratification. Additional tools such as biochemical markers, genetic mutations, and molecular markers have been added to this complex risk stratification process such that this is essentially a continuum of risk. In recent years, additional considerations have been discussed with a suggestion of pre-operative risk stratification based on certain clinical and/or biologic characteristics. With the increasing prevalence of thyroid cancer but stable mortality

  13. Coupled oscillators on evolving networks

    Science.gov (United States)

    Singh, R. K.; Bagarti, Trilochan

    2016-12-01

    In this work we study coupled oscillators on evolving networks. We find that the steady state behavior of the system is governed by the relative values of the spread in natural frequencies and the global coupling strength. For coupling strong in comparison to the spread in frequencies, the system of oscillators synchronize and when coupling strength and spread in frequencies are large, a phenomenon similar to amplitude death is observed. The network evolution provides a mechanism to build inter-oscillator connections and once a dynamic equilibrium is achieved, oscillators evolve according to their local interactions. We also find that the steady state properties change by the presence of additional time scales. We demonstrate these results based on numerical calculations studying dynamical evolution of limit-cycle and van der Pol oscillators.

  14. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  15. Photoacoustic elastic oscillation and characterization.

    Science.gov (United States)

    Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin

    2015-08-10

    Photoacoustic imaging and sensing have been studied extensively to probe the optical absorption of biological tissue in multiple scales ranging from large organs to small molecules. However, its elastic oscillation characterization is rarely studied and has been an untapped area to be explored. In literature, photoacoustic signal induced by pulsed laser is commonly modelled as a bipolar "N-shape" pulse from an optical absorber. In this paper, the photoacoustic damped oscillation is predicted and modelled by an equivalent mass-spring system by treating the optical absorber as an elastic oscillator. The photoacoustic simulation incorporating the proposed oscillation model shows better agreement with the measured signal from an elastic phantom, than conventional photoacoustic simulation model. More interestingly, the photoacoustic damping oscillation effect could potentially be a useful characterization approach to evaluate biological tissue's mechanical properties in terms of relaxation time, peak number and ratio beyond optical absorption only, which is experimentally demonstrated in this paper.

  16. Photoacoustic elastic oscillation and characterization

    CERN Document Server

    Gao, Fei; Zheng, Yuanjin

    2014-01-01

    Photoacoustic imaging and sensing have been studied extensively to probe the optical absorption of biological tissue in multiple scales ranging from large organs to small molecules. However, its elastic oscillation characterization is rarely studied and has been an untapped area to be explored. In literature, photoacoustic signal induced by pulsed laser is commonly modelled as a bipolar "N-shape" pulse from an optical absorber. In this paper, the photoacoustic damped oscillation is predicted and modelled by an equivalent mass-spring system by treating the optical absorber as an elastic oscillator. The photoacoustic simulation incorporating the proposed oscillation model shows better agreement with the measured signal from an elastic phantom, than conventional photoacoustic simulation model. More interestingly, the photoacoustic damping oscillation effect could potentially be a useful characterization approach to evaluate biological tissue's mechanical properties in terms of relaxation time, peak number and ra...

  17. Analyzing dendritic growth in a population of immature neurons in the adult dentate gyrus using laminar quantification of disjointed dendrites

    Directory of Open Access Journals (Sweden)

    Shira eRosenzweig

    2011-03-01

    Full Text Available In the dentate gyrus of the hippocampus, new granule neurons are continuously produced throughout adult life. A prerequisite for the successful synaptic integration of these neurons is the sprouting and extension of dendrites into the molecular layer of the dentate gyrus. Thus, studies aimed at investigating the developmental stages of adult neurogenesis often use dendritic growth as an important indicator of neuronal health and maturity. Based on the known topography of the dentate gyrus, characterized by distinct laminar arrangement of granule neurons and their extensions, we have developed a new method for analysis of dendritic growth in immature adult-born granule neurons. The method is comprised of laminar quantification of cell bodies, primary, secondary and tertiary dendrites separately and independently from each other. In contrast to most existing methods, laminar quantification of dendrites does not require the use of exogenous markers and does not involve arbitrary selection of individual neurons. The new method relies on immonuhistochemical detection of endogenous markers such as doublecortin to perform a comprehensive analysis of a sub-population of immature neurons. Disjointed, orphan dendrites that often appear in the thin histological sections are taken into account. Using several experimental groups of rats and mice, we demonstrate here the suitable techniques for quantifying neurons and dendrites, and explain how the ratios between the quantified values can be used in a comparative analysis to indicate variations in dendritic growth and complexity.

  18. Dendritic cells modified by vitamin D

    DEFF Research Database (Denmark)

    Pedersen, Ayako Wakatsuki; Claesson, Mogens Helweg; Zocca, Mai-Britt

    2011-01-01

    Dendritic cells (DCs), the most potent antigen-presenting cells of the immune system, express nuclear receptors for 1,25-dihydroxyvitamin D(3) (VD3) and they are one of its main targets. In the presence of VD3, DCs differentiate into a phenotype that resembles semimature DCs, with reduced T cell ...... and the optimal frequency, dose, and route of DC administration to achieve therapeutic effects in humans, adoptive VD3-DC transfer represents one of the most promising approaches to future treatment of autoimmune diseases.......Dendritic cells (DCs), the most potent antigen-presenting cells of the immune system, express nuclear receptors for 1,25-dihydroxyvitamin D(3) (VD3) and they are one of its main targets. In the presence of VD3, DCs differentiate into a phenotype that resembles semimature DCs, with reduced T cell...... costimulatory molecules and hampered IL-12 production. These VD3-modulated DCs induce T cell tolerance in vitro using multiple mechanisms such as rendering T cells anergic, dampening of Th1 responses, and recruiting and differentiating regulatory T cells. Due to their ability to specifically target pathological...

  19. Dendritic growth model of multilevel marketing

    Science.gov (United States)

    Pang, James Christopher S.; Monterola, Christopher P.

    2017-02-01

    Biologically inspired dendritic network growth is utilized to model the evolving connections of a multilevel marketing (MLM) enterprise. Starting from agents at random spatial locations, a network is formed by minimizing a distance cost function controlled by a parameter, termed the balancing factor bf, that weighs the wiring and the path length costs of connection. The paradigm is compared to an actual MLM membership data and is shown to be successful in statistically capturing the membership distribution, better than the previously reported agent based preferential attachment or analytic branching process models. Moreover, it recovers the known empirical statistics of previously studied MLM, specifically: (i) a membership distribution characterized by the existence of peak levels indicating limited growth, and (ii) an income distribution obeying the 80 - 20 Pareto principle. Extensive types of income distributions from uniform to Pareto to a "winner-take-all" kind are also modeled by varying bf. Finally, the robustness of our dendritic growth paradigm to random agent removals is explored and its implications to MLM income distributions are discussed.

  20. Dendritic Cells in vivo and in vitro

    Institute of Scientific and Technical Information of China (English)

    Hui Wan; Marcel Dupasquier

    2005-01-01

    Dendritic cells (DC) are crucial cells of the immune system, and bridged the essential connection between innate and adaptive immunity. They reside in the periphery as sentinels where they take up antigens. Upon activation,they migrate to lymphoid organs and present there the processed antigens to T cells, thereby activating them and eliciting a potent immune response. Dendritic cells are bone marrow-derived cells, still big controversies exist about their in vivo development. In vitro, DC can be generated from multiple precursor cells, among them lymphoid and myeloid committed progenitors. Although it remains unknown how DC are generated in vivo,studying the functions of in vitro generated DC results in fundamental knowledge of the DC biology with promising applications for future medicine. Therefore, in this review, we present current protocols for the generation of DC from precursors in vitro. We will do this for the mouse system, where most research occurs and for the human system, where research concentrates on implementing DC biology in disease treatments.

  1. Dendritic Cells in vivo and in vitro

    Institute of Scientific and Technical Information of China (English)

    HuiWan; MarcelDupasquier

    2005-01-01

    Dendritic cells (DC) are crucial cells of the immune system, and bridged the essential connection between innate and adaptive immunity. They reside in the periphery as sentinels where they take up antigens. Upon activation, they migrate to lymphoid organs and present there the processed antigens to T cells, thereby activating them and eliciting a potent immune response. Dendritic cells are bone marrow-derived cells, still big controversies exist about their in vivo development. In vitro, DC can be generated from multiple precursor cells, among them lymphoid and myeloid committed progenitors. Although it remains unknown how DC are generated in vivo, studying the functions of in vitro generated DC results in fundamental knowledge of the DC biology with promising applications for future medicine. Therefore, in this review, we present current protocols for the generation of DC from precursors in vitro. We will do this for the mouse system, where most research occurs and for the human system, where research concentrates on implementing DC biology in disease treatments. Cellular & Molecular Immunology. 2005;2(1):28-35.

  2. Free oscillation of the Earth

    Directory of Open Access Journals (Sweden)

    Y. Abedini

    2000-06-01

    Full Text Available   This work is a study of the Earths free oscillations considering a merge of solid and liquid model. At the turn of 19th century Geophysicists presented the theory of the free oscillations for a self-gravitating, isotropic and compressible sphere. Assuming a steel structure for an Earth size sphere, they predicted a period of oscillation of about 1 hour. About 50 years later, the free oscillations of stars was studied by Cowling and others. They classified the oscillation modes of the stars into acoustic and gravity modes on the basis of their driving forces. These are pressure and buoyancy forces respectively. The earliest measurements for the period of the free oscillations of the Earth was made by Benyove from a study of Kamchathca earthquake. Since then, the Geophysicists have been trying to provide a theoretical basis for these measurements. Recently, the theory concerning oscillations of celestial fluids is extended by Sobouti to include the possible oscillations of the Earthlike bodies. Using the same technique, we study the free oscillations of a spherically symmetric, non-rotating and elastic model for the Earth.   We used the actual data of the Earths interior structure in our numerical calculations. Numerical results show that there exist three distinct oscillation modes namely acoustic, gravity and toroidal modes. These modes are driven by pressure, buoyancy and shear forces respectively. The shear force is due to the elastic properties of the solid part of the Earth. Our numerical results are consistent with the seismic data recorded from earthquake measurements.

  3. Polynomially deformed oscillators as k-bonacci oscillators

    CERN Document Server

    Gavrilik, A M

    2009-01-01

    A family of multi-parameter, polynomially deformed oscillators (PDOs) given by polynomial structure function \\phi(n) is studied from the viewpoint of being (or not) in the class of Fibonacci oscillators. These obey the Fibonacci relation/property (FR/FP) meaning that the n-th level energy E_n is given linearly, with real coefficients, by the two preceding ones E_{n-1}, E_{n-2}. We first prove that the PDOs do not fall in the Fibonacci class. Then, three different paths of generalizing the usual FP are developed for these oscillators: we prove that the PDOs satisfy respective k-term generalized Fibonacci (or "k-bonacci") relations; for these same oscillators we examine two other generalizations of the FR, the inhomogeneous FR and the "quasi-Fibonacci" relation. Extended families of deformed oscillators are studied too: the (q;\\mu)-oscillator with \\phi(n) quadratic in the basic q-number [n]_q is shown to be Tribonacci one, while the (p,q;\\mu)-oscillators with \\phi(n) quadratic (cubic) in the p,q-number [n]_{p,q...

  4. Loss of Dendritic Complexity Precedes Neurodegeneration in a Mouse Model with Disrupted Mitochondrial Distribution in Mature Dendrites

    Directory of Open Access Journals (Sweden)

    Guillermo López-Doménech

    2016-10-01

    Full Text Available Correct mitochondrial distribution is critical for satisfying local energy demands and calcium buffering requirements and supporting key cellular processes. The mitochondrially targeted proteins Miro1 and Miro2 are important components of the mitochondrial transport machinery, but their specific roles in neuronal development, maintenance, and survival remain poorly understood. Using mouse knockout strategies, we demonstrate that Miro1, as opposed to Miro2, is the primary regulator of mitochondrial transport in both axons and dendrites. Miro1 deletion leads to depletion of mitochondria from distal dendrites but not axons, accompanied by a marked reduction in dendritic complexity. Disrupting postnatal mitochondrial distribution in vivo by deleting Miro1 in mature neurons causes a progressive loss of distal dendrites and compromises neuronal survival. Thus, the local availability of mitochondrial mass is critical for generating and sustaining dendritic arbors, and disruption of mitochondrial distribution in mature neurons is associated with neurodegeneration.

  5. Differential gating of dendritic spikes by compartmentalized inhibition

    Directory of Open Access Journals (Sweden)

    Katharina Anna Wilmes

    2014-03-01

    Full Text Available Different types of local inhibitory interneurons innervate different dendritic sites of pyramidal neurons in cortex and hippocampus (Klausberger 2009. What could be the functional role of compartmentalized inhibition? Pyramidal cell dendrites support different forms of active signal propagation, which are important not only for dendritic and neuronal signal processing (Smith et al. 2013, but also for synaptic plasticity. While back-propagating action potentials signal post-synaptic activity to synapses in apical oblique and basal dendrites (Markram et al. 1997, Cho et al. 2006, calcium spikes cause plasticity of distal apical tuft synapses (Golding et al. 2002. Suspiciously, the associated regions of the dendrite are targeted by different interneuron populations. Parvalbumin-positive interneurons typically target the proximal dendritic and somatic parts of the neuron, while somatostatin-positive interneurons target the apical dendrite. The matching compartmentalization in terms of dendritic spikes and inhibitory control suggests that inhibition could differentially regulate different dendritic spikes and thereby introduce a compartment-specific modulation of synaptic plasticity. We evaluate this hypothesis in a biophysical multi-compartment model of a pyramidal neuron, receiving shunting inhibition at different locations on the dendrite. The model shows that, first, inhibition can gate dendritic spikes in an all-or-none manner. Second, spatially selective inhibition can individually suppress back-propagating action potentials and calcium spikes, thereby allowing a compartment-specific switch for synaptic plasticity. In our model, proximal inhibition on the apical dendrite eliminated both the back-propagating action potential and the calcium spike, thus influencing plasticity in the whole apical dendrite. Distal apical inhibition could selectively affect calcium spikes and thus distal plasticity, without suppressing back­propagation of action

  6. Alpha and gamma oscillation amplitudes synergistically predict the perception of forthcoming nociceptive stimuli.

    Science.gov (United States)

    Tu, Yiheng; Zhang, Zhiguo; Tan, Ao; Peng, Weiwei; Hung, Yeung Sam; Moayedi, Massieh; Iannetti, Gian Domenico; Hu, Li

    2016-02-01

    Ongoing fluctuations of intrinsic cortical networks determine the dynamic state of the brain, and influence the perception of forthcoming sensory inputs. The functional state of these networks is defined by the amplitude and phase of ongoing oscillations of neuronal populations at different frequencies. The contribution of functionally different cortical networks has yet to be elucidated, and only a clear dependence of sensory perception on prestimulus alpha oscillations has been clearly identified. Here, we combined electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) in a large sample of healthy participants to investigate how ongoing fluctuations in the activity of different cortical networks affect the perception of subsequent nociceptive stimuli. We observed that prestimulus EEG oscillations in the alpha (at bilateral central regions) and gamma (at parietal regions) bands negatively modulated the perception of subsequent stimuli. Combining information about alpha and gamma oscillations predicted subsequent perception significantly more accurately than either measure alone. In a parallel experiment, we found that prestimulus fMRI activity also modulated the perception of subsequent stimuli: perceptual ratings were higher when the BOLD signal was higher in nodes of the sensorimotor network and lower in nodes of the default mode network. Similar to what observed in the EEG data, prediction accuracy was improved when the amplitude of prestimulus BOLD signals in both networks was combined. These findings provide a comprehensive physiological basis to the idea that dynamic changes in brain state determine forthcoming behavioral outcomes. Hum Brain Mapp 37:501-514, 2016. © 2015 Wiley Periodicals, Inc.

  7. Kilauea's Ongoing Eruption: 25th Year Brings Major Changes

    Science.gov (United States)

    Orr, T. R.

    2007-12-01

    2007 marks the 25th year of nearly continuous eruption on Kilauea's east rift zone. Episodic high lava fountains, which built the Pu`u `O`o cone during the first three years of the eruption, ended in 1986. Activity then migrated downrift and the Kupaianaha shield was formed by passive effusion of lava. The change in eruptive style resulted in a switch at Pu`u `O`o from cone construction to cone collapse that has been ongoing for the last two decades. Activity at Kupaianaha ceased in 1992, and the eruption resumed at Pu`u `O`o. The eruptive style established at Kupaianaha continued, however, with continuous effusion from vents on the southwest flank of the Pu`u `O`o cone. The last 15 years have been characterized by the formation of relatively stable tube systems---broken only by a brief fissure eruption uprift of Pu`u `O`o in 1997---that have carried lava from the flank vents to the ocean about 9 km away. The Prince Kuhio Kalanianaole (PKK) tube, the most recent of these tube systems to develop, was active from March 2004 to June 2007. The PKK flow was emplaced almost entirely on older flows of this eruption and entered the ocean in several locations over a span of 6 km. The "Father's Day" intrusion of June 17--19, 2007, robbed the supply of magma to Pu`u `O`o and, thus, the active flow field. The floor of the Pu`u `O`o crater dropped 80--100 m, the PKK tube system drained, and the active flows and ocean entry quickly stagnated. On June 19, a short-lived fissure eruption broke out low on the east flank of Kane Nui o Hamo, about 6 km uprift of Pu`u `O`o, burying only 0.22 hectares. The eruption at Kilauea paused from June 20 through July 1 or 2, when lava returned to Pu`u `O`o and began refilling the collapsed crater. Near midnight on July 20--21, after at least 19 days of lava lake growth, the lava pond within the Pu`u `O`o crater drained suddenly when a series of fissures opened on the east flank of the cone and propagated ~2 km downrift. The new activity, dubbed

  8. Deformation patterns on Kythnos, Western Cyclades; ongoing work

    Science.gov (United States)

    Rice, A. Hugh N.; Grasemann, Bernhard

    2014-05-01

    footwall part of the exposed West Cycladic Detachment System in the extreme SW of the island. The cause of the change from BGM in the east to YBM in the west is enigmatic. A primary sedimentary variation is unlikely, as it is parallel to the stretching direction; syn-tectonic dissolution seems more likely, but implies a massive fluid flow through the rocks. The confusion between BGM and YBM is seen elsewhere, with, for example, the map showing BGM changing to YBM across a normal fault, with little apparent offset of the marble boundary. Clearly, the map of de Smeth (1975), although very good in general, needs careful reworking. More important, it is potentially obscuring significant large-scale structures by mapping the same marble as two different lithostratigraphic units. Work is ongoing in the area.

  9. Atmospheric sulfur loading by the ongoing Nornahraun eruption, North Iceland

    Science.gov (United States)

    Thordarson, Thorvaldur; Hartley, Margaret

    2015-04-01

    The ongoing Nornahraun fissure eruption has maintained a 1-4 km-high, gas-charged and sulfur-rich eruption plume since the onset of eruption on 31 August 2014 and had discharged ~1 km3 of lava at the end of 2014. During this time (i.e. September through December 2014), the SO2 emissions have produced significant volcanic pollution across Iceland with several short-lived events where the SO2 concentrations have exceeded toxic levels [1]. Although measurements of SO2 concentrations and fluxes is relatively straightforward at specific sites or localities within Iceland, it has been challenging to obtain good ground- or satellite-based time series measurements of the SO2 flux released by the magma upon venting. These difficulties arise because: (i) the eruption site is remote and nested in the centre of the Icelandic highland, thus these measurements are hampered by access and by weather conditions, (ii) the plume is confined to the lower troposphere where the conversion rate of SO2 to H2SO4 aerosols is very rapid, or hours (?) to days [2] and (iii) the plume is commonly obscured by clouds due of its low rise heights. The empirical sulphur emission method of Thordarson et al (2003) is an alternative way to obtain estimates on the total as well as temporal atmospheric SO2-loading by the Nornahraun eruption. We use the TiO2/FeO value of 0.156, obtained via microprobe analyses of groundmass glass in tephra grains, to calculate initial (1420 ppm) and degassed (435 ppm) S values for the Nornahraun magma. These values compare well with measured groundmass values (425 ppm = degassed S content) and melt inclusion values (~1400 ppm = initial S content of the magma). The difference in the above listed values represents the amount of S released into the atmosphere at the vents and indicates a 5.3 kg SO2-loading by each cubic meter of erupted magma. This implies a total atmospheric SO2-mass-loading of 5 million tons (= 5 terragrams) by the Nornahraun event during the first 4

  10. A theory of generalized Bloch oscillations.

    Science.gov (United States)

    Duggen, Lars; Lew Yan Voon, L C; Lassen, Benny; Willatzen, Morten

    2016-04-20

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics.

  11. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    Directory of Open Access Journals (Sweden)

    You Kure Wu

    Full Text Available Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  12. Linking Memories across Time via Neuronal and Dendritic Overlaps in Model Neurons with Active Dendrites

    Directory of Open Access Journals (Sweden)

    George Kastellakis

    2016-11-01

    Full Text Available Memories are believed to be stored in distributed neuronal assemblies through activity-induced changes in synaptic and intrinsic properties. However, the specific mechanisms by which different memories become associated or linked remain a mystery. Here, we develop a simplified, biophysically inspired network model that incorporates multiple plasticity processes and explains linking of information at three different levels: (1 learning of a single associative memory, (2 rescuing of a weak memory when paired with a strong one, and (3 linking of multiple memories across time. By dissecting synaptic from intrinsic plasticity and neuron-wide from dendritically restricted protein capture, the model reveals a simple, unifying principle: linked memories share synaptic clusters within the dendrites of overlapping populations of neurons. The model generates numerous experimentally testable predictions regarding the cellular and sub-cellular properties of memory engrams as well as their spatiotemporal interactions.

  13. Diverse routes to oscillation death in a coupled oscillator system

    Science.gov (United States)

    Suárez-Vargas, José J.; González, Jorge A.; Stefanovska, Aneta; McClintock, Peter V. E.

    2010-01-01

    We study oscillation death (OD) in a well-known coupled-oscillator system that has been used to model cardiovascular phenomena. We derive exact analytic conditions that allow the prediction of OD through the two known bifurcation routes, in the same model, and for different numbers of coupled oscillators. Our exact analytic results enable us to generalize OD as a multiparameter-sensitive phenomenon. It can be induced, not only by changes in couplings, but also by changes in the oscillator frequencies or amplitudes. We observe synchronization transitions as a function of coupling and confirm the robustness of the phenomena in the presence of noise. Numerical and analogue simulations are in good agreement with the theory. PMID:20823952

  14. Statistical Physics of Neural Systems with Nonadditive Dendritic Coupling

    Directory of Open Access Journals (Sweden)

    David Breuer

    2014-03-01

    Full Text Available How neurons process their inputs crucially determines the dynamics of biological and artificial neural networks. In such neural and neural-like systems, synaptic input is typically considered to be merely transmitted linearly or sublinearly by the dendritic compartments. Yet, single-neuron experiments report pronounced supralinear dendritic summation of sufficiently synchronous and spatially close-by inputs. Here, we provide a statistical physics approach to study the impact of such nonadditive dendritic processing on single-neuron responses and the performance of associative-memory tasks in artificial neural networks. First, we compute the effect of random input to a neuron incorporating nonlinear dendrites. This approach is independent of the details of the neuronal dynamics. Second, we use those results to study the impact of dendritic nonlinearities on the network dynamics in a paradigmatic model for associative memory, both numerically and analytically. We find that dendritic nonlinearities maintain network convergence and increase the robustness of memory performance against noise. Interestingly, an intermediate number of dendritic branches is optimal for memory functionality.

  15. Control of dendritic morphogenesis by Trio in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Madhuri Shivalkar

    Full Text Available Abl tyrosine kinase and its effectors among the Rho family of GTPases each act to control dendritic morphogenesis in Drosophila. It has not been established, however, which of the many GTPase regulators in the cell link these signaling molecules in the dendrite. In axons, the bifunctional guanine exchange factor, Trio, is an essential link between the Abl tyrosine kinase signaling pathway and Rho GTPases, particularly Rac, allowing these systems to act coordinately to control actin organization. In dendritic morphogenesis, however, Abl and Rac have contrary rather than reinforcing effects, raising the question of whether Trio is involved, and if so, whether it acts through Rac, Rho or both. We now find that Trio is expressed in sensory neurons of the Drosophila embryo and regulates their dendritic arborization. trio mutants display a reduction in dendritic branching and increase in average branch length, whereas over-expression of trio has the opposite effect. We further show that it is the Rac GEF domain of Trio, and not its Rho GEF domain that is primarily responsible for the dendritic function of Trio. Thus, Trio shapes the complexity of dendritic arbors and does so in a way that mimics the effects of its target, Rac.

  16. Gravitational Wave - Gauge Field Oscillations

    CERN Document Server

    Caldwell, R R; Maksimova, N A

    2016-01-01

    Gravitational waves propagating through a stationary gauge field transform into gauge field waves and back again. When multiple families of flavor-space locked gauge fields are present, the gravitational and gauge field waves exhibit novel dynamics. At high frequencies, the system behaves like coupled oscillators in which the gravitational wave is the central pacemaker. Due to energy conservation and exchange among the oscillators, the wave amplitudes lie on a multi-dimensional sphere, reminiscent of neutrino flavor oscillations. This phenomenon has implications for cosmological scenarios based on flavor-space locked gauge fields.

  17. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    Lin Xiao-Gang; Liu Wen-Jun; Lei Ming

    2016-03-01

    Oscillating solitons are obtained in nonlinear optics. Analytical study of the variable coefficient nonlinear Schrödinger equation, which is used to describe the soliton propagation in those systems, is carried out using the Hirota’s bilinear method. The bilinear forms and analytic soliton solutions are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.

  18. Forced synchronization of quasiperiodic oscillations

    Science.gov (United States)

    Stankevich, N. V.; Kurths, J.; Kuznetsov, A. P.

    2015-01-01

    A model of a generator of quasiperiodic oscillations forced by a periodic pulse sequence is studied. We analyze synchronization when the autonomous generator demonstrates periodic, quasiperiodic, respective weakly chaotic oscillations. For the forced quasiperiodic oscillations a picture of synchronization, consisting of small-scale and large-scale structures was uncovered. It even includes the existence of stable the three-frequency tori. For the regime of weak chaos a partial destruction of this features and of the regime of three-frequency tori are found.

  19. Collective oscillations in a plasma

    CERN Document Server

    Akhiezer, A I; Polovin, R V; ter Haar, D

    2013-01-01

    International Series of Monographs in Natural Philosophy: Collective Oscillations in a Plasma, Volume 7 presents specific topics within the general field of radio waves propagation. This book contains five chapters that address the theory of linear oscillations in a plasma, the spectra of the eigen oscillations, and the mechanism of high-frequency heating. The opening chapters deal with the self-consistent fields; development of initial perturbation; dispersion permittivity tensor of a plasma in a magnetic field; effect of thermal motion of particles on low-frequency resonances; excitation of

  20. Active optomechanics through relaxation oscillations

    CERN Document Server

    Princepe, Debora; Frateschi, Newton

    2014-01-01

    We propose an optomechanical laser based on III-V compounds which exhibits self-pulsation in the presence of a dissipative optomechanical coupling. In such a laser cavity, radiation pressure drives the mechanical degree of freedom and its back-action is caused by the mechanical modulation of the cavity loss rate. Our numerical analysis shows that even in a wideband gain material, such dissipative coupling couples the mechanical oscillation with the laser relaxation oscillations process. Laser self-pulsation is observed for mechanical frequencies below the laser relaxation oscillation frequency under sufficiently high optomechanical coupling factor.

  1. Chromosome oscillations in mitosis

    Science.gov (United States)

    Campas, Otger

    2008-03-01

    Successful cell division necessitates a tight regulation of chromosome movement via the activity of molecular motors. Many of the key players at the origin of the forces generating the motion have been identified, but their spatial and temporal organization remains elusive. In animal cells, chromosomes periodically switch between phases of movement towards and away from the pole. This characteristic oscillatory behaviour cannot be explained by the current models of chromosome positioning and congression. We perform a self-contained theoretical analysis in which the motion of mono-oriented chromosomes results from the competition between the activity of the kinetochore and chromokinesin motors on the chromosome arms. Our analysis, consistent with the available experimental data, proposes that the interplay between the aster-like morphology of the spindle and the collective kinetics of molecular motors is at the origin of chromosome oscillations, positioning and congression. It provides a natural explanation for the so-called chromosome directional instability and for the mechanism by which chromosomes sense their position in space. In addition, we estimate the in vivo velocity of chromokinesins at vanishing load and propose new experiments to assess the mechanism at the origin of chromosome movement in cell division.

  2. Galactic oscillator symmetry

    Science.gov (United States)

    Rosensteel, George

    1995-01-01

    Riemann ellipsoids model rotating galaxies when the galactic velocity field is a linear function of the Cartesian coordinates of the galactic masses. In nuclear physics, the kinetic energy in the linear velocity field approximation is known as the collective kinetic energy. But, the linear approximation neglects intrinsic degrees of freedom associated with nonlinear velocity fields. To remove this limitation, the theory of symplectic dynamical symmetry is developed for classical systems. A classical phase space for a self-gravitating symplectic system is a co-adjoint orbit of the noncompact group SP(3,R). The degenerate co-adjoint orbit is the 12 dimensional homogeneous space Sp(3,R)/U(3), where the maximal compact subgroup U(3) is the symmetry group of the harmonic oscillator. The Hamiltonian equations of motion on each orbit form a Lax system X = (X,F), where X and F are elements of the symplectic Lie algebra. The elements of the matrix X are the generators of the symplectic Lie algebra, viz., the one-body collective quadratic functions of the positions and momenta of the galactic masses. The matrix F is composed from the self-gravitating potential energy, the angular velocity, and the hydostatic pressure. Solutions to the hamiltonian dynamical system on Sp(3,R)/U(3) are given by symplectic isospectral deformations. The Casimirs of Sp(3,R), equal to the traces of powers of X, are conserved quantities.

  3. Oscillations in Mathematical Biology

    CERN Document Server

    1983-01-01

    The papers in this volume are based on talks given at a one day conference held on the campus of Adelphi University in April 1982. The conference was organized with the title "Oscillations in Mathematical Biology;" however the speakers were allowed considerable latitutde in their choice of topics. In the event, the talks all concerned the dynamics of non-linear systems arising in biology so that the conference achieved a good measure of cohesion. Some of the speakers cho~e not to submit a manuscript for these proceedings, feeling that their material was too conjectural to be committed to print. Also the paper of Rinzel and Troy is a distillation of the two separate talks that the authors gave. Otherwise the material reproduces the conference proceedings. The conference was made possible by the generous support of the Office of the Dean of the College of Arts and Sciences at Adelphi. The bulk of the organization of the conference was carried out by Dr. Ronald Grisell whose energy was in large measure responsib...

  4. Fission waves can oscillate

    CERN Document Server

    Osborne, Andrew G

    2016-01-01

    Under the right conditions, self sustaining fission waves can form in fertile nuclear materials. These waves result from the transport and absorption of neutrons and the resulting production of fissile isotopes. When these fission, additional neutrons are produced and the chain reaction propagates until it is poisoned by the buildup of fission products. It is typically assumed that fission waves are soliton-like and self stabilizing. However, we show that in uranium, coupling of the neutron field to the 239U->239Np->239Pu decay chain can lead to a Hopf bifurcation. The fission reaction then ramps up and down, along with the wave velocity. The critical driver for the instability is a delay, caused by the half-life of 239U, between the time evolution of the neutron field and the production of 239Pu. This allows the 239Pu to accumulate and burn out in a self limiting oscillation that is characteristic of a Hopf bifurcation. Time dependent results are obtained using a numerical implementation of a reduced order r...

  5. Iron acquisition by Mycobacterium tuberculosis residing within myeloid dendritic cells.

    Science.gov (United States)

    Olakanmi, Oyebode; Kesavalu, Banurekha; Abdalla, Maher Y; Britigan, Bradley E

    2013-12-01

    The pathophysiology of Mycobacterium tuberculosis (M.tb) infection is linked to the ability of the organism to grow within macrophages. Lung myeloid dendritic cells are a newly recognized reservoir of M.tb during infection. Iron (Fe) acquisition is critical for M.tb growth. In vivo, extracellular Fe is chelated to transferrin (TF) and lactoferrin (LF). We previously reported that M.tb replicating in human monocyte-dervied macrophages (MDM) can acquire Fe bound to TF, LF, and citrate, as well as from the MDM cytoplasm. Access of M.tb to Fe may influence its growth in macrophages and dendritic cells. In the present work we confirmed the ability of different strains of M.tb to grow in human myeloid dendritic cells in vitro. Fe acquired by M.tb replicating within dendritic cells from externally added Fe chelates varied with the Fe chelate present in the external media: Fe-citrate > Fe-LF > Fe-TF. Fe acquisition rates from each chelate did not vary over 7 days. M.tb within dendritic cells also acquired Fe from the dendritic cell cytoplasm, with the efficiency of Fe acquisition greater from cytoplasmic Fe sources, regardless of the initial Fe chelate from which that cytoplasmic Fe was derived. Growth and Fe acquisition results with human MDM were similar to those with dendritic cells. M.tb grow and replicate within myeloid dendritic cells in vitro. Fe metabolism of M.tb growing in either MDM or dendritic cells in vitro is influenced by the nature of Fe available and the organism appears to preferentially access cytoplasmic rather than extracellular Fe sources. Whether these in vitro data extend to in vivo conditions should be examined in future studies.

  6. Efficacy, safety and tolerability of ongoing statin plus ezetimibe versus doubling the ongoing statin dose in hypercholesterolemic Taiwanese patients: an open-label, randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Yu Chih-Chieh

    2012-05-01

    Full Text Available Abstract Background Reducing low-density lipoprotein cholesterol (LDL-C is associated with reduced risk for major coronary events. Despite statin efficacy, a considerable proportion of statin-treated hypercholesterolemic patients fail to reach therapeutic LDL-C targets as defined by guidelines. This study compared the efficacy of ezetimibe added to ongoing statins with doubling the dose of ongoing statin in a population of Taiwanese patients with hypercholesterolemia. Methods This was a randomized, open-label, parallel-group comparison study of ezetimibe 10 mg added to ongoing statin compared with doubling the dose of ongoing statin. Adult Taiwanese hypercholesterolemic patients not at optimal LDL-C levels with previous statin treatment were randomized (N = 83 to ongoing statin + ezetimibe (simvastatin, atorvastatin or pravastatin + ezetimibe at doses of 20/10, 10/10 or 20/10 mg or doubling the dose of ongoing statin (simvastatin 40 mg, atorvastatin 20 mg or pravastatin 40 mg for 8 weeks. Percent change in total cholesterol, LDL-C, high-density lipoprotein cholesterol (HDL-C and triglycerides, and specified safety parameters were assessed at 4 and 8 weeks. Results At 8 weeks, patients treated with statin + ezetimibe experienced significantly greater reductions compared with doubling the statin dose in LDL-C (26.2% vs 17.9%, p = 0.0026 and total cholesterol (20.8% vs 12.2%, p = 0.0003. Percentage of patients achieving treatment goal was greater for statin + ezetimibe (58.6% vs doubling statin (41.2%, but the difference was not statistically significant (p = 0.1675. The safety and tolerability profiles were similar between treatments. Conclusion Ezetimibe added to ongoing statin therapy resulted in significantly greater lipid-lowering compared with doubling the dose of statin in Taiwanese patients with hypercholesterolemia. Studies to assess clinical outcome benefit are ongoing. Trial registration Registered at ClinicalTrials.gov: NCT00652327

  7. Efficacy, safety and tolerability of ongoing statin plus ezetimibe versus doubling the ongoing statin dose in hypercholesterolemic Taiwanese patients: an open-label, randomized clinical trial

    OpenAIRE

    Yu Chih-Chieh; Lai Wen-Ter; Shih Kuang-Chung; Lin Tsung-Hsien; Lu Chieh-Hua; Lai Hung-Jen; Hanson Mary E; Hwang Juey-Jen

    2012-01-01

    Abstract Background Reducing low-density lipoprotein cholesterol (LDL-C) is associated with reduced risk for major coronary events. Despite statin efficacy, a considerable proportion of statin-treated hypercholesterolemic patients fail to reach therapeutic LDL-C targets as defined by guidelines. This study compared the efficacy of ezetimibe added to ongoing statins with doubling the dose of ongoing statin in a population of Taiwanese patients with hypercholesterolemia. Methods This was a rand...

  8. Follicular Dendritic Cell Sarcoma of the Abdomen: the Imaging Findings

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tae Wook; Lee, Soon Jin; Song, Hye Jong [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2010-04-15

    Follicular dendritic cell sarcoma is a rare neoplasm that originates from follicular dendritic cells in lymphoid follicles. This disease usually involves the lymph nodes, and especially the head and neck area. Rarely, extranodal sites may be affected, including tonsil, the oral cavity, liver, spleen and the gastrointestinal tract. We report here on the imaging findings of follicular dendritic cell sarcoma of the abdomen that involved the retroperitoneal lymph nodes and colon. It shows as a well-defined, enhancing homogenous mass with internal necrosis and regional lymphadenopathy.

  9. NUMERICAL SIMULATION OF CELLULAR/DENDRITIC PRIMARY SPACING

    Institute of Scientific and Technical Information of China (English)

    W.Q.Zhang; L.Xiao

    2004-01-01

    A numerical model has been established to calculate the primary spacing of cellular or dendritic structure with fluid flow considered. The computing results show that the primary spacing depends on the growing velocity, the temperature gradient on the interface and fluid flow. There is a critical growing velocity for the cell-dendrite transition, which has a relationship with the temperature gradient: Rcr=(3-4)×10-9GT. Fluid flow leads to an increase of the primary spacing for dendritic growth but a decrease for cellular growth,resulting in an instability on the interface.

  10. Phase field simulation of dendrite growth under convection

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The phase-field model coupled with a flow field was used to simulate the solidification of pure materials by the finite difference method.The effects of initial crystal radius,the space step and the interface thickness on the dendrite growth were studied.Results indicate that the grain grows into an equiaxial dendrite during free flow and into a typical branched structure under forced flow.The radius of an initial crystal can affect the growth of side-branches but not the stability of the dendrite s tip whe...

  11. Information Fusion for Anomaly Detection with the Dendritic Cell Algorithm

    CERN Document Server

    Greensmith, Julie; Tedesco, Gianni

    2010-01-01

    Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system, providing the initial detection of pathogenic invaders. Research into this family of cells has revealed that they perform information fusion which directs immune responses. We have derived a Dendritic Cell Algorithm based on the functionality of these cells, by modelling the biological signals and differentiation pathways to build a control mechanism for an artificial immune system. We present algorithmic details in addition to experimental results, when the algorithm was applied to anomaly detection for the detection of port scans. The results show the Dendritic Cell Algorithm is sucessful at detecting port scans.

  12. Learning rules and persistence of dendritic spines.

    Science.gov (United States)

    Kasai, Haruo; Hayama, Tatsuya; Ishikawa, Motoko; Watanabe, Satoshi; Yagishita, Sho; Noguchi, Jun

    2010-07-01

    Structural plasticity of dendritic spines underlies learning, memory and cognition in the cerebral cortex. We here summarize fifteen rules of spine structural plasticity, or 'spine learning rules.' Together, they suggest how the spontaneous generation, selection and strengthening (SGSS) of spines represents the physical basis for learning and memory. This SGSS mechanism is consistent with Hebb's learning rule but suggests new relations between synaptic plasticity and memory. We describe the cellular and molecular bases of the spine learning rules, such as the persistence of spine structures and the fundamental role of actin, which polymerizes to form a 'memory gel' required for the selection and strengthening of spine synapses. We also discuss the possible link between transcriptional and translational regulation of structural plasticity. The SGSS mechanism and spine learning rules elucidate the integral nature of synaptic plasticity in neuronal network operations within the actual brain tissue.

  13. Harnessing dendritic cells in inflammatory skin diseases.

    Science.gov (United States)

    Chu, Chung-Ching; Di Meglio, Paola; Nestle, Frank O

    2011-02-01

    The skin immune system harbors a complex network of dendritic cells (DCs). Recent studies highlight a diverse functional specialization of skin DC subsets. In addition to generating cellular and humoral immunity against pathogens, skin DCs are involved in tolerogenic mechanisms to ensure the maintenance of immune homeostasis, as well as in pathogenesis of chronic inflammation in the skin when excessive immune responses are initiated and unrestrained. Harnessing DCs by directly targeting DC-derived molecules or selectively modulate DC subsets is a convincing strategy to tackle inflammatory skin diseases. In this review we discuss recent advances underlining the functional specialization of skin DCs and discuss the potential implication for future DC-based therapeutic strategies.

  14. Harnessing Dendritic Cells for Tumor Antigen Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Nierkens, Stefan [Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, Nijmegen 6525 GA (Netherlands); Janssen, Edith M., E-mail: edith.janssen@cchmc.org [Division of Molecular Immunology, Cincinnati Children' s Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States)

    2011-04-26

    Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8{sup +} and CD4{sup +} T cells; the in vitro loading of DCs with tumor antigens.

  15. Modulation of tolerogenic dendritic cells and autoimmunity.

    Science.gov (United States)

    Kim, Sun Jung; Diamond, Betty

    2015-05-01

    A key function of dendritic cells (DCs) is to induce either immune tolerance or immune activation. Many new DC subsets are being recognized, and it is now clear that each DC subset has a specialized function. For example, different DC subsets may express different cell surface molecules and respond differently to activation by secretion of a unique cytokine profile. Apart from intrinsic differences among DC subsets, various immune modulators in the microenvironment may influence DC function; inappropriate DC function is closely related to the development of immune disorders. The most exciting recent advance in DC biology is appreciation of human DC subsets. In this review, we discuss functionally different mouse and human DC subsets both in lymphoid organs and non-lymphoid organs, the molecules that regulate DC function, and the emerging understanding of the contribution of DCs to autoimmune diseases.

  16. Unsteady growth of ammonium chloride dendrites

    Science.gov (United States)

    Martyushev, L. M.; Terentiev, P. S.; Soboleva, A. S.

    2016-02-01

    Growth of ammonium chloride dendrites from aqueous solution is experimentally investigated. The growth rate υ and the radius ρ of curvature of branches are measured as a function of the relative supersaturation Δ for steady and unsteady growth conditions. It is shown that the experimental results are quantitatively described by the dependences ρ=a/Δ+b, υ=cΔ2, where the factors for primary branches are a=(1.3±0.2)·10-7 m, b=(2.5±0.4)·10-7 m, and c=(2.2±0.3)·10-4 m/s. The factor c is found to be approximately 7 times smaller for the side branches than that for the primary branches.

  17. Role of Dendritic Cells in Immune Dysfunction

    Science.gov (United States)

    Savary, Cherylyn A.

    1998-01-01

    The specific aims of the project were: (1) Application of the NASA bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC). (2) Compare the frequency and function of DC in normal donors and immunocompromised cancer patients. (3) Analyze the effectiveness of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in a murine model of experimental fungal disease. Our investigations have provided new insight into DC immunobiology and have led to the development of methodology to evaluate DC in blood of normal donors and patients. Information gained from these studies has broadened our understanding of possible mechanisms involved in the immune dysfunction of space travelers and earth-bound cancer patients, and could contribute to the design of novel therapies to restore/preserve immunity in these individuals. Several new avenues of investigation were also revealed. The results of studies completed during Round 2 are summarized.

  18. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    Science.gov (United States)

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

  19. Gamma Oscillations and Visual Binding

    Science.gov (United States)

    Robinson, Peter A.; Kim, Jong Won

    2006-03-01

    At the root of visual perception is the mechanism the brain uses to analyze features in a scene and bind related ones together. Experiments show this process is linked to oscillations of brain activity in the 30-100 Hz gamma band. Oscillations at different sites have correlation functions (CFs) that often peak at zero lag, implying simultaneous firing, even when conduction delays are large. CFs are strongest between cells stimulated by related features. Gamma oscillations are studied here by modeling mm-scale patchy interconnections in the visual cortex. Resulting predictions for gamma responses to stimuli account for numerous experimental findings, including why oscillations and zero-lag synchrony are associated, observed connections with feature preferences, the shape of the zero-lag peak, and variations of CFs with attention. Gamma waves are found to obey the Schroedinger equation, opening the possibility of cortical analogs of quantum phenomena. Gamma instabilities are tied to observations of gamma activity linked to seizures and hallucinations.

  20. Atmospheric Neutrino Oscillations in Antares

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, J.

    2013-04-15

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximum mixing, a mass difference of Δm{sub 32}{sup 2}=(3.1±0.9)⋅10{sup −3}eV{sup 2} is obtained, in good agreement with the world average value.

  1. Strongly nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2014-01-01

    This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...

  2. Matter Effects On Neutrino Oscillations

    Science.gov (United States)

    Gordon, Michael

    An introduction to neutrino oscillations in vacuum is presented, followed by a survey of various techniques for obtaining either exact or approximate expressions for numu → nue oscillations in matter. The method developed by Arafune, Koike, and Sato uses a perturbative analysis to find an approximation for the evolution operator. The method used by Freund yields an approximate oscillation probability by diagonalizing the Hamiltonian, finding the eigenvalues and eigenvectors, and then using those to find modified mixing angles with the matter effect taken into account. The method devised by Mann, Kafka, Schneps, and Altinok produces an exact expression for the oscillation by determining explicitly the evolution operator. These methods are compared to each other using the T2K, MINOS, NOnuA, and LBNE parameters.

  3. Oscillations of a chemical garden

    Science.gov (United States)

    Pantaleone, J.; Toth, A.; Horvath, D.; Rother McMahan, J.; Smith, R.; Butki, D.; Braden, J.; Mathews, E.; Geri, H.; Maselko, J.

    2008-04-01

    When soluble metal salts are placed in a silicate solution, chemical gardens grow. These gardens are treelike structures formed of long, thin, hollow tubes. Here we study one particular case: a calcium nitrate pellet in a solution of sodium trisilicate. We observe that tube growth results from a relaxation oscillation. The average period and the average growth rate are approximately constant for most of the structures growth. The period does fluctuate from cycle to cycle, with the oscillation amplitude proportional to the period. Based on our observations, we develop a model of the relaxation oscillations which calculates the average oscillation period and the average tube radius in terms of fundamental membrane parameters. We also propose a model for the average tube growth rate. Predictions are made for future experiments.

  4. Global Analysis of Neutrino Oscillation

    CERN Document Server

    Goswami, S; Choubey, S; Goswami, Srubabati; Bandyopadhyay, Abhijit; Choubey, Sandhya

    2005-01-01

    We present the constraints on neutrino oscillation parameters $\\Delta m^2_{\\odot}$ and $\\theta_{\\odot}$ governing the solar neutrino oscillations from two generation analysis of solar and KamLAND data. We include the latest 766.3 ton year KamLAND data in our analysis. We also present the allowed values of parameters $\\Delta m^2_{atm}$ and $\\sin^2\\theta_{atm}$ from two generation oscillation analysis of SuperKamiokande atmospheric and K2K data. For both cases we discuss the precision achieved in the present set of experiments and also how the precision can be improved in future. We also obtain the bounds on $\\theta_{13}$ from three generation analysis of global oscillation data. We emphasise on the roles played by different data sets in constraining the allowed parameter ranges.

  5. Global Analysis of Neutrino Oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Srubabati [Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019 (India); Bandyopadhyay, Abhijit [Theory Group, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Calcutta 700 064 (India); Choubey, Sandhya [INFN, Sezione di Trieste and Scuola Internazionale Superiore di Studi Avanzati, I-34014, Trieste (Italy)

    2005-06-15

    We present the constraints on neutrino oscillation parameters {delta}m{sub -}bar {sup 2} and {theta}{sub -}bar governing the solar neutrino oscillations from two generation analysis of solar and KamLAND data. We include the latest 766.3 ton year KamLAND data in our analysis. We also present the allowed values of parameters {delta}m{sub atm}{sup 2} and sin{sup 2}{theta}{sub atm} from two generation oscillation analysis of SuperKamiokande atmospheric and K2K data. For both cases we discuss the precision achieved in the present set of experiments and also how the precision can be improved in future. We also obtain the bounds on {theta}{sub 13} from three generation analysis of global oscillation data. We emphasise on the roles played by different data sets in constraining the allowed parameter ranges.

  6. Strong nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2017-01-01

    This book outlines an analytical solution procedure of the pure nonlinear oscillator system, offering a solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter. Includes exercises.

  7. Matrix Theory of Small Oscillations

    Science.gov (United States)

    Chavda, L. K.

    1978-01-01

    A complete matrix formulation of the theory of small oscillations is presented. Simple analytic solutions involving matrix functions are found which clearly exhibit the transients, the damping factors, the Breit-Wigner form for resonances, etc. (BB)

  8. Differential Gene Expression in Thrombomodulin (TM; CD141)+ and TM− Dendritic Cell Subsets

    OpenAIRE

    Masaaki Toda; Zhifei Shao; Yamaguchi, Ken D.; Takehiro Takagi; Corina N D'Alessandro-Gabazza; Osamu Taguchi; Hugh Salamon; Leung, Lawrence L. K.; Gabazza, Esteban C.; John Morser

    2013-01-01

    Previously we have shown in a mouse model of bronchial asthma that thrombomodulin can convert immunogenic conventional dendritic cells into tolerogenic dendritic cells while inducing its own expression on their cell surface. Thrombomodulin(+) dendritic cells are tolerogenic while thrombomodulin(-) dendritic cells are pro-inflammatory and immunogenic. Here we hypothesized that thrombomodulin treatment of dendritic cells would modulate inflammatory gene expression. Murine bone marrow-derived de...

  9. Oscillations of thick accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Jaroszynski, M.

    1986-06-15

    The non-axisymmetric oscillations of polytropic, ideal fluid tori rotating in the external gravitational field of a point mass are investigated both numerically and analytically. Normal modes of oscillations are found; their classification into 'radial', 'p', 'g' and 'f' modes is done in analogy to the stellar case. The non-discrete spectrum of modes which are neutral in the limit of axisymmetric perturbations is also present.

  10. Harmonic Oscillators and Elementary Particles

    CERN Document Server

    Sobouti, Y

    2016-01-01

    Two dynamical systems with same symmetry should have features in common, and as far as their shared symmetry is concerned, one may represent the other. The three light quark constituents of the hadrons, a) have an approximate flavor SU(3) symmetry, b) have an exact color SU(3) symmetry, and c) as spin 1/2 particles, have a Lorentz SO(3,1) symmetry. So does a 3D harmonic oscillator. a) Its Hamiltonian has the SU(3) symmetry, breakable if the 3 fundamental modes of oscillation are not identical. b) The 3 directions of oscillation have the permutation symmetry. This enables one to create three copies of unbreakable SU(3) symmetry for each mode of the oscillation, and mimic the color of the elementary particles. And c) The Lagrangian of the 3D oscillator has the SO(3,1) symmetry. This can be employed to accommodate the spin of the particles. In this paper we draw up a one-to-one correspondence between the eigen modes of the Poisson bracket operator of the 3D oscillator and the flavor multiplets of the particles, ...

  11. On the nonlinear modeling of ring oscillators

    KAUST Repository

    Elwakil, Ahmed S.

    2009-06-01

    We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.

  12. Magnetically Coupled Magnet-Spring Oscillators

    Science.gov (United States)

    Donoso, G.; Ladera, C. L.; Martin, P.

    2010-01-01

    A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of…

  13. CD163 positive subsets of blood dendritic cells

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Møller, Holger Jon; Moestrup, Søren Kragh

    2006-01-01

    CD163 and CD91 are scavenging receptors with highly increased expression during the differentiation of monocytes into the anti-inflammatory macrophage phenotype. In addition, CD91 is expressed in monocyte-derived dendritic cells (MoDCs), where the receptor is suggested to be important for interna......CD163 and CD91 are scavenging receptors with highly increased expression during the differentiation of monocytes into the anti-inflammatory macrophage phenotype. In addition, CD91 is expressed in monocyte-derived dendritic cells (MoDCs), where the receptor is suggested to be important...... for internalization of CD91-targeted antigens to be presented on the dendritic cell surface for T-cell stimulation. Despite their overlap in functionality, the expression of CD91 and CD163 has never been compared and the expression of CD163 in the monocyte-dendritic cell lineage is not yet characterized. CD163...

  14. Actin Remodeling and Polymerization Forces Control Dendritic Spine Morphology

    CERN Document Server

    Miermans, Karsten; Storm, Cornelis; Hoogenraad, Casper

    2015-01-01

    Dendritic spines are small membranous structures that protrude from the neuronal dendrite. Each spine contains a synaptic contact site that may connect its parent dendrite to the axons of neighboring neurons. Dendritic spines are markedly distinct in shape and size, and certain types of stimulation prompt spines to evolve, in fairly predictable fashion, from thin nascent morphologies to the mushroom-like shapes associated with mature spines. This striking progression is coincident with the (re)configuration of the neuronal network during early development, learning and memory formation, and has been conjectured to be part of the machinery that encodes these processes at the scale of individual neuronal connections. It is well established that the structural plasticity of spines is strongly dependent upon the actin cytoskeleton inside the spine. A general framework that details the precise role of actin in directing the transitions between the various spine shapes is lacking. We address this issue, and present...

  15. Dendritic Cells, Viruses, and the Development of Atopic Disease

    Directory of Open Access Journals (Sweden)

    Jonathan S. Tam

    2012-01-01

    Full Text Available Dendritic cells are important residents of the lung environment. They have been associated with asthma and other inflammatory diseases of the airways. In addition to their antigen-presenting functions, dendritic cells have the ability to modulate the lung environment to promote atopic disease. While it has long been known that respiratory viral infections associate with the development and exacerbation of atopic diseases, the exact mechanisms have been unclear. Recent studies have begun to show the critical importance of the dendritic cell in this process. This paper focuses on these data demonstrating how different populations of dendritic cells are capable of bridging the adaptive and innate immune systems, ultimately leading to the translation of viral illness into atopic disease.

  16. Observation of dendritic growth under the influence of forced convection

    Science.gov (United States)

    Roshchupkina, O.; Shevchenko, N.; Eckert, S.

    2015-06-01

    The directional solidification of Ga-25wt%In alloys within a Hele-Shaw cell was visualized by X-ray radioscopy. The investigations are focused on the impact of melt convection on the dendritic growth. Natural convection occurs during a bottom up solidification because lighter solute is rejected during crystallization. Forced convection was produced by a specific electromagnetic pump. The direction of forced melt flow is almost horizontal at the solidification front. Melt flow induces various effects on grain morphology primarily caused by convective transport of solute, such as a facilitation of the growth of primary trunks or lateral branches, dendrite remelting, fragmentation or freckle formation depending on the dendrite orientation, the flow direction and intensity. Forced flow eliminates solutal plumes and damps local fluctuations of solute. A preferential growth of the secondary arms occurs at the upstream side of the dendrites, whereas high solute concentration at the downstream side inhibits the formation of secondary branches.

  17. Derivation and Utilization of Functional CD8(+) Dendritic Cell Lines.

    Science.gov (United States)

    Pigni, Matteo; Ashok, Devika; Acha-Orbea, Hans

    2016-01-01

    It is notoriously difficult to obtain large quantities of non-activated dendritic cells ex vivo. For this reason, we produced and characterized a mouse model expressing the large T oncogene under the CD11c promoter (Mushi mice), in which CD8α(+) dendritic cells transform after 4 months. We derived a variety of stable cell lines from these primary lines. These cell lines reproducibly share with freshly isolated dendritic cells most surface markers, mRNA and protein expression, and all tested biological functions. Cell lines can be derived from various strains and knockout mice and can be easily transduced with lentiviruses. In this article, we describe the derivation, culture, and lentiviral transduction of these dendritic cell lines.

  18. Transcriptional profiling of dendritic cells matured in different osmolarities

    Directory of Open Access Journals (Sweden)

    Federica Chessa

    2016-03-01

    Full Text Available Tissue-specific microenvironments shape the fate of mononuclear phagocytes [1–3]. Interstitial osmolarity is a tissue biophysical parameter which considerably modulates the phenotype and function of dendritic cells [4]. In the present report we provide a detailed description of our experimental workflow and bioinformatic analysis applied to our gene expression dataset (GSE72174, aiming to investigate the influence of different osmolarity conditions on the gene expression signature of bone marrow-derived dendritic cells. We established a cell culture system involving murine bone marrow cells, cultured under different NaCl-induced osmolarity conditions in the presence of the dendritic cell growth factor GM-CSF. Gene expression analysis was applied to mature dendritic cells (day 7 developed in different osmolarities, with and without prior stimulation with the TLR2/4 ligand LPS.

  19. CD56 marks human dendritic cell subsets with cytotoxic potential

    NARCIS (Netherlands)

    Roothans, D.; Smits, E.; Lion, E.; Tel, J.; Anguille, S.

    2013-01-01

    Human plasmacytoid and myeloid dendritic cells (DCs), when appropriately stimulated, can express the archetypal natural killer (NK)-cell surface marker CD56. In addition to classical DC functions, CD56+ DCs are endowed with an unconventional cytotoxic capacity.

  20. Metabolism Is Central to Tolerogenic Dendritic Cell Function

    Directory of Open Access Journals (Sweden)

    Wen Jing Sim

    2016-01-01

    Full Text Available Immunological tolerance is a fundamental tenant of immune homeostasis and overall health. Self-tolerance is a critical component of the immune system that allows for the recognition of self, resulting in hyporeactivity instead of immunogenicity. Dendritic cells are central to the establishment of dominant immune tolerance through the secretion of immunosuppressive cytokines and regulatory polarization of T cells. Cellular metabolism holds the key to determining DC immunogenic or tolerogenic cell fate. Recent studies have demonstrated that dendritic cell maturation leads to a shift toward a glycolytic metabolic state and preferred use of glucose as a carbon source. In contrast, tolerogenic dendritic cells favor oxidative phosphorylation and fatty acid oxidation. This dichotomous metabolic reprogramming of dendritic cells drives differential cellular function and plays a role in pathologies, such as autoimmune disease. Pharmacological alterations in metabolism have promising therapeutic potential.

  1. A Convenient Synthetic Method of Metal Dendritic Porphyrins

    Institute of Scientific and Technical Information of China (English)

    Wen Bin CUI; Jie ZHOU; Lei CHEN; Xiao Bin DENG; Chun GUO

    2006-01-01

    A convenient synthetic method of metal dendritic porphyrins through the convergent synthetic strategy is described. The porphyrin core were linked with the synthetic fragments by forming ether or ester bonds to give five target compounds were prepared.

  2. NUMERICAL SIMULATION OF SUCCINONITRITE DENDRITIC GROWTH IN A FORCED FLOW

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Numerical simulation based on phase field method is performed to describe solidifica-tion process of pure material in a free or forced flow. The evolution of the interface is showed, and the effects of mesh grid and flow velocity on succinonitrite shape are studied. These results indicate that crystal grows into an equiaxial dendrite in a free flow and into an asymmetrical dendritic in a forced flow. With increasing flow velo-city, the upstream dendritic arm tip grows faster and the downstream arm grows slower. However, the evolution of the perpendicular tip has no significant change. In addition, mesh grid has no influence on dendritic growth shape when mesh grid is above 300×300.

  3. 3D Modeling and Simulation of Dendritic Growth during Solidification

    Institute of Scientific and Technical Information of China (English)

    Zuojian LIANG; Qingyan XU; Baicheng LIU

    2003-01-01

    A mathematical model for the three-dimensional simulation of free dendritic growth and microstructure evolutionwas developed based on the growth mechanism of crystal grains and basic transfer equations such as heat, massand momentum transfer equations. Ma

  4. A Simple Transfer Function for Nonlinear Dendritic Integration

    Directory of Open Access Journals (Sweden)

    Matt eSingh

    2015-08-01

    Full Text Available Relatively recent advances in patch clamp recordings and iontophoresis have enabled unprecedented study of neuronal post-synaptic integration (dendritic integration. Findings support a separate layer of integration in the dendritic branches before potentials reach the cell’s soma. While integration between branches obeys previous linear assumptions, proximal inputs within a branch produce threshold nonlinearity, which some authors have likened to the sigmoid function. Here we show the implausibility of a sigmoidal relation and present a more realistic transfer function in both an elegant artificial form and a biophysically derived form that further considers input locations along the dendritic arbor. As the distance between input locations determines their ability to produce nonlinear interactions, models incorporating dendritic topology are essential to understanding the computational power afforded by these early stages of integration. We use the biophysical transfer function to emulate empirical data using biophysical parameters and describe the conditions under which the artificial and biophysically derived forms are equivalent.

  5. A theory of generalized Bloch oscillations

    DEFF Research Database (Denmark)

    Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny;

    2016-01-01

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact cal...... oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics.......Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact...... calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch...

  6. Barriers in the brain: resolving dendritic spine morphology and compartmentalization

    OpenAIRE

    2014-01-01

    Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50–400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and electric signals within the spine compartment. Such compartmentalization could minimize interspinal crosstalk and thereby support spine-specific synapse plasticity. However, to what extent compartmenta...

  7. Dendritic biomimicry: microenvironmental hydrogen-bonding effects on tryptophan fluorescence.

    Science.gov (United States)

    Koenig, S; Müller, L; Smith, D K

    2001-03-02

    Two series of dendritically modified tryptophan derivatives have been synthesised and their emission spectra measured in a range of different solvents. This paper presents the syntheses of these novel dendritic structures and discusses their emission spectra in terms of both solvent and dendritic effects. In the first series of dendrimers, the NH group of the indole ring is available for hydrogen bonding, whilst in the second series, the indole NH group has been converted to NMe. Direct comparison of the emission wavelengths of analogous NH and NMe derivatives indicates the importance of the Kamlet-Taft solvent beta3 parameter, which reflects the ability of the solvent to accept a hydrogen bond from the NH group, an effect not possible for the NMe series of dendrimers. For the NH dendrimers, the attachment of a dendritic shell to the tryptophan subunit leads to a red shift in emission wavelength. This dendritic effect only operates in non-hydrogen-bonding solvents. For the NMe dendrimers, however, the attachment of a dendritic shell has no effect on the emission spectra of the indole ring. This proves the importance of hydrogen bonding between the branched shell and the indole NH group in causing the dendritic effect. This is the first time a dendritic effect has been unambiguously assigned to individual hydrogen-bonding interactions and indicates that such intramolecular interactions are important in dendrimers, just as they are in proteins. Furthermore, this paper sheds light on the use of tryptophan residues as a probe of the microenvironment within proteins--in particular, it stresses the importance of hydrogen bonds formed by the indole NH group.

  8. Dendritic bundles, minicolumns, columns, and cortical output units

    Directory of Open Access Journals (Sweden)

    Giorgio Innocenti

    2010-03-01

    Full Text Available The search for the fundamental building block of the cerebral cortex has highlighted three structures, perpendicular to the cortical surface: i columns of neurons with radially invariant response properties, e.g., receptive field position, sensory modality, stimulus orientation or direction, frequency tuning etc. ii minicolumns of radially aligned cell bodies and iii bundles, constituted by the apical dendrites of pyramidal neurons with cell bodies in different layers. The latter were described in detail, and sometimes quantitatively, in several species and areas. It was recently suggested that the dendritic bundles consist of apical dendrites belonging to neurons projecting their axons to specific targets. We review the concept above and suggest that another structural and computational unit of cerebral cortex is the cortical output unit (COU, i.e. an assembly of bundles of apical dendrites and their parent cell bodies including each of the outputs to distant cortical or subcortical structures, of a given cortical locus (area or part of an area. This somato-dendritic assembly receives inputs some of which are common to the whole assembly and determine its radially invariant response properties, others are specific to one or more dendritic bundles, and determine the specific response signature of neurons in the different cortical layers and projecting to different targets.

  9. An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis.

    Science.gov (United States)

    Dong, Xintong; Liu, Oliver W; Howell, Audrey S; Shen, Kang

    2013-10-10

    Robust dendrite morphogenesis is a critical step in the development of reproducible neural circuits. However, little is known about the extracellular cues that pattern complex dendrite morphologies. In the model nematode Caenorhabditis elegans, the sensory neuron PVD establishes stereotypical, highly branched dendrite morphology. Here, we report the identification of a tripartite ligand-receptor complex of membrane adhesion molecules that is both necessary and sufficient to instruct spatially restricted growth and branching of PVD dendrites. The ligand complex SAX-7/L1CAM and MNR-1 function at defined locations in the surrounding hypodermal tissue, whereas DMA-1 acts as the cognate receptor on PVD. Mutations in this complex lead to dramatic defects in the formation, stabilization, and organization of the dendritic arbor. Ectopic expression of SAX-7 and MNR-1 generates a predictable, unnaturally patterned dendritic tree in a DMA-1-dependent manner. Both in vivo and in vitro experiments indicate that all three molecules are needed for interaction.

  10. Dendritic position is a major determinant of presynaptic strength.

    Science.gov (United States)

    de Jong, Arthur P H; Schmitz, Sabine K; Toonen, Ruud F G; Verhage, Matthijs

    2012-04-16

    Different regulatory principles influence synaptic coupling between neurons, including positional principles. In dendrites of pyramidal neurons, postsynaptic sensitivity depends on synapse location, with distal synapses having the highest gain. In this paper, we investigate whether similar rules exist for presynaptic terminals in mixed networks of pyramidal and dentate gyrus (DG) neurons. Unexpectedly, distal synapses had the lowest staining intensities for vesicular proteins vGlut, vGAT, Synaptotagmin, and VAMP and for many nonvesicular proteins, including Bassoon, Munc18, and Syntaxin. Concomitantly, distal synapses displayed less vesicle release upon stimulation. This dependence of presynaptic strength on dendritic position persisted after chronically blocking action potential firing and postsynaptic receptors but was markedly reduced on DG dendrites compared with pyramidal dendrites. These data reveal a novel rule, independent of neuronal activity, which regulates presynaptic strength according to dendritic position, with the strongest terminals closest to the soma. This gradient is opposite to postsynaptic gradients observed in pyramidal dendrites, and different cell types apply this rule to a different extent.

  11. SIRT1 regulates dendritic development in hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Juan F Codocedo

    Full Text Available Dendritic arborization is required for proper neuronal connectivity. SIRT1, a NAD+ dependent histone deacetylase, has been associated to ageing and longevity, which in neurons is linked to neuronal differentiation and neuroprotection. In the present study, the role of SIRT1 in dendritic development was evaluated in cultured hippocampal neurons which were transfected at 3 days in vitro with a construct coding for SIRT1 or for the dominant negative SIRT1H363Y, which lacks the catalytic activity. Neurons overexpressing SIRT1 showed an increased dendritic arborization, while neurons overexpressing SIRT1H363Y showed a reduction in dendritic arbor complexity. The effect of SIRT1 was mimicked by treatment with resveratrol, a well known activator of SIRT1, which has no effect in neurons overexpressing SIRT1H363Y indicating that the effect of resveratrol was specifically mediated by SIRT1. Moreover, hippocampal neurons overexpressing SIRT1 were resistant to dendritic dystrophy induced by Aβ aggregates, an effect that was dependent on the deacetylase activity of SIRT1. Our findings indicate that SIRT1 plays a role in the development and maintenance of dendritic branching in hippocampal neurons, and suggest that these effects are mediated by the ROCK signaling pathway.

  12. SIRT1 Regulates Dendritic Development in Hippocampal Neurons

    Science.gov (United States)

    Godoy, Juan A.; Varela-Nallar, Lorena; Inestrosa, Nibaldo C.

    2012-01-01

    Dendritic arborization is required for proper neuronal connectivity. SIRT1, a NAD+ dependent histone deacetylase, has been associated to ageing and longevity, which in neurons is linked to neuronal differentiation and neuroprotection. In the present study, the role of SIRT1 in dendritic development was evaluated in cultured hippocampal neurons which were transfected at 3 days in vitro with a construct coding for SIRT1 or for the dominant negative SIRT1H363Y, which lacks the catalytic activity. Neurons overexpressing SIRT1 showed an increased dendritic arborization, while neurons overexpressing SIRT1H363Y showed a reduction in dendritic arbor complexity. The effect of SIRT1 was mimicked by treatment with resveratrol, a well known activator of SIRT1, which has no effect in neurons overexpressing SIRT1H363Y indicating that the effect of resveratrol was specifically mediated by SIRT1. Moreover, hippocampal neurons overexpressing SIRT1 were resistant to dendritic dystrophy induced by Aβ aggregates, an effect that was dependent on the deacetylase activity of SIRT1. Our findings indicate that SIRT1 plays a role in the development and maintenance of dendritic branching in hippocampal neurons, and suggest that these effects are mediated by the ROCK signaling pathway. PMID:23056585

  13. Dendritic cells and their role in periodontal disease.

    Science.gov (United States)

    Wilensky, A; Segev, H; Mizraji, G; Shaul, Y; Capucha, T; Shacham, M; Hovav, A-H

    2014-03-01

    T cells, particularly CD4+ T cells, play a central role in both progression and control of periodontal disease, whereas the contribution of the various CD4+ T helper subsets to periodontal destruction remains controversial, the activation, and regulation of these cells is orchestrated by dendritic cells. As sentinels of the oral mucosa, dendritic cells encounter and capture oral microbes, then migrate to the lymph node where they regulate the differentiation of CD4+ T cells. It is thus clear that dendritic cells are of major importance in the course of periodontitis, as they hold the immunological cues delivered by the pathogen and the surrounding environment, allowing them to induce destructive immunity. In recent years, advanced immunological techniques and new mouse models have facilitated in vivo studies that have provided new insights into the developmental and functional aspects of dendritic cells. This progress has also benefited the characterization of oral dendritic cells, as well as to their function in periodontitis. Here, we provide an overview of the various gingival dendritic cell subsets and their distribution, while focusing on their role in periodontal bone loss.

  14. Ovariectomy attenuates dendritic growth in hormone-sensitive spinal motoneurons.

    Science.gov (United States)

    Hebbeler, S L; Verhovshek, T; Sengelaub, D R

    2001-09-15

    The lumbar spinal cord of rats contains the sexually dimorphic, steroid-sensitive spinal nucleus of the bulbocavernosus (SNB). Dendritic development of SNB motoneurons in male rats is biphasic, initially showing exuberant growth through 4 weeks of age followed by a retraction to mature lengths by 7 weeks of age. The initial growth is steroid dependent, attenuated by castration or aromatase inhibition, and supported by hormone replacement. Dendritic retraction is also steroid sensitive and can be prevented by testosterone treatment, but is unaffected by aromatase inhibition. Together, these results suggest a role for estrogens during the initial growth phase of SNB development. In this study, we tested whether ovarian hormones could support SNB somal and dendritic development. Motoneuron morphology was assessed in normal males and in females perinatally masculinized with dihydrotestosterone and then either ovariectomized or left intact. SNB motoneurons were retrogradely labeled with cholera toxin-HRP at 4 or 7 weeks of age and reconstructed in three dimensions. Initial growth of SNB dendrites was reduced after ovariectomy in masculinized females. However, no differences in dendritic length were seen at 7 weeks of age between intact and ovariectomized masculinized females, and lengths in both groups were significantly lower than those of normal males. Together with previous findings, these results suggest that estrogens are involved in the early growth of SNB dendrites, but not in their subsequent retraction.

  15. Regulation Mechanisms of Stomatal Oscillation

    Institute of Scientific and Technical Information of China (English)

    Hui-Min YANG; Jian-Hua ZHANG; Xiao-Yan ZHANG

    2005-01-01

    Stomata function as the gates between the plant and the atmospheric environment. Stomatal movement, including stomatal opening and closing, controls CO2 absorption as the raw material for photosynthesis and water loss through transpiration. How to reduce water loss and maintain enough CO2 absorption has been an interesting research topic for some time. Simple stomatal opening may elevate CO2 absorption,but, in the meantime, promote the water loss, whereas simple closing of stomatal pores may reduce both water loss and CO2 absorption, resulting in impairment of plant photosynthesis. Both processes are not economical to the plant. As a special rhythmic stomatal movement that usually occurs at smaller stomatal apertures, stomatal oscillation can keep CO2 absorption at a sufficient level and reduce water loss at the same time, suggesting a potential improvement in water use efficiency. Stomatal oscillation is usually found after a sudden change in one environmental factor in relatively constant environments. Many environmental stimuli can induce stomatal oscillation. It appears that, at the physiological level, feedback controls are involved in stomatal oscillation. At the cellular level, possibly two different patterns exist: (i) a quicker responsive pattern; and (ii) a slower response. Both involve water potential changes and water channel regulation, but the mechanisms of regulation of the two patterns are different. Some evidence suggests that the regulation of water channels may play a vital and primary role in stomatal oscillation. The present review summarizes studies on stomatal oscillation and concludes with some discussion regarding the mechanisms of regulation of stomatal oscillation.

  16. The influence of spontaneous brain oscillations on apparent motion perception.

    Science.gov (United States)

    Sanders, Lia Lira Olivier; Auksztulewicz, Ryszard; Hohlefeld, Friederike U; Busch, Niko A; Sterzer, Philipp

    2014-11-15

    A good example of inferential processes in perception is long-range apparent motion (AM), the illusory percept of visual motion that occurs when two spatially distinct stationary visual objects are presented in alternating sequence. The AM illusion is strongest at presentation frequencies around 3 Hz. At lower presentation frequencies, the percept varies from trial to trial between AM and sequential alternation, while at higher frequencies perception varies between AM and two simultaneously flickering objects. Previous studies have demonstrated that prestimulus alpha oscillations explain trial-to-trial variability in detection performance for visual stimuli presented at threshold. In the present study, we investigated whether fluctuations of prestimulus alpha oscillations can also account for variations in AM perception. Prestimulus alpha power was stronger when observers reported AM perception in subsequent trials with low presentation frequencies, while at high presentation frequencies there were no significant differences in alpha power preceding AM and veridical flicker perception. Moreover, when observers perceived AM the prestimulus functional connectivity between frontal and occipital channels was increased in the alpha band, as revealed by the imaginary part of coherency, which is insensitive to artefacts from volume conduction. Dynamic causal modelling of steady-state responses revealed that the most likely direction of this fronto-occipital connectivity was from frontal to occipital sources. These results point to a role of ongoing alpha oscillations in the inferential process that gives rise to the perception of AM and suggest that fronto-occipital interactions bias perception towards internally generated predictions.

  17. El Nino Southern Oscillation as Sporadic Oscillations between Metastable States

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The main objective of this article is to establish a new mechanism of ENSO,as a self-organizing and self-excitation system,with two highly coupled processes.The first is the oscillation between the two metastable warm(El Ni(?)o phase) and cold events(La Ni(?)a phase),and the second is the spatiotemporal oscillation of the sea surface temperature(SST) field.The symbiotic interplay between these two processes gives rises the climate variability associated with the ENSO,leads to both the random and deterministic features of the ENSO,and defines a new natural feedback mechanism,which drives the sporadic oscillation of the ENSO.The new mechanism is rigorously derived using a dynamic transition theory developed recently by the authors,which has also been successfully applied to a wide range of problems in nonlinear sciences.

  18. El Nino Southern Oscillation as Sporadic Oscillations between Metastable States

    Institute of Scientific and Technical Information of China (English)

    MA Tian; Shouhong WANG

    2011-01-01

    The main objective of this article is to establish a new mechanism of ENSO, as a self-organizing and selfexcitation system, with two highly coupled processes. The first is the oscillation between the two mctastable warm (El Nino phase) and cold events (La Nina phase), and the second is the spatiotemporal oscillation of the sea surface temperature (SST) field. The symbiotic interplay between these two processes gives rises the climate variability associated with the ENSO, leads to both the random and deterministic features of the ENSO, and defines a new natural feedback mechanism, which drives the sporadic oscillation of the ENSO. The new mechanism is rigorously derived using a dynamic transition theory developed recently by the authors, which has also been successfully applied to a wide range of problems in nonlinear sciences.

  19. Equine dendritic cells generated with horse serum have enhanced functionality in comparison to dendritic cells generated with fetal bovine serum

    OpenAIRE

    Ziegler, A; Everett, H.; Hamza, E; Garbani, M; Gerber, V.; Marti, E; Steinbach, F

    2016-01-01

    Background: Dendritic cells are professional antigen-presenting cells that play an essential role in the initiation and modulation of T cell responses. They have been studied widely for their potential clinical applications, but for clinical use to be successful, alternatives to xenogeneic substances like fetal bovine serum (FBS) in cell culture need to be found. Protocols for the generation of dendritic cells ex vivo from monocytes are well established for several species, including horses. ...

  20. 7 CFR 25.403. - Ongoing 2-year work plan requirement.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Ongoing 2-year work plan requirement. 25.403. Section... COMMUNITIES Post-Designation Requirements § 25.403. Ongoing 2-year work plan requirement. (a) Each Empowerment Zone and Enterprise Community shall prepare and submit annually, work plans for the subsequent...

  1. The Use of Process Energy Characteristics to Predict Energy Performance Indicators on an Ongoing Basis

    OpenAIRE

    Izabela Sadowska

    2016-01-01

    This paper presents possible uses of process energy characteristics for ongoing monitoring of energy indicators. The method of ongoing monitoring of indicators consists in comparison of indicators determined on the basis of the processes’ energy characteristics. The method is primarily applicable in early detection and elimination of excessive and irrational energy consumption and in adjustments of the current energy management.

  2. Direction selectivity is computed by active dendritic integration in retinal ganglion cells.

    Science.gov (United States)

    Sivyer, Benjamin; Williams, Stephen R

    2013-12-01

    Active dendritic integration is thought to enrich the computational power of central neurons. However, a direct role of active dendritic processing in the execution of defined neuronal computations in intact neural networks has not been established. Here we used multi-site electrophysiological recording techniques to demonstrate that active dendritic integration underlies the computation of direction selectivity in rabbit retinal ganglion cells. Direction-selective retinal ganglion cells fire action potentials in response to visual image movement in a preferred direction. Dendritic recordings revealed that preferred-direction moving-light stimuli led to dendritic spike generation in terminal dendrites, which were further integrated and amplified as they spread through the dendritic arbor to the axon to drive action potential output. In contrast, when light bars moved in a null direction, synaptic inhibition vetoed neuronal output by directly inhibiting terminal dendritic spike initiation. Active dendritic integration therefore underlies a physiologically engaged circuit-based computation in the retina.

  3. Arrays of coupled chemical oscillators

    CERN Document Server

    Forrester, Derek Michael

    2016-01-01

    Oscillating chemical reactions result from complex periodic changes in the concentration of the reactants. In spatially ordered ensembles of candle flame oscillators the fluctuations in the ratio of oxygen atoms with respect to that of carbon, hydrogen and nitrogen produces an oscillation in the visible part of the flame related to the energy released per unit mass of oxygen. Thus, the products of the reaction vary in concentration as a function of time, giving rise to an oscillation in the amount of soot and radiative emission. Synchronisation of interacting dynamical sub-systems occurs as arrays of flames that act as master and slave oscillators, with groups of candles numbering greater than two, creating a synchronised motion in three-dimensions. In a ring of candles the visible parts of each flame move together, up and down and back and forth, in a manner that appears like a "worship". Here this effect is shown for rings of flames which collectively empower a central flame to pulse to greater heights. In ...

  4. Restoration of oscillation in network of oscillators in presence of direct and indirect interactions

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Soumen; Bera, Bidesh K. [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India); Bhowmick, Sourav K. [Department of Electronics, Asutosh College, Kolkata-700026 (India); Ghosh, Dibakar, E-mail: diba.ghosh@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)

    2016-10-23

    The suppression of oscillations in coupled systems may lead to several unwanted situations, which requires a suitable treatment to overcome the suppression. In this paper, we show that the environmental coupling in the presence of direct interaction, which can suppress oscillation even in a network of identical oscillators, can be modified by introducing a feedback factor in the coupling scheme in order to restore the oscillation. We inspect how the introduction of the feedback factor helps to resurrect oscillation from various kinds of death states. We numerically verify the resurrection of oscillations for two paradigmatic limit cycle systems, namely Landau–Stuart and Van der Pol oscillators and also in generic chaotic Lorenz oscillator. We also study the effect of parameter mismatch in the process of restoring oscillation for coupled oscillators. - Highlights: • Amplitude death is observed using direct and indirect coupling. • Revival of oscillation using feedback parameter is discussed. • Restoration of oscillation is observed in limit cycle and chaotic systems.

  5. Activated protein C modulates the proinflammatory activity of dendritic cells

    Directory of Open Access Journals (Sweden)

    Matsumoto T

    2015-05-01

    Full Text Available Takahiro Matsumoto,1,2* Yuki Matsushima,1* Masaaki Toda,1 Ziaurahman Roeen,1 Corina N D'Alessandro-Gabazza,1,5 Josephine A Hinneh,1 Etsuko Harada,1,3 Taro Yasuma,4 Yutaka Yano,4 Masahito Urawa,1,5 Tetsu Kobayashi,5 Osamu Taguchi,5 Esteban C Gabazza1 1Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, 2BONAC Corporation, BIO Factory 4F, Fukuoka, 3Iwade Research Institute of Mycology, 4Department of Endocrinology, Diabetes and Metabolism, 5Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, Japan *These authors contributed equally to this work Background: Previous studies have demonstrated the beneficial activity of activated protein C in allergic diseases including bronchial asthma and rhinitis. However, the exact mechanism of action of activated protein C in allergies is unclear. In this study, we hypothesized that pharmacological doses of activated protein C can modulate allergic inflammation by inhibiting dendritic cells. Materials and methods: Dendritic cells were prepared using murine bone marrow progenitor cells and human peripheral monocytes. Bronchial asthma was induced in mice that received intratracheal instillation of ovalbumin-pulsed dendritic cells. Results: Activated protein C significantly increased the differentiation of tolerogenic plasmacytoid dendritic cells and the secretion of type I interferons, but it significantly reduced lipopolysaccharide-mediated maturation and the secretion of inflammatory cytokines in myeloid dendritic cells. Activated protein C also inhibited maturation and the secretion of inflammatory cytokines in monocyte-derived dendritic cells. Activated protein C-treated dendritic cells were less effective when differentiating naïve CD4 T-cells from Th1 or Th2 cells, and the cellular effect of activated protein C was mediated by its receptors. Mice that received adoptive transfer of activated protein C

  6. Posttraumatic stress disorder under ongoing threat: a review of neurobiological and neuroendocrine findings

    Directory of Open Access Journals (Sweden)

    Iro Fragkaki

    2016-08-01

    Full Text Available Background: Although numerous studies have investigated the neurobiology and neuroendocrinology of posttraumatic stress disorder (PTSD after single finished trauma, studies on PTSD under ongoing threat are scarce and it is still unclear whether these individuals present similar abnormalities. Objective: The purpose of this review is to present the neurobiological and neuroendocrine findings on PTSD under ongoing threat. Ongoing threat considerably affects PTSD severity and treatment response and thus disentangling its neurobiological and neuroendocrine differences from PTSD after finished trauma could provide useful information for treatment. Method: Eighteen studies that examined brain functioning and cortisol levels in relation to PTSD in individuals exposed to intimate partner violence, police officers, and fire fighters were included. Results: Hippocampal volume was decreased in PTSD under ongoing threat, although not consistently associated with symptom severity. The neuroimaging studies revealed that PTSD under ongoing threat was not characterized by reduced volume of amygdala or parahippocampal gyrus. The neurocircuitry model of PTSD after finished trauma with hyperactivation of amygdala and hypoactivation of prefrontal cortex and hippocampus was also confirmed in PTSD under ongoing threat. The neuroendocrine findings were inconsistent, revealing increased, decreased, or no association between cortisol levels and PTSD under ongoing threat. Conclusions: Although PTSD under ongoing threat is characterized by abnormal neurocircuitry patterns similar to those previously found in PTSD after finished trauma, this is less so for other neurobiological and in particular neuroendocrine findings. Direct comparisons between samples with ongoing versus finished trauma are needed in future research to draw more solid conclusions before administering cortisol to patients with PTSD under ongoing threat who may already exhibit increased endogenous

  7. Behavioral oscillations in attention: rhythmic α pulses mediated through θ band.

    Science.gov (United States)

    Song, Kun; Meng, Ming; Chen, Lin; Zhou, Ke; Luo, Huan

    2014-04-02

    Neuronal oscillations are ubiquitous in the brain and contribute to perception and attention. However, most associated evidence derives from post hoc correlations between brain dynamics and behavior. Although a few recent studies demonstrate rhythms in behavior, it remains largely unknown whether behavioral performances manifest spectrotemporal dynamics in a neurophysiologically relevant manner (e.g., the temporal modulation of ongoing oscillations, the cross-frequency coupling). To investigate the issue, we examined fine spectrotemporal dynamics of behavioral time courses in a large sample of human participants (n = 49), by taking a high time-resolved psychophysical measurement in a precuing attentional task. We observed compelling dynamic oscillatory patterns directly in behavior. First, typical attentional effects are demonstrated in low-pass (0-2 Hz) filtered time courses of behavioral responses. Second, an uninformative peripheral cue elicits recurring α-band (8-20 Hz) pulses in behavioral performances, and the elicited α pulses for cued and uncued conditions are in a temporally alternating relationship. Finally, ongoing α-band power is phase locked to ongoing θ-bands (3-5 Hz) in behavioral time courses. Our findings constitute manifestation of oscillations at physiologically relevant rhythms and power-phase locking, as widely observed in neurophysiological recordings, in behavior. The findings suggest that behavioral performance actually consists of rich dynamic information and may reflect underlying neuronal oscillatory substrates. Our data also speak to a neural mechanism for item attention based on successive cycles (θ) of a sequential attentional sampling (α) process.

  8. Mycobacterium avium subspecies impair dendritic cell maturation.

    Science.gov (United States)

    Basler, Tina; Brumshagen, Christina; Beineke, Andreas; Goethe, Ralph; Bäumer, Wolfgang

    2013-10-01

    Mycobacterium avium ssp. paratuberculosis (MAP) causes Johne's disease, a chronic, granulomatous enteritis of ruminants. Dendritic cells (DC) of the gut are ideally placed to combat invading mycobacteria; however, little is known about their interaction with MAP. Here, we investigated the interaction of MAP and the closely related M. avium ssp. avium (MAA) with murine DC and the effect of infected macrophages on DC maturation. The infection of DC with MAP or MAA induced DC maturation, which differed to that of LPS as maturation was accompanied by higher production of IL-10 and lower production of IL-12. Treatment of maturing DC with supernatants from mycobacteria-infected macrophages resulted in impaired DC maturation, leading to a semi-mature, tolerogenic DC phenotype expressing low levels of MHCII, CD86 and TNF-α after LPS stimulation. Though the cells were not completely differentiated they responded with an increased IL-10 and a decreased IL-12 production. Using recombinant cytokines we provide evidence that the semi-mature DC phenotype results from a combination of secreted cytokines and released antigenic mycobacterial components of the infected macrophage. Our results indicate that MAP and MAA are able to subvert DC function directly by infecting and indirectly via the milieu created by infected macrophages.

  9. Triggering of dendritic cell apoptosis by xanthohumol.

    Science.gov (United States)

    Xuan, Nguyen Thi; Shumilina, Ekaterina; Gulbins, Erich; Gu, Shuchen; Götz, Friedrich; Lang, Florian

    2010-07-01

    Xanthohumol, a flavonoid from beer with anticancer activity is known to trigger apoptosis in a variety of tumor cells. Xanthohumol further has anti-inflammatory activity. However, little is known about the effect of xanthohumol on survival and function of immune cells. The present study thus addressed the effect of xanthohumol on dendritic cells (DCs), key players in the regulation of innate and adaptive immunity. To this end, mouse bone marrow-derived DCs were treated with xanthohumol with subsequent assessment of enzymatic activity of acid sphingomyelinase (Asm), ceramide formation determined with anti-ceramide antibodies in FACS and immunohistochemical analysis, caspase activity utilizing FITC conjugated anti-active caspase 8 or caspase 3 antibodies in FACS and by Western blotting, DNA fragmentation by determining the percentage of cells in the sub-G1 phase and cell membrane scrambling by annexin V binding in FACS analysis. As a result, xanthohumol stimulated Asm, enhanced ceramide formation, activated caspases 8 and 3, triggered DNA fragmentation and led to cell membrane scrambling, all effects virtually absent in DCs from gene targeted mice lacking functional Asm or in wild-type cells treated with sphingomyelinase inhibitor amitriptyline. In conclusion, xanthohumol stimulated Asm leading to caspase activation and apoptosis of bone marrow-derived DCs.

  10. Deciphering dendritic cell heterogenity in immunity

    Directory of Open Access Journals (Sweden)

    Michaël eChopin

    2012-02-01

    Full Text Available Dendritic cells (DCs are specialized antigen presenting cells that are exquisitely adapted to sense pathogens and induce the development of adaptive immune responses. They form a complex network of phenotypically and functionally distinct subsets. Within this network, individual DC subsets display highly specific roles in local immunosurveillance, migration and antigen presentation. This division of labor amongst DCs offers great potential to tune the immune response by harnessing subset-specific attributes of DCs in the clinical setting. Until recently, our understanding of DC subsets has been limited and paralleled by poor clinical translation and efficacy. We have now begun to unravel how different DC subsets develop within a complex multilayered system. These finding open up exciting possibilities for targeted manipulation of DC subsets. Furthermore, ground-breaking developments overcoming a major translational obstacle – identification of similar DC populations in mouse and man – now set the stage for significant advances in the field. Here we explore the determinants that underpin cellular and transcriptional heterogeneity within the DC network, how these influence DC distribution and localization at steady-state, and the capacity of DCs to present antigens via direct or cross-presentation during pathogen infection.

  11. Tumor's other immune targets: dendritic cells.

    Science.gov (United States)

    Esche, C; Lokshin, A; Shurin, G V; Gastman, B R; Rabinowich, H; Watkins, S C; Lotze, M T; Shurin, M R

    1999-08-01

    The induction of apoptosis in T cells is one of several mechanisms by which tumors escape immune recognition. We have investigated whether tumors induce apoptosis in dendritic cells (DC) by co-culture of murine or human DC with different tumor cell lines for 4-48 h. Analysis of DC morphological features, JAM assay, TUNEL, caspase-3-like and transglutaminase activity, Annexin V binding, and DNA fragmentation assays revealed a time- and dose-dependent induction of apoptosis in DC by tumor-derived factors. This finding is both effector and target specific. The mechanism of tumor-induced DC apoptosis involved regulation of Bcl-2 and Bax expression. Double staining of both murine and human tumor tissues confirmed that tumor-associated DC undergo apoptotic death in vivo. DC isolated from tumor tissue showed significantly higher levels of apoptosis as determined by TUNEL assay when compared with DC isolated from spleen. These findings demonstrate that tumors induce apoptosis in DC and suggest a new mechanism of tumor escape from immune recognition. DC protection from apoptosis will lead to improvement of DC-based immunotherapies for cancer and other immune diseases.

  12. Transcriptional regulation of dendritic cell diversity.

    Science.gov (United States)

    Chopin, Michaël; Allan, Rhys S; Belz, Gabrielle T

    2012-01-01

    Dendritic cells (DCs) are specialized antigen presenting cells that are exquisitely adapted to sense pathogens and induce the development of adaptive immune responses. They form a complex network of phenotypically and functionally distinct subsets. Within this network, individual DC subsets display highly specific roles in local immunosurveillance, migration, and antigen presentation. This division of labor amongst DCs offers great potential to tune the immune response by harnessing subset-specific attributes of DCs in the clinical setting. Until recently, our understanding of DC subsets has been limited and paralleled by poor clinical translation and efficacy. We have now begun to unravel how different DC subsets develop within a complex multilayered system. These findings open up exciting possibilities for targeted manipulation of DC subsets. Furthermore, ground-breaking developments overcoming a major translational obstacle - identification of similar DC populations in mouse and man - now sets the stage for significant advances in the field. Here we explore the determinants that underpin cellular and transcriptional heterogeneity within the DC network, how these influence DC distribution and localization at steady-state, and the capacity of DCs to present antigens via direct or cross-presentation during pathogen infection.

  13. Dendritic spine changes associated with normal aging.

    Science.gov (United States)

    Dickstein, D L; Weaver, C M; Luebke, J I; Hof, P R

    2013-10-22

    Given the rapid rate of population aging and the increased incidence of cognitive decline and neurodegenerative diseases with advanced age, it is important to ascertain the determinants that result in cognitive impairment. It is also important to note that much of the aged population exhibit 'successful' cognitive aging, in which cognitive impairment is minimal. One main goal of normal aging studies is to distinguish the neural changes that occur in unsuccessful (functionally impaired) subjects from those of successful (functionally unimpaired) subjects. In this review, we present some of the structural adaptations that neurons and spines undergo throughout normal aging and discuss their likely contributions to electrophysiological properties and cognition. Structural changes of neurons and dendritic spines during aging, and the functional consequences of such changes, remain poorly understood. Elucidating the structural and functional synaptic age-related changes that lead to cognitive impairment may lead to the development of drug treatments that can restore or protect neural circuits and mediate cognition and successful aging.

  14. Giant dendritic carbonaceous particles in Soweto aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Wentzel, M.; Annegarn, H.J.; Helas, G.; Weinbruch, S.; Balogh, A.G.; Sithole, J.S. [Max Planck Institute of Chemistry, Mainz (Germany). Biogeochemistry Dept.

    1999-03-01

    Gravimetric analyses of aerosol filter samples from Soweto, southwest of Johannesburg, have revealed an anomalous mass-size distribution. Instead of the coal fire generated aerosol forming sub-micron aerosols as expected, most of the mass of the winter smoke is in particles greater than 3{mu}m aerodynamic diameter. A high-resolution scanning electron microscope was used to examine coarse and fine-mode aerosol fractions from two contrasting sites in the conurbation. Unanticipated giant carbonaceous conglomerates (10-100 {mu}m diameter), which comprise the bulk of the aerosol mass on the filters examined, were found. The outer shape of the conglomerates tends towards spherical, rather than the branched, chain-like structures of high-temperature soot. Internal structure varies from highly dendritic with 20-nm-wide branches, through a coarser sponge-like structure to an almost solid `melted toffee` irregular surface. Possible modes of formation of these conglomerates are discussed in terms of condensation aerosols conglomeration, and subsequent partial melting or solvent condensation. The occurrence of the giant carbonaceous conglomerates as a general feature of the Soweto winter atmosphere explains the anomalous size-mass distribution results from bulk filter analyses.

  15. Macrophages and Dendritic Cells: Partners in Atherogenesis.

    Science.gov (United States)

    Cybulsky, Myron I; Cheong, Cheolho; Robbins, Clinton S

    2016-02-19

    Atherosclerosis is a complex chronic disease. The accumulation of myeloid cells in the arterial intima, including macrophages and dendritic cells (DCs), is a feature of early stages of disease. For decades, it has been known that monocyte recruitment to the intima contributes to the burden of lesion macrophages. Yet, this paradigm may require reevaluation in light of recent advances in understanding of tissue macrophage ontogeny, their capacity for self-renewal, as well as observations that macrophages proliferate throughout atherogenesis and that self-renewal is critical for maintenance of macrophages in advanced lesions. The rate of atherosclerotic lesion formation is profoundly influenced by innate and adaptive immunity, which can be regulated locally within atherosclerotic lesions, as well as in secondary lymphoid organs, the bone marrow and the blood. DCs are important modulators of immunity. Advances in the past decade have cemented our understanding of DC subsets, functions, hematopoietic origin, gene expression patterns, transcription factors critical for differentiation, and provided new tools for study of DC biology. The functions of macrophages and DCs overlap to some extent, thus it is important to reassess the contributions of each of these myeloid cells taking into account strict criteria of cell identification, ontogeny, and determine whether their key roles are within atherosclerotic lesions or secondary lymphoid organs. This review will highlight key aspect of macrophage and DC biology, summarize how these cells participate in different stages of atherogenesis and comment on complexities, controversies, and gaps in knowledge in the field.

  16. Epigenetic regulation of axon and dendrite growth

    Directory of Open Access Journals (Sweden)

    Ephraim F Trakhtenberg

    2012-03-01

    Full Text Available Neuroregenerative therapies for central nervous system (CNS injury, neurodegenerative disease, or stroke require axons of damaged neurons to grow and reinnervate their targets. However, mature mammalian CNS neurons do not regenerate their axons, limiting recovery in these diseases (Yiu and He, 2006. CNS’ regenerative failure may be attributable to the development of an inhibitory CNS environment by glial-associated inhibitory molecules (Yiu and He, 2006, and by various cell-autonomous factors (Sun and He, 2010. Intrinsic axon growth ability also declines developmentally (Li et al., 1995; Goldberg et al., 2002; Bouslama-Oueghlani et al., 2003; Blackmore and Letourneau, 2006 and is dependent on transcription (Moore et al., 2009. Although neurons’ intrinsic capacity for axon growth may depend in part on the panoply of expressed transcription factors (Moore and Goldberg, 2011, epigenetic factors such as the accessibility of DNA and organization of chromatin are required for downstream genes to be transcribed. Thus a potential approach to overcoming regenerative failure focuses on the epigenetic mechanisms regulating regenerative gene expression in the CNS. Here we review molecular mechanisms regulating the epigenetic state of DNA through chromatin modifications, their implications for regulating axon and dendrite growth, and important new directions for this field of study.

  17. Dendritic Cells in the Cancer Microenvironment

    Directory of Open Access Journals (Sweden)

    Yang Ma, Galina V. Shurin, Zhu Peiyuan, Michael R. Shurin

    2013-01-01

    Full Text Available The complexity of the tumor immunoenvironment is underscored by the emergence and discovery of different subsets of immune effectors and regulatory cells. Tumor-induced polarization of immune cell differentiation and function makes this unique environment even more intricate and variable. Dendritic cells (DCs represent a special group of cells that display different phenotype and activity at the tumor site and exhibit differential pro-tumorigenic and anti-tumorigenic functions. DCs play a key role in inducing and maintaining the antitumor immunity, but in the tumor environment their antigen-presenting function may be lost or inefficient. DCs might be also polarized into immunosuppressive/tolerogenic regulatory DCs, which limit activity of effector T cells and support tumor growth and progression. Although various factors and signaling pathways have been described to be responsible for abnormal functioning of DCs in cancer, there are still no feasible therapeutic modalities available for preventing or reversing DC malfunction in tumor-bearing hosts. Thus, better understanding of DC immunobiology in cancer is pivotal for designing novel or improved therapeutic approaches that will allow proper functioning of DCs in patients with cancer.

  18. Prediction of pilot induced oscillations

    Directory of Open Access Journals (Sweden)

    Valentin PANĂ

    2011-03-01

    Full Text Available An important problem in the design of flight-control systems for aircraft under pilotedcontrol is the determination of handling qualities and pilot-induced oscillations (PIO tendencieswhen significant nonlinearities exist in the vehicle description. The paper presents a method to detectpossible pilot-induced oscillations of Category II (with rate and position limiting, a phenomenonusually due to a misadaptation between the pilot and the aircraft response during some tasks in whichtight closed loop control of the aircraft is required from the pilot. For the analysis of Pilot in the LoopOscillations an approach, based on robust stability analysis of a system subject to uncertainparameters, is proposed. In this analysis the nonlinear elements are substituted by linear uncertainparameters. This approach assumes that PIO are characterized by a limit cycle behavior.

  19. Bloch oscillations in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Jodar, Esther; Perez-Garrido, Antonio [Departamento Fisica Aplicada, Antiguo Hospital de Marina Campus Muralla del Mar, UPCT, Cartagena 30202 Murcia (Spain); Rojas, Fernando [Centro de Nanociencias y Nanotecnologia-UNAM, Apartado Postal 356, Ensenada, Baja California 22800 (Mexico)], E-mail: ejodar@upct.es

    2009-05-27

    Bloch oscillations arise when electrons are in a one-dimensional linear chain of atoms under a constant electric field. In this paper we show numerically that electrons in different types of carbon nanotubes show oscillations with a Bloch frequency proportional to the constant electric field applied along the nanotube axis. We show these oscillations, calculating the quadratic displacement as a function of the electric field. Because of the double periodicity of the nanotubes' geometry (the lattice constant and the lines of atoms) two frequencies appear, one twice the value of the other. These frequencies coincide perfectly with those predicted for a linear chain of atoms, taking into account the periodicity considered in each case. (fast track communication)

  20. Classical scattering from oscillating targets

    Energy Technology Data Exchange (ETDEWEB)

    Papachristou, P.K.; Diakonos, F.K.; Constantoudis, V.; Schmelcher, P.; Benet, L

    2002-12-30

    We study planar classical scattering from an oscillating heavy target whose dynamics defines a five-dimensional phase space. Although the system possesses no periodic orbits, and thus topological chaos is not present, the scattering functions display a variety of structures on different time scales. These structures are due to scattering events with a strong energy transfer from the projectile to the moving disk resulting in low-velocity peaks. We encounter initial conditions for which the projectile exhibits infinitely many bounces with the oscillating disk. Our numerical investigations are supported by analytical results on a specific model with a simple time-law. The observed properties possess universal character for scattering off oscillating targets.

  1. Bloch oscillations in carbon nanotubes.

    Science.gov (United States)

    Jódar, Esther; Pérez-Garrido, Antonio; Rojas, Fernando

    2009-05-27

    Bloch oscillations arise when electrons are in a one-dimensional linear chain of atoms under a constant electric field. In this paper we show numerically that electrons in different types of carbon nanotubes show oscillations with a Bloch frequency proportional to the constant electric field applied along the nanotube axis. We show these oscillations, calculating the quadratic displacement as a function of the electric field. Because of the double periodicity of the nanotubes' geometry (the lattice constant and the lines of atoms) two frequencies appear, one twice the value of the other. These frequencies coincide perfectly with those predicted for a linear chain of atoms, taking into account the periodicity considered in each case.

  2. Magnetically insulated transmission line oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Larry D. (Albuquerque, NM); Ballard, William P. (Albuquerque, NM); Clark, M. Collins (Albuquerque, NM); Marder, Barry M. (Albuquerque, NM)

    1988-01-01

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.

  3. Gamma oscillations as a neuronal correlate of the attentional effects of pain.

    Science.gov (United States)

    Tiemann, Laura; Schulz, Enrico; Gross, Joachim; Ploner, Markus

    2010-08-01

    Successful behavior requires the attentional selection and preferred processing of behaviorally relevant sensory information. Painful stimuli are of utmost behavioral relevance and can therefore involuntarily affect attentional resources and interfere with ongoing behavior. However, the neuronal mechanisms which subserve the involuntary attentional effects of pain are largely unknown yet. Here, we therefore investigated the neuronal mechanisms of the attentional effects of pain by using electroencephalography during a visual attention task with the concurrent presentation of painful stimuli. Our results confirm that painful and visual stimuli induce gamma oscillations over central and occipital areas, respectively. Pain-induced gamma oscillations were correlated with pain-induced changes in visual gamma oscillations. Behaviorally, we observed variable effects of pain on visual reaction times, yielding an increase of reaction times for some subjects, as well as a decrease of reaction times for others. Most importantly, however, these changes in visual task performance were significantly related to pain-induced changes of visual gamma oscillations. These findings demonstrate that the variable attentional effects of pain are closely related to changes in neuronal gamma oscillations in the human brain. In the hypervigilant state of chronic pain, maladaptive changes in the attentional effects of pain may be associated with abnormal changes in neuronal gamma oscillations. Our findings may thus contribute to the understanding of the neuronal substrates of pain in health and may open a new window towards the understanding of pathological alterations of the pain experience in chronic pain syndromes.

  4. Modeling the dendritic evolution and micro-segregation of cast alloy with cellular automaton

    Institute of Scientific and Technical Information of China (English)

    Qiang Li; Dianzhong Li; Bainian Qian

    2004-01-01

    In order to precisely describe the dendritic morphology and micro-segregation during solidification process, a novel continuous model concerning the different physical properties in the solid phase, liquid phase and interface is developed. Coupling the heat and solute diffusion with the transition rules, the dendrite evolution is simulated by cellular automaton method. Then, the solidification microstructure evolution of a small ingot is simulated by using this method. The simulated results indicate that this model can simulate the dendrite growth, show the second dendrite arm and tertiary dendrite arm, and reveal the micro-segregation in the inter-dendritic zones. Furthermore, the columnar-to-equiaxed transition (CET) is predicted.

  5. Primordial lepton oscillations and baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuta [Theory Center, High Energy Accelerator Research Organization (KEK),Tsukuba 305-0801 (Japan); Department of Physics, University of Wisconsin,Madison, WI 53706 (United States); Kitano, Ryuichiro [Theory Center, High Energy Accelerator Research Organization (KEK),Tsukuba 305-0801 (Japan); Department of Particle and Nuclear Physics,The Graduate University for Advanced Studies (Sokendai),Tsukuba 305-0801 (Japan)

    2016-11-02

    The baryon asymmetry of the Universe should have been produced after the inflation era. We consider the possibility that the asymmetry is generated by the flavor oscillations in the reheating process after inflation, so that the baryon asymmetry is realized already at the beginning of the radiation dominated era. In the seesaw model, we show that the propagators of the left-handed leptons generically have flavor mixings in the thermal background, that can generate flavor-dependent lepton asymmetry through the CP violation in the oscillation phenomena. The flavor dependent rates for the wash-out process can leave the net asymmetry today.

  6. Anomalous Dissipative Quantum Harmonic Oscillator

    Institute of Scientific and Technical Information of China (English)

    CHEN Dian-Yong; BAI Zhan-Wu; DONG Yu-Bing

    2008-01-01

    We investigate the low-temperature statistical properties of a harmonic oscillator coupled to a heat bath, where the low-frequency spectrum vanishes. We obtain the exact result of the zero point energy. Due to the low frequency shortage of environmental oscillators' spectral density, the coordinate and momentum correlation functions decay as r-4and r-6 respectively at zero temperature, where T is the correlation time. The low-temperature behavior of the mean energy does not violate the third law of thermodynamics, but differs largely from the Ohmic spectrum case.

  7. Primordial lepton oscillations and baryogenesis

    Science.gov (United States)

    Hamada, Yuta; Kitano, Ryuichiro

    2016-11-01

    The baryon asymmetry of the Universe should have been produced after the inflation era. We consider the possibility that the asymmetry is generated by the flavor oscillations in the reheating process after inflation, so that the baryon asymmetry is realized already at the beginning of the radiation dominated era. In the seesaw model, we show that the propagators of the left-handed leptons generically have flavor mixings in the thermal background, that can generate flavor-dependent lepton asymmetry through the CP violation in the oscillation phenomena. The flavor dependent rates for the wash-out process can leave the net asymmetry today.

  8. Cherenkov radiation oscillator without reflectors

    Science.gov (United States)

    Li, D.; Wang, Y.; Hangyo, M.; Wei, Y.; Yang, Z.; Miyamoto, S.

    2014-05-01

    This Letter presents a Cherenkov radiation oscillator with an electron beam travelling over a finitely thick plate made of negative-index materials. In such a scheme, the external reflectors required in the traditional Cherenkov oscillators are not necessary, since the electromagnetic energy flows backward in the negative-index materials, leading to inherent feedback. We theoretically analyzed the interaction between the electron beam and the electromagnetic wave, and worked out the growth rate and start current through numerical calculations. With the help of particle-in-cell simulation, the theoretical predictions are well demonstrated.

  9. Sound oscillation of dropwise cluster

    Science.gov (United States)

    Shavlov, A. V.; Dzhumandzhi, V. A.; Romanyuk, S. N.

    2012-06-01

    There was registered sound oscillation of a dropwise cluster formed over the warmed-up water surface. We have calculated the electrical charge of drops on the basis of experimental data on ion-sound oscillation. It was demonstrated that the charge is proportional to surface area of the drops and does not depend on intensity of their evaporation (condensation) in the range of 60-100 °C. The charge of drops reaches 102-103 units of elementary charge and coincides on magnitude order with the literary value of a charge calculated by another method.

  10. Smart contact oscillations by IPMCs

    Science.gov (United States)

    Asanuma, H.; Asaka, K.; Su, J.; Poubel, L.; Shahinpoor, M.

    2016-02-01

    An ion migration-induced self-oscillation phenomenon observed in ionic polymer metal composites (IPMCs) is reported. These oscillations are generated from a purely static equilibrium configuration of IPMCs in loose contact with a stationary electrode, and in particular the anode of an imposed DC voltage source. Many interesting possibilities emerge, which are described in this paper. Of particular importance is the emergence of the possibility of creating tailor-made electric signals or pulse-width modulation-type signals from a DC source.

  11. Primordial Lepton Oscillations and Baryogenesis

    CERN Document Server

    Hamada, Yuta

    2016-01-01

    The baryon asymmetry of the Universe should have been produced after the inflation era. We consider the possibility that the asymmetry is generated by the flavor oscillations in the reheating process after inflation, so that the baryon asymmetry is realized already at the beginning of the radiation dominated era. In the seesaw model, we show that the propagators of the left-handed leptons generically have flavor mixings in the thermal background, that can generate flavor-dependent lepton asymmetry through the $CP$ violation in the oscillation phenomena. The flavor dependent rates for the wash-out process can leave the net asymmetry today.

  12. The non-local oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, A. [Istituto Tecnico `G. Cardano`, Monterotondo, Rome (Italy)

    1996-08-01

    The most important characteristics of the non-local oscillator, an oscillator subjected to an additional non-local force, are extensively studied by means of a new asymptotic perturbation method that is able to furnish an approximate solution of weakly non-linear differential equations. The resulting motion is doubly periodic, because a second little frequency appears, in addition to the fundamental harmonic frequency. Comparison with the numerical solution obtained by the Runge-Kitta method confirms the validity of the asymptotic perturbation method and its importance for the study of non-linear dynamical systems.

  13. Resonant solar neutrino oscillation versus laboratory neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chong-Sa

    1987-02-01

    The interplay between resonant solar neutrino oscillations and neutrino oscillations in laboratory experiments is investigated in a 3 generation model. Due to the assumed hierarchy of neutrino masses, together with our choice of a convenient parameterization of the 3 generation mixing matrix, we can derive a simple analytic formula which reduces the solar neutrino problem to an effective 2 generation problem. The reduction makes it apparent that the allowed range of mixing and mass parameters crucially depend on whether the survival probability of solar neutrinos S satisfies S greater than or equal to 1/3 or not. The formulae for probabilities of laboratory neutrino oscillations are also greatly simplified. We argue that a combination of the observed solar neutrino depletion and data obtained from reactor experiments seems to rule out some range of neutrino masses. If a sizable nu/sub ..mu../ ..-->.. nu/sub e/ oscillation is observed at accelerators, as suggested at this Workshop, it severely restricts the range of 2 mixing angles.

  14. Capture into resonance of coupled Duffing oscillators.

    Science.gov (United States)

    Kovaleva, Agnessa

    2015-08-01

    In this paper we investigate capture into resonance of a pair of coupled Duffing oscillators, one of which is excited by periodic forcing with a slowly varying frequency. Previous studies have shown that, under certain conditions, a single oscillator can be captured into persistent resonance with a permanently growing amplitude of oscillations (autoresonance). This paper demonstrates that the emergence of autoresonance in the forced oscillator may be insufficient to generate oscillations with increasing amplitude in the attachment. A parametric domain, in which both oscillators can be captured into resonance, is determined. The quasisteady states determining the growth of amplitudes are found. An agreement between the theoretical and numerical results is demonstrated.

  15. Green's Function for the Quartic Oscillator

    OpenAIRE

    Anderson, Robert L.

    2016-01-01

    In this paper, a quantum mechanical Green's function $G_{qo}(y_b,t_b;$ $y_a,t_a)$ for the quartic oscillator is presented. This result is built upon two previous papers: first [1], detailing the linearization of the quartic oscillator $(qo)$ to the harmonic oscillator $(ho)$, second [2], the integration of the classical action function for the quartic oscillator. Here an equivalent form for the quartic oscillator action function $S_{qo}(y_b,t_b;$ $y_a,t_a)$ in terms of harmonic oscillator var...

  16. TOWARDS THRESHOLD FREQUENCY IN CHAOTIC COLPITTS OSCILLATOR

    DEFF Research Database (Denmark)

    Lindberg, Erik; Tamasevicius, Arunas; Mykolaitis, Gytis

    2007-01-01

    A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations at the funda......A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations...

  17. The relation of ongoing brain activity, evoked neural responses, and cognition

    Directory of Open Access Journals (Sweden)

    Sepideh Sadaghiani

    2010-06-01

    Full Text Available Ongoing brain activity has been observed since the earliest neurophysiological recordings and is found over a wide range of temporal and spatial scales. It is characterized by remarkably large spontaneous modulations. Here, we review evidence for the functional role of these ongoing activity fluctuations and argue that they constitute an essential property of the neural architecture underlying cognition. The role of spontaneous activity fluctuations is probably best understood when considering both their spatiotemporal structure and their functional impact on cognition. We first briefly argue against a ‘segregationist’ view on ongoing activity, both in time and space, countering this view with an emphasis on integration within a hierarchical spatiotemporal organization of intrinsic activity. We then highlight the flexibility and context-sensitivity of intrinsic functional connectivity that suggest its involvement in functionally relevant information processing. This role in information processing is pursued by reviewing how ongoing brain activity interacts with afferent and efferent information exchange of the brain with its environment. We focus on the relationship between the variability of ongoing and evoked brain activity, and review recent reports that tie ongoing brain activity fluctuations to variability in human perception and behavior. Finally, these observations are discussed within the framework of the free-energy principle which – applied to human brain function - provides a theoretical account for a non-random, coordinated interaction of ongoing and evoked activity in perception and behaviour.

  18. Simultaneous patch-clamping and calcium imaging in developing dendrites.

    Science.gov (United States)

    Kleindienst, Thomas; Lohmann, Christian

    2014-03-01

    Calcium imaging has been used extensively to explore the role of action potential (AP) firing in the development of neuronal structure and synaptic function because increases in intracellular calcium ([Ca(2+)]i) reliably and, within a certain range, linearly reflect neuronal spiking activity. Patterns of APs in individual cells can be deduced from calcium recordings, which have typically been performed at the level of cell bodies. However, neurons are particularly susceptible to phototoxicity when they are illuminated at the soma. Furthermore, for some imaging experiments (e.g., those that address the interactions between dendrites and axons during synapse formation), the cell body of a given neuron may simply not be in the field of view. In these situations, it would be helpful to determine the spiking patterns of a neuron from the calcium activity in its subcellular compartments such as stretches of dendrites or axons. Here, we describe an approach for determining the relationship between AP firing and dendritic calcium transients by simultaneously imaging calcium transients in small dendritic stretches of hippocampal pyramidal neurons in slice cultures from neonatal rats and recording spiking activity with whole-cell patch-clamp recordings in these neurons. These experiments allow us to correlate the electrophysiological spiking pattern with the accompanying changes in the calcium concentration in individual dendritic segments.

  19. Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites.

    Directory of Open Access Journals (Sweden)

    Bardia F Behabadi

    Full Text Available Neocortical pyramidal neurons (PNs receive thousands of excitatory synaptic contacts on their basal dendrites. Some act as classical driver inputs while others are thought to modulate PN responses based on sensory or behavioral context, but the biophysical mechanisms that mediate classical-contextual interactions in these dendrites remain poorly understood. We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. Distal excitation lowers the local spike threshold for more proximal inputs, while having little effect on peak responses at the soma. In contrast, proximal excitation lowers the threshold, but also substantially increases the gain of distally-driven responses. Our findings support the view that PN basal dendrites possess significant analog computing capabilities, and suggest that the diverse forms of nonlinear response modulation seen in the neocortex, including uni-modal, cross-modal, and attentional effects, could depend in part on pathway-specific biases in the spatial distribution of excitatory synaptic contacts onto PN basal dendritic arbors.

  20. Human intestinal dendritic cells as controllers of mucosal immunity

    Directory of Open Access Journals (Sweden)

    David Bernardo

    2013-06-01

    Full Text Available Dendritic cells are the most potent, professional antigen-presenting cells in the body; following antigen presentation they control the type (proinflammatory/regulatory of immune response that will take place, as well as its location. Given their high plasticity and maturation ability in response to local danger signals derived from innate immunity, dendritic cells are key actors in the connection between innate immunity and adaptive immunity responses. In the gut dendritic cells control immune tolerance mechanisms against food and/or commensal flora antigens, and are also capable of initiating an active immune response in the presence of invading pathogens. Dendritic cells are thus highly efficient in controlling the delicate balance between tolerance and immunity in an environment so rich in antigens as the gut, and any factor involving these cells may impact their function, ultimately leading to the development of bowel conditions such as celiac disease or inflammatory bowel disease. In this review we shall summarize our understanding of human intestinal dendritic cells, their ability to express and induce migration markers, the various environmental factors modulating their properties, their subsets in the gut, and the problems entailed by their study, including identification strategies, differences between humans and murine models, and phenotypical variations along the gastrointestinal tract.