WorldWideScience

Sample records for one-electron atomic-molecular ions

  1. HE2+-HE COLLISIONS - ONE-ELECTRON CAPTURE AND TARGET-ION EXCITATION

    NARCIS (Netherlands)

    FOLKERTS, HO; BLIEK, FW; MENG, L; OLSON, RE; MORGENSTERN, R; VONHELLERMANN, M; SUMMERS, HP; HOEKSTRA, R

    1994-01-01

    By means of photon emission spectroscopy we have studied state selective one-electron capture and target-ion excitation in collisions of He-2+ with He. The collision energy has been varied from 1 to 75 keV amu-1 Four-body classical trajectory Monte Carlo calculations have been performed in the energ

  2. Coupling all-atom molecular dynamics simulations of ions in water with Brownian dynamics

    CERN Document Server

    Erban, Radek

    2015-01-01

    Molecular dynamics (MD) simulations of ions (K$^+$, Na$^+$, Ca$^{2+}$ and Cl$^-$) in aqueous solutions are investigated. Water is described using the SPC/E model. A stochastic coarse-grained description for ion behaviour is presented and parameterized using MD simulations. It is given as a system of coupled stochastic and ordinary differential equations, describing the ion position, velocity and acceleration. The stochastic coarse-grained model provides an intermediate description between all-atom MD simulations and Brownian dynamics (BD) models. It is used to develop a multiscale method which uses all-atom MD simulations in parts of the computational domain and (less detailed) BD simulations in the remainder of the domain.

  3. E1M1 and E1E2 transition probabilities in one-electron ions

    Science.gov (United States)

    Labzowsky, L. N.; Shonin, A. V.

    2004-12-01

    The quantum electrodynamical (QED) theory of the two-photon transitions in hydrogenlike ions is presented. The emission probability for 2s→2γ(E1)+1s transitions is calculated and compared to the results of the previous calculations. The emission probabilities 2p→γ(E1)+γ(E2)+1s and 2p→γ(E1)+γ(M1)+1s are also calculated for the nuclear charge Z values 1⩽Z⩽100. This is the first calculation of the two latter probabilities. The results are given in two different gauges.

  4. Relativistic calculations of quasi-one-electron atoms and ions using Laguerre and Slater spinors

    CERN Document Server

    Jiang, Jun; Cheng, Yongjun; Bromley, Michael W J

    2016-01-01

    A relativistic description of the structure of heavy alkali atoms and alkali-like ions using S-spinors and L-spinors has been developed. The core wavefunction is defined by a Dirac-Fock calculation using an S-spinors basis. The S-spinor basis is then supplemented by a large set of L-spinors for the calculation of the valence wavefunction in a frozen-core model. The numerical stability of the L-spinor approach is demonstrated by computing the energies and decay rates of several low-lying hydrogen eigenstates, along with the polarizabilities of a $Z=60$ hydrogenic ion. The approach is then applied to calculate the dynamic polarizabilities of the $5s$, $4d$ and $5p$ states of Sr$^+$. The magic wavelengths at which the Stark shifts between different pairs of transitions are zero are computed. Determination of the magic wavelengths for the $5s \\to 4d_{\\frac32}$ and $5s \\to 4d_{\\frac52}$ transitions near $417$~nm (near the wavelength for the $5s \\to 5p_j$ transitions) would allow a determination of the oscillator s...

  5. E1M1 and E1E2 transition probabilities in one-electron ions

    Energy Technology Data Exchange (ETDEWEB)

    Labzowsky, L.N. [Institute of Physics, St. Petersburg State University, Uljanovskaya 1, Petrodvorets, 198904 St. Petersburg (Russian Federation) and Petersburg Nuclear Physics Institute, Gatchina, 188350 St. Petersburg (Russian Federation)]. E-mail: leonti@landau.phys.spbu.ru; Shonin, A.V. [Institute of Physics, St. Petersburg State University, Uljanovskaya 1, Petrodvorets, 198904 St. Petersburg (Russian Federation)

    2004-12-06

    The quantum electrodynamical (QED) theory of the two-photon transitions in hydrogenlike ions is presented. The emission probability for 2s1/2->2{gamma}(E1)+1s1/2 transitions is calculated and compared to the results of the previous calculations. The emission probabilities 2p1/2->{gamma}(E1)+{gamma}(E2)+1s1/2 and 2p1/2->{gamma}(E1)+{gamma}(M1)+1s1/2 are also calculated for the nuclear charge Z values 1=

  6. Atomic & Molecular Interactions

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-07-12

    The Gordon Research Conference (GRC) on Atomic & Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  7. Hyperfine-changing transitions in $^3$He II and other one-electron ions by electron scattering

    CERN Document Server

    Bartschat, Klaus

    2014-01-01

    We consider the spin-exchange (SE) cross section in electron scattering from $^3$He\\,{\\scriptsize II}, which drives the hyperfine-changing \\hbox{3.46 cm} (8.665 GHz) line transition. Both the analytical quantum defect method --- applicable at very low energies --- and accurate R-matrix techniques for electron-He$^+$ scattering are employed to obtain SE cross sections. The quantum defect theory is also applied to electron collisions with other one-electron ions in order to demonstrate the utility of the method and derive scaling relations. At very low energies, the hyperfine-changing cross sections due to e$-$He$^+$ scattering are much larger in magnitude than for electron collisions with neutral hydrogen, hinting at large rate constants for equilibration. Specifically, we obtain rate coefficients of $K(10\\,{\\rm K}) = 1.10 \\times 10^{-6}\\,\\rm cm^3/s$ and $K(100\\,{\\rm K}) = 3.49\\times 10^{-7}\\,\\rm cm^3/s$.

  8. Contribution of intrashell excitation to the l mixing of excited states of one-electron ions in solids

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, P.; Chabot, M.; Rozet, J.P.; Politis, M.F.; Chetioui, A.; Stephan, C.; Touati, A.; Vernhet, D.; Wohrer, K. (Paris-6 Univ., 75 (France). Inst. Curie)

    1990-10-28

    Target thickness dependence measurements of Lyman x-ray emission cross sections in collisions of 33 MeV u{sup -1} Kr{sup 36+} ions with C, Al and Cu target have been performed. Our results have been compared with the predictions of a rate-equation model including the nl-nl' process. The needed intrashell excitation cross sections have been calculated for 2{le}n{le}10 in the plane-wave Born approximation with screening and antiscreening effects accounted for. Using these cross sections, poor agreement with experiment is obtained. On the other hand, a set of fitted l-changing cross sections can be found to reproduce our data. These last cross sections are a factor 3-50 larger than the calculated ones. We believe this discrepancy to be an indication of a specific effect of free (or quasi-free) electrons in solid targets. (author).

  9. Committee on Atomic, Molecular and Optical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, James [National Academy of Sciences, Washington, DC (United States)

    2015-06-30

    The Committee on Atomic, Molecular, and Optical Sciences (CAMOS) is a standing activity of the National Research Council (NRC) that operates under the auspices of the Board on Physics and Astronomy. CAMOS is one of five standing committees of the BPA that are charged with assisting it in achieving its goals—monitoring the health of physics and astronomy, identifying important new developments at the scientific forefronts, fostering interactions with other fields, strengthening connections to technology, facilitating effective service to the nation, and enhancing education in physics. CAMOS provides these capabilities for the atomic, molecular and optical (AMO) sciences.

  10. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Bederson, Benjamin

    1993-01-01

    Advances in Atomic, Molecular, and Optical Physics, established in 1965, continues its tradition of excellence with Volume 32, published in honor of Founding Editor Sir David Bates upon his retirement as editorof the series. This volume presents reviews of topics related to the applications of atomic and molecular physics to atmospheric physics and astrophysics.

  11. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Walther, Herbert; Walther, Herbert

    1999-01-01

    This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular, and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered also include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics.

  12. Atomic, molecular, and optical physics charged particles

    CERN Document Server

    Dunning, F B

    1995-01-01

    With this volume, Methods of Experimental Physics becomes Experimental Methods in the Physical Sciences, a name change which reflects the evolution of todays science. This volume is the first of three which will provide a comprehensive treatment of the key experimental methods of atomic, molecular, and optical physics; the three volumes as a set will form an excellent experimental handbook for the field. The wide availability of tunable lasers in the pastseveral years has revolutionized the field and lead to the introduction of many new experimental methods that are covered in these volumes. Traditional methods are also included to ensure that the volumes will be a complete reference source for the field.

  13. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Walther, Herbert; Walther, Herbert

    2002-01-01

    This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics and laser physics. Articles are written by distinguished experts who are active in their research fields. The articles contain both relevant review material and detailed descriptions of important recent developments.

  14. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Berman, Paul R; Arimondo, Ennio

    2006-01-01

    Volume 54 of the Advances Series contains ten contributions, covering a diversity of subject areas in atomic, molecular and optical physics. The article by Regal and Jin reviews the properties of a Fermi degenerate gas of cold potassium atoms in the crossover regime between the Bose-Einstein condensation of molecules and the condensation of fermionic atom pairs. The transition between the two regions can be probed by varying an external magnetic field. Sherson, Julsgaard and Polzik explore the manner in which light and atoms can be entangled, with applications to quantum information processing

  15. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Walther, Herbert; Walther, Herbert

    2000-01-01

    This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular, and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered also include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics. Articles are written by distinguished experts who are active in their research fields. The articles contain both relevant review material and detailed descriptions of important recent developments.

  16. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Walther, Herbert; Walther, Herbert

    2001-01-01

    This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular, and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered also include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics. Articles are written by distinguished experts who are active in their research fields. The articles contain both relevant review material and detailed descriptions of important recent developments.

  17. Atomic, molecular, and optical physics electromagnetic radiation

    CERN Document Server

    Dunning, F B; Lucatorto, Thomas

    1997-01-01

    Combined with Volumes 29A and 29B, this volume is a comprehensive treatment of the key experimental methods of atomic, molecular, and optical physics, as well as an excellent experimental handbook for the field. Thewide availability of tunable lasers in the past several years has revolutionized the field and lead to the introduction of many new experimental methods that are covered in these volumes. Traditional methods are also included to ensure that the volumes will be a complete reference source for the field.

  18. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Walther, Herbert; Walther, Herbert

    1998-01-01

    This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular, and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered also include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics. Articles are written by distinguished experts who are active in their research fields. The articles contain both relevant review material as well as detailed descriptions of important recent developments.

  19. Atomic, Molecular, and Optical Physics Workshop Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Jr., Lloyd [University of Southern California

    1997-09-21

    This document contains the final reports from the five panels that comprised a Workshop held to explore future directions, scientific impacts and technological connections of research in Atomic, Molecular and Optical Physics. This workshop was sponsored by the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division and was held at the Westfields International Conference Center in Chantilly, Virginia on September 21-24, 1997. The workshop was chaired by Lloyd Armstrong, Jr., University of Southern California and the five panels focused on the following topics: Panel A: Interactions of Atoms and Molecules with Photons - Low Field Daniel Kleppner (Massachusetts Institute of Technology), chair Panel B: Interactions of Atoms and Molecules with Photons - High Field Phil Bucksbaum (University of Michigan), chair Panel C: Surface Interactions with Photons, Electrons, Ions, Atoms and Molecules J. Wayne Rabalais (University of Houston), chair Panel D: Theory of Structure and Dynamics Chris Greene (University of Colorado), chair Panel E: Nano- and Mesocopic Structures Paul Alivisatos (Lawrence Berkeley National Laboratory), chair The choice of focus areas reflects areas of significant interest to DOE/BES but is clearly not intended to span all fields encompassed by the designation of atomic, molecular and optical physics, nor even all areas that would be considered for review and funding under DOE’s AMOP program. In a similar vein, not all research that might be suggested under these topics in this report would be appropriate for consideration by DOE’s AMOP program. The workshop format included overview presentations from each of the panel chairs, followed by an intensive series of panel discussion sessions held over a two-day period. The panels were comprised of scientists from the U. S. and abroad, many of whom are not supported by DOE’s AMOP Program. This workshop was held in lieu of the customary “Contractors Meeting” held annually for

  20. One-electron physics of the actinides

    Science.gov (United States)

    Toropova, A.; Marianetti, C. A.; Haule, K.; Kotliar, G.

    2007-10-01

    We present a detailed analysis of the one-electron physics of the actinides. Various linear muffin-tin orbital basis sets are analyzed in order to determine a robust bare Hamiltonian for the actinides. The hybridization between f and spd states is compared with the f-f hopping in order to understand the Anderson-like and Hubbard-like contributions to itineracy in the actinides. We show that both contributions decrease strongly as one moves from the light actinides to the heavy actinides, while the Anderson-like contribution dominates in all cases. A real-space analysis of the band structure shows that nearest-neighbor hopping dominates the physics in these materials. Finally, we discuss the implications of our results to the delocalization transition as a function of atomic number across the actinide series.

  1. Computational challenges in atomic, molecular and optical physics.

    Science.gov (United States)

    Taylor, Kenneth T

    2002-06-15

    Six challenges are discussed. These are the laser-driven helium atom; the laser-driven hydrogen molecule and hydrogen molecular ion; electron scattering (with ionization) from one-electron atoms; the vibrational and rotational structure of molecules such as H(3)(+) and water at their dissociation limits; laser-heated clusters; and quantum degeneracy and Bose-Einstein condensation. The first four concern fundamental few-body systems where use of high-performance computing (HPC) is currently making possible accurate modelling from first principles. This leads to reliable predictions and support for laboratory experiment as well as true understanding of the dynamics. Important aspects of these challenges addressable only via a terascale facility are set out. Such a facility makes the last two challenges in the above list meaningfully accessible for the first time, and the scientific interest together with the prospective role for HPC in these is emphasized.

  2. One-electron capture into Li-like autoionising N/sup 4 +/ (1s2ln'l') configurations by metastable N/sup 5 +/ (1s2s/sup 3/S) multicharged ions in collisions with He and H/sub 2/, observed by electron spectrometry at 3. 4 keV amu/sup -1/

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Gleizes, A.; Dousson, S.; Hitz, D.

    1985-04-14

    One-electron capture into N/sup 4 +/ (1s2ln'l') configurations, with n'=2 to 4, has been observed by electron spectrometry when a N/sup 5 +/ (1s2s /sup 3/S) multicharged ion beam encounters an He or H/sub 2/ target, at low collision velocity (upsilon=0.37 au) within single-collision conditions. Contributions of other 1s2l metastable states and of the 1s/sup 2/ ground state may be disregarded. A small indication of two-electron capture by 1s2s /sup 3/S ions into (1s2s /sup 3/S)3l3l' configurations is also seen.

  3. R-matrix theory of atomic collisions. Application to atomic, molecular and optical processes

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Philip G. [Queen' s Univ., Belfast (United Kingdom). School of Mathematics and Physics

    2011-07-01

    Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include electron and photon collisions with atoms, ions and molecules required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technological importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices. (orig.)

  4. R-Matrix Theory of Atomic Collisions Application to Atomic, Molecular and Optical Processes

    CERN Document Server

    Burke, Philip George

    2011-01-01

    Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include electron and photon collisions with atoms, ions and molecules required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.

  5. Physics through the 1990s: Atomic, molecular and optical physics

    Science.gov (United States)

    1986-01-01

    The volume presents a program of research initiatives in atomic, molecular, and optical physics. The current state of atomic, molecular, and optical physics in the US is examined with respect to demographics, education patterns, applications, and the US economy. Recommendations are made for each field, with discussions of their histories and the relevance of the research to government agencies. The section on atomic physics includes atomic theory, structure, and dynamics; accelerator-based atomic physics; and large facilities. The section on molecular physics includes spectroscopy, scattering theory and experiment, and the dynamics of chemical reactions. The section on optical physics discusses lasers, laser spectroscopy, and quantum optics and coherence. A section elucidates interfaces between the three fields and astrophysics, condensed matter physics, surface science, plasma physics, atmospheric physics, and nuclear physics. Another section shows applications of the three fields in ultra-precise measurements, fusion, national security, materials, medicine, and other topics.

  6. PAMOP: Petascale Atomic, Molecular and Optical Collision Calculations

    CERN Document Server

    McLaughlin, Brendan M; Pindzola, Michael S; Müller, Alfred

    2015-01-01

    Petaflop architectures are currently being utilized efficiently to perform large scale computations in Atomic, Molecular and Optical Collisions. We solve the Schr\\"odinger or Dirac equation for the appropriate collision problem using the R-matrix or R-matrix with pseudo-states approach. We briefly outline the parallel methodology used and implemented for the current suite of Breit-Pauli and DARC codes. In this report, various examples are shown from our theoretical results compared with experimental results obtained from Synchrotron Radiation facilities where the Cray architecture at HLRS is playing an integral part in our computational projects.

  7. Super-atom molecular orbital excited states of fullerenes.

    Science.gov (United States)

    Johansson, J Olof; Bohl, Elvira; Campbell, Eleanor E B

    2016-09-13

    Super-atom molecular orbitals are orbitals that form diffuse hydrogenic excited electronic states of fullerenes with their electron density centred at the centre of the hollow carbon cage and a significant electron density inside the cage. This is a consequence of the high symmetry and hollow structure of the molecules and distinguishes them from typical low-lying molecular Rydberg states. This review summarizes the current experimental and theoretical studies related to these exotic excited electronic states with emphasis on femtosecond photoelectron spectroscopy experiments on gas-phase fullerenes.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'.

  8. HE-2+-H2 COLLISIONS - NONDISSOCIATIVE AND DISSOCIATIVE ONE-ELECTRON CAPTURE

    NARCIS (Netherlands)

    HOEKSTRA, R; FOLKERTS, HO; BEIJERS, JPM; MORGENSTERN, R; DEHEER, FJ

    1994-01-01

    Electron-redistribution processes in collisions of He-2+ ions on H-2 are studied for energies from 1 to 25 keV amu-1. One-electron capture and target excitation cross sections are determined by photon-emission spectroscopy. At energies exceeding approximately 5 keV amu-1 capture into excited states

  9. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    Science.gov (United States)

    Andoh, Y.; Yoshii, N.; Yamada, A.; Fujimoto, K.; Kojima, H.; Mizutani, K.; Nakagawa, A.; Nomoto, A.; Okazaki, S.

    2014-10-01

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 106 all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.

  10. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    Energy Technology Data Exchange (ETDEWEB)

    Andoh, Y.; Yoshii, N.; Yamada, A.; Kojima, H.; Mizutani, K.; Okazaki, S., E-mail: okazaki@apchem.nagoya-u.ac.jp [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Fujimoto, K. [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Nakagawa, A. [Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka 565-0871 (Japan); Nomoto, A. [Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo 141-0021 (Japan)

    2014-10-28

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 10{sup 6} all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.

  11. Direct observation of pure one-electron capture from the target inner shell in low-energy p+Na collisions

    NARCIS (Netherlands)

    Knoop, S; Morgenstern, R; Hoekstra, R

    2004-01-01

    One-electron removal in the p+Na collision system has been investigated at low energy (4-25 keV) by means of recoil ion momentum spectroscopy. The focus will be on the contribution of one-electron capture from the Na 2p inner shell into the hydrogen ground state, thereby leaving the Na+ target ion

  12. Microcanonical distribution for one-electron triatomic molecules

    CERN Document Server

    Lazarou, C; Emmanouilidou, A

    2015-01-01

    We formulate a microcanonical distribution for an arbitrary one-electron triatomic molecule. This distribution can be used to describe the initial state in strongly-driven two-electron triatomic molecules. Namely, in many semiclassical models that describe ionization of two-electron molecules driven by intense infrared laser fields in the tunneling regime initially one electron tunnels while the other electron is bound. The microcanonical distribution presented in this work can be used to describe the initial state of this bound electron.

  13. One-Electron Theory of Metals. Cohesive and Structural Properties

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    by means of the Linear Muffin-Tin Orbital (LMTO) method. It has been the goal of the work to establish how well this one-electron approach describes physical properties such as the crystal structures of the transition metals, the structural phase transitions in the alkali, alkaline earth, and rare earth......The work described in the report r.nd the 16 accompanying publications is based upon a one-electron theory obtained within the local approximation to density-functional theory, and deals with the ground state of metals as obtained from selfconsistent electronic-structure calculations performed...

  14. Implementation of Shifted Periodic Boundary Conditions in the Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) Software

    Science.gov (United States)

    2015-08-01

    Atomic /Molecular Massively Parallel Simulator (LAMMPS) Software by N Scott Weingarten and James P Larentzos Approved for...0687 ● AUG 2015 US Army Research Laboratory Implementation of Shifted Periodic Boundary Conditions in the Large-Scale Atomic /Molecular...Shifted Periodic Boundary Conditions in the Large-Scale Atomic /Molecular Massively Parallel Simulator (LAMMPS) Software 5a. CONTRACT NUMBER 5b

  15. Experimental Techniques for Studies in Atomic & Molecular Physics

    OpenAIRE

    Heijkenskjöld, Filip

    2008-01-01

    This thesis is based on a selection of six different experimental techniques used for studies in atomic and molecular physics. The techniques analysed in the thesis are compared to find similarities in strategies and ways to avoid sources of error. Paper 1 deals with collision based spectroscopy with 60 keV Xe6+ ions on sodium and argon gas targets. Information on energy of Rydberg states in Xe5+ is unveiled by optical spectroscopy in the wavelength range from vacuum ultraviolet (VUV) to visi...

  16. One-electron quantum cyclotron (and implications for cold antihydrogen)

    CERN Document Server

    Gabrielse, G; Odom, B; D'Urso, B

    2001-01-01

    Quantum jumps between Fock states of a one-electron oscillator reveal the quantum limit of a cyclotron accelerator. The states live for seconds when spontaneous emission is inhibited by a factor of 140 within a cylindrical Penning trap cavity. Averaged over hours the oscillator is in thermal equilibrium with black-body photons in the cavity. At 80 mK, quantum jumps occur only when resonant microwave photons are introduced into the cavity, opening a route to improved measurements of the magnetic moments of the electron and positron. The temperature demonstrated is about 60 times lower than the 4.2 K temperature at which charged elementary particles were previously stored. Implications for the production of cold antihydrogen are discussed. (21 refs).

  17. Applications of quantum and classical connections in modeling atomic, molecular and electrodynamic systems

    CERN Document Server

    Popa, Alexandru

    2013-01-01

    Applications of Quantum and Classical Connections in Modeling Atomic, Molecular and Electrodynamical Systems is a reference on the new field of relativistic optics, examining topics related to relativistic interactions between very intense laser beams and particles. Based on 30 years of research, this unique book connects the properties of quantum equations to corresponding classical equations used to calculate the energetic values and the symmetry properties of atomic, molecular and electrodynamical systems. In addition, it examines applications for these methods, and for the calculation of

  18. Essay: Fifty years of atomic, molecular and optical physics in Physical Review Letters.

    Science.gov (United States)

    Haroche, Serge

    2008-10-17

    The fiftieth anniversary of Physical Review Letters is a good opportunity to review the extraordinary progress of atomic, molecular, and optical physics reported in this journal during the past half-century. As both a witness and an actor of this story, I recall personal experiences and reflect about the past, present, and possible future of my field of research.

  19. Solving One-Electron Systems in a Novel Gaussian-Sinc Mixed Basis Set

    CERN Document Server

    Jerke, Jonathan L; Tymczak, C J

    2014-01-01

    We introduce a novel Gaussian-Sinc mixed basis set for the calculation of the electronic structure of one-electron systems within a uniform magnetic field in three dimensions. As opposed to traditional grid based methods, the Sinc basis is unbiased and invariant to the choice of the grids origin. This is shown to be due to the transformation properties of the Sinc basis functions under translations. The entire method is translational invariant and the potentials are properly calculated and are necessarily off diagonal, as well as variationally bounded. With this method, it was generally found that under arbitrary configurations of the protons that four to six significant digits in the ground state energy accuracy was achievable. This technology was then applied to calculate the ground state energy of H, $H_{2}^{+}$ ion and $H_{3}^{2+}$ ion in magnetic fields up to a magnetic field strength of 1.18x$10^9$ T (5000 au). From this it can be shown that $H_{3}^(2+}$ ion is unstable up to the maximum magnetic field ...

  20. Classical and quantum dynamics of a model for atomic-molecular Bose--Einstein condensates

    OpenAIRE

    Santos Filho, Gilberto Nascimento; Tonel, Arlei Prestes; Foerster, Angela; Links, Jon(Centre for Mathematical Physics, School of Mathematics and Physics, The University of Queensland, 4072, Australia)

    2005-01-01

    We study a model for a two-mode atomic-molecular Bose--Einstein condensate. Starting with a classical analysis we determine the phase space fixed points of the system. It is found that bifurcations of the fixed points naturally separate the coupling parameter space into four regions. The different regions give rise to qualitatively different dynamics. We then show that this classification holds true for the quantum dynamics.

  1. Photoelectron angular distributions for states of any mixed character: an experiment-friendly model for atomic, molecular, and cluster anions.

    Science.gov (United States)

    Khuseynov, Dmitry; Blackstone, Christopher C; Culberson, Lori M; Sanov, Andrei

    2014-09-28

    We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO(-) photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.

  2. R-matrix-incorporating-time theory of one-electron atomic and molecular systems in intense laser fields

    Science.gov (United States)

    Broin, Cathal Ó.; Nikolopoulos, L. A. A.

    2017-02-01

    In this thesis tutorial we discuss the R-matrix-incorporating-time ab initio theoretical framework for the solution of the time-dependent Schrödinger equation of one-electron atomic and molecular systems under strong electromagnetic fields. Within this approach, a division-of-space method is developed with the configuration space of the electron’s coordinates separated over two regions, the inner and outer regions. In the inner region the quantum system’s time-dependent wavefunction is expanded on the eigenstate basis set of its field-free Hamiltonian representation while in the outer region its grid representation is considered. The present tutorial describes in detail the theoretical formulation for one-electron quantum systems. Example calculations are discussed for atomic hydrogen, H, and the molecular hydrogen ion, {{{H}}}2+, in intense laser fields.

  3. Theory of quantum and classical connections in modeling atomic, molecular and electrodynamical systems

    CERN Document Server

    Popa, Alexandru

    2013-01-01

    Quantum and Classical Connections in Modeling Atomic, Molecular and Electrodynamic Systems is intended for scientists and graduate students interested in the foundations of quantum mechanics and applied scientists interested in accurate atomic and molecular models. This is a reference to those working in the new field of relativistic optics, in topics related to relativistic interactions between very intense laser beams and particles, and is based on 30 years of research. The novelty of this work consists of accurate connections between the properties of quantum equations and correspon

  4. Conformational space of clindamycin studied by ab initio and full-atom molecular dynamics.

    Science.gov (United States)

    Kulczycka-Mierzejewska, Katarzyna; Trylska, Joanna; Sadlej, Joanna

    2016-01-01

    Molecular dynamics (MD) simulations allow determining internal flexibility of molecules at atomic level. Using ab initio Born-Oppenheimer molecular dynamics (BOMD), one can simulate in a reasonable time frame small systems with hundreds of atoms, usually in vacuum. With quantum mechanics/molecular mechanics (QM/MM) or full-atom molecular dynamics (FAMD), the influence of the environment can also be simulated. Here, we compare three types of MD calculations: ab initio BOMD, hybrid QM/MM, and classical FAMD. As a model system, we use a small antibiotic molecule, clindamycin, which is one of the lincosamide antibiotics. Clindamycin acquires two energetically stable forms and we investigated the transition between these two experimentally known conformers. We performed 60-ps BOMD simulations in vacuum, 50-ps QM/MM, and 100-ns FAMD in explicit water. The transition between two antibiotic conformers was observed using both BOMD and FAMD methods but was not noted in the QM/MM simulations.

  5. An open source digital servo for atomic, molecular, and optical physics experiments.

    Science.gov (United States)

    Leibrandt, D R; Heidecker, J

    2015-12-01

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of (27)Al(+) in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  6. High-throughput all-atom molecular dynamics simulations using distributed computing.

    Science.gov (United States)

    Buch, I; Harvey, M J; Giorgino, T; Anderson, D P; De Fabritiis, G

    2010-03-22

    Although molecular dynamics simulation methods are useful in the modeling of macromolecular systems, they remain computationally expensive, with production work requiring costly high-performance computing (HPC) resources. We review recent innovations in accelerating molecular dynamics on graphics processing units (GPUs), and we describe GPUGRID, a volunteer computing project that uses the GPU resources of nondedicated desktop and workstation computers. In particular, we demonstrate the capability of simulating thousands of all-atom molecular trajectories generated at an average of 20 ns/day each (for systems of approximately 30 000-80 000 atoms). In conjunction with a potential of mean force (PMF) protocol for computing binding free energies, we demonstrate the use of GPUGRID in the computation of accurate binding affinities of the Src SH2 domain/pYEEI ligand complex by reconstructing the PMF over 373 umbrella sampling windows of 55 ns each (20.5 mus of total data). We obtain a standard free energy of binding of -8.7 +/- 0.4 kcal/mol within 0.7 kcal/mol from experimental results. This infrastructure will provide the basis for a robust system for high-throughput accurate binding affinity prediction.

  7. All-atom molecular dynamics simulation of a photosystem I/detergent complex

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Bradley J. [Univ. of Tennessee, Knoxville, TN (United States); Cheng, Xiaolin [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Frymier, Paul [Univ. of Tennessee, Knoxville, TN (United States)

    2014-09-18

    All-atom molecular dynamics (MD) simulation was used to investigate the solution structure and dynamics of the photosynthetic pigment protein complex photosystem I (PSI) from Thermosynechococcus elongatus embedded in a toroidal belt of n-dodecyl-β-d-maltoside (DDM) detergent. Evaluation of root-mean-square deviations (RMSDs) relative to the known crystal structure show that the protein complex surrounded by DDM molecules is stable during the 200 ns simulation time, and root-mean-square fluctuation (RMSF) analysis indicates that regions of high local mobility correspond to solvent-exposed regions such as turns in the transmembrane α-helices and flexible loops on the stromal and lumenal faces. Comparing the protein detergent complex to a pure detergent micelle, the detergent surrounding the PSI trimer is found to be less densely packed but with more ordered detergent tails, contrary to what is seen in most lipid bilayer models. We also investigated any functional implications for the observed conformational dynamics and protein detergent interactions, discovering interesting structural changes in the psaL subunits associated with maintaining the trimeric structure of the protein. Moreover, we find that the docking of soluble electron mediators such as cytochrome c6 and ferredoxin to PSI is not significantly impacted by the solubilization of PSI in detergent.

  8. Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation.

    Science.gov (United States)

    Shibuta, Yasushi; Oguchi, Kanae; Takaki, Tomohiro; Ohno, Munekazu

    2015-08-27

    Homogeneous nucleation from an undercooled iron melt is investigated by the statistical sampling of million-atom molecular dynamics (MD) simulations performed on a graphics processing unit (GPU). Fifty independent instances of isothermal MD calculations with one million atoms in a quasi-two-dimensional cell over a nanosecond reveal that the nucleation rate and the incubation time of nucleation as functions of temperature have characteristic shapes with a nose at the critical temperature. This indicates that thermally activated homogeneous nucleation occurs spontaneously in MD simulations without any inducing factor, whereas most previous studies have employed factors such as pressure, surface effect, and continuous cooling to induce nucleation. Moreover, further calculations over ten nanoseconds capture the microstructure evolution on the order of tens of nanometers from the atomistic viewpoint and the grain growth exponent is directly estimated. Our novel approach based on the concept of "melting pots in a supercomputer" is opening a new phase in computational metallurgy with the aid of rapid advances in computational environments.

  9. ALMOST: an all atom molecular simulation toolkit for protein structure determination.

    Science.gov (United States)

    Fu, Biao; Sahakyan, Aleksandr B; Camilloni, Carlo; Tartaglia, Gian Gaetano; Paci, Emanuele; Caflisch, Amedeo; Vendruscolo, Michele; Cavalli, Andrea

    2014-05-30

    Almost (all atom molecular simulation toolkit) is an open source computational package for structure determination and analysis of complex molecular systems including proteins, and nucleic acids. Almost has been designed with two primary goals: to provide tools for molecular structure determination using various types of experimental measurements as conformational restraints, and to provide methods for the analysis and assessment of structural and dynamical properties of complex molecular systems. The methods incorporated in Almost include the determination of structural and dynamical features of proteins using distance restraints derived from nuclear Overhauser effect measurements, orientational restraints obtained from residual dipolar couplings and the structural restraints from chemical shifts. Here, we present the first public release of Almost, highlight the key aspects of its computational design and discuss the main features currently implemented. Almost is available for the most common Unix-based operating systems, including Linux and Mac OS X. Almost is distributed free of charge under the GNU Public License, and is available both as a source code and as a binary executable from the project web site at http://www.open-almost.org. Interested users can follow and contribute to the further development of Almost on http://sourceforge.net/projects/almost.

  10. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore

    KAUST Repository

    Di Marino, Daniele

    2015-08-06

    © 2015 American Chemical Society. Nanopore sensing is attracting the attention of a large and varied scientific community. One of the main issues in nanopore sensing is how to associate the measured current signals to specific features of the molecule under investigation. This is particularly relevant when the translocating molecule is a protein and the pore is sufficiently narrow to necessarily involve unfolding of the translocating protein. Recent experimental results characterized the cotranslocational unfolding of Thioredoxin (Trx) passing through an α-hemolisin pore, providing evidence for the existence of a multistep process. In this study we report the results of all-atom molecular dynamics simulations of the same system. Our data indicate that Trx translocation involves two main barriers. The first one is an unfolding barrier associated with a translocation intermediate where the N-terminal region of Trx is stuck at the pore entrance in a conformation that strongly resembles the native one. After the abrupt unfolding of the N-terminal region, the Trx enters the α-hemolisin vestibule. During this stage, the constriction is occupied not only by the translocating residue but also by a hairpin-like structure forming a tangle in the constriction. The second barrier is associated with the disentangling of this region.

  11. Boron-Boron One-Electron Sigma Bonds versus B-X-B Bridged Structures.

    Science.gov (United States)

    Kusevska, Elena; Montero-Campillo, M Merced; Mó, Otilia; Yáñez, Manuel

    2016-09-12

    The existence of one-electron B-B σ bonds, for two different sets of compounds, was investigated by analyzing their electron density with different tools, namely QTAIM, ELF, NCIPLOT, and NBO approaches. Our results indicate that although the generic label "one-electron sigma bond" is often used in the literature, the nature of these bonds varies considerably, or they even do not exist. The [B2 X6 ](-) radical anions give place to true covalent one-electron σ bonds, the stronger the more electronegative is the X substituent. When both boron atoms are substituents in a rigid aromatic moiety, such as naphthalene, to yield 1,8-disubstituted derivatives, two kinds of equilibrium structures are found, those also stabilized through a one-electron σ bond (X=OH, F, Cl, CN) and those stabilized by the formation of B-X-B bridges (X=H, OMe). These 1,8-BX2 naphthalene derivatives can be considered as analogues of 1,8-NX2 naphthalene proton sponges. While the latter are able to stabilize a proton between the two basic sites, the former are able to stabilize an electron between the two electron-deficient B atoms. Interestingly, when all the H atoms attached to B are substituted by phenyl groups no one-electron σ bonds B-B bonds are formed, due to the dispersion of the unpaired electron in the aromatic substituents.

  12. One-electron singular spectral features of the 1D Hubbard model at finite magnetic field

    Science.gov (United States)

    Carmelo, J. M. P.; Čadež, T.

    2017-01-01

    The momentum, electronic density, spin density, and interaction dependences of the exponents that control the (k , ω)-plane singular features of the σ = ↑ , ↓ one-electron spectral functions of the 1D Hubbard model at finite magnetic field are studied. The usual half-filling concepts of one-electron lower Hubbard band and upper Hubbard band are defined in terms of the rotated electrons associated with the model Bethe-ansatz solution for all electronic density and spin density values and the whole finite repulsion range. Such rotated electrons are the link of the non-perturbative relation between the electrons and the pseudofermions. Our results further clarify the microscopic processes through which the pseudofermion dynamical theory accounts for the one-electron matrix elements between the ground state and excited energy eigenstates.

  13. All-atom molecular dynamics studies of the full-length {beta}-amyloid peptides

    Energy Technology Data Exchange (ETDEWEB)

    Luttmann, Edgar [Department of Chemistry, Faculty of Science, University of Paderborn, Warburgerstr. 100, 33098 Paderborn (Germany); Fels, Gregor [Department of Chemistry, Faculty of Science, University of Paderborn, Warburgerstr. 100, 33098 Paderborn (Germany)], E-mail: fels@uni-paderborn.de

    2006-03-31

    {beta}-Amyloid peptides are believed to play an essential role in Alzheimer's disease (AD), due to their sedimentation in the form of {beta}-amyloid aggregates in the brain of AD-patients, and the in vitro neurotoxicity of oligomeric aggregates. The monomeric peptides come in different lengths of 39-43 residues, of which the 42 alloform seems to be most strongly associated with AD-symptoms. Structural information on these peptides to date comes from NMR studies in acidic solutions, organic solvents, or on shorter fragments of the peptide. In addition X-ray and solid-state NMR investigations of amyloid fibrils yield insight into the structure of the final aggregate and therefore define the endpoint of any conformational change of an A{beta}-monomer along the aggregation process. The conformational changes necessary to connect the experimentally known conformations are not yet understood and this process is an active field of research. In this paper, we report results from all-atom molecular dynamics simulations based on experimental data from four different peptides of 40 amino acids and two peptides consisting of 42 amino acids. The simulations allow for the analysis of intramolecular interactions and the role of structural features. In particular, they show the appearance of {beta}-turn in the region between amino acid 21 and 33, forming a hook-like shape as it is known to exist in the fibrillar A{beta}-structures. This folding does not depend on the formation of a salt bridge between Asp-23 and Lys-28 but requires the A{beta}(1-42) as such structure was not observed in the shorter system A{beta}(1-40)

  14. Analytic solutions and their dynamics of atomic-molecular Bose-Einstein condensates with time- and space-modulated nonlinearities

    Science.gov (United States)

    Wu, Huilan; Yao, Yuqin

    2017-01-01

    The time- and space-modulated nonlinearity is the important character of the Bose-Einstein condensates (BECs). Many works have been done on atomic BECs with spatially modulated nonlinearity, but there is little work on atomic-molecular BECs. In this paper, we construct one family of explicitly exact solutions of the atomic-molecular BECs with time- and space-modulated nonlinearities and trapping potential by similarity transformations. We discuss the dynamics of matter waves including breathing solitons, quasi-breathing solitons, resonant solitons and moving solitons. We analyze the linear stability of the solutions by adding various initial stochastic noise. We also provide the experimental parameters to produce these phenomena in future experiments.

  15. COMPUTATIONAL ELECTROCHEMISTRY: AQUEOUS ONE-ELECTRON OXIDATION POTENTIALS FOR SUBSTITUTED ANILINES

    Science.gov (United States)

    Semiempirical molecular orbital theory and density functional theory are used to compute one-electron oxidation potentials for aniline and a set of 21 mono- and di-substituted anilines in aqueous solution. Linear relationships between theoretical predictions and experiment are co...

  16. Calculation of two-center one-electron molecular integrals with STOs. [BICEN

    Energy Technology Data Exchange (ETDEWEB)

    Rico, J.F.; Lopez, R.; Paniagua, M.; Ramirez, G. (Universidad Autonoma de Madrid (Spain). Dept. de Quimica Fisica y Quimica Cuantica)

    1991-05-01

    A program for the calculation of two-center one-electron integrals (overlap, nuclear attraction and kinetic energy) between real Slater-type orbitals (STOs) is reported. The integrals are obtained by recursion over simple auxiliary matrices, whose elements are calculated in terms of further auxiliary functions evaluated in a quick and accurate way. (orig.).

  17. Differential cross sections for the one electron two center symmetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Maidagan, J.M.; Piacentini, R.D. (Universidad Nacional de Rosario (Argentina). Dept. de Fisica); Rivarola, R.D. (Bordeaux-1 Univ., 33 - Talence (France). Lab. d' Astrophysique; Universidad Autonoma de Madrid (Spain). Dept. de Quimica Fisica y Quimica Cuantica)

    1982-03-01

    We use the two-state atomic expansion with variable nuclear charge to study charge-exchange differential cross sections for symmetrical one-electron systems at intermediate energy. The nonclassical small angle diffraction scattering is discussed. Our results are compared with data for H/sup +/-H collisions.

  18. Spin-orbit coupling manipulating composite topological spin textures in atomic-molecular Bose-Einstein condensates

    Science.gov (United States)

    Liu, Chao-Fei; Juzeliūnas, Gediminas; Liu, W. M.

    2017-02-01

    Atomic-molecular Bose-Einstein condensates (BECs) offer brand new opportunities to revolutionize quantum gases and probe the variation of fundamental constants with unprecedented sensitivity. The recent realization of spin-orbit coupling (SOC) in BECs provides a new platform for exploring completely new phenomena unrealizable elsewhere. In this study, we find a way of creating a Rashba-Dresselhaus SOC in atomic-molecular BECs by combining the spin-dependent photoassociation and Raman coupling, which can control the formation and distribution of a different type of topological excitation—carbon-dioxide-like skyrmion. This skyrmion is formed by two half-skyrmions of molecular BECs coupling with one skyrmion of atomic BECs, where the two half-skyrmions locate at both sides of one skyrmion. Carbon-dioxide-like skyrmion can be detected by measuring the vortices structures using the time-of-flight absorption imaging technique in real experiments. Furthermore, we find that SOC can effectively change the occurrence of the Chern number in k space, which causes the creation of topological spin textures from some separated carbon-dioxide-like monomers each with topological charge -2 to a polymer chain of the skyrmions. This work helps in creating dual SOC atomic-molecular BECs and opens avenues to manipulate topological excitations.

  19. The tilt-dependent potential of mean force of a pair of DNA oligomers from all-atom molecular dynamics simulations

    Science.gov (United States)

    Cortini, Ruggero; Cheng, Xiaolin; Smith, Jeremy C.

    2017-03-01

    Electrostatic interactions between DNA molecules have been extensively studied experimentally and theoretically, but several aspects (e.g. its role in determining the pitch of the cholesteric DNA phase) still remain unclear. Here, we performed large-scale all-atom molecular dynamics simulations in explicit water and 150 mM sodium chloride, to reconstruct the potential of mean force (PMF) of two DNA oligomers 24 base pairs long as a function of their interaxial angle and intermolecular distance. We find that the potential of mean force is dominated by total DNA charge, and not by the helical geometry of its charged groups. The theory of homogeneously charged cylinders fits well all our simulation data, and the fit yields the optimal value of the total compensated charge on DNA to  ≈65% of its total fixed charge (arising from the phosphorous atoms), close to the value expected from Manning’s theory of ion condensation. The PMF calculated from our simulations does not show a significant dependence on the handedness of the angle between the two DNA molecules, or its size is on the order of 1{{k}\\text{B}}T . Thermal noise for molecules of the studied length seems to mask the effect of detailed helical charge patterns of DNA. The fact that in monovalent salt the effective interaction between two DNA molecules is independent on the handedness of the tilt may suggest that alternative mechanisms are required to understand the cholesteric phase of DNA.

  20. Effect of water on structure and dynamics of [BMIM][PF6] ionic liquid: An all-atom molecular dynamics simulation investigation

    Science.gov (United States)

    Sharma, Anirban; Ghorai, Pradip Kr.

    2016-03-01

    Composition dependent structural and dynamical properties of aqueous hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid (IL) have been investigated by using all-atom molecular dynamics simulation. We observe that addition of water does not increase significant number of dissociated ions in the solution over the pure state. As a consequence, self-diffusion coefficient of the cation and anion is comparable to each other at all water concentration similar to that is observed for the pure state. Voronoi polyhedra analysis exhibits strong dependence on the local environment of IL concentration. Void and neck distributions in Voronoi tessellation are approximately Gaussian for pure IL but upon subsequent addition of water, we observe deviation from the Gaussian behaviour with an asymmetric broadening with long tail of exponential decay at large void radius, particularly at higher water concentrations. The increase in void space and neck size at higher water concentration facilitates ionic motion, thus, decreasing dynamical heterogeneity and IL reorientation time and increases self-diffusion coefficient significantly.

  1. Charge-leveling and proper treatment of long-range electrostatics in all-atom molecular dynamics at constant pH.

    Science.gov (United States)

    Wallace, Jason A; Shen, Jana K

    2012-11-14

    Recent development of constant pH molecular dynamics (CpHMD) methods has offered promise for adding pH-stat in molecular dynamics simulations. However, until now the working pH molecular dynamics (pHMD) implementations are dependent in part or whole on implicit-solvent models. Here we show that proper treatment of long-range electrostatics and maintaining charge neutrality of the system are critical for extending the continuous pHMD framework to the all-atom representation. The former is achieved here by adding forces to titration coordinates due to long-range electrostatics based on the generalized reaction field method, while the latter is made possible by a charge-leveling technique that couples proton titration with simultaneous ionization or neutralization of a co-ion in solution. We test the new method using the pH-replica-exchange CpHMD simulations of a series of aliphatic dicarboxylic acids with varying carbon chain length. The average absolute deviation from the experimental pK(a) values is merely 0.18 units. The results show that accounting for the forces due to extended electrostatics removes the large random noise in propagating titration coordinates, while maintaining charge neutrality of the system improves the accuracy in the calculated electrostatic interaction between ionizable sites. Thus, we believe that the way is paved for realizing pH-controlled all-atom molecular dynamics in the near future.

  2. Thioredoxin Ch1 of Chlamydomonas reinhardtii displays an unusual resistance toward one-electron oxidation.

    Science.gov (United States)

    Sicard-Roselli, Cécile; Lemaire, Stéphane; Jacquot, Jean-Pierre; Favaudon, Vincent; Marchand, Christophe; Houée-Levin, Chantal

    2004-09-01

    To test thioredoxin resistance to oxidizing free radicals, we have studied the one-electron oxidation of wild-type thioredoxin and of two forms with the point mutations D30A and W35A, using azide radicals generated by gamma-ray or pulse radiolysis. The oxidation patterns of wild-type thioredoxin and D30A are similar. In these forms, Trp35 is the primary target and is 'repaired' by one-electron reduction; first by intramolecular electron transfer from tyrosine, and then from other residues. Conversely, during oxidation of W35A, Trp13 is poorly reactive. For all proteins, activity is conserved showing an unusual resistance toward oxidation.

  3. Molecular structural formulas as one-electron density and hamiltonian operators: the VIF method extended.

    Science.gov (United States)

    Alia, Joseph D

    2007-03-29

    The valency interaction formula (VIF) method is given a broader and more general interpretation in which these simple molecular structural formulas implicitly include all overlaps between valence atomic orbitals even for interactions not drawn in the VIF picture. This applies for VIF pictures as one-electron Hamiltonian operators as well as VIF pictures as one-electron density operators that constitute a new implementation of the VIF method simpler in its application and more accurate in its results than previous approaches. A procedure for estimating elements of the effective charge density-bond order matrix, Pmunu, from electron configurations in atoms is presented, and it is shown how these lead to loop and line constants in the VIF picture. From these structural formulas, one finds the number of singly, doubly, and unoccupied molecular orbitals, as well as the number of molecular orbitals with energy lower, equal, and higher than -1/2Eh, the negative of the hydrogen atom's ionization energy. The VIF results for water are in qualitative agreement with MP2/6311++G3df3pd, MO energy levels where the simple VIF for water presented in the earlier literature does not agree with computed energy levels. The method presented here gives the simplest accurate VIF pictures for hydrocarbons. It is shown how VIF can be used to predict thermal barriers to chemical reactions. Insertion of singlet carbene into H2 is given as an example. VIF pictures as one-electron density operators describe the ground-state multiplicities of B2, N2, and O2 molecules and as one-electron Hamiltonian operators give the correct electronegativity trend across period two. Previous implementations of VIF do not indicate singly occupied molecular orbitals directly from the pictorial VIF rules for these examples. The direct comparison between structural formulas that represent electron density and those that represent energy is supported by comparison of a simple electronegativity scale, chiD=N/n2, with

  4. Conformations of Carnosine in Aqueous Solutions by All-Atom Molecular Dynamics Simulations and 2D-NOSEY Spectrum

    Institute of Scientific and Technical Information of China (English)

    Rong Zhang; Dan Wang; Wen-juan Wu

    2013-01-01

    All-atom molecular simulations and two-dimensional nuclear overhauser effect spectrum have been used to study the conformations of carnosine in aqueous solution.Intramolecular distances,root-mean-square deviation,radius of gyration,and solvent-accessible surface are used to characterize the properties of the carnosine.Carnosine can shift between extended and folded states,but exists mostly in extended state in water.Its preference for extension in pure water has been proven by the 2D nuclear magnetic resonance (NMR) experiment.The NMR experimental results are consistent with the molecular dynamics simulations.

  5. Dislocation Emission at the Silicon/Silicon Nitride Interface: A Million Atom Molecular Dynamics Simulation on Parallel Computers

    Science.gov (United States)

    Bachlechner, Martina E.; Omeltchenko, Andrey; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya; Ebbsjö, Ingvar; Madhukar, Anupam

    2000-01-01

    Mechanical behavior of the Si\\(111\\)/Si3N4\\(0001\\) interface is studied using million atom molecular dynamics simulations. At a critical value of applied strain parallel to the interface, a crack forms on the silicon nitride surface and moves toward the interface. The crack does not propagate into the silicon substrate; instead, dislocations are emitted when the crack reaches the interface. The dislocation loop propagates in the \\(1¯ 1¯1\\) plane of the silicon substrate with a speed of 500 \\(+/-100\\) m/s. Time evolution of the dislocation emission and nature of defects is studied.

  6. Dislocation Emission at the Silicon/Silicon Nitride Interface: A Million Atom Molecular Dynamics Simulation on Parallel Computers

    Energy Technology Data Exchange (ETDEWEB)

    Bachlechner, Martina E.; Omeltchenko, Andrey; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya; Ebbsjoe, Ingvar; Madhukar, Anupam

    2000-01-10

    Mechanical behavior of the Si(111)/Si{sub 3}N{sub 4} (0001) interface is studied using million atom molecular dynamics simulations. At a critical value of applied strain parallel to the interface, a crack forms on the silicon nitride surface and moves toward the interface. The crack does not propagate into the silicon substrate; instead, dislocations are emitted when the crack reaches the interface. The dislocation loop propagates in the (1 11) plane of the silicon substrate with a speed of 500 ({+-}100) m/s . Time evolution of the dislocation emission and nature of defects is studied. (c) 2000 The American Physical Society.

  7. Redox behaviour of nifuroxazide: generation of the one-electron reduction product.

    Science.gov (United States)

    Squella, J A; Letelier, M E; Lindermeyer, L; Nuñez-Vergara, L J

    1996-01-05

    The electrochemical properties of nifuroxazide have been investigated in aqueous and aqueous-DMF mixed solvents. In aqueous media, a single, irreversible four-electron reduction occurs to give the hydroxylamine derivative. In mixed media, a reversible one-electron reduction to form a nitro radical anion takes place. Cyclic voltammetric studies show that the anion radical product is stable, although the nitro radical anion intermediate shows a tendency to undergo further chemical reactions. A comparison with the voltammetric behaviour of other nitrofurans such as nifurtimox, nitrofurazone and furazolidone is made. The electrochemically-obtained parameters are correlated with the in vivo studies of oxygen consumption on Trypanosoma cruzi cell suspensions.

  8. The isolable cation radical of disilene: synthesis, characterization, and a reversible one-electron redox system.

    Science.gov (United States)

    Inoue, Shigeyoshi; Ichinohe, Masaaki; Sekiguchi, Akira

    2008-05-14

    The highly twisted tetrakis(di-tert-butylmethylsilyl)disilene 1 was treated with Ph3C+.BAr4- (BAr4-: TPFPB = tetrakis(pentafluorophenyl)borate) in toluene, producing disilene cation radical 3 upon one-electron oxidation. Cation radical 3 was isolated in the form of its borate salt as extremely air- and moisture-sensitive red-brown crystals. The molecular structure of 3 was established by X-ray crystallography, which showed a highly twisted structure (twisting angle of 64.9 degrees) along the central Si-Si bond with a bond length of 2.307(2) A, which is 2.1% elongated relative to that of 1. The cation radical is stabilized by sigma-pi hyperconjugation by the four tBu2MeSi groups attached to the two central sp2-Si atoms. An electron paramagnetic resonance (EPR) study of the hyperfine coupling constants (hfcc) of the 29Si nuclei indicates delocalization of the spin over the central two Si atoms. A reversible one-electron redox system between disilene, cation radical, and anion radical is also reported.

  9. Oxygen dependency of one-electron reactions generating ascorbate radicals and hydrogen peroxide from ascorbic acid.

    Science.gov (United States)

    Boatright, William L

    2016-04-01

    The effect of oxygen on the two separate one-electron reactions involved in the oxidation of ascorbic acid was investigated. The rate of ascorbate radical (Asc(-)) formation (and stability) was strongly dependent on the presence of oxygen. A product of ascorbic acid oxidation was measurable levels of hydrogen peroxide, as high as 32.5 μM from 100 μM ascorbic acid. Evidence for a feedback mechanism where hydrogen peroxide generated during the oxidation of ascorbic acid accelerates further oxidation of ascorbic acid is also presented. The second one-electron oxidation reaction of ascorbic acid leading to the disappearance of Asc(-) was also strongly inhibited in samples flushed with argon. In the range of 0.05-1.2 mM ascorbic acid, maximum levels of measurable hydrogen peroxide were achieved with an initial concentration of 0.2 mM ascorbic acid. Hydrogen peroxide generation was greatly diminished at ascorbic acid levels of 0.8 mM or above.

  10. Generalization of the Kohn-Sham system enabling representing arbitary one electron density matrices

    CERN Document Server

    van Dam, Hubertus J J

    2015-01-01

    Density functional theory is currently the most widely applied method in electronic structure theory. The Kohn-Sham method, based on a fictitious system of non-interacting particles, is the work horse of the theory. The particular form of the Kohn-Sham wavefunction admits only idem-potent one electron density matrices whereas wavefunctions of correlated electrons in post-Hartree-Fock methods invariably have fractional occupation numbers. Here we show that by generalizing the orbital concept, and introducing a suitable dot-product as well as a probability density a non-interacting system can be chosen that can represent the one-electron density matrix of any system, even one with fractional occupation numbers. This fictitious system ensures that the exact electron density is accessible within density functional theory. It can also serve as the basis for reduced density matrix functional theory. Moreover, to aid the analysis of the results the orbitals may be assigned energies from a mean-field Hamiltonian. Thi...

  11. Local and global properties of eigenfunctions and one-electron densities of Coulombic Schrödinger operators

    DEFF Research Database (Denmark)

    Fournais, Søren; Hoffmann-Ostenhof, Maria; Hoffmann-Ostenhof, Thomas

    2008-01-01

    We review recent results by the authors on the regularity of molecular eigenfunctions ψ and their corresponding one-electron densities ρ, as well as of the spherically averaged one-electron atomic density ρ. Furthermore, we prove an exponentially decreasing lower bound for ρ in the case when the ...

  12. Hilbert-space partitioning of the molecular one-electron density matrix with orthogonal projectors

    CERN Document Server

    Vanfleteren, Diederik; Bultinck, Patrick; Ayers, Paul W; Waroquier, Michel; 10.1063/1.3521493

    2011-01-01

    A double-atom partitioning of the molecular one-electron density matrix is used to describe atoms and bonds. All calculations are performed in Hilbert space. The concept of atomic weight functions (familiar from Hirshfeld analysis of the electron density) is extended to atomic weight matrices. These are constructed to be orthogonal projection operators on atomic subspaces, which has significant advantages in the interpretation of the bond contributions. In close analogy to the iterative Hirshfeld procedure, self-consistency is built in at the level of atomic charges and occupancies. The method is applied to a test set of about 67 molecules, representing various types of chemical binding. A close correlation is observed between the atomic charges and the Hirshfeld-I atomic charges.

  13. Frequency-dependent polarizabilities and shielding factors for confined one-electron systems

    Science.gov (United States)

    Montgomery, H. E., Jr.; Pupyshev, Vladimir I.

    2017-01-01

    Frequency-dependent dipole polarizabilities and shielding factors are calculated for the ground state of spherically symmetric screened one-electron systems embedded in an impenetrable spherical cavity. Coulomb, Yukawa, Hulthén and exponential cosine-screened Coulomb potentials are considered. In contrast to free systems, Dirichlet boundary conditions introduce a contribution to the shielding factor that results from an integral over the surface of the confining boundary. This is a fundamental difference between free and confined systems and results in unexpected modifications to some of the classic relations for free systems. The methods derived also give a simple expression for the polarizability of the confined harmonic oscillator as an example of extending the methods of this work to potentials beyond the four studied.

  14. One-electron standard reduction potentials of nitroaromatic and cyclic nitramine explosives

    Energy Technology Data Exchange (ETDEWEB)

    Uchimiya, Minori, E-mail: sophie.uchimiya@ars.usda.go [Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180 (United States); Gorb, Leonid [SpecPro Inc, 3909 Halls Ferry Road, Vicksburg, MS 39180 (United States); Isayev, Olexandr [Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106 (United States); Qasim, Mohammad M. [Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180 (United States); Leszczynski, Jerzy [Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180 (United States); Interdisciplinary Center for Nanotoxicity, Jackson State University, Jackson, MS 39217 (United States)

    2010-10-15

    Extensive studies have been conducted in the past decades to predict the environmental abiotic and biotic redox fate of nitroaromatic and nitramine explosives. However, surprisingly little information is available on one-electron standard reduction potentials (E{sup o}(R-NO{sub 2}/R-NO{sub 2}{sup -})). The E{sup o}(R-NO{sub 2}/R-NO{sub 2}{sup -}) is an essential thermodynamic parameter for predicting the rate and extent of reductive transformation for energetic residues. In this study, experimental (linear free energy relationships) and theoretical (ab initio calculation) approaches were employed to determine E{sup o}(R-NO{sub 2}/R-NO{sub 2}{sup -}) for nitroaromatic, (caged) cyclic nitramine, and nitroimino explosives that are found in military installations or are emerging contaminants. The results indicate a close agreement between experimental and theoretical E{sup o}(R-NO{sub 2}/R-NO{sub 2}{sup -}) and suggest a key trend: E{sup o}(R-NO{sub 2}/R-NO{sub 2}{sup -}) value decreases from di- and tri-nitroaromatic (e.g., 2,4-dinitroanisole) to nitramine (e.g., RDX) to nitroimino compound (e.g., nitroguanidine). The observed trend in E{sup o}(R-NO{sub 2}/R-NO{sub 2}{sup -}) agrees with reported rate trends for reductive degradation, suggesting a thermodynamic control on the reduction rate under anoxic/suboxic conditions. - Reduction of explosives becomes less thermodynamically favorable as the one-electron standard reduction potential decreases from di- and tri-nitroaromatic, nitramine, to nitroimino compounds.

  15. Free energetics of carbon nanotube association in aqueous inorganic NaI salt solutions: Temperature effects using all-atom molecular dynamics simulations.

    Science.gov (United States)

    Ou, Shu-Ching; Cui, Di; Wezowicz, Matthew; Taufer, Michela; Patel, Sandeep

    2015-06-15

    In this study, we examine the temperature dependence of free energetics of nanotube association using graphical processing unit-enabled all-atom molecular dynamics simulations (FEN ZI) with two (10,10) single-walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion, and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intratube and the bulk solvent. By calculating the fluctuation of coarse-grained tube-solvent surfaces, we found that tube-water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent-like medium in the absence of water, tube-anion interfacial fluctuation shows similar but weaker dependence on temperature, while tube-cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and

  16. All-atom Molecular Dynamics Simulationsand NMR Spectroscopy Study on Interactions and Structures in N-Glycylglycine Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    Rong Zhang; Wen-juan Wu; Jing-man Huang; Xin Meng

    2011-01-01

    All-atom molecular dynamics (MD) simulation and the NMR spectra are used to investigate the interactions in N-glycylglycine aqueous solution.Different types of atoms exhibit different capability in forming hydrogen bonds by the radial distribution function analysis.Some typical dominant aggregates are found in different types of hydrogen bonds by the statistical hydrogen-bonding network.Moreover,temperature-dependent NMR are used to compare with the results of the MD simulations.The chemical shifts of the three hydrogen atoms all decrease with the temperature increasing which reveals that the hydrogen bonds are dominant in the glycylglycine aqueous solution.And the NMR results show agreement with the MD simulations.All-atom MD simulations and NMR spectra are successful in revealing the structures and interactions in the N-glycylglycine-water mixtures.

  17. The Role of Super-Atom Molecular Orbitals in Doped Fullerenes in a Femtosecond Intense Laser Field.

    Science.gov (United States)

    Xiong, Hui; Mignolet, Benoit; Fang, Li; Osipov, Timur; Wolf, Thomas J A; Sistrunk, Emily; Gühr, Markus; Remacle, Francoise; Berrah, Nora

    2017-12-01

    The interaction of gas phase endohedral fullerene Ho3N@C80 with intense (0.1-5 × 10(14) W/cm(2)), short (30 fs), 800 nm laser pulses was investigated. The power law dependence of Ho3N@C80(q+), q = 1-2, was found to be different from that of C60. Time-dependent density functional theory computations revealed different light-induced ionization mechanisms. Unlike in C60, in doped fullerenes, the breaking of the cage spherical symmetry makes super atomic molecular orbital (SAMO) states optically active. Theoretical calculations suggest that the fast ionization of the SAMO states in Ho3N@C80 is responsible for the n = 3 power law for singly charged parent molecules at intensities lower than 1.2 × 10(14) W/cm(2).

  18. Cholesterol Flip-Flop Dynamics in a Phospholipid Bilayer: A 10 Microsecond All-Atom Molecular Dynamics Simulation

    Science.gov (United States)

    Choubey, Amit; Nomura, Ken-Ichi; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya

    2012-02-01

    Cholesterol (CHOL) molecules play a key role in modulating the rigidity of cell membranes, and controlling intracellular transport and signal transduction. Using all-atom molecular dynamics and the parallel replica approach, we study the effect of CHOL molecules on mechanical stresses across a dipalmitoylphosphatidycholine (DPPC)-CHOL bilayer, and the mechanism by which CHOL molecules migrate from one bilayer leaflet to the other (flip-flop events). On average, we observe a CHOL flip-flop event in half-a-microsecond. Once a CHOL flip-flop event is triggered, the inter-leaflet migration occurs in about 62 nanoseconds. The energy barrier associated with flip-flop events is found to be 73 kJ/mol. Results for membrane rigidity as a function of CHOL concentration will also be presented.

  19. Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations

    Science.gov (United States)

    Perilla, Juan R.; Schulten, Klaus

    2017-07-01

    Human immunodeficiency virus type 1 (HIV-1) infection is highly dependent on its capsid. The capsid is a large container, made of ~1,300 proteins with altogether 4 million atoms. Although the capsid proteins are all identical, they nevertheless arrange themselves into a largely asymmetric structure made of hexamers and pentamers. The large number of degrees of freedom and lack of symmetry pose a challenge to studying the chemical details of the HIV capsid. Simulations of over 64 million atoms for over 1 μs allow us to conduct a comprehensive study of the chemical-physical properties of an empty HIV-1 capsid, including its electrostatics, vibrational and acoustic properties, and the effects of solvent (ions and water) on the capsid. The simulations reveal critical details about the capsid with implications to biological function.

  20. Atoms, Molecules and Photons An Introduction to Atomic-, Molecular- and Quantum Physics

    CERN Document Server

    Demtröder, Wolfgang

    2010-01-01

    This introduction to Atomic and Molecular Physics explains how our present model of atoms and molecules has been developed over the last two centuries both by many experimental discoveries and, from the theoretical side, by the introduction of quantum physics to the adequate description of micro-particles. It illustrates the wave model of particles by many examples and shows the limits of classical description. The interaction of electromagnetic radiation with atoms and molecules and its potential for spectroscopy is outlined in more detail and in particular lasers as modern spectroscopic tools are discussed more thoroughly. Many examples and problems with solutions are offered to encourage readers to actively engage in applying and adapting the fundamental physics presented in this textbook to specific situations. Completely revised new edition with new sections covering all actual developments, like x-ray optics, ion-cyclotron-resonance spectrometer, attosecond lasers, ultraprecission frequency measurement ...

  1. Valence one-electron and shake-up ionization bands of fluorene, carbazole and dibenzofuran

    Energy Technology Data Exchange (ETDEWEB)

    Reza Shojaei, S.H.; Morini, Filippo; Deleuze, Michael S., E-mail: michael.deleuze@uhasselt.be

    2013-05-16

    Highlights: • The photoelectron spectra of the title compounds are assigned in details. • Shake-up lines are found to severely contaminate both π- and σ-ionization bands. • σ-ionization onsets are subject to severe vibronic coupling complications. • We compare the results of OVGF, ADC(3) and TDDFT calculations. - Abstract: A comprehensive study of the He (I) ultra-violet photoelectron spectra of fluorene, carbazole and dibenzofuran is presented with the aid of one-particle Green’s Function calculations employing the outer-valence Green’s Function (OVGF) approach and the third-order algebraic diagrammatic construction [ADC(3)] scheme, along with Dunning’s correlation consistent basis sets of double and triple zeta quality (cc-pVDZ, cc-pVTZ). Extrapolations of the ADC(3) results for the outermost one-electron π-ionization energies to the cc-pVTZ basis set enable theoretical insights into He (I) measurements within ∼0.15 eV accuracy, up to the σ-ionization onset. The lower ionization energy of carbazole is the combined result of mesomeric and electronic relaxation effects. OVGF/cc-pVDZ or OVGF/cc-pVTZ pole strengths smaller than 0.85 systematically corroborate a breakdown of the orbital picture of ionization at the ADC(3) level. Comparison is made with calculations of the lowest doublet–doublet excitation energies of the radical cation of fluorene, by means of time-dependent density functional theory (TDDFT)

  2. Anomalous one-electron processes in the chemistry of uranium nitrogen multiple bonds.

    Science.gov (United States)

    Mullane, Kimberly C; Lewis, Andrew J; Yin, Haolin; Carroll, Patrick J; Schelter, Eric J

    2014-09-02

    Novel reaction pathways are illustrated in the synthesis of uranium(IV), uranium(V), and uranium(VI) monoimido complexes. In contrast to the straightforward preparation of U(V)(═NSiMe3)[N(SiMe3)2]3 (1), the synthesis of a uranium(V) tritylimido complex, U(V)(═NCPh3)[N(SiMe3)2]3 (4), from U(III)[N(SiMe3)2]3 and Ph3CN3 was found to proceed through multiple one-electron steps. Whereas the oxidation of 1 with copper(II) salts produced the uranium(VI) monoimido complexes U(VI)(═NSiMe3)X[N(SiMe3)2]3 (X = Cl, Br), the reaction of 4 with CuBr2 undergoes sterically induced reduction to form the uranium(VI) monoimido complex U(VI)(═NCPh3)Br2[N(SiMe3)2]2, demonstrating a striking difference in reactivity based on imido substituent. The facile reduction of compounds 1 and 4 with KC8 allowed for the synthesis of the uranium(IV) monoimido derivatives, K[U(IV)(═NSiMe3)[N(SiMe3)2]3] (1-K) and K[U(IV)(═NCPh3)[N(SiMe3)2]3] (4-K), respectively. In contrast, an analogous uranium(IV) monoimido complex, K[U(IV)(═NPh(F))[N(SiMe3)Ph(F)

  3. Simultaneous evaluation of one-electron reducing systems and radical reactions in cells by nitroxyl biradical as probe.

    Science.gov (United States)

    Araki, Yoko; Koshiishi, Ichiro

    2016-07-01

    In the present study, a novel probe for the simultaneous evaluation of one-electron reducing systems (electron transport chain) and one-electron oxidizing systems (free radical reactions) in cells by electron chemical detection was developed. Six-membered cyclic nitroxyl radicals (2,2,6,6-tetramethylpiperidine-1-oxyl; TEMPO series) are sensitive to one-electron redox systems, generating the hydroxylamine form [TEMPO(H)] via one-electron reduction, and the secondary amine form [TEMPO(N)] via one-electron oxidation in the presence of thiols. In contrast, the sensitivities of five-membered cyclic nitroxyl radicals (2,2,5,5-tetramethylpyrrolidine-1-oxyl; PROXYL series) to the one-electron redox systems are comparatively low. The electron chemical detector can detect 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), TEMPO(H) and PROXYL but not TEMPO(N). Therefore, nitroxyl biradical, TEMPO-PROXYL, as a probe for the evaluation of one-electron redox systems was employed. TEMPO-PROXYL was synthesized by the conjunction of 4-amino-TEMPO with 3-carboxyl-PROXYL via the conventional dicyclohexyl carbodiimide reaction. TEMPO-PROXYL, TEMPO(H)-PROXYL and TEMPO(N)-PROXYL were simultaneously quantified by HPLC with Coularray detection. Calibration curves for the quantification of TEMPO-PROXYL, TEMPO(H)-PROXYL and TEMPO(N)-PROXYL were linear in the range from 80 nm to 80 μm, and the lowest quantification limit of each molecule was estimated to be <80 nm. The relative standard deviations at 0.8 and 80 μm were within 10% (n = 5). Copyright © 2015 John Wiley & Sons, Ltd.

  4. π to σ Radical Tautomerization in One-Electron Oxidized 1-Methylcytosine and its Analogs

    Science.gov (United States)

    Adhikary, Amitava; Kumar, Anil; Bishop, Casandra T.; Wiegand, Tyler J.; Hindi, Ragda M.; Adhikary, Ananya; Sevilla, Michael D.

    2015-01-01

    In this work iminyl σ-radical formation in several one-electron oxidized cytosine analogs including 1-MeC, cidofovir, 2′-deoxycytidine (dCyd), and 2′-deoxycytidine 5′-monophosphate (5′-dCMP) were investigated in homogeneous aqueous (D2O or H2O) glassy solutions at low temperatures employing electron spin resonance (ESR) spectroscopy. Employing density functional theory (DFT) (DFT/B3LYP/6-31G* method), the calculated hyperfine coupling constant (HFCC) values of iminyl σ-radical agree quite well with the experimentally observed ones thus confirming its assignment. ESR and DFT studies show that the cytosine-iminyl σ-radical is a tautomer of the deprotonated cytosine π-cation radical (cytosine π-aminyl radical, C(N4-H)•). Employing 1-MeC samples at various pHs ranging ca. 8 to ca. 11, ESR studies show that the tautomeric equilibrium between C(N4-H)• and the iminyl σ-radical at low temperature is too slow to be established without added base. ESR and DFT studies agree that in the iminyl-σ radical, the unpaired spin is localized to the exocyclic nitrogen (N4) in an in-plane pure p-orbital. This gives rise to an anisotropic nitrogen hyperfine coupling (Azz = 40 G) from N4 and a near isotropic β-nitrogen coupling of 9.7 G from the cytosine ring nitrogen at N3. Iminyl σ-radical should exist in its N3-protonated form as the N3-protonated iminyl σ-radical is stabilized in solution by over 30 kcal/mol (ΔG= −32 kcal/mol) over its conjugate base, the N3-deprotonated form. This is the first observation of an isotropic β-hyperfine ring nitrogen coupling in an N-centered DNA-radical. Our theoretical calculations predict that the cytosine iminyl σ-radical can be formed in dsDNA by a radiation-induced ionization–deprotonation process that is only 10 kcal/mol above the lowest energy path. PMID:26237072

  5. Nuclear size correction to the Lamb shift of one-electron atoms

    CERN Document Server

    Yerokhin, Vladimir A

    2010-01-01

    The nuclear size effect on the one-loop self energy and vacuum polarization is evaluated for the 1s, 2s, 3s, 2p_{1/2}, and 2p_{3/2} states of hydrogen-like ions. The calculation is performed to all orders in the binding nuclear strength parameter Z\\alpha. Detailed comparison is made with previous all-order calculations and calculations based on the expansion in the parameter Z\\alpha. Extrapolation of the all-order numerical results obtained towards Z=1 provides results for the radiative nuclear size effect on the hydrogen Lamb shift.

  6. Insights into the Tunnel Mechanism of Cholesteryl Ester Transfer Protein through All-atom Molecular Dynamics Simulations.

    Science.gov (United States)

    Lei, Dongsheng; Rames, Matthew; Zhang, Xing; Zhang, Lei; Zhang, Shengli; Ren, Gang

    2016-07-01

    Cholesteryl ester transfer protein (CETP) mediates cholesteryl ester (CE) transfer from the atheroprotective high density lipoprotein (HDL) cholesterol to the atherogenic low density lipoprotein cholesterol. In the past decade, this property has driven the development of CETP inhibitors, which have been evaluated in large scale clinical trials for treating cardiovascular diseases. Despite the pharmacological interest, little is known about the fundamental mechanism of CETP in CE transfer. Recent electron microscopy (EM) experiments have suggested a tunnel mechanism, and molecular dynamics simulations have shown that the flexible N-terminal distal end of CETP penetrates into the HDL surface and takes up a CE molecule through an open pore. However, it is not known whether a CE molecule can completely transfer through an entire CETP molecule. Here, we used all-atom molecular dynamics simulations to evaluate this possibility. The results showed that a hydrophobic tunnel inside CETP is sufficient to allow a CE molecule to completely transfer through the entire CETP within a predicted transfer time and at a rate comparable with those obtained through physiological measurements. Analyses of the detailed interactions revealed several residues that might be critical for CETP function, which may provide important clues for the effective development of CETP inhibitors and treatment of cardiovascular diseases.

  7. One electron changes everything: a multispecies copper redox shuttle for dye-sensitized solar cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffeditz, William L.; Katz, Michael J.; Deria, Pravas; Cutsail, George E.; Pellin, Michael J.; Farha, Omar K.; Hupp, Joseph T.

    2016-02-25

    Dye-sensitized solar cells (DSCs) are an established alternative photovoltaic technology that offers numerous potential advantages in solar energy applications. However, this technology has been limited by the availability of molecular redox couples that are both noncorrosive/nontoxic and do not diminish the performance of the device. In an effort to overcome these shortcomings, a copper-containing redox shuttle derived from 1,8-bis(2'-pyridyl)-3,6-dithiaoctane (PDTO) ligand and the common DSC additive 4-tert-butylpyridine (TBP) was investigated. Electrochemical measurements, single-crystal X-ray diffraction, and absorption and electron paramagnetic resonance spectroscopies reveal that, upon removal of one metal-centered electron, PDTO-enshrouded copper ions completely shed the tetradentate PDTO ligand and replace it with four or more TBP ligands. Thus, the Cu(I) and Cu(II) forms of the electron shuttle have completely different coordination spheres and are characterized by widely differing Cu(II/I) formal potentials and reactivities for forward versus reverse electron transfer. Notably, the coordination-sphere replacement process is fully reversed upon converting Cu(II) back to Cu(I). In cells featuring an adsorbed organic dye and a nano- and mesoparticulate, TiO2-based, photoelectrode, the dual species redox shuttle system engenders performance superior to that obtained with shuttles based on the (II/I) forms of either of the coordination complexes in isolation.

  8. Parameter-free one-center model potential for an effective one-electron description of molecular hydrogen

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Vanne, Yulian; Saenz, Alejandro

    2008-01-01

    For the description of an H2 molecule, an effective one-electron model potential is proposed which is fully determined by the exact ionization potential of the H2 molecule. In order to test the model potential and examine its properties, it is employed to determine excitation energies, transition...

  9. One-electron self-interaction and the asymptotics of the Kohn-Sham potential: an impaired relation

    CERN Document Server

    Schmidt, Tobias; Kronik, Leeor; Kümmel, Stephan

    2015-01-01

    One-electron self-interaction and an incorrect asymptotic behavior of the Kohn-Sham exchange-correlation potential are among the most prominent limitations of many present-day density functionals. However, a one-electron self-interaction-free energy does not necessarily lead to the correct long-range potential. This is here shown explicitly for local hybrid functionals. Furthermore, carefully studying the ratio of the von Weizs\\"acker kinetic energy density to the (positive) Kohn-Sham kinetic energy density, $\\tau_\\mathrm{W}/\\tau$, reveals that this ratio, which frequently serves as an iso-orbital indicator and is used to eliminate one-electron self-interaction effects in meta-generalized-gradient approximations and local hybrid functionals, can fail to approach its expected value in the vicinity of orbital nodal planes. This perspective article suggests that the nature and consequences of one-electron self-interaction and some of the strategies for its correction need to be reconsidered.

  10. PARTIAL SUPPORT OF THE COMMITTEE OF ATOMIC, MOLECULAR, AND OPTICAL SCIENCES Final Report for the period September 30, 2008 to June 30, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, James

    2015-06-29

    This report is the final report for the 2008-2014 cycle of DOE support for the Committee on Atomic, Molecular, and Optical Sciences. Highlights of the committee’s activities over this period included: • Meetings of the committee were held semiannually (Washington, DC in April and Irvine, CA in October) for four of the six years and annually the last two years (Washington, DC in April). • Committee meetings included half-day focus sessions on each of the areas identified in the last AMO decadal survey as having great scientific promise and short summaries of the focus session were prepared and delivered to sponsoring agencies. • CAMOS initiated a study that has been funded on high intensity lasers. DOE support for CAMOS has been of central importance to the committee’s ability to continue to fulfill its mandate to the Board on Physics and Astronomy and to the wider atomic, molecular, and optical sciences research community.

  11. One-electron oxidation and reduction of glycosaminoglycan chloramides: a kinetic study.

    Science.gov (United States)

    Sibanda, S; Parsons, B J; Houee-Levin, C; Marignier, J-L; Paterson, A W J; Heyes, D J

    2013-10-01

    Hypochlorous acid and its acid-base counterpart, hypochlorite ions, produced under inflammatory conditions, may produce chloramides of glycosaminoglycans, these being significant components of the extracellular matrix (ECM). This may occur through the binding of myeloperoxidase directly to the glycosaminoglycans. The N-Cl group in the chloramides is a potential selective target for both reducing and oxidizing radicals, leading possibly to more efficient and damaging fragmentation of these biopolymers relative to the parent glycosaminoglycans. In this study, the fast reaction techniques of pulse radiolysis and nanosecond laser flash photolysis have been used to generate both oxidizing and reducing radicals to react with the chloramides of hyaluronan (HACl) and heparin (HepCl). The strong reducing formate radicals and hydrated electrons were found to react rapidly with both HACl and HepCl with rate constants of 1-1.7 × 10(8) and 0.7-1.2 × 10(8)M(-1)s(-1) for formate radicals and 2.2 × 10(9) and 7.2 × 10(8)M(-1)s(-1) for hydrated electrons, respectively. The spectral characteristics of the products of these reactions were identical and were consistent with initial attack at the N-Cl groups, followed by elimination of chloride ions to produce nitrogen-centered radicals, which rearrange subsequently and rapidly to produce C-2 radicals on the glucosamine moiety, supporting an earlier EPR study by M.D. Rees et al. (J. Am. Chem. Soc.125: 13719-13733; 2003). The oxidizing hydroxyl radicals also reacted rapidly with HACl and HepCl with rate constants of 2.2 × 10(8) and 1.6 × 10(8)M(-1)s(-1), with no evidence from these data for any degree of selective attack on the N-Cl group relative to the N-H groups and other sites of attack. The carbonate anion radicals were much slower with HACl and HepCl than hydroxyl radicals (1.0 × 10(5) and 8.0 × 10(4)M(-1)s(-1), respectively) but significantly faster than with the parent molecules (3.5 × 10(4) and 5.0 × 10(4)M(-1)s(-1

  12. Pulse radiolysis studies on the release of cytotoxins from electron affinic anticancer prodrugs following their one-electron reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.F.; Ware, D.C.; Denny, W.A.; Lee, H.; Tercel, M.; Wilson, W.R. [Auckland Univ. (New Zealand)

    1996-12-31

    New approaches to killing chemoresistant and radioresistant hypoxic cells of solid tumours include the selective release of potent cytotoxins from relatively non-toxic prodrugs through reductive metabolism and/or radiolytic reduction. Central to these studies, is an understanding of the mechanism of cytotoxin release and the basis of hypoxia-selectivity, since such information can be used to design compounds of high potency against solid tumours. Pulse radiolysis studies can offer unique insights into these underlying mechanisms in aqueous solution through the determination of thermodynamic one-electron reduction potentials of the prodrugs, rate constants for the formation and spectral charaterization of one-electron reduced prodrugs, the kinetics release of the cytotoxins from one-electron reduced prodrugs and the influence of molecular oxygen on the obligate radical intermediates. A series of different triggers, which are found to vary greatly in the rate constant for release of the effectors upon one-electron reduction of the prodrugs, will be discussed. Release of effector from a prodrug does not solely depend upon the type of trigger but can also be dependent on the type of linker and released effector. For example, whereas fast quantitative release of the mustard effector mechlorethamine is seen from the quaternary nitroimidazole upon one electron reduction, release of N-[2-(dimethylamino)ethyl] acridine-4-carboxamide (DACA), requires a higher level of reduction of the same trigger. Release of cytotoxic ligands from metal complexes requires that the metal centre is reduced. When the metal centre is lower than DACA bound as a ligand, reduction is seen to occur solely on the ligand without release from the metal centre. 1 ref., 1 fig.

  13. All-atom Molecular-level Computational Simulations of Planar Longitudinal Shockwave Interactions with Polyurea, Soda-lime Glass and Polyurea/Glass Interfaces

    Science.gov (United States)

    2014-01-01

    All-atom molecular-level computational simulations of planar longitudinal shockwave interactions with polyurea, soda- lime glass and polyurea/glass...of this paper is to study the mechanical response of polyurea, soda- lime glass (glass, for short), polyurea/glass/polyurea and glass/polyurea/glass...methods, the interaction of shockwaves with material boundaries. Keywords Polyurea, Material interface, Shockwaves, Soda- lime glass Paper type Research

  14. Ab initio electronic structure study of one-electron reduction of polychlorinated ethylenes.

    Science.gov (United States)

    Bylaska, Eric J; Dupuis, Michel; Tratnyek, Paul G

    2005-07-07

    Polychlorethylene radicals, anions, and radical anions are potential intermediates in the reduction of polychlorinated ethylenes (C(2)Cl(4), C(2)HCl(3), trans-C(2)H(2)Cl(2), cis-C(2)H(2)Cl(2), 1,1-C(2)H(2)Cl(2), C(2)H(3)Cl). Ab initio electronic structure methods were used to calculate the thermochemical properties, (298.15 K), S degrees (298.15 K,1 bar), and DeltaG(S)(298.15 K, 1 bar) of 37 different polychloroethylenyl radicals, anions, and radical anion complexes, C(2)H(y)Cl(3)(-)(y)(*), C(2)H(y)Cl(3)(-)(y)(-), and C(2)H(y))Cl(4)(-)(y)(*)(-) for y = 0-3, for the purpose of characterizing reduction mechanisms of polychlorinated ethylenes. In this study, 8 radicals, 7 anions, and 22 radical anions were found to have stable structures, i.e., minima on the potential energy surfaces. This multitude of isomers for C(2)H(y)Cl(4)(-)(y)(*)(-) radical anion complexes are pi*, sigma*, and -H...Cl(-) structures. Several stable pi* radical anionic structures were obtained for the first time through the use of restricted open-shell theories. On the basis of the calculated thermochemical estimates, the overall reaction energetics (in the gas phase and aqueous phase) for several mechanisms of the first electron reduction of the polychlorinated ethylenes were determined. In almost all of the gas-phase reactions, the thermodynamically most favorable pathways involve -H...Cl(-) complexes of the C(2)H(y)Cl(4)(-)(y)(*)(-) radical anion, in which a chloride ion is loosely bound to a hydrogen of a C(2)H(x)Cl(2)(-)(x))(*) radical. The exception is for C(2)Cl(4), in which the most favorable anionic structure is a loose sigma* radical anion complex, with a nearly iso-energetic pi* radical anion. Solvation significantly changes the product energetics with the thermodynamically most favorable pathway leading to C(2)H(y)Cl(3)(-)(y)(*) + Cl(-). The results suggest that a higher degree of chlorination favors reduction, and that reduction pathways involving the C(2)H(y)Cl(3)(-)(y)(-) anions

  15. Prototropic equilibria in DNA containing one-electron oxidized GC: intra-duplex vs. duplex to solvent deprotonation.

    Science.gov (United States)

    Adhikary, Amitava; Kumar, Anil; Munafo, Shawn A; Khanduri, Deepti; Sevilla, Michael D

    2010-01-01

    By use of ESR and UV-vis spectral studies, this work identifies the protonation states of one-electron oxidized G:C (viz. G˙+:C, G(N1–H)˙:C(+H+), G(N1–H)˙:C, and G(N2-H)˙:C) in a DNA oligomer d[TGCGCGCA]2. Benchmark ESR and UV-vis spectra from one electron oxidized 1-Me-dGuo are employed to analyze the spectral data obtained in one-electron oxidized d[TGCGCGCA]2 at various pHs. At pH ≥7, the initial site of deprotonation of one-electron oxidized d[TGCGCGCA]2 to the surrounding solvent is found to be at N1 forming G(N1–H)˙:C at 155 K. However, upon annealing to 175 K, the site of deprotonation to the solvent shifts to an equilibrium mixture of G(N1–H)˙:C and G(N2–H)˙:C. For the first time, the presence of G(N2–H)˙:C in a ds DNA-oligomer is shown to be easily distinguished from the other prototropic forms, owing to its readily observable nitrogen hyperfine coupling (Azz(N2) = 16 G). In addition, for the oligomer in H2O, an additional 8 G N2–H proton HFCC is found. This ESR identification is supported by a UV-vis absorption at 630 nm which is characteristic for G(N2–H)˙ in model compounds and oligomers. We find that the extent of photo-conversion to the C1′ sugar radical (C1′˙) in the one-electron oxidized d[TGCGCGCA]2 allows for a clear distinction among the various G:C protonation states which can not be easily distinguished by ESR or UV-vis spectroscopies with this order for the extent of photo-conversion: G˙+:C > G(N1–H)˙:C(+H+) ≫ G(N1–H)˙:C. We propose that it is the G˙+:C form that undergoes deprotonation at the sugar and this requires reprotonation of G within the lifetime of exited state

  16. Prototropic Equilibria in DNA Containing One-electron Oxidized GC: Intra-duplex vs. Duplex to Solvent Deprotonation

    Science.gov (United States)

    Adhikary, Amitava; Kumar, Anil; Munafo, Shawn A.; Khanduri, Deepti; Sevilla, Michael D.

    2015-01-01

    By use of ESR and UV-vis spectral studies, this work identifies the protonation states of one-electron oxidized G:C (viz. G•+:C, G(N1-H)•:C(+H+), G(N1-H)•:C, and G(N2-H)•:C) in a DNA oligomer d[TGCGCGCA]2. Benchmark ESR and UV-vis spectra from one electron oxidized 1-Me-dGuo are employed to analyze the spectral data obtained in one-electron oxidized d[TGCGCGCA]2 at various pHs. At pH ≥7, the initial site of deprotonation of one-electron oxidized d[TGCGCGCA]2 to the surrounding solvent is found to be at N1 forming G(N1-H)•:C at 155 K. However, upon annealing to 175 K, the site of deprotonation to the solvent shifts to an equilibrium mixture of G(N1-H)•:C and G(N2-H)•:C. For the first time, the presence of G(N2-H)•:C in a ds DNA-oligomer is shown to be easily distinguished from the other prototropic forms, owing to its readily observable nitrogen hyperfine coupling (Azz(N2)= 16 G). In addition, for the oligomer in H2O, an additional 8 G N2-H proton HFCC is found. This ESR identification is supported by a UV-vis absorption at 630 nm which is characteristic for G(N2-H)• in model compounds and oligomers. We find that the extent of photo-conversion to the C1′ sugar radical (C1′•) in the one-electron oxidized d[TGCGCGCA]2 allows for a clear distinction among the various G:C protonation states which can not be easily distinguished by ESR or UV-vis spectroscopies with this order for the extent of photo-conversion: G•+:C > G(N1-H)•:C(+H+) >> G(N1-H)•:C. We propose that it is the G•+:C form that undergoes deprotonation at the sugar and this requires reprotonation of G within the lifetime of exited state. PMID:21491657

  17. Optimum plasma grid bias for a negative hydrogen ion source operation with Cs

    Energy Technology Data Exchange (ETDEWEB)

    Bacal, Marthe, E-mail: marthe.bacal@lpp.polytechnique.fr [UPMC, LPP, Ecole Polytechnique, UMR CNRS 7648, Palaiseau (France); Sasao, Mamiko [R& D Promotion Organization, Doshisha University, Kamigyoku, Kyoto 602-8580 (Japan); Wada, Motoi [School of Science and Engineering, Doshisha University, Kyotonabe, Kyoto 610-0321 (Japan); McAdams, Roy [CCFE, Culham Science Center, Abingdon, Oxfordshire 0X14 3DB (United Kingdom)

    2016-02-15

    The functions of a biased plasma grid of a negative hydrogen (H{sup −}) ion source for both pure volume and Cs seeded operations are reexamined. Proper control of the plasma grid bias in pure volume sources yields: enhancement of the extracted negative ion current, reduction of the co-extracted electron current, flattening of the spatial distribution of plasma potential across the filter magnetic field, change in recycling from hydrogen atomic/molecular ions to atomic/molecular neutrals, and enhanced concentration of H{sup −} ions near the plasma grid. These functions are maintained in the sources seeded with Cs with additional direct emission of negative ions under positive ion and neutral hydrogen bombardment onto the plasma electrode.

  18. Electrochemical One-Electron Oxidation of Low-Generation Polyamidoamine-Type Dendrimers with a 1,4-Phenylenediamine Core

    DEFF Research Database (Denmark)

    Hammerich, Ole; Hansen, Thomas; Thorvildsen, Asbjørn

    2009-01-01

    A series of polyamidoamine (PAMAM)-type dendrimers with a 1,4-phenylenediamine (PD) core is prepared from PD by procedures including Michael addition of methyl acrylate followed by aminolysis with 1,2-ethanediamine. Their one-electron oxidation potentials are determined by differential pulse...... caused by interactions between the positive charge centered at the core and the neighboring ester or amide dipoles. The relative ease of oxidation of TMePD and the lowest members of the series of the dendrimers can be reproduced theoretically only when solvation was included in the calculations. The DPV...

  19. Scavenging of the one-electron reduction product from nisoldipine with relevant thiols: electrochemical and EPR spectroscopic evidences.

    Science.gov (United States)

    Núñez-Vergara, L J; Díaz-Araya, G; Olea-Azar, C; Atria, A M; Bollo-Dragnic, S; Squella, J A

    1998-11-01

    To determine the formation of the one-electron reduction product from nisoldipine and its reactivity with relevant thiols in mixed medium. Cyclic voltammetry (CV) and electron paramagnetic resonance (EPR) techniques were used to determine the one-electron reduction product corresponding to the nitro radical anion. CV was employed to assess both the rate constants corresponding to the decay of the radicals and its interaction with relevant thiols. The nisoldipine radical anion follows second order kinetics, with an association rate constant of 283+/-16 l mol(-1) sec(-1). Nitro radical anion from nisoldipine significantly reacted with thiol compounds. This reactivity was significantly higher than the natural decay of the radical in mixed medium. EPR spectra recorded in situ using DMF/ 0.1 N NaOH (pH 13) confirmed the formation of the nitro radical anion, giving a well-resolved spectra in 35 lines using 0.1 G modulation. Electrochemical and EPR data indicated that all the tested thiols scavenged the nitro radical anion from nisoldipine. The following tentative order of reactivity towards the thiols can be proposed: cysteamine approximately glutathione > N-acetylcysteine > captopril > penicillamine.

  20. 3,4-Dihydro-1,3-2H-benzoxazines: Novel reducing agents through one electron donation mechanism and their application as the formation of nano-metallic silver coating

    Energy Technology Data Exchange (ETDEWEB)

    Kaewvilai, Attaphon [Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok, 10900 (Thailand); Wattanathana, Worawat [Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900 (Thailand); Jongrungruangchok, Suchada [Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rangsit University, Pathumthani, 12000 (Thailand); Veranitisagul, Chatchai [Department of Material and Metallurgical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Klong 6, Thanyaburi, Pathumthani, 12110 (Thailand); Koonsaeng, Nattamon [Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900 (Thailand); Laobuthee, Apirat, E-mail: fengapl@ku.ac.th [Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok, 10900 (Thailand)

    2015-11-01

    3,4-dihydro-1,3-2H-benzoxazines as novel one-electron donators for silver(I) ion into nano-metallic silver was firstly found and reported. The silver formation from nano-spherical particles to coral-like and dendrite-like structures was presented. With respect to the characterization results, the feasible reaction mechanism of the silver formation was proposed as an electron donated from benzoxazine to silver(I) ion, resulting in a radical cationic species of benzoxazine and silver(0). Based on this reduction process, a new approach for nano-silver coating on various surfaces such as fumed silica (SiO{sub 2}), titanium dioxide (TiO{sub 2}), carbon black (CB), chitosan (CS) including plastic sheet (polycarbonate, PC) and pellet (polyvinyl alcohol, PVA), was also revealed. Besides the nano-silver coated products were applied as antimicrobials fillers for Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, Micrococcus luteus ATCC 9341, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 2785 and Candida albicans ATCC 10231. - Highlights: • Benzoxazines were discovered to be novel reducing agents for silver(I) ion. • The speculated mechanism of the one electron donation process was investigated. • Dendrite structure of silver was formed from spherical silver nanoparticles. • A new approach for nano metallic-silver coating on various surfaces was revealed. • The nano-silver coated products were applied as antimicrobials fillers.

  1. Evaluation of protein-protein docking model structures using all-atom molecular dynamics simulations combined with the solution theory in the energy representation.

    Science.gov (United States)

    Takemura, Kazuhiro; Guo, Hao; Sakuraba, Shun; Matubayasi, Nobuyuki; Kitao, Akio

    2012-12-07

    We propose a method to evaluate binding free energy differences among distinct protein-protein complex model structures through all-atom molecular dynamics simulations in explicit water using the solution theory in the energy representation. Complex model structures are generated from a pair of monomeric structures using the rigid-body docking program ZDOCK. After structure refinement by side chain optimization and all-atom molecular dynamics simulations in explicit water, complex models are evaluated based on the sum of their conformational and solvation free energies, the latter calculated from the energy distribution functions obtained from relatively short molecular dynamics simulations of the complex in water and of pure water based on the solution theory in the energy representation. We examined protein-protein complex model structures of two protein-protein complex systems, bovine trypsin/CMTI-1 squash inhibitor (PDB ID: 1PPE) and RNase SA/barstar (PDB ID: 1AY7), for which both complex and monomer structures were determined experimentally. For each system, we calculated the energies for the crystal complex structure and twelve generated model structures including the model most similar to the crystal structure and very different from it. In both systems, the sum of the conformational and solvation free energies tended to be lower for the structure similar to the crystal. We concluded that our energy calculation method is useful for selecting low energy complex models similar to the crystal structure from among a set of generated models.

  2. Trimer effects in fragment molecular orbital-linear combination of molecular orbitals calculation of one-electron orbitals for biomolecules.

    Science.gov (United States)

    Kobori, Tomoki; Sodeyama, Keitaro; Otsuka, Takao; Tateyama, Yoshitaka; Tsuneyuki, Shinji

    2013-09-07

    The fragment molecular orbital (FMO)-linear combination of molecular orbitals (LCMO) method incorporates as an efficient post-process calculation of one-electron orbitals of the whole system after the FMO total energy calculation. A straightforward way to increase the accuracy is inclusion of the trimer effect. Here, we derive a comprehensive formulation called the FMO3-LCMO method. To keep the computational costs of the trimer term low enough, we use a matrix-size reduction technique. We evaluated the accuracy and efficiency of the FMO3-LCMO scheme in model biological systems (alanine oligomer and chignolin). The results show that delocalized electronic orbitals with covalent and hydrogen bonds are better described at the trimer level, and the FMO3-LCMO method is applicable to quantitative evaluations of a wide range of frontier orbitals in large biosystems.

  3. One-electron oxidation of mitomycin C and its corresponding peroxyl radicals. A steady-state and pulse radiolysis study

    Science.gov (United States)

    Getoff, Nikola; Solar, Sonja; Quint, Ruth M.

    1997-12-01

    The one-electron oxidation of Mitomycin C (MMC) as well as the formation of the corresponding peroxyl radicals were investigated by both steady-state and pulse radiolysis. The steady-state MMC-radiolysis by OH-attack followed at both absorption bands showed different yields: at 218 nm G i (-MMC) = 3.0 and at 364 nm G i (-MMC) = 3.9, indicating the formation of various not yet identified products, among which ammonia was determined, G(NH 3) = 0.81. By means of pulse radiolysis it was established a total κ (OH + MMC) = (5.8 ± 0.2) × 10 9 dm 3 mol -1 s -1. The transient absorption spectrum from the one-electron oxidized MMC showed absorption maxima at 295 nm ( ɛ = 9950 dm 3 mol -1 cm t-1 ), 410 nm ( ɛ = 1450 dm 3 mol -1 cm -1) and 505 nm ( ɛ = 5420 dm 3 mol -1 cm -1). At 280-320 and 505 nm and above they exhibit in the first 150 μs a first order decay, κ1 = (0.85 ± 0.1) × 10 3 s -1, and followed upto ms time range, by a second order decay, 2 κ = (1.3 ± 0.3) × 10 8 dm 3 mol -1 s -1. Around 410 nm the kinetics are rather mixed and could not be resolved. The steady-state MMC-radiolysis in the presence of oxygen featured a proportionality towards the absorbed dose for both MMC-absorption bands, resulting in a G i (-MMC) = 1.5. Among several products ammonia-yield was determined G(NH 3) = 0.52. The formation of MMC-peroxyl radicals was studied by pulse radiolysis, likewise in neutral aqueous solution, but saturated with a gas mixture of 80% N 2O and 20% O 2. The maxima of the observed transient spectrum are slightly shifted compared to that of the one-electron oxidized MMC-species, namely: 290 nm ( ɛ = 10100 dm 3 mol -1 cm -1), 410 nm ( ɛ = 2900 dm 3 mol -1 cm -1) and 520 nm ( ɛ = 5500 dm 3 mol -1 cm -1). The O 2-addition to the MMC-one-electron oxidized transients was found to be at 290 to 410 nm gk(MMC·OH + O 2) = 5 × 10 7 dm 3 mol -1 s -1, around 480 nm κ = 1.6 × 10 8 dm 3 mol -1 s -1 and at 510 nm and above, κ = 3 × 10 8 dm 3 mol -1 s -1. The

  4. Valence one-electron and shake-up ionisation bands of polycyclic aromatic hydrocarbons. IV. The dibenzanthracene species

    Energy Technology Data Exchange (ETDEWEB)

    Deleuze, Michael S. [Theoretische Chemie, Departement SBG, Universiteit Hasselt, Agoralaan, Gebouw D, B-3590 Diepenbeek (Belgium)], E-mail: michael.deleuze@uhasselt.be

    2006-10-26

    A comprehensive study of the He (I) ultra-violet photoelectron spectra of the 1.2,3.4; 1.2,5.6 and 1.2,7.8 isomers of dibenzanthracene up to the double ionisation threshold at {approx}18 eV is presented with the aid of one-particle Green's Function calculations performed using the outer-valence Green's Function (OVGF) approach and the third-order algebraic diagrammatic construction [ADC(3)] scheme, along with basis sets of improving quality. Suited extrapolations of the ADC(3) results for the one-electron energies characterising the {pi}-band system ({epsilon} {sub b} < 10 eV) to Dunning's correlation consistent basis set of triple zeta quality (cc-pVTZ) enable theoretical insights into HeI measurements which approach chemical accuracy (1 kcal/mol or 43.4 meV). In contrast, a confrontation of simulated spectral envelopes with high-resolution He I photoelectron spectra indicates that polycyclic aromatic molecules with sterically overcrowded bay regions are more susceptible to undergo vibronic coupling complications at the {sigma}-ionisation onset. OVGF/cc-pVDZ or OVGF/cc-pVTZ pole strengths smaller than 0.85 systematically corroborate a breakdown of the orbital (or one-electron) picture of ionisation at the ADC(3)/6-31G levels. The extent of shake-up bands is correspondingly related to topological, structural and magnetic criteria of aromaticity. Comparison is made with calculations of the lowest doublet-doublet excitation energies of the related radical cations, by means of time-dependent density functional theory (TDDFT)

  5. Studies of base pair sequence effects on DNA solvation based on all-atom molecular dynamics simulations

    Indian Academy of Sciences (India)

    Surjit B Dixit; Mihaly Mezei; David L Beveridge

    2012-07-01

    Detailed analyses of the sequence-dependent solvation and ion atmosphere of DNA are presented based on molecular dynamics (MD) simulations on all the 136 unique tetranucleotide steps obtained by the ABC consortium using the AMBER suite of programs. Significant sequence effects on solvation and ion localization were observed in these simulations. The results were compared to essentially all known experimental data on the subject. Proximity analysis was employed to highlight the sequence dependent differences in solvation and ion localization properties in the grooves of DNA. Comparison of the MD-calculated DNA structure with canonical A- and B-forms supports the idea that the G/C-rich sequences are closer to canonical A- than B-form structures, while the reverse is true for the poly A sequences, with the exception of the alternating ATAT sequence. Analysis of hydration density maps reveals that the flexibility of solute molecule has a significant effect on the nature of observed hydration. Energetic analysis of solute–solvent interactions based on proximity analysis of solvent reveals that the GC or CG base pairs interactmore strongly with watermolecules in the minor groove of DNA that the AT or TA base pairs, while the interactions of the AT or TA pairs in the major groove are stronger than those of the GC or CG pairs. Computation of solvent-accessible surface area of the nucleotide units in the simulated trajectories reveals that the similarity with results derived from analysis of a database of crystallographic structures is excellent. The MD trajectories tend to follow Manning’s counterion condensation theory, presenting a region of condensed counterions within a radius of about 17 Å from the DNA surface independent of sequence. The GC and CG pairs tend to associate with cations in the major groove of the DNA structure to a greater extent than the AT and TA pairs. Cation association is more frequent in the minor groove of AT than the GC pairs. In general

  6. Time-efficient computation of the electronic structure of the C60 super-atom molecular orbital (SAMO) states in TDDFT

    Science.gov (United States)

    Mignolet, B.; Remacle, F.

    2016-12-01

    Fullerenes have a dense manifold of excited states composed of valence excited states and Rydberg states. Among Rydberg states, one distinguishes Super Atom Molecular Orbitals (SAMO), excited states in which an electron is promoted to a diffuse nanometer size molecular orbital with a hydrogenic-like character. Unlike typical Rydberg states, the electronic density of the SAMO states is mainly localized inside and in the close vicinity of the fullerene cage. In this proceeding, we propose a time-saving way to compute the electronic structure of the SAMO and Rydberg states of fullerenes at the TDDFT level by limiting the number of excitations allowed to build the excited states. We investigate the effect of limiting the number of excitations in C60 and compare it to the experimental binding energies. We also investigate the effect of the functional and basis set on the binding energies of the SAMO states.

  7. A New Relativistic Study for Interactions in One-electron atoms (Spin ½ Particles with Modified Mie-type Potential

    Directory of Open Access Journals (Sweden)

    Abdelmadjid Maireche

    2016-11-01

    Full Text Available In this paper, we present a novel theoretical analytical perform further investigation for the exact solvability of relativistic quantum spectrum systems for modified Mie-type potential (m.m.t. potential is discussed for spin-1/2 particles by means Boopp’s shift method instead to solving deformed Dirac equation with star product, in the framework of noncommutativity three dimensional real space (NC: 3D-RS. The exact corrections for excited states are found straightforwardly for interactions in one-electron atoms by means of the standard perturbation theory. Furthermore, the obtained corrections of energies are depended on four infinitesimal parameter ,which induced by position-position noncommutativity, in addition to the discreet atomic quantum numbers: and (the angular momentum quantum number and we have also shown that, the usual states in ordinary two and three dimensional spaces are canceled and has been replaced by new degenerated sub-states in the new quantum symmetries of (NC: 3D-RS and we have also applied our obtained results to the case of modified Krazer-Futes potential.

  8. Nitric oxide reduction to ammonia by TiO₂ electrons in colloid solution via consecutive one-electron transfer steps.

    Science.gov (United States)

    Goldstein, Sara; Behar, David; Rajh, Tijana; Rabani, Joseph

    2015-03-26

    The reaction mechanism of nitric oxide (NO) reduction by excess electrons on TiO2 nanoparticles (e(TiO2)(-)) has been studied under anaerobic conditions. TiO2 was loaded with 10-130 electrons per particle using γ-irradiation of acidic TiO2 colloid solutions containing 2-propanol. The study is based on time-resolved kinetics and reactants and products analysis. The reduction of NO by e(TiO2)(-) is interpreted in terms of competition between a reaction path leading to formation of NH3 and a path leading to N2O and N2. The proposed mechanism involves consecutive one-electron transfers of NO, and its reduction intermediates HNO, NH2O(•), and NH2OH. The results show that e(TiO2)(-) does not reduce N2O and N2. Second-order rate constants of e(TiO2)(-) reactions with NO (740 ± 30 M(-1) s(-1)) and NH2OH (270 ± 30 M(-1) s(-1)) have been determined employing the rapid-mixing stopped-flow technique and that with HNO (>1.3 × 10(6) M(-1) s(-1)) was derived from fitting the kinetic traces to the suggested reaction mechanism, which is discussed in detail.

  9. π-Radical to σ-Radical Tautomerization in One-Electron-Oxidized 1-Methylcytosine and Its Analogs.

    Science.gov (United States)

    Adhikary, Amitava; Kumar, Anil; Bishop, Casandra T; Wiegand, Tyler J; Hindi, Ragda M; Adhikary, Ananya; Sevilla, Michael D

    2015-09-01

    In this work, iminyl σ-radical formation in several one-electron-oxidized cytosine analogs, including 1-MeC, cidofovir, 2'-deoxycytidine (dCyd), and 2'-deoxycytidine 5'-monophosphate (5'-dCMP), were investigated in homogeneous, aqueous (D2O or H2O) glassy solutions at low temperatures by employing electron spin resonance (ESR) spectroscopy. Upon employing density functional theory (DFT) (DFT/B3LYP/6-31G* method), the calculated hyperfine coupling constant (HFCC) values of iminyl σ-radical agree quite well with the experimentally observed ones, thus confirming its assignment. ESR and DFT studies show that the cytosine iminyl σ-radical is a tautomer of the deprotonated cytosine π-cation radical [cytosine π-aminyl radical, C(N4-H)(•)]. Employing 1-MeC samples at various pHs ranging from ca. 8 to 11, ESR studies show that the tautomeric equilibrium between C(N4-H)(•) and the iminyl σ-radical at low temperature is too slow to be established without added base. ESR and DFT studies agree that, in the iminyl σ-radical, the unpaired spin is localized on the exocyclic nitrogen (N4) in an in-plane pure p-orbital. This gives rise to an anisotropic nitrogen hyperfine coupling (Azz = 40 G) from N4 and a near isotropic β-nitrogen coupling of 9.7 G from the cytosine ring nitrogen at N3. Iminyl σ-radical should exist in its N3-protonated form, as the N3-protonated iminyl σ-radical is stabilized in solution by over 30 kcal/mol (ΔG = -32 kcal/mol) over its conjugate base, the N3-deprotonated form. This is the first observation of an isotropic β-hyperfine ring nitrogen coupling in an N-centered DNA radical. Our theoretical calculations predict that the cytosine iminyl σ-radical can be formed in double-stranded DNA by a radiation-induced ionization-deprotonation process that is only 10 kcal/mol above the lowest energy path.

  10. Ligand-solvent interactions in a highly reduced metal chelate complex: medium dependence of the one-electron reduction of the bis(maleonitriledithiolato)gold dianion.

    Science.gov (United States)

    LeSuer, Robert J; Geiger, William E

    2009-11-16

    The one-electron reduction of [Au(mnt)(2)](2-) (mnt = [S(2)C(2)(CN)(2)](2-), maleonitriledithiolate), 1(2-), stands out in the rich redox chemistry of metal-mnt complexes as a chemically reversible but electrochemically irreversible process. Although the E(1/2) value of the primary redox reaction 1(2-)/1(3-) is only slightly medium dependent (ca. -1.36 V to -1.53 V vs FcH in several nonaqueous solvents and supporting electrolytes), its chemical reversibility is dramatically solvent dependent. A quasi-Nernstian process was observed only in tetrahydrofuran (THF) at low supporting electrolyte concentrations. Fast reversible follow-up reactions, ascribed to formation of solvento-complexes [Au(mnt)(2).Solv](3-), were observed through cyclic voltammetry (CV) studies in dichloromethane and acetonitrile. The specifically solvated trianion reverts to "unsolvated" 1(2-) when reoxidized, accounting for the overall chemical reversibility of the process. Owing to the fact that the ligands in 1(3-) are highly negatively charged, the strong specific solvation is likely to involve H-bonding interactions between the solvent and the sulfur atoms of the trianion. Ion-pairing interactions between 1(3-) and electrolyte cations were also shown to have a discernible effect on the 1(2-)/1(3-) couple in THF. The heterogeneous electron-transfer (ET) rate constant (k(s)) for this couple was sufficiently low (k(s) = approximately 10(-3) cm s(-1)) to suggest a square-planar to quasi-tetrahedral structural rearrangement being intrinsic to the 1(2-)/1(3-) ET process. The E(1/2) separation between the 1(-)/1(2-) and 1(2-)/1(3-) couples (ca. 220 mV) is much smaller than any of those previously reported for metal-mnt complexes. The behavior of the gold-mnt trianion is a rare example of a ligand-based solvento-complex, which contrasts with the well-known metal-based solvento-complexes that are commonly observed between electron-deficient complexes and strong donor solvents.

  11. Differential dynamics of the serotonin1A receptor in membrane bilayers of varying cholesterol content revealed by all atom molecular dynamics simulation.

    Science.gov (United States)

    Patra, Swarna M; Chakraborty, Sudip; Shahane, Ganesh; Prasanna, Xavier; Sengupta, Durba; Maiti, Prabal K; Chattopadhyay, Amitabha

    2015-01-01

    The serotonin1A receptor belongs to the superfamily of G protein-coupled receptors (GPCRs) and is a potential drug target in neuropsychiatric disorders. The receptor has been shown to require membrane cholesterol for its organization, dynamics and function. Although recent work suggests a close interaction of cholesterol with the receptor, the structural integrity of the serotonin1A receptor in the presence of cholesterol has not been explored. In this work, we have carried out all atom molecular dynamics simulations, totaling to 3 μs, to analyze the effect of cholesterol on the structure and dynamics of the serotonin1A receptor. Our results show that the presence of physiologically relevant concentration of membrane cholesterol alters conformational dynamics of the serotonin1A receptor and, on an average lowers conformational fluctuations. Our results show that, in general, transmembrane helix VII is most affected by the absence of membrane cholesterol. These results are in overall agreement with experimental data showing enhancement of GPCR stability in the presence of membrane cholesterol. Our results constitute a molecular level understanding of GPCR-cholesterol interaction, and represent an important step in our overall understanding of GPCR function in health and disease.

  12. Uncovering the microscopic mechanism of strand exchange during RecA mediated homologous recombination using all-atom molecular dynamics simulations

    Science.gov (United States)

    Shankla, Manish; Yoo, Jejoong; Aksimentiev, Aleksei

    2012-02-01

    Homologous recombination (HR) is a key step during the repair process of double-stranded DNA (dsDNA) breakage. RecA is a protein that mediates HR in bacteria. RecA monomers polymerize on a single-stranded DNA (ssDNA) separated from the broken dsDNA to form a helical filament, thus allowing strand exchange to occur. Recent crystal structures depict each RecA monomer in contact with three contiguous nucleotides called DNA triplets. Surprisingly, the conformation of each triplet is similar to that of a triplet in B-form DNA. However, in the filament the neighboring triplets are separated by loops of the RecA proteins. Single molecule experiments demonstrated that strand exchange propagation occurs in 3 base-pair increments. However, the temporal resolution of the experiments was insufficient to determine the exact molecular mechanism of the triplet propagation. Using all-atom molecular dynamics simulations, we investigated the effect of both the RecA protein and the conformation of the bound ssDNA fragment on the stability of the duplex DNA intermediate formed during the strand-exchange process. Specifically, we report simulations of force-induced unzipping of duplex DNA in the presence and absence of the RecA filament that explored the effect of the triplet ladder conformation.

  13. All-atom Molecular Dynamic Simulations Combined with the Chemical Shifts Study on the Weak Interactions of Ethanol-water System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rong; LUO San-Lai; WU Wen-Juan

    2008-01-01

    All-atom molecular dynamics(MD)simulation combined with chemical shifts was performed to investigate the interactions over the entire concentration range of the ethanol(EtOH)-water system.The results of the simulation were adopted to explain the NMR experiments by hydrogen bonding analysis.The strong hydrogen bonds and weak C-H…O contacts coexist in the mixtures through the analysis of the radial distribution functions.And the liquid structures in the whole concentration of EtOH-water mixtures can be classified into three regions by the statistic analysis of the hydrogen-bonding network in the MD simulations.Moreover,the chemical shifts of the hydrogen atom are in agreement witb the statistical results of the average number hydrogen bonds in the MD simulations.Interestingly,the excess relative extent Eηrel calculated by the MD simulations and chemical shifts in the EtOH aqueous solutions shows the largest deviation at XEtOH≈0.18.The excess properties present good agreement with the excess enthalpy in the concentration dependence.

  14. All-atom molecular dynamics simulations reveal significant differences in interaction between antimycin and conserved amino acid residues in bovine and bacterial bc1 complexes.

    Science.gov (United States)

    Kokhan, Oleksandr; Shinkarev, Vladimir P

    2011-02-02

    Antimycin A is the most frequently used specific and powerful inhibitor of the mitochondrial respiratory chain. We used all-atom molecular dynamics (MD) simulations to study the dynamic aspects of the interaction of antimycin A with the Q(i) site of the bacterial and bovine bc(1) complexes embedded in a membrane. The MD simulations revealed considerable conformational flexibility of antimycin and significant mobility of antimycin, as a whole, inside the Q(i) pocket. We conclude that many of the differences in antimycin binding observed in high-resolution x-ray structures may have a dynamic origin and result from fluctuations of protein and antimycin between multiple conformational states of similar energy separated by low activation barriers, as well as from the mobility of antimycin within the Q(i) pocket. The MD simulations also revealed a significant difference in interaction between antimycin and conserved amino acid residues in bovine and bacterial bc(1) complexes. The strong hydrogen bond between antimycin and conserved Asp-228 (bovine numeration) was observed to be frequently broken in the bacterial bc(1) complex and only rarely in the bovine bc(1) complex. In addition, the distances between antimycin and conserved His-201 and Lys-227 were consistently larger in the bacterial bc(1) complex. The observed differences could be responsible for a weaker interaction of antimycin with the bacterial bc(1) complex.

  15. One-electron properties and electrostatic interaction energies from the expectation value expression and wave function of singles and doubles coupled cluster theory.

    Science.gov (United States)

    Korona, Tatiana; Jeziorski, Bogumil

    2006-11-14

    One-electron density matrices resulting from the explicitly connected commutator expansion of the expectation value were implemented at the singles and doubles coupled cluster (CCSD) level. In the proposed approach the one-electron density matrix is obtained at a little extra cost in comparison to the calculation of the CCSD correlation energy. Therefore, in terms of the computational time the new method is significantly less demanding than the conventional linear-response CCSD theory which requires additionally an expensive calculation of the left-hand solution of the CCSD equations. The quality of the new density matrices was investigated by computing a set of one-electron properties for a series of molecules of varying sizes and comparing the results with data obtained using the full configuration interaction method or higher level coupled cluster theory. It has been found that the results obtained using the new approach are of the same quality as those predicted by the linear-response CCSD method. The novel one-electron density matrices have also been applied to study the energy of the electrostatic interaction for a number of van der Waals complexes, including the benzene and azulene dimers.

  16. Structural Interpretation of the Large Slowdown of Water Dynamics at Stacked Phospholipid Membranes for Decreasing Hydration Level: All-Atom Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Carles Calero

    2016-04-01

    Full Text Available Hydration water determines the stability and function of phospholipid membranes as well as the interaction of membranes with other molecules. Experiments and simulations have shown that water dynamics slows down dramatically as the hydration decreases, suggesting that the interfacial water that dominates the average dynamics at low hydration is slower than water away from the membrane. Here, based on all-atom molecular dynamics simulations, we provide an interpretation of the slowdown of interfacial water in terms of the structure and dynamics of water–water and water–lipid hydrogen bonds (HBs. We calculate the rotational and translational slowdown of the dynamics of water confined in stacked phospholipid membranes at different levels of hydration, from completely hydrated to poorly hydrated membranes. For all hydrations, we analyze the distribution of HBs and find that water–lipids HBs last longer than water–water HBs and that at low hydration most of the water is in the interior of the membrane. We also show that water–water HBs become more persistent as the hydration is lowered. We attribute this effect (i to HBs between water molecules that form, in turn, persistent HBs with lipids; (ii to the hindering of the H-bonding switching between water molecules due to the lower water density at the interface; and (iii to the higher probability of water–lipid HBs as the hydration decreases. Our interpretation of the large dynamic slowdown in water under dehydration is potentially relevant in understanding membrane biophysics at different hydration levels.

  17. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): Time-resolved fluorescence measurements and all-atom molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Das, Anuradha; Das, Suman; Biswas, Ranjit, E-mail: ranjit@bose.res.in [Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata, West Bengal 700098 (India)

    2015-01-21

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH{sub 3}CONH{sub 2}) and urea (NH{sub 2}CONH{sub 2}) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH{sub 3}CONH{sub 2} + (1 − f)NH{sub 2}CONH{sub 2}] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α{sub 2}) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.

  18. Theoretical studies of slow collisions. Elastic electron scattering from positive ions, charge transfer in one-electron ion-ion systems and mutual neutralization of H sup - /D sup - and H sub 2 sup +

    CERN Document Server

    Shepherd, J

    2001-01-01

    et al (1997 Phys.Rev. Lett. 79 1002). Total cross sections for this and iso-electronic systems were found to agree with simple approximations. Total cross sections for the mutual neutralization reaction H sub 2 sup + + D sup - -> H sub 2 (1s, nl) + D(1s) + DELTA epsilon were found using the Landau-Zener curve-crossing model. This method of calculation is heavily dependent on the reliability of estimates of the coupling matrix elements. Potential energy curves for the H sub 2 molecule were found using the MOLPRO package in order to have a consistent base from which to determine the energetics of the reaction. Agreement with early experiments of Aberth et al (1971 AFCRL Report No. 71-0481 Bedford, Mass.) is satisfactory, but is less good with more recent experiments of Peart et al (1997 J.Phys.B: At.Mol.Phys. 30 4955) where there is some doubt over the adequacy of the detector acceptance angle. Quantal and semi-classical methods have been used to investigate slow electron, ionic and molecular collisions. Three ...

  19. A CALCULATION OF SEMI-EMPIRICAL ONE-ELECTRON WAVE FUNCTIONS FOR MULTI-ELECTRON ATOMS USED FOR ELEMENTARY PROCESS SIMULATION IN NONLOCAL PLASMA

    Directory of Open Access Journals (Sweden)

    M. V. Tchernycheva

    2017-01-01

    Full Text Available Subject of Research. The paper deals with development outcomes for creation method of one-electron wave functions of complex atoms, relatively simple, symmetrical for all atom electrons and free from hard computations. The accuracy and resource intensity of the approach are focused on systematic calculations of cross sections and rate constants of elementary processes of inelastic collisions of atoms or molecules with electrons (ionization, excitation, excitation transfer, and others. Method. The method is based on a set of two iterative processes. At the first iteration step the Schrödinger equation was solved numerically for the radial parts of the electron wave functions in the potential of the atomic core self-consistent field. At the second iteration step the new approximationfor the atomic core field is created that uses found solutions for all one-electron wave functions. The solution optimization for described multiparameter problem is achieved by the use of genetic algorithm. The suitability of the developed method was verified by comparing the calculation results with numerous data on the energies of atoms in the ground and excited states. Main Results. We have created the run-time version of the program for creation of sets of one-electron wave functions and calculation of the cross sections and constants of collisional transition rates in the first Born approximation. The priori available information about binding energies of the electrons for any many-particle system for creation of semi-empirical refined solutions for the one-electron wave functions can be considered at any step of this procedure. Practical Relevance. The proposed solution enables a simple and rapid preparation of input data for the numerical simulation of nonlocal gas discharge plasma. The approach is focused on the calculation of discharges in complex gas mixtures requiring inclusion in the model of a large number of elementary collisional and radiation

  20. Low energy ion beam dynamics of NANOGAN ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvesh, E-mail: sarvesh@iuac.res.in; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  1. Molecular Dynamics Simulation of Multivalent-Ion Mediated Attraction between DNA Molecules

    Science.gov (United States)

    Dai, Liang; Mu, Yuguang; Nordenskiöld, Lars; van der Maarel, Johan R. C.

    2008-03-01

    All atom molecular dynamics simulations with explicit water were done to study the interaction between two parallel double-stranded DNA molecules in the presence of the multivalent counterions putrescine (2+), spermidine (3+), spermine (4+) and cobalt hexamine (3+). The inter-DNA interaction potential is obtained with the umbrella sampling technique. The attractive force is rationalized in terms of the formation of ion bridges, i.e., multivalent ions which are simultaneously bound to the two opposing DNA molecules. The lifetime of the ion bridges is short on the order of a few nanoseconds.

  2. Toward Comprehensive Physical/Chemical Understanding of the Circumstellar Environments - Simultaneous Probing of Each of the Ionized/Atomic/Molecular Gas and Dust Components

    Science.gov (United States)

    Ueta, Toshiya

    We propose to continue our successful investigations into simultaneous probing of each of the ionized/atomic/molecular gas and dust components in planetary nebulae using primarily far-IR broadband images and spatially-resolved spectroscopic data cubes obtained with the Herschel Space Observatory to enhance our understanding of the circumstellar environments. This research originally started as the Herschel Planetary Nebula Survey (HerPlaNS) - an open time 1 program of the Herschel Space Observatory - in which 11 high-excitation PNs were observed to study the nebular energetics that involves very hot X-ray emitting plasma to very cold dust grains, whose density ranges over 3 to 4 orders of magnitude and temperature ranges over 7 orders of magnitude. The HerPlaNS data include broadband maps, IFU spectral data cubes, and bolometer array spectral data cubes covering 50 to 670 microns. Because of the sheer volume and complexity of the data set, the original funding was exhausted almost exclusively to the initial data reduction and not much to the subsequent science analysis. However, we managed to perform a nearly full science analysis for one target, NGC 6781, for which the broadband maps confirm the nearly pole-on barrel structure of the amorphous carbonrich dust shell and the surrounding halo having temperatures of 26-40 K. We also demonstrated that spatially resolved far-IR line diagnostics would yield the (Te, ne) profiles, from which distributions of ionized, atomic, and molecular gases can be determined. Direct comparison of the dust and gas column mass maps constrained by the HerPlaNS data allowed to construct an empirical gas-to-dust mass ratio map, which shows a range of ratios with the median of 195 with a standard deviation of 110. The analysis also yielded estimates of the total mass of the shell to be 0.86 M_sun, consisting of 0.54 M_sun of ionized gas, 0.12 M_sun of atomic gas, 0.2 M_sun of molecular gas, and 0.004 M_sun of dust grains. These estimates

  3. Quantitative evaluation of charge-reduction effect in cluster constituent ions passing through a foil

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, A., E-mail: chiba.atsuya@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292 (Japan); Saitoh, Y.; Narumi, K.; Yamada, K. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292 (Japan); Kaneko, T. [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, kita-ku, Okayama-shi, Okayama 700-0005 (Japan)

    2013-11-15

    Swift cluster ions, which cause characteristic irradiation effects on a solid surface, have a possibility of establishing a new ion irradiation technique for high-sensitivity surface analysis and innovative surface modification. However, the mechanism of cluster irradiation effects has not been understood completely. We have focused on the charge reduction effect in some physical phenomena and performed a quantitative evaluation of the relationship between the charge state and the interatomic distance of the constituent ions moving in the solid. This technique is based on the refined analysis of the divergence angle of the constituent ions resulting from the foil-induced dissociation of the two-atomic molecular ion. The results derived from this analytical approach clearly showed the correlation between the average charge and the interatomic distance of the constituent ions and implied that the average charge of the constituent ions emerging from the foil varies according to the interatomic distance at the instant of cluster dissociation.

  4. Analytic energy gradients for the spin-free exact two-component theory using an exact block diagonalization for the one-electron Dirac Hamiltonian.

    Science.gov (United States)

    Cheng, Lan; Gauss, Jürgen

    2011-08-28

    We report the implementation of analytic energy gradients for the evaluation of first-order electrical properties and nuclear forces within the framework of the spin-free (SF) exact two-component (X2c) theory. In the scheme presented here, referred to in the following as SFX2c-1e, the decoupling of electronic and positronic solutions is performed for the one-electron Dirac Hamiltonian in its matrix representation using a single unitary transformation. The resulting two-component one-electron matrix Hamiltonian is combined with untransformed two-electron interactions for subsequent self-consistent-field and electron-correlated calculations. The "picture-change" effect in the calculation of properties is taken into account by considering the full derivative of the two-component Hamiltonian matrix with respect to the external perturbation. The applicability of the analytic-gradient scheme presented here is demonstrated in benchmark calculations. SFX2c-1e results for the dipole moments and electric-field gradients of the hydrogen halides are compared with those obtained from nonrelativistic, SF high-order Douglas-Kroll-Hess, and SF Dirac-Coulomb calculations. It is shown that the use of untransformed two-electron interactions introduces rather small errors for these properties. As a first application of the analytic geometrical gradient, we report the equilibrium geometry of methylcopper (CuCH(3)) determined at various levels of theory.

  5. Binding of benzo(a)pyrene to DNA by cytochrome P-450 catalyzed one-electron oxidation in rat liver microsomes and nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Cavalieri, E.L.; Rogan, E.G.; Devanesan, P.D.; Cremonesi, P. (Univ. of Nebraska Medical Center, Omaha (USA)); Cerny, R.L.; Gross, M.L. (Univ. of Nebraska, Lincoln (USA)); Bodell, W.J. (Univ. of California, San Francisco (USA))

    1990-05-22

    To investigate whether cytochrome P-450 catalyzes the covalent binding of substrates to DNA by one-electron oxidation, the ability of both uninduced and 3-methylcholanthrene (MC) induced rat liver microsomes and nuclei to catalyze covalent binding of benzo(a)pyrene (BP) to DNA and formation of the labile adduct 7-(benzo(a)pyren-6-yl)guanine (BP-N7Gua) was investigated. In the various systems studied, 1-9 times more BP-N7Gua adduct was isolated than the total amount of stable BP adducts in the DNA. The specific cytochrome P-450 inhibitor 2-((4,6-dichloro-o-biphenyl)oxy)ethylamine hydrobromide (DPEA) reduced or eliminated BP metabolism, binding of BP to DNA, and formation of BP-N7Gua by cytochrome P-450 in both microsomes and nuclei. The effects of the antioxidants cysteine, glutathione, and p-methoxythiophenol were also investigated. This study represents the first demonstration of cytochrome P-450 mediating covalent binding of substrates to DNA via one-electron oxidation and suggests that this enzyme can catalyze peroxidase-type electron-transfer reactions.

  6. Pulsed ELDOR spectroscopy of the Mo(V)/Fe(III) state of sulfite oxidase prepared by one-electron reduction with Ti(III) citrate.

    Science.gov (United States)

    Codd, Rachel; Astashkin, Andrei V; Pacheco, Andrew; Raitsimring, Arnold M; Enemark, John H

    2002-03-01

    The titration of chicken liver sulfite oxidase (SO) with the one-electron reductant Ti(III) citrate, at pH 7.0, results in nearly quantitative selective reduction of the Mo(VI) center to Mo(V), while the b-type heme center remains in the fully oxidized Fe(III) state. The selective reduction of the Mo(VI/V) couple has been established from electronic and EPR spectra. The electronic spectrum of the Fe(III) heme center is essentially unchanged during the titration, and the continuous wave (CW)-EPR spectrum shows the appearance of the well-known Mo(V) signal due to the low pH ( lpH) form of SO. Further confirmation of the selective formation of the Mo(V)/Fe(III) form of SO is provided by the approximately 1:1 ratio of the integrated intensities of the Mo(V) and low-spin Fe(III) EPR signals after addition of one equivalent of Ti(III). The selective generation of the Mo(V)/Fe(III) form of SO is unexpected, considering that previous microcoulometry and flash photolysis investigations have indicated that the Mo(VI/V) and Fe(III/II) couples of SO have similar reduction potentials at pH 7. The nearly quantitative preparation of the one-electron reduced Mo(V)/Fe(III) form of SO by reduction with Ti(III) has enabled the interaction between these two paramagnetic metal centers, which are linked by a flexible loop with no secondary structure, to be investigated for the first time by variable-frequency pulsed electron-electron double resonance (ELDOR) spectroscopy. The ELDOR kinetics were obtained from frozen solutions at 4.2 K at several microwave frequencies by pumping on the narrow Mo(V) signal and observing the effect on the Fe(III) primary echo at both higher and lower frequencies within the microwave C-band region. The ELDOR data indicate that freezing the solution of one-electron reduced SO produces localized regions where the concentration of SO approaches that in the crystal structure, which results in the interpair interactions being the dominant dipolar interaction

  7. Atomic physics with highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  8. Many-electron effects in photoelectron spectroscopy. [Deviations from Koopman's one-electron model, satellite structure, configuration interaction, mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.L.

    1976-06-01

    The deviations from Koopmans' one-electron model of photoionization which lead to satellite structure in the photoelectron spectrum are examined within the formalism of configuration interaction (CI). The mechanisms which contribute to satellite intensity may be classified as continuum state configuration interaction, final ionic state configuration interaction, and initial state configuration interaction. The discussion centers around the last two mechanisms, these being the prime contributors to the satellite intensity well above threshold. Specific examples of theoretical ''spectra'' are presented for the F(1s) region of HF and the 1s region of neon. The agreement between theory and experiment is found to be excellent. In these two instances, initial state configuration interaction contributions increase the satellite intensity and are of nearly equal importance to the final ionic state mixing.

  9. A manganese(V)-oxo π-cation radical complex: influence of one-electron oxidation on oxygen-atom transfer.

    Science.gov (United States)

    Prokop, Katharine A; Neu, Heather M; de Visser, Sam P; Goldberg, David P

    2011-10-12

    One-electron oxidation of Mn(V)-oxo corrolazine 2 affords 2(+), the first example of a Mn(V)(O) π-cation radical porphyrinoid complex, which was characterized by UV-vis, EPR, LDI-MS, and DFT methods. Access to 2 and 2(+) allowed for a direct comparison of their reactivities in oxygen-atom transfer (OAT) reactions. Both complexes are capable of OAT to PPh(3) and RSR substrates, and 2(+) was found to be a more potent oxidant than 2. Analysis of rate constants and activation parameters, together with DFT calculations, points to a concerted OAT mechanism for 2(+) and 2 and indicates that the greater electrophilicity of 2(+) likely plays a dominant role in enhancing its reactivity. These results are relevant to comparisons between Compound I and Compound II in heme enzymes.

  10. Nitrite Reduction to Nitrous Oxide and Ammonia by TiO2 Electrons in a Colloid Solution via Consecutive One-Electron Transfer Reactions.

    Science.gov (United States)

    Goldstein, Sara; Behar, David; Rajh, Tijana; Rabani, Joseph

    2016-04-21

    The mechanism of nitrite reduction by excess electrons on TiO2 nanoparticles (eTiO2(-)) was studied under anaerobic conditions. TiO2 was loaded with up to 75 electrons per particle, induced by γ-irradiation of acidic TiO2 colloid solutions containing 2-propanol. Time-resolved kinetics and material analysis were performed, mostly at 1.66 g L(-1) TiO2. At relatively low nitrite concentrations (R = [eTiO2(-)]o/[nitrite]o > 1.5), eTiO2(-) decays via two consecutive processes; at higher concentrations, only one decay step is observed. The stoichiometric ratio Δ[eTiO2(-)]/[nitrite]o of the faster process is about 2. This process involves the one-electron reduction of nitrite, forming the nitrite radical (k1 = (2.0 ± 0.2) × 10(6) M(-1) s(-1)), which further reacts with eTiO2(-) (k2) in competition with its dehydration to nitric oxide (NO) (k3). The ratios k2/k3 = (3.0 ± 0.5) × 10(3) M(-1) and k2 > 1 × 10(6) M(-1) s(-1) were derived from kinetic simulations and product analysis. The major product of this process is NO. The slower stage of the kinetics involves the reduction of NO by eTiO2(-), and the detailed mechanism of this process has been discussed in our earlier publication. The results reported in this study suggest that several intermediates, including NO and NH2OH, are adsorbed on the titanium nanoparticles and give rise to inverse dependency of the respective reaction rates on the TiO2 concentration. It is demonstrated that the reduction of nitrite by eTiO2(-) yields mainly N2O and NH3 via consecutive one-electron transfer reactions.

  11. Commissioning of the DESIREE storage rings - a new facility for cold ion-ion collisions

    Science.gov (United States)

    Gatchell, M.; Schmidt, H. T.; Thomas, R. D.; Rosén, S.; Reinhed, P.; Löfgren, P.; Brännholm, L.; Blom, M.; Björkhage, M.; Bäckström, E.; Alexander, J. D.; Leontein, S.; Hanstorp, D.; Zettergren, H.; Liljeby, L.; Källberg, A.; Simonsson, A.; Hellberg, F.; Mannervik, S.; Larsson, M.; Geppert, W. D.; Rensfelt, K. G.; Danared, H.; Paál, A.; Masuda, M.; Halldén, P.; Andler, G.; Stockett, M. H.; Chen, T.; Källersjö, G.; Weimer, J.; Hansen, K.; Hartman, H.; Cederquist, H.

    2014-04-01

    We report on the ongoing commissioning of the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. Beams of atomic carbon anions (C-) and smaller carbon anion molecules (C-2, C-3, C-4 etc.) have been produced in a sputter ion source, accelerated to 10 keV or 20 keV, and stored successfully in the two electrostatic rings. The rings are enclosed in a common vacuum chamber cooled to below 13 Kelvin. The DESIREE facility allows for studies of internally relaxed single isolated atomic, molecular and cluster ions and for collision experiments between cat- and anions down to very low center-of-mass collision energies (meV scale). The total thermal load of the vacuum chamber at this temperature is measured to be 32 W. The decay rates of stored ion beams have two components: a non-exponential component caused by the space charge of the beam itself which dominates at early times and an exponential term from the neutralization of the beam in collisions with residual gas at later times. The residual gas limited storage lifetime of carbon anions in the symmetric ring is over seven minutes while the 1/e lifetime in the asymmetric ring is measured to be about 30 seconds. Although we aim to improve the storage in the second ring, the number of stored ions are now sufficient for many merged beams experiments with positive and negative ions requiring milliseconds to seconds ion storage.

  12. One-electron reduction and oxidation studies of the radiation sensitizer gadolinium(III) texaphyrin (PCI-0120) and other water soluble metallotexaphyrins

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, J.L.; Tvermoes, N.A.; Allen, W.E. [Univ. of Texas, Austin, TX (United States). Dept. of Chemistry and Biochemistry; Guldi, D.M. [Univ. of Notre Dame, IN (United States). Radiation Lab.; Mody, T.D. [Pharmacyclics, Inc., Sunnyvale, CA (United States)

    1999-02-18

    The radiation sensitizer gadolinium(III) texaphyrin 2 (XYTRIN; PCI-0120; Gd-Tex{sup 2+}) and several other water soluble metallotexaphyrin complexes were prepared and studied using pulse radiolysis. All of the metallotexaphyrins were found to react with solvated electrons and hydroxyl radicals, yielding the corresponding one-electron reduced and oxidized metallotexaphyrins, respectively. The rates of the reduction processes range from 3.7 {times} 10{sup 10} to 6.8 {times} 10{sup 10} M{sup {minus}1} s{sup {minus}1} ({+-}10%), while those involving oxidation range from 2.5 {times} 10{sup 9} to 7.4 {times} 10{sup 9} M{sup {minus}1} s{sup {minus}1} ({+-}10%). The spectral characteristics of the transformed metallotexaphyrins produced by these reactions, e.g., a broad absorption band with a {lambda}{sup max} centered around 830 nm, are consistent with ligand-centered redox processes. Reaction of the metallotexaphyrins with solvated electrons affords species which exhibit metal dependent behavior. In the absence of hydroxyl radicals, the decays of the reduced metallotexaphyrins produced by reaction with electrons involves an initial protonation event followed by either a dimerization process or a disproportionation step. These latter transformations are followed by a second protonation event.

  13. A new Nonrelativistic Investigation for Interactions in One-electron Atoms with Modified Vibrational-Rotational Analysis of Supersingular plus Quadratic Potential: Extended Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Abdelmadjid Maireche

    2016-12-01

    Full Text Available In our recent work, three-dimensional modified time-independent Schrödinger equation (MSE of modified vibrational-rotational analysis of supersingular plus quadratic potential (v.r.a.s.q. potential was solved using Boopp’s shift method instead to apply star product, in the framework of both noncommutativity three dimensional real space and phase (NC: 3D-RSP. Furthermore, the exact correction for ground state and first excited state are found straightforwardly for interactions in one-electron atoms has been solved using standard perturbation theory. Furthermore, the obtained corrections of energies are depended on infinitesimal parameters and which are induced by position-position and momentum-momentum noncommutativity, respectively, in addition to the discreet atomic quantum numbers: and . Moreover, the usual states in ordinary quantum mechanics for vibrational-rotational analysis of supersingular plus quadratic potential are canceled and has been replaced by new degenerated sub-states in the extended new quantum symmetries of (NC: 3D-RSP.

  14. One-electron oxidation of ferrocenes by short-lived N-oxyl radicals. The role of structural effects on the intrinsic electron transfer reactivities.

    Science.gov (United States)

    Baciocchi, Enrico; Bietti, Massimo; D'Alfonso, Claudio; Lanzalunga, Osvaldo; Lapi, Andrea; Salamone, Michela

    2011-06-07

    A kinetic study of the one electron oxidation of substituted ferrocenes (FcX: X = H, COPh, COMe, CO(2)Et, CONH(2), CH(2)OH, Et, and Me(2)) by a series of N-oxyl radicals (succinimide-N-oxyl radical (SINO), maleimide-N-oxyl radical (MINO), 3-quinazolin-4-one-N-oxyl radical (QONO) and 3-benzotriazin-4-one-N-oxyl radical (BONO)), has been carried out in CH(3)CN. N-oxyl radicals were produced by hydrogen abstraction from the corresponding N-hydroxy derivatives by the cumyloxyl radical. With all systems, the rate constants exhibited a satisfactory fit to the Marcus equation allowing us to determine self-exchange reorganization energy values (λ(NO˙/NO(-))) which have been compared with those previously determined for the PINO/PINO(-) and BTNO/BTNO(-) couples. Even small modification of the structure of the N-oxyl radicals lead to significant variation of the λ(NO˙/NO(-)) values. The λ(NO˙/NO(-)) values increase in the order BONO < BTNO < QONO < PINO < SINO < MINO which do not parallel the order of the oxidation potentials. The higher λ(NO˙/NO(-)) values found for the MINO and SINO radicals might be in accordance with a lower degree of spin delocalization in the radicals MINO and SINO and charge delocalization in the anions MINO(-) and SINO(-) due to the absence of an aromatic ring in their structure.

  15. Reversible Intramolecular Cyclization in Ruthenium Complexes Induced by Ligand-centered One-electron Transfer on Bidentate Naphthyridine: An Important Intermediate for Both Metal– and Organo–Hydride Species

    National Research Council Canada - National Science Library

    Oyama, Dai; Ukawa, Narumi; Hamada, Takashi; Takase, Tsugiko

    2015-01-01

    ...)-1,8-naphthyridine were prepared. The complexes undergo irreversible ligand-localized one-electron reduction to form redox-induced metallacyclization between the bidentate naphthyridyl ligand and the terminal CO ligand located nearby...

  16. 2,6,10-Tris(dialkylamino)-trioxatriangulenium Ions. Synthesis, Structure, and Properties of Exceptionally Stable Carbenium Ions

    DEFF Research Database (Denmark)

    Laursen, Bo W.; Krebs, Frederik C; Nielsen, Merete F.

    1998-01-01

    complex amino-substituted carbenium ions. X-ray crystallography shows that the cis(N-pyrrolidinyl)-4,8,12-trioxatriangulenium ion (5b) is planar and forms segregated stacks of cations and PF6 anions in the solid phase. The stability of the 2,6, 0-tris(diethylamino)- 4,8,12-trioxatriangulenium ion 5a.......Electrochemical reduction of compound 5a leads to rapid dimerization. Two consecutive one-electron oxidations are identified by cyclic voltammetry....

  17. Detecting negative ions on board small satellites

    Science.gov (United States)

    Lepri, S. T.; Raines, J. M.; Gilbert, J. A.; Cutler, J.; Panning, M.; Zurbuchen, T. H.

    2017-04-01

    Recent measurements near comets, planets, and their satellites have shown that heavy ions, energetic neutral atoms, molecular ions, and charged dust contain a wealth of information about the origin, evolution, and interaction of celestial bodies with their space environment. Using highly sensitive plasma instruments, positively charged heavy ions have been used to trace exospheric and surface composition of comets, planets, and satellites as well as the composition of interplanetary and interstellar dust. While positive ions dominate throughout the heliosphere, negative ions are also produced from surface interactions. In fact, laboratory experiments have shown that oxygen released from rocky surfaces is mostly negatively charged. Negative ions and negatively charged nanograins have been detected with plasma electron analyzers in several different environments (e.g., by Cassini and Rosetta), though more extensive studies have been challenging without instrumentation dedicated to negative ions. We discuss an adaptation of the Fast Imaging Plasma Spectrometer (FIPS) flown on MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) for the measurement of negatively charged particles. MESSENGER/FIPS successfully measured the plasma environment of Mercury from 2011 until 2015, when the mission ended, and has been used to map multiple ion species (H+ through Na+ and beyond) throughout Mercury's space environment. Modifications to the existing instrument design fits within a 3U CubeSat volume and would provide a low mass, low power instrument, ideal for future CubeSat or distributed sensor missions seeking, for the first time, to characterize the contribution of negative particles in the heliospheric plasmas near the planets, moons, comets, and other sources.

  18. Pulse radiolysis studies on the formation and transformation of the one-electron reduced intermediate of Kalafungin and an analogue solution

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.F.; Packer, J.E. [Auckland Univ. (New Zealand). Dept. of Chemistry; Brimble, A.; Nairn, M.R. [Sydney Univ., Sydney, NSW (Australia). Dept. of Chemistry

    1996-12-31

    Kalafungin 1 is a member of the pyranonaphthoquinone family of antibiotics which are produced various species of Streptomyces and have in common the benzoisochromanquinone skeleton. Apart from their already documented activity against Gram-positive bacteria, fungi, and mycoplasmas, it has been suggested that in vivo reduction causes a transformation to an active hydroquinone form which functions as a bis-alkylating agent.{sup 2} Moore{sup 2},{sup 3} has suggested that these pyranonaphthoquinones may exhibit antitumour activity since the proposed mechanism of action resembles that of the anticancer agent mitomycin C 3.{sup 2}. Rapid one-electron reduction of kalafungin 1 and a closely related analogue 2 has been carried out using The University of Auckland`s pulse radiolysis facility. Pulsed electrons (4 Gy in 200 ns from a 4 MeV linear accelerator) were delivered to de-aerated aqueous solutions (10 mmol.L{sup -1} phosphate, pH 7.0) containing 0.1 mol.L{sup -1} sodium formate and 50 - 200 {mu}mol.L{sup -1} kalafungin 1 or lactol 2. Radical formation and transformations were followed by time-resolved uv/visible spectrophotometry. The transformations observed are independent of both the concentration of the parent compound and radiation doses (i.e. semiquinone concentration). The accompanying changes in absorption are consistent with the radical centre of the semiquinone species undergoing intramolecular rearrangement onto the fused non-aromatic ring structure of the compound. Possible ring opening mechanisms and the position of radical relocalisation will be discussed, as well as the involvement of radical transformation and redox chemistry in the biological activity of kalafungin1. Extended abstract. 4 refs., ills.

  19. One-electron versus electron-electron interaction contributions to the spin-spin coupling mechanism in nuclear magnetic resonance spectroscopy: analysis of basic electronic effects.

    Science.gov (United States)

    Gräfenstein, Jürgen; Cremer, Dieter

    2004-12-22

    For the first time, the nuclear magnetic resonance (NMR) spin-spin coupling mechanism is decomposed into one-electron and electron-electron interaction contributions to demonstrate that spin-information transport between different orbitals is not exclusively an electron-exchange phenomenon. This is done using coupled perturbed density-functional theory in conjunction with the recently developed J-OC-PSP [=J-OC-OC-PSP: Decomposition of J into orbital contributions using orbital currents and partial spin polarization)] method. One-orbital contributions comprise Ramsey response and self-exchange effects and the two-orbital contributions describe first-order delocalization and steric exchange. The two-orbital effects can be characterized as external orbital, echo, and spin transport contributions. A relationship of these electronic effects to zeroth-order orbital theory is demonstrated and their sign and magnitude predicted using simple models and graphical representations of first order orbitals. In the case of methane the two NMR spin-spin coupling constants result from totally different Fermi contact coupling mechanisms. (1)J(C,H) is the result of the Ramsey response and the self-exchange of the bond orbital diminished by external first-order delocalization external one-orbital effects whereas (2)J(H,H) spin-spin coupling is almost exclusively mitigated by a two-orbital steric exchange effect. From this analysis, a series of prediction can be made how geometrical deformations, electron lone pairs, and substituent effects lead to a change in the values of (1)J(C,H) and (2)J(H,H), respectively, for hydrocarbons.

  20. Graphene engineering by neon ion beams.

    Science.gov (United States)

    Iberi, Vighter; Ievlev, Anton V; Vlassiouk, Ivan; Jesse, Stephen; Kalinin, Sergei V; Joy, David C; Rondinone, Adam J; Belianinov, Alex; Ovchinnikova, Olga S

    2016-03-29

    Achieving the ultimate limits of lithographic resolution and material performance necessitates engineering of matter with atomic, molecular, and mesoscale fidelity. With the advent of scanning helium ion microscopy, maskless He(+) and Ne(+) beam lithography of 2D materials, such as graphene-based nanoelectronics, is coming to the forefront as a tool for fabrication and surface manipulation. However, the effects of using a Ne focused-ion-beam on the fidelity of structures created out of 2D materials have yet to be explored. Here, we will discuss the use of energetic Ne ions in engineering graphene nanostructures and explore their mechanical, electromechanical and chemical properties using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we are able to ascertain changes in the mechanical, electrical and optical properties of Ne(+) beam milled graphene nanostructures and surrounding regions. Additionally, we are able to link localized defects around the milled graphene to ion milling parameters such as dwell time and number of beam passes in order to characterize the induced changes in mechanical and electromechanical properties of the graphene surface.

  1. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies.

    Science.gov (United States)

    Schowalter, Steven J; Chen, Kuang; Rellergert, Wade G; Sullivan, Scott T; Hudson, Eric R

    2012-04-01

    We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm ∼ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap capacity and high optical access is realized without sacrificing mass resolution. This provides the ability to address trapped ions with laser light and facilitates interactions with neutral background gases prior to analyzing the trapped ions. Here, we describe the construction and implementation of the device as well as present representative ToF spectra. We conclude by demonstrating the flexibility of the device with proof-of-principle experiments that include the observation of molecular-ion photodissociation and the measurement of trapped-ion chemical reaction rates. © 2012 American Institute of Physics

  2. Solute and solvent dynamics in confined equal-sized aqueous environments of charged and neutral reverse micelles: a combined dynamic fluorescence and all-atom molecular dynamics simulation study.

    Science.gov (United States)

    Guchhait, Biswajit; Biswas, Ranjit; Ghorai, Pradip K

    2013-03-28

    Here a combined dynamic fluorescence and all-atom molecular dynamics simulation study of aqueous pool-size dependent solvation energy and rotational relaxations of a neutral dipolar solute, C153, trapped in AOT (charged) and IGPAL (neutral) reverse micelles (RMs) at 298 K, is described. RMs in simulations have been represented by a reduced model where SPC/E water molecules interact with a trapped C153 that possesses realistic charge distributions for both ground and excited states. In large aqueous pools, measured average solvation and rotation rates are smaller for the neutral RMs than those in charged ones. Interestingly, while the measured average solvation and rotation rates increase with pool size for the charged RMs, the average rotation rates for the neutral RMs exhibit a reverse dependence. Simulations have qualitatively reproduced this experimental trend and suggested interfacial location for the solute for all cases. The origin for the subnanosecond Stokes shift dynamics has been investigated and solute-interface interaction contribution quantified. Simulated layer-wise translational and rotational diffusions of water molecules re-examine the validity of the core-shell model and provide a resolution to a debate regarding the origin of the subnanosecond solvation component in dynamic Stokes shift measurements with aqueous RMs but not detected in ultrafast IR measurements.

  3. Ion-Ion Neutralization.

    Science.gov (United States)

    1980-12-31

    plasma were identified using a downstream quadrupole mass spectrometer. In these experimento it is a simple matter to establish H+(H 2 0):f as the...pressure as predicted by the Thomson t2rnary mechanism whicK hzr been suownr to be valid experimentally at hiTh rrsurs (,han and Peron, 1:EI4 hereafter t...of NO , NO2 ions in various gases and the ternary recombination coefficients of these ions in the higher pres:;ure ( Thomson ) re"ie. Equation (5) cr>n

  4. Collisions of Slow Highly Charged Ions with Surfaces

    OpenAIRE

    Burgdoerfer, J.; Lemell, C.; Schiessl, K.; Solleder, B.; Reinhold, C; Tokesi, K.; Wirtz, Ludger

    2006-01-01

    Progress in the study of collisions of multiply charged ions with surfaces is reviewed with the help of a few recent examples. They range from fundamental quasi-one electron processes to highly complex ablation and material modification processes. Open questions and possible future directions will be discussed.

  5. ONE-ELECTRON OXIDATION OF PHENANTHRENEQUINONE STUDIED BY PULSE RADIOLYSIS%用脉冲辐解技术研究菲醌的单电子氧化

    Institute of Scientific and Technical Information of China (English)

    包华影

    2003-01-01

    采用脉冲辐解技术,以羟基自由基和硫酸根自由基作为氧化剂,研究了9,10-菲醌(PhQ)在水溶液中的单电子氧化行为,获取了瞬态产物的吸收光谱和有关动力学数据.在中性pH条件下,PhQ与羟基自由基以(1.5±0.2)(1010 dm3·mol-1·s-1的速率反应,生成一个初级瞬态产物.该瞬态产物的吸收光谱呈现出位于370nm的吸收峰和在较长波长下的一个宽吸收带.进一步实验观察到,随着短波长区初级吸收的衰减,可见光区的吸收同步增加,在400nm处形成最大吸收峰,并产生以500nm为中心的宽吸收带,表明次级瞬态产物的形成.PH9.9条件下得到的结果与中性pH的一致.降低pH至2-4,尽管初始瞬态吸收谱也呈现出位于370nm的最大吸收峰,但伴随着初始吸收的衰减,没有观察到可见区域吸收的增加.在中性pH条件下,硫酸根自由基与PhQ反应的速率常数测定为(4.0±0.6)(109dm3·mol-1·s-1,生成的瞬态吸收谱与氢氧自由基反应得到的次级吸收谱一致,呈现以400nm和500nm为中心的两个吸收带.基于光谱的相似性和动力学分析,以及羟基自由基和硫酸根自由基的特性,本工作推断反应机理如下:PhQ羟基自由基反应首先生成OH加成产物,OH加成产物脱水生成阳离子自由基;阳离子自由基亦可通过硫酸根自由基的氧化直接产生.%The one-electron oxidation of phenanthrenequinone (PhQ) in aqueous solutions was investigated by pulse radiolysis using hydroxyl radical and sulphate radical as oxidants. Spectral and kinetic properties of the transients formed due to the reaction of PhQ with the oxidants were obtained. The reaction of hydroxyl radical with PhQ results in an initial species with an absorption spectrum centered at 370nm and a weak broad band in the long wavelength regions at neutral pH. The bimolecular rate constant for the formation of initial species was determined to be (1.5±0.2)(1010dm3·mol-1·s-1. The absorption in the

  6. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Bederson, Benjamin

    1995-01-01

    Praise for Previous Volumes"This volume maintains the authoritative standards of the series...The editors and publishers are to be congratulated"- M.S. CHILD in PHYSICS BULLETIN"Maintains the high standards of earlier volumes in the series...All the series are written by experts in the field, and their summaries are most timely...Strongly recommended."- G. HERZBERG in AMERICAN SCIENTIST

  7. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Bederson, Benjamin

    1997-01-01

    Praise for the Series""This volume maintains the authoritative standards of the series...The editors and publishers are to be congratulated.""--M.S. Child in Physics Bulletin""Maintains the high standards of earlier volumes in the series...All the articles are written by experts in the field, and their summaries are most timely...Strongly recommended.""--G. Herzberg in American Scientist

  8. VECSEL systems for generation and manipulation of trapped magnesium ions

    CERN Document Server

    Burd, Shaun C; Leinonen, Tomi; Penttinen, Jussi-Pekka; Slichter, Daniel H; Srinivas, Raghavendra; Wilson, Andrew C; Jördens, Robert; Guina, Mircea; Leibfried, Dietrich; Wineland, David J

    2016-01-01

    Experiments in atomic, molecular, and optical (AMO) physics rely on lasers at many different wavelengths and with varying requirements on spectral linewidth, power, and intensity stability. Vertical external-cavity surface-emitting lasers (VECSELs), when combined with nonlinear frequency conversion, can potentially replace many of the laser systems currently in use. Here we present and characterize VECSEL systems that can perform all laser-based tasks for quantum information processing experiments with trapped magnesium ions. For photoionization of neutral magnesium, 570.6$\\,$nm light is generated with an intracavity frequency-doubled VECSEL containing a lithium triborate (LBO) crystal for second harmonic generation. External frequency doubling produces 285.3$\\,$nm light for resonant interaction with the $^{1}S_{0}\\leftrightarrow$ $^{1}P_{1}$ transition of neutral Mg. Using an externally frequency-quadrupled VECSEL, we implement Doppler cooling of $^{25}$Mg$^{+}$ on the 279.6$\\,$nm $^{2}S_{1/2}\\leftrightarrow...

  9. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  10. Crystal structure from one-electron theory

    DEFF Research Database (Denmark)

    Skriver, H. L.

    1985-01-01

    The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated by the the......The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated...... by the theory, the predicted crystal structures are in accord with experiment in all cases except 79Au. In addition, they have investigated the effect of pressure upon the alkali metals (3Li, 11Na, 37Rb, 55Cs) and selected lanthanide metals (57La, 58Ce, 71Lu) and actinide metals (90Th, 91Pa). In these cases...

  11. An experimental comparison of the Marcus-Hush and Butler-Volmer descriptions of electrode kinetics applied to cyclic voltammetry. The one electron reductions of europium (III) and 2-methyl-2-nitropropane studied at a mercury microhemisphere electrode

    Science.gov (United States)

    Henstridge, Martin C.; Wang, Yijun; Limon-Petersen, Juan G.; Laborda, Eduardo; Compton, Richard G.

    2011-11-01

    We present a comparative experimental evaluation of the Butler-Volmer and Marcus-Hush models using cyclic voltammetry at a microelectrode. Numerical simulations are used to fit experimental voltammetry of the one electron reductions of europium (III) and 2-methyl-2-nitropropane, in water and acetonitrile, respectively, at a mercury microhemisphere electrode. For Eu (III) very accurate fits to experiment were obtained over a wide range of scan rates using Butler-Volmer kinetics, whereas the Marcus-Hush model was less accurate. The reduction of 2-methyl-2-nitropropane was well simulated by both models, however Marcus-Hush required a reorganisation energy lower than expected.

  12. Ion-specific effects under confinement: the role of interfacial water.

    Science.gov (United States)

    Argyris, Dimitrios; Cole, David R; Striolo, Alberto

    2010-04-27

    All-atom molecular dynamics simulations were employed for the study of the structure and dynamics of aqueous electrolyte solutions within slit-shaped silica nanopores with a width of 10.67 A at ambient temperature. All simulations were conducted for 250 ns to capture the dynamics of ion adsorption and to obtain the equilibrium distribution of multiple ionic species (Na+, Cs+, and Cl(-)) within the pores. The results clearly support the existence of ion-specific effects under confinement, which can be explained by the properties of interfacial water. Cl(-) strongly adsorbs onto the silica surface. Although neither Na+ nor Cs+ is in contact with the solid surface, they show ion-specific behavior. The differences between the density distributions of cations within the pore are primarily due to size effects through their interaction with confined water molecules. The majority of Na+ ions appear within one water layer in close proximity to the silica surface, whereas Cs+ is excluded from well-defined water layers. As a consequence of this preferential distribution, we observe enhanced in-plane mobility for Cs+ ions, found near the center of the pore, compared to that for Na+ ions, closer to the solid substrate. These observations illustrate the key role of interfacial water in determining ion-specific effects under confinement and have practical importance in several fields, from geology to biology.

  13. Ion Chromatography.

    Science.gov (United States)

    Mulik, James D.; Sawicki, Eugene

    1979-01-01

    Accurate for the analysis of ions in solution, this form of analysis enables the analyst to directly assay many compounds that previously were difficult or impossible to analyze. The method is a combination of the methodologies of ion exchange, liquid chromatography, and conductimetric determination with eluant suppression. (Author/RE)

  14. Atomic physics with highly charged ions. Progress report, FY 1989--91

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  15. Dominance of many-body effects over the one-electron mechanism for band structure doping dependence in Nd{sub 2-x}Ce{sub x}CuO{sub 4}: the LDA+GTB approach

    Energy Technology Data Exchange (ETDEWEB)

    Korshunov, M M [L V Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation); Gavrichkov, V A [L V Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation); Ovchinnikov, S G [L V Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation); Nekrasov, I A [Institute of Electrophysics, Russian Academy of Sciences-Ural Division, 620016 Yekaterinburg, Amundsena 106 (Russian Federation); Kokorina, E E [Institute of Electrophysics, Russian Academy of Sciences-Ural Division, 620016 Yekaterinburg, Amundsena 106 (Russian Federation); Pchelkina, Z V [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620041 Yekaterinburg, GSP-170 (Russian Federation)

    2007-12-05

    In the present work we report band structure calculations for the high-temperature superconductor Nd{sub 2-x}Ce{sub x}CuO{sub 4} in the regime of strong electronic correlations within an LDA+GTB method, which combines the local density approximation (LDA) and the generalized tight-binding method (GTB). The two mechanisms of band structure doping dependence were taken into account. Namely, the one-electron mechanism provided by the doping dependence of the crystal structure, and the many-body mechanism provided by the strong renormalization of the fermionic quasiparticles due to the large on-site Coulomb repulsion. We have shown that, in the antiferromagnetic and in the strongly correlated paramagnetic phases of the underdoped cuprates, the main contribution to the doping evolution of the band structure and Fermi surface comes from the many-body mechanism.

  16. The mechanism of oxidative halophenol dehalogenation by Amphitrite ornata dehaloperoxidase is initiated by H2O2 binding and involves two consecutive one-electron steps: role of ferryl intermediates.

    Science.gov (United States)

    Osborne, Robert L; Coggins, Michael K; Raner, Gregory M; Walla, Mike; Dawson, John H

    2009-05-26

    The enzymatic globin, dehaloperoxidase (DHP), from the terebellid polychaete Amphitrite ornata is designed to catalyze the oxidative dehalogenation of halophenol substrates. In this study, the ability of DHP to catalyze this reaction by a mechanism involving two consecutive one-electron steps via the normal order of addition of the oxidant cosubstrate (H(2)O(2)) before organic substrate [2,4,6-trichlorophenol (TCP)] is demonstrated. Specifically, 1 equiv of H(2)O(2) will fully convert 1 equiv of TCP to 2,6-dichloro-1,4-benzoquinone, implicating the role of multiple ferryl [Fe(IV)O] species. A significant amount of heterolytic cleavage of the O-O bond of cumene hydroperoxide, consistent with transient formation of a Compound I [Fe(IV)O/porphyrin pi-cation radical] species, is observed upon its reaction with ferric DHP. In addition, a more stable high-valent Fe(IV)O-containing DHP intermediate [Compound II (Cpd II) or Compound ES] is characterized by UV-visible absorption and magnetic circular dichroism spectroscopy. Spectral similarities are seen between this intermediate and horse heart myoglobin Cpd II. It is also shown in single-turnover experiments that the DHP Fe(IV)O intermediate is an active oxidant in halophenol oxidative dehalogenation. Furthermore, reaction of DHP with 4-chlorophenol leads to a dimeric product. The results presented herein are consistent with a normal peroxidase order of addition of the oxidant cosubstrate (H(2)O(2)) followed by organic substrate (TCP) and indicate that the enzymatic mechanism of DHP-catalyzed oxidative halophenol dehalogenation involves two consecutive one-electron steps with a dissociable radical intermediate.

  17. Ion focusing

    Energy Technology Data Exchange (ETDEWEB)

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2017-01-17

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  18. A single particle detector for electron-ion collision experiments in the Cryogenic Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Spruck, Kaija; Mueller, Alfred; Schippers, Stefan [Institut fuer Atom- und Molekuelphysik, Justus-Liebig-Universitaet Giessen (Germany); Krantz, Claude; Becker, Arno; Vogel, Stephen; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Novotny, Oldrich [Columbia Astrophysics Laboratory, New York (United States)

    2014-07-01

    The study of ion chemistry in the interstellar medium requires, among others, knowledge about cross sections for the recombination of atomic and molecular ions with low temperature (∝10 K) electrons. Especially the database on singly charged atomic ions relevant to the chemistry of molecular clouds is incomplete in this respect. The electrostatic Cryogenic Storage Ring (CSR), currently being commissioned at the Max-Planck-Institute for Nuclear Physics in Heidelberg, will allow experiments with atomic, molecular and cluster ions at beam energies up to 300 keV per unit charge in a cryogenic extremely high vacuum (XHV) environment. Collisions of stored atomic ions with electrons provided by an electron cooler will lead to reaction products with charge states that differ from those of the parent particles. The detection of these products will be carried out behind a bending deflector of the storage ring by a high-efficiency movable single-particle detector, based on a secondary electron converter backed by heatable microchannel plates. The designs of the mechanical actuator and the detector are compatible with the cryogenic operating conditions at 10 K and a bakeout temperature of up to 530 K.

  19. Molecular Dynamics Simulations of Ion Transport and Mechanisms in Polymer Nanocomposites

    Science.gov (United States)

    Mogurampelly, Santosh; Ganesan, Venkat

    2015-03-01

    Using all atom molecular dynamics and trajectory-extending kinetic Monte Carlo simulations, we study the influence of Al2O3 nanoparticles on the transport properties of Li+ ions in polymer electrolytes consisting of polyethylene oxide (PEO) melt solvated with LiBF4 salt. We observe that the nanoparticles have a strong influence on polymer segmental dynamics which in turn correlates with the mobility of Li+ ions. Explicitly, polymer segmental relaxation times and Li+ ion residence times around polymer were found to increase with the addition of nanoparticles. We also observe that increasing short range repulsive interactions between nanoparticles and polymer membrane leads to increasing polymer dynamics and ion mobility. Overall, our simulation results suggest that nanoparticle induced changes in conformational and dynamic properties of the polymer influences the ion mobilities in polymer electrolytes and suggests possible directions for using such findings to improve the polymer matrix conductivity. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing computing resources that have contributed to the research.

  20. The solvation and ion condensation properties for sulfonated polyelectrolytes in different solvents—a computational study

    Science.gov (United States)

    Smiatek, J.; Wohlfarth, A.; Holm, C.

    2014-02-01

    In contrast to the broad knowledge about aqueous polyelectrolyte solutions, less is known about the properties in aprotic and apolar solvents. We therefore investigate the behavior of sulfonated polyelectrolytes in sodium form in the presence of different solvents via all-atom molecular dynamics simulations. The results clearly reveal strong variations in ion condensation constants and polyelectrolyte conformations for different solvents like water, dimethyl sulfoxide (DMSO) and chloroform. The binding free energies of the solvent contacts with the polyelectrolyte groups validate the influence of different solvent qualities. With regard to the ion condensation behavior, the numerical findings show that the explicit values for the condensation constants depend on the preferential binding coefficient as derived by the evaluation of Kirkwood-Buff integrals. Surprisingly, the smallest ion condensation constant is observed for DMSO compared to water, whereas in the presence of chloroform, virtually no free ions are present, which is in good agreement to the donor number concept. In contrast to the results for the low condensation constants, the sodium conductivity in DMSO is smaller compared to water. We are able to relate this result to the observed smaller diffusion coefficient for the sodium ions in DMSO.

  1. ANISOTROPY EFFECTS IN SINGLE-ELECTRON TRANSFER BETWEEN LASER-EXCITED ATOMS AND HIGHLY-CHARGED IONS

    NARCIS (Netherlands)

    1995-01-01

    Recent collision experiments are reviewed in which one-electron transfer between laser excited target atoms and (highly charged) keV-ions has been studied. Especially results showing a dependence of the charge exchange on the initial target orbital alignment are discussed. The question to what exten

  2. ANISOTROPY EFFECTS IN SINGLE-ELECTRON TRANSFER BETWEEN LASER-EXCITED ATOMS AND HIGHLY-CHARGED IONS

    NARCIS (Netherlands)

    Recent collision experiments are reviewed in which one-electron transfer between laser excited target atoms and (highly charged) keV-ions has been studied. Especially results showing a dependence of the charge exchange on the initial target orbital alignment are discussed. The question to what

  3. ANISOTROPY EFFECTS IN SINGLE-ELECTRON TRANSFER BETWEEN LASER-EXCITED ATOMS AND HIGHLY-CHARGED IONS

    NARCIS (Netherlands)

    1995-01-01

    Recent collision experiments are reviewed in which one-electron transfer between laser excited target atoms and (highly charged) keV-ions has been studied. Especially results showing a dependence of the charge exchange on the initial target orbital alignment are discussed. The question to what exten

  4. Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst.

    Science.gov (United States)

    McCann, Scott D; Stahl, Shannon S

    2015-06-16

    Selective oxidation reactions have extraordinary value in organic chemistry, ranging from the conversion of petrochemical feedstocks into industrial chemicals and polymer precursors to the introduction of heteroatom functional groups into pharmaceutical and agrochemical intermediates. Molecular oxygen (O2) would be the ideal oxidant for these transformations. Whereas many commodity-scale oxidations of simple hydrocarbon feedstocks employ O2 as an oxidant, methods for selective oxidation of more complex molecules bearing diverse functional groups are often incompatible with existing aerobic oxidation methods. The latter limitation provides the basis for our interest in the development of new catalytic transformations and the elucidation of mechanistic principles that underlie selective aerobic oxidation reactions. One challenge inherent in such methods is the incommensurate redox stoichiometry associated with the use of O2, a four-electron oxidant, in reactions that achieve two-electron oxidation of organic molecules. This issue is further complicated by the use of first-row transition-metal catalysts, which tend to undergo facile one-electron redox steps. In recent years, we have been investigating Cu-catalyzed aerobic oxidation reactions wherein the complexities just noted are clearly evident. This Account surveys our work in this area, which has emphasized three general classes of reactions: (1) single-electron-transfer reactions for oxidative functionalization of electron-rich substrates, such as arenes and heterocycles; (2) oxidative carbon-heteroatom bond-forming reactions, including C-H oxidations, that proceed via organocopper(III) intermediates; and (3) methods for aerobic oxidation of alcohols and amines that use Cu(II) in combination with an organic redox-active cocatalyst to dehydrogenate the carbon-heteroatom bond. These reaction classes demonstrate three different pathways to achieve two-electron oxidation of organic molecules via the cooperative

  5. ION VATAMANU

    Directory of Open Access Journals (Sweden)

    l. Povar

    2012-12-01

    Full Text Available Ion Vatamanu was a chemist, writer and public figure. He was equally passionate about both his chosen fields of activity: chemistry and poetry. Chemistry, with its perfect equilibrium of logic and precision, provided inspiration for lyrical creativity, whereas poetry writing enlivened his imagination and passion for chemistry. He loved his parents. He adored his wife Elena, whom he often gifted a sea of flowers. He loved his daughters Mihaela, Mariana, and Leontina. He loved life, and he loved people.

  6. Atomic physics with highly charged ions. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1994-08-01

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.

  7. Electron Beam Ion Sources

    OpenAIRE

    Zschornacka, G.; Schmidt, M.; Thorn, A.

    2014-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviole...

  8. Ion Beam Extraction by Discrete Ion Focusing

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (900) and methods are disclosed for ion beam extraction. In an implementation, the apparatus includes a plasma source (or plasma) (802) and an ion extractor (804). The plasma source is adapted to generate ions and the ion extractor is immersed in the plasma source to extract a fraction...... of the generated ions. The ion extractor is surrounded by a space charge (810) formed at least in part by the extracted ions. The ion extractor includes a biased electrode (806) forming an interface with an insulator (808). The interface is customized to form a strongly curved potential distribution (812......) in the space-charge surrounding the ion extractor. The strongly curved potential distribution focuses the extracted ions towards an opening (814) on a surface of the biased electrode thereby resulting in an ion beam....

  9. Instrumentation: Ion Chromatography.

    Science.gov (United States)

    Fritz, James S.

    1987-01-01

    Discusses the importance of ion chromatography in separating and measuring anions. The principles of ion exchange are presented, along with some applications of ion chromatography in industry. Ion chromatography systems are described, as well as ion pair and ion exclusion chromatography, column packings, detectors, and programming. (TW)

  10. ION GUN

    Science.gov (United States)

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  11. Ionization Energies of Ions in Hot and Dense Plasma: Beryllium-Like Ions for Z = 26 - 36

    Institute of Scientific and Technical Information of China (English)

    LI Yong-Qiang; WU Jian-Hua; YUAN Jian-Min

    2008-01-01

    Ionization energies of beryllium-like ions for Z = 26 - 36 in hot and dense plasmas (ne = 1022 - 1024 cm-3,kT = 500- 2000 eV) are obtained by using an approach developed for electronic structure and transition property of ions in hot and dense plasmas based on the multi-configuration Dirac-Fock model.Influence of the plasma environment is considered by introducing a correction to the one-electron potential to account for the screening of the ionized electrons. This correction is calculated from the ionized electron micro-space distribution, which is obtained based on an average atom model for the temperature and density-dependent average ionization of atoms in plasmas. Comparison between the present and the ion sphere models is made to display the significance of the ionized electron micro-space distribution.

  12. Ion funnel ion trap and process

    Science.gov (United States)

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  13. A rare-earth-magnet ion trap for confining low-Z, bare nuclei

    Science.gov (United States)

    Brewer, Samuel M.; Tan, Joseph N.

    2009-05-01

    Simplifications in the theory for Rydberg states of hydrogenlike ions allow a substantial improvement in the accuracy of predicted levels, which can yield information on the values of fundamental constants and test theory if they can be compared with precision frequency measurements.[1] We consider the trapping of bare nuclei (fully-stripped) to be used in making Rydberg states of one-electron ions with atomic number 1earth permanent magnets, and to model the capture of charge-state-selected ions extracted from an electron beam ion trap (EBIT). An experimental apparatus adapted to the NIST EBIT will also be discussed. Reference: [1] U.D. Jentschura, P.J. Mohr, J.N. Tan, and B.J. Wundt, ``Fundamental constants and tests of theory in Rydberg states of hydrogenlike ions,'' Phys. Rev. Lett. 100, 160404 (2008).

  14. A negative ion source for alkali ions

    NARCIS (Netherlands)

    Vermeer, A.; Zwol, N.A. van

    1980-01-01

    An ion source is described which delivers negative alkali ions. With this source, which consists of a duoplasmatron and a charge exchange canal with alkali vapour, negative Li, Na and K ions are produced. The oven in which alkali metals are evaporated can reach temperatures up to 575°C.

  15. A negative ion source for alkali ions

    NARCIS (Netherlands)

    Vermeer, A.; Zwol, N.A. van

    1980-01-01

    An ion source is described which delivers negative alkali ions. With this source, which consists of a duoplasmatron and a charge exchange canal with alkali vapour, negative Li, Na and K ions are produced. The oven in which alkali metals are evaporated can reach temperatures up to 575°C.

  16. Ion beam polarization in storage rings. Production, controlling and preservation

    Energy Technology Data Exchange (ETDEWEB)

    Prozorov, A. [St. Petersburg State Univ. (Russian Federation). V.A. Fock Research Institute for Physics; Labzowsky, L. [St. Petersburg State Univ. (Russian Federation). V.A. Fock Research Institute for Physics]|[St. Petersburg Nuclear Physics Institute (Russian Federation); Plunien, G. [Technische Univ. Dresden (Germany). Inst. fuer Theoretische Physik; Liesen, D. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Heidelberg Univ. (Germany). Physikalisches Inst.; Bosch, F. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Fritzsche, S. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Heidelberg Univ. (Germany). Physikalisches Inst.]|[Max-Planck Insitute of Nuclear Physics, Heidelberg (Germany); Surzhykov, A. [Max-Planck Insitute of Nuclear Physics, Heidelberg (Germany)

    2008-03-15

    The present paper reports on the actual status of the theoretical concepts for the production of polarized heavy ion beams in storage rings and for methods to control online the degree of polarization as well as investigations of the preservation of the polarization during the ion movement across the magnetic system of the ring. It is argued that for hydrogen-like ions beam polarization can be built up efficiently by optical pumping of the Zeeman sublevels of ground-state hyperfine levels and that the maximal achievable nuclear polarization exceeds 90%. Of special interest are polarized helium-like ions which can be produced by the capture of one electron, because in selected cases parity nonconservation effects are found to be of unprecedented size in Atomic Physics. The measurements of these effects require online-diagnostics of the degree of the ion beam polarization. It is shown that this can be accomplished by an online-detection of the linear polarization of the X-rays which are emitted with the capture of the electron. In order to investigate the preservation of the polarization of the ions stored in the ring, the concept of an instantaneous quantization axis is introduced. The dynamics of this axis and the behaviour of the polarization with respect to it are explored in detail. (orig.)

  17. Ion beam polarization in storage rings. Production, controlling and preservation

    Energy Technology Data Exchange (ETDEWEB)

    Prozorov, A. [St. Petersburg State Univ. (Russian Federation). V.A. Fock Research Institute for Physics; Labzowsky, L. [St. Petersburg State Univ. (Russian Federation). V.A. Fock Research Institute for Physics]|[St. Petersburg Nuclear Physics Institute (Russian Federation); Plunien, G. [Technische Univ. Dresden (Germany). Inst. fuer Theoretische Physik; Liesen, D. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Heidelberg Univ. (Germany). Physikalisches Inst.; Bosch, F. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Fritzsche, S. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Heidelberg Univ. (Germany). Physikalisches Inst.]|[Max-Planck Insitute of Nuclear Physics, Heidelberg (Germany); Surzhykov, A. [Max-Planck Insitute of Nuclear Physics, Heidelberg (Germany)

    2008-03-15

    The present paper reports on the actual status of the theoretical concepts for the production of polarized heavy ion beams in storage rings and for methods to control online the degree of polarization as well as investigations of the preservation of the polarization during the ion movement across the magnetic system of the ring. It is argued that for hydrogen-like ions beam polarization can be built up efficiently by optical pumping of the Zeeman sublevels of ground-state hyperfine levels and that the maximal achievable nuclear polarization exceeds 90%. Of special interest are polarized helium-like ions which can be produced by the capture of one electron, because in selected cases parity nonconservation effects are found to be of unprecedented size in Atomic Physics. The measurements of these effects require online-diagnostics of the degree of the ion beam polarization. It is shown that this can be accomplished by an online-detection of the linear polarization of the X-rays which are emitted with the capture of the electron. In order to investigate the preservation of the polarization of the ions stored in the ring, the concept of an instantaneous quantization axis is introduced. The dynamics of this axis and the behaviour of the polarization with respect to it are explored in detail. (orig.)

  18. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well

  19. Microfabricated ion frequency standard

    Science.gov (United States)

    Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  20. Multicusp ion sources (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.N. (Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States))

    1994-04-01

    During the last decade, different types of multicusp ion sources, such as high current, high concentration H[sup +], H[sup +][sub 2], or N[sup +] ion sources, negative ion sources, radio-frequency-driven sources, and high charge state ion sources have been developed at the Lawrence Berkeley Laboratory. This article reviews the history of the research and development of these ion sources and their applications.

  1. Ion sources for ion implantation technology (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Shigeki, E-mail: sakai-shigeki@nissin.co.jp; Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki [Nissin Ion Equipment co., ltd, 575 Kuze-Tonoshiro-cho Minami-ku, Kyoto 601-8205 (Japan)

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  2. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  3. Ions and light

    CERN Document Server

    Bowers, Michael T

    2013-01-01

    Gas Phase Ion Chemistry, Volume 3: Ions and Light discusses how ions are formed by electron impact, ion-molecule reactions, or electrical discharge. This book discusses the use of light emitted by excited molecules to characterize either the chemistry that formed the excited ion, the structure of the excited ion, or both.Organized into 10 chapters, this volume begins with an overview of the extension of the classical flowing afterglow technique to include infrared and chemiluminescence and laser-induced fluorescence detection. This text then examines the experiments involving molecules that ar

  4. Production and ion-ion cooling of highly charged ions in electron string ion source.

    Science.gov (United States)

    Donets, D E; Donets, E D; Donets, E E; Salnikov, V V; Shutov, V B; Syresin, E M

    2009-06-01

    The scheme of an internal injection of Au atoms into the working space of the "Krion-2" electron string ion source (ESIS) was applied and tested. In this scheme Au atoms are evaporated from the thin tungsten wire surface in vicinity of the source electron string. Ion beams with charge states up to Au51+ were produced. Ion-ion cooling with use of C and O coolant ions was studied. It allowed increasing of the Au51+ ion yield by a factor of 2. Ions of Kr up to charge state 28+ were also produced in the source. Electron strings were first formed with injection electron energy up to 6 keV. Methods to increase the ESIS ion output are discussed.

  5. Ion mobility spectrometry

    CERN Document Server

    Eiceman, GA

    2005-01-01

    Key Developments for Faster, More Precise Detection Capabilities Driven by the demand for the rapid and advanced detection of explosives, chemical and biological warfare agents, and narcotics, ion mobility spectrometry (IMS) undergone significant refinements in technology, computational capabilities, and understanding of the principles of gas phase ion chemistry and mobility. Beginning with a thorough discussion of the fundamental theories and physics of ion mobility, Ion Mobility Spectrometry, Second Edition describes the recent advances in instrumentation and newly

  6. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  7. Ion trap simulation tools.

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Benjamin Roger

    2009-02-01

    Ion traps present a potential architecture for future quantum computers. These computers are of interest due to their increased power over classical computers stemming from the superposition of states and the resulting capability to simultaneously perform many computations. This paper describes a software application used to prepare and visualize simulations of trapping and maneuvering ions in ion traps.

  8. [Development of metal ions analysis by ion chromatography].

    Science.gov (United States)

    Yu, Hong; Wang, Yuxin

    2007-05-01

    Analysis of metal ions by ion chromatography, including cation-exchange ion chromatography, anion-exchange ion chromatography and chelation ion chromatography, is reviewed. The cation-exchange ion chromatography is a main method for the determination of metal ions. Stationary phases in cation-exchange ion chromatography are strong acid cation exchanger (sulfonic) and weak acid cation exchanger (carboxylic). Alkali metal ions, alkaline earth metal ions, transition metal ions, rare earth metal ions, ammonium ions and amines can be analyzed by cation-exchange ion chromatography with a suitable detector. The anion-exchange ion chromatography is suitable for the separation and analysis of alkaline earth metal ions, transition metal ions and rare earth metal ions. The selectivity for analysis of metal ions with anion-exchange ion chromatography is good. Simultaneous determination of metal ions and inorganic anions can be achieved using anion-exchange ion chromatography. Chelation ion chromatography is suitable for the determination of trace metal ions in complex matrices. A total of 125 references are cited.

  9. Ion channels in asthma.

    Science.gov (United States)

    Valverde, Miguel A; Cantero-Recasens, Gerard; Garcia-Elias, Anna; Jung, Carole; Carreras-Sureda, Amado; Vicente, Rubén

    2011-09-23

    Ion channels are specialized transmembrane proteins that permit the passive flow of ions following their electrochemical gradients. In the airways, ion channels participate in the production of epithelium-based hydroelectrolytic secretions and in the control of intracellular Ca(2+) levels that will ultimately activate almost all lung cells, either resident or circulating. Thus, ion channels have been the center of many studies aiming to understand asthma pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. In this minireview, we focus on molecular, genetic, and animal model studies associating ion channels with asthma.

  10. Superconducting microfabricated ion traps

    CERN Document Server

    Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L

    2010-01-01

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  11. Crater formation by single ions, cluster ions and ion "showers"

    CERN Document Server

    Djurabekova, Flyura; Timko, Helga; Nordlund, Kai; Calatroni, Sergio; Taborelli, Mauro; Wuensch, Walter

    2011-01-01

    The various craters formed by giant objects, macroscopic collisions and nanoscale impacts exhibit an intriguing resemblance in shapes. At the same time, the arc plasma built up in the presence of sufficiently high electric fields at close look causes very similar damage on the surfaces. Although the plasma–wall interaction is far from a single heavy ion impact over dense metal surfaces or the one of a cluster ion, the craters seen on metal surfaces after a plasma discharge make it possible to link this event to the known mechanisms of the crater formations. During the plasma discharge in a high electric field the surface is subject to high fluxes (~1025 cm-2s-1) of ions with roughly equal energies typically of the order of a few keV. To simulate such a process it is possible to use a cloud of ions of the same energy. In the present work we follow the effect of such a flux of ions impinging the surface in the ‘‘shower’’ manner, to find the transition between the different mechanisms of crater formati...

  12. Microfabricated ion trap array

    Science.gov (United States)

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  13. Miniaturized Sources and Traps for Spectroscopy of Multicharged Ions

    Science.gov (United States)

    Tan, Joseph; Guise, Nicholas

    2013-05-01

    Penning traps made extremely compact (earth (NdFeB) magnets have been used recently to isolate highly charged ions (HCI) for spectroscopy. For example, radiative lifetimes of metastable states are measured by observing the visible fluorescence emitted by isolated Ar XIV (441 nm, 2p 2P3/2 --> 2p 2P1/2) and Kr XVIII (637 nm, 3d 2D3/2 --> 3d 2D1/2) . These measurements use HCIs extracted from an electron beam ion trap (EBIT) at NIST. For planned experiments, a new apparatus is being developed which will incorporate a ``mini-EBIT'' source using similar permanent-magnet structures. It combines a mini-EBIT and a compact Penning trap to facilitate production of multicharged ions including bare nuclei with nuclear charge in the range Z =1 to Z =10, in a cryogen-free setup with multiple ports for laser and atomic beam access to the isolated HCI. One goal is to produce one-electron ions in Rydberg states with transitions accessible to an optical frequency comb. Such engineered atomic systems are sought to enable tests of theory that could illuminate the proton radius puzzle. J.N. Tan, S.M. Brewer, and N.D. Guise, Rev. Sci. Instrum. 83, 023103 (2012).

  14. Ion sources for heavy ion fusion (invited)

    Science.gov (United States)

    Yu, Simon S.; Eylon, S.; Chupp, W.; Henestroza, E.; Lidia, S.; Peters, C.; Reginato, L.; Tauschwitz, A.; Grote, D.; Deadrick, F.

    1996-03-01

    The development of ion sources for heavy ion fusion will be reported with particular emphasis on a recently built 2 MV injector. The new injector is based on an electrostatic quadrupole configuration, and has produced pulsed K+ ions of 950 mA peak from a 6.7 in. curved alumino silicate source. The ion beam has reached 2.3 MV with an energy flatness of ±0.2% over 1 μs. The measured normalized edge emittance of less than 1 π mm mrad is close to the source temperature limit. The design, construction, performance, and comparisons with three-dimensional particle-in-cell simulations will be described.

  15. One-electron oxidations of ferrocenes: a pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, Moshe; Weinraub, Dany; Broitman, Federico; DeFelippis, M.R.; Klapper, M.H.

    1988-01-01

    Using the pulse radiolysis technique we have studied the oxidation by various inorganic radicals of four water soluble ferrocene derivatives, hydroxyethyl, dimethylaminomethyl, monocarboxylic acid and dicarboxylic acid. We report the second order rate constants for these reactions, the stabilities and spectral properties of the ferrocinium products, and the electrochemically determined ferrocinium/ferrocene redox potentials. We also present preliminary estimates of tyrosine and tryptophan radical redox potentials obtained with the dicarboxylic acid ferrocene derivative as reference, and we discuss the relationship between redox potential differences and the reactivities of the ferrocenes with the inorganic radicals.

  16. One-electron oxidations of ferrocenes: A pulse radiolysis study

    Science.gov (United States)

    Faraggi, Moshe; Weinraub, Dany; Broitman, Federico; DeFelippis, Michael R.; Klapper, Michael H.

    Using the pulse radiolysis technique we have studied the oxidation by various inorganic radicals of four water soluble ferrocene derivatives, hydroxyethyl, dimethylaminomethyl, monocarboxylic acid and dicarboxylic acid. We report the second order rate constants for these reactions, the stabilities and spectral properties of the ferrocinium products, and the electrochemically determined ferrocinium/ferrocene redox potentials. We also present preliminary estimates of tyrosine and tryptophan radical redox potentials obtained with the dicarboxylic acid ferrocene derivative as reference, and we discuss the relationship between redox potential differences and the reactivities of the ferrocenes with the inorganic radicals.

  17. Chasing the limits of the one electron approximation

    Energy Technology Data Exchange (ETDEWEB)

    Kędziera, Dariusz [Department of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń (Poland); Mentel, Łukasz M. [Section of Theoretical Chemistry, VU University, Amsterdam (Netherlands)

    2014-10-06

    Rapid progress in the development of computational methods for quantum chemistry is not properly balanced by the development of basis sets. Even in the case of few-electron systems it is hard to find basis set which are able to reproduce the ECG benchmarks with the mhartree accuracy. In this paper we show early work on improvements of the basis sets for small atomic and molecular systems. As a starting point the ground state of lithium atom and the lowest states of lithium dimer will be investigated. The exploratory optimization of the exponents of primitive gaussians will be based on even tempered scheme combined with CISD method.

  18. Negative ions in liquid helium

    Science.gov (United States)

    Khrapak, A. G.; Schmidt, W. F.

    2011-05-01

    The structure of negative ions in liquid 4He is analyzed. The possibility of cluster or bubble formation around impurity ions of both signs is discussed. It is shown that in superfluid helium, bubbles form around negative alkaline earth metal ions and clusters form around halogen ions. The nature of "fast" and "exotic" negative ions is also discussed. It is assumed that "fast" ions are negative ions of helium excimer molecules localized inside bubbles. "Exotic" ions are stable negative impurity ions, which are always present in small amounts in gas discharge plasmas. Bubbles or clusters with radii smaller the radius of electron bubbles develop around these ions.

  19. The acrylonitrile dimer ion

    Science.gov (United States)

    Ervasti, Henri K.; Jobst, Karl J.; Burgers, Peter C.; Ruttink, Paul J. Ae; Terlouw, Johan K.

    2007-04-01

    Large energy barriers prohibit the rearrangement of solitary acrylonitrile ions, CH2CHCN+, into their more stable hydrogen-shift isomers CH2CCNH+ or CHCH-CNH+. This prompted us to examine if these isomerizations occur by self-catalysis in acrylonitrile dimer ions. Such ions, generated by chemical ionization experiments of acrylonitrile with an excess of carbon dioxide, undergo five dissociations in the [mu]s time frame, as witnessed by peaks at m/z 53, 54, 79, 80 and 105 in their metastable ion mass spectrum. Collision experiments on these product ions, deuterium labeling, and a detailed computational analysis using the CBS-QB3 model chemistry lead to the following conclusions: (i) the m/z 54 ions are ions CH2CHCNH+ generated by self-protonation in ion-dipole stabilized hydrogen-bridged dimer ions [CH2CHCN...H-C(CN)CH2]+ and [CH2CHCN...H-C(H)C(H)CN]+; the proton shifts in these ions are associated with a small reverse barrier; (ii) dissociation of the H-bridged ions into CH2CCNH+ or CHCH-CNH+ by self-catalysis is energetically feasible but kinetically improbable: experiment shows that the m/z 53 ions are CH2CHCN+ ions, generated by back dissociation; (iii) the peaks at m/z 79, 80 and 105 correspond with the losses of HCN, C2H2 and H, respectively. The calculations indicate that these ions are generated from dimer ions that have adopted the (much more stable) covalently bound "head-to-tail" structure [CH2CHCN-C(H2)C(H)CN]+; experiments indicate that the m/z 79 (C5H5N) and m/z 105 (C6H6N2) ions have linear structures but the m/z 80 (C4H4N2) ions consist of ionized pyrimidine in admixture with its stable pyrimidine-2-ylidene isomer. Acrylonitrile is a confirmed species in interstellar space and our study provides experimental and computational evidence that its dimer radical cation yields the ionized prebiotic pyrimidine molecule.

  20. Materials analysis fast ions

    CERN Document Server

    Denker, A; Rauschenberg, J; Röhrich, J; Strub, E

    2006-01-01

    Materials analysis with ion beams exploits the interaction of ions with the electrons and nuclei in the sample. Among the vast variety of possible analytical techniques available with ion beams we will restrain to ion beam analysis with ion beams in the energy range from one to several MeV per mass unit. It is possible to use either the back-scattered projectiles (RBS – Rutherford Back Scattering) or the recoiled atoms itself (ERDA – Elastic Recoil Detection Analysis) from the elastic scattering processes. These techniques allow the simultaneous and absolute determination of stoichiometry and depth profiles of the detected elements. The interaction of the ions with the electrons in the sample produces holes in the inner electronic shells of the sample atoms, which recombine and emit X-rays characteristic for the element in question. Particle Induced X-ray Emission (PIXE) has shown to be a fast technique for the analysis of elements with an atomic number above 11.

  1. Correlation ion mobility spectroscopy

    Science.gov (United States)

    Pfeifer, Kent B.; Rohde, Steven B.

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  2. Lithium-ion batteries

    CERN Document Server

    Yoshio, Masaki; Kozawa, Akiya

    2010-01-01

    This book is a compilation of up-to-date information relative to Li-Ion technology. It provides the reader with a single source covering all important aspects of Li-Ion battery operations. It fills the gap between the old original Li-Ion technology and present state of the technology that has developed into a high state of practice. The book is designed to provide a single source for an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful to researchers interested in energy conversion for the direct conversion of chemical energy into electrica

  3. Peristaltic ion source

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.

    1995-08-01

    Conventional ion sources generate energetic ion beams by accelerating the plasma-produced ions through a voltage drop at the extractor, and since it is usual that the ion beam is to propagate in a space which is at ground potential, the plasma source is biased at extractor voltage. For high ion beam energy the plasma source and electrical systems need to be raised to high voltage, a task that adds considerable complexity and expense to the total ion source system. The authors have developed a system which though forming energetic ion beams at ground potential as usual, operates with the plasma source and electronics at ground potential also. Plasma produced by a nearby source streams into a grided chamber that is repetitively pulsed from ground to high positive potential, sequentially accepting plasma into its interior region and ejecting it energetically. They call the device a peristaltic ion source. In preliminary tests they`ve produced nitrogen and titanium ion beams at energies from 1 to 40 keV. Here they describe the philosophy behind the approach, the test embodiment that they have made, and some preliminary results.

  4. Ion Source DECRIS-3

    CERN Document Server

    Efremov, A; Lebedev, A N; Loginov, V N; Yazvitsky, N Yu

    1999-01-01

    The ECR ion source DECRIS-3 is the copy of the mVINIS ion source which was designed and built in Dubna for the TESLA Accelerator Installation (Belgrade, Yugoslavia) in 1997. The assembly of the source was completely finished in the end of 1998 and then it was installed at the FLNR ECR test bench. The source was successfully tested with some gases and metals by using the MIVOC technique. In nearest future the source will be capable of ECR plasma heating using two different frequencies simultaneously. We are also going to use the DECRIS-3 ion source to design 1+ -> n+ technique for the DRIBs (Dubna Radioactive Ion Beams) project.

  5. Heavy ion storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented.

  6. Cold Strontium Ion Source for Ion Interferometry

    Science.gov (United States)

    Jackson, Jarom; Durfee, Dallin

    2015-05-01

    We are working on a cold source of Sr Ions to be used in an ion interferometer. The beam will be generated from a magneto-optical trap (MOT) of Sr atoms by optically ionizing atoms leaking out a carefully prepared hole in the MOT. A single laser cooling on the resonant transition (461 nm) in Sr should be sufficient for trapping, as we've calculated that losses to the atom beam will outweigh losses to dark states. Another laser (405 nm), together with light from the trapping laser, will drive a two photon transition in the atom beam to an autoionizing state. Supported by NSF Award No. 1205736.

  7. Ion channels in toxicology.

    Science.gov (United States)

    Restrepo-Angulo, Iván; De Vizcaya-Ruiz, Andrea; Camacho, Javier

    2010-08-01

    Ion channels play essential roles in human physiology and toxicology. Cardiac contraction, neural transmission, temperature sensing, insulin release, regulation of apoptosis, cellular pH and oxidative stress, as well as detection of active compounds from chilli, are some of the processes in which ion channels have an important role. Regulation of ion channels by several chemicals including those found in air, water and soil represents an interesting potential link between environmental pollution and human diseases; for instance, de novo expression of ion channels in response to exposure to carcinogens is being considered as a potential tool for cancer diagnosis and therapy. Non-specific binding of several drugs to ion channels is responsible for a huge number of undesirable side-effects, and testing guidelines for several drugs now require ion channel screening for pharmaceutical safety. Animal toxins targeting human ion channels have serious effects on the population and have also provided a remarkable tool to study the molecular structure and function of ion channels. In this review, we will summarize the participation of ion channels in biological processes extensively used in toxicological studies, including cardiac function, apoptosis and cell proliferation. Major findings on the adverse effects of drugs on ion channels as well as the regulation of these proteins by different chemicals, including some pesticides, are also reviewed. Association of ion channels and toxicology in several biological processes strongly suggests these proteins to be excellent candidates to follow the toxic effects of xenobiotics, and as potential early indicators of life-threatening situations including chronic degenerative diseases.

  8. Wave packet study of the secondary emission of negatively charged, monoatomic ions from sputtered metals

    Energy Technology Data Exchange (ETDEWEB)

    Sindona, A. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy) and Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy)]. E-mail: sindona@fis.unical.it; Riccardi, P. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy); Maletta, S. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Rudi, S.A. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy); Falcone, G. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy)

    2007-05-15

    Secondary emission of Ag{sup -} and Au{sup -} particles, following the sputtering of clean Ag(1 0 0) and Au(1 0 0) targets, respectively, is studied with a Crank-Nicholson wave-packet propagation method. A one-electron pseudo-potential is used to describe the plane metal surface, with a projected band gap, the ejected ion, whose charge state is investigated, and its nearest-neighbor substrate ion, put in motion by the collision cascade generated by the primary ion beam. Time-dependent Schroedinger equation is solved backwards in time to determine the evolution of the affinity orbital of the negative particles from an instant when they are unperturbed, at distances of the order of {approx}10{sup 2} a.u. from the surface, to the instant of ejection. The probability that a band electron will be eventually detected in affinity state of the ejected particle is, thus, calculated and compared with the result of another method based on the spectral decomposition of the one-electron Hamiltonian.

  9. Metal Ions in Unusual Valency States.

    Science.gov (United States)

    Sellers, Robin M.

    1981-01-01

    Discusses reactivity of metal ions with the primary products of water radiolysis, hyper-reduced metal ions, zero-valent metal ions, unstable divalent ions from the reduction of bivalent ions, hyper-oxidized metal ions, and metal complexes. (CS)

  10. Where do ions solvate?

    Indian Academy of Sciences (India)

    Yan Levin

    2005-06-01

    We study a simple model of ionic solvation inside a water cluster. The cluster is modeled as a spherical dielectric continuum. It is found that unpolarizable ions always prefer the bulk solvation. On the other hand, for polarizable ions, there exists a critical value of polarization above which surface solvation becomes energetically favorable for large enough water clusters.

  11. Ion-beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  12. Microfabricated cylindrical ion trap

    Science.gov (United States)

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  13. Surface Plasmon-Assisted Excitation of Atomic Visible Light Spectral Lines in the Impact of Highly Charged Ions 126Xeq+ on Solid Surfaces

    Institute of Scientific and Technical Information of China (English)

    张小安; 赵永涛; 李福利; 杨治虎; 肖国青; 詹文龙

    2003-01-01

    We measured the visible light spectral lines of sputtering atoms from solid surfaces of Al, Ti, Ni, Ta and Au which are impacted by 150keV126Xeq+ (6≤q≤30). It is found that intensities of the light spectral lines are greatly and suddenly enhanced when the charge state of the ion is raised up to a critical value. If assuming that potential energy released from the incidention due to capturing one electron is enough to excite a surface plasmon, we can estimate the critical charge states and obtain the results very well consistent with the measurements for the above-mentioned target materials. This means that a surface plasmon induced by one electron capture can enhance the excitation of atomic visible light spectral lines in the impact of a highly charged ion on a solid surface.

  14. Ion mobility sensor system

    Science.gov (United States)

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  15. Lipid Ion Channels

    CERN Document Server

    Heimburg, Thomas

    2010-01-01

    The interpretation electrical phenomena in biomembranes is usually based on the assumption that the experimentally found discrete ion conduction events are due to a particular class of proteins called ion channels while the lipid membrane is considered being an inert electrical insulator. The particular protein structure is thought to be related to ion specificity, specific recognition of drugs by receptors and to macroscopic phenomena as nerve pulse propagation. However, lipid membranes in their chain melting regime are known to be highly permeable to ions, water and small molecules, and are therefore not always inert. In voltage-clamp experiments one finds quantized conduction events through protein-free membranes in their melting regime similar to or even undistinguishable from those attributed to proteins. This constitutes a conceptual problem for the interpretation of electrophysiological data obtained from biological membrane preparations. Here, we review the experimental evidence for lipid ion channels...

  16. Ion-by-ion Cooling efficiencies

    CERN Document Server

    Gnat, Orly

    2011-01-01

    We present ion-by-ion cooling efficiencies for low-density gas. We use Cloudy (ver. 08.00) to estimate the cooling efficiencies for each ion of the first 30 elements (H-Zn) individually. We present results for gas temperatures between 1e4 and 1e8K, assuming low densities and optically thin conditions. When nonequilibrium ionization plays a significant role the ionization states deviate from those that obtain in collisional ionization equilibrium (CIE), and the local cooling efficiency at any given temperature depends on specific non-equilibrium ion fractions. The results presented here allow for an efficient estimate of the total cooling efficiency for any ionic composition. We also list the elemental cooling efficiencies assuming CIE conditions. These can be used to construct CIE cooling efficiencies for non-solar abundance ratios, or to estimate the cooling due to elements not explicitly included in any nonequilibrium computation. All the computational results are listed in convenient online tables.

  17. Photodissociation spectroscopy of the dysprosium monochloride molecular ion

    CERN Document Server

    Dunning, Alexander; Showalter, Steven J; Puri, Prateek; Kotochigova, Svetlana; Hudson, Eric R

    2015-01-01

    We have performed a combined experimental and theoretical study of the photodissociation cross section of the molecular ion DyCl$^+$. The cross section for the photon energy range 35,500 cm$^{-1}$ to 47,500 cm$^{-1}$ is measured using an integrated ion trap and time-of-flight mass spectrometer, and we observe a broad, asymmetric profile that is peaked near 43,000 cm$^{-1}$. The theoretical cross section is determined from electronic potentials and transition dipole moments calculated using the relativistic configuration-interaction valence-bond and coupled-cluster methods. The electronic structure of DyCl$^+$ is unprecedentedly complex due to the presence of multiple open electronic shells, including 4f$^{10}$ orbitals. The molecule has nine attractive potentials with ionically-bonded electrons and 99 repulsive potentials dissociating to a ground state Dy$^+$ ion and Cl atom. We explain the lack of symmetry in the cross section as due to multiple contributions from one-electron-dominated transitions between t...

  18. Laser ion source for high brightness heavy ion beam

    Science.gov (United States)

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. However we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. In 2014, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  19. Comparison of the one-electron oxidations of CO-bridged vs unbridged bimetallic complexes: Electron-transfer chemistry of Os2Cp2(CO)4 and Os2Cp∗2(μ-CO)2(CO)2 (Cp = η5-C5H5, Cp∗ = η5-C5Me5)

    KAUST Repository

    Laws, Derek R.

    2014-09-22

    The one-electron oxidations of two dimers of half-sandwich osmium carbonyl complexes have been examined by electrochemistry, spectro-electrochemistry, and computational methods. The all-terminal carbonyl complex Os2Cp2(CO)4 (1, Cp = η5-C5H5) undergoes a reversible one-electron anodic reaction at E1/2 = 0.41 V vs ferrocene in CH2Cl2/0.05 M [NBu4][B(C6F5)4], giving a rare example of a metal-metal bonded radical cation unsupported by bridging ligands. The IR spectrum of 1+ is consistent with an approximately 1:1 mixture of anti and gauche structures for the 33 e- radical cation in which it has retained all-terminal bonding of the CO ligands. Density functional theory (DFT) calculations, including orbital-occupancy-perturbed Mayer bond-order analyses, show that the highest-occupied molecular orbitals (HOMOs) of anti-1 and gauche-1 are metal-ligand delocalized. Removal of an electron from 1 has very little effect on the Os-Os bond order, accounting for the resistance of 1+ to heterolytic cleavage. The Os-Os bond distance is calculated to decrease by 0.10 å and 0.06 å as a consequence of one-electron oxidation of anti-1 and gauche-1, respectively. The CO-bridged complex Os2Cp∗2(μ-CO)2(CO)2 (Cp∗ = η5-C5Me5), trans-2, undergoes a more facile oxidation, E1/2 = -0.11 V, giving a persistent radical cation shown by solution IR analysis to preserve its bridged-carbonyl structure. However, ESR analysis of frozen solutions of 2+ is interpreted in terms of the presence of two isomers, most likely anti-2+ and trans-2+, at low temperature. Calculations show that the HOMO of trans-2 is highly delocalized over the metal-ligand framework, with the bridging carbonyls accounting for about half of the orbital makeup. The Os-Os bond order again changes very little with

  20. Ion channels in inflammation.

    Science.gov (United States)

    Eisenhut, Michael; Wallace, Helen

    2011-04-01

    Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.

  1. Polarized negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Haeberli, W.

    1981-04-01

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited state (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.

  2. Ion optics of RHIC electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Kuznetsov, G. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation)

    2012-02-15

    RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  3. IN MEMORIAM ION VATAMANU

    Directory of Open Access Journals (Sweden)

    S.P. Palii

    2012-12-01

    Full Text Available A dreamer in his creative solitude, an objective and lucid analyst of history and contemporaneity, an energetic and decisive leader with an uncanny ability for crisis management – all these describe Ion Vatamanu. His wife Elena and daughters Mihaela, Mariana, Leontina treasure a personal universe in which the magical spark of Ion Vatamanu’s love and joy of life meld the everyday in and out of poetry. Ion Vatamanu’s instantaneous connection to the audiences and deeply felt words still touch the hearts of his many colleagues and friends. Downloads: 2

  4. Collective Ion Acceleration.

    Science.gov (United States)

    1980-01-01

    Bostick, Appl. Phys. Lett. 35, 296 (1979). 3. S. Humphries, R.N. Sudan, and IV. Condit, Appl. Phys. Lett. 26, 667 (1975). 4. D.S. Prono , J.M. Creedon, I...and to provide a good ion depenently by Creedon, Smith, and Prono ." In both source at the second anode A2. The ion flux from the of these approaches...and Ion Beam Research and Technology, (Ith- Let. 37, 1236 (1977). ac, New York,1977), Vol. 11, p. 819. 72. D. S. Prono , J. W. Shearer, and X J. Briggs

  5. Ion implantation technology

    CERN Document Server

    Downey, DF; Jones, KS; Ryding, G

    1993-01-01

    Ion implantation technology has made a major contribution to the dramatic advances in integrated circuit technology since the early 1970's. The ever-present need for accurate models in ion implanted species will become absolutely vital in the future due to shrinking feature sizes. Successful wide application of ion implantation, as well as exploitation of newly identified opportunities, will require the development of comprehensive implant models. The 141 papers (including 24 invited papers) in this volume address the most recent developments in this field. New structures and possible approach

  6. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    Energy Technology Data Exchange (ETDEWEB)

    Lestinsky, M.

    2007-04-18

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc{sup 18+} yield a high-precision measurement of the 2s-2p{sub 3/2} transition energy in this system. Operation of the two-electron-beam setup at high collision energy ({approx}1000 eV) is established using resonances of hydrogenlike Mg{sup 11+}, while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F{sup 6+}. (orig.)

  7. Ion sound instability driven by ion beam

    CERN Document Server

    Koshkarov, O; Kaganovich, I D; Ilgisonis, V I

    2014-01-01

    In many natural and laboratory conditions, plasmas are often in the non-equilibrium state due to presence of stationary flows, when one particle species (or a special group, such as group of high energy particles, i.e. beam) is mowing with respect to the other plasma components. Such situations are common for a number of different plasma application such as diagnostics with emissive plasma probes, plasma electronics devices and electric propulsion devices. The presence of plasma flows often lead to the instabilities in such systems and subsequent development of large amplitude perturbations. The goal of this work is to develop physical insights and numerical tools for studies of stability of the excitation of the ion sound waves by the ion beam in the configuration similar to the plasma Pierce diode. This systems, in some limiting cases, reduce to mathematically similar equations originally proposed for Pierce instability. The finite length effect are crucial for this instability which generally belong to the...

  8. Ion specificities of artificial macromolecules.

    Science.gov (United States)

    Liu, Lvdan; Kou, Ran; Liu, Guangming

    2016-12-21

    Artificial macromolecules are well-defined synthetic polymers, with a relatively simple structure as compared to naturally occurring macromolecules. This review focuses on the ion specificities of artifical macromolecules. Ion specificities are influenced by solvent-mediated indirect ion-macromolecule interactions and also by direct ion-macromolecule interactions. In aqueous solutions, the role of water-mediated indirect ion-macromolecule interactions will be discussed. The addition of organic solvents to aqueous solutions significantly changes the ion specificities due to the formation of water-organic solvent complexes. For direct ion-macromolecule interactions, we will discuss specific ion-pairing interactions for charged macromolecules and specific ion-neutral site interactions for uncharged macromolecules. When the medium conditions change from dilute solutions to crowded environments, the ion specificities can be modified by either the volume exclusion effect, the variation of dielectric constant, or the interactions between ions, macromolecules, and crowding agents.

  9. Trapping radioactive ions

    CERN Document Server

    Kluge, Heinz-Jürgen

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.

  10. [Particle therapy: carbon ions].

    Science.gov (United States)

    Pommier, Pascal; Hu, Yi; Baron, Marie-Hélène; Chapet, Olivier; Balosso, Jacques

    2010-07-01

    Carbon ion therapy is an innovative radiation therapy. It has been first proposed in the forties by Robert Wilson, however the first dedicated centres for human care have been build up only recently in Japan and Germany. The interest of carbon ion is twofold: 1) the very sharp targeting of the tumour with the so called spread out Bragg peak that delivers most of the beam energy in the tumour and nothing beyond it, sparing very efficiently the healthy tissues; 2) the higher relative biological efficiency compared to X rays or protons, able to kill radioresistant tumour cells. Both properties make carbon ions the elective therapy for non resectable radioresistant tumours loco-regionally threatening. The technical and clinical experience accumulated during the recent decades is summarized in this paper along with a detailed presentation of the elective indications. A short comparison between conventional radiotherapy and hadrontherapy is proposed for the indications which are considered as priority for carbon ions.

  11. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  12. Sensing with Ion Channels

    CERN Document Server

    Martinac, Boris

    2008-01-01

    All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

  13. Atomic negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Brage, T.

    1991-12-31

    We review some of the recent progress in the studies of alkaline-earth, negative ions. Computations of autodetachment rates, electron affinities and transition wavelengths are discussed and some new and improved results are given.

  14. Atomic negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Brage, T.

    1991-01-01

    We review some of the recent progress in the studies of alkaline-earth, negative ions. Computations of autodetachment rates, electron affinities and transition wavelengths are discussed and some new and improved results are given.

  15. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  16. Miniaturized Ion Mobility Spectrometer

    Science.gov (United States)

    Kaye, William J. (Inventor); Stimac, Robert M. (Inventor)

    2015-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250.degree. C., and is uniquely sensitive, particularly to explosive chemicals.

  17. Radio frequency ion source

    CERN Document Server

    Shen Guan Ren; Gao Fu; LiuNaiYi

    2001-01-01

    The study on Radio Frequency Ion Source is mainly introduced, which is used for CIAE 600kV ns Pulse Neutron Generator; and obtained result is also presented. The RF ion source consists of a diameter phi 25 mm, length 200 mm, coefficient of expansion =3.5 mA, beam current on target >=1.5 mA, beam spot =100 h.

  18. 2010 ion run: completed!

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    After a very fast switchover from protons to lead ions, the LHC has achieved performances that allowed the machine to exceed both peak and integrated luminosity by a factor of three. Thanks to this, experiments have been able to produce high-profile results on ion physics almost immediately, confirming that the LHC was able to keep its promises for ions as well as for protons.   First direct observation of jet quenching. A seminar on 2 December was the opportunity for the ALICE, ATLAS and CMS collaborations to present their first results on ion physics in front of a packed auditorium. These results are important and are already having a major impact on the understanding of the physics processes that involve the basic constituents of matter at high energies. In the ion-ion collisions, the temperature is so high that partons (quarks and gluons), which are usually constrained inside the nucleons, are deconfined to form a highly dense and hot soup known as quark-gluon plasma (QGP). The existence of ...

  19. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1983-01-01

    Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.

  20. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  1. Operation of ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In 2001, ECR ion source was operated for HIRFL about 5138 hours and 8 species of ion beams, such as ~(12)C~(4+), ~(12)C~(5+), ~(36)Ar~(11+),~(13)C~(4+),~(40)Ca~(11+),~(40)Ar~(11+),~(56)Fe~(10+) and ~(18)O~(6+) were provided. Among these ions,~(56)Fe~(10+)is a new ion beam. In this period, 14 experiments of heavy ion physics application and nuclear research were finished.

  2. QED shift calculations in relativistic many-electron atoms and ions

    CERN Document Server

    Tupitsyn, I I; Safronova, M S; Shabaev, V M; Dzuba, V A

    2016-01-01

    We incorporated quantum electrodynamics (QED) corrections into the broadly-applicable high-precision relativistic method that combines configuration interaction (CI) and linearized coupled-cluster approaches. With the addition of the QED, this CI+all-order method allows one to accurately predict properties of heavy ions of particular interest to the design of precision atomic clocks and tests of fundamental physics. To evaluate the accuracy of the QED contributions and test various QED models, we incorporated four different one-electron QED potentials. We demonstrated that all of them give consistent and reliable results. For the strongly bound electrons (i.e. inner electrons of heavy atoms, or valence electrons in highly-charged ions), the nonlocal potentials are more accurate, than the local one. Results are presented for cases of particular experimental interest.

  3. Clues From Pluto's Ions

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    Nearly a year ago, in July 2015, the New Horizons spacecraft passed by the Pluto system. The wealth of data amassed from that flyby is still being analyzed including data from the Solar Wind Around Pluto (SWAP) instrument. Recent examination of this data has revealedinteresting new information about Plutos atmosphere and how the solar wind interacts with it.A Heavy Ion TailThe solar wind is a constant stream of charged particles released by the Sun at speeds of around 400 km/s (thats 1 million mph!). This wind travels out to the far reaches of the solar system, interacting with the bodies it encounters along the way.By modeling the SWAP detections, the authors determine the directions of the IMF that could produce the heavy ions detected. Red pixels represent IMF directions permitted. No possible IMF could reproduce the detections if the ions are nitrogen (bottom panels), and only retrograde IMF directions can produce the detections if the ions are methane. [Adapted from Zirnstein et al. 2016]New Horizons data has revealed that Plutos atmosphere leaks neutral nitrogen, methane, and carbon monoxide molecules that sometimes escape its weak gravitational pull. These molecules become ionized and are subsequently picked up by the passing solar wind, forming a tail of heavy ions behind Pluto. The details of the geometry and composition of this tail, however, had not yet been determined.Escaping MethaneIn a recent study led by Eric Zirnstein (Southwest Research Institute), the latest analysis of data from the SWAP instrument on board New Horizons is reported. The team used SWAPs ion detections from just after New Horizons closest approach to Pluto to better understand how the heavy ions around Pluto behave, and how the solar wind interacts with Plutos atmosphere.In the process of analyzing the SWAP data, Zirnstein and collaborators first establish what the majority of the heavy ions picked up by the solar wind are. Models of the SWAP detections indicate they are unlikely

  4. Molecular ion photofragment spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bustamente, S.W.

    1983-11-01

    A new molecular ion photofragment spectrometer is described which features a supersonic molecular beam ion source and a radio frequency octapole ion trap interaction region. This unique combination allows several techniques to be applied to the problem of detecting a photon absorption event of a molecular ion. In particular, it may be possible to obtain low resolution survey spectra of exotic molecular ions by using a direct vibrational predissociation process, or by using other more indirect detection methods. The use of the spectrometer is demonstrated by measuring the lifetime of the O/sub 2//sup +/(/sup 4/..pi../sub u/) metastable state which is found to consist of two main components: the /sup 4/..pi../sub 5/2/ and /sup 4/..pi../sub -1/2/ spin components having a long lifetime (approx. 129 ms) and the /sup 4/..pi../sub 3/2/ and /sup 4/..pi../sub 1/2/ spin components having a short lifetime (approx. 6 ms).

  5. A Multicusp Ion Source for Radioactive Ion Beams

    Science.gov (United States)

    Wutte, D.; Freedman, S.; Gough, R.; Lee, Y.; Leitner, M.; Leung, K. N.; Lyneis, C.; Picard, D. S.; Sun, L.; Williams, M. D.; Xie, Z. Q.

    1997-05-01

    In order to produce a radioactive ion beam of (14)O+, a 10-cm-diameter, 13.56 MHz radio frequency (rf) driven multicusp ion source is now being developed at Lawrence Berkeley National Laboratory. In this paper we describe the specific ion source design and the basic ion source characteristics using Ar, Xe and a 90types of measurements have been performed: extractable ion current, ion species distributions, gas efficiency, axial energy spread and ion beam emittance measurements. The source can generate ion current densities of approximately 60 mA/cm2 . In addition the design of the ion beam extraction/transport system for the actual experimental setup for the radioactive beam line will be presented.

  6. Cassini observations of ion cyclotron waves and ions anisotropy

    Science.gov (United States)

    Crary, F. J.; Dols, V. J.; Cassidy, T. A.; Tokar, R. L.

    2013-12-01

    In Saturn's equatorial, inner magnetosphere, the production of fresh ions in a pick-up distribution generates ion cyclotron waves. These waves are a sensitive indicator of fresh plasma production, but the quantitative relation between wave properties and ionization rates is nontrivial. We present a combined analysis of Cassini MAG and CAPS data, from a variety of equatorial orbits between 2005 and 2012. Using the MAG data, we determine the amplitude and peak frequency of ion cyclotron waves. From the CAPS data we extract the parallel and perpendicular velocity distribution of water group ions. We compare these results with hybrid simulations of the ion cyclotron instability and relate the observed wave amplitudes and ion velocity distributions to the production rate of pickup ions. The resulting relation between wave and plasma properties will allow us to infer ion production rates even at times when no direct ion measurements are available.

  7. [Ion specificity during ion exchange equilibrium in natural clinoptilolite].

    Science.gov (United States)

    He, Yun-Hua; Li, Hang; Liu, Xin-Min; Xiong, Hai-Ling

    2015-03-01

    Zeolites have been widely applied in soil improvement and environment protection. The study on ion specificity during ion exchange equilibrium is of important significance for better use of zeolites. The maximum adsorption capacities of alkali ions during ion exchange equilibrium in the clinoptilolite showed obvious specificity. For alkali metal ions with equivalent valence, the differences in adsorption capacity increased with the decrease of ionic concentration. These results cannot be well explained by the classical theories including coulomb force, ionic size, hydration, dispersion force, classic induction force and surface complexation. We found that the coupling of polarization effects resulted from the quantum fluctuation of diverse alkali metal ions and electric field near the zeolite surface should be the primary reason for specific ion effect during ion exchange in zeolite. The result of this coupling effect was that the difference in the ion dipole moment increased with the increase of surface potential, which further expanded the difference in the adsorption ability between zeolite surface and ions, resulting in different ion exchange adsorption ability at the solid/liquid interface. Due to the high surface charge density of zeolite, ionic size also played an important role in the distribution of ions in the double diffuse layer, which led to an interesting result that distinct differences in exchange adsorption ability of various alkali metal ions were only detected at high surface potential (the absolute value was greater than 0.2 V), which was different from the ion exchange equilibrium result on the surface with low charge density.

  8. Experimental study of particle formation by ion-ion recombination

    Science.gov (United States)

    Nagato, Kenkichi; Nakauchi, Masataka

    2014-10-01

    Particle formation by ion-ion recombination has been studied using an ion-ion recombination drift tube (IIR-DT). IIR-DT uses two DC corona ionizers to produce positive and negative ions at the ends of the drift tube. The ions of different polarity move in opposite directions along the electric field in the drift tube. We observed significant particle formation using ions generated in purified air containing H2O, SO2, and NH3. Particle formation was suppressed when no drift field was applied. We also observed few particles when we used a single discharge (positive or negative only). These results clearly show that particle formation observed in the IIR-DT was caused by nucleation by ion-ion recombination. Positive and negative ion species produced by corona ionizers were investigated using an atmospheric pressure ionization mass spectrometer. The ions involved in the particle formation were suggested to include H3O+(H2O)n and NH4+(H2O)n for positive ions and sulfur-based ions such as SO5-, SO5-NO2, and HSO4- for negative ions.

  9. Comparison of the One-electron Oxidations of CO-Bridged vs Unbridged Bimetallic Complexes: Electron-transfer Chemistry of Os2Cp2(CO)4 and Os2Cp*2(μ-CO)2(CO)2 (Cp = η5-C5H5, Cp* = η5-C5Me5)

    Energy Technology Data Exchange (ETDEWEB)

    Laws, Derek R.; Bullock, R. Morris; Lee, Richmond; Huang, Kuo-Wei; Geiger, William J.

    2014-09-22

    The one-electron oxidations of two dimers of half-sandwich osmium carbonyl complexes have been examined by electrochemistry, spectro-electrochemistry, and computational methods. The all-terminal carbonyl complex Os2Cp2(CO)4 (1, Cp = η5-C5H5) undergoes a reversible one-electron anodic reaction at E1/2 = 0.41 V vs ferrocene in CH2Cl2/0.05 M [NBu4][B(C6F5)4], giving a rare example of a metal-metal bonded radical cation unsupported by bridging ligands. The IR spectrum of 1+ is consistent with an approximately 1:1 mixture of anti and gauche structures for the 33 e- radical cation in which it has retained all-terminal bonding of the CO ligands. DFT calculations, including orbital-occupancy-perturbed Mayer bond-order analyses, show that the HOMOs of anti-1 and gauche-1 are metal-ligand delocalized. Removal of an electron from 1 has very little effect on the Os-Os bond order, accounting for the resistance of 1+ to heterolytic cleavage. The Os-Os bond distance is calculated to decrease by 0.10 Å and 0.06 Å as a consequence of one-electron oxidation of anti-1 and gauche-1, respectively. The CO-bridged complex Os2Cp*2(μ-CO)2(CO)2 (Cp* = η5-C5Me5), trans-2, undergoes a more facile oxidation, E1/2 = - 0.11 V, giving a persistent radical cation shown by solution IR analysis to preserve its bridged-carbonyl structure. However, ESR analysis of frozen solutions of 2+ is interpreted in terms of the presence of two isomers, most likely anti-2+ and trans-2+, at low temperature. Calculations show that the HOMO of trans-2 is highly delocalized over the metal-ligand framework, with the bridging carbonyls accounting for about half of the orbital makeup. The Os-Os bond order again changes very little with removal of an electron, and the Os-Os bond length actually undergoes minor shortening. Calculations suggest that the second isomer of 2+ has both the trans CO-bridged and the anti all-terminal CO structures. DRL and WEG acknowledge the support of the National Science Foundation under

  10. Surfactants at Single-Walled Carbon Nanotube-Water Interface: Physics of Surfactants, Counter-Ions, and Hydration Shell

    Science.gov (United States)

    Khare, Ketan S.; Phelan, Frederick R., Jr.

    Specialized applications of single-walled carbon nanotubes (SWCNTs) require an efficient and reliable method to sort these materials into monodisperse fractions with respect to their defining metrics (chirality, length, etc.) while retaining their physical and chemical integrity. A popular method to achieve this goal is to use surfactants that individually disperse SWCNTs in water and then to separate the resulting colloidal mixture into fractions that are enriched in monodisperse SWCNTs. Recently, experiments at NIST have shown that subtle point mutations of chemical groups in bile salt surfactants have a large impact on the hydrodynamic properties of SWCNT-surfactant complexes during ultracentrifugation. These results provide strong motivation for understanding the rich physics underlying the assembly of surfactants around SWCNTs, the structure and dynamics of counter ions around the resulting complex, and propagation of these effects into the first hydration shell. Here, all-atom molecular dynamics simulations are used to investigate the thermodynamics of SWCNT-bile salt surfactant complexes in water with an emphasis on the buoyant characteristics of the SWCNT-surfactant complexes. Simulation results will be presented along with a comparison with experimental data. Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

  11. Plasma-Screening Effects on the Electron-Impact Ionization of Atoms / Molecules and Ions Embedded in Weak Plasma

    Science.gov (United States)

    Vaishnav, Bhushit; Joshipura, K. N.; Gangopadhyay, S.

    2007-10-01

    Plasma screening effects on electron induced atomic collision properties have attracted considerable research attention, because of applications in inertial confinement fusion and X-ray lasers etc. The theoretical interest is to examine the ionization of atomic/molecular targets by the impact of electrons in plasma. Basically the electron scattering problem is treated in a semi-empirical approach in the complex scattering potential ionization contribution (CSP-ic), to calculate total ionization cross section as a dominant part of total inelastic cross sections. This approach has been successful for number of (free) atomic and molecular targets in [1]. This paper extends the method to the collision processes in plasma and the relative contribution of ionization has been identified. We consider He^+ ion embedded in weak plasma. The static potential of the e-He^+ system in plasma environment is derived by us. Results will be discussed in the Conference. References: [1] K N Joshipura, Bhushit G Vaishnav and Sumona Gangopadhyay, Int. J. Mass. Spectrom. 261 (2007) 146.

  12. ION-1 technical manual

    Energy Technology Data Exchange (ETDEWEB)

    Halbig, J.K.; Caine, J.C.

    1985-07-01

    The portable gamma-ray and neutron detector electronics (ION-1) gives a digital readout of the current-mode response produced by gamma rays in an ion chamber and of amplification and scaling of pulses received from a neutron detector. The primary application is the measurement of gamma-ray and neutron activity of irradiated reactor fuels stored at a reactor or at a storage pond away from a reactor. ION-1 is the first such instrument to use a design that allows communication of procedures, response, and results between instrument and inspector. It prompts the inspector through procedures, carries out programmed measurement steps, calculates results and error estimates, and performs internal diagnostic checks. This Technical Manual describes adjustment procedures and limited technical information that enable the inspector to troubleshoot at the board level. 5 figs., 10 tabs.

  13. Laser ion source for isobaric heavy ion collider experiment.

    Science.gov (United States)

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  14. [Involvement of carbonate/bicarbonate ions in the superoxide-generating reaction of adrenaline autoxidation].

    Science.gov (United States)

    Sirota, T V

    2015-01-01

    An important role of carbonate/bicarbonate ions has been recognized in the superoxide generating reaction of adrenaline autooxidation in an alkaline buffer (a model of quinoid adrenaline oxidation in the body). It is suggested that these ions are directly involved not only in formation of superoxide anion radical (О(2)(-)) but also other radicals derived from the carbonate/bicarbonate buffer. Using various buffers it was shown that the rate of accumulation of adrenochrome, the end product of adrenaline oxidation, and the rate of О(2)(-)· formation depend on concentration of carbonate/bicarbonate ions in the buffer and that these ions significantly accelerate adrenaline autooxidation thus demonstrating prooxidant properties. The detectable amount of diformazan, the product of nitro blue tetrazolium (NBT) reduction, was significantly higher than the amount of adrenochrome formed; taking into consideration the literature data on О(2)(-)· detection by NBT it is suggested that adrenaline autooxidation is accompanied by one-electron reduction not only of oxygen dissolved in the buffer and responsible for superoxide formation but possible carbon dioxide also dissolved in the buffer as well as carbonate/bicarbonate buffer components leading to formation of corresponding radicals. The plots of the dependence of the inhibition of adrenochrome and diformazan formation on the superoxide dismutase concentration have shown that not only superoxide radicals are formed during adrenaline autooxidation. Since carbonate/bicarbonate ions are known to be universally present in the living nature, their involvement in free radical processes proceeding in the organism is discussed.

  15. Ion-selective electrodes

    CERN Document Server

    Mikhelson, Konstantin N

    2013-01-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing I

  16. Oxygen ion conductors

    Directory of Open Access Journals (Sweden)

    Stephen J Skinner

    2003-03-01

    A very interesting subgroup of this class of materials are the oxides that display oxygen ion conductivity. As well as the intrinsic interest in these materials, there has been a continued drive for their development because of the promise of important technological devices such as the solid oxide fuel cell (SOFC, oxygen separation membranes, and membranes for the conversion of methane to syngas1. All of these devices offer the potential of enormous commercial and ecological benefits provided suitable high performance materials can be developed. In this article we will review the materials currently under development for application in such devices with particular reference to some of the newly discovered oxide ion conductors.

  17. Microwave Discharge Ion Sources

    CERN Document Server

    Celona, L

    2013-01-01

    This chapter describes the basic principles, design features and characteristics of microwave discharge ion sources. A suitable source for the production of intense beams for high-power accelerators must satisfy the requirements of high brightness, stability and reliability. The 2.45 GHz off-resonance microwave discharge sources are ideal devices to generate the required beams, as they produce multimilliampere beams of protons, deuterons and singly charged ions. A description of different technical designs will be given, analysing their performance, with particular attention being paid to the quality of the beam, especially in terms of its emittance.

  18. Advanced penning ion source

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, Thomas; Ji, Qing; Persaud, Arun; Sy, Amy V.

    2016-11-01

    This disclosure provides systems, methods, and apparatus for ion generation. In one aspect, an apparatus includes an anode, a first cathode, a second cathode, and a plurality of cusp magnets. The anode has a first open end and a second open end. The first cathode is associated with the first open end of the anode. The second cathode is associated with the second open end of the anode. The anode, the first cathode, and the second cathode define a chamber. The second cathode has an open region configured for the passage of ions from the chamber. Each cusp magnet of the plurality of cusp magnets is disposed along a length of the anode.

  19. Uranyl ion coordination

    Science.gov (United States)

    Evans, H.T.

    1963-01-01

    A review of the known crystal structures containing the uranyl ion shows that plane-pentagon coordination is equally as prevalent as plane-square or plane-hexagon. It is suggested that puckered-hexagon configurations of OH - or H2O about the uranyl group will tend to revert to plane-pentagon coordination. The concept of pentagonal coordination is invoked for possible explanations of the complex crystallography of the natural uranyl hydroxides and the unusual behavior of polynuclear ions in hydrolyzed uranyl solutions.

  20. Interferometry with Strontium Ions

    Science.gov (United States)

    Jackson, Jarom; Lambert, Enoch; Otterstrom, Nils; Jones, Tyler; Durfee, Dallin

    2014-05-01

    We describe progress on a cold ion matter-wave interferometer. Cold Strontium atoms are extracted from an LVIS. The atoms will be photo-ionized with a two-photon transition to an auto-ionizing state in the continuum. The ions will be split and recombined using stimulated Raman transitions from a pair of diode lasers injection locked to two beams from a master laser which have been shifted up and down by half the hyperfine splitting. We are developing laser instrumentation for this project including a method to prevent mode-hopping by analyzing laser frequency noise, and an inexpensive, robust wavelength meter. Supported by NSF Award No. 1205736.

  1. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1982-01-01

    Ion-Selective Electrode Reviews, Volume 3, provides a review of articles on ion-selective electrodes (ISEs). The volume begins with an article on methods based on titration procedures for surfactant analysis, which have been developed for discrete batch operation and for continuous AutoAnalyser use. Separate chapters deal with detection limits of ion-selective electrodes; the possibility of using inorganic ion-exchange materials as ion-sensors; and the effect of solvent on potentials of cells with ion-selective electrodes. Also included is a chapter on advances in calibration procedures, the d

  2. Analytical applications of ion exchangers

    CERN Document Server

    Inczédy, J

    1966-01-01

    Analytical Applications of Ion Exchangers presents the laboratory use of ion-exchange resins. This book discusses the development in the analytical application of ion exchangers. Organized into 10 chapters, this book begins with an overview of the history and significance of ion exchangers for technical purposes. This text then describes the properties of ion exchangers, which are large molecular water-insoluble polyelectrolytes having a cross-linked structure that contains ionic groups. Other chapters consider the theories concerning the operation of ion-exchange resins and investigate th

  3. One-electron oxidation of 2-(4-methoxyphenyl)-2-methylpropanoic and 1-(4-methoxyphenyl)cyclopropanecarboxylic acids in aqueous solution. the involvement of radical cations and the influence of structural effects and pH on the side-chain fragmentation reactivity.

    Science.gov (United States)

    Bietti, Massimo; Capone, Alberto

    2008-01-18

    A product and time-resolved kinetic study on the one-electron oxidation of 2-(4-methoxyphenyl)-2-methylpropanoic acid (2), 1-(4-methoxyphenyl)cyclopropanecarboxylic acid (3), and of the corresponding methyl esters (substrates 4 and 5, respectively) has been carried out in aqueous solution. With 2, no direct evidence for the formation of an intermediate radical cation 2*+ but only of the decarboxylated 4-methoxycumyl radical has been obtained, indicating either that 2*+ is not formed or that its decarboxylation is too fast to allow detection under the experimental conditions employed (k > 1 x 10(7) s(-1)). With 3, oxidation leads to the formation of the corresponding radical cation 3*+ or radical zwitterion -3*+ depending on pH. At pH 1.0 and 6.7, 3*+ and -3*+ have been observed to undergo decarboxylation as the exclusive side-chain fragmentation pathway with rate constants k = 4.6 x 10(3) and 2.3 x 10(4) s(-1), respectively. With methyl esters 4 and 5, direct evidence for the formation of the corresponding radical cations 4*+ and 5*+ has been obtained. Both radical cations have been observed to display a very low reactivity and an upper limit for their decay rate constants has been determined as k or=10, with the latter process that becomes the major fragmentation pathway around pH 12.

  4. Ion-Acoustic Instabilities in a Multi-Ion Plasma

    Directory of Open Access Journals (Sweden)

    Noble P. Abraham

    2013-01-01

    Full Text Available We have, in this paper, studied the stability of the ion-acoustic wave in a plasma composed of hydrogen, positively and negatively charged oxygen ions, and electrons, which approximates very well the plasma environment around a comet. Modelling each cometary component (H+, O+, and O− by a ring distribution, we find that ion-acoustic waves can be generated at frequencies comparable to the hydrogen ion plasma frequency. The dispersion relation has been solved both analytically and numerically. We find that the ratio of the ring speed (u⊥s to the thermal spread (vts modifies the dispersion characteristics of the ion-acoustic wave. The contrasting behaviour of the phase velocity of the ion-acoustic wave in the presence of O− ions for u⊥s>vts (and vice versa can be used to detect the presence of negatively charged oxygen ions and also their thermalization.

  5. Ion-dust streaming instability with non-Maxwellian ions

    Energy Technology Data Exchange (ETDEWEB)

    Kählert, Hanno, E-mail: kaehlert@theo-physik.uni-kiel.de [Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstr. 15, 24098 Kiel (Germany)

    2015-07-15

    The influence of non-Maxwellian ions on the ion-dust streaming instability in a complex plasma is investigated. The ion susceptibility employed for the calculations self-consistently accounts for the acceleration of the ions by a homogeneous background electric field and their collisions with neutral gas particles via a Bhatnagar-Gross-Krook collision term [e.g., A. V. Ivlev et al., Phys. Rev. E 71, 016405 (2005)], leading to significant deviations from a shifted Maxwellian distribution. The dispersion relation and the properties of the most unstable mode are studied in detail and compared with the Maxwellian case. The largest deviations occur at low to intermediate ion-neutral damping. In particular, the growth rate of the instability for ion streaming below the Bohm speed is found to be lower than in the case of Maxwellian ions, yet remains on a significant level even for fast ion flows above the Bohm speed.

  6. Ion Mass Determination

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (100) is described for determining the mass of ions, the apparatus configured to hold a plasma (101 ) having a plasma potential. The apparatus (100) comprises an electrode (102) having a surface extending in a surface plane and an insulator (104) interfacing with the electrode (102...

  7. Ion implantation in polymers

    Science.gov (United States)

    Wintersgill, M. C.

    1984-02-01

    An introductory overview will be given of the effects of ion implantation on polymers, and certain areas will be examined in more detail. Radiation effects in general and ion implantation in particular, in the field of polymers, present a number of contrasts with those in ionic crystals, the most obvious difference being that the chemical effects of both the implanted species and the energy transfer to the host may profoundly change the nature of the target material. Common effects include crosslinking and scission of polymer chains, gas evolution, double bond formation and the formation of additional free radicals. Research has spanned the chemical processes involved, including polymerization reactions achievable only with the use of radiation, to applied research dealing both with the effects of radiation on polymers already in commercial use and the tailoring of new materials to specific applications. Polymers are commonly divided into two groups, in describing their behavior under irradiation. Group I includes materials which form crosslinks between molecules, whereas Group II materials tend to degrade. In basic research, interest has centered on Group I materials and of these polyethylene has been studied most intensively. Applied materials research has investigated a variety of polymers, particularly those used in cable insulation, and those utilized in ion beam lithography of etch masks. Currently there is also great interest in enhancing the conducting properties of polymers, and these uses would tend to involve the doping capabilities of ion implantation, rather than the energy deposition.

  8. Photo ion spectrometer

    Science.gov (United States)

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

  9. Anodes sliced with ions

    NARCIS (Netherlands)

    Boukamp, Bernard A.

    2006-01-01

    A detailed image of a complex fuel-cell anode structure, obtained through ion-beam milling, SEM imaging and advanced digital reconstruction, yields an accurate description of the three-dimensional structure, and enables correct prediction of the electrode's properties

  10. Ion Implantation of Polymers

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2012-01-01

    are discussed. Related to that, the effects of radiothermolysis, degassing and carbonisation are considered. Specificity of depth distributions of implanted into polymers impurities is analysed and the case of high-fluence implantation is emphasised. Within rather broad topic of ion bombardment, the focus...

  11. Ion transport from plasma ion source at ISOLTRAP

    CERN Document Server

    Steinsberger, Timo Pascal

    2017-01-01

    In this report, my work as CERN Summer Student at the ISOLTRAP experiment at ISOLDE is described. A new plasma ion source used as oine source for calibration and implemented before my arrival was commissioned and transportation settings for the produced ions to the ion traps were found. The cyclotron frequencies of 40Ar and the xenon isotopes 129-132Xe were measured using time-of-flight and phase-imaging ion-cyclotron-resonance mass spectroscopy.

  12. Compact RF ion source for industrial electrostatic ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok-Jung, E-mail: hjkwon@kaeri.re.kr; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub [Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongsangbukdo 38180 (Korea, Republic of)

    2016-02-15

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  13. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  14. Lithium ion sources

    Science.gov (United States)

    Roy, Prabir K.; Greenway, Wayne G.; Grote, Dave P.; Kwan, Joe W.; Lidia, Steven M.; Seidl, Peter A.; Waldron, William L.

    2014-01-01

    A 10.9 cm diameter lithium alumino-silicate ion source has been chosen as a source of ˜100mA lithium ion current for the Neutralized Drift Compression Experiment (NDCX-II) at LBNL. Research and development was carried out on lithium alumino-silicate ion sources prior to NDCX-II source fabrication. Space-charge-limited emission with the current density exceeding 1 mA/cm2 was measured with 0.64 cm diameter lithium alumino-silicate ion sources at 1275 °C. The beam current density is less for the first 10.9 cm diameter NDCX-II source, and it may be due to an issue of surface coverage. The lifetime of a thin coated (on a tungsten substrate) source is varied, roughly 40-50 h, when pulsed at 0.05 Hz and with pulse length of 6μs each, i.e., a duty factor of 3×10-7, at an operating temperature of 1250-1275 °C. The 10.9 cm diameter source lifetime is likely the same as of a 0.64 cm source, but the lifetime of a source with a 2 mm diameter (without a tungsten substrate) is 10-15 h with a duty factor of 1 (DC extraction). The lifetime variation is dependent on the amount of deposition of β-eucryptite mass, and the surface temperature. The amount of mass deposition does not significantly alter the current density. More ion source work is needed to improve the large source performance.

  15. Lithium ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K., E-mail: pkroy@lbl.gov [Lawrence Berkeley National Laboratory (LBNL), One Cyclotron Road, Berkeley, California CA-94720 (United States); Greenway, Wayne G. [Lawrence Berkeley National Laboratory (LBNL), One Cyclotron Road, Berkeley, California CA-94720 (United States); Grote, Dave P. [Lawrence Livermore National Laboratory LLC, CA-94550 (United States); Kwan, Joe W.; Lidia, Steven M.; Seidl, Peter A.; Waldron, William L. [Lawrence Berkeley National Laboratory (LBNL), One Cyclotron Road, Berkeley, California CA-94720 (United States)

    2014-01-01

    A 10.9 cm diameter lithium alumino-silicate ion source has been chosen as a source of ∼100mA lithium ion current for the Neutralized Drift Compression Experiment (NDCX-II) at LBNL. Research and development was carried out on lithium alumino-silicate ion sources prior to NDCX-II source fabrication. Space-charge-limited emission with the current density exceeding 1 mA/cm{sup 2} was measured with 0.64 cm diameter lithium alumino-silicate ion sources at 1275 °C. The beam current density is less for the first 10.9 cm diameter NDCX-II source, and it may be due to an issue of surface coverage. The lifetime of a thin coated (on a tungsten substrate) source is varied, roughly 40–50 h, when pulsed at 0.05 Hz and with pulse length of 6μs each, i.e., a duty factor of 3×10{sup −7}, at an operating temperature of 1250–1275 °C. The 10.9 cm diameter source lifetime is likely the same as of a 0.64 cm source, but the lifetime of a source with a 2 mm diameter (without a tungsten substrate) is 10–15 h with a duty factor of 1 (DC extraction). The lifetime variation is dependent on the amount of deposition of β-eucryptite mass, and the surface temperature. The amount of mass deposition does not significantly alter the current density. More ion source work is needed to improve the large source performance.

  16. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    Science.gov (United States)

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  17. Device for separating non-ions from ions

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Yehia M.; Smith, Richard D.

    2017-01-31

    A device for separating non-ions from ions is disclosed. The device includes a plurality of electrodes positioned around a center axis of the device and having apertures therein through which the ions are transmitted. An inner diameter of the apertures varies in length. At least a portion of the center axis between the electrodes is non-linear.

  18. Unstable Electrostatic Ion Cyclotron Waves Exited by an Ion Beam

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Electrostatic ion cyclotron waves were observed in a quiescent cesium plasma into which a low‐energy beam of sodium ions was injected. The instability appeared when the beam velocity was above 12 times the ion thermal velocity. The waves propagated along the magnetic field with a velocity somewhat...

  19. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    Science.gov (United States)

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  20. Prolonging coherence in trapped ions

    CSIR Research Space (South Africa)

    Uys, H

    2010-09-01

    Full Text Available The authors study pulse sequences that dynamically decouple 9Be+ ions from their decohering environment. The noise environment the ions see is artificially synthesized to emulate a variety of physical systems. By incorporating measurement feedback...

  1. Membranes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Junbo Hou

    2012-07-01

    Full Text Available Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  2. Membranes in lithium ion batteries.

    Science.gov (United States)

    Yang, Min; Hou, Junbo

    2012-07-04

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  3. Observations of Collective Ion Acceleration.

    Science.gov (United States)

    1981-01-01

    possible benefit can be listed. In cancer therapy, radiation produced by ion beams may be more selectively directed into tumors. Ion beams in spallation...34Autoresonant Accelerator Concept," Phys. Rev. Lett. 31, 1234 (1973). 50. S. Humphries, J. J. Lee, and R. N. Sudan, "Generation of Incense Pulsed Ion Beams

  4. Macroreticular chelating ion-exchangers.

    Science.gov (United States)

    Hirsch, R F; E Gancher, R; Russo, F R

    1970-06-01

    Two macroreticular chelating ion-exchangers have been prepared and characterized. One contains the iminodiacetate group and the second contains the arsonate group as the ion-exchanging site. The macroreticular resins show selectivities among metal ions similar to those of the commercially available naicroreticular chelating resins. Chromatographie separations on the new resins are rapid and sharp.

  5. An ion-optical bench for testing ion source lenses

    Science.gov (United States)

    Stoffels, J. J.; Ells, D. R.

    1988-06-01

    An ion-optical bench has been designed and constructed to obtain experimental data on the focusing properties of ion lenses in three dimensions. The heart of the apparatus is a position-sensitive detector (PSD) that gives output signals proportional to the x and y positions of each ion impact. The position signals can be displayed on an oscilloscope screen and analyzed by a two-parameter pulse-height analyzer, thereby giving a visual picture of the ion beam cross section and intensity distribution. The PSD itself is mounted on a track and is movable during operation from a position immediately following the ion lens to 30 cm away. This enables the rapid collection of accurate data on the intensity distribution and divergence angles of ions leaving the source lens. Examples of ion lens measurements are given.

  6. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  7. Ion-ion reactions for charge reduction of biopolymer at atmospheric pressure ambient

    Institute of Scientific and Technical Information of China (English)

    Yue Ming Zhou; Jian Hua Ding; Xie Zhang; Huan Wen Chen

    2007-01-01

    Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the atmospheric pressure ambient.

  8. Improving Ion Computed Tomography

    DEFF Research Database (Denmark)

    Hansen, David Christoffer

    2014-01-01

    -HIT, og de blev tilpasset eksperimentelle tværsnit. Modellerne passede godt med eksperimentelle målinger af kernefragmentation af kulstof i vand, hvorimod der var større afvigelser for neon. I tidligere undersøgelser af ion CT med ioner tungere end brint har dosis altid været meget høj, i flere tilfælde...... der normalt bruges ved røntgen CT, gav både helium og kulstof CT billeder med højere opløsning og mindre støj. Et alternativ til ion CT er "dual energy CT", dvs røntgen CT ved to forskellige bølgelængder. Dette giver også mulighed for en bedre bestemmelse af partiklernes rækkevidde, og der blev derfor...

  9. Trapping ions with lasers

    CERN Document Server

    Cormick, Cecilia; Morigi, Giovanna

    2010-01-01

    This work theoretically addresses the trapping an ionized atom with a single valence electron by means of lasers, analyzing qualitatively and quantitatively the consequences of the net charge of the particle. In our model, the coupling between the ion and the electromagnetic field includes the charge monopole and the internal dipole, within a multipolar expansion of the interaction Hamiltonian. Specifically, we perform a Power-Zienau-Woolley transformation, taking into account the motion of the center of mass. The net charge produces a correction in the atomic dipole which is of order $m_e/M$ with $m_e$ the electron mass and $M$ the total mass of the ion. With respect to neutral atoms, there is also an extra coupling to the laser field which can be approximated by that of the monopole located at the position of the center of mass. These additional effects, however, are shown to be very small compared to the dominant dipolar trapping term.

  10. Relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.

  11. Ion Trap Quantum Computing

    Science.gov (United States)

    2011-12-01

    an inspiring speech at the MIT Physics of Computation 1st Conference in 1981, Feynman proposed the development of a computer that would obey the...on ion trap based 36 quantum computing for physics and computer science students would include lecture notes, slides, lesson plans, a syllabus...reading lists, videos, demonstrations, and laboratories. 37 LIST OF REFERENCES [1] R. P. Feynman , “Simulating physics with computers,” Int. J

  12. Cooled Ion Frequency Standard.

    Science.gov (United States)

    2014-09-26

    when the cooling laser is turned off, the ions are heated by: (1) background gas collisions and (2) a plasma heating process which may be " resonant ...causes heating in our Penning traps. One way resonant particle transport is mediated is by misalignm.nt between the trap’s magnetic and electric axis...using computer solutions. The trap of Fig. 1 is noteworthy because although the inner surfaces of the trap are machined with simple conical cuts, the

  13. Novel laser ion sources

    CERN Document Server

    Fournier, P; Kugler, H; Lisi, N; Scrivens, R; Rodríguez, F V; Düsterer, S; Sauerbrey, R; Schillinger, H; Theobald, W; Veisz, L; Tisch, J W G; Smith, R A

    2000-01-01

    Development in the field of high-power laser systems with repetition rates of several Hz and energies of few joules is highly active and opening, giving new possibilities for the design of laser ions sources. Preliminary investigations on the use of four different laser and target configurations are presented: (1) A small CO/sub 2/ laser (100 mJ, 10.6 mu m) focused onto a polyethylene target to produce C ions at 1 Hz repetition rate (CERN). (2) An excimer XeCl laser (6 J, 308 nm) focused onto solid targets (Frascati). (3) A femtosecond Ti: sapphire laser (250 mJ, 800 nm) directed onto a solid targets (Jena). (4) A picosecond Nd: yttrium-aluminum-garnet (0.3 J, 532 nm) focused into a dense medium of atomic clusters and onto solid targets (London). The preliminary experimental results and the most promising schemes will be discussed with respect to the scaling of the production of high numbers of highly charged ions. Different lasers are compared in terms of current density at 1 m distance for each charge state...

  14. Ion channeling revisited

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Corona, Aldo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nguyen, Anh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    A MS Excel program has been written that calculates accidental, or unintentional, ion channeling in cubic bcc, fcc and diamond lattice crystals or polycrystalline materials. This becomes an important issue when simulating the creation by energetic neutrons of point displacement damage and extended defects using beams of ions. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different powers of the argument. The program then offers an extremely convenient way to calculate axial and planar half-angles and minimum yield or dechanneling probabilities, effects on half-angles of amorphous overlayers, accidental channeling probabilities for randomly oriented crystals or crystallites, and finally a way to automatically generate stereographic projections of axial and planar channeling half-angles. The program can generate these projections and calculate these probabilities for axes and [hkl] planes up to (555).

  15. Ion Collision, Theory

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Anil K.

    2013-09-11

    The outcome of a collision between an ion and neutral species depends on the chemical and physical properties of the two reactants, their relative velocities, and the impact parameter of their trajectories. These include elastic and inelastic scattering of the colliding particles, charge transfer (including dissociative charge transfer), atom abstraction, complex formation and dissociation of the colliding ion. Each of these reactions may be characterized in terms of their energy-dependent rate coefficients, cross sections and reaction kinetics. A theoretical framework that emphasizes simple models and classical mechanics is presented for these processes. Collision processes are addressed in two categories of low-energy and high-energy collisions. Experiments under thermal or quasi-thermal conditions–swarms, drift tubes, chemical ionization and ion cyclotron resonance are strongly influenced by long-range forces and often involve collisions in which atom exchange and extensive energy exchange are common characteristics. High-energy collisions are typically impulsive, involve short-range intermolecular forces and are direct, fast processes.

  16. Resonance Ionization Laser Ion Sources

    CERN Document Server

    Marsh, B

    2013-01-01

    The application of the technique of laser resonance ionization to the production of singly charged ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an important component of many radioactive ion beam facilities. At CERN, for example, the RILIS is the most commonly used ion source of the ISOLDE facility, with a yearly operating time of up to 3000 hours. For some isotopes the RILIS can also be used as a fast and sensitive laser spectroscopy tool, provided that the spectral resolution is sufficiently high to reveal the influence of nuclear structure on the atomic spectra. This enables the study of nuclear properties of isotopes with production rates even lower than one ion per second and, in some cases, enables isomer selective ionization. The solutions available for the implementation of resonance laser ionization at radioactive ion beam facilities are summarized. Aspects such as the laser r...

  17. ION SOURCES FOR ENERGY EXTREMES OF ION IMPLANTATION.

    Energy Technology Data Exchange (ETDEWEB)

    HERSCHCOVITCH,A.; JOHNSON, B.M.; BATALIN, V.A.; KROPACHEV, G.N.; KUIBEDA, R.P.; KULEVOY, T.V.; KOLOMIETS, A.A.; PERSHIN, V.I.; PETRENKO, S.V.; RUDSKOY, I.; SELEZNEV, D.N.; BUGAEV, A.S.; GUSHENETS, V.I.; LITOVKO, I.V.; OKS, E.M.; YUSHKOV, G. YU.; MASEUNOV, E.S.; POLOZOV, S.M.; POOLE, H.J.; STOROZHENKO, P.A.; SVAROVSKI, YA.

    2007-08-26

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques, which meet the two energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of Antimony and Phosphorous ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive Decaborane ions were extracted at 10 keV and smaller currents of negative Decaborane ions were also extracted. Additionally, Boron current fraction of over 70% was extracted from a Bemas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  18. Characterization of ion dynamics in structures for lossless ion manipulations.

    Science.gov (United States)

    Tolmachev, Aleksey V; Webb, Ian K; Ibrahim, Yehia M; Garimella, Sandilya V B; Zhang, Xinyu; Anderson, Gordon A; Smith, Richard D

    2014-09-16

    Structures for Lossless Ion Manipulation (SLIM) represent a novel class of ion optical devices based upon electrodes patterned on planar surfaces, and relying on a combined action of radiofrequency and DC electric fields and specific buffer gas density conditions. Initial experimental studies have demonstrated the feasibility of the SLIM concept. This report offers an in-depth consideration of key ion dynamics properties in such devices based upon ion optics theory and computational modeling. The SLIM devices investigated are formed by two surfaces, each having an array of radiofrequency (RF) "rung" electrodes, bordered by DC "guard" electrodes. Ion motion is confined by the RF effective potential in the direction orthogonal to the boards and limited or controlled in the transversal direction by the guard DC potentials. Ions can be efficiently trapped and stored in SLIM devices where the confinement of ions can be "soft" in regard to the extent of collisional activation, similarly to RF-only multipole ion guides and traps. The segmentation of the RF rung electrodes and guards along the axis makes it possible to apply static or transient electric field profiles to stimulate ion transfer within a SLIM. In the case of a linear DC gradient applied to RF rungs and guards, a virtually uniform electric field can be created along the axis of the device, enabling high quality ion mobility separations.

  19. Ion sources for energy extremes of ion implantation.

    Science.gov (United States)

    Hershcovitch, A; Johnson, B M; Batalin, V A; Kropachev, G N; Kuibeda, R P; Kulevoy, T V; Kolomiets, A A; Pershin, V I; Petrenko, S V; Rudskoy, I; Seleznev, D N; Bugaev, A S; Gushenets, V I; Litovko, I V; Oks, E M; Yushkov, G Yu; Masunov, E S; Polozov, S M; Poole, H J; Storozhenko, P A; Svarovski, A Ya

    2008-02-01

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques that meet the two energy extreme range needs of meV and hundreads of eV ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of antimony and phosphorus ions: P(2+) [8.6 pmA (particle milliampere)], P(3+) (1.9 pmA), and P(4+) (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb(3+)Sb(4+), Sb(5+), and Sb(6+) respectively. For low energy ion implantation, our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA (electrical milliampere) of positive decaborane ions was extracted at 10 keV and smaller currents of negative decaborane ions were also extracted. Additionally, boron current fraction of over 70% was extracted from a Bernas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  20. Electron string ion sources for carbon ion cancer therapy accelerators

    CERN Document Server

    Boytsov, A Yu; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-01-01

    The Electron String type of Ion Sources (ESIS) was developed, constructed and tested first in the Joint Institute for Nuclear Research. These ion sources can be the appropriate sources for production of pulsed C4+ and C6+ ion beams which can be used for cancer therapy accelerators. In fact the test ESIS Krion-6T already now at the solenoid magnetic field only 4.6 T provides more than 10^10 C4+ ions per pulse and about 5*10^9 C6+ ions per pulse. Such ion sources could be suitable for application at synchrotrons. It was also found, that Krion-6T can provide more than 10^11 C6+ ions per second at 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. As for production of 11C radioactive ion beams ESIS can be the most economic kind of ion source. To proof that the special cryogenic cell for pulse injection of gaseous species into electron string was successfully tested using the ESIS Krion-2M.

  1. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    Energy Technology Data Exchange (ETDEWEB)

    Segal, M. J., E-mail: mattiti@gmail.com [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); University of Cape Town, Rondebosch, Cape Town 7700 (South Africa); Bark, R. A.; Thomae, R. [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); Donets, E. E.; Donets, E. D.; Boytsov, A.; Ponkin, D.; Ramsdorf, A. [Joint Institute for Nuclear Research, Joloit-Curie 6, 141980 Dubna, Moscow Region (Russian Federation)

    2016-02-15

    An assembly for a commercial Ga{sup +} liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga{sup +} ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga{sup +} and Au{sup +} ion beams will be reported as well.

  2. Negative Ion Confinement in the Multicusp Ion Source

    Science.gov (United States)

    Khodadadi Azadboni, Fatemeh; Sedaghatizade, Mahmood

    2010-04-01

    To optimize the negative ion source and generate intense beams of negative ions, understanding of transport properties of both electrons and negative ions is indispensable. Transport process of negative hydrogen ions (H-) in a multicusp H- source, has been simulated by three-dimensional Femlab simulation software. Multipolar plasma confinement is known to result in enhanced plasma density, homogeneous plasma of a large volume, and quiescent plasmas. The effect of plasma confinement by applying multi-polar magnetic field was investigated. Results are obtained for ten different configurations of permanent magnet and discussed. Full line cusps are found to give optimum plasma density. Negative ions created on the sidewall hardly can reach the center of the source due to trapping by the multicusp magnetic field. As a result, H- ions created on the sidewall do not have a significant effect on the H- current.

  3. Ion binding to biological macromolecules.

    Science.gov (United States)

    Petukh, Marharyta; Alexov, Emil

    2014-11-01

    Biological macromolecules carry out their functions in water and in the presence of ions. The ions can bind to the macromolecules either specifically or non-specifically, or can simply to be a part of the water phase providing physiological gradient across various membranes. This review outlines the differences between specific and non-specific ion binding in terms of the function and stability of the corresponding macromolecules. Furthermore, the experimental techniques to identify ion positions and computational methods to predict ion binding are reviewed and their advantages compared. It is indicated that specifically bound ions are relatively easier to be revealed while non-specifically associated ions are difficult to predict. In addition, the binding and the residential time of non-specifically bound ions are very much sensitive to the environmental factors in the cells, specifically to the local pH and ion concentration. Since these characteristics differ among the cellular compartments, the non-specific ion binding must be investigated with respect to the sub-cellular localization of the corresponding macromolecule.

  4. Charge Breeding of Radioactive Ions

    CERN Document Server

    Wenander, F J C

    2013-01-01

    Charge breeding is a technique to increase the charge state of ions, in many cases radioactive ions. The singly charged radioactive ions, produced in an isotope separator on-line facility, and extracted with a low kinetic energy of some tens of keV, are injected into a charge breeder, where the charge state is increased to Q. The transformed ions are either directed towards a dedicated experiment requiring highly charged ions, or post-accelerated to higher beam energies. In this paper the physics processes involved in the production of highly charged ions will be introduced, and the injection and extraction beam parameters of the charge breeder defined. A description of the three main charge-breeding methods is given, namely: electron stripping in gas jet or foil; external ion injection into an electron-beam ion source/trap (EBIS/T); and external ion injection into an electron cyclotron resonance ion source (ECRIS). In addition, some preparatory devices for charge breeding and practical beam delivery aspects ...

  5. Ion Channels in Neurological Disorders.

    Science.gov (United States)

    Kumar, Pravir; Kumar, Dhiraj; Jha, Saurabh Kumar; Jha, Niraj Kumar; Ambasta, Rashmi K

    2016-01-01

    The convergent endeavors of the neuroscientist to establish a link between clinical neurology, genetics, loss of function of an important protein, and channelopathies behind neurological disorders are quite intriguing. Growing evidence reveals the impact of ion channels dysfunctioning in neurodegenerative disorders (NDDs). Many neurological/neuromuscular disorders, viz, Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, and age-related disorders are caused due to altered function or mutation in ion channels. To maintain cell homeostasis, ion channels are playing a crucial role which is a large transmembrane protein. Further, these channels are important as it determines the membrane potential and playing critically in the secretion of neurotransmitter. Behind NDDs, losses of pathological proteins and defective ion channels have been reported and are found to aggravate the disease symptoms. Moreover, ion channel dysfunctions are eliciting a range of symptoms, including memory loss, movement disabilities, neuromuscular sprains, and strokes. Since the possible mechanistic role played by aberrant ion channels, their receptor and associated factors in neurodegeneration remained elusive; therefore, it is a challenging task for the neuroscientist to implement the therapeutics for targeting NDDs. This chapter reviews the potential role of the ion channels in membrane physiology and brain homeostasis, where ion channels and their associated factors have been characterized with their functional consequences in neurological diseases. Moreover, mechanistic role of perturbed ion channels has been identified in various NDDs, and finally, ion channel modulators have been investigated for their therapeutic intervention in treating common NDDs.

  6. Gas and metal ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Oaks, E. [High Current Electronics Institute, Tomsk (Russian Federation)]|[State Academy of Control System and Radioelectronics, Tomsk (Russian Federation); Yushkov, G. [High Current Electronics Institute, Tomsk (Russian Federation)

    1996-08-01

    The positive ion sources are now of interest owing to both their conventional use, e.g., as injectors in charged-particle accelerators and the promising capabilities of intense ion beams in the processes related to the action of ions on various solid surfaces. For industrial use, the sources of intense ion beams and their power supplies should meet the specific requirements as follows: They should be simple, technologically effective, reliable, and relatively low-cost. Since the scanning of an intense ion beam is a complicated problem, broad ion beams hold the greatest promise. For the best use of such beams it is desirable that the ion current density be uniformly distributed over the beam cross section. The ion beam current density should be high enough for the treatment process be accomplished for an acceptable time. Thus, the ion sources used for high-current, high-dose metallurgical implantation should provide for gaining an exposure dose of {approximately} 10{sup 17} cm{sup {minus}2} in some tens of minutes. So the average ion current density at the surface under treatment should be over 10{sup {minus}5} A/cm{sup 2}. The upper limit of the current density depends on the admissible heating of the surface under treatment. The accelerating voltage of an ion source is dictated by its specific use; it seems to lie in the range from {approximately}1 kV (for the ion source used for surface sputtering) to {approximately}100 kV and over (for the ion sources used for high-current, high-dose metallurgical implantation).

  7. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  8. Ion channels in plants

    Science.gov (United States)

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In his recent opus magnum review paper published in the October issue of Physiology Reviews, Rainer Hedrich summarized the field of plant ion channels.1 He started from the earliest electric recordings initiated by Charles Darwin of carnivorous Dionaea muscipula,1,2 known as Venus flytrap, and covered the topic extensively up to the most recent discoveries on Shaker-type potassium channels, anion channels of SLAC/SLAH families, and ligand-activated channels of glutamate receptor-like type (GLR) and cyclic nucleotide-gated channels (CNGC).1 PMID:23221742

  9. Carbon Ion Therapy

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, David Christoffer; Herrmann, Rochus;

    On the importance of choice of target size for selective boosting of hypoxic tumor subvolumina in carbon ion therapy Purpose: Functional imaging methods in radiotherapy are maturing and can to some extent uncover radio resistant structures found within a tumour entity. Selective boost of identified...... size and PTV position. Methods: Several treatment plans are produced with TRiP, using a 256x256x256 mm3 water phantom and SOBP optimization on physical dose. Box formed PTV volumes between 0.15 - 1010 cm3, and PTV positions ranging from 3 cm to 200 cm depth (relative...

  10. Surface Production of Ions

    Science.gov (United States)

    1992-05-26

    Hill, New York 1938) p. 60-64. 21. S. Dushman, Scientific Foundations of Vacuum Technique, Second Edition (John Wiley & Sons, New York, 1962) p. 91...hydrogen atom (or H + ion) from a metal surface is of funda- Liouville equation, whose solution involves the coupling ma- ’ Jonh . mental interest both from a...Appi. Phys. 50 (4), April 1979 IsB Chapman Glow Discharge Processes John Wiley and Sons New York, 1980 pp 114-115. -H. L. Cui, J. Vac. Sci. Tech. A 9

  11. A novel planar ion funnel design for miniature ion optics

    Science.gov (United States)

    Chaudhary, A.; van Amerom, Friso H. W.; Short, R. T.

    2014-10-01

    The novel planar ion funnel (PIF) design presented in this article emphasizes simple fabrication, assembly, and operation, making it amenable to extreme miniaturization. Simulations performed in SIMION 8.0 indicate that ion focusing can be achieved by using a gradient of electrostatic potentials on concentric metal rings in a plane. A prototype was fabricated on a 35 × 35 mm custom-designed printed circuit board (PCB) with a center hole for ions to pass through and a series of concentric circular metal rings of increasing diameter on the front side of the PCB. Metal vias on the PCB electrically connected each metal ring to a resistive potential divider that was soldered on the back of the PCB. The PIF was tested at 5.5 × 10-6 Torr in a vacuum test setup that was equipped with a broad-beam ion source on the front and a micro channel plate (MCP) ion detector on the back of the PIF. The ion current recorded on the MCP anode during testing indicated a 23× increase in the ion transmission through the PIF when electric potentials were applied to the rings. These preliminary results demonstrate the functionality of a 2D ion funnel design with a much smaller footprint and simpler driving electronics than conventional 3D ion funnels. Future directions to improve the design and a possible micromachining approach to fabrication are discussed in the conclusions.

  12. Electron beam ion source and electron beam ion trap (invited).

    Science.gov (United States)

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  13. Electron beam ion source and electron beam ion trap (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Reinard [Scientific Software Service, Kapellenweg 2a, D-63571 Gelnhausen (Germany); Kester, Oliver [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  14. Enhanced secondary ion emission with a bismuth cluster ion source

    Science.gov (United States)

    Nagy, G.; Walker, A. V.

    2007-04-01

    We have investigated the mechanism of secondary ion yield enhancement using Bin+ (n = 1-6) primary ions and three different samples - dl-phenylalanine, Irganox 1010 and polystyrene - adsorbed on Al, Si and Ag substrates. The largest changes in secondary ion yields are observed for Bi2+ and Bi3+ primary ions. Smaller increases in secondary ion yield are found using Bi4+, Bi5+ and Bi6+ projectiles. The secondary ion yield enhancements are generally larger on Si than on Al. Using Bin+ structures obtained from density functional theory (DFT) calculations we demonstrate that the yield enhancements cannot be explained by an increase in the deposited energy density (energy per area) into the substrate. These data show that the mechanism of Bin+ sputtering is very similar to that for Aun+ primary ion beams. When a polyatomic primary ion strikes the substrate, its constituent atoms are likely to remain near to each other, and so a substrate atom can be struck simultaneously by multiple atoms. The action of these multiple concerted impacts leads to efficient energy transfer in the near surface region and an increase in the number of secondary ions ejected from the surface. Such concerted impacts involve one, two or three projectile atoms, which explains well the nonlinear yield enhancements observed going from Bi+ to Bi2+ to Bi3+.

  15. Practical aspects of trapped ion mass spectrometry, 5 applications of ion trapping devices

    CERN Document Server

    March, Raymond E

    2009-01-01

    Examines ion/neutral and ion/ion reactions, ion spectroscopy, and the structural characterization of proteins and peptides using quadropole ion trap mass spectrometry, Fourier transform - ion cyclotron resonance (FT-ICR) mass spectrometry, and traveling wave ion mobility mass spectrometry.

  16. The covalently bound HNC dimer ion HN dbnd C dbnd C dbnd NH rad + has a kinetically stable neutral counterpart

    Science.gov (United States)

    Jobst, Karl J.; Ruzni Hanifa, M.; Terlouw, Johan K.

    2008-09-01

    Neutralization-reionization mass spectrometry (NRMS) and computational chemistry (CBS-QB3/APNO methods) have been used to show that HN dbnd C dbnd C dbnd NH (ethenediimine) and its isomer H 2N-C-C tbnd N (aminocyanocarbene) are generated as kinetically stable molecules in the rarefied gas-phase by one electron reduction of their ionic precursors. One route to the very stable ion HN dbnd C dbnd C dbnd NH involves loss of HC tbnd N from the hydrogen-bridged radical cation [HN tbnd C ⋯HN-C-C tbnd N ] via a remarkable quid-pro-quo catalysis in which both the ion and the neutral undergo isomerization.

  17. Synthesis, photophysical and metal ion signalling behaviour of mono- and di-azacrown derivatives of 4-aminophthalimide

    Indian Academy of Sciences (India)

    N B Sankaran; M Sarkar; A Samanta

    2005-03-01

    Synthesis, photophysical behaviour and metal ion signalling ability of 3-component systems, I and II, comprising a 4-aminophthalimido moiety as fluorophore, a dimethylene spacer and two different azacrown receptors, are reported. The fluorescence quantum yields and lifetimes of both the systems have been found to be significantly lower than that of the parent fluorophore indicating the occurrence of photoinduced electron transfer (PET) between the terminal moieties. PET is found to be more efficient in II, presumably due to the presence of more than one electron-donating centre in the receptor moiety. Fluorescence decay behaviour of the systems suggests a through-space nature of PET. The systems exhibit off-on fluorescence signalling in the aprotic media in the presence of several metal ions, some of which are well known for their fluorescence quenching abilities. Diazacrown derivative, II, appears to be a somewhat better signalling system than the monoazacrown derivative, I.

  18. Proton and carbon ion therapy

    CERN Document Server

    Lomax, Tony

    2013-01-01

    Proton and Carbon Ion Therapy is an up-to-date guide to using proton and carbon ion therapy in modern cancer treatment. The book covers the physics and radiobiology basics of proton and ion beams, dosimetry methods and radiation measurements, and treatment delivery systems. It gives practical guidance on patient setup, target localization, and treatment planning for clinical proton and carbon ion therapy. The text also offers detailed reports on the treatment of pediatric cancers, lymphomas, and various other cancers. After an overview, the book focuses on the fundamental aspects of proton and carbon ion therapy equipment, including accelerators, gantries, and delivery systems. It then discusses dosimetry, biology, imaging, and treatment planning basics and provides clinical guidelines on the use of proton and carbon ion therapy for the treatment of specific cancers. Suitable for anyone involved with medical physics and radiation therapy, this book offers a balanced and critical assessment of state-of-the-art...

  19. Negative hydrogen ion production mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bacal, M. [UPMC, LPP, Ecole Polytechnique, UMR CNRS 7648, Palaiseau (France); Wada, M. [School of Science and Engineering, Doshisha University, Kyoto 610-0321 (Japan)

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  20. Negative hydrogen ion production mechanisms

    Science.gov (United States)

    Bacal, M.; Wada, M.

    2015-06-01

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  1. Density Functional Theory Research into the Reduction Mechanism for the Solvent/Additive in a Sodium-Ion Battery.

    Science.gov (United States)

    Liu, Qi; Mu, Daobin; Wu, Borong; Wang, Lei; Gai, Liang; Wu, Feng

    2017-02-22

    The solid-electrolyte interface (SEI) film in a sodium-ion battery is closely related to capacity fading and cycling stability of the battery. However, there are few studies on the SEI film of sodium-ion batteries and the mechanism of SEI film formation is unclear. The mechanism for the reduction of ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), ethylene sulfite (ES), 1,3-propylene sulfite (PS), and fluorinated ethylene carbonate (FEC) is studied by DFT. The reaction activation energies, Gibbs free energies, enthalpies, and structures of the transition states are calculated. It is indicated that VC, ES, and PS additives in the electrolyte are all easier to form organic components in the anode SEI film by one-electron reduction. The priority of one-electron reduction to produce organic SEI components is in the order of VC>PC>EC; two-electron reduction to produce the inorganic Na2 CO3 component is different and follows the order of EC>PC>VC. Two-electron reduction for sulfites ES and PS to form inorganic Na2 SO3 is harder than that of carbonate ester reduction. It is also suggested that the one- and two-electron reductive decomposition pathway for FEC is more feasible to produce inorganic NaF components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Rectangular ion funnel: a new ion funnel interface for structures for lossless ion manipulations.

    Science.gov (United States)

    Chen, Tsung-Chi; Webb, Ian K; Prost, Spencer A; Harrer, Marques B; Norheim, Randolph V; Tang, Keqi; Ibrahim, Yehia M; Smith, Richard D

    2015-01-06

    Structures for lossless ion manipulations (SLIM) have recently demonstrated the ability for near lossless ion focusing, transfer, and trapping in subatmospheric pressure regions. While lossless ion manipulations are advantageously applied to the applications of ion mobility separations and gas phase reactions, ion introduction through ring electrode ion funnels or more conventional ion optics to SLIM can involve discontinuities in electric fields or other perturbations that result in ion losses. In this work, we developed and investigated a new funnel design that aims to seamlessly couple to SLIM at the funnel exit. This rectangular ion funnel (RIF) was initially evaluated by ion simulations, fabricated utilizing printed circuit board technology, and tested experimentally. The RIF was integrated to a SLIM-time of flight (TOF) MS system, and the operating parameters, including RF, DC bias of the RIF electrodes, and electric fields for effectively interfacing with a SLIM, were characterized. The RIF provided a 2-fold sensitivity increase without significant discrimination over a wide m/z range and well matched to that of SLIM, along with greatly improved SLIM operational stability.

  3. Electrically switched ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, M.A. [Pacific Northwest National Lab., Richland, WA (United States); Schwartz, D.T.; Genders, D.

    1997-10-01

    A variety of waste types containing radioactive {sup 137}Cs are found throughout the DOE complex. These waste types include water in reactor cooling basins, radioactive high-level waste (HLW) in underground storage tanks, and groundwater. Safety and regulatory requirements and economics require the removal of radiocesium before these wastes can be permanently disposed of. Electrically Switched Ion Exchange (ESIX) is an approach for radioactive cesium separation that combines IX and electrochemistry to provide a selective, reversible, and economic separation method that also produces little or no secondary waste. In the ESIX process, an electroactive IX film is deposited electrochemically onto a high-surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. For cesium, the electroactive films under investigation are ferrocyanides, which are well known to have high selectivities for cesium in concentrated sodium solutions. When a cathode potential is applied to the film, Fe{sup +3} is reduced to the Fe{sup +2} state, and a cation must be intercalated into the film to maintain charge neutrality (i.e., Cs{sup +} is loaded). Conversely, if an anodic potential is applied, a cation must be released from the film (i.e., Cs{sup +} is unloaded). Therefore, to load the film with cesium, the film is simply reduced; to unload cesium, the film is oxidized.

  4. Ion-atom hybrid systems

    CERN Document Server

    Willitsch, Stefan

    2014-01-01

    The study of interactions between simultaneously trapped cold ions and atoms has emerged as a new research direction in recent years. The development of ion-atom hybrid experiments has paved the way for investigating elastic, inelastic and reactive collisions between these species at very low temperatures, for exploring new cooling mechanisms of ions by atoms and for implementing new hybrid quantum systems. The present lecture reviews experimental methods, recent results and upcoming developments in this emerging field.

  5. Bucharest heavy ion accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Ceausescu, V.; Dobrescu, S.; Duma, M.; Indreas, G.; Ivascu, M.; Papureanu, S.; Pascovici, G.; Semenescu, G.

    1986-02-15

    The heavy ion accelerator facility of the Heavy Ion Physics Department at the Institute of Physics and Nuclear Engineering in Bucharest is described. The Tandem accelerator development and the operation of the first stage of the heavy ion postaccelerating system are discussed. Details are given concerning the resonance cavities, the pulsing system matching the dc beam to the RF cavities and the computer control system.

  6. Highly Stripped Ion Sources for MeV Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  7. Experimental investigation of ion-ion recombination at atmospheric conditions

    Directory of Open Access Journals (Sweden)

    A. Franchin

    2015-02-01

    Full Text Available We present the results of laboratory measurements of the ion-ion recombination coefficient at different temperatures, relative humidities and concentrations of ozone and sulfur dioxide. The experiments were carried out using the Cosmics Leaving OUtdoor Droplets (CLOUD chamber at CERN, the walls of which are made of conductive material, making it possible to measure small ions. We produced ions in the chamber using a 3.5 GeV c−1 beam of positively-charged pions (π+ from the CERN Proton Synchrotron (PS and with galactic cosmic rays, when the PS was switched off. The range of the ion production rate varied from 2 to 100 cm−3s−1, covering the typical range of ionization throughout the troposphere. The temperature ranged from −55 to 20 °C, the relative humidity from 0 to 70%, the SO2 concentration from 0 to 40 ppb, and the ozone concentration from 200 to 700 ppb. At 20 °C and 40% RH, the retrieved ion-ion recombination coefficient was (2.3 ± 0.7 × 10−6cm3s−1. We observed no dependency of the ion-ion recombination coefficient on ozone concentration and a weak variation with sulfur dioxide concentration. However, we found a strong dependency of the ion-ion recombination coefficient on temperature. We compared our results with three different models and found an overall agreement for temperatures above 0 °C, but a disagreement at lower temperatures. We observed a strong dependency of the recombination coefficient on relative humidity, which has not been reported previously.

  8. Pattern formation with trapped ions

    CERN Document Server

    Lee, Tony E

    2010-01-01

    We propose an experiment to study collective behavior in a nonlinear medium of trapped ions. Using laser cooling and heating and an anharmonic trap potential, one can turn an ion into a nonlinear van der Pol-Duffing oscillator. A chain of ions interacting electrostatically has stable plane waves for all parameters. The system also behaves like an excitable medium, since a sufficiently large perturbation generates a travelling pulse. Small chains exhibit multistability and limit cycles. We account for noise from spontaneous emission in the amplitude equation and find that the patterns are observable for realistic experimental parameters. The tunability of ion traps makes them an exciting setting to study nonequilibrium statistical physics.

  9. The Toledo heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Haar, R.R. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Beideck, D.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Curtis, L.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Kvale, T.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Sen, A. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Schectman, R.M. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Stevens, H.W. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States))

    1993-06-01

    The recently installed 330 kV electrostatic positive ion accelerator at the University of Toledo is described. Experiments have been performed using ions ranging from H[sup +] to Hg[sup 2+] and exotic molecules such as HeH[sup +]. Most of these experiments involve the beam-foil studies of the lifetimes of excited atomic states and the apparatus used for these experiments is also described. Another beamline is available for ion-implantation. The Toledo heavy ion accelerator facility welcomes outside users. (orig.)

  10. Ion beam assisted film growth

    CERN Document Server

    Itoh, T

    2012-01-01

    This volume provides up to date information on the experimental, theoretical and technological aspects of film growth assisted by ion beams.Ion beam assisted film growth is one of the most effective techniques in aiding the growth of high-quality thin solid films in a controlled way. Moreover, ion beams play a dominant role in the reduction of the growth temperature of thin films of high melting point materials. In this way, ion beams make a considerable and complex contribution to film growth. The volume will be essential reading for scientists, engineers and students working in thi

  11. Molecular ion sources for low energy semiconductor ion implantation (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, A., E-mail: hershcovitch@bnl.gov [Brookhaven National Laboratory, Upton, New York 11973 (United States); Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Vizir, A.; Yushkov, G. Yu. [High Current Electronics Institute, Siberian Branch of Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Seleznev, D. N.; Kulevoy, T. V.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S. [Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Dugin, S.; Alexeyenko, O. [State Scientific Center of the Russian Federation State Research Institute for Chemistry and Technology of Organoelement Compounds, Moscow (Russian Federation)

    2016-02-15

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.

  12. Vaporization wave model for ion-ion central collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baldo, M.; Giansiracusa, G.; Piccitto, G. (Catania Univ. (Italy). Ist. di Fisica; Istituto Nazionale di Fisica Nucleare, Catania (Italy))

    1983-09-24

    We propose a simple model for central or nearly central ion-ion collisions at intermediate energies. It is based on the ''vaporization wave model'' developed by Bennett for macroscopic objects. The model offers a simple explanation of the observed deuteron/proton abundancy ratio as a function of the beam energy.

  13. Vaporization wave model for ion-ion central collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baldo, M.; Giansiracusa, G.; Piccitto, G. (Catania Univ. (Italy). Ist. di Fisica)

    1983-09-24

    A simple model for central or nearly central ion-ion collisions at intermediate energies is proposed. It is based on the ''vaporization wave model'' developed by Bennet for macroscopic objects. The model offers a simple explanation of the observed deuteron/proton abundancy ratio as a function of the beam energy.

  14. Nonlinear Evolution of the Ion-Ion Beam Instability

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.

    1982-01-01

    The criterion for the existence of vortexlike ion phase-space configurations, as obtained by a standard pseudopotential method, is found to coincide with the criterion for the linear instability for two (cold) counterstreaming ion beams. A nonlinear equation is derived, which demonstrates...

  15. Ion-Bombardment of X-Ray Multilayer Coatings - Comparison of Ion Etching and Ion Assisted Deposition

    NARCIS (Netherlands)

    Puik, E. J.; van der Wiel, M. J.; Zeijlemaker, H.; Verhoeven, J.

    1991-01-01

    The effects of two forms of ion bombardment treatment on the reflectivity of multilayer X-ray coatings were compared: ion etching of the metal layers, taking place after deposition, and ion bombardment during deposition, the so-called ion assisted deposition. The ion beam was an Ar+ beam of 200 eV,

  16. Effects of ion/ion proton transfer reactions on conformation of gas-phase cytochrome c ions.

    Science.gov (United States)

    Zhao, Qin; Schieffer, Gregg M; Soyk, Matthew W; Anderson, Timothy J; Houk, R S; Badman, Ethan R

    2010-07-01

    Positive ions from cytochrome c are studied in a 3-D ion trap/ion mobility (IM)/quadrupole-time-of-flight (TOF) instrument with three independent ion sources. The IM separation allows measurement of the cross section of the ions. Ion/ion reactions in the 3-D ion trap that remove protons cause the cytochrome c ions to refold gently without other degradation of protein structure, i.e., fragmentation or loss of heme group or metal ion. The conformation(s) of the product ions generated by ion/ion reactions in a given charge state are similar regardless of whether the cytochrome c ions are originally in +8 or +9 charge states. In the lower charge states (+1 to +5) cytochrome c ions made by the ion/ion reaction yield a single IM peak with cross section of approximately 1110 to 1180 A(2), even if the original +8 ion started with multiple conformations. The conformation expands slightly when the charge state is reduced from +5 to +1. For product ions in the +6 to +8 charge states, ions created from higher charge states (+9 to +16) by ion/ion reaction produce more compact conformation(s) in somewhat higher abundances compared with those produced directly by the electrospray ionization (ESI) source. For ions in intermediate charge states that have a variety of resolvable conformers, the voltage used to inject the ions into the drift tube, and the voltage and duration of the pulse that extracts ions from the ion trap, can affect the observed abundances of various conformers.

  17. Negative chlorine ions from multicusp radio frequency ion source for heavy ion fusion applications

    Science.gov (United States)

    Hahto, S. K.; Hahto, S. T.; Kwan, J. W.; Leung, K. N.; Grisham, L. R.

    2003-06-01

    Use of high mass atomic neutral beams produced from negative ions as drivers for inertial confinement fusion has been suggested recently. Best candidates for the negative ions would be bromine and iodine with sufficiently high mass and electron affinity. These materials require a heated vapor ion source. Chlorine was selected for initial testing because it has similar electron affinity to those of bromine and iodine, and is available in gaseous form. An experiment was set up by the Plasma and Ion Source Technology Group in Lawrence Berkeley National Laboratory to measure achievable current densities and other beam parameters by using a rf driven multicusp ion source [K. N. Leung, Rev. Sci. Instrum. 65, 1165 (1994); Q. Ji et al., Rev. Sci. Instrum. 73, 822 (2002)]. Current density of 45 mA/cm2 was achieved with 99.5% of the beam as atomic negative chlorine at 2.2 kW of rf power. An electron to negative ion ratio as low as 7 to 1 was observed, while the ratio of positive and negative chlorine ion currents was 1.3. This in addition to the fact that the front plate biasing had almost no effect to the negative chlorine ion and electron currents indicates that a very high percentage of the negative charge in the extraction area of the ion source was in form of Cl- ions. A comparison of positive and negative chlorine ion temperatures was conducted with the pepper pot emittance measurement technique and very similar transverse temperature values were obtained for positive and negative chlorine ions.

  18. Complex Ion Dynamics in Carbonate Lithium-Ion Battery Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Mitchell T.; Bhatia, Harsh; Gyulassy, Attila G.; Draeger, Erik W.; Pascucci, Valerio; Bremer, Peer-Timo; Lordi, Vincenzo; Pask, John E.

    2017-03-16

    Li-ion battery performance is strongly influenced by ionic conductivity, which depends on the mobility of the Li ions in solution, and is related to their solvation structure. In this work, we have performed first-principles molecular dynamics (FPMD) simulations of a LiPF6 salt solvated in different Li-ion battery organic electrolytes. We employ an analytical method using relative angles from successive time intervals to characterize complex ionic motion in multiple dimensions from our FPMD simulations. We find different characteristics of ionic motion on different time scales. We find that the Li ion exhibits a strong caging effect due to its strong solvation structure, while the counterion, PF6– undergoes more Brownian-like motion. Our results show that ionic motion can be far from purely diffusive and provide a quantitative characterization of the microscopic motion of ions over different time scales.

  19. New Developments of a Laser Ion Source for Ion Synchrotrons

    CERN Document Server

    Kondrashev, S; Konukov, K; Sharkov, B Yu; Shumshurov, A V; Camut, O; Chamings, J A; Kugler, H; Scrivens, R; Charushin, A; Makarov, K; Satov, Yu; Smakovskii, Yu

    2004-01-01

    Laser Ion Sources (LIS) are well suited to filling synchrotron rings with highly charged ions of almost any element in a single turn injection mode. We report the first measurements of the LIS output parameters for Pb27+ ions generated by the new 100 J/1 Hz Master Oscillator - Power Amplifier CO2-laser system. A new LIS has been designed, built and tested at CERN, as an ion source for ITEP-TWAC accelerator/accumulator facility, and as a possible future source for an upgrade of the Large Hadron Collider (LHC) injector chain. The use of the LIS based on 100 J/1 Hz CO2-laser together with the new ion LINAC, as injector for ITEP-TWAC project, is discussed..

  20. Ion-conducting membranes

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard L.; Chen, Qingmei; Liu, Zengcai; Kutz, Robert

    2016-06-21

    An ion conducting polymeric composition mixture comprises a copolymer of styrene and vinylbenzyl-R.sub.s. R.sub.s is selected from the group consisting of imidazoliums and pyridiniums. The composition contains 10%-90% by weight of vinylbenzyl-R.sub.s. The composition can further comprise a polyolefin comprising substituted polyolefins, a polymer comprising cyclic amine groups, a polymer comprising at least one of a phenylene group and a phenyl group, a polyamide, and/or the reaction product of a constituent having two carbon-carbon double bonds. The composition can be in the form of a membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  1. Optical Barium Ion Qubit

    CERN Document Server

    Yum, Dahyun; Dutta, Tarun; Mukherjee, Manas

    2016-01-01

    We demonstrate an optical single qubit based on 6S1/2 to 5D5/2 quadrupole transition of a single Ba+ ion operated by diode based lasers only. The resonance wavelength of the 6S1/2 to 5D5/2 quadrupole transition is about 1762 nm which suitably falls close to the U-band of the telecommunication wavelength. Thus this qubit is a naturally attractive choice towards implementation of quantum repeater or quantum networks using existing telecommunication networks. We observe continuous bit-flip oscillations at a rate of about 250 kHz which is fast enough for the qubit operation as compared to the measured coherence time of over 3 ms. We also present a technique to quantify the bit-flip error in each qubit NOT gate operation.

  2. Ion-proton pulsars

    Science.gov (United States)

    Jones, P. B.

    2016-07-01

    Evidence derived with minimal assumptions from existing published observations is presented to show that an ion-proton plasma is the source of radio-frequency emission in millisecond and in normal isolated pulsars. There is no primary involvement of electron-positron pairs. This conclusion has also been reached by studies of the plasma composition based on well-established particle-physics processes in neutron stars with positive polar-cap corotational charge density. This work has been published in a series of papers which are also summarized here. It is now confirmed by simple analyses of the observed radio-frequency characteristics, and its implications for the further study of neutron stars are outlined.

  3. Ion-conducting membranes

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I.; Chen, Qingmei; Liu, Zengcai; Kutz, Robert

    2017-02-28

    An ion conducting polymeric composition mixture comprises a copolymer of styrene and vinylbenzyl-R.sub.s. R.sub.s is selected from the group consisting of imidazoliums, pyridiniums, pyrazoliums, pyrrolidiniums, pyrroliums, pyrimidiums, piperidiniums, indoliums, and triaziniums. The composition contains 10%-90% by weight of vinylbenzyl-R.sub.s. The composition can further comprise a polyolefin comprising substituted polyolefins, a polymer comprising cyclic amine groups, a polymer comprising at least one of a phenylene group and a phenyl group, a polyamide, and/or the reaction product of a constituent having two carbon-carbon double bonds. The composition can be in the form of a membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  4. Ion-proton pulsars

    CERN Document Server

    Jones, P B

    2016-01-01

    Evidence derived with minimal assumptions from existing published observations is presented to show that an ion-proton plasma is the source of radio-frequency emission in millisecond and in normal isolated pulsars. There is no primary involvement of electron-positron pairs. This conclusion has also been reached by studies of the plasma composition based on well-established particle-physics processes in neutron stars with positive polar-cap corotational charge density. This work has been published in a series of papers which are also summarized here. It is now confirmed by simple analyses of the observed radio-frequency characteristics, and its implications for the further study of neutron stars are outlined.

  5. Nanobeam production with the multicusp ion source

    Science.gov (United States)

    Lee, Y.; Ji, Q.; Leung, K. N.; Zahir, N.

    2000-02-01

    A 1.8-cm-diam multicusp ion source to be used for focused ion beam applications has been tested for Xe, He, Ne, Ar, and Kr ions. The extractable ion and electron currents were measured. The extractable ion current is similar for all these ion species except for Ne+, but the extractable electron current behaves quite differently. The multicusp ion source will be used with a combined extractor-collimator electrode system that can provide a few hundred nA of Xe+ or Kr+ ions. Ion optics computation indicates that these beams can be further focused with an electrostatic column to a beam spot size of ˜100 nm.

  6. Electron loss to continuum in near-relativistic ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, Siegbert [GSI, Darmstadt (Germany)]|[Inst. f. Kernphysik, Univ. Frankfurt (Germany); Nofal, Muaffaq [Max Planck Inst. f. Kernphysik, Heidelberg (Germany)]|[GSI, Darmstadt (Germany)]|[Inst. f. Kernphysik, Univ. Frankfurt (Germany); Stoehlker, Thomas; Fritzsche, Stefan [GSI, Darmstadt (Germany)]|[Physikal. Institut, Univ. Heidelberg (Germany); Surzhykov, Andrey; Moshammer, Robert; Ullrich, Joachim [Max Planck Inst. f. Kernphysik, Heidelberg (Germany); Kozhuharov, Christophor; Gumberidze, Alexander; Spillmann, Uwe; Reuschl, Regina; Hess, Sebastian; Trotsenko, Sergej; Bosch, Fritz; Liesen, Dieter [GSI, Darmstadt (Germany); Doerner, Reinhard [Inst. f. Kernphysik, Univ. Frankfurt (Germany); Rothard, Hermann [CIRIL, GANIL, Caen (France)

    2008-07-01

    In fast ion-atom collisions the projectile electron loss to continuum (ELC) permits to study the dynamics of ionization very close to threshold; it is a test of unparalleled sensitivity for first order theories. We have studied forward electron emission in two collision systems of different projectile Compton profile, U88+ +N2 and Sn47+ +N2 using the forward electron spectrometer at the supersonic jet-target of the ESR storage ring. We report first results for 90 AMeV U88+ and 300 AMeV Sn47+ measuring coincidences between electrons around ve=vProj and charge-exchanged projectiles having lost one electron; results are compared with theory.

  7. Fully differential cross sections for the single ionization of He by C{sup 6+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, J [Theoretical Division, Los Alamos National Laboratory, NM 87545 (United States); Pindzola, M S; Robicheaux, F [Department of Physics, Auburn University, Auburn, AL 36849 (United States); Ciappina, M F [ICFO-Institut de Ciences Fotoniques, 08860 Castelldefels (Barcelona) (Spain)

    2011-09-14

    We present fully differential cross sections for the single ionization of He by C{sup 6+} ions. A time-dependent close-coupling approach is used to describe the two-electron wavefunction in the field of the projectile for a range of impact parameters, and a Fourier transform approach is used to extract fully differential cross sections for a specific momentum transfer. Our calculations are compared to the measurements of Schulz et al (2003 Nature 422 48) and we find very good agreement in the scattering plane and good qualitative agreement in the perpendicular plane. In particular, our calculations in the perpendicular plane find a similar 'double-peak' structure in the angular distributions to those seen experimentally. We also discuss the various checks made on our calculations by comparing to a one-electron time-dependent calculation.

  8. Relativistic and QED corrections to the g factor of Li-like ions

    Science.gov (United States)

    Glazov, D. A.; Shabaev, V. M.; Tupitsyn, I. I.; Volotka, A. V.; Yerokhin, V. A.; Plunien, G.; Soff, G.

    2004-12-01

    Calculations of various corrections to the g factor of Li-like ions are presented, which result in a significant improvement of the theoretical accuracy in the region Z=6-92 . The configuration-interaction Dirac-Fock method is employed for the evaluation of the interelectronic-interaction correction of order 1/Z2 and higher. This correction is combined with the 1/Z interelectronic-interaction term derived within a rigorous QED approach. The one-electron QED correction of first order in α is obtained by employing our recent results for the self-energy term and by evaluating the vacuum-polarization contribution. The screening of QED corrections is taken into account to the leading orders in αZ and 1/Z .

  9. New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery.

    Science.gov (United States)

    Nishimura, Shin-ichi; Nakamura, Megumi; Natsui, Ryuichi; Yamada, Atsuo

    2010-10-01

    A new pyrophosphate compound Li(2)FeP(2)O(7) was synthesized by a conventional solid-state reaction, and its crystal structure was determined. Its reversible electrode operation at ca. 3.5 V vs Li was identified with the capacity of a one-electron theoretical value of 110 mAh g(-1) even for ca. 1 μm particles without any special efforts such as nanosizing or carbon coating. Li(2)FeP(2)O(7) and its derivatives should provide a new platform for related lithium battery electrode research and could be potential competitors to commercial olivine LiFePO(4), which has been recognized as the most promising positive cathode for a lithium-ion battery system for large-scale applications, such as plug-in hybrid electric vehicles.

  10. Formation of Ion Phase-Space Vortexes

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.; Armstrong, R. J.

    1984-01-01

    The formation of ion phase space vortexes in the ion two stream region behind electrostatic ion acoustic shocks are observed in a laboratory experiment. A detailed analysis demonstrates that the evolution of such vortexes is associated with ion-ion beam instabilities and a nonlinear equation for ...

  11. Ion beams in materials processing and analysis

    CERN Document Server

    Schmidt, Bernd

    2012-01-01

    This book covers ion beam application in modern materials research, offering the basics of ion beam physics and technology and a detailed account of the physics of ion-solid interactions for ion implantation, ion beam synthesis, sputtering and nano-patterning.

  12. High Resolution Scanning Ion Microscopy

    NARCIS (Netherlands)

    Castaldo, V.

    2011-01-01

    The structure of the thesis is the following. The first chapter is an introduction to scanning microscopy, where the path that led to the Focused Ion Beam (FIB) is described and the main differences between electrons and ion beams are highlighted. Chapter 2 is what is normally referred to (which I d

  13. Quantum computing with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.J.

    1998-01-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  14. Ion-selective electrodes, 3

    Energy Technology Data Exchange (ETDEWEB)

    Pungor, E. (ed.)

    1981-01-01

    Thirty-two papers which were presented at the Third Symposium on Ion-Selective Electrodes are presented in this Proceedings. These papers dealt with standardization, fabrication, chemical properties of ion-selective electrodes and their application. Selected papers have been abstracted and indexed separately for the data base. (ATT)

  15. Energetic ions in ITER plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pinches, S. D. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul-lez-Durance Cedex (France); Chapman, I. T.; Sharapov, S. E. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Lauber, Ph. W. [Max-Planck-Institut für Plasmaphysik, EURATOM-Association, Boltzmanstraße 2, D-85748 Garching (Germany); Oliver, H. J. C. [H H Wills Physics Laboratory, University of Bristol, Royal Fort, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Shinohara, K. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Tani, K. [Nippon Advanced Technology Co., Ltd, Naka, Ibaraki 311-0102 (Japan)

    2015-02-15

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma (r/a>0.5) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  16. SPS Ion Induced Desorption Experiment

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    This experiment will give a study about the induced desorption from heavy ion (Indium ion run from week 45 in SPS T4-H8 area) impacting LHC type graphite collimator. 4 different samples are located in the 4 chambers 90° one to each other: pure graphite, graphite with copper coating, graphite with NEG coating, 316LN stainless steal (reference).

  17. Hooded arc ion-source

    CERN Multimedia

    1972-01-01

    The positioning system for the hooded arc ion-source, shown prior to mounting, consists of four excentric shafts to locate the ion-source and central electrodes. It will be placed on the axis of the SC and introduced into the vacuum tank via the air locks visible in the foreground.

  18. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  19. Ion guiding in alumina capillaries

    DEFF Research Database (Denmark)

    Juhász, Z.; Sulik, B.; Biri, S.

    2009-01-01

    Transmission of a few keV impact energy Ne ions through capillaries in anodic alumina membranes has been studied with different ion counting methods using an energy dispersive electrostatic spectrometer, a multichannel plate (MCP) array and sensitive current-measurement. In the present work, we...

  20. Cryogenic silicon surface ion trap

    CERN Document Server

    Niedermayr, Michael; Kumph, Muir; Partel, Stefan; Edlinger, Johannes; Brownnutt, Michael; Blatt, Rainer

    2014-01-01

    Trapped ions are pre-eminent candidates for building quantum information processors and quantum simulators. They have been used to demonstrate quantum gates and algorithms, quantum error correction, and basic quantum simulations. However, to realise the full potential of such systems and make scalable trapped-ion quantum computing a reality, there exist a number of practical problems which must be solved. These include tackling the observed high ion-heating rates and creating scalable trap structures which can be simply and reliably produced. Here, we report on cryogenically operated silicon ion traps which can be rapidly and easily fabricated using standard semiconductor technologies. Single $^{40}$Ca$^+$ ions have been trapped and used to characterize the trap operation. Long ion lifetimes were observed with the traps exhibiting heating rates as low as $\\dot{\\bar{n}}=$ 0.33 phonons/s at an ion-electrode distance of 230 $\\mu$m. These results open many new avenues to arrays of micro-fabricated ion traps.

  1. Energetic ions in ITER plasmas

    Science.gov (United States)

    Pinches, S. D.; Chapman, I. T.; Lauber, Ph. W.; Oliver, H. J. C.; Sharapov, S. E.; Shinohara, K.; Tani, K.

    2015-02-01

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma ( r / a > 0.5 ) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  2. Analyzing ion distributions around DNA.

    Science.gov (United States)

    Lavery, Richard; Maddocks, John H; Pasi, Marco; Zakrzewska, Krystyna

    2014-07-01

    We present a new method for analyzing ion, or molecule, distributions around helical nucleic acids and illustrate the approach by analyzing data derived from molecular dynamics simulations. The analysis is based on the use of curvilinear helicoidal coordinates and leads to highly localized ion densities compared to those obtained by simply superposing molecular dynamics snapshots in Cartesian space. The results identify highly populated and sequence-dependent regions where ions strongly interact with the nucleic and are coupled to its conformational fluctuations. The data from this approach is presented as ion populations or ion densities (in units of molarity) and can be analyzed in radial, angular and longitudinal coordinates using 1D or 2D graphics. It is also possible to regenerate 3D densities in Cartesian space. This approach makes it easy to understand and compare ion distributions and also allows the calculation of average ion populations in any desired zone surrounding a nucleic acid without requiring references to its constituent atoms. The method is illustrated using microsecond molecular dynamics simulations for two different DNA oligomers in the presence of 0.15 M potassium chloride. We discuss the results in terms of convergence, sequence-specific ion binding and coupling with DNA conformation.

  3. Bundle Security Protocol for ION

    Science.gov (United States)

    Burleigh, Scott C.; Birrane, Edward J.; Krupiarz, Christopher

    2011-01-01

    This software implements bundle authentication, conforming to the Delay-Tolerant Networking (DTN) Internet Draft on Bundle Security Protocol (BSP), for the Interplanetary Overlay Network (ION) implementation of DTN. This is the only implementation of BSP that is integrated with ION.

  4. Ion sources for cyclotron applications

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.N.; Bachman, D.A.; McDonald, D.S.; Young, A.T.

    1992-07-01

    The use of a multicusp plasma generator as an ion source has many advantages. The development of both positive and negative ion beams based on the multicusp source geometry is presented. It is shown that these sources can be operated at steady state or cw mode. As a result they are very suitable for cyclotron operations.

  5. Ion bombardment of polyimide films

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, B. J.; Vasile, M. J.

    1989-07-01

    Surface modification techniques such as wet chemical etching, oxidizing flames, and plasma treatments (inert ion sputtering and reactive ion etching) have been used to change the surface chemistry of polymers and improve adhesion. With an increase in the use of polyimides for microelectronic applications, the technique of ion sputtering to enhance polymer-to-metal adhesion is receiving increased attention. For this study, the argon-ion bombardment surfaces of pyromellitic dianhydride and oxydianiline (PMDA--ODA) and biphenyl tetracarboxylic dianhydride and phenylene diamine (BPDA--PDA) polyimide films were characterized with x-ray photoelectron spectroscopy (XPS) as a function of ion dose. Graphite and high-density polyethylene were also examined by XPS for comparison of C 1/ital s/ peak width and binding-energy assignments. Results indicate that at low ion doses the surface of the polyimide does not change chemically, although adsorbed species are eliminated. At higher doses the chemical composition is altered and is dramatically reflected in the C 1/ital s/ spectra where graphiticlike structures become evident and the prominent carbonyl peak is reduced significantly. Both polyimides demonstrate similar chemical changes after heavy ion bombardment. Atomic composition of PMDA--ODA and BPDA--PDA polymers are almost identical after heavy ion bombardment.

  6. Lithium ion storage between graphenes

    Directory of Open Access Journals (Sweden)

    Chan Yue

    2011-01-01

    Full Text Available Abstract In this article, we investigate the storage of lithium ions between two parallel graphene sheets using the continuous approximation and the 6-12 Lennard-Jones potential. The continuous approximation assumes that the carbon atoms can be replaced by a uniform distribution across the surface of the graphene sheets so that the total interaction potential can be approximated by performing surface integrations. The number of ion layers determines the major storage characteristics of the battery, and our results show three distinct ionic configurations, namely single, double, and triple ion forming layers between graphenes. The number densities of lithium ions between the two graphenes are estimated from existing semi-empirical molecular orbital calculations, and the graphene sheets giving rise to the triple ion layers admit the largest storage capacity at all temperatures, followed by a marginal decrease of storage capacity for the case of double ion layers. These two configurations exceed the maximum theoretical storage capacity of graphite. Further, on taking into account the charge-discharge property, the double ion layers are the most preferable choice for enhanced lithium storage. Although the single ion layer provides the least charge storage, it turns out to be the most stable configuration at all temperatures. One application of the present study is for the design of future high energy density alkali batteries using graphene sheets as anodes for which an analytical formulation might greatly facilitate rapid computational results.

  7. RHIC heavy ion operations performance

    CERN Document Server

    Satogata, T; Ferrone, R; Pilat, F

    2006-01-01

    The Relativistic Heavy Ion Collider (RHIC) completed its fifth year of operation in 2005, colliding copper ion beams with ps=200 GeV/u and 62.4 GeV/u[1]. Previous heavy ion runs have collided gold ions at ps=130 GeV/u, 200 GeV/u, and 62.4 GeV/u[2], and deuterons and gold ions at ps=200 GeV/u[3]. This paper discusses operational performance statistics of this facility, including Cu- Cu delivered luminosity, availability, calendar time spent in physics stores, and time between physics stores. We summarize the major factors affecting operations efficiency, and characterize machine activities between physics stores.

  8. The ATLAS positive ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Bollinger, L.M.; Pardo, R.C.

    1990-01-01

    This paper reviews the design, construction status, and beam tests to date of the positive ion injector (PII) which is replacing the tandem injector for the ATLAS heavy-ion facility. PII consists of an ECR ion source on a 350 KV platform injecting a very low velocity superconducting linac. The linac is composed of an independently-phased array of superconducting four-gap interdigital resonators which accelerate over a velocity range of .006 to .05c. In finished form, PII will be able to inject ions as heavy as uranium into the existing ATLAS linac. Although at the present time little more than 50% of the linac is operational, the indenpently-phased array is sufficiently flexible that ions in the lower half of the periodic table can be accelerated and injected into ATLAS. Results of recent operational experience will be discussed. 5 refs.

  9. Logic Gates with Ion Transistors

    CERN Document Server

    Grebel, Haim

    2016-01-01

    Electronic logic gates are the basic building blocks of every computing and micro controlling system. Logic gates are made of switches, such as diodes and transistors. Ion-selective, ionic switches may emulate electronic switches [1-8]. If we ever want to create artificial bio-chemical circuitry, then we need to move a step further towards ion-logic circuitry. Here we demonstrate ion XOR and OR gates with electrochemical cells, and specifically, with two wet-cell batteries. In parallel to vacuum tubes, the batteries were modified to include a third, permeable and conductive mid electrode (the gate), which was placed between the anode and cathode in order to affect the ion flow through it. The key is to control the cell output with a much smaller biasing power, as demonstrated here. A successful demonstration points to self-powered ion logic gates.

  10. Ion chamber based neutron detectors

    Science.gov (United States)

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  11. Nanofriction in cold ion traps.

    Science.gov (United States)

    Benassi, A; Vanossi, A; Tosatti, E

    2011-01-01

    Sliding friction between crystal lattices and the physics of cold ion traps are so far non-overlapping fields. Two sliding lattices may either stick and show static friction or slip with dynamic friction; cold ions are known to form static chains, helices or clusters, depending on the trapping conditions. Here we show, based on simulations, that much could be learnt about friction by sliding, through, for example, an electric field, the trapped ion chains over a corrugated potential. Unlike infinite chains, in which the theoretically predicted Aubry transition to free sliding may take place, trapped chains are always pinned. Yet, a properly defined static friction still vanishes Aubry-like at a symmetric-asymmetric structural transition, found for decreasing corrugation in both straight and zig-zag trapped chains. Dynamic friction is also accessible in ringdown oscillations of the ion trap. Long theorized static and dynamic one-dimensional friction phenomena could thus become accessible in future cold ion tribology.

  12. Apparatus and method of dissociating ions in a multipole ion guide

    Science.gov (United States)

    Webb, Ian K.; Tang, Keqi; Smith, Richard D.; Ibrahim, Yehia M.; Anderson, Gordon A.

    2014-07-08

    A method of dissociating ions in a multipole ion guide is disclosed. A stream of charged ions is supplied to the ion guide. A main RF field is applied to the ion guide to confine the ions through the ion guide. An excitation RF field is applied to one pair of rods of the ion guide. The ions undergo dissociation when the applied excitation RF field is resonant with a secular frequency of the ions. The multipole ion guide is, but not limited to, a quadrupole, a hexapole, and an octopole.

  13. Nanosized Na{sub 4}Fe(CN){sub 6}/C composite as a low-cost and high-rate cathode material for sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Jianfeng; Zhou, Min; Cao, Yuliang; Ai, Xinping; Yang, Hanxi [Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Science, Wuhan University (China)

    2012-04-15

    A Na{sub 4}Fe(CN){sub 6}/C nanocomposite prepared simply by ball-milling Na{sub 4}Fe(CN){sub 6} with carbon powder displays a full utilization of its one-electron redox capacity, excellent cyclability, and high rate capability as a Na-storage cathode, offering a promising possibility to develop environmentally benign and low-cost Na ion batteries for large-scale electric storage applications. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Response of thermal ions to electromagnetic ion cyclotron waves

    Science.gov (United States)

    Anderson, B. J.; Fuselier, S. A.

    1994-01-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  15. Response of thermal ions to electromagnetic ion cyclotron waves

    Science.gov (United States)

    Anderson, B. J.; Fuselier, S. A.

    1994-10-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  16. Energy spread of ion beams generated in multicusp ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Sarstedt, M.; Herz, P.; Kunkel, W.B. [and others

    1995-04-01

    For the production of future microelectronics devices, various alternate methods are currently being considered to replace the presently used method of lithography with ion beam lithography. One of these methods is the Ion Projection Lithography (IPL), which aims at the possibility of projecting sub-0.25 {mu}m patterns of a stencil mask onto a wafer substrate. In order to keep the chromatic aberrations below 25 nm, an ion source which delivers a beam with energy spread of less than 3 eV is desired. For this application, multicusp ion sources are being considered. We measure the longitudinal energy spread of the plasma ions by using a two-grid electrostatic energy analyzer. The energy spread of the extracted beam is measured by a high-voltage retarding-field energy analyzer. In order to obtain the transverse ion temperature, a parallel-plate scanner is being set up to study the beam emittance. In this paper, comparisons are made for different ion source configurations.

  17. Numerical Simulation Multicomponent Ion Beam Transport form ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    MaLei; SongMingtao; ZhangZimin; CaoYun

    2003-01-01

    In order to simulate the transport of multi-components ion beam extracted from an ECR ion source, we have developed a multi-charged ion beam transport program named MCIBS 1.0. The program is dedicated to numerical simulation of the behavior of highly-charged ion beam and optimization of beam optics in transport lines and is realized on a PC with Windows user interface of Microsoft Visual Basic. Among all the ions with different charge states in the beam, the exchanges of electrons between highly charged ions and low charged ions or neutral,atoms of residual gas are taken into account by using classical Molecular Over-barrier Model and Monte Carlo method. An advanced Windows graphical interface makes it; comfortable and friendly for the user to operate in an interactive mode. The present program is used for the numerical calculation and optimization of beam optics in a transport line consisting of various magnetic elements, such as dipole magnet, quadrupole and so on. It is possible to simultaneously simulate 200,000 particles, in a transport line of 340 m at most, and show every particle orbit. Beam cross section graphics and emittance phase pictures can be also shown at any position in the transport line.

  18. Ions kinematics in an electrostatic ion beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Attia, D

    2004-06-01

    In this study, I have tried to provide a better understanding of the dynamics of ions inside an electrostatic ion beam trap. The electrostatic ion trap allows to store ions moving between two electrostatic mirrors. Although the trap has been developed already seven years ago, no direct measurement of the transversal velocity distribution of the ions has been performed. Such quantity is central for understanding the conditions under which a beam should be produced (mainly emittance) in order to be trapped by such a device. The data I have obtained during the course of this work are based on an experimental technique which relies on the direct imaging of the particles exiting the trap, as well as on numerical simulations of the ion trajectories inside the trap. I have personally been involved in the hardware development of the imaging system, the data acquisition and analysis of the data as well as il all numerical calculations presented here. These results allow us to obtain, for the first time, experimental information on the transverse phase space of the trap, and contribute to the overall understanding of the ion motion in this system. (author)

  19. Ion Rings for Magnetic Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation

  20. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  1. Development of a microwave ion source for ion implantations

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N., E-mail: Nbk-Takahashi@shi.co.jp; Murata, H.; Kitami, H.; Mitsubori, H.; Sakuraba, J.; Soga, T.; Aoki, Y.; Katoh, T. [Technology Research Center, Sumitomo Heavy Industries Ltd., Yokosuka, Kanagawa 237-8555 (Japan)

    2016-02-15

    A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P{sup +} beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P{sup +} beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH{sub 3} gas.

  2. Characterization of a DAPI-RIT-DAPI System for Gas-Phase Ion/Molecule and Ion/Ion Reactions

    Science.gov (United States)

    Lin, Ziqing; Tan, Lei; Garimella, Sandilya; Li, Linfan; Chen, Tsung-Chi; Xu, Wei; Xia, Yu; Ouyang, Zheng

    2014-01-01

    The discontinuous atmospheric pressure interface (DAPI) has been developed as a facile means for efficiently introducing ions generated at atmospheric pressure to an ion trap in vacuum [e.g., a rectilinear ion trap (RIT)] for mass analysis. Introduction of multiple beams of ions or neutral species through two DAPIs into a single RIT has been previously demonstrated. In this study, a home-built instrument with a DAPI-RIT-DAPI configuration has been characterized for the study of gas-phase ion/molecule and ion/ion reactions. The reaction species, including ions or neutrals, can be introduced from both ends of the RIT through the two DAPIs without complicated ion optics or differential pumping stages. The primary reactant ions were isolated prior to reaction and the product ions were mass analyzed after controlled reaction time period. Ion/molecule reactions involving peptide radical ions and proton-transfer ion/ion reactions have been carried out using this instrument. The gas dynamic effect due to the DAPI operation on internal energy deposition and the reactivity of peptide radical ions has been characterized. The DAPI-RIT-DAPI system also has a unique feature for allowing the ion reactions to be carried out at significantly elevated pressures (in 10-1 Torr range), which has been found to be helpful to speed up the reactions. The viability and flexibility of the DAPI-RIT-DAPI system for the study of gas-phase ion reactions have been demonstrated.

  3. Characterization of a DAPI-RIT-DAPI system for gas-phase ion/molecule and ion/ion reactions.

    Science.gov (United States)

    Lin, Ziqing; Tan, Lei; Garimella, Sandilya; Li, Linfan; Chen, Tsung-Chi; Xu, Wei; Xia, Yu; Ouyang, Zheng

    2014-01-01

    The discontinuous atmospheric pressure interface (DAPI) has been developed as a facile means for efficiently introducing ions generated at atmospheric pressure to an ion trap in vacuum [e.g., a rectilinear ion trap (RIT)] for mass analysis. Introduction of multiple beams of ions or neutral species through two DAPIs into a single RIT has been previously demonstrated. In this study, a home-built instrument with a DAPI-RIT-DAPI configuration has been characterized for the study of gas-phase ion/molecule and ion/ion reactions. The reaction species, including ions or neutrals, can be introduced from both ends of the RIT through the two DAPIs without complicated ion optics or differential pumping stages. The primary reactant ions were isolated prior to reaction and the product ions were mass analyzed after controlled reaction time period. Ion/molecule reactions involving peptide radical ions and proton-transfer ion/ion reactions have been carried out using this instrument. The gas dynamic effect due to the DAPI operation on internal energy deposition and the reactivity of peptide radical ions has been characterized. The DAPI-RIT-DAPI system also has a unique feature for allowing the ion reactions to be carried out at significantly elevated pressures (in 10(-1) Torr range), which has been found to be helpful to speed up the reactions. The viability and flexibility of the DAPI-RIT-DAPI system for the study of gas-phase ion reactions have been demonstrated.

  4. Rearrangement reactions in ion-ion and ion-atom collisions: results and problems

    Energy Technology Data Exchange (ETDEWEB)

    Presnyakov, L.P. [Lebedev Physical Institute, Moscow (Russian Federation); Tawara, H.

    1997-01-01

    Recent experimental and theoretical results are discussed for ionic collisions with large cross sections at intermediate and small energies of the relative motion. Single- and double-electron removal from H{sup -} ions in slow collisions with other ions is considered in more details. The theoretical methods are discussed from the viewpoint of general requirements of scattering theory. (author)

  5. The DCU laser ion source.

    Science.gov (United States)

    Yeates, P; Costello, J T; Kennedy, E T

    2010-04-01

    Laser ion sources are used to generate and deliver highly charged ions of various masses and energies. We present details on the design and basic parameters of the DCU laser ion source (LIS). The theoretical aspects of a high voltage (HV) linear LIS are presented and the main issues surrounding laser-plasma formation, ion extraction and modeling of beam transport in relation to the operation of a LIS are detailed. A range of laser power densities (I approximately 10(8)-10(11) W cm(-2)) and fluences (F=0.1-3.9 kJ cm(-2)) from a Q-switched ruby laser (full-width half-maximum pulse duration approximately 35 ns, lambda=694 nm) were used to generate a copper plasma. In "basic operating mode," laser generated plasma ions are electrostatically accelerated using a dc HV bias (5-18 kV). A traditional einzel electrostatic lens system is utilized to transport and collimate the extracted ion beam for detection via a Faraday cup. Peak currents of up to I approximately 600 microA for Cu(+) to Cu(3+) ions were recorded. The maximum collected charge reached 94 pC (Cu(2+)). Hydrodynamic simulations and ion probe diagnostics were used to study the plasma plume within the extraction gap. The system measured performance and electrodynamic simulations indicated that the use of a short field-free (L=48 mm) region results in rapid expansion of the injected ion beam in the drift tube. This severely limits the efficiency of the electrostatic lens system and consequently the sources performance. Simulations of ion beam dynamics in a "continuous einzel array" were performed and experimentally verified to counter the strong space-charge force present in the ion beam which results from plasma extraction close to the target surface. Ion beam acceleration and injection thus occur at "high pressure." In "enhanced operating mode," peak currents of 3.26 mA (Cu(2+)) were recorded. The collected currents of more highly charged ions (Cu(4+)-Cu(6+)) increased considerably in this mode of operation.

  6. Ion clearing in an ERL

    Science.gov (United States)

    Hoffstaetter, Georg H.; Liepe, Matthias

    2006-02-01

    The rest-gas in the beam-pipe of a particle accelerator is readily ionized by effects like collisions, synchrotron radiation and field emission. Positive ions are attracted to electron beams and create a nonlinear potential in the vicinity of the beam which can lead to beam halo, particle loss, optical errors or transverse and longitudinal instabilities. In an energy recovery linac (ERL) where beam-loss has to be minimal, and where beam positions and emittances have to be very stable in time, these ion effects have to be avoided. Here we investigate three measures of avoiding ion accumulation: (a) A long gap between linac bunch trains that allows ions to drift out of the beam region, a measure regularly applied in linacs; (b) a short ion clearing gap in the beam that leads to a time varying beam potential and produces large excited oscillations of ions around the electron beam, a measure regularly applied in storage rings; (c) Clearing electrodes that create a sufficient voltage to draw ions out of the beam potential, a measure used for DC electron beams and for antiproton beams. For the parameters of the X-ray ERL planned at Cornell University we show that method (a) cannot be applied, method (b) is technically cumbersome, and (c) should be most easily applicable.

  7. Electrically Switched Cesium Ion Exchange

    Energy Technology Data Exchange (ETDEWEB)

    JPH Sukamto; ML Lilga; RK Orth

    1998-10-23

    This report discusses the results of work to develop Electrically Switched Ion Exchange (ESIX) for separations of ions from waste streams relevant to DOE site clean-up. ESIX combines ion exchange and electrochemistry to provide a selective, reversible method for radionuclide separation that lowers costs and minimizes secondary waste generation typically associated with conventional ion exchange. In the ESIX process, an electroactive ion exchange film is deposited onto. a high surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. As a result, the production of secondary waste is minimized, since the large volumes of solution associated with elution, wash, and regeneration cycles typical of standard ion exchange are not needed for the ESIX process. The document is presented in two parts: Part I, the Summary Report, discusses the objectives of the project, describes the ESIX concept and the approach taken, and summarizes the major results; Part II, the Technology Description, provides a technical description of the experimental procedures and in-depth discussions on modeling, case studies, and cost comparisons between ESIX and currently used technologies.

  8. LHC Report: Ion Age

    CERN Multimedia

    John Jowett for the LHC team

    2013-01-01

    The LHC starts the New Year facing a new challenge: proton-lead collisions in the last month before the shutdown in mid-February.    Commissioning this new and almost unprecedented mode of collider operation is a major challenge both for the LHC and its injector chain. Moreover, it has to be done very quickly to achieve a whole series of physics goals, requiring modifications of the LHC configuration, in a very short time. These include a switch of the beam directions halfway through the run, polarity reversals of the ALICE spectrometer magnet and Van der Meer scans.    The Linac3 team kept the lead source running throughout the end-of-year technical stop, and recovery of the accelerator complex was very quick. New proton and lead beams were soon ready, with a bunch filling pattern that ensures they will eventually match up in the LHC. The LEIR machine has even attained a new ion beam intensity record.  On Friday 11 January the first single bunches o...

  9. Semiconductor Ion Implanters

    Science.gov (United States)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at 7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at 6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing `only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around 2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  10. The Pickup Ion Composition Spectrometer

    Science.gov (United States)

    Gilbert, Jason A.; Zurbuchen, Thomas H.; Battel, Steven

    2016-06-01

    Observations of newly ionized atoms that are picked up by the magnetic field in the expanding solar wind contain crucial information about the gas or dust compositions of their origins. The pickup ions (PUIs) are collected by plasma mass spectrometers and analyzed for their density, composition, and velocity distribution. In addition to measurements of PUIs from planetary sources, in situ measurements of interstellar gas have been made possible by spectrometers capable of differentiating between heavy ions of solar and interstellar origin. While important research has been done on these often singly charged ions, the instruments that have detected many of them were designed for the energy range and ionic charge states of the solar wind and energized particle populations, and not for pickup ions. An instrument optimized for the complete energy and time-of-flight characterization of pickup ions will unlock a wealth of data on these hitherto unobserved or unresolved PUI species. The Pickup Ion Composition Spectrometer (PICSpec) is one such instrument and can enable the next generation of pickup ion and isotopic mass composition measurements. By combining a large-gap time-of-flight-energy sensor with a -100 kV high-voltage power supply for ion acceleration, PUIs will not only be above the detection threshold of traditional solid-state energy detectors but also be resolved sufficiently in time of flight that isotopic composition can be determined. This technology will lead to a new generation of space composition instruments, optimized for measurements of both heliospheric and planetary pickup ions.

  11. Ion beam measurements at the superconducting ECR ion source SECRAL

    Energy Technology Data Exchange (ETDEWEB)

    Maeder, Jan; Rossbach, Jon; Lang, Ralf; Maimone, Fabio; Spaedtke, Peter; Tinschert, Klaus [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Sun, Liangting; Cao, Yun; Zhao, Hongwei [Institute of Modern Physics, Lanzhou, GS (China)

    2009-08-15

    Measurement of the charge-state distribution, the beam profile, the beam emittance of the named ion source are presented. Furthermore computer simulations of the magnetic flux-density distribution in this source are described. (HSI)

  12. Streaming instability in negative ion plasma

    Science.gov (United States)

    Kumar, Ajith; Mathew, Vincent

    2017-09-01

    The streaming instability in an unmagnetized negative ion plasma has been studied by computational and theoretical methods. A one dimensional electrostatic Particle In Cell Simulation and fluid dynamical description of negative ion plasma showed that, if the positive ions are having a relative streaming velocity, four different wave modes corresponding to Langmuir wave, fast and slow ion waves and ion acoustic waves are produced. Below a critical wave number, instead of two distinct fast and slow ion waves, we observed a coupled wave mode. The value of the critical wave number is strongly determined by the ion streaming velocity. The thermal velocities of electrons and ions influence the growth rate of instability.

  13. Ion Exchange and Liquid Column Chromatography.

    Science.gov (United States)

    Walton, Harold F.

    1980-01-01

    Emphasizes recent advances in principles and methodology in ion exchange and chromatography. Two tables list representative examples for inorganic ions and organic compounds. Cites 544 references. (CS)

  14. Laser ion source studies at CERN

    CERN Document Server

    Tambini, J

    1995-01-01

    The plasma produced when a powerful laser pulse is focused onto a target surface in vacuum can provide a copious source of highly charged ions. Ions can then be extracted from the plasma to form a high current, short pulse length ion beam. Experimental laser ion sources have been the subject of investigation in medical physics and particle accelerator applications; a laser ion source is an option for the injection system of heavy ions for the Large Hadron Collider at CERN where a high intensity lead ion beam is required. This paper describes work carried out at CERN to develop a CO2 laser ion source.

  15. Plasma ion sources and ion beam technology inmicrofabrications

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Lili [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 μm-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25

  16. Ion channels in neuronal survival

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The study of ion channels represents one of the most active fields in neuroscience research in China.In the last 10 years,active research in various Chinese neuroscience institutions has sought to understand the mechanisms responsible for sensory processing,neural development and neurogenesis,neural plasticity,as well as pathogenesis.In addition,extensive studies have been directed to measure ion channel activity,structure-function relationships,as well as many other biophysical and biochemical properties.This review focuses on the progress achieved in the investigation of ion channels in neuronal survival during the past 10 years in China.

  17. Ion Outflow at Mars Using MEX Ion And Electron Data

    Science.gov (United States)

    Fowler, C. M.; Andersson, L.; Frahm, R. A.; Lundin, R. N.

    2013-12-01

    It is widely believed that Mars once hosted a significant amount of water on its surface that is no longer present. Identifying and constraining various escape channels for the Martian atmosphere into space is critical in helping determine the evolution of the planet and its water content. Previous authors have looked for significant ion escape at Mars. Using higher energy (10-50eV) ion data from the ESA MEX spacecraft, significant ion escape was observed in the northern hemisphere but not in the southern. One possible explanation that has been put forward to explain this is that the magnetic crustal fields located primarily in the southern hemisphere at Mars trap ions and recycle them back to the planet as Mars rotates from day to night. Here we propose a different escape channel previously not considered for ions. Estimations suggest that the proposed channel contains at least three times as many ions in the southern hemisphere as in the northern. During strong solar wind compression events this channel could potentially contain as many ions as observed flowing tail ward in nominal solar wind conditions. Data also suggest that differences between northern and southern hemispheres are in part dependent on the ion energies analyzed and provide information regarding the relative importance of physical processes present there. Particle tracing simulations support the data analysis and demonstrate the possibility of this escape channel. The results and implications of these studies are presented along with discussion of the importance of various factors involved in the data analysis and simulations.

  18. Fully variational average atom model with ion-ion correlations.

    Science.gov (United States)

    Starrett, C E; Saumon, D

    2012-02-01

    An average atom model for dense ionized fluids that includes ion correlations is presented. The model assumes spherical symmetry and is based on density functional theory, the integral equations for uniform fluids, and a variational principle applied to the grand potential. Starting from density functional theory for a mixture of classical ions and quantum mechanical electrons, an approximate grand potential is developed, with an external field being created by a central nucleus fixed at the origin. Minimization of this grand potential with respect to electron and ion densities is carried out, resulting in equations for effective interaction potentials. A third condition resulting from minimizing the grand potential with respect to the average ion charge determines the noninteracting electron chemical potential. This system is coupled to a system of point ions and electrons with an ion fixed at the origin, and a closed set of equations is obtained. Solution of these equations results in a self-consistent electronic and ionic structure for the plasma as well as the average ionization, which is continuous as a function of temperature and density. Other average atom models are recovered by application of simplifying assumptions.

  19. Ion coalescence of neutron encoded TMT 10-plex reporter ions.

    Science.gov (United States)

    Werner, Thilo; Sweetman, Gavain; Savitski, Maria Fälth; Mathieson, Toby; Bantscheff, Marcus; Savitski, Mikhail M

    2014-04-01

    Isobaric mass tag-based quantitative proteomics strategies such as iTRAQ and TMT utilize reporter ions in the low mass range of tandem MS spectra for relative quantification. The recent extension of TMT multiplexing to 10 conditions has been enabled by utilizing neutron encoded tags with reporter ion m/z differences of 6 mDa. The baseline resolution of these closely spaced tags is possible due to the high resolving power of current day mass spectrometers. In this work we evaluated the performance of the TMT10 isobaric mass tags on the Q Exactive Orbitrap mass spectrometers for the first time and demonstrated comparable quantification accuracy and precision to what can be achieved on the Orbitrap Elite mass spectrometers. However, we discovered, upon analysis of complex proteomics samples on the Q Exactive Orbitrap mass spectrometers, that the proximate TMT10 reporter ion pairs become prone to coalescence. The fusion of the different reporter ion signals into a single measurable entity has a detrimental effect on peptide and protein quantification. We established that the main reason for coalescence is the commonly accepted maximum ion target for MS2 spectra of 1e6 on the Q Exactive instruments. The coalescence artifact was completely removed by lowering the maximum ion target for MS2 spectra from 1e6 to 2e5 without any losses in identification depth or quantification quality of proteins.

  20. Main magnetic focus ion source with the radial extraction of ions

    CERN Document Server

    Ovsyannikov, V P

    2015-01-01

    In the main magnetic focus ion source, atomic ions are produced in the local ion trap created by the rippled electron beam in focusing magnetic field. Here we present the novel modification of the room-temperature hand-size device, which allows the extraction of ions in the radial direction perpendicular to the electron beam across the magnetic field. The detected X-ray emission evidences the production of Ir$^{44+}$ and Ar$^{16+}$ ions. The ion source can operate as the ion trap for X-ray spectroscopy, as the ion source for the production of highly charged ions and also as the ion source of high brightness.

  1. Influence of GTP/GDP and magnesium ion on the solvated structure of the protein FtsZ: a molecular dynamics study.

    Science.gov (United States)

    Jamous, Carla; Basdevant, Nathalie; Ha-Duong, Tap

    2014-01-01

    We present here a structural analysis of ten extensive all-atom molecular dynamics simulations of the monomeric protein FtsZ in various binding states. Since the polymerization and GTPase activities of FtsZ depend on the nature of a bound nucleotide as well as on the presence of a magnesium ion, we studied the structural differences between the average conformations of the following five systems: FtsZ-Apo, FtsZ-GTP, FtsZ-GDP, FtsZ-GTP-Mg, and FtsZ-GDP-Mg. The in silico solvated average structure of FtsZ-Apo significantly differs from the crystallographic structure 1W59 of FtsZ which was crystallized in a dimeric form without nucleotide and magnesium. The simulated Apo form of the protein also clearly differs from the FtsZ structures when it is bound to its ligand, the most important discrepancies being located in the loops surrounding the nucleotide binding pocket. The three average structures of FtsZ-GTP, FtsZ-GDP, and FtsZ-GTP-Mg are overall similar, except for the loop T7 located at the opposite side of the binding pocket and whose conformation in FtsZ-GDP notably differs from the one in FtsZ-GTP and FtsZ-GTP-Mg. The presence of a magnesium ion in the binding pocket has no impact on the FtsZ conformation when it is bound to GTP. In contrast, when the protein is bound to GDP, the divalent cation causes a translation of the nucleotide outwards the pocket, inducing a significant conformational change of the loop H6-H7 and the top of helix H7.

  2. Sampling of ions at atmospheric pressure: ion transmission and ion energy studied by simulation and experiment

    Science.gov (United States)

    Große-Kreul, Simon; Hübner, Simon; Benedikt, Jan; von Keudell, Achim

    2016-04-01

    Mass spectrometry of ions from atmospheric pressure plasmas is a challenging diagnostic method that has been applied to a large variety of cold plasma sources in the past. However, absolute densities can usually not be obtained, moreover, the process of sampling of ions and neutrals from such a plasma inherently influences the measured composition. These issues are studied in this contribution by a combination of experimental and numerical methods. Different numerical domains are sequentially coupled to calculate the ion transmission from the source to the mass analyzer. It is found that the energy of the sampled ions created by a radio-frequency microplasma operated in a He-N2 mixture at atmospheric pressure is of the order of 0.1 eV and that it depends linearly on the ion mass in good agreement with the expectation for seeded particles accelerated in a supersonic expansion. Moreover, the measured ion energy distribution from an afterglow of an atmospheric pressure plasma can be reproduced on basis of the particle trajectories in the sampling system. Eventually, an estimation of the absolute flux of ions to the detector is deduced.

  3. Oxidation of methionine residues in polypeptide ions via gas-phase ion/ion chemistry.

    Science.gov (United States)

    Pilo, Alice L; McLuckey, Scott A

    2014-06-01

    The gas-phase oxidation of methionine residues is demonstrated here using ion/ion reactions with periodate anions. Periodate anions are observed to attach in varying degrees to all polypeptide ions irrespective of amino acid composition. Direct proton transfer yielding a charge-reduced peptide ion is also observed. In the case of methionine and, to a much lesser degree, tryptophan-containing peptide ions, collisional activation of the complex ion generated by periodate attachment yields an oxidized peptide product (i.e., [M + H + O](+)), in addition to periodic acid detachment. Detachment of periodic acid takes place exclusively for peptides that do not contain either a methionine or tryptophan side chain. In the case of methionine-containing peptides, the [M + H + O](+) product is observed at a much greater abundance than the proton transfer product (viz., [M + H](+)). Collisional activation of oxidized Met-containing peptides yields a signature loss of 64 Da from the precursor and/or product ions. This unique loss corresponds to the ejection of methanesulfenic acid from the oxidized methionine side chain and is commonly used in solution-phase proteomics studies to determine the presence of oxidized methionine residues. The present work shows that periodate anions can be used to 'label' methionine residues in polypeptides in the gas phase. The selectivity of the periodate anion for the methionine side chain suggests several applications including identification and location of methionine residues in sequencing applications.

  4. Ion bombardment in RF photoguns

    Energy Technology Data Exchange (ETDEWEB)

    Pozdeyev,E.; Kayran, D.; Litvinenko, V. N.

    2009-05-04

    A linac-ring eRHIC design requires a high-intensity CW source of polarized electrons. An SRF gun is viable option that can deliver the required beam. Numerical simulations presented elsewhere have shown that ion bombardment can occur in an RF gun, possibly limiting lifetime of a NEA GaAs cathode. In this paper, we analytically solve the equations of motion of ions in an RF gun using the ponderomotive potential of the Rf field. We apply the method to the BNL 1/2-cell SRF photogun and demonstrate that a significant portion of ions produced in the gun can reach the cathode if no special precautions are taken. Also, the paper discusses possible mitigation techniques that can reduce the rate of ion bombardment.

  5. Emissive Ion Thruster -EMIT Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A propulsion system is proposed that is based on acceleration of ions emitted from a thin, solid-state electrochemical ceramic membrane. This technology would...

  6. Ion Atmosphere Near Nucleic Acids

    Science.gov (United States)

    Mohanty, Udayan

    2015-03-01

    We will discuss all­atom structure based model that explicitly includes ionic effects, i.e., electrostatic interactions with explicit magnesium ions and implicit KCl that allow us to carry out explicit solvent molecular dynamics simulations of adenine riboswitch and SAM­I riboswitch. Our predictions for the excess ions around the riboswitch, and the magnesium­RNA interaction free energy will be compared with experimental data. We will provide upper and lower bounds for preferential interaction coefficient, a statistical mechanical quantity that is a measure of excess ion atmosphere around a polyelectrolyte. We will discuss the role of surface charge density of mobile ions from added salt in determining the counterion release entropy associated with chain collapse. Finally, the Poisson's ratio of oligomeric DNA will be determined. (Work done in collaboration with R. Hayes, J. Noel, P. Whitford, S. Hennelly, J. Onuchic, and K. Sanbonmatsu.) Work supported by fellowship from John Simon Guggenheim Memorial Foundation.

  7. Quantum logic with molecular ions

    CERN Document Server

    Wolf, Fabian; Heip, Jan C; Gebert, Florian; Shi, Chunyan; Schmidt, Piet O

    2015-01-01

    Laser spectroscopy of cold and trapped molecular ions is a powerful tool for fundamental physics, including the determination of fundamental constants, the laboratory test for their possible variation, and the search for a possible electric dipole moment of the electron. Optical clocks based on molecular ions sensitive to some of these effects are expected to achieve uncertainties approaching the $10^{-18}$ level. While the complexity of molecular structure facilitates these applications, the absence of cycling transitions poses a challenge for direct laser cooling, quantum state control, and detection. Previously employed state detection techniques based on photo-dissociation or chemical reactions are destructive and therefore inefficient. Here we experimentally demonstrate non-destructive state detection of a single trapped molecular ion through its strong Coulomb coupling to a well-controlled co-trapped atomic ion. An algorithm based on a state-dependent optical dipole force(ODF) changes the internal state...

  8. Ion Cyclotron Resonance Facility (ICR)

    Data.gov (United States)

    Federal Laboratory Consortium — his facility is charged with developing and exploiting the unique capabilities of Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry, and leads the...

  9. Ion-ion Recombination and Chemiion Concentrations In Aircraft Exhaust

    Science.gov (United States)

    Turco, R. P.; Yu, F.

    Jet aircraft emit large quantities of ultrafine volatile aerosols, as well as soot parti- cles, into the environment. To determine the long-term effects of these emissions, a better understanding of the mechanisms that control particle formation and evolution is needed, including the number and size dispersion. A recent explanation for aerosol nucleation in a jet wake involves the condensation of sulfuric acid vapor, and cer- tain organic compounds, onto charged molecular clusters (chemiions) generated in the engine combustors (Yu and Turco, 1997). Massive charged aggregates, along with sulfuric acid and organic precursor vapors, have been detected in jet plumes under cruise conditions. In developing the chemiion nucleation theory, Yu and Turco noted that ion-ion recombination in the engine train and jet core should limit the chemiion emission index to 1017/kg-fuel. This value is consistent with ion-ion recombination coefficients of 1×10-7 cm3/s over time scales of 10-2 s. However, the evolution of the ions through the engine has not been adequately studied. The conditions at the combustor exit are extreme-temperatures approach 1500 K, and pressures can reach 30 atmospheres. In this presentation, we show that as the combustion gases expand and cool, two- and three-body ion-ion recombination processes control the chemiion concentration. The concepts of mutual neutralization and Thomson recombination are first summarized, and appropriate temperature and pressure dependent recombination rate coefficients are derived for the aircraft problem. A model for ion losses in jet exhaust is then formulated using an "invariance" principle discussed by Turco and Yu (1997) in the context of a coagulating aerosol in an expanding plume. This recombina- tion model is applied to estimate chemiion emission indices for a range of operational engine conditions. The predicted ion emission rates are found to be consistent with observations. We discuss the sources of variance in chemiion

  10. Separators for Lithium Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    G.C.Li; H.P.Zhang; Y.P.Wu

    2007-01-01

    1 Results A separator for rechargeable batteries is a microporous membrane placed between electrodes of opposite polarity, keeping them apart to prevent electrical short circuits and at the same time allowing rapid transport of lithium ions that are needed to complete the circuit during the passage of current in an electrochemical cell, and thus plays a key role in determining the performance of the lithium ion battery. Here provides a comprehensive overview of various types of separators for lithium io...

  11. Calcium ion channel and epilepsy

    Institute of Scientific and Technical Information of China (English)

    Yudan Lü; Weihong Lin; Dihui Ma

    2006-01-01

    OBJECTIVE: To review the relationship between calcium ion channel and epilepsy for well investigating the pathogenesis of epilepsy and probing into the new therapeutic pathway of epilepsy.DATA SOURCES: A computer-based online research Calcium ion channel and epilepsy related articles published between January 1994 and December 2006 in the CKNI and Wanfang database with the key words of "calcium influxion, epilepsy, calcium-channel blocker". The language was limited to Chinese. At the same time,related articles published between January 1993 and December 2006 in Pubmed were searched for on online with the key words of "calcium influxion, epilepsy" in English.STUDY SELECTION: The materials were selected firstly. Inclusive criteria: ① Studies related to calcium ion channel and the pat1hogenesis of epilepsy. ② Studies on the application of calcium ion channel blocker in the treatment of epilepsy. Exclusive criteria: repetitive or irrelated studies.DATA EXTRACTION: According to the criteria, 123 articles were retrieved and 93 were excluded due to repetitive or irrelated studies. Altogether 30 articles met the inclusive criteria, 11 of them were about the structure and characters of calcium ion channel, 10 about calcium ion channel and the pathogenesis of epilepsy and 9 about calcium blocker and the treatment of epilepsy.DATA SYNTHESIS: Calcium ion channels mainly consist of voltage dependent calcium channel and receptor operated calcium channel. Depolarization caused by voltage gating channel-induced influxion is the pathological basis of epileptic attack, and it is found in many studies that many anti-epileptic drugs have potential and direct effect to rivalizing voltage-dependent calcium ion channel.CONCLUSION: Calcium influxion plays an important role in the seizure of epilepsy. Some calcium antagonists seen commonly are being tried in the clinical therapy of epilepsy that is being explored, not applied in clinical practice. If there are enough evidences to

  12. Ion selectivity of graphene nanopores

    OpenAIRE

    Rollings, Ryan C.; Kuan, Aaron T.; Golovchenko, Jene A.

    2016-01-01

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores prefer...

  13. Ion association in natural brines

    Science.gov (United States)

    Truesdell, A.H.; Jones, B.F.

    1969-01-01

    Natural brines, both surface and subsurface, are highly associated aqueous solutions. Ion complexes in brines may be ion pairs in which the cation remains fully hydrated and the bond between the ions is essentially electrostatic, or coordination complexes in which one or more of the hydration water molecules are replaced by covalent bonds to the anion. Except for Cl-, the major simple ions in natural brines form ion pairs; trace and minor metals in brines form mainly coordination complexes. Limitations of the Debye-Hu??ckel relations for activity coefficients and lack of data on definition and stability of all associated species in concentrated solutions tend to produce underestimates of the degree of ion association, except where the brines contain a very high proportion of Cl-. Data and calculations on closed basin brines of highly varied composition have been coupled with electrode measurements of single-ion activities in an attempt to quantify the degree of ion association. Such data emphasize the role of magnesium complexes. Trace metal contents of closed basin brines are related to complexes formed with major anions. Alkaline sulfo- or chlorocarbonate brines (western Great Basin) carry significant trace metal contents apparently as hydroxides or hydroxy polyions. Neutral high chloride brines (Bonneville Basin) are generally deficient in trace metals. With a knowledge of the thermodynamic properties of a natural water, many possible reactions with other phases (solids, gases, other liquids) may be predicted. A knowledge of these reactions is particularly important in the study of natural brines which may be saturated with many solid phases (silicates, carbonates, sulfates, etc.), which may have a high pH and bring about dissolution of other phases (silica, amphoteric hydroxides, CO2, etc.), and which because of their high density may form relatively stable interfaces with dilute waters. ?? 1969.

  14. Heavy ion therapy: Bevalac epoch

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R.

    1993-10-01

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered. (GHH)

  15. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  16. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  17. Ion Bernstein wave heating research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masayuki.

    1992-03-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW's that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.

  18. Ion Bernstein wave heating research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masayuki

    1992-03-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW`s low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much_lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW`s that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW`s can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.

  19. Ion mixing and phase diagrams

    Science.gov (United States)

    Lau, S. S.; Liu, B. X.; Nicolet, M.-A.

    1983-05-01

    Interactions induced by ion irradiation are generally considered to be non-equilibrium processes, whereas phase diagrams are determined by phase equilibria. These two entities are seemingly unrelated. However, if one assumes that quasi-equilibrium conditions prevail after the prompt events, subsequent reactions are driven toward equilibrium by thermodynamical forces. Under this assumption, ion-induced reactions are related to equilibrium and therefore to phase diagrams. This relationship can be seen in the similarity that exists in thin films between reactions induced by ion irradiation and reactions induced by thermal annealing. In the latter case, phase diagrams have been used to predict the phase sequence of stable compound formation, notably so in cases of silicide formation. Ion-induced mixing not only can lead to stable compound formation, but also to metastable alloy formation. In some metal-metal systems, terminal solubilities can be greatly extended by ion mixing. In other cases, where the two constituents of the system have different crystal structures, extension of terminal solubility from both sides of the phase diagram eventually becomes structurally incompatible and a glassy (amorphous) mixture can form. The composition range where this bifurcation is likely to occur is in the two-phase regions of the phase diagram. These concepts are potentially useful guides in selecting metal pairs that from metallic glasses by ion mixing. In this report, phenomenological correlation between stable (and metastable) phase formation and phase diagram is discussed in terms of recent experimental data.

  20. Response of thermal ions to electromagnetic ion cyclotron waves

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B.J. [Johns Hopkins Univ., Laurel, MD (United States); Fuselier, S.A. [Lockheed Palo Alto Research Lab., CA (United States)

    1994-10-01

    Electromagnetic ion cyclotron waves generated by 10-50 keV protons in the Earth`s equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. The authors examine H{sup +} and He{sup +} distribution functions from {approx} 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicularly heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90{degrees} pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He{sup +} temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He{sup +} ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He{sup +} distributions are consistent with a gyroresonant interaction off the equator. The concentration of He{sup +} relative to H{sup +} is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He{sup +} accounts for the apparent increase in relative He{sup +} concentration by increasing the proportion of He{sup +} detected by the ion instrument. 35 refs., 8 figs., 1 tab.

  1. Multicusp sources for ion beam lithography applications

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.N.; Herz, P.; Kunkel, W.B.; Lee, Y.; Perkins, L.; Pickard, D.; Sarstedt, M.; Weber, M.; Williams, M.D.

    1995-05-01

    Application of the multicusp source for Ion Projection Lithography is described. It is shown that the longitudinal energy spread of the positive ions at the extraction aperture can be reduced by employing a magnetic filter. The advantages of using volume-produced H{sup {minus}} ions for ion beam lithography is also discussed.

  2. Multicusp sources for ion beam lithography applications

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.N.; Herz, P.; Kunkel, W.B.; Lee, Y.; Perkins, L.; Pickard, D.; Sarstedt, M.; Weber, M.; Williams, M.D. [Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States)

    1995-11-01

    Application of the multicusp source for ion projection lithography is described. It is shown that the longitudinal energy spread of the positive ions at the extraction aperture can be reduced by employing a magnetic filter. The advantages of using volume-produced H{sup {minus}} ions for ion beam lithography are also discussed. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}

  3. IonControl v. 1.0

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-15

    The IonControl software is a set of python scripts and Field-Programmable-Gate-Array (FPGA) code designed to control a trapped ion research experiment. It enables one to generate the pulses (time resolution: 20ns) necessary to control the quantum states of trapped ions and allows one to collect and analyze measurement results from trapped ion systems.

  4. Controllability of intense-laser ion acceleration

    Institute of Scientific and Technical Information of China (English)

    Shigeo; Kawata; Toshihiro; Nagashima; Masahiro; Takano; Takeshi; Izumiyama; Daiki; Kamiyama; Daisuke; Barada; Qing; Kong; Yan; Jun; Gu; Ping; Xiao; Wang; Yan; Yun; Ma; Wei; Ming; Wang; Wu; Zhang; Jiang; Xie; Huiran; Zhang; Dongbo; Dai

    2014-01-01

    An ion beam has the unique feature of being able to deposit its main energy inside a human body to kill cancer cells or inside material. However, conventional ion accelerators tend to be huge in size and cost. In this paper, a future intenselaser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching, and the ion particle energy control. In the study, each component is designed to control the ion beam quality by particle simulations. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical-density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser–target interaction.

  5. Orthogonal ion injection apparatus and process

    Science.gov (United States)

    Kurulugama, Ruwan T; Belov, Mikhail E

    2014-04-15

    An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.

  6. A sensitive fluorescent sensor of lanthanide ions

    CERN Document Server

    Bekiari, V; Lianos, P

    2003-01-01

    A fluorescent probe bearing a diazostilbene chromophore and a benzo-15-crown-5 ether moiety is a very efficient sensor of lanthanide ions. The ligand emits strong fluorescence only in the presence of specific ions, namely lanthanide ions, while the emission wavelength is associated with a particular ion providing high sensitivity and resolution.

  7. Identification and Manipulations of Impurity Ions in Magnesium Ion Plasma

    Science.gov (United States)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; Dubin, D. H. E.

    2011-10-01

    A nominally ``pure'' Mg24+ ion plasma accumulates impurity ions over periods of hours to days by charge exchange with residual background gas (P ~10-10 Torr) in a Penning-Malmberg trap. We use thermal cyclotron spectroscopy (TCS) to identify ion impurities, and observe spatial separation at low temperatures. TCS consists of applying rf bursts at the impurity cyclotron frequencies, with LIF measurement of the majority species heating due to collisions with the heated impurites. We find that for short bursts the heating is proportional to the burst amplitude squared, and to the square of the burst duration, as predicted by a simple single particle model. We spatially separate the impurities from the Magnesium ions by two different techniques: a) With laser cooling to T ions at larger radii. We typically observe a 5-20% ``hole'' in the center of the Mg plasma where the ``dark'' lower-mass impurities reside; and we directly observe the Mg25 and Mg26 at the outer edge of the Mg24 column. b) Resonant laser pressure in the z-direction pushes on the Mg24, and the species separates longitudinally when this laser force is greater than the mass-dependent centrifugal force. Supported by NSF PHY-0903877 and DOE DE-SC0002451.

  8. Observations of strong ion-ion correlations in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T., E-mail: ma8@llnl.gov; Pak, A.; Landen, O. L.; Le Pape, S.; Turnbull, D.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Fletcher, L.; Galtier, E.; Hastings, J.; Lee, H. J.; Nagler, B.; Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Chapman, D. A. [Plasma Physics Group, AWE plc, Reading RG7 4PR (United Kingdom); Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Falcone, R. W. [Physics Department, University of California, Berkeley, California 94720 (United States); Fortmann, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Gericke, D. O. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Gregori, G.; White, T. G. [University of Oxford, Clarendon Laboratory, Oxford OX1 3PU (United Kingdom); Neumayer, P. [Extreme Matter Institute, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Vorberger, J. [Max Planck Institut für Physik komplexer Systeme, Nötthnizer Straße 38, 01187 Dresden (Germany); and others

    2014-05-15

    Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ∼3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4Å{sup −1}. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are however in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. We have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.

  9. Ion trapping for quantum information processing

    Institute of Scientific and Technical Information of China (English)

    WAN Jin-yin; WANG Yu-zhu; LIU Liang

    2007-01-01

    In this paper we have reviewed the recent pro-gresses on the ion trapping for quantum information process-ing and quantum computation. We have first discussed the basic principle of quantum information theory and then fo-cused on ion trapping for quantum information processing.Many variations, especially the techniques of ion chips, have been investigated since the original ion trap quantum compu-tation scheme was proposed. Full two-dimensional control of multiple ions on an ion chip is promising for the realization of scalable ion trap quantum computation and the implemen-tation of quantum networks.

  10. Ion beam analysis fundamentals and applications

    CERN Document Server

    Nastasi, Michael; Wang, Yongqiang

    2015-01-01

    Ion Beam Analysis: Fundamentals and Applications explains the basic characteristics of ion beams as applied to the analysis of materials, as well as ion beam analysis (IBA) of art/archaeological objects. It focuses on the fundamentals and applications of ion beam methods of materials characterization.The book explains how ions interact with solids and describes what information can be gained. It starts by covering the fundamentals of ion beam analysis, including kinematics, ion stopping, Rutherford backscattering, channeling, elastic recoil detection, particle induced x-ray emission, and nucle

  11. Modification of graphene by ion beam

    Science.gov (United States)

    Gawlik, G.; Ciepielewski, P.; Jagielski, J.; Baranowski, J.

    2017-09-01

    Ion induced defect generation in graphene was analyzed using Raman spectroscopy. A single layer graphene membrane produced by chemical vapor deposition (CVD) on copper foil and then transferred on glass substrate was subjected to helium, carbon, nitrogen, argon and krypton ions bombardment at energies from the range 25 keV to 100 keV. A density of ion induced defects and theirs mean size were estimated by using Raman measurements. Increasing number of defects generated by ion with increase of ion mass and decrease of ion energy was observed. Dependence of ion defect efficiency (defects/ion) on ion mass end energy was proportional to nuclear stopping power simulated by SRIM. No correlation between ion defect efficiency and electronic stopping power was observed.

  12. Dual mode ion mobility spectrometer and method for ion mobility spectrometry

    Science.gov (United States)

    Scott, Jill R [Idaho Falls, ID; Dahl, David A [Idaho Falls, ID; Miller, Carla J [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2007-08-21

    Ion mobility spectrometer apparatus may include an ion interface that is operable to hold positive and negative ions and to simultaneously release positive and negative ions through respective positive and negative ion ports. A first drift chamber is operatively associated with the positive ion port of the ion interface and encloses an electric field therein. A first ion detector operatively associated with the first drift chamber detects positive ions from the first drift chamber. A second drift chamber is operatively associated with the negative ion port of the ion interface and encloses an electric field therein. A second ion detector operatively associated with the second drift chamber detects negative ions from said second drift chamber.

  13. Desorption of cluster ions from solid Ne by low-energy ion impact.

    Science.gov (United States)

    Tachibana, T; Fukai, K; Koizumi, T; Hirayama, T

    2010-12-01

    We investigated Ne(+) ions and Ne(n)(+) (n = 2-20) cluster ions desorbed from the surface of solid Ne by 1.0 keV Ar(+) ion impact. Kinetic energy analysis shows a considerably narrower energy distribution for Ne(n)(+) (n ≥ 3) ions than for Ne(n)(+) (n = 1, 2) ions. The dependence of ion yields on Ne film thickness indicates that cluster ions (n ≥ 3) are desorbed only from relatively thick films. We conclude that desorbed ions grow into large cluster ions during the outflow of deep bulk atoms to the vacuum.

  14. Telecloning Quantum States with Trapped Ions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We propose a scheme for telecloning quantum states with trapped ions. The scheme is based on a single ion interacting with a single laser pulse. In the protocol, an ion is firstly measured to determine whether the telecloning succeeds or not, and then another ion is detected to complete the whole procedure. The required experimental techniques are within the scope of what can be obtained in the ion-trap setup.

  15. Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves

    Science.gov (United States)

    Khazanov, George V.

    2002-01-01

    A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.

  16. DIFFUSIVITY OF ARRE EARTH ION IN POROUS ION EXCHANGE RESINS

    Institute of Scientific and Technical Information of China (English)

    LingDaren; LiuYucheng; 等

    1997-01-01

    The self-diffusion of Eu3+ ion in porous resins D72 and D751 was studied by isotope exchange reaction.Applying Kataoka's bidisperse pore model,the intraparticle effective diffusivity De were resolved into a solid diffusivity Dg and a macropore diffusivity Dp.The experiments show that De.Dp and Dg all increase with the increase of reaction temperature;the response Dp and Dg of D751 resin is smaller than that of D72 resin;the diffusivity of Eu3+ ion in solution is larger than Dp,which leads to the conclusion that the diffusion of ion in the pore of resin can not completely be equal to that in solution.

  17. Novel Ion Trap Design for Strong Ion-Cavity Coupling

    Directory of Open Access Journals (Sweden)

    Alejandro Márquez Seco

    2016-04-01

    Full Text Available We present a novel ion trap design which facilitates the integration of an optical fiber cavity into the trap structure. The optical fibers are confined inside hollow electrodes in such a way that tight shielding and free movement of the fibers are simultaneously achievable. The latter enables in situ optimization of the overlap between the trapped ions and the cavity field. Through numerical simulations, we systematically analyze the effects of the electrode geometry on the trapping characteristics such as trap depths, secular frequencies and the optical access angle. Additionally, we simulate the effects of the presence of the fibers and confirm the robustness of the trapping potential. Based on these simulations and other technical considerations, we devise a practical trap configuration that isviable to achieve strong coupling of a single ion.

  18. Proton-bound cluster ions in ion mobility spectrometry.

    Science.gov (United States)

    Ewing, R G; Eiceman, G A; Stone, J A

    1999-10-28

    Gaseous oxygen and nitrogen bases, both singly and as binary mixtures, have been introduced into ion mobility spectrometers to study the appearance of protonated molecules, and proton-bound dimers and trimers. At ambient temperature it was possible to simultaneously observe, following the introduction of molecule A, comparable intensities of peaks ascribable to the reactant ion (H2O)nH+, the protonated molecule AH+ and AH+ H2O, and the symmetrical proton bound dimer A2H+. Mass spectral identification confirmed the identifications and also showed that the majority of the protonated molecules were hydrated and that the proton-bound dimers were hydrated to a much lesser extent. No significant peaks ascribable to proton-bound trimers were obtained no matter how high the sample concentration. Binary mixtures containing molecules A and B, in some cases gave not only the peaks unique to the individual compounds but also peaks due to asymmetrical proton bound dimers AHB+. Such ions were always present in the spectra of mixtures of oxygen bases but were not observed for several mixtures of oxygen and nitrogen bases. The dimers, which were not observable, notable for their low hydrogen bond strengths, must have decomposed in their passage from the ion source to the detector, i.e. in a time less than approximately 5 ms. When the temperature was lowered to -20 degrees C, trimers, both homogeneous and mixed, were observed with mixtures of alcohols. The importance of hydrogen bond energy, and hence operating temperature, in determining the degree of solvation of the ions that will be observed in an ion mobility spectrometer is stressed. The possibility is discussed that a displacement reaction involving ambient water plays a role in the dissociation.

  19. Ion trap system for radioactive ions at JYFL

    Energy Technology Data Exchange (ETDEWEB)

    Kolhinen, V.S.; Jokinen, A.; Rinta-Antila, S.; Szerypo, J. [University of Jyvaeskylae, Department of Physics (Finland); Aeystoe, J. [CERN, Geneva (Switzerland)

    2001-07-01

    The goal of the ion trap project in Jyvaeskylae is to improve the quality of radioactive beams at IGISOL (Ion Guide Isotope Separator On-Line), in terms of transverse emittance, energy spread and purity. This improvement is achieved with an aid of an RFQ cooler/buncher and a mass-selective cylindrical Penning trap (mass resolving power up to 10{sup 5}). Their final purpose is to produce cooled isobarically pure beams of exotic radioactivities mainly of exotic neutron-rich isotopes from fission (including refractory elements). In the Penning trap ions are confined in three dimensions in a superposition of static quadrupole electric and homogeneous magnetic fields. The magnetic field confines the ions in two dimensions in a plane perpendicular to the field direction. A confinement in the third, magnetic field direction (parallel to the trap axis) is done by a quadrupole electric field. The Penning trap system in Jyvaeskylae (JYFLTRAP) will contain two cylindrical Penning traps placed inside the same superconducting magnet (B=7 T). The first, purification trap, will accept cooled (continuous or bunched) beams from the RFQ cooler/buncher and perform the isobaric purification. The latter is - done using a combination of a buffer gas cooling and an azimuthal quadrupole RF-field providing mass- dependent centering of ions. This, in turn, allows mass-selective ejection of ions in short pulses. Clean monoisotopic bunched beams will be delivered for the nuclear spectroscopy studies, collinear laser spectroscopy experiments and precise nuclear mass measurements (10{sup -7} precision). The latter will be performed in the second, precision Penning trap (author)

  20. Maskless, resistless ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qing [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O2+, BF2+, P+ etc., for surface modification and doping applications. With optimized source condition, around 85% of BF2+, over 90% of O2+ and P+ have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He+ beam is as high as 440 A/cm2 • Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O2+ ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O2+ ions with the dose of 1015 cm-2. The oxide can then serve as a hard mask for patterning of the Si film. The

  1. Maskless, resistless ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features

  2. Marine Toxins Targeting Ion Channels

    Directory of Open Access Journals (Sweden)

    Hugo R. Arias

    2006-04-01

    Full Text Available Abstract: This introductory minireview points out the importance of ion channels for cell communication. The basic concepts on the structure and function of ion channels triggered by membrane voltage changes, the so-called voltage-gated ion channels (VGICs, as well as those activated by neurotransmitters, the so-called ligand-gated ion channel (LGICs, are introduced. Among the most important VGIC superfamiles, we can name the voltage-gated Na+ (NaV, Ca2+ (CaV, and K+ (KV channels. Among the most important LGIC super families, we can include the Cys-loop or nicotinicoid, the glutamate-activated (GluR, and the ATP-activated (P2XnR receptor superfamilies. Ion channels are transmembrane proteins that allow the passage of different ions in a specific or unspecific manner. For instance, the activation of NaV, CaV, or KV channels opens a pore that is specific for Na+, Ca2+, or K+, respectively. On the other hand, the activation of certain LGICs such as nicotinic acetylcholine receptors, GluRs, and P2XnRs allows the passage of cations (e.g., Na+, K+, and/or Ca2+, whereas the activation of other LGICs such as type A γ-butyric acid and glycine receptors allows the passage of anions (e.g., Cl− and/or HCO3−. In this regard, the activation of NaV and CaV as well as ligand-gated cation channels produce membrane depolarization, which finally leads to stimulatory effects in the cell, whereas the activation of KV as well as ligand-gated anion channels induce membrane hyperpolarization that finally leads to inhibitory effects in the cell. The importance of these ion channel superfamilies is emphasized by considering their physiological functions throughout the body as well as their pathophysiological implicance in several neuronal diseases. In this regard, natural molecules, and especially marine toxins, can be potentially used as modulators (e.g., inhibitors or prolongers of ion channel functions to treat or to alleviate a specific

  3. Industrial ion sources broadbeam gridless ion source technology

    CERN Document Server

    Zhurin, Viacheslav V

    2012-01-01

    Due to the large number of uses of ion sources in academia and industry, those who utilize these sources need up to date and coherent information to keep themselves abreast of developments and options, and to chose ideal solutions for quality and cost-effectiveness. This book, written by an author with a strong industrial background and excellent standing, is the comprehensive guide users and developers of ion sources have been waiting for. Providing a thorough refresher on the physics involved, this resource systematically covers the source types, components, and the operational parameters.

  4. Characterization of ISOLDE ion source and ion source chemistry

    CERN Document Server

    Barbeau, Marion

    2014-01-01

    This report presents results of measurements made with the ISOLDE OFF-LINE mass separator [1]. The first part shows measurements of the ionization characteristics of noble gases in a VADIS ion source. The goal of the measurements was to determine the dependency of the extractable current of first and second noble gases ions with the electron energy. In the second part, investigation on in-target chemistry are presented. Here, the effect of injected sulfur hexafluoride ($SF_6$) on the release of oxygen from aluminium oxide ($Al_2 O_3$) was studied.

  5. Cold Ion Escape from Mars

    Science.gov (United States)

    Fränz, M.; Dubinin, E.; Wei, Y.; Morgan, D.; Andrews, D.; Barabash, S.; Lundin, R.; Fedorov, A.

    2013-09-01

    It has always been challenging to observe the flux of ions with energies of less than 10eV escaping from the planetary ionospheres. We here report on new measurements of the ionospheric ion flows at Mars by the ASPERA-3 experiment on board Mars Express in combination with the MARSIS radar experiment. We first compare calculations of the mean ion flux observed by ASPERA-3 alone with previously published results. We then combine observations of the cold ion velocity by ASPERA-3 with observations of the cold plasma density by MARSIS since ASPERA-3 misses the cold core of the ion distribution. We show that the mean density of the nightside plasma observed by MARSIS is about two orders higher than observed by ASPERA-3 (Fig.1). Combining both datasets we show that the main escape channel is along the shadow boundary on the tailside of Mars (Fig. 2). At a distance of about 0.5 R_M the flux settles at a constant value (Fig. 3) which indicates that about half of the transterminator ionospheric flow escapes from the planet. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime.

  6. Heavy-ion nucleus scattering

    CERN Document Server

    Rahman, M A; Haque, S

    2003-01-01

    Heavy ion-nucleus scattering is an excellent laboratory to probe high spin phenomena, exotic nuclei and for the analysis of various exit channels. The Strong Absorption Model or the generalized diffraction models, which are semi-classical in nature, have been employed in the description of various heavy ion-nucleus scattering phenomena with reasonable success. But one needs to treat the deflection function (scattering angles) quantum mechanically in the Wave Mechanical picture for the appropriate description of the heavy-ion nucleus scattering phenomena. We have brought the mathematics for the cross-section of the heavy-ion nucleus scattering to an analytic expression taking account of the deflection function (scattering angles) quantum mechanically. sup 9 Be, sup 1 sup 6 O, sup 2 sup 0 Ne and sup 3 sup 2 S heavy-ion beams elastic scattering from sup 2 sup 8 Si, sup 2 sup 4 Mg and sup 4 sup 0 Ca target nuclei at various projectile energies over the range 20-151 MeV have been analysed in terms of the 2-paramet...

  7. Cholesterol binding to ion channels

    Directory of Open Access Journals (Sweden)

    Irena eLevitan

    2014-02-01

    Full Text Available Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions.

  8. Results of heavy ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R. [Lawrence Berkeley Lab., CA (United States). Life Sciences Div.

    1994-04-01

    The potential of heavy ion therapy for clinical use in cancer therapy stems from the biological parameters of heavy charged particles, and their precise dose localization. Biologically, carbon, neon and other heavy ion beams (up to about silicon) are clinically useful in overcoming the radioresistance of hypoxic tumors, thus increasing biological effectiveness relative to low-LET x-ray or electron beams. Cells irradiated by heavy ions show less variation in cell-cycle related radiosensitivity and decreased repair of radiation injury. The physical parameters of these heavy charged particles allow precise delivery of high radiation doses to tumors while minimizing irradiation of normal tissues. Clinical use requires close interaction between radiation oncologists, medical physicists, accelerator physicists, engineers, computer scientists and radiation biologists.

  9. Nonlinear ion trap stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, Bogdan M; Visan, Gina G, E-mail: bmihal@infim.r [Institute for Laser, Plasma and Radiation Physics (INFLPR), Atomistilor Str. Nr. 409, 077125 Magurele-Bucharest, Jud. Ilfov (Romania)

    2010-09-01

    This paper investigates the dynamics of an ion confined in a nonlinear Paul trap. The equation of motion for the ion is shown to be consistent with the equation describing a damped, forced Duffing oscillator. All perturbing factors are taken into consideration in the approach. Moreover, the ion is considered to undergo interaction with an external electromagnetic field. The method is based on numerical integration of the equation of motion, as the system under investigation is highly nonlinear. Phase portraits and Poincare sections show that chaos is present in the associated dynamics. The system of interest exhibits fractal properties and strange attractors. The bifurcation diagrams emphasize qualitative changes of the dynamics and the onset of chaos.

  10. Micron-focused ion beamlets

    Science.gov (United States)

    Chowdhury, Abhishek; Bhattacharjee, Sudeep

    2010-05-01

    A multiple beam electrode system (MBES) is used to provide focused ion beamlets of elements from a compact microwave plasma. In this study, a honeycomb patterned plasma electrode with micron size apertures for extracting ion beamlets is investigated. The performance of the MBES is evaluated with the help of two widely adopted and commercially available beam simulation tools, AXCEL-INP and SIMION, where the input parameters are obtained from our experiments. A simple theoretical model based upon electrostatic ray optics is employed to compare the results of the simulations. It is found that the results for the beam focal length agree reasonably well. Different geometries are used to optimize the beam spot size and a beam spot ˜5-10 μm is obtained. The multiple ion beamlets will be used to produce microfunctional surfaces on soft matter like polymers. Additionally, the experimental set-up and plans are presented in the light of above applications.

  11. Materials Science with Ion Beams

    CERN Document Server

    Bernas, Harry

    2010-01-01

    This book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.

  12. Tachyon Physics with Trapped Ions

    CERN Document Server

    Lee, Tony E; Cheng, Xiao-Hang; Lamata, Lucas; Solano, Enrique

    2015-01-01

    It has been predicted that particles with imaginary mass, called tachyons, would be able to travel faster than the speed of light. So far, there has not been any experimental evidence for tachyons in either natural or engineered systems. Here, we propose how to experimentally simulate Dirac tachyons with trapped ions. Quantum measurement on a Dirac particle simulated by a trapped ion causes it to have an imaginary mass so that it may travel faster than the effective speed of light. We show that a Dirac tachyon must have spinor-motion entanglement in order to be superluminal. We also show that it exhibits significantly more Klein tunneling than a normal Dirac particle. We provide numerical simulations with realistic ion systems and show that our scheme is feasible with current technology.

  13. Miniature Bipolar Electrostatic Ion Thruster

    Science.gov (United States)

    Hartley, Frank T.

    2006-01-01

    The figure presents a concept of a bipolar miniature electrostatic ion thruster for maneuvering a small spacecraft. The ionization device in the proposed thruster would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several mega-volts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. In a thruster-based on this concept, one or more propellant gases would be introduced into such a membrane ionizer. Unlike in larger prior ion thrusters, all of the propellant molecules would be ionized. This thruster would be capable of bipolar operation. There would be two accelerator grids - one located forward and one located aft of the membrane ionizer. In one mode of operation, which one could denote the forward mode, positive ions leaving the ionizer on the backside would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid. Electrons leaving the ionizer on the front side would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In another mode of operation, which could denote the reverse mode, the polarities of the voltages applied to the accelerator grids and to the electrodes of the membrane ionizer would be the reverse of those of the forward mode. The reversal of electric fields would cause the ion and electrons to be ejected in the reverse of their forward mode directions, thereby giving rise to thrust in the direction opposite that of the forward mode.

  14. Improvement of penning ion sources

    CERN Document Server

    Bizyukov, A A; Kashaba, A Y; Sereda, K N

    2000-01-01

    It is shown that the loss of a longitudinal symmetry of magnetic field distribution in respect to the centre of the Penning discharge system causes change of electrostatic potential distribution in the discharge gap leads to appearance of asymmetry of current magnitude to the cathodes of the Penning cell,change of magnitude of current density and energy distribution of the ion beam extracted in a longitudinal direction.The use of an inhomogeneous magnetic field which is longitudinally asymmetrical concerning electrodes of the system allows to increase current efficiency of Penning ion sources from 0,2 to 0,55.

  15. Hydration of highly charged ions.

    Science.gov (United States)

    Hofer, Thomas S; Weiss, Alexander K H; Randolf, Bernhard R; Rode, Bernd M

    2011-08-01

    Based on a series of ab initio quantum mechanical charge field molecular dynamics (QMCF MD) simulations, the broad spectrum of structural and dynamical properties of hydrates of trivalent and tetravalent ions is presented, ranging from extreme inertness to immediate hydrolysis. Main group and transition metal ions representative for different parts of the periodic system are treated, as are 2 threefold negatively charged anions. The results show that simple predictions of the properties of the hydrates appear impossible and that an accurate quantum mechanical simulation in cooperation with sophisticated experimental investigations seems the only way to obtain conclusive results.

  16. Rotation sensing with trapped ions

    CERN Document Server

    Campbell, W C

    2016-01-01

    We present a protocol for using trapped ions to measure rotations via matter-wave Sagnac interferometry. The trap allows the interferometer to enclose a large area in a compact apparatus through repeated round-trips in a Sagnac geometry. We show how a uniform magnetic field can be used to close the interferometer over a large dynamic range in rotation speed and measurement bandwidth without losing contrast. Since this technique does not require the ions to be confined in the Lamb-Dicke regime, thermal states with many phonons should be sufficient for operation.

  17. Nanobeam production with the multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Ji, Q. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Leung, K. N. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Zahir, N. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    2000-02-01

    A 1.8-cm-diam multicusp ion source to be used for focused ion beam applications has been tested for Xe, He, Ne, Ar, and Kr ions. The extractable ion and electron currents were measured. The extractable ion current is similar for all these ion species except for Ne{sup +}, but the extractable electron current behaves quite differently. The multicusp ion source will be used with a combined extractor-collimator electrode system that can provide a few hundred nA of Xe{sup +} or Kr{sup +} ions. Ion optics computation indicates that these beams can be further focused with an electrostatic column to a beam spot size of {approx}100 nm. (c) 2000 American Institute of Physics.

  18. Ion Implantation and Synthesis of Materials

    CERN Document Server

    Nastasi, Michael

    2006-01-01

    Ion implantation is one of the key processing steps in silicon integrated circuit technology. Some integrated circuits require up to 17 implantation steps and circuits are seldom processed with less than 10 implantation steps. Controlled doping at controlled depths is an essential feature of implantation. Ion beam processing can also be used to improve corrosion resistance, to harden surfaces, to reduce wear and, in general, to improve materials properties. This book presents the physics and materials science of ion implantation and ion beam modification of materials. It covers ion-solid interactions used to predict ion ranges, ion straggling and lattice disorder. Also treated are shallow-junction formation and slicing silicon with hydrogen ion beams. Topics important for materials modification, such as ion-beam mixing, stresses, and sputtering, are also described.

  19. Resonance methods in quadrupole ion traps

    Science.gov (United States)

    Snyder, Dalton T.; Peng, Wen-Ping; Cooks, R. Graham

    2017-01-01

    The quadrupole ion trap is widely used in the chemical physics community for making measurements on dynamical systems, both intramolecular (e.g. ion fragmentation reactions) and intermolecular (e.g. ion/molecule reactions). In this review, we discuss linear and nonlinear resonances in quadrupole ion traps, an understanding of which is critical for operation of these devices and interpretation of the data which they provide. The effect of quadrupole field nonlinearity is addressed, with important implications for promoting fragmentation and achieving unique methods of mass scanning. Methods that depend on ion resonances (i.e. matching an external perturbation with an ion's induced frequency of motion) are discussed, including ion isolation, ion activation, and ion ejection.

  20. Ion channels in development and cancer.

    Science.gov (United States)

    Bates, Emily

    2015-01-01

    Ion channels have emerged as regulators of developmental processes. In model organisms and in people with mutations in ion channels, disruption of ion channel function can affect cell proliferation, cell migration, and craniofacial and limb patterning. Alterations of ion channel function affect morphogenesis in fish, frogs, mammals, and flies, demonstrating that ion channels have conserved roles in developmental processes. One model suggests that ion channels affect proliferation and migration through changes in cell volume. However, ion channels have not explicitly been placed in canonical developmental signaling cascades until recently. This review gives examples of ion channels that influence developmental processes, offers a potential underlying molecular mechanism involving bone morphogenetic protein (BMP) signaling, and finally explores exciting possibilities for manipulating ion channels to influence cell fate for regenerative medicine and to impact disease.

  1. Ion-Beam-Excited Electrostatic Ion Cyclotron Instability

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....

  2. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    P Kumar; G Rodrigues; U K Rao; C P Safvan; D Kanjilal; A Roy

    2002-11-01

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion beams ranging from a few keV to a few MeV for research in materials sciences, atomic and molecular physics is described. One of the important features of this facility is the availability of relatively large currents of multiply charged positive ions from an electron cyclotron resonance (ECR) source placed entirely on a high voltage platform. All the electronic and vacuum systems related to the ECR source including 10 GHz ultra high frequency (UHF) transmitter, high voltage power supplies for extractor and Einzel lens are placed on a high voltage platform. All the equipments are controlled using a personal computer at ground potential through optical fibers for high voltage isolation. Some of the experimental facilities available are also described.

  3. Fast ion-atom and ion-molecule collisions

    CERN Document Server

    2013-01-01

    The principal goal of this book is to provide state-of-the art coverage of the non-relativistic three- and four-body theories at intermediate and high energy ion-atom and ion-molecule collisions. The focus is on the most frequently studied processes: electron capture, ionization, transfer excitation and transfer ionization. The content is suitable both for graduate students and experienced researchers. For these collisions, the literature has seen enormous renewal of activity in the development and applications of quantum-mechanical theories. This subject is of relevance in several branches of science and technology, like accelerator-based physics, the search for new sources of energy and high temperature fusion of light ions. Other important applications are in life sciences via medicine, where high-energy ion beams are used in radiotherapy for which a number of storage ring accelerators are in full operation, under construction or planned to be built worldwide. Therefore, it is necessary to review this fiel...

  4. Ion-Beam-Excited, Electrostatic, Ion Cyclotron Instability

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....

  5. Combining Coarse-Grained Protein Models with Replica-Exchange All-Atom Molecular Dynamics

    CERN Document Server

    Wabik, Jacek; Gront, Dominik; Kouza, Maksim; Kolinski, Andrzej

    2013-01-01

    We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems.

  6. Planarization of a surface of nanoporous silica-titania composition by atomic-molecular chemical assembly

    Science.gov (United States)

    Luchinin, V. V.; Panov, M. F.; Romanov, A. A.

    2017-05-01

    The processes involved in the planarization of the surface of nanoporous SiO2 by the atomicmolecular deposition of nanoscale TiO2 films were studied in regimes with different degrees of penetration of TiO2 into SiO2 nanopores. The technological process parameters that correspond to different regimes of surface planarization were examined. The degree of penetration of TiO2 into SiO2 nanopores was monitored using reflection ellipsometry by measuring the depth distribution of the refraction index within the two-layer model.

  7. Combining Coarse-Grained Protein Models with Replica-Exchange All-Atom Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Andrzej Koliński

    2013-05-01

    Full Text Available We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems.

  8. Refinement of protein structure homology models via long, all-atom molecular dynamics simulations.

    Science.gov (United States)

    Raval, Alpan; Piana, Stefano; Eastwood, Michael P; Dror, Ron O; Shaw, David E

    2012-08-01

    Accurate computational prediction of protein structure represents a longstanding challenge in molecular biology and structure-based drug design. Although homology modeling techniques are widely used to produce low-resolution models, refining these models to high resolution has proven difficult. With long enough simulations and sufficiently accurate force fields, molecular dynamics (MD) simulations should in principle allow such refinement, but efforts to refine homology models using MD have for the most part yielded disappointing results. It has thus far been unclear whether MD-based refinement is limited primarily by accessible simulation timescales, force field accuracy, or both. Here, we examine MD as a technique for homology model refinement using all-atom simulations, each at least 100 μs long-more than 100 times longer than previous refinement simulations-and a physics-based force field that was recently shown to successfully fold a structurally diverse set of fast-folding proteins. In MD simulations of 24 proteins chosen from the refinement category of recent Critical Assessment of Structure Prediction (CASP) experiments, we find that in most cases, simulations initiated from homology models drift away from the native structure. Comparison with simulations initiated from the native structure suggests that force field accuracy is the primary factor limiting MD-based refinement. This problem can be mitigated to some extent by restricting sampling to the neighborhood of the initial model, leading to structural improvement that, while limited, is roughly comparable to the leading alternative methods.

  9. Combining coarse-grained protein models with replica-exchange all-atom molecular dynamics.

    Science.gov (United States)

    Wabik, Jacek; Kmiecik, Sebastian; Gront, Dominik; Kouza, Maksim; Koliński, Andrzej

    2013-05-10

    We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems.

  10. Lipid Models for United-Atom Molecular Dynamics Simulations of Proteins.

    Science.gov (United States)

    Kukol, Andreas

    2009-03-10

    United-atom force fields for molecular dynamics (MD) simulations provide a higher computational efficiency, especially in lipid membrane simulations, with little sacrifice in accuracy, when compared to all-atom force fields. Excellent united-atom lipid models are available, but in combination with depreciated protein force fields. In this work, a united-atom model of the lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine has been built with standard parameters of the force field GROMOS96 53a6 that reproduces the experimental area per lipid of a lipid bilayer within 3% accuracy to a value of 0.623 ± 0.011 nm(2) without the assumption of a constant surface area or the inclusion of surface pressure. In addition, the lateral self-diffusion constant and deuterium order parameters of the acyl chains are in agreement with experimental data. Furthermore, models for 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) result in areas per lipid of 0.625 nm(2) (DMPC), 0.693 nm(2) (POPC), and 0.700 nm(2) (POPG) from 40 ns MD simulations. Experimental lateral self-diffusion coefficients are reproduced satisfactorily by the simulation. The lipid models can form the basis for molecular dynamics simulations of membrane proteins with current and future versions of united-atom protein force fields.

  11. Atoms, molecules and photons An introduction to atomic-, molecular- and quantum-physics

    CERN Document Server

    Demtröder, Wolfgang

    2006-01-01

    This introduction to Atomic and Molecular Physics explains how our present model of atoms and molecules has been developed over the last two centuries both by many experimental discoveries and, from the theoretical side, by the introduction of quantum physics to the adequate description of micro-particles. It illustrates the wave model of particles by many examples and shows the limits of classical description. The interaction of electromagnetic radiation with atoms and molecules and its potential for spectroscopy is outlined in more detail and in particular lasers as modern spectroscopic tools are discussed more thoroughly. Many examples and problems with solutions are offered to encourage readers to actively engage in experimentation.

  12. Characterization of Nucleic Acid Compaction with Histone-Mimic Nanoparticles through All-Atom Molecular Dynamics.

    Science.gov (United States)

    Nash, Jessica A; Singh, Abhishek; Li, Nan K; Yingling, Yaroslava G

    2015-12-22

    The development of nucleic acid (NA) based nanotechnology applications rely on the efficient packaging of DNA and RNA. However, the atomic details of NA-nanoparticle binding remains to be comprehensively characterized. Here, we examined how nanoparticle and solvent properties affect NA compaction. Our large-scale, all-atom simulations of ligand-functionalized gold nanoparticle (NP) binding to double stranded NAs as a function of NP charge and solution salt concentration reveal different responses of RNA and DNA to cationic NPs. We demonstrate that the ability of a nanoparticle to bend DNA is directly correlated with the NPs charge and ligand corona shape, where more than 50% charge neutralization and spherical shape of the NP ligand corona ensured the DNA compaction. However, NP with 100% charge neutralization is needed to bend DNA almost as efficiently as the histone octamer. For RNA in 0.1 M NaCl, even the most highly charged nanoparticles are not capable of causing bending due to charged ligand end groups binding internally to the major groove of RNA. We show that RNA compaction can only be achieved through a combination of highly charged nanoparticles with low salt concentration. Upon interactions with highly charged NPs, DNA bends through periodic variation in groove widths and depths, whereas RNA bends through expansion of the major groove.

  13. Topology, Localization, and Quantum Information in Atomic, Molecular and Optical Systems

    Science.gov (United States)

    2014-05-07

    Vab δa + δb + Vab −(δa + δb) + Vab R2 R1 S1 S2 a S3 S4 b ta, tb Hab Ha = δaτ z a + taτ... Vab = V13 − V14 − V23 + V24 τ za = S z 1 = −Sz2 Hab Hab 249 R1, R2 Vab 1= 0 ta/b 1= 0 τ z δa/b " ta/b √ t2a + δ 2 a, √ t2b + δ 2 b ! Vab ! |ta − tb...c + Vbdτ z b τ z d µ V (r) ∼ 1/r 1/r3 250 V (r) ∼ 1/rβ Vab = V13 − V14 − V23 + V24 = ( 1 Rβ13 − 1 Rβ14 ) + ( 1 Rβ24 − 1 Rβ23 ) = ( 1 |1R2 + 1r4 −

  14. Interatomic Coulombic electron capture in atomic, molecular, and quantum dot systems

    Directory of Open Access Journals (Sweden)

    Bande Annika

    2015-01-01

    Full Text Available The interatomic Coulombic electron capture (ICEC process has recently been predicted theoretically for clusters of atoms and molecules. For an atom A capturing an electron e(ε it competes with the well known photorecombination, because in an environment of neutral or anionic neighboring atoms B, A can transfer its excess energy in the ultrafast ICEC process to B which is then ionized. The cross section for e(ε + A + B → A− + B+ + e(ε′ has been obtained in an asymptotic approximation based on scattering theory for several clusters [1,2]. It was found that ICEC starts dominating the PR for distances among participating species of nanometers and lower. Therefore, we believe that the ICEC process might be of importance in the atmosphere, in biological systems, plasmas, or in nanostructured materials. As an example for the latter, ICEC has been investigated by means of electron dynamics in a model potential for semiconductor double quantum dots (QDs [3]. In the simplest case one QD captures an electron while the outgoing electron is emitted from the other. The reaction probability for this process was found to be relatively large.

  15. An integrated, cross-disciplinary study of soil hydrophobicity at atomic, molecular, core and landscape scales

    Science.gov (United States)

    Matthews, G. Peter; Doerr, Stefan; Van Keulen, Geertje; Dudley, Ed; Francis, Lewis; Whalley, Richard; Gazze, Andrea; Hallin, Ingrid; Quinn, Gerry; Sinclair, Kat; Ashton, Rhys

    2017-04-01

    Soil hydrophobicity can lead to reduced soil fertility and heightened flood risk caused by increased run-off. Soil hydrophobicity is a well-known phenomenon when induced by natural events such as wildfires and anthropogenic causes including adding organic wastes or hydrocarbon contaminants. This presentation concerns a much more subtle effect - the naturally occurring changes between hydrophilic and hydrophobic states caused by periods of wetness and drought. Although subtle, they nevertheless affect vast areas of soil, and so their effects can be very significant, and are predicted to increase under climate change conditions. To understand the effect, a major interdisciplinary study has been commissioned by the UK's Natural Environment Research Council (NERC) to investigate soil hydrophobicity over length scales ranging from atomic through molecular, core and landscape scale. We present the key findings from the many publications currently in preparation. The programme is predicated on the hypothesis that changes in soil protein abundance and localization, induced by variations in soil moisture and temperature, are crucial driving forces for transitions between hydrophobic and hydrophilic conditions at soil particle surfaces, and that these effects can be meaningfully upscaled from molecular to landscape scale. Three soils were chosen based on the severity of hydrophobicity that can be achieved in the field: severe to extreme (natural rough pasture, Wales), intermediate to severe (pasture, Wales), and subcritical (managed research grassland, Rothamsted Research, England). The latter is already highly characterised so was also used as a control. Hydrophobic/ hydrophilic transitions were determined from water droplet penetration times. Scientific advances in the following five areas will be described: (i) the identification of these soil proteins by proteomic methods, using novel separation methods which reduces interference by humic acids, and allows identification by ESI and MALDI TOF mass spectrometry and database searches, (ii) the examination of such proteins, which form ordered hydrophobic ridges, and measurement of their elasticity, stickiness and hydrophobicity at nano- to microscale using atomic force microscopy adapted for the rough surfaces of soil particles, (iii) the novel use of a picoliter goniometer to show hydrophobic effects at a 1 micron diameter droplet level, which avoids the averaging over soil cores and particles evident in microliter goniometry, with which the results are compared, (iv) measurements at core scale using water retention and wicking experiments, and (v) the modelling and upscaling of the results from molecular to core scale using the PoreXpert void network model of dynamic wetting and Haines jumps. An explanation will also be given as to how the results will be further upscaled by incorporation into the JULES hydrological model of the UK Meteorological Office, used to predict flooding for different soil types and usage.

  16. All-atom molecular dynamics insights on preQ1 riboswitch aptamer

    Science.gov (United States)

    Gong, Zhou; Zhao, Yunjie; Chen, Changjun; Xiao, Yi

    2012-02-01

    Recently, a series of experiments have focused on two types of preQ1 riboswitch with known smallest aptamer. One of them is from Bacillus subtilis, which have been discussed before. The other one comes from T. tengcongensis, and Jenkins et al recently release its crystal structure in both ligand-bound and free state. These two types of riboswitch aptamer have similar structures but totally different functions. Consequently, contrast studies of these two preQ1 riboswitches will help us to understand the regulation function of riboswitch better. Here, we study the dynamical properties of two types of preQ1 riboswitches using molecular dynamics simulation. We find that the unfolding pathway of the two preQ1 aptamer domains in bound state are both hierarchical and have an intermediate state. We believe that such conformation would be a good candidate structure for ligand binding. On the other hand, in the absent of ligand, the preQ1 riboswitch from Bacillus subtilis can only form the stable state with P1-L3 triplex, while the preQ1 riboswitch from T. tengcongensis can form the conformation with pseudoknot shape. We suggest that such intermediate structures may perform regulation functions in the absent of ligand.

  17. Soil hydrophobicity - relating effects at atomic, molecular, core and national scales

    Science.gov (United States)

    Matthews, Peter; Doerr, Stefan; Van Keulen, Geertje; Dudley, Ed; Francis, Lewis; Whalley, Richard; Gazze, Andrea; Hallin, Ingrid; Quinn, Gerry; Sinclair, Kat; Ashton, Rhys

    2016-04-01

    The detrimental impacts of soil hydrophobicity include increased runoff, erosion and flooding, reduced biomass production, inefficient use of irrigation water and preferential leaching of pollutants. Its impacts may exacerbate flood risk associated with more extreme drought and precipitation events predicted with UK climate change scenarios. The UK's Natural Environment Research Council (NERC) has therefore funded a major research programme to investigate soil hydrophobicity over length scales ranging from atomic through molecular, core and landscape scale. This presentation gives an overview of the findings to date. The programme is predicated on the hypothesis that changes in soil protein abundance and localization, induced by variations in soil moisture and temperature, are crucial driving forces for transitions between hydrophobic and hydrophilic conditions at soil particle surfaces. Three soils were chosen based on the severity of hydrophobicity that can be achieved in the field: severe to extreme (Cefn Bryn, Gower, Wales), intermediate to severe (National Botanical Garden, Wales), and subcritical (Park Grass, Rothamsted Research near London). The latter is already highly characterised so was also used as a control. Hydrophobic/ hydrophilic transitions were measured from water droplet penetration times. Scientific advances in the following five areas will be described: (i) the identification of these soil proteins by proteomic methods, using a novel separation method which reduces interference by humic acids, and allows identification by ESI and MALDI TOF mass spectrometry and database searches, (ii) the examination of such proteins, which form ordered hydrophobic ridges, and measurement of their elasticity, stickiness and hydrophobicity at nano- to microscale using atomic force microscopy adapted for the rough surfaces of soil particles, (iii) the novel use of a picoliter goniometer to show hydrophobic effects at a 1 micron diameter droplet level, which avoids the averaging over soil cores and particles evident in microliter goniometry, with which the results are compared, (iv) measurements at core scale using water retention and wicking experiments, and (v) the interpretation, integration and upscaling of the results using a development of the PoreXpert void network model, a significant advance on the Van Genuchten approach. An explanation will also be given as to how the results will be incorporated into the JULES hydrological model of the UK Meteorological Office, used to predict flooding for different soil types and usage.

  18. Introduction to the physics of matter basic atomic, molecular, and solid-state physics

    CERN Document Server

    Manini, Nicola

    2014-01-01

    This book offers an up-to-date, compact presentation of basic topics in the physics of matter, from atoms to molecules to solids, including elements of statistical mechanics. The adiabatic separation of the motion of electrons and nuclei in matter and its spectroscopic implications are outlined for molecules and recalled regularly in the study of the dynamics of gases and solids. Numerous experiments are described and more than 160 figures give a clear visual impression of the main concepts. Sufficient detail of mathematical derivations is provided to enable students to follow easily. The focus is on present-day understanding and especially on phenomena fitting various independent-particle models. The historical development of this understanding, and phenomena such as magnetism and superconductivity, where interparticle interactions and nonadiabatic effects play a crucial role, are mostly omitted. A final outlook section stimulates the curiosity of the reader to pursue the study of such advanced topics in gra...

  19. Recombination characteristics of therapeutic ion beams on ion chamber dosimetry

    Science.gov (United States)

    Matsufuji, Naruhiro; Matsuyama, Tetsuharu; Sato, Shinji; Kohno, Toshiyuki

    2016-09-01

    In heavy ion radiotherapy, ionization chambers are regarded as a standard for determining the absorbed dose given to patients. In ion dosimetry, it is necessary to correct the radiation quality, which depends on the initial recombination effect. This study reveals for the radiation quality dependence of the initial recombination in air in ion dosimetry. Ionization charge was measured for the beams of protons at 40-160 MeV, carbon at 21-400 MeV/n, and iron at 23.5-500 MeV/n using two identical parallel-plate ionization chambers placed in series along the beam axis. The downstream chamber was used as a monitor operated with a constant applied voltage, while the other chamber was used for recombination measurement by changing the voltage. The ratio of the ionization charge measured by the two ionization chambers showed a linear relationship with the inverse of the voltage in the high-voltage region. The initial recombination factor was estimated by extrapolating the obtained linear relationship to infinite voltage. The extent of the initial recombination was found to increase with decreasing incident energy or increasing atomic number of the beam. This behavior can be explained with an amorphous track structure model: the increase of ionization density in the core region of the track due to decreasing kinetic energy or increasing atomic number leads to denser initial ion production and results in a higher recombination probability. For therapeutic carbon ion beams, the extent of the initial recombination was not constant but changed by 0.6% even in the target region. This tendency was quantitatively well reproduced with the track-structure based on the initial recombination model; however, the transitional change in the track structure is considered to play an important role in further understanding of the characteristics of the initial recombination.

  20. Nonlinear dust-ion-acoustic waves in a multi-ion plasma with trapped electrons

    Indian Academy of Sciences (India)

    S S Duha; B Shikha; A A Mamun

    2011-08-01

    A dusty multi-ion plasma system consisting of non-isothermal (trapped) electrons, Maxwellian (isothermal) light positive ions, warm heavy negative ions and extremely massive charge fluctuating stationary dust have been considered. The dust-ion-acoustic solitary and shock waves associated with negative ion dynamics, Maxwellian (isothermal) positive ions, trapped electrons and charge fluctuating stationary dust have been investigated by employing the reductive perturbation method. The basic features of such dust-ion-acoustic solitary and shock waves have been identified. The implications of our findings in space and laboratory dusty multi-ion plasmas are discussed.

  1. Ion mobility spectrometer with virtual aperture grid

    Science.gov (United States)

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  2. A fast beam-ion instability

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, G.V. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    The ionization of residual gas by an electron beam in an accelerator generates ions that can resonantly couple to the beam through a wave propagating in the beam-ion system. Results of the study of a beam-ion instability are presented for a multi-bunch train taking into account the decoherence of ion oscillations due to the ion frequency spread and spatial variation of the ion frequency. It is shown that the combination of both effects can substantially reduce the growth rate of the instability. (author)

  3. ADVANCED TECHNOLOGY WASTEWATER TREATMENT OF NITRITE IONS

    Directory of Open Access Journals (Sweden)

    E.G. Morozov

    2012-06-01

    Full Text Available The main reason for high concentration of nitrite ions in water is the existence of sources of industrial and agricultural pollution. Contamination of drinking water, juices, wine and other liquids of nitrite ions as a result of improper use of nitrogen fertilizers has an adverse effect on living organism, because under the influence of enzymes nitrite ions in living organisms form high carcinogenic nitrosamines, and the interaction of nitrite ions from blood hemoglobin causes such toxicity that leads to disease cyanosis [1]. Therefore removal of nitrite ions from water has received increased attention. The paper discusses an innovative wastewater treatment technology from the nitrite ion with hypochlorite produced during electrolysis.

  4. Infrared spectroscopy of weakly bound molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lisa I-Ching

    1988-11-01

    The infrared spectra of a series of hydrated hydronium cluster ions and of protonated ethane ion are presented. A tandem mass spectrometer is ideally suited to obtaining the spectra of such weakly bound molecular ions. Traditional absorption spectroscopy is not feasible in these situations, so the techniques described in this thesis make use of some consequence of photon absorption with higher sensitivity than simply attenuation of laser power. That consequence is dissociation. By first mass selecting the parent ion under study and then mass selecting the fragment ion formed from dissociation, the near unit detection efficiency of ion counting methods has been used to full advantage.

  5. Microfabricated linear Paul-Straubel ion trap

    Science.gov (United States)

    Mangan, Michael A.; Blain, Matthew G.; Tigges, Chris P.; Linker, Kevin L.

    2011-04-19

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  6. The physics of Electron Beam Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.; Cocke, C.L.

    1990-01-01

    There are 13 Electron Beam Ion Sources in operation which produce highly charged ions, up to Th[sup 80+] and Xe[sup 53+]. Most of the sources are used to study these ions under electron impact or when recombining with gaseous or solid targets. That provides an insight into the atomic physics of these highly charged ions and into the physics of the plasma in which such ions can be found. This paper reviews the present knowledge of atomic processes, important in the production of such ions with an EBIS.

  7. The physics of Electron Beam Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.; Cocke, C.L.

    1990-12-31

    There are 13 Electron Beam Ion Sources in operation which produce highly charged ions, up to Th{sup 80+} and Xe{sup 53+}. Most of the sources are used to study these ions under electron impact or when recombining with gaseous or solid targets. That provides an insight into the atomic physics of these highly charged ions and into the physics of the plasma in which such ions can be found. This paper reviews the present knowledge of atomic processes, important in the production of such ions with an EBIS.

  8. Simulation of the f-d transitions of lanthanide ions in YPO4 using quantum-chemical calculations

    Institute of Scientific and Technical Information of China (English)

    Hu Liu-Sen; Wen Jun; Yin Min; Xia Shang-Da

    2012-01-01

    We constructed an effective one-electron Hamiltonian by using the 4f/5d energies and eigenvectors obtained from the first-principles calculation with the relativistic self-consistent discrete variational Slater software package (DV-Xα).From the effective Hamiltonian,we obtained the crystal-field and spin-orbit interaction parameters for the 4f and 5d electrons of lanthanide ions (Ce3+,Pr3+,Nd3+ and Eu3+) doped in YPO4,and these parameters were used to calculate the 4fN-4fN-15d transition.Comparison with experiments shows that the obtained parameters are reasonable and the excitation spectra can be well predicted.

  9. Ion implanted dielectric elastomer circuits

    Science.gov (United States)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  10. Inorganic ion composition in Tardigrada

    DEFF Research Database (Denmark)

    Halberg, Kenneth Agerlin; Larsen, Kristine Wulff; Jørgensen, Aslak

    2013-01-01

    are indicative of a powerful ion-retentive mechanism in Tardigrada. Moreover, our data indicate that cryptobiotic tardigrades contain a large fraction of unidentified organic osmolytes, the identification of which is expected to provide increased insight into the phenomenon of cryptobiosis....

  11. Ion Temperature Measurements in SSPX

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, D W; Hill, D N; McLean, H S

    2001-08-24

    The Ion Doppler Spectrometer instrument on the Sustained Spheromak Physics experiment is described, along with background about it's operation. Results are presented from recent experimental runs, and the data is compared to the results of simple statistical models of heat exchange in two species gasses.

  12. Improved Ion-Channel Biosensors

    Science.gov (United States)

    Nadeau, Jay; White, Victor; Dougherty, Dennis; Maurer, Joshua

    2004-01-01

    An effort is underway to develop improved biosensors of a type based on ion channels in biomimetic membranes. These sensors are microfabricated from silicon and other materials compatible with silicon. As described, these sensors offer a number of advantages over prior sensors of this type.

  13. Focused ion beams in biology.

    Science.gov (United States)

    Narayan, Kedar; Subramaniam, Sriram

    2015-11-01

    A quiet revolution is under way in technologies used for nanoscale cellular imaging. Focused ion beams, previously restricted to the materials sciences and semiconductor fields, are rapidly becoming powerful tools for ultrastructural imaging of biological samples. Cell and tissue architecture, as preserved in plastic-embedded resin or in plunge-frozen form, can be investigated in three dimensions by scanning electron microscopy imaging of freshly created surfaces that result from the progressive removal of material using a focused ion beam. The focused ion beam can also be used as a sculpting tool to create specific specimen shapes such as lamellae or needles that can be analyzed further by transmission electron microscopy or by methods that probe chemical composition. Here we provide an in-depth primer to the application of focused ion beams in biology, including a guide to the practical aspects of using the technology, as well as selected examples of its contribution to the generation of new insights into subcellular architecture and mechanisms underlying host-pathogen interactions.

  14. Ion transport across transmembrane pores

    NARCIS (Netherlands)

    Leontiadou, Hari; Mark, Alan E.; Marrink, Siewert-Jan

    2007-01-01

    To study the pore-mediated transport of ionic species across a lipid membrane, a series of molecular dynamics simulations have been performed of a dipalmitoyl-phosphatidyl-choline bilayer containing a preformed water pore in the presence of sodium and chloride ions. It is found that the stability of

  15. Thomson parabola ion energy analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Cobble, James A [Los Alamos National Laboratory; Flippo, Kirk A [Los Alamos National Laboratory; Letzring, Samuel A [Los Alamos National Laboratory; Lopez, Frank E [Los Alamos National Laboratory; Offermann, Dustin T [Los Alamos National Laboratory; Oertel, John A [Los Alamos National Laboratory; Mastrosimone, Dino [UNIV OF ROCHESTER

    2010-01-01

    A new, versatile Thomson parabola ion energy (TPIE) analyzer has been designed and constructed for use at the OMEGA-EP facility. Multi-MeV ions from EP targets are transmitted through a W pinhole into a (5- or 8-kG) magnetic field and subsequently through a parallel electric field of up to 30 kV/cm. The ion drift region may have a user-selected length of 10, 50, or 80 cm. With the highest fields, 500-Me V C{sup 6+} and C{sup 5+} may be resolved. TPIE is TIM-mounted at OMEGA-EP and is qualified in all existing TIMs. The instrument runs on pressure-interlocked 15-VDC power available in EP TIM carts. It may be inserted to within several inches of the target to attain sufficient flux for a measurement. For additional flux control, the user may select a square-aperture W pinhole of 0.004-inch or 0.010-inch. The detector consists of CR-39 backed by an image plate. The fully relativistic design code and design features are discussed. Ion spectral results from first use at OMEGA-EP are expected.

  16. Barium Ions for Quantum Computation

    CERN Document Server

    Dietrich, M R; Bowler, R; Kurz, N; Salacka, J S; Shu, G; Blinov, B B

    2009-01-01

    Individually trapped 137Ba+ in an RF Paul trap is proposed as a qubit ca ndidate, and its various benefits are compared to other ionic qubits. We report the current experimental status of using this ion for quantum computation. Fut ure plans and prospects are discussed.

  17. Quantum Games in ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Buluta, Iulia Maria [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)]. E-mail: noa@lyman.q.t.u-tokyo.ac.jp; Fujiwara, Shingo [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)]. E-mail: fujiwara@lyman.q.t.u-tokyo.ac.jp; Hasegawa, Shuichi [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)]. E-mail: hasegawa@q.t.u-tokyo.ac.jp

    2006-10-09

    We propose a general, scalable framework for implementing two-choices-multiplayer Quantum Games in ion traps. In particular, we discuss two famous examples: the Quantum Prisoners' Dilemma and the Quantum Minority Game. An analysis of decoherence due to intensity fluctuations in the applied laser fields is also provided.

  18. Ferritin Protein Nanocage Ion Channels

    Science.gov (United States)

    Tosha, Takehiko; Behera, Rabindra K.; Ng, Ho-Leung; Bhattasali, Onita; Alber, Tom; Theil, Elizabeth C.

    2012-01-01

    Ferritin protein nanocages, self-assembled from four-α-helix bundle subunits, use Fe2+ and oxygen to synthesize encapsulated, ferric oxide minerals. Ferritin minerals are iron concentrates stored for cell growth. Ferritins are also antioxidants, scavenging Fenton chemistry reactants. Channels for iron entry and exit consist of helical hairpin segments surrounding the 3-fold symmetry axes of the ferritin nanocages. We now report structural differences caused by amino acid substitutions in the Fe2+ ion entry and exit channels and at the cytoplasmic pores, from high resolution (1.3–1.8 Å) protein crystal structures of the eukaryotic model ferritin, frog M. Mutations that eliminate conserved ionic or hydrophobic interactions between Arg-72 and Asp-122 and between Leu-110 and Leu-134 increase flexibility in the ion channels, cytoplasmic pores, and/or the N-terminal extensions of the helix bundles. Decreased ion binding in the channels and changes in ordered water are also observed. Protein structural changes coincide with increased Fe2+ exit from dissolved, ferric minerals inside ferritin protein cages; Fe2+ exit from ferritin cages depends on a complex, surface-limited process to reduce and dissolve the ferric mineral. High concentrations of bovine serum albumin or lysozyme (protein crowders) to mimic the cytoplasm restored Fe2+ exit in the variants to wild type. The data suggest that fluctuations in pore structure control gating. The newly identified role of the ferritin subunit N-terminal extensions in gating Fe2+ exit from the cytoplasmic pores strengthens the structural and functional analogies between ferritin ion channels in the water-soluble protein assembly and membrane protein ion channels gated by cytoplasmic N-terminal peptides. PMID:22362775

  19. Transmission secondary ion mass spectrometry using 5 MeV C60+ ions

    Science.gov (United States)

    Nakajima, K.; Nagano, K.; Suzuki, M.; Narumi, K.; Saitoh, Y.; Hirata, K.; Kimura, K.

    2014-03-01

    In the secondary ion mass spectrometry (SIMS), use of cluster ions has an advantage of producing a high sensitivity of intact large molecular ions over monatomic ions. This paper presents further yield enhancement of the intact biomolecular ions by measuring the secondary ions emitted in the forward direction. Phenylalanine amino acid films deposited on self-supporting thin Si3N4 films were bombarded with 5 MeV C60 ions. Secondary ions emitted in the forward and backward directions were measured. The yield of intact phenylalanine molecular ions emitted in the forward direction is significantly enhanced compared to the backward direction while fragment ions are suppressed. This suggests a large potential of using transmission cluster ion SIMS for the analysis of biological materials.

  20. Single ion implantation in semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Niepelt, Raphael; Johannes, Andreas; Gnauck, Martin; Slowik, Irma; Geburt, Sebastian; Ronning, Carsten [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet, Jena (Germany)

    2011-07-01

    Ion implantation is well established as a standard doping technique for semiconductor nanowires. The concentration of dopant atoms per area is typically determined by total beam current monitoring during the irradiation. However, at extremely low ion fluencies, it is not possible to distinguish the exact number of implanted ions in a nanometer sized structure, as the ions are distributed statistically over the irradiated area that is usually far wider than the nanostructure of interest. In our experiments we implanted electrically contacted semiconductor nanostructures that were connected to a preamplifier/amplifier setup. As with every impinging ion a certain amount of energy is deposited inside the material, one can detect signals directly induced by the ion implantation and the nanostructures themselves can act as a radiation sensor. This leads to a countable and very precisely adjustable ion dose during the implantation down to doping with single ions.