WorldWideScience

Sample records for one-dimensional vehicular ad

  1. Connectivity analysis of one-dimensional ad-hoc networks

    DEFF Research Database (Denmark)

    Bøgsted, Martin; Rasmussen, Jakob Gulddahl; Schwefel, Hans-Peter

    2011-01-01

    Application and communication protocols in dynamic ad-hoc networks are exposed to physical limitations imposed by the connectivity relations that result from mobility. Motivated by vehicular freeway scenarios, this paper analyzes a number of important connectivity metrics for instantaneous...... snapshots of stochastic geographic movement patterns: (1) The single-hop connectivity number, corresponding to the number of single-hop neighbors of a mobile node; (2) the multi-hop connectivity number, expressing the number of nodes reachable via multi-hop paths of arbitrary hop-count; (3) the connectivity...

  2. Connectivity analysis of one-dimensional ad-hoc networks

    DEFF Research Database (Denmark)

    Hansen, Martin Bøgsted; Rasmussen, Jakob Gulddahl; Schwefel, Hans-Peter

    Applications and communication protocols in dynamic ad-hoc networks are exposed to physical limitations imposed by the connectivity relations that result from mobility. Motivated by vehicular freeway scenarios, this paper analyzes a number of important connectivity metrics for instantaneous...... hop-count; (3) the connectivity distance, expressing the geographic distance that a message can be propagated in the network on multi-hop paths; (4) the connectivity hops, which corresponds to the number of hops that are necessary to reach all nodes in the connected network. The paper develops...

  3. Vehicular ad hoc network security and privacy

    CERN Document Server

    Lin, X

    2015-01-01

    Unlike any other book in this area, this book provides innovative solutions to security issues, making this book a must read for anyone working with or studying security measures. Vehicular Ad Hoc Network Security and Privacy mainly focuses on security and privacy issues related to vehicular communication systems. It begins with a comprehensive introduction to vehicular ad hoc network and its unique security threats and privacy concerns and then illustrates how to address those challenges in highly dynamic and large size wireless network environments from multiple perspectives. This book is richly illustrated with detailed designs and results for approaching security and privacy threats.

  4. Secure Clustering in Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Zainab Nayyar

    2015-09-01

    Full Text Available A vehicular Ad-hoc network is composed of moving cars as nodes without any infrastructure. Nodes self-organize to form a network over radio links. Security issues are commonly observed in vehicular ad hoc networks; like authentication and authorization issues. Secure Clustering plays a significant role in VANETs. In recent years, various secure clustering techniques with distinguishing feature have been newly proposed. In order to provide a comprehensive understanding of these techniques are designed for VANETs and pave the way for the further research, a survey of the secure clustering techniques is discussed in detail in this paper. Qualitatively, as a result of highlighting various techniques of secure clustering certain conclusions are drawn which will enhance the availability and security of vehicular ad hoc networks. Nodes present in the clusters will work more efficiently and the message passing within the nodes will also get more authenticated from the cluster heads.

  5. Cognitive Radio-Based Vehicular Ad Hoc and Sensor Networks

    National Research Council Canada - National Science Library

    Jalil Piran, Mohammad; Cho, Yongwoo; Yun, Jihyeok; Ali, Amjad; Suh, Doug Young

    2014-01-01

    ... the spectrum scarcity issue. We have already proposed vehicular ad hoc and sensor networks (VASNET) as a new networking paradigm for vehicular communication by utilizing wireless sensor nodes in two mobile and stationary modes...

  6. Vehicular Ad Hoc and Sensor Networks; Principles and Challenges

    CERN Document Server

    Piran, Mohammad Jalil; Babu, G Praveen

    2011-01-01

    The rapid increase of vehicular traffic and congestion on the highways began hampering the safe and efficient movement of traffic. Consequently, year by year, we see the ascending rate of car accidents and casualties in most of the countries. Therefore, exploiting the new technologies, e.g. wireless sensor networks, is required as a solution of reduction of these saddening and reprehensible statistics. This has motivated us to propose a novel and comprehensive system to utilize Wireless Sensor Networks for vehicular networks. We coin the vehicular network employing wireless Sensor networks as Vehicular Ad Hoc and Sensor Network, or VASNET in short. The proposed VASNET is particularly for highway traffic .VASNET is a self-organizing Ad Hoc and sensor network comprised of a large number of sensor nodes. In VASNET there are two kinds of sensor nodes, some are embedded on the vehicles-vehicular nodes- and others are deployed in predetermined distances besides the highway road, known as Road Side Sensor nodes (RSS...

  7. Providing Location Security in Vehicular Ad Hoc Networks

    Science.gov (United States)

    Yan, Gongjun

    2010-01-01

    Location is fundamental information in Vehicular Ad-hoc Networks (VANETs). Almost all VANET applications rely on location information. Therefore it is of importance to ensure location information integrity, meaning that location information is original (from the generator), correct (not bogus or fabricated) and unmodified (value not changed). We…

  8. Studies on urban vehicular ad-hoc networks

    CERN Document Server

    Zhu, Hongzi

    2013-01-01

    With the advancement of wireless technology, vehicular ad hoc networks (VANETs) are emerging as a promising approach to realizing 'smart cities' and addressing many important transportation problems such as road safety, efficiency, and convenience.This brief provides an introduction to the large trace data set collected from thousands of taxis and buses in Shanghai, the largest metropolis in China. It also presents the challenges, design issues, performance modeling and evaluation of a wide spectrum of VANET research topics, ranging from realistic vehicular mobility models and opportunistic ro

  9. Vehicular ad hoc networks standards, solutions, and research

    CERN Document Server

    Molinaro, Antonella; Scopigno, Riccardo

    2015-01-01

    This book presents vehicular ad-hoc networks (VANETs) from the their onset, gradually going into technical details, providing a clear understanding of both theoretical foundations and more practical investigation. The editors gathered top-ranking authors to provide comprehensiveness and timely content; the invited authors were carefully selected from a list of who’s who in the respective field of interest: there are as many from Academia as from Standardization and Industry sectors from around the world. The covered topics are organized around five Parts starting from an historical overview of vehicular communications and standardization/harmonization activities (Part I), then progressing to the theoretical foundations of VANETs and a description of the day-one standard-compliant solutions (Part II), hence going into details of vehicular networking and security (Part III) and to the tools to study VANETs, from mobility and channel models, to network simulators and field trial methodologies (Part IV), and fi...

  10. Vehicular Ad Hoc and Sensor Networks: Principles and Challenges

    Directory of Open Access Journals (Sweden)

    Mohammad Jalil Piran

    2011-06-01

    Full Text Available The rapid increase of vehicular traffic and congest ion on the highways began hampering the safe and efficient movement of traffic. Consequently, year b y year, we see the ascending rate of car accidents and casualties in most of the countries. Therefore, exp loiting the new technologies, e.g. wireless sensor networks, is required as a solution of reduction of these sad dening and reprehensible statistics. This has motiv ated us to propose a novel and comprehensive system to utilize Wireless Sensor Networks for vehicular networks. W e coin the vehicular network employing wireless Senso r networks as Vehicular Ad Hoc and Sensor Network, or VASNET in short. The proposed VASNET is particularl y for highway traffic .VASNET is a self-organizing Ad Hoc and sensor network comprised of a large number of sensor nodes. In VASNET there are two kinds of sensor nodes, some are embedded on the vehicles-veh icular nodes- and others are deployed in predetermi ned distances besides the highway road, known as Road S ide Sensor nodes (RSS. The vehicular nodes are use d to sense the velocity of the vehicle for instance. We can have some Base Stations (BS such as Police Tra ffic Station, Firefighting Group and Rescue Team. The ba se stations may be stationary or mobile. VASNET provides capability of wireless communication betwe en vehicular nodes and stationary nodes, to increas e safety and comfort for vehicles on the highway road s. In this paper we explain main fundamentals and challenges of VASNET

  11. Towards More Realistic Mobility Model in Vehicular Ad Hoc Network

    OpenAIRE

    Dhananjay S. Gaikwad; Mahesh Lagad; Prashant Suryawanshi; Vaibhav Maske

    2012-01-01

    Mobility models or the movement patterns of nodes communicating wirelessely, play a vital role in the simulation-based evaluation of vehicular Ad Hoc Networks (VANETs). Even though recent research has developed models that better corresponds to real world mobility, we still have a limited understanding of the level of the required level of mobility details for modeling and simulating VANETs. In this paper, we propose a new mobility model for VANETs that works on the city area and map the topo...

  12. Vehicular Ad Hoc Network Mobility Model

    Directory of Open Access Journals (Sweden)

    Budi Rahmadya

    2014-01-01

    Full Text Available Indonesia is one of developing countries with high land traffic density. This traffic density could cause traffic jam, traffic accidents and other disturbances. This research had developed a simulator that could calculate the traffic density of roads in urban areas. With the use of this simulator, the researcher could calculate the time needed if the source node transports the message to the destination node by using the ad hoc network communication facility. In this research, every vehicle utilizes multi-hop communication in a communication network. The vehicle sends the message through flooding message and passes on the received message to other vehicles. Based on the simulation done on map size 10 km x 10 km with a total of 20 vehicles on the road, it was calculated that the simulator could transmit the message to its destination on the 106th second from node 3 and with the total of 200 vehicles on the road, the simulator could transmit the message to its destination on the 22nd second from node 5. 

  13. Survey on Security Issues in Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Bassem Mokhtar

    2015-12-01

    Full Text Available Vehicular Ad hoc NETworks are special case of ad hoc networks that, besides lacking infrastructure, communicating entities move with various accelerations. Accordingly, this impedes establishing reliable end-to-end communication paths and having efficient data transfer. Thus, VANETs have different network concerns and security challenges to get the availability of ubiquitous connectivity, secure communications, and reputation management systems which affect the trust in cooperation and negotiation between mobile networking entities. In this survey, we discuss the security features, challenges, and attacks of VANETs, and we classify the security attacks of VANETs due to the different network layers.

  14. An Algorithm for Localization in Vehicular Ad-Hoc Networks

    Directory of Open Access Journals (Sweden)

    Hajar Barani

    2010-01-01

    Full Text Available Positioning a node in Vehicular Ad-Hoc networks is one of the most interested research areas in recent years. In many Ad-Hoc networks such as Vehicular Ad-Hoc networks in which the nodes are considered as vehicles, move very fast in streets and highways. So, to have a safe and fast transport system, any vehicle should know where a traffic problem such as a broken vehicle occurs. GPS is one of the equipments which have been widely used for positioning service. Problem statement: Vehicle can use a GPS receiver to determine its position. But, all vehicles have not been equipped with GPS or they cannot receive GPS signals in some places such as inside of a tunnel. In these situations, the vehicle should use a GPS free method to find its location. Approach: In this study, a new method based on transmission range had been suggested. Results: This algorithm had been compared with a similar algorithm ODAM in same situations. The best performance for Optimized Disseminating Alarm Message (ODAM is when 40% of nodes are equipped with GPS. Conclusion: We executed our algorithm on this situation and compared it with ODAM results. At the end of this study, we can see our algorithm in compare to ODAM has better results.

  15. Multiagent Based Information Dissemination in Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    S.S. Manvi

    2009-01-01

    Full Text Available Vehicular Ad hoc Networks (VANETs are a compelling application of ad hoc networks, because of the potential to access specific context information (e.g. traffic conditions, service updates, route planning and deliver multimedia services (Voice over IP, in-car entertainment, instant messaging, etc.. This paper proposes an agent based information dissemination model for VANETs. A two-tier agent architecture is employed comprising of the following: 1 'lightweight', network-facing, mobile agents; 2 'heavyweight', application-facing, norm-aware agents. The limitations of VANETs lead us to consider a hybrid wireless network architecture that includes Wireless LAN/Cellular and ad hoc networking for analyzing the proposed model. The proposed model provides flexibility, adaptability and maintainability for traffic information dissemination in VANETs as well as supports robust and agile network management. The proposed model has been simulated in various network scenarios to evaluate the effectiveness of the approach.

  16. Distributed Reinforcement Learning Approach for Vehicular Ad Hoc Networks

    Science.gov (United States)

    Wu, Celimuge; Kumekawa, Kazuya; Kato, Toshihiko

    In Vehicular Ad hoc Networks (VANETs), general purpose ad hoc routing protocols such as AODV cannot work efficiently due to the frequent changes in network topology caused by vehicle movement. This paper proposes a VANET routing protocol QLAODV (Q-Learning AODV) which suits unicast applications in high mobility scenarios. QLAODV is a distributed reinforcement learning routing protocol, which uses a Q-Learning algorithm to infer network state information and uses unicast control packets to check the path availability in a real time manner in order to allow Q-Learning to work efficiently in a highly dynamic network environment. QLAODV is favored by its dynamic route change mechanism, which makes it capable of reacting quickly to network topology changes. We present an analysis of the performance of QLAODV by simulation using different mobility models. The simulation results show that QLAODV can efficiently handle unicast applications in VANETs.

  17. Safety Message Power Transmission Control for Vehicular Ad hoc Networks

    CERN Document Server

    Samara, Ghassan; Al-Salihy, Wafaa A H

    2010-01-01

    Vehicular Ad hoc Networks (VANET) is one of the most challenging research area in the field of Mobile Ad Hoc Networks. In this research we proposed a dynamic power adjustment protocol that will be used for sending the periodical safety message. (Beacon)based on the analysis of the channel status depending on the channel congestion and the power used for transmission. The Beacon Power Control (BPC) protocol first sensed and examined the percentage of the channel congestion, the result obtained was used to adjust the transmission power for the safety message to reach the optimal power. This will lead to decrease the congestion in the channel and achieve good channel performance and beacon dissemination.

  18. Contribution to design a communication framework for vehicular ad hoc networks in urban scenarios

    OpenAIRE

    Tripp Barba, Carolina

    2013-01-01

    La movilidad constante de las personas y la creciente necesidad de estar conectados en todo momento ha hecho de las redes vehiculares un área cuyo interés ha ido en aumento. La gran cantidad de vehículos que hay en la actualidad, y los avances tecnológicos han hecho de las redes vehiculares (VANETS, Vehicular Ad hoc Networks) un gran campo de investigación. Las redes vehiculares son un tipo especial de redes móviles ad hoc inalámbricas, las cuales, al igual que las redes MANET (Mobile Ad hoc ...

  19. Realistic Mobility Modeling for Vehicular Ad Hoc Networks

    Science.gov (United States)

    Akay, Hilal; Tugcu, Tuna

    2009-08-01

    Simulations used for evaluating the performance of routing protocols for Vehicular Ad Hoc Networks (VANET) are mostly based on random mobility and fail to consider individual behaviors of the vehicles. Unrealistic assumptions about mobility produce misleading results about the behavior of routing protocols in real deployments. In this paper, a realistic mobility modeling tool, Mobility for Vehicles (MOVE), which considers the basic mobility behaviors of vehicles, is proposed for a more accurate evaluation. The proposed model is tested against the Random Waypoint (RWP) model using AODV and OLSR protocols. The results show that the mobility model significantly affects the number of nodes within the transmission range of a node, the volume of control traffic, and the number of collisions. It is shown that number of intersections, grid size, and node density are important parameters when dealing with VANET performance.

  20. Mobile Advertisement in Vehicular Ad-Hoc Networks

    CERN Document Server

    Dobre, Ciprian

    2012-01-01

    Mobile Advertisement is a location-aware dissemination solution built on top of a vehicular ad-hoc network. We envision a network of WiFi access points that dynamically disseminate data to clients running on the car's smart device. The approach can be considered an alternative to the static advertisement billboards and can be useful to business companies wanting to dynamically advertise their products and offers to people driving their car. The clients can subscribe to information based on specific topics. We present design solutions that use access points as emitters for transmitting messages to wireless-enabled devices equipped on vehicles. We also present implementation details for the evaluation of the proposed solution using a simulator designed for VANET application. The results show that the application can be used for transferring a significant amount of data even under difficult conditions, such as when cars are moving at increased speeds, or the congested Wi-Fi network causes significant packet loss...

  1. Congestion Reduction Using Ad hoc Message Dissemination in Vehicular Networks

    CERN Document Server

    Hewer, Thomas D

    2008-01-01

    Vehicle-to-vehicle communications can be used effectively for intelligent transport systems (ITS) and location-aware services. The ability to disseminate information in an ad-hoc fashion allows pertinent information to propagate faster through the network. In the realm of ITS, the ability to spread warning information faster and further is of great advantage to the receivers of this information. In this paper we propose and present a message-dissemination procedure that uses vehicular wireless protocols for influencing traffic flow, reducing congestion in road networks. The computational experiments presented in this paper show how an intelligent driver model (IDM) and car-following model can be adapted to 'react' to the reception of information. This model also presents the advantages of coupling together traffic modelling tools and network simulation tools.

  2. Precise positioning systems for Vehicular Ad-Hoc Networks

    CERN Document Server

    Mohamed, Samir A Elsagheer; Ansari, Gufran Ahmad

    2012-01-01

    Vehicular Ad Hoc Networks (VANET) is a very promising research venue that can offers many useful and critical applications including the safety applications. Most of these applications require that each vehicle knows precisely its current position in real time. GPS is the most common positioning technique for VANET. However, it is not accurate. Moreover, the GPS signals cannot be received in the tunnels, undergrounds, or near tall buildings. Thus, no positioning service can be obtained in these locations. Even if the Deferential GPS (DGPS) can provide high accuracy, but still no GPS converge in these locations. In this paper, we provide positioning techniques for VANET that can provide accurate positioning service in the areas where GPS signals are hindered by the obstacles. Experimental results show significant improvement in the accuracy. This allows when combined with DGPS the continuity of a precise positioning service that can be used by most of the VANET applications.

  3. Enabling content distribution in vehicular ad hoc networks

    CERN Document Server

    Luan, Tom H; Bai, Fan

    2014-01-01

    This SpringerBrief presents key enabling technologies and state-of-the-art research on delivering efficient content distribution services to fast moving vehicles. It describes recent research developments and proposals towards the efficient, resilient and scalable content distribution to vehicles through both infrastructure-based and infrastructure-less vehicular networks. The authors focus on the rich multimedia services provided by vehicular environment content distribution including vehicular communications and media playback, giving passengers many infotainment applications. Common problem

  4. Intelligent Information Dissemination Scheme for Urban Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Jinsheng Yang

    2015-01-01

    Full Text Available In vehicular ad hoc networks (VANETs, a hotspot, such as a parking lot, is an information source and will receive inquiries from many vehicles for seeking any possible free parking space. According to the routing protocols in literature, each of the vehicles needs to flood its route discovery (RD packets to discover a route to the hotspot before sending inquiring packets to the parking lot. As a result, the VANET nearby an urban area or city center may incur the problem of broadcast storm due to so many flooding RD packets during rush hours. To avoid the broadcast storm problem, this paper presents a hotspot-enabled routing-tree based data forwarding method, called the intelligent information dissemination scheme (IID. Our method can let the hotspot automatically decide when to build the routing-tree for proactive information transmissions under the condition that the number of vehicle routing discoveries during a given period exceeds a certain threshold which is calculated through our developed analytical packet delivery model. The routing information will be dynamically maintained by vehicles located at each intersection near the hotspot if the maintaining cost is less than that of allowing vehicles to discover routes themselves. Simulation results show that this method can minimize routing delays for vehicles with lower packets delivery overheads.

  5. Performance improvement in geographic routing for Vehicular Ad Hoc Networks.

    Science.gov (United States)

    Kaiwartya, Omprakash; Kumar, Sushil; Lobiyal, D K; Abdullah, Abdul Hanan; Hassan, Ahmed Nazar

    2014-11-25

    Geographic routing is one of the most investigated themes by researchers for reliable and efficient dissemination of information in Vehicular Ad Hoc Networks (VANETs). Recently, different Geographic Distance Routing (GEDIR) protocols have been suggested in the literature. These protocols focus on reducing the forwarding region towards destination to select the Next Hop Vehicles (NHV). Most of these protocols suffer from the problem of elevated one-hop link disconnection, high end-to-end delay and low throughput even at normal vehicle speed in high vehicle density environment. This paper proposes a Geographic Distance Routing protocol based on Segment vehicle, Link quality and Degree of connectivity (SLD-GEDIR). The protocol selects a reliable NHV using the criteria segment vehicles, one-hop link quality and degree of connectivity. The proposed protocol has been simulated in NS-2 and its performance has been compared with the state-of-the-art protocols: P-GEDIR, J-GEDIR and V-GEDIR. The empirical results clearly reveal that SLD-GEDIR has lower link disconnection and end-to-end delay, and higher throughput as compared to the state-of-the-art protocols. It should be noted that the performance of the proposed protocol is preserved irrespective of vehicle density and speed.

  6. An Efficient Channel Access Scheme for Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Syed Asad Hussain

    2017-01-01

    Full Text Available Vehicular Ad Hoc Networks (VANETs are getting more popularity due to the potential Intelligent Transport Systems (ITS technology. It provides many efficient network services such as safety warnings (collision warning, entertainment (video and voice, maps based guidance, and emergency information. VANETs most commonly use Road Side Units (RSUs and Vehicle-to-Vehicle (V2V referred to as Vehicle-to-Infrastructure (V2I mode for data accessing. IEEE 802.11p standard which was originally designed for Wireless Local Area Networks (WLANs is modified to address such type of communication. However, IEEE 802.11p uses Distributed Coordination Function (DCF for communication between wireless nodes. Therefore, it does not perform well for high mobility networks such as VANETs. Moreover, in RSU mode timely provision of data/services under high density of vehicles is challenging. In this paper, we propose a RSU-based efficient channel access scheme for VANETs under high traffic and mobility. In the proposed scheme, the contention window is dynamically varied according to the times (deadlines the vehicles are going to leave the RSU range. The vehicles with shorter time deadlines are served first and vice versa. Simulation is performed by using the Network Simulator (NS-3 v. 3.6. The simulation results show that the proposed scheme performs better in terms of throughput, backoff rate, RSU response time, and fairness.

  7. Two Dimensional Connectivity for Vehicular Ad-Hoc Networks

    CERN Document Server

    Farivar, Masoud; Ashtiani, Farid

    2008-01-01

    In this paper, we focus on two-dimensional connectivity in sparse vehicular ad hoc networks (VANETs). In this respect, we find thresholds for the arrival rates of vehicles at entrances of a block of streets such that the connectivity is guaranteed for any desired probability. To this end, we exploit a mobility model recently proposed for sparse VANETs, based on BCMP open queuing networks and solve the related traffic equations to find the traffic characteristics of each street and use the results to compute the exact probability of connectivity along these streets. Then, we use the results from percolation theory and the proposed fast algorithms for evaluation of bond percolation problem in a random graph corresponding to the block of the streets. We then find sufficiently accurate two dimensional connectivity-related parameters, such as the average number of intersections connected to each other and the size of the largest set of inter-connected intersections. We have also proposed lower bounds for the case ...

  8. Contribution to design a communication framework for vehicular ad hoc networks in urban scenarios

    OpenAIRE

    Tripp Barba, Carolina

    2013-01-01

    The constant mobility of people, the growing need to be always connected, the large number of vehicles that nowadays can be found in the roads and the advances in technology make Vehicular Ad hoc Networks (VANETs) be a major area of research. Vehicular Ad hoc Networks are a special type of wireless Mobile Ad hoc Networks (MANETs), which allow a group of mobile nodes configure a temporary network and maintain it without the need of a fixed infrastructure. A vehicular network presents some spec...

  9. Using Real-World Car Traffic Dataset in Vehicular Ad Hoc Network Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Lucas Rivoirard

    2016-12-01

    Full Text Available Vehicular ad hoc networking is an emerging paradigm which is gaining much interest with the development of new topics such as the connected vehicle, the autonomous vehicle, and also new high-speed mobile communication technologies such as 802.11p and LTE-D. This paper presents a brief review of different mobility models used for evaluating performance of routing protocols and applications designed for vehicular ad hoc networks. Particularly, it describes how accurate mobility traces can be built from a real-world car traffic dataset that embeds the main characteristics affecting vehicle-to-vehicle communications. An effective use of the proposed mobility models is illustrated in various road traffic conditions involving communicating vehicles equipped with 802.11p. This study shows that such dataset actually contains additional information that cannot completely be obtained with other analytical or simulated mobility models, while impacting the results of performance evaluation in vehicular ad hoc networks.

  10. Convergence of Secure Vehicular Ad-Hoc Network and Cloud in Internet of Things

    DEFF Research Database (Denmark)

    Kulkarni, Nandkumar P.; Prasad, Neeli R.; Lin, Tao

    2016-01-01

    Vehicular Ad-hoc Network (VANET) is a highly mobile autonomous and self-organizing network of vehicles. VANET is a particular case of Mobile Ad-hoc Network (MANET). With the recent advances in the arena of Information and Communication Technology (ICT) and computing, the researchers have envisioned...... of the challenges in VANET are less computing capability, smaller onboard storage, safety, reliability, etc. Among the number of solutions proposed recently, Vehicular Cloud Computing (VCC) is one of them. VCC is a technology that provides on-demand services namely Software-as-a-Service (SaaS), Storage...

  11. The Study of Routing Strategies in Vehicular Ad- Hoc Network to Enhance Security

    Directory of Open Access Journals (Sweden)

    Parveen Kumar

    2012-04-01

    Full Text Available In VANET, or Intelligent Vehicular Ad-HocNetworking, defines an intelligent way of usingVehicular Networking. In VANET integrates onmultiple ad-hoc networking technologies such as WIFIIEEE 802.11p, WAVE IEEE 1609, WIMAX IEEE802.16, Bluetooth, IRA, and ZIGBEE for easy,accurate, effective and simple communication betweenvehicles on dynamic mobility. Effective measuressuch as media communication between vehicles canbe enabled as well as methods to track the automotivevehicles. In VANET helps in defining safety measuresin vehicles, streaming communication betweenvehicles, infotainment and TELEMATICS.

  12. A Fuzzy Logic Approach to Beaconing for Vehicular Ad hoc Networks

    NARCIS (Netherlands)

    Ghafoor, Kayhan Zrar; Bakar, Kamalrulnizam Abu; Eenennaam, van Martijn; Khokhar, Rashid Hafeez; Gonzalez, Alberto J.

    2011-01-01

    Vehicular Ad Hoc Network (VANET) is an emerging field of technology that allows vehicles to communicate together in the absence of fixed infrastructure. The basic premise of VANET is that in order for a vehicle to detect other vehicles in the vicinity. This cognizance, awareness of other vehicles, c

  13. Improving information dissemination in sparse vehicular networks by adding satellite communication

    NARCIS (Netherlands)

    Kloiber, Bernhard; Strang, Thomas; Spijker, Hanno; Heijenk, Geert

    2012-01-01

    Information dissemination in pure Vehicular Ad Hoc NETworks (VANETs) such as ITS-G5 becomes problematic when the network is sparse. In situations where the number of vehicles, that can act as a communication node, is insufficiently low, e.g. in rural areas, during night-time or because of a low mark

  14. PUCA: a pseudonym scheme with user-controlled anonymity for vehicular ad-hoc networks (VANET)

    NARCIS (Netherlands)

    Förster, David; Kargl, Frank; Löhr, Hans

    2014-01-01

    Envisioned vehicular ad-hoc networks (VANET) standards use pseudonym certificates to provide secure and privacy-friendly message authentication. Revocation of long-term credentials is required to remove participants from the system, e.g. in case of vehicle theft. However, the current approach to rev

  15. Improving information dissemination in sparse vehicular networks by adding satellite communication

    NARCIS (Netherlands)

    Kloiber, Bernhard; Strang, Thomas; Spijker, Hanno; Heijenk, Geert

    Information dissemination in pure Vehicular Ad Hoc NETworks (VANETs) such as ITS-G5 becomes problematic when the network is sparse. In situations where the number of vehicles, that can act as a communication node, is insufficiently low, e.g. in rural areas, during night-time or because of a low

  16. A Fuzzy Logic Approach to Beaconing for Vehicular Ad hoc Networks

    NARCIS (Netherlands)

    Ghafoor, Kayhan Zrar; Bakar, Kamalrulnizam Abu; van Eenennaam, Martijn; Khokhar, Rashid Hafeez; Gonzalez, Alberto J.

    Vehicular Ad Hoc Network (VANET) is an emerging field of technology that allows vehicles to communicate together in the absence of fixed infrastructure. The basic premise of VANET is that in order for a vehicle to detect other vehicles in the vicinity. This cognizance, awareness of other vehicles,

  17. Abiding Geocast for Warning Message Dissemination in Vehicular Ad Hoc Networks

    NARCIS (Netherlands)

    Yu, Qiangyuan; Heijenk, Geert

    2008-01-01

    Vehicular ad hoc networks (VANETs) are emerging as a new network environment for intelligent transportation systems (ITS). In many applications envisaged for VANETs, traffic information needs to be disseminated to a group of relevant vehicles and maintained for a duration of time. Here a system of a

  18. Mobility Models for Next Generation Wireless Networks Ad Hoc, Vehicular and Mesh Networks

    CERN Document Server

    Santi, Paolo

    2012-01-01

    Mobility Models for Next Generation Wireless Networks: Ad Hoc, Vehicular and Mesh Networks provides the reader with an overview of mobility modelling, encompassing both theoretical and practical aspects related to the challenging mobility modelling task. It also: Provides up-to-date coverage of mobility models for next generation wireless networksOffers an in-depth discussion of the most representative mobility models for major next generation wireless network application scenarios, including WLAN/mesh networks, vehicular networks, wireless sensor networks, and

  19. Mobile Agent as an Approach to Improve QoS in Vehicular Ad Hoc Network

    CERN Document Server

    Kumar, Rakesh

    2011-01-01

    Vehicular traffic is a foremost problem in modern cities. Huge amount of time and resources are wasted while traveling due to traffic congestion. With the introduction of sophisticated traffic management systems, such as those incorporating dynamic traffic assignments, more stringent demands are being placed upon the available real time traffic data. In this paper we have proposed mobile agent as a mechanism to handle the traffic problem on road. Mobile software agents can be used to provide the better QoS (Quality of Service) in vehicular ad hoc network to improve the safety application and driver comfort.

  20. A Novel Distributed Intrusion Detection System for Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Leandros A. Maglaras

    2015-04-01

    Full Text Available In the new interconnected world, we need to secure vehicular cyber-physical systems (VCPS using sophisticated intrusion detection systems. In this article, we present a novel distributed intrusion detection system (DIDS designed for a vehicular ad hoc network (VANET. By combining static and dynamic detection agents, that can be mounted on central vehicles, and a control center where the alarms about possible attacks on the system are communicated, the proposed DIDS can be used in both urban and highway environments for real time anomaly detection with good accuracy and response time.

  1. Reducing Congestion in Obstructed Highways with Traffic Data Dissemination Using Ad hoc Vehicular Networks

    Science.gov (United States)

    Hewer, Thomas D.; Nekovee, Maziar; Coveney, Peter V.

    2010-12-01

    Vehicle-to-vehicle communications can be used effectively for intelligent transport systems (ITSs) and location-aware services. The ability to disseminate information in an ad hoc fashion allows pertinent information to propagate faster through a network. In the realm of ITS, the ability to spread warning information faster and further is of great advantage to receivers. In this paper we propose and present a message-dissemination procedure that uses vehicular wireless protocols to influence vehicular flow, reducing congestion in road networks. The computational experiments we present show how a car-following model and lane-change algorithm can be adapted to "react" to the reception of information. This model also illustrates the advantages of coupling together with vehicular flow modelling tools and network simulation tools.

  2. Internet Connectivity using Vehicular Ad-Hoc Networks

    OpenAIRE

    Hashim Ali; Aamir Saeed; Syed Rohullah Jan; Asadullah; Ahsan Khawaja

    2012-01-01

    Although a mobile Ad-Hoc network (MANET) can be used in many cases but the most preferable is a MANET connected to the internet. This is achieved by using gateways which act as bridges between a MANET and the internet. To communicate in-between, a mobile node needs to find a valid route to the gateway which requires gateway discovery mechanism. In this paper Ad hoc On-Demand Distance Vector (AODV) is altered to achieve the interconnection between a MANET and the Internet. Furthermore, the pap...

  3. Efficient Packet Forwarding Approach in Vehicular Ad Hoc Networks Using EBGR Algorithm

    CERN Document Server

    Prasanth, K; Jayasudha, K; Chandrasekar, C

    2010-01-01

    VANETs (Vehicular Ad hoc Networks) are highly mobile wireless ad hoc networks and will play an important role in public safety communications and commercial applications. Routing of data in VANETs is a challenging task due to rapidly changing topology and high speed mobility of vehicles. Conventional routing protocols in MANETs (Mobile Ad hoc Networks) are unable to fully address the unique characteristics in vehicular networks. In this paper, we propose EBGR (Edge Node Based Greedy Routing), a reliable greedy position based routing approach to forward packets to the node present in the edge of the transmission range of source/forwarding node as most suitable next hop, with consideration of nodes moving in the direction of the destination. We propose Revival Mobility model (RMM) to evaluate the performance of our routing technique. This paper presents a detailed description of our approach and simulation results show that packet delivery ratio is improved considerably compared to other routing techniques of V...

  4. Efficient Packet Forwarding Approach in Vehicular Ad Hoc Networks Using EBGR Algorithm

    Directory of Open Access Journals (Sweden)

    K. Jayasudha

    2010-01-01

    Full Text Available VANETs (Vehicular Ad hoc Networks are highly mobile wireless ad hoc networks and will play an important role in public safety communications and commercial applications. Routing of data in VANETs is a challenging task due to rapidly changing topology and high speed mobility of vehicles. Conventional routing protocols in MANETs (Mobile Ad hoc Networks are unable to fully address the unique characteristics in vehicular networks. In this paper, we propose EBGR (Edge Node Based Greedy Routing, a reliable greedy position based routing approach to forward packets to the node present in the edge of the transmission range of source/forwarding node as most suitable next hop, with consideration of nodes moving in the direction of the destination. We propose Revival Mobility model (RMM to evaluate the performance of our routing technique. This paper presents a detailed description of our approach and simulation results show that packet delivery ratio is improved considerably compared to other routing techniques of VANET.

  5. Network Parameters Impact on Dynamic Transmission Power Control in Vehicular Ad hoc Networks

    Directory of Open Access Journals (Sweden)

    Khan Muhammad Imran

    2013-09-01

    Full Text Available In vehicular ad hoc networks, the dynamic change in transmission power is very effective to increase the throughput of the wireless vehicular network and decrease the delay of the message communicationbetween vehicular nodes on the highway. Whenever an event occurs on the highway, the reliability of the communication in the vehicular network becomes so vital so that event created messages shouldreach to all the moving network nodes. It becomes necessary that there should be no interference fromoutside of the network and all the neighbor nodes should lie in the transmission range of thereference vehicular node. Transmission range is directly proportional to the transmission power the moving node. If the transmission power will be high, the interference increases that can cause higherdelay in message reception at receiver end, hence the performance of the network decreased. In this paper, it is analyzed that how transmission power can be controlled by considering other differentparameter of the network such as; density, distance between moving nodes, different types of messages dissemination with their priority, selection of an antenna also affects on the transmission power. Thedynamic control of transmission power in VANET serves also for the optimization of the resources where it needs, can be decreased and increased depending on the circumstances of the network.Different applications and events of different types also cause changes in transmission power to enhance the reachability. The analysis in this paper is comprised of density, distance with single hop and multihop message broadcasting based dynamic transmission power control as well as antenna selection and applications based. Some summarized tables are produced according to the respective parameters of the vehicular network. At the end some valuable observations are made and discussed in detail. This paper concludes with a grand summary of all the protocols discussed in it.

  6. Performance modeling of data dissemination in vehicular ad hoc networks

    DEFF Research Database (Denmark)

    Chaqfeh, Moumena; Lakas, Abderrahmane; Lazarova-Molnar, Sanja

    2013-01-01

    ad hoc nature which does not require fixed infrastructure or centralized administration. However, designing scalable information dissemination techniques for VANET applications remains a challenging task due to the inherent nature of such highly dynamic environments. Existing dissemination techniques...... often resort to simulation for performance evaluation and there are only few studies that offer mathematical modeling. In this paper we provide a comparative study of existing performance modeling approaches for data dissemination techniques designed for different VANET applications....

  7. Gateway Node-Based Greedy Routing Algorithm for Efficient Packet Forwarding in Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Mohamed Abbas A,

    2011-05-01

    Full Text Available In recent years, vehicular communications are one of the hottest research topics. It has also gained much attention in industry as well as academia. Vehicular Ad Hoc Networks (VANETs are advances of the wireless communication technologies. Routing is one of the key research issues in VANETs as long as it plays an important role in public safety and commercial applications. In VANET, routing of data is a challenging task due to high speed of nodes (i.e., vehicles movement and rapidly changing topology. Recent research showedthat existing routing algorithm solutions for Mobile Ad Hoc Networks (MANETs are not able to meet the unique requirements of vehicular networks. In this paper, we propose Gateway Node-Based Greedy Routing(GNGR, a reliable greedy position-based routing approach algorithm. In GNGR, we forward the packets to any of the nodes in the corner of the transmission range of source/forwarding node as most suitable next hop. With this consideration, the nodes move towards the direction of the destination. We propose Dynamic TransitionMobility Model (DTMM to evaluate our routing technique. This paper gives a complete description of our packet forwarding approach and simulation results. The simulation results are carried out based on Packet Delivery Ratio (PDR. Our routing technique is compared with other routing techniques; the PDR is improved significantly compared with other routing techniques of VANET.

  8. Clustering and OFDMA-based MAC protocol (COMAC for vehicular ad hoc networks

    Directory of Open Access Journals (Sweden)

    Abdel Hafeez Khalid

    2011-01-01

    Full Text Available Abstract The IEEE community is working on the wireless access in vehicular environments as a main technology for vehicular ad hoc networks. The medium access control (MAC protocol of this system known as IEEE 802.11p is based on the distributed coordination function (DCF of the IEEE 802.11 and enhanced DCF of the IEEE 802.11e that have low performance especially in high-density networks with nodes of high mobility. In this paper, we propose a novel MAC protocol where nodes dynamically organize themselves into clusters. Cluster heads are elected based on their stability on the road with minimal overhead since all clustering information is embedded in control channel's safety messages. The proposed MAC protocol is adaptable to drivers' behavior on the road and has learning mechanism for predicting the future speed and position of all cluster members using the fuzzy logic inference system. By using OFDMA, each cluster will use a set of subcarriers that are different from the neighboring clusters to eliminate the hidden terminal problem. Increasing the system reliability, reducing the time delay for vehicular safety applications and efficiently clustering vehicles in highly dynamic and dense networks in a distributed manner are the main contributions of our proposed MAC protocol.

  9. A Group Based Key Sharing and Management Algorithm for Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Zeeshan Shafi Khan

    2014-01-01

    Full Text Available Vehicular ad hoc networks (VANETs are one special type of ad hoc networks that involves vehicles on roads. Typically like ad hoc networks, broadcast approach is used for data dissemination. Blind broadcast to each and every node results in exchange of useless and irrelevant messages and hence creates an overhead. Unicasting is not preferred in ad-hoc networks due to the dynamic topology and the resource requirements as compared to broadcasting. Simple broadcasting techniques create several problems on privacy, disturbance, and resource utilization. In this paper, we propose media mixing algorithm to decide what information should be provided to each user and how to provide such information. Results obtained through simulation show that fewer number of keys are needed to share compared to simple broadcasting. Privacy is also enhanced through this approach.

  10. A Mobility-Aware Link Enhancement Mechanism for Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Huang Chenn-Jung

    2008-01-01

    Full Text Available Abstract With the growth up of internet in mobile commerce, researchers have reproduced various mobile applications that vary from entertainment and commercial services to diagnostic and safety tools. Mobility management has widely been recognized as one of the most challenging problems for seamless access to wireless networks. In this paper, a novel link enhancement mechanism is proposed to deal with mobility management problem in vehicular ad hoc networks. Two machine learning techniques, namely, particle swarm optimization and fuzzy logic systems, are incorporated into the proposed schemes to enhance the accuracy of prediction of link break and congestion occurrence. The experimental results verify the effectiveness and feasibility of the proposed schemes.

  11. A Mobility-Aware Link Enhancement Mechanism for Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Kai-Wen Hu

    2008-04-01

    Full Text Available With the growth up of internet in mobile commerce, researchers have reproduced various mobile applications that vary from entertainment and commercial services to diagnostic and safety tools. Mobility management has widely been recognized as one of the most challenging problems for seamless access to wireless networks. In this paper, a novel link enhancement mechanism is proposed to deal with mobility management problem in vehicular ad hoc networks. Two machine learning techniques, namely, particle swarm optimization and fuzzy logic systems, are incorporated into the proposed schemes to enhance the accuracy of prediction of link break and congestion occurrence. The experimental results verify the effectiveness and feasibility of the proposed schemes.

  12. Analysis and Proposal of Position-Based Routing Protocols for Vehicular Ad Hoc Networks

    Science.gov (United States)

    Okada, Hiraku; Takano, Akira; Mase, Kenichi

    One of the most promising applications of a mobile ad hoc network is a vehicular ad hoc network (VANET). Each vehicle is aware of its position information by GPS or other methods, so position-based routing is a useful approach in VANET. The position-based routing protocol can be classified roughly into a next-hop forwarding method and a directed flooding method. We evaluate performance of both methods by analytic approach and compare them in this paper. From the evaluation results, we conclude that it is effective for the position-based routing to choose either the next-hop forwarding method or the directed flooding method according to the environment. Then we propose the hybrid transmission method which can select one of them according to the environment, and clarify that the proposed method can keep the packet delivery ratio at a high level and reduce the delay time.

  13. SECURITY IN VEHICULAR AD HOC NETWORK BASED ON INTRUSION DETECTION SYSTEM

    Directory of Open Access Journals (Sweden)

    Omkar Pattnaik

    2014-01-01

    Full Text Available Implementation of mobile ad hoc networks has eventually captured practically most of the parts of day-to-day life. One variation of such networks represents the Vehicular Ad Hoc Networks (VANETs, widely implemented in order to control day-to-day road traffic. The major concern of VANETs is oriented around providing security to moving vehicles that makes it possible to reduce accidents and traffic jam and moreover to establish communication among different vehicles. In this study, we analyze a number of possible attacks that may pertain to VANETs. Intrusion detection imposes various challenges to efficient implementation of VANETs. To overcome it, several intrusion detection measures have been proposed. The Watchdog technique is one of them. We detail this technique so as to make it convenient to implement it in our future investigations.

  14. PERFORMANCE ANALYSIS OF ON-DEMAND ROUTING PROTOCOLS FOR VEHICULAR AD-HOC NETWORKS

    Directory of Open Access Journals (Sweden)

    A. Shastri

    2011-09-01

    Full Text Available Vehicular Ad Hoc Networks (VANETs are a peculiar subclass of mobile ad hoc networks that raise anumber of technical challenges, especially from the point of view of their mobility models. Currently, thefield of VANETs has gained an important part of the interest of researchers and become very popular.More specifically, VANETs can operate without fixed infrastructure and can survive rapid changes in thenetwork topology. The main method for evaluating the performance of routing protocols for VANETs byNetwork Simulator-2.34. This paper is subjected to the on-demand routing protocols with identical loadsand evaluates their relative performance with respect to the two performance context: average End-to-End delay and packet delivery ratio. We investigated various simulation scenarios with varying pausetimes, connections and no. of nodes particularly for AODV and DSR. We will also discuss briefly aboutthe feasibility of VANETs in respect of Indian automotive networks.

  15. Improved Packet Forwarding Approach in Vehicular Ad Hoc Networks Using RDGR Algorithm

    CERN Document Server

    Prasanth, K; Jayasudha, K; Chandrasekar, Dr C; 10.5121/ijngn.2010.2106

    2010-01-01

    VANETs (Vehicular Ad hoc Networks) are highly mobile wireless ad hoc networks and will play an important role in public safety communications and commercial applications. Routing of data in VANETs is a challenging task due to rapidly changing topology and high speed mobility of vehicles. Position based routing protocols are becoming popular due to advancement and availability of GPS devices. One of the critical issues of VANETs are frequent path disruptions caused by high speed mobility of vehicle that leads to broken links which results in low throughput and high overhead . This paper argues the use of information on vehicles' movement information (e.g., position, direction, speed of vehicles) to predict a possible link-breakage event prior to its occurrence. So in this paper we propose a Reliable Directional Greedy routing (RDGR), a reliable position based routing approach which obtains position, speed and direction of its neighboring nodes from GPS. This approach incorporates potential score based strategy...

  16. Vehicle Assisted Data Delievery Technique To Control Data Dissemination In Vehicular AD - HOC Networks Vanets

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    2015-08-01

    Full Text Available Abstract Multi-hop data delivery through vehicular ad hoc networks is complicated by the fact that vehicular networks are highly mobile and frequently disconnected. To address this issue the idea of helper node is opted where a moving vehicles carries the packet until a new vehicle moves into its vicinity and forwards the packet. Different from existing helper node solution use of the predicable vehicle mobility is made which is limited by the traffic pattern and the road layout. Based on the existing traffic pattern a vehicle can find the next road to forward packet a vehicle can find the next road to forward the packet to reduce the delay. Several vehicle-assisted date delievery VADD protocol is proposed to forward the packet to the best road with the road with the lowest data delivery delay. Experiment results are used to evaluate the proposed solutions. Results show that the proposed VADD protocol outperform existing solution in terms of packet delivery ratio data packet delay and protocol overhead. Among the proposed VADD protocols the Hybrid probe HVADD protocol has much better performance. In this Solution the helper node technique is provider with which the helper node will contain destination node path and the path in routine table continuously changes with the help of helper node technique.

  17. Impact of Vehicle Mobility on Performance of Vehicular Ad Hoc Network IEEE 1609.4

    Directory of Open Access Journals (Sweden)

    M. Ahyar

    2014-01-01

    Full Text Available Vehicular Ad hoc Network (VANET is a new communications system for moving vehicles at high speed, which are equipped with wireless communication devices, together with additional wireless roadside units, enabling communications among nearby vehicles (vehicle-to-vehicle communication as well as between vehicles and nearby fixed equipment (vehicle-to-infrastructure communication. Inter-vehicular communications aim to improve road traffic safety and provide multimedia services. VANET has become an important communication infrastructure for the Intelligent Transportation System (ITS. In this work we have studied the impact of vehicle mobility on the quality of service in VANET based on IEEE 1609.4. The performance of this network is evaluated through exhaustive simulations using the VanetMobiSim and Network Simulator-NS2 under different parameters like delay, packet delivery ratio, packet loss and throughput. The simulation results are obtained when vehicles are moving according to a freeway mobility model is significantly different from results based on Manhattan model. When the Manhattan model is used, there is an increase in the average end-to-end delay and packet loss.

  18. VehiHealth: An Emergency Routing Protocol for Vehicular Ad Hoc Network to Support Healthcare System.

    Science.gov (United States)

    Bhoi, S K; Khilar, P M

    2016-03-01

    Survival of a patient depends on effective data communication in healthcare system. In this paper, an emergency routing protocol for Vehicular Ad hoc Network (VANET) is proposed to quickly forward the current patient status information from the ambulance to the hospital to provide pre-medical treatment. As the ambulance takes time to reach the hospital, ambulance doctor can provide sudden treatment to the patient in emergency by sending patient status information to the hospital through the vehicles using vehicular communication. Secondly, the experienced doctors respond to the information by quickly sending a treatment information to the ambulance. In this protocol, data is forwarded through that path which has less link breakage problem between the vehicles. This is done by calculating an intersection value I v a l u e for the neighboring intersections by using the current traffic information. Then the data is forwarded through that intersection which has minimum I v a l u e . Simulation results show VehiHealth performs better than P-GEDIR, GyTAR, A-STAR and GSR routing protocols in terms of average end-to-end delay, number of link breakage, path length, and average response time.

  19. Cognitive radio network in vehicular ad-hoc network (VANET: A survey

    Directory of Open Access Journals (Sweden)

    Joanne Mun-Yee Lim

    2016-05-01

    Full Text Available Cognitive radio network and Vehicular Ad hoc Network (VANET are recent emerging concepts in wireless networking. Cognitive radio network obtains knowledge of its operational geographical environment to manage sharing of spectrum between primary and secondary users, while VANET shares emergency safety messages among vehicles to ensure safety of users on the road. Cognitive radio network is employed in VANET to ensure the efficient use of spectrum, as well as to support VANET’s deployment. Random increase and decrease of spectrum users, unpredictable nature of VANET, high mobility, varying interference, security, packet scheduling and priority assignment are the challenges encountered in a typical cognitive VANET environment. This paper provides survey and critical analysis on different challenges of cognitive radio VANET, with discussion on the open issues, challenges and performance metrics, for different cognitive radio VANET applications.

  20. Fairness and Stability Analysis of Congestion Control Schemes in Vehicular Ad-hoc Networks

    CERN Document Server

    Nasiriani, Neda; Krishnan, Hariharan

    2012-01-01

    Cooperative vehicle safety (CVS) systems operate based on broadcast of vehicle position and safety information to neighboring cars. The communication medium of CVS is a vehicular ad-hoc network. One of the main challenges in large scale deployment of CVS systems is the issue of scalability. To address the scalability problem, several congestion control methods have been proposed and are currently under field study. These algorithms adapt transmission rate and power based on network measures such as channel busy ratio. We examine two such algorithms and study their dynamic behavior in time and space to evaluate stability (in time) and fairness (in space) properties of these algorithms. We present stability conditions and evaluate stability and fairness of the algorithms through simulation experiments. Results show that there is a trade-off between fast convergence, temporal stability and spatial fairness. The proper ranges of parameters for achieving stability are presented for the discussed algorithms. Stabil...

  1. Highway Mobility and Vehicular Ad-Hoc Networks in NS-3

    CERN Document Server

    Arbabi, Hadi

    2010-01-01

    The study of vehicular ad-hoc networks (VANETs) requires efficient and accurate simulation tools. As the mobility of vehicles and driver behavior can be affected by network messages, these tools must include a vehicle mobility model integrated with a quality network simulator. We present the first implementation of a well-known vehicle mobility model to ns-3, the next generation of the popular ns-2 networking simulator. Vehicle mobility and network communication are integrated through events. User-created event handlers can send network messages or alter vehicle mobility each time a network message is received and each time vehicle mobility is updated by the model. To aid in creating simulations, we have implemented a straight highway model that manages vehicle mobility, while allowing for various user customizations. We show that the results of our implementation of the mobility model matches that of the model's author and provide an example of using our implementation in ns-3.

  2. Analisis Performansi Routing Protocol OLSR Dan AOMDV Pada Vehicular Ad Hoc Network (VANET

    Directory of Open Access Journals (Sweden)

    Rianda Anisia

    2016-09-01

    Full Text Available Vehicular Ad-Hoc Network (VANET is a development of the Mobile Ad-Hoc Network (MANET, which makes the vehicle as its nodes. VANET technology is expected to improve the security of drivers while driving on a highway between the others, with the map location, traffic information, warning if there will be a collision, and internet access in the vehicle. However, VANET has the characteristics of a network rapidly changing due to the rapid movement of nodes that need to have a routing protocol that is considered suitable and efficient so that data transmission can be optimally lasts. This research will be simulated and analyzed the comparative performance of Optimized Link State Routing Protocol (OLSR and Ad Hoc On-demand Multipath Distance Vector (AOMDV using urban conditions (urban. The environment will be tested in speed changes and the effect of the number of nodes nodes. This simulation was done using NS-equipped with SUMO 0.12.3 2:34. as mobility MOVE as a script generator and generator Performance was measured using parameters such as Average throughput comparison, Packet Delivery Ratio, Average End-to-end delay, Normalized Routing Load, and Routing Overhead. Results of analysis in environmental VANET, routing protocols AOMDV superior routing protocol than OLSR. Because almost all parameters tested in scenarios of changes in the number of nodes and node speed AOMDV have better performance so AOMDV more efficient use on urban environmental conditions.

  3. Road Accident Prevention with Instant Emergency Warning Message Dissemination in Vehicular Ad-Hoc Network.

    Directory of Open Access Journals (Sweden)

    P Gokulakrishnan

    Full Text Available A Road Accident Prevention (RAP scheme based on Vehicular Backbone Network (VBN structure is proposed in this paper for Vehicular Ad-hoc Network (VANET. The RAP scheme attempts to prevent vehicles from highway road traffic accidents and thereby reduces death and injury rates. Once the possibility of an emergency situation (i.e. an accident is predicted in advance, instantly RAP initiates a highway road traffic accident prevention scheme. The RAP scheme constitutes the following activities: (i the Road Side Unit (RSU constructs a Prediction Report (PR based on the status of the vehicles and traffic in the highway roads, (ii the RSU generates an Emergency Warning Message (EWM based on an abnormal PR, (iii the RSU forms a VBN structure and (iv the RSU disseminates the EWM to the vehicles that holds the high Risk Factor (RF and travels in High Risk Zone (HRZ. These vehicles might reside either within the RSU's coverage area or outside RSU's coverage area (reached using VBN structure. The RAP scheme improves the performance of EWM dissemination in terms of increase in notification and decrease in end-to-end delay. The RAP scheme also reduces infrastructure cost (number of RSUs by formulating and deploying the VBN structure. The RAP scheme with VBN structure improves notification by 19 percent and end-to-end delay by 14.38 percent for a vehicle density of 160 vehicles. It is also proved from the simulation experiment that the performance of RAP scheme is promising in 4-lane highway roads.

  4. MOSIC: Mobility-Aware Single-Hop Clustering Scheme for Vehicular Ad hoc Networks on Highways

    Directory of Open Access Journals (Sweden)

    Amin Ziagham Ahwazi

    2016-09-01

    Full Text Available As a new branch of Mobile ad hoc networks, Vehicular ad hoc networks (VANETs have significant attention in academic and industry researches. Because of high dynamic nature of VANET, the topology will be changed frequently and quickly, and this condition is causing some difficulties in maintaining topology of these kinds of networks. Clustering is one of the controlling mechanism that able to grouping vehicles in same categories based upon some predefined metrics such as density, geographical locations, direction and velocity of vehicles. Using of clustering can make network’s global topology less dynamic and improve the scalability of it. Many of the VANET clustering algorithms are taken from MANET that has been shown that these algorithms are not suitable for VANET. Hence, in this paper we proposed a new clustering scheme that use Gauss Markov mobility (GMM model for mobility predication that make vehicle able to prognosticate its mobility relative to its neighbors. The proposed clustering scheme’s goal is forming stable clusters by increasing the cluster head lifetime and less cluster head changes number. Simulation results show that the proposed scheme has better performance than existing clustering approach, in terms of cluster head duration, cluster member duration, cluster head changes rate and control overhead.

  5. Optimization of Quality of Service (QoS framework for highway based Vehicular Ad-hoc Networks (VANETs

    Directory of Open Access Journals (Sweden)

    Wajahat Hussain

    2016-02-01

    Full Text Available The Vehicular Ad-hoc Network is a novel technology. It has the property of higher node mobility. Vehicular Adhoc networks offer wireless communications between vehicles themselves (V2V and between vehicles to the roadside units (V2R. The VANET is an active research area, as it has great prospective to enhance the road and vehicle safety, efficiency of traffic. Vehicular Ad-hoc Network not only just provides the safety applications, but also provides communication to the users. The QoS support in VANET is a challenge when the existing routing paths become no longer are available as a result of changes in the velocity and position of node, and distance between the vehicular nodes or network topology. In this study we designed a framework which provides us the facility to enhance various Quality of Service parameters, such as End to End Delay, throughput and packet loss ratio etc. The proposed model uses layered approach, deep classification as existed QoS components are further broken down and provides Quality of Experience to the users. NCTUns is used as simulation tool to build up simulations. After getting the results of simulation we carried out the performance analysis of various routing protocols. The simulation results indicate that the proposed scheme provides much better performance in terms of various QoS parameters like End to End Delay, throughput and packet loss ratio.

  6. Congestion Control Algorithm for Non-Safety Messages in Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Shamsul Jamel Elias

    2014-03-01

    Full Text Available Recent development in Congestion control mechanism on non-safety applications in Vehicular Ad Hoc Networks (VANETs have heightened the need for sustainable and reliable networks. However, the key challenges with this kind of applications are in the events of intermittent connectivity and data collisions. Comparatively, the event-driven effect on both safety and non-safety applications have critically are rely on delay and reliability. To date, the WAVE protocol in VANETs is derived from the IEEE 802.11pMAC protocol section. However, far to little attention has been given to non-safety applications for instance twitter, SMS services, internet services etc. Hence, Infotainment applications are not applying inter-vehicle communications (IVC provide services such as comfort and driving assistance. In spite of that, Roadside-Vehicle Communications (RVC caters for information concerning repair notifications, remote diagnostics, context information, navigation information, and alerts system. In this paper, we show design model for existing congestion control algorithms problems. The impact of the strategy are evaluated as opposed to the performance of non-safety applications. Furthermore, researches are centered on investigation the advantages and drawbacks of congestion control algorithms. In final analysis, we proposed non-safety applications approaches as our future research domain for solving the congestion problems

  7. A fuzzy logic based clustering strategy for improving vehicular ad-hoc network performance

    Indian Academy of Sciences (India)

    Ali Çalhan

    2015-04-01

    This paper aims to improve the clustering of vehicles by using fuzzy logic in Vehicular Ad-Hoc Networks (VANETs) for making the network more robust and scalable. High mobility and scalability are two vital topics to be considered while providing efficient and reliable communication in VANETs. Clustering is of crucial significance in order to cope with the dynamic features of the VANET topologies. Plenty of parameters related to user preferences, network conditions and application requirements such as speed of mobile nodes, distance to cluster head, data rate and signal strength must be evaluated in the cluster head selection process together with the direction parameter for highly dynamic VANET structures. The prominent parameters speed, acceleration, distance and direction information are taken into account as inputs of the proposed cluster head selection algorithm. The simulation results show that developed fuzzy logic (FL) based cluster head selection algorithm (CHSA) has stable performance in various scenarios in VANETs. This study has also shown that the developed CHSAFL satisfies well the highly demanding requirements of both low speed and high speed vehicles on two-way multilane highway

  8. An Analysis of the Privacy Threat in Vehicular Ad Hoc Networks due to Radio Frequency Fingerprinting

    Directory of Open Access Journals (Sweden)

    Gianmarco Baldini

    2017-01-01

    Full Text Available In Vehicular Ad Hoc Networks (VANETs used in the road transportation sector, privacy risks may arise because vehicles could be tracked on the basis of the information transmitted by the Vehicle to Vehicle (V2V and Vehicle to Infrastructure (V2I communications implemented with the Dedicated Short Range Communications (DSRC standards operating at 5.9 GHz. Various techniques have been proposed in the literature to mitigate these privacy risks including the use of pseudonym schemes, but they are mostly focused on data anonymization at the network and application layer. At the physical layer, the capability to accurately identify and fingerprint wireless devices through their radio frequency (RF emissions has been demonstrated in the literature. This capability may generate a privacy threat because vehicles can be tracked using the RF emissions of their DSRC devices. This paper investigates the privacy risks related to RF fingerprinting to determine if privacy breaches are feasible in practice. In particular, this paper analyzes the tracking accuracy in challenging RF environments with high attenuation and fading.

  9. Enhanced Antenna Position Implementation Over Vehicular Ad Hoc Network (VNET) In 3D Space

    CERN Document Server

    Kanrar, Soumen

    2011-01-01

    The technology related to networking moves wired connection to wireless connection.The basic problem concern in the wireless domain, random packet loss for the end to end connection. In this paper we show the performance and the impact of the packet loss and delay, by the bit error rate throughput etc with respect to the real world scenario vehicular ad hoc network in 3-dimension space (VANET in 3D). Over the years software development has responded to the increasing growth of wireless connectivity in developing network enabled software. In this paper we consider the real world physical problem in three dimensional wireless domain and map the problem to analytical problem . In this paper we simulate that analytic problem with respect to real world scenario by using enhanced antenna position system (EAPS) mounted over the mobile node in 3D space. In this paper we convert the real world problem into lab oriented problem by using the EAPS -system and shown the performance in wireless domain in 3 dimensional spac...

  10. Automated Position System Implementation over Vehicular Ad Hoc Networks in 2-Dimension Space

    Directory of Open Access Journals (Sweden)

    Soumen Kanrar

    2010-01-01

    Full Text Available Problem statement: The real world scenario have changed from the wired connection to wireless connection. Over the years software development has responded to the increasing growth of wireless connectivity in developing network enabled software. The problem arises in the wireless domain due to random packet loss in transport layer and as well as in data link layer for the end to end connection. The basic problem we have considered in this paper is to convert the real world scenario of "Vehicular ad hoc network"into lab oriented problem by used the APS-system and study the result to achieve better performance in wireless domain. Approach: We map the real world physical problem into analytical problem and simulate that analytic problem with respect to real world scenario by Automated Position System (APS for antenna mounted over the mobile node in 2D space. Results: We quantify the performance and the impact of the packet loss, delay, by the bit error rate and throughput with respect to the real world scenario of VANET in the MAC layer, data link layer and transport layer. Conclusion: We observe that the Directional the Antenna which is mounted over the vehicle gives less bit error in comparison to Isotropic and Discone antenna.

  11. Enhanced Antenna Position Implementation Over Vehicular Ad Hoc Network (VNET In 3D Space

    Directory of Open Access Journals (Sweden)

    Soumen Kanrar

    2010-02-01

    Full Text Available The technology related to networking moves wired connection to wireless connection. The basic problem concern in the wireless domain, random packet loss for the end to end connection. Inthis paper we show the performance and the impact of the packet loss and delay, by the bit error rate throughput etc with respect to the real world scenario vehicular ad hoc network in 3-dimension space(VANET in 3D. Over the years software development has responded to the increasing growth of wireless connectivity in developing network enabled software. In this paper we consider the real world physicalproblem in three dimensional wireless domain and map the problem to analytical problem . In this paper we simulate that analytic problem with respect to real world scenario by using enhanced antenna position system (EAPS mounted over the mobile node in 3D space. In this paper we convert the real world problem into lab oriented problem by using the EAPS –system and shown the performance inwireless domain in 3 dimensional space.

  12. Integration of Body Sensor Networks and Vehicular Ad-hoc Networks for Traffic Safety.

    Science.gov (United States)

    Reyes-Muñoz, Angelica; Domingo, Mari Carmen; López-Trinidad, Marco Antonio; Delgado, José Luis

    2016-01-15

    The emergence of Body Sensor Networks (BSNs) constitutes a new and fast growing trend for the development of daily routine applications. However, in the case of heterogeneous BSNs integration with Vehicular ad hoc Networks (VANETs) a large number of difficulties remain, that must be solved, especially when talking about the detection of human state factors that impair the driving of motor vehicles. The main contributions of this investigation are principally three: (1) an exhaustive review of the current mechanisms to detect four basic physiological behavior states (drowsy, drunk, driving under emotional state disorders and distracted driving) that may cause traffic accidents is presented; (2) A middleware architecture is proposed. This architecture can communicate with the car dashboard, emergency services, vehicles belonging to the VANET and road or street facilities. This architecture seeks on the one hand to improve the car driving experience of the driver and on the other hand to extend security mechanisms for the surrounding individuals; and (3) as a proof of concept, an Android real-time attention low level detection application that runs in a next-generation smartphone is developed. The application features mechanisms that allow one to measure the degree of attention of a driver on the base of her/his EEG signals, establish wireless communication links via various standard wireless means, GPRS, Bluetooth and WiFi and issue alarms of critical low driver attention levels.

  13. A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network.

    Science.gov (United States)

    Chen, Yuzhong; Weng, Shining; Guo, Wenzhong; Xiong, Naixue

    2016-02-19

    Vehicular ad hoc networks (VANETs) have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency.

  14. A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network

    Directory of Open Access Journals (Sweden)

    Yuzhong Chen

    2016-02-01

    Full Text Available Vehicular ad hoc networks (VANETs have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency.

  15. SVANET: A Smart Vehicular Ad Hoc Network for Efficient Data Transmission with Wireless Sensors

    Directory of Open Access Journals (Sweden)

    Prasan Kumar Sahoo

    2014-11-01

    Full Text Available Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency.

  16. A Reputation System for Traffic Safety Event on Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Hsiao-Chien Tsai

    2009-01-01

    Full Text Available Traffic safety applications on vehicular ad hoc networks (VANETs have drawn a lot of attention in recent years with their promising functions on car accident reduction, real-time traffic information support, and enhancement of comfortable driving experience on roadways. However, an inaccurate traffic warning message will impact drivers' decisions, waste drivers' time and fuel in their vehicles, and even invoke serious car accidents. To enable eco-friendly driving VANET environments, that is, to save fuel and time in this context, we proposed an event-based reputation system to prevent the spread of false traffic warning messages. In this system, a dynamic reputation evaluation mechanism is introduced to determine whether an incoming traffic message is significant and trustworthy to the driver. The proposed system is characterized and evaluated through experimental simulations. The simulation results show that, with a proper reputation adaptation mechanism and appropriate threshold settings, our proposed system can effectively prevent false messages spread on various VANET environments.

  17. Fuzzy-Based Sensor Fusion for Cognitive Radio-Based Vehicular Ad Hoc and Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohammad Jalil Piran

    2015-01-01

    Full Text Available In wireless sensor networks, sensor fusion is employed to integrate the acquired data from diverse sensors to provide a unified interpretation. The best and most salient advantage of sensor fusion is to obtain high-level information in both statistical and definitive aspects, which cannot be attained by a single sensor. In this paper, we propose a novel sensor fusion technique based on fuzzy theory for our earlier proposed Cognitive Radio-based Vehicular Ad Hoc and Sensor Networks (CR-VASNET. In the proposed technique, we considered four input sensor readings (antecedents and one output (consequent. The employed mobile nodes in CR-VASNET are supposed to be equipped with diverse sensors, which cater to our antecedent variables, for example, The Jerk, Collision Intensity, and Temperature and Inclination Degree. Crash_Severity is considered as the consequent variable. The processing and fusion of the diverse sensory signals are carried out by fuzzy logic scenario. Accuracy and reliability of the proposed protocol, demonstrated by the simulation results, introduce it as an applicable system to be employed to reduce the causalities rate of the vehicles’ crashes.

  18. Integration of Body Sensor Networks and Vehicular Ad-hoc Networks for Traffic Safety

    Directory of Open Access Journals (Sweden)

    Angelica Reyes-Muñoz

    2016-01-01

    Full Text Available The emergence of Body Sensor Networks (BSNs constitutes a new and fast growing trend for the development of daily routine applications. However, in the case of heterogeneous BSNs integration with Vehicular ad hoc Networks (VANETs a large number of difficulties remain, that must be solved, especially when talking about the detection of human state factors that impair the driving of motor vehicles. The main contributions of this investigation are principally three: (1 an exhaustive review of the current mechanisms to detect four basic physiological behavior states (drowsy, drunk, driving under emotional state disorders and distracted driving that may cause traffic accidents is presented; (2 A middleware architecture is proposed. This architecture can communicate with the car dashboard, emergency services, vehicles belonging to the VANET and road or street facilities. This architecture seeks on the one hand to improve the car driving experience of the driver and on the other hand to extend security mechanisms for the surrounding individuals; and (3 as a proof of concept, an Android real-time attention low level detection application that runs in a next-generation smartphone is developed. The application features mechanisms that allow one to measure the degree of attention of a driver on the base of her/his EEG signals, establish wireless communication links via various standard wireless means, GPRS, Bluetooth and WiFi and issue alarms of critical low driver attention levels.

  19. Comparative Study of Vehicular Ad-hoc Network Mobility Models and Simulators

    Science.gov (United States)

    K. Patel, Mitul

    2012-06-01

    In this paper we have discussed about the number of automobiles that has been increased on the road in the past few years. Due to high density of vehicles, the potential threats and road accident is increasing. Wireless technology is aiming to equip technology in vehicles to reduce these factors by sending messages to each other. The vehicular safety application should be thoroughly tested before it is deployed in a real world to use. Simulator tool has been preferred over out door experiment because it simple, easy and cheap. VANET requires that a traffic and network simulator should be used together to perform this test. Many tools exist for this purpose but most of them have the problem with the proper interaction. Simulating vehicular networks with external stimulus to analyze its effect on wireless communication but to do this job a good simulator is also needed.

  20. 1st International Workshop on Vehicular Ad-hoc Networks for Smart Cities

    CERN Document Server

    Qayyum, Amir; Saad, Mohamad

    2015-01-01

    Vehicular communication is a key technology in intelligent transportation systems. For many years now, the academic and industrial research communities have been investigating these communications in order to improve efficiency and safety of future transportation. Vehicular networking offers a wide variety of applications, including safety applications as well as infotainment applications. This book highlights the recent developments in vehicular networking technologies and their interaction with future smart cities in order to promote further research activities and challenges. SAADI BOUDJIT, University of Paris 13, France  HAKIMA CHAOUCHI, Telecom SudParis, France  YACINE GHAMRI, University La Rochelle, France HALABI HASBULLAH, Universiti Teknologi Petronas, Malaysia ANIS LAOUITI, Telecom SudParis, France  SAOUCENE MAHFOUDH, Jeddah, Saudi Arabia  PAUL MUHLETHALER, INRIA, France AMIR QAYYUM, Mohamad Ali Jinnah University, Pakistan NAUFAL SAAD, Universiti Teknologi�...

  1. BCDP: Budget Constrained and Delay-Bounded Placement for Hybrid Roadside Units in Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Peng Li

    2014-11-01

    Full Text Available In vehicular ad hoc networks, roadside units (RSUs placement has been proposed to improve the the overall network performance in many ITS applications. This paper addresses the budget constrained and delay-bounded placement problem (BCDP for roadside units in vehicular ad hoc networks. There are two types of RSUs: cable connected RSU (c-RSU and wireless RSU (w-RSU. c-RSUs are interconnected through wired lines, and they form the backbone of VANETs, while w-RSUs connect to other RSUs through wireless communication and serve as an economical extension of the coverage of c-RSUs. The delay-bounded coverage range and deployment cost of these two cases are totally different. We are given a budget constraint and a delay bound, the problem is how to find the optimal candidate sites with the maximal delay-bounded coverage to place RSUs such that a message from any c-RSU in the region can be disseminated to the more vehicles within the given budget constraint and delay bound. We first prove that the BCDP problem is NP-hard. Then we propose several algorithms to solve the BCDP problem. Simulation results show the heuristic algorithms can significantly improve the coverage range and reduce the total deployment cost, compared with other heuristic methods.

  2. One-dimensional turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Kerstein, A.R. [Sandia National Lab., Livermore, CA (United States)

    1996-12-31

    One-Dimensional Turbulence is a new turbulence modeling strategy involving an unsteady simulation implemented in one spatial dimension. In one dimension, fine scale viscous and molecular-diffusive processes can be resolved affordably in simulations at high turbulence intensity. The mechanistic distinction between advective and molecular processes is thereby preserved, in contrast to turbulence models presently employed. A stochastic process consisting of mapping {open_quote}events{close_quote} applied to a one-dimensional velocity profile represents turbulent advection. The local event rate for given eddy size is proportional to the velocity difference across the eddy. These properties cause an imposed shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbulent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive scalars introduced into these flows, are reproduced.

  3. Design and Analysis of A Beacon-Less Routing Protocol for Large Volume Content Dissemination in Vehicular Ad Hoc Networks.

    Science.gov (United States)

    Hu, Miao; Zhong, Zhangdui; Ni, Minming; Baiocchi, Andrea

    2016-11-01

    Large volume content dissemination is pursued by the growing number of high quality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors' best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well.

  4. Wireless sensor and mobile ad-hoc networks vehicular and space applications

    CERN Document Server

    Al-Fuqaha, Ala

    2015-01-01

    This book describes the practical perspectives in using wireless sensor networks (WSN) to develop real world applications that can be used for space exploration. These applications include sensor interfaces, remote wireless vehicles, space crew health monitoring and instrumentation. The material discusses how applications of WSN originally developed for space travel and exploration are being applied and used in multiple real world applications, allowing for the development of smart systems that have characteristics such as self-healing, self-diagnosis, and emergency healthcare notification. This book also: ·         Discusses how multidisciplinary fields can be implemented in a single application ·         Reviews exhaustively the state-of-the-art research in WSN for space and vehicular applications ·         Covers smart systems that have self-healing, self-diagnosis, and emergency healthcare notification

  5. Cross-Network Information Dissemination in Vehicular Ad hoc Networks (VANETs: Experimental Results from a Smartphone-Based Testbed

    Directory of Open Access Journals (Sweden)

    Gianluigi Ferrari

    2013-08-01

    Full Text Available In this work, we present an innovative approach for effective cross-network information dissemination, with applications to vehicular ad hoc networks (VANETs. The proposed approach, denoted as "Cross-Network Effective Traffic Alert Dissemination" (X-NETAD, leverages on the spontaneous formation of local WiFi (IEEE 802.11b VANETs, with direct connections between neighboring vehicles, in order to disseminate, very quickly and inexpensively, traffic alerts received from the cellular network. The proposed communication architecture has been implemented on Android smartphones. The obtained experimental results show that an effective cross-network information dissemination service can entirely rely on smartphone-based communications. This paves the way to future Internet architectures, where vehicles will play a key role as information destinations and sources.

  6. Performance of beacon safety message dissemination in Vehicular Ad hoc NETworks (VANETs)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Currently, there is a growing belief that putting an IEEE 802.11-like radio into road vehicles can help the drivers to travel more safely. Message dissemination protocols are primordial for safety vehicular applications. There are two types of safety messages which may be exchanged between vehicles: alarm and beacon. In this paper we investigate the feasibility of deploying safety applications based on beacon message dissemination through extensive simulation study and pay special attention to the safety requirements. Vehicles are supposed to issue these messages periodically to announce to other vehicles their current situation and use received messages for preventing possible unsafe situations. We evaluate the performance of a single-hop dissemination protocol while taking into account the quality of service (QoS) metrics like delivery rate and delay. We realize that reliability is the main concern in beacon message dissemination. Thus, a new metric named effective range is defined which gives us more accurate facility for evaluating QoS in safety applications specifically. Then, in order to improve the performance, the effects of three parameters including vehicle's transmission range, message transmission's interval time and message payload size are studied. Due to special characteristics of the safety applications, we model the relationship between communication-level QoS and application-level QoS and evaluate them for different classes of safety applications. As a conclusion, the current technology of IEEE 802.11 MAC layer has still some challenges for automatic safety applications but it can provide acceptable QoS to driver assistance safety applications.

  7. Two-level Trajectory-Based Routing Protocol for Vehicular Ad Hoc Networks in Freeway and Manhattan Environments

    Directory of Open Access Journals (Sweden)

    Floriano De Rango

    2009-11-01

    Full Text Available This paper focuses on the routing protocol issue in two important environments for Vehicular Ad Hoc Networks (VANET: Manhattan and the Freeway. A novel protocol called Two-level Trajectory Based Routing (TTBR protocol is proposed. Deterministic vehicles movement permits advantage to be taken of the map info to build a specific local trajectory to reach the destination node. However, in order to offer network scalability also a high level cell-based trajectory is applied to have a coarse knowledge of the cell where the destination node is moving. Our proposal needs Peer Servers and Grid subdivision of the space. Simulation results were assessed to show the improvements and scalability offered by TTBR in comparison with other Ad Hoc networks protocols such as AODV and GPSR. Performance Evaluation was evaluated in terms of Normalized Control Overhead and Data Packet Delivery Ratio. TTBR is more performing than AODV for a high speed and high density scenario for both the Manhattan and Freeway scenarios.

  8. Study of fast certificate revocation in vehicular Ad Hoc networks%车载Ad Hoc网络中证书快速撤销机制研究

    Institute of Scientific and Technical Information of China (English)

    刘玉

    2014-01-01

    Certificate revocation is one of the important problems to provide the security of vehicular Ad Hoc networks, but traditional CRL distribution schemes are not suitable due to large dimension, high mobility and other related reasons. In this paper, based on consideration of node mobility patterns, speed and other characteristics, a CRL degradation scheme is firstly proposed, then a speed oriented fast certificate revocation scheme is introduced. Performance analysis shows the proposed scheme is better than traditional one when using short-lived certificates.%证书撤销是保障车载Ad Hoc网络安全的难点问题之一,但传统的CRL发布方式由于网络规模大,车辆机动性强等原因并不适用。结合车载Ad Hoc网络中节点移动规律和速度等特性,在提出降解CRL规模的方法的基础上,进一步提出一种基于车辆速度证书快速撤销方案。分析表明在证书有效期较短的情况下,该方案要优于传统方案。

  9. One-Dimensionality and Whiteness

    Science.gov (United States)

    Calderon, Dolores

    2006-01-01

    This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…

  10. One-Dimensionality and Whiteness

    Science.gov (United States)

    Calderon, Dolores

    2006-01-01

    This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…

  11. Intrusion prevention and Message Authentication Protocol (IMAP using Region Based Certificate Revocation List Method in Vehicular Ad hoc Networks

    Directory of Open Access Journals (Sweden)

    G. Anitha

    2014-05-01

    Full Text Available Vehicular Ad-hoc network uses some advanced Public Key Infrastructure and digital signature method for security. But, intrusion detection and avoidance is an inevitable challenge in networks. Authentication is performed in any PKI (Public Key Infrastructure system by checking if the certificate of the sender is included in the CRL (Certificate Revocation List and verifying the authenticity and checking the sign of the sender. This study focuses on efficient certificate revocation list management by region based certificate revocation list distribution protocol. Instead of storing all invalid vehicle identity in a single CRL, each region maintains a separate CRL which contains the invalid vehicle's identity in the region. This CRL checking process has been done using by Hash function technique, i.e., Bloom Filter which avoids false negative. It replaces the time-consuming CRL Checking process. This protocol can reduce message loss ratio by using fast revocation checking and the CRL updating method as well as it needs very less memory space compared to other methods.

  12. A New Approach for Improvement Security against DoS Attacks in Vehicular Ad-hoc Network

    Directory of Open Access Journals (Sweden)

    Reza Fotohi

    2016-07-01

    Full Text Available Vehicular Ad-Hoc Networks (VANET are a proper subset of mobile wireless networks, where nodes are revulsive, the vehicles are armed with special electronic devices on the motherboard OBU (On Board Unit which enables them to trasmit and receive messages from other vehicles in the VANET. Furthermore the communication between the vehicles, the VANET interface is donated by the contact points with road infrastructure. VANET is a subgroup of MANETs. Unlike the MANETs nodes, VANET nodes are moving very fast. Impound a permanent route for the dissemination of emergency messages and alerts from a danger zone is a very challenging task. Therefore, routing plays a significant duty in VANETs. decreasing network overhead, avoiding network congestion, increasing traffic congestion and packet delivery ratio are the most important issues associated with routing in VANETs. In addition, VANET network is subject to various security attacks. In base VANET systems, an algorithm is used to dicover attacks at the time of confirmation in which overhead delay occurs. This paper proposes (P-Secure approach which is used for the detection of DoS attacks before the confirmation time. This reduces the overhead delays for processing and increasing the security in VANETs. Simulation results show that the P-Secure approach, is more efficient than OBUmodelVaNET approach in terms of PDR, e2e_delay, throughput and drop packet rate.

  13. A contention-based efficient-information perception algorithm (CEiPA) for vehicular ad hoc networks

    Institute of Scientific and Technical Information of China (English)

    Chen Lijia; Jiang Hao; Yan Puliu

    2009-01-01

    The problem of information dissemination is researched for vehicular ad-hoc networks (VANET) in this paper, and a contention-based efficient-information perception algorithm (CEiPA) is proposed. The idea of CEiPA is that beacons are delivered over VANET with limited lifetime and efficient information. CEiPA consists of two phases. The first one is initialization phase, during which the count timers Tcycle and Tlocal are set to start beacon delivery while Tcycle is also used to monitor and restart beaconing. The second one is beacon delivery phase. An elaborate distance function is employed to set contention delay for beacons of each vehicle. In this way beacons will be sent in order, which decreases the collision of beacons. Simulation results show that CEiPA enables each beacon to carry more efficient information and spread them over more vehicles with lower network overhead than the periodic beacon scheme. CEiPA is also flexible and scalable because the efficient information threshold it employs is a balance among the freshness of information, network overhead and perception area of a vehicle.

  14. TRAFFIC CONTROLLED-DEDICATED SHORT RANGE COMMUNICATION: A SECURE COMMUNICATION USING TRAFFIC CONTROLLED DEDICATED SHORT RANGE COMMUNICATION MODEL IN VEHICULAR AD HOC NETWORKS FOR SAFETY RELATED SERVICES

    Directory of Open Access Journals (Sweden)

    K. Chandramohan

    2014-01-01

    standard of 802.11p wireless vehicular networks the scheme proposed in this study is more robust and operate under vehicle-to-vehicle mode in order to address the secure communication between the vehicles. The effectiveness of secure communication in vehicular ad hoc network with varied vehicular speed and changing network topology is evaluated numerically using realistic simulation data obtained from traffic engineering systems.

  15. A CONTEXT AWARE BASED PRE-HANDOFF SUPPORT APPROACH TO PROVIDE OPTIMAL QOS FOR STREAMING APPLICATIONS OVER VEHICULAR AD HOC NETWORKS – HOSA

    Directory of Open Access Journals (Sweden)

    K. RAMESH BABU

    2015-06-01

    Full Text Available Large variations in network Quality of Service (QoS such as bandwidth, latency, jitter, and reliability may occur during media transfer over vehicular ad hoc networks (VANET. Usage of VANET over mobile and wireless computing applications experience “bursty” QoS behavior during the execution over distributed network scenarios. Applications such as streaming media services need to adapt their functionalities to any change in network status. Moreover, an enhanced software platform is necessary to provide adaptive network management services to upper software components. HOSA, a handoff service broker based architecture for QoS adaptation over VANET supports in providing awareness. HOSA is structured as a middleware platform both to provide QoS awareness to streaming applications as well to manage dynamic ad hoc network resources with support over handoff in an adaptive fashion. HOSA is well analyzed over routing schemes such as TIBSCRPH, SIP and ABSRP where performance of HOSA was measured using throughput, traffic intensity and end to end delay. HOSA has been analyzed using JXTA development toolkit over C++ implemented classes to demonstrate its performance over varying node mobility established using vehicular mobility based conference application.

  16. 车载自组织网络路由协议的仿真研究%Research on the Routing Protocol Simulation in Vehicular Ad Hoc Networks

    Institute of Scientific and Technical Information of China (English)

    李保珠; 刘悦; 初国新

    2011-01-01

    The paper presents the Vehicular Ad hoc Networks and two typical routing protocols: the table-driven routing protocol (DSDV) and the Ad hoc On-demand routing protocol (AODV) in mobile ad hoc networks. And a practical mobility model is used to enable the simulation experiment more veritable. Then NS2, a network simulation tool, is implemented to simulate the two typical routing protocols in ad hoc networks based on Linux,and the simulation results are analyzed and compared. The result is that the AODV and DSDV routing protocols are not suitable for vehicular ad hoc networks, so designing a proper protocol is an urgent problem.%本文简要介绍了车载自组织网络和移动自组织网络中两个典型的路由协议:表驱动路由协议DSDV和按需路由协议AODV;还介绍了一个实用的移动模型,使仿真实验更加接近现实.在Linux下使用网络仿真工具NS2对这两个典型协议进行仿真,并对仿真结果进行分析比较和性能评价,得出:AODV和DSDV协议都不太适用于车辆自组织网络,所以设计适合车辆网路的协议是急需解决的问题.

  17. One-dimensional photonic crystals

    NARCIS (Netherlands)

    Shen, Huaizhong; Wang, Zhanhua; Wu, Yuxin; Yang, Bai

    2016-01-01

    A one-dimensional photonic crystal (1DPC), which is a periodic nanostructure with a refractive index distribution along one direction, has been widely studied by scientists. In this review, materials and methods for 1DPC fabrication are summarized. Applications are listed, with a special emphasis

  18. One Dimensional Ballistic Electron Transport

    Directory of Open Access Journals (Sweden)

    Thomas K J

    2009-10-01

    Full Text Available Research in low-dimensional semiconductor systems over the last three decades has been largely responsible for the current progress in the areas of nanoscience and nanotechnology. The ability to control and manipulate the size, the carrier density, and the carrier type in two-, one-, and zero- dimensional structures has been widely exploited to study various quantum transport phenomena. In this article, a brief introduction is given to ballistic electron transport in one-dimensional quantum wires.

  19. Design of vehicular multimedia AD player based on embedded Linux%基于嵌入式Linux的车载多媒体广告机设计

    Institute of Scientific and Technical Information of China (English)

    郑继亭; 王润民; 张楠

    2014-01-01

    Aiming at the limitation of traditional vehicular multimedia AD player, a design method of vehicular multimedia AD player based on embedded Linux and Qt/Embedded is proposed. S3C6410 is adopted as the central processor in the hardware and the software platform uses Embedded Linux operating system. Additionally, the interface is developed by Qt, which is a type of open source graphical user interface library. The system adopts MPlayer as its media player. After experimental veriifcation, the AD player has the characteristic of low cost, user-friendly, quick reaction, and has a signiifcant improvement in cross-platform and scalability.%针对传统车载多媒体广告机的局限性,提出了一种基于嵌入式Liunx与Qt/Embedded的车载多媒体广告机的设计方案。该方案采用以ARM处理器S3C6410为核心的硬件平台和以嵌入式Linux系统为核心的软件平台,并在此基础上采用开放源代码的图形界面库Qt开发广告机界面,同时利用开源播放软件MPlayer作为播放器。经实验验证,该多媒体广告机具有成本较低、界面友好、反应灵敏等特点,并在跨平台性、可扩展性等方面比传统方案有显著改善。

  20. Delay-sensitive content distribution via peer-to-peer collaboration in public safety vehicular ad-hoc networks

    KAUST Repository

    Atat, Rachad

    2014-05-01

    Delay-sensitive content distribution with peer-to-peer (P2P) cooperation in public safety vehicular networks is investigated. Two cooperative schemes are presented and analyzed. The first scheme is based on unicasting from the base station, whereas the second is based on threshold based multicasting. Long Term Evolution (LTE) is used for long range (LR) communications with the base station (BS) and IEEE 802.11p is considered for inter-vehicle collaboration on the short range (SR). The first scheme is shown to outperform non-cooperative unicasting and multicasting, while the second scheme outperforms non-cooperative unicasting beyond a specific number of cooperating vehicles, when the appropriate 802.11p power class is used. The first scheme achieves the best performance among the compared methods, and a practical approximation of that scheme is shown to be close to optimal performance. © 2014 Elsevier B.V. All rights reserved.

  1. Fuzzy Logic-based Intelligent Scheme for Enhancing QoS of Vertical Handover Decision in Vehicular Ad-hoc Networks

    Science.gov (United States)

    Azzali, F.; Ghazali, O.; Omar, M. H.

    2017-08-01

    The design of next generation networks in various technologies under the “Anywhere, Anytime” paradigm offers seamless connectivity across different coverage. A conventional algorithm such as RSSThreshold algorithm, that only uses the received strength signal (RSS) as a metric, will decrease handover performance regarding handover latency, delay, packet loss, and handover failure probability. Moreover, the RSS-based algorithm is only suitable for horizontal handover decision to examine the quality of service (QoS) compared to the vertical handover decision in advanced technologies. In the next generation network, vertical handover can be started based on the user’s convenience or choice rather than connectivity reasons. This study proposes a vertical handover decision algorithm that uses a Fuzzy Logic (FL) algorithm, to increase QoS performance in heterogeneous vehicular ad-hoc networks (VANET). The study uses network simulator 2.29 (NS 2.29) along with the mobility traffic network and generator to implement simulation scenarios and topologies. This helps the simulation to achieve a realistic VANET mobility scenario. The required analysis on the performance of QoS in the vertical handover can thus be conducted. The proposed Fuzzy Logic algorithm shows improvement over the conventional algorithm (RSSThreshold) in the average percentage of handover QoS whereby it achieves 20%, 21% and 13% improvement on handover latency, delay, and packet loss respectively. This is achieved through triggering a process in layer two and three that enhances the handover performance.

  2. 基于演化图论的可靠的VANETs路由协议%Evolving graph-based reliable routing for vehicular Ad hoc networks

    Institute of Scientific and Technical Information of China (English)

    卢进军; 龙英艳; 潘宏利

    2014-01-01

    车载网络(VANETs)属于移动无线网络的特例,具有鲜明的特性。传统无线网络的路由协议难以直接应用于VANETs。节点的高速移动,引起网络拓扑动态变化,导致VANETs的通信链路频繁断裂。高动态网络的链路可靠性问题引起广泛的关注。为此,针对高速公路VANETs的路由可靠性进行分析,对演化图论进行扩展,建立扩展后的演化图论模型(EEGM),并利用EEGM获取VANETs拓扑的动态信息,从而预先获取可靠路由的信息。在此基础上,提出基于演化图论的可靠路由协议(EG-RAODV)。仿真结果表明,与同类的其他协议相比,提出的路由协议在分组传输率、端到端传输时延、路由请求消息率以及链路断裂数方面得到了提升。%Vehicular Ad hoc Networks(VANETs)are a special form of wireless networks with distinctive features. The conventional routing protocols for wireless networks is directly used to VANETs. The high-speed mobile of node gives rise to change the network topology and result in breaking frequently the communication links. Routing reliability of highly dynamic networks is focused. Therefore, for routing reliability of VANETs on highways, some works have done, including extended evolving graph and establish Extended Evolving Graph Model(EEGM). EEGM helps capture the characteristic of the vehicular network topology and determines the reliable routes preemptively. On this basis, EG-RAODV is proposed for VANETs. Simulation results show that the performance of proposed EG-RAODV is improved in data delivery ratio, end to end transmission delay, routing request ratio and the numbers of link fails, compared with other similar routing.

  3. Predicting impact of multi-paths on phase change in map-based vehicular ad hoc networks

    Science.gov (United States)

    Rahmes, Mark; Lemieux, George; Sonnenberg, Jerome; Chester, David B.

    2014-05-01

    Dynamic Spectrum Access, which through its ability to adapt the operating frequency of a radio, is widely believed to be a solution to the limited spectrum problem. Mobile Ad Hoc Networks (MANETs) can extend high capacity mobile communications over large areas where fixed and tethered-mobile systems are not available. In one use case with high potential impact cognitive radio employs spectrum sensing to facilitate identification of allocated frequencies not currently accessed by their primary users. Primary users own the rights to radiate at a specific frequency and geographic location, secondary users opportunistically attempt to radiate at a specific frequency when the primary user is not using it. We quantify optimal signal detection in map based cognitive radio networks with multiple rapidly varying phase changes and multiple orthogonal signals. Doppler shift occurs due to reflection, scattering, and rapid vehicle movement. Path propagation as well as vehicle movement produces either constructive or destructive interference with the incident wave. Our signal detection algorithms can assist the Doppler spread compensation algorithm by deciding how many phase changes in signals are present in a selected band of interest. Additionally we can populate a spatial radio environment map (REM) database with known information that can be leveraged in an ad hoc network to facilitate Dynamic Spectrum Access. We show how topography can help predict the impact of multi-paths on phase change, as well as about the prediction from dense traffic areas. Utilization of high resolution geospatial data layers in RF propagation analysis is directly applicable.

  4. Location-Based Services in Vehicular Networks

    Science.gov (United States)

    Wu, Di

    2013-01-01

    Location-based services have been identified as a promising communication paradigm in highly mobile and dynamic vehicular networks. However, existing mobile ad hoc networking cannot be directly applied to vehicular networking due to differences in traffic conditions, mobility models and network topologies. On the other hand, hybrid architectures…

  5. Routing Algorithm in Vehicular Ad Hoc Network Based on Link Prediction%基于链路预测的VANET路由算法

    Institute of Scientific and Technical Information of China (English)

    夏梓峻; 刘春凤; 赵增华; 舒炎泰

    2012-01-01

    Because of the fast change in mobility and topology, the performance of traditional wireless network routing protocols declines seriously in Vehicular Ad Hoc Network(VANET). Aiming at this problem, this paper improves AODV algorithm, takes the vehicle mobility information into account, and proposes an improved routing algorithm. The algorithm takes full use of position and velocity information. By estimating and calculating the possible duration of links, the Possible Length Expiration Time(PLET), the path with longest duration is selected. This algorithm is designed to decrease the time for route discovery by setting the timer and searching the path paralle. Extensive simulation results show that the algorithm has better throughput, transmission rate and lower delay compared to AODV algorithm.%在车载自组织网络(VANET)中,AODV路由算法存在控制开销大、路由发现和修复时间长等不足.为此,对AODV算法进行局部优化,提出一种改进的路由算法,利用节点位置、运动速度等信息预测链路失效时间.在路由发现阶段,将链路失效时间最大的路径作为传输路径;在路由维护阶段,设置定时器并提前触发路由寻路,减少路径搜寻时间.仿真结果表明,与AODV算法相比,该算法在数据包端到端延迟、传输吞吐率及报文投递率等方面性能较好.

  6. One Dimensional Locally Connected S-spaces

    CERN Document Server

    Kunen, Joan E Hart Kenneth

    2007-01-01

    We construct, assuming Jensen's principle diamond, a one-dimensional locally connected hereditarily separable continuum without convergent sequences. The construction is an inverse limit in omega_1 steps, and is patterned after the original Fedorchuk construction of a compact S-space. To make it one-dimensional, each space in the inverse limit is a copy of the Menger sponge.

  7. An algebraic study of unitary one dimensional quantum cellular automata

    CERN Document Server

    Arrighi, P

    2005-01-01

    We provide algebraic characterizations of unitary one dimensional quantum cellular automata. We do so both by algebraizing existing decision procedures, and by adding constraints into the model which do not change the quantum cellular automata's computational power. The configurations we consider have finite but unbounded size.

  8. Cooperative Localization for Vehicular Ad Hoc Networks%车载自组网协作定位算法研究

    Institute of Scientific and Technical Information of China (English)

    彭鑫; 李仁发; 王东; 李哲涛

    2013-01-01

    将半定规划应用于车载自组网协作定位问题中,提出一种对车间距离信息进行半定规划松弛的协作定位算法.该算法首先向邻居广播速度信息,并且测得与周围车辆的距离和角度,以此为基础推导出在较小时间段内车间距离矩阵所满足的半定松弛条件;然后通过半定规划方法得到车辆的位置分布;最后,通过梯度优化方法进一步改善定位精度.仿真分析表明,与其他车载自组网定位方法相比,该算法可有效提高定位性能,而且保证了车辆定位服务的实时性要求,在有测距误差的环境下也可表现出较好的定位精度.%A novel cooperative localization scheme for vehicular ad hoc metworks VANETs) is proposed based on the semi-definite programming.Firstly,vehicles broadcast 1ts movement information and exchange the range and angle data.The range and angle data are used to deduce simidefinite relaxation constraint condition for inter-vehicle distance matrix within a short time interval.And then the semi-definite programming method is employed to determine vehicles' coordinate.Finaly,gradient descent optimization can be incorporated into our algorithm to further improve the estimating accuracy at the expense of additional cost.During simulations,the proposed algorithm is shown to provide preferable localization performance,and perform well on distance error.

  9. VANETs中保护隐私的认证协议研究与进展%Privacy-preserving Authentication Protocols in Vehicular Ad Hoc Networks

    Institute of Scientific and Technical Information of China (English)

    何明星; 朱雯; 李虓; 罗大文; 赵俊兴

    2012-01-01

    认证性和隐私性是车辆自组织网络( VANETs)中影响安全通信和个人隐私的关键问题:既要保证车辆之间和车辆与路边设施之间的安全认证通信,又要适当保护与车辆相关的信息的隐私性.文章将围绕隐私保护前提下的认证理论和核心技术问题,分析现有研究进展与成果,提出一些适合VANETs特点的研究方法和值得进一步研究的问题与方向,以期获得VANETs中保护隐私的认证新概念、新模型;探索保护用户隐私的安全匿名新方法,平衡认证与隐私保护中的矛盾对立,为VANETs的安全服务奠定理论基础、提供技术储备.%Authentication and privacy are two critical concerns to secure communication and protect sensitive information in vehicular ad-hoc networks (VANETs). It is necessary to guarantee the information security and protect appropriately the vehicle-related information privacy between vehicles or between vehicles and roadside units (RSUs). This paper considers privacy protection and the authentication theory with the related core technology by making use of new cryptographic methods, surveys the main previous privaey-preservation authentication protocols ; addresses some new issues and new research direction. It is expected to develop a series of new authentication methods for protection of privacy which are adapted to the features of VANETs, improve greatly the theoretical foundation of VANET and provide with technical reservations for VANET security services.

  10. Exactly solvable one-dimensional inhomogeneous models

    Energy Technology Data Exchange (ETDEWEB)

    Derrida, B.; France, M.M.; Peyriere, J.

    1986-11-01

    The authors present a simple way of constructing one-dimensional inhomogeneous models (random or quasiperiodic) which can be solved exactly. They treat the example of an Ising chain in a varying magnetic field, but their procedure can easily be extended to other one-dimensional inhomogeneous models. For all the models they can construct, the free energy and its derivatives with respect to temperature can be computed exactly at one particular temperature.

  11. 车载Ad Hoc网络中基于移动网关的数据传输%MGF: Mobile Gateway Based Forwarding for Infrastructure-to-Vehicle Data Delivery in Vehicular Ad Hoc Networks

    Institute of Scientific and Technical Information of China (English)

    陈丽; 李治军; 姜守旭; 冯诚

    2012-01-01

    由于车载Ad hoc网络拓扑的动态变化及车载节点的快速移动,应用现有传输方法在其上进行Internet接入点向移动车辆(Infrastructure-to-Vehicle,I2V)数据传输时成功率较低,而且传输延迟高、延迟抖动大.为了解决这一问题,文中利用公交车路线固定、运行特征可预测、节点及线路分布稠密等特性,将公交车作为移动网关( Mobile Gateway,MG),提出了一种新的基于MG转发的I2V数据传输方法(Mobile Gateway based Forwarding,MGF).文中首先将公路网模型化为状态-空间图,再运用马尔可夫决策方法建立了一种基于MG转发的I2V数据传输优化模型,然后通过对模型求解得出I2V数据传输的最优转发决策,最优转发决策指的就是每个状态下对应的最优动作序列,最后在目的车辆行驶轨迹上选取满足传输成功率阈值,并使I2V传输延迟最小的路口节点作为数据包与目的车辆的最优汇聚节点,即目标节点.应用MGF方法,MG节点将以最优概率转发序列向目标节点转发数据包.文中利用模拟平台对MGF方法的传输性能进行了评估,结果表明该方法在满足传输成功率阈值前提下,能够获得最小传输延迟期望.理论分析同样也证明了该方法的有效性.%The highly dynamic topology and the rapid movement of destination node pose special challenges to Infrastructure-to-Vehicle (I2V) data delivery in Vehicular Ad Hoc Networks (VANET). Current data delivery methods are with the strong delay, the large jitter of delay and low delivery ratio for I2V data delivery. The paper investigates how to effectively utilize the prominent characteristic of buses, and proposes Mobile Gateway (MG) based Forwarding (MGF) that buses are installed as MG to forward data packet. To solve the problem that the paper models road network as a probabilistic state-space graph, in which applies the value iteration algorithm for the markov decision processing model to derive the

  12. Stationary one-dimensional dispersive shock waves

    CERN Document Server

    Kartashov, Yaroslav V

    2011-01-01

    We address shock waves generated upon the interaction of tilted plane waves with negative refractive index defect in defocusing media with linear gain and two-photon absorption. We found that in contrast to conservative media where one-dimensional dispersive shock waves usually exist only as nonstationary objects expanding away from defect or generating beam, the competition between gain and two-photon absorption in dissipative medium results in the formation of localized stationary dispersive shock waves, whose transverse extent may considerably exceed that of the refractive index defect. One-dimensional dispersive shock waves are stable if the defect strength does not exceed certain critical value.

  13. One-dimensional oscillator in a box

    Energy Technology Data Exchange (ETDEWEB)

    Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Colima, Colima (Mexico); Fernandez, Francisco M [INIFTA (UNLP, CCT La Plata-CONICET), Division Quimica Teorica, Blvd 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)], E-mail: paolo@ucol.mx, E-mail: fernande@quimica.unlp.edu.ar

    2010-01-15

    We discuss a quantum-mechanical model of two particles that interact by means of a harmonic potential and are confined to a one-dimensional box with impenetrable walls. We apply perturbation theory to the cases of different and equal masses and analyse the symmetry of the states in the latter case. We compare the approximate perturbation results with accurate numerical ones.

  14. QUASI-ONE DIMENSIONAL CLASSICAL FLUIDS

    Directory of Open Access Journals (Sweden)

    J.K.Percus

    2003-01-01

    Full Text Available We study the equilibrium statistical mechanics of simple fluids in narrow pores. A systematic expansion is made about a one-dimensional limit of this system. It starts with a density functional, constructed from projected densities, which depends upon projected one and two-body potentials. The nature of higher order corrections is discussed.

  15. Highly conducting one-dimensional solids

    CERN Document Server

    Evrard, Roger; Doren, Victor

    1979-01-01

    Although the problem of a metal in one dimension has long been known to solid-state physicists, it was not until the synthesis of real one-dimensional or quasi-one-dimensional systems that this subject began to attract considerable attention. This has been due in part to the search for high­ temperature superconductivity and the possibility of reaching this goal with quasi-one-dimensional substances. A period of intense activity began in 1973 with the report of a measurement of an apparently divergent conduc­ tivity peak in TfF-TCNQ. Since then a great deal has been learned about quasi-one-dimensional conductors. The emphasis now has shifted from trying to find materials of very high conductivity to the many interesting problems of physics and chemistry involved. But many questions remain open and are still under active investigation. This book gives a review of the experimental as well as theoretical progress made in this field over the last years. All the chapters have been written by scientists who have ...

  16. One-Dimensional Simulation of Clay Drying

    Directory of Open Access Journals (Sweden)

    Siljan Siljan

    2002-04-01

    Full Text Available Drying of clay is simulated by a one-dimensional model. The background of the work is to form a better basis for investigation of the drying process in production of clay-based building materials. A model of one-dimensional heat and mass transfer in porous material is used and modified to simulate drying of clay particles. The convective terms are discretized by first-order upwinding, and the diffusive terms are discretized by central differencing. DASSL was used to solve the set of algebraic and differential equations. The different simulations show the effect of permeability, initial moisture content and different boundary conditions. Both drying of a flat plate and a spherical particle are modelled.

  17. One-dimensional nano-interconnection formation.

    Science.gov (United States)

    Ji, Jianlong; Zhou, Zhaoying; Yang, Xing; Zhang, Wendong; Sang, Shengbo; Li, Pengwei

    2013-09-23

    Interconnection of one-dimensional nanomaterials such as nanowires and carbon nanotubes with other parts or components is crucial for nanodevices to realize electrical contacts and mechanical fixings. Interconnection has been being gradually paid great attention since it is as significant as nanomaterials properties, and determines nanodevices performance in some cases. This paper provides an overview of recent progress on techniques that are commonly used for one-dimensional interconnection formation. In this review, these techniques could be categorized into two different types: two-step and one-step methods according to their established process. The two-step method is constituted by assembly and pinning processes, while the one-step method is a direct formation process of nano-interconnections. In both methods, the electrodeposition approach is illustrated in detail, and its potential mechanism is emphasized.

  18. One-Dimensional Tunable Josephson Metamaterials

    OpenAIRE

    Butz, Susanne

    2014-01-01

    This thesis presents a novel approach to the experimental realization of tunable, superconducting metamaterials. Therefore, conventional resonant meta-atoms are replaced by meta-atoms that contain Josephson junctions, which renders their resonance frequency tunable by an external magnetic field. This tunability is theoretically and experimentally investigated in one-dimensional magnetic and electric metamaterials. For the magnetic metamaterial, the effective, magnetic permeability is determined.

  19. Vectorlike representation of one-dimensional scattering

    CERN Document Server

    Sánchez-Soto, L L; Barriuso, A G; Monzon, J J

    2004-01-01

    We present a self-contained discussion of the use of the transfer-matrix formalism to study one-dimensional scattering. We elaborate on the geometrical interpretation of this transfer matrix as a conformal mapping on the unit disk. By generalizing to the unit disk the idea of turns, introduced by Hamilton to represent rotations on the sphere, we develop a method to represent transfer matrices by hyperbolic turns, which can be composed by a simple parallelogramlike rule.

  20. Momentum Dynamics of One Dimensional Quantum Walks

    CERN Document Server

    Fuss, I; Sherman, P J; Naguleswaran, S; Fuss, Ian; White, langord B.; Sherman, Peter J.; Naguleswaran, Sanjeev

    2006-01-01

    We derive the momentum space dynamic equations and state functions for one dimensional quantum walks by using linear systems and Lie group theory. The momentum space provides an analytic capability similar to that contributed by the z transform in discrete systems theory. The state functions at each time step are expressed as a simple sum of three Chebyshev polynomials. The functions provide an analytic expression for the development of the walks with time.

  1. One-Dimensional Anisotropic Band Gap Structure

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The band gap structure of one-dimensional anisotropic photonic crystal has been studied by means of the transfer matrix formalism. From the analytic expressions and numeric calculations we see some general characteristics of the band gap structure of anisotropic photonic crystals, each band separates into two branches and the two branches react to polarization sensitively. In the practical case of oblique incidence, gaps move towards high frequency when the angle of incidence increases. Under some special conditions, the two branches become degenerate again.

  2. One-dimensional nanostructures principles and applications

    CERN Document Server

    Zhai, Tianyou

    2012-01-01

    Reviews the latest research breakthroughs and applications Since the discovery of carbon nanotubes in 1991, one-dimensional nanostructures have been at the forefront of nanotechnology research, promising to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. With contributions from 68 leading international experts, this book reviews both the underlying principles as well as the latest discoveries and applications in the field, presenting the state of the technology. Readers will find expert coverage of all major classes of one-di

  3. Distibines, New One-Dimensional Materials.

    Science.gov (United States)

    2014-09-26

    Diarsines, Distibines * and Dibismuthines," XI International Conference on Organometallic * Chemistry , Pine Mountain, Georgia, October 1983. (vi...D-R158 534 DISTIINES NEW ONE-DIMENSIONAL MTERILS(U) ICHIGAN i/UNJY ANN ARBOR DEPT OF CHEMISTRY A J ASHE 17 NAY 85 RFOSR-TR-85-9592 RFOSR-81-909 N...ADDRESS (Ci, Stett, and ZIP Code) Department of Chemistry , University Building 410, Bolling AFS, D.C. of Michigan, Ann Arbor, MI 48109 20332-6448 Sa

  4. One-dimensional hypersonic phononic crystals.

    Science.gov (United States)

    Gomopoulos, N; Maschke, D; Koh, C Y; Thomas, E L; Tremel, W; Butt, H-J; Fytas, G

    2010-03-10

    We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons.

  5. Localized chaos in one-dimensional hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Humm, D.C.; Saltz, D.; Nayfeh, M.H. (Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 (USA))

    1990-08-01

    We calculate the response of hydrogen to the presence of both a strong dc electric field (necessary to isolate a nearly one-dimensional motion) and a strong radiation field of higher frequency than the binding energy of the system, a regime that has not previously been examined by theory or experiment. We determine the classical ionization threshold, the quantum-delocalization threshold, and the threshold of {ital n} mixing due to chaotic effects. The analysis indicates that the dc field can have a dramatic effect on the quantum localization of classically chaotic diffusion, changing the delocalization threshold by more than an order of magnitude. Moreover, this system provides a large spectral region in which quantum-mechanical localization inhibits classical chaotic diffusion. This theory is well suited to experimental testing.

  6. One-dimensional spinon spin currents

    Science.gov (United States)

    Hirobe, Daichi; Sato, Masahiro; Kawamata, Takayuki; Shiomi, Yuki; Uchida, Ken-Ichi; Iguchi, Ryo; Koike, Yoji; Maekawa, Sadamichi; Saitoh, Eiji

    2017-01-01

    Quantum spin fluctuation in a low-dimensional or frustrated magnet breaks magnetic ordering while keeping spin correlation. Such fluctuation has been a central topic in magnetism because of its relevance to high-Tc superconductivity and topological states. However, utilizing such spin states has been quite difficult. In a one-dimensional spin-1/2 chain, a particle-like excitation called a spinon is known to be responsible for spin fluctuation in a paramagnetic state. Spinons behave as a Tomonaga-Luttinger liquid at low energy, and the spin system is often called a quantum spin chain. Here we show that a quantum spin chain generates and carries spin current, which is attributed to spinon spin current. This is demonstrated by observing an anisotropic negative spin Seebeck effect along the spin chains in Sr2CuO3. The results show that spin current can flow even in an atomic channel owing to long-range spin fluctuation.

  7. Collapsing of chaos in one dimensional maps

    Science.gov (United States)

    Yuan, Guocheng; Yorke, James A.

    2000-02-01

    In their numerical investigation of the family of one dimensional maps f l(x)=1-2∣x∣ l, where l>2 , Diamond et al. [P. Diamond et al., Physica D 86 (1999) 559-571] have observed the surprising numerical phenomenon that a large fraction of initial conditions chosen at random eventually wind up at -1, a repelling fixed point. This is a numerical artifact because the continuous maps are chaotic and almost every (true) trajectory can be shown to be dense in [-1,1]. The goal of this paper is to extend and resolve this obvious contradiction. We model the numerical simulation with a randomly selected map. While they used 27 bit precision in computing f l, we prove for our model that this numerical artifact persists for an arbitrary high numerical prevision. The fraction of initial points eventually winding up at -1 remains bounded away from 0 for every numerical precision.

  8. Superfluid helium-4 in one dimensional channel

    Science.gov (United States)

    Kim, Duk Y.; Banavar, Samhita; Chan, Moses H. W.; Hayes, John; Sazio, Pier

    2013-03-01

    Superfluidity, as superconductivity, cannot exist in a strict one-dimensional system. However, the experiments employing porous media showed that superfluid helium can flow through the pores of nanometer size. Here we report a study of the flow of liquid helium through a single hollow glass fiber of 4 cm in length with an open id of 150 nm between 1.6 and 2.3 K. We found the superfluid transition temperature was suppressed in the hollow cylinder and that there is no flow above the transition. Critical velocity at temperature below the transition temperature was determined. Our results bear some similarity to that found by Savard et. al. studying the flow of helium through a nanohole in a silicon nitrite membrane. Experimental study at Penn State is supported by NSF Grants No. DMR 1103159.

  9. One-dimensional reduction of viscous jets

    CERN Document Server

    Pitrou, Cyril

    2015-01-01

    We build a general formalism to describe thin viscous jets as one-dimensional objects with an internal structure. We present in full generality the steps needed to describe the viscous jets around their central line, and we argue that the Taylor expansion of all fields around that line is conveniently expressed in terms of symmetric trace-free tensors living in the two dimensions of the fiber sections. We recover the standard results of axisymmetric jets and we report the first and second corrections to the lowest order description, also allowing for a rotational component around the axis of symmetry. When applied to generally curved fibers, the lowest order description corresponds to a viscous string model whose sections are circular. However, when including the first corrections we find that curved jets generically develop elliptic sections. Several subtle effects imply that the first corrections cannot be described by a rod model, since it amounts to selectively discard some corrections. However, in a fast...

  10. One-dimensional Vlasov-Maxwell equilibria

    Science.gov (United States)

    Greene, John M.

    1993-06-01

    The purpose of this paper is to show that the Vlasov equilibrium of a plasma of charged particles in an electromagnetic field is closely related to a fluid equilibrium, where only a few moments of the velocity distribution of the plasma are considered. In this fluid equilibrium the electric field should be calculated from Ohm's law, rather than the Poisson equation. In practice, only one-dimensional equilibria are treated, because the symmetry makes this case tractable. The emphasis here is on gaining a better understanding of the subject, but an alternate way of doing the calculations is suggested. It is shown that particle distributions can be found that are consistent with any reasonable electromagnetic field profile.

  11. Few quantum particles on one dimensional lattices

    Energy Technology Data Exchange (ETDEWEB)

    Valiente Cifuentes, Manuel

    2010-06-18

    There is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The lattice spacing is fixed by the wavelength of the laser field employed and the angle betwen the pair of laser beams; the lattice depth, defining the magnitude of the different band gaps, is tunable within a large interval of values. This flexibility permits the exploration of different regimes, ranging from the ''free-electron'' picture, modified by the effective mass for shallow optical lattices, to the tight-binding regime of a very deep periodic potential. In the latter case, effective single-band theories, widely used in condensed matter physics, can be implemented with unprecedent accuracy. The tunability of the lattice depth is nowadays complemented by the use of magnetic Feshbach resonances which, at very low temperatures, can vary the relevant atom-atom scattering properties at will. Moreover, optical lattices loaded with gases of effectively reduced dimensionality are experimentally accessible. This is especially important for one spatial dimension, since most of the exactly solvable models in many-body quantum mechanics deal with particles on a line; therefore, experiments with one-dimensional gases serve as a testing ground for many old and new theories which were regarded as purely academic not so long ago. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed. These are used to obtain, in closed form, the two-particle solutions of both the Hubbard and

  12. One-Dimensional (1-D) Nanoscale Heterostructures

    Institute of Scientific and Technical Information of China (English)

    Guozhen SHEN; Di CHEN; Yoshio BANDO; Dmitri GOLBERG

    2008-01-01

    One-dimensional (1-D) nanostructures have been attracted much attention as a result of their exceptional properties, which are different from bulk materials. Among 1-D nanostructures, 1-D heterostructures with modulated compositions and interfaces have recently become of particular interest with respect to potential applications in nanoscale building blocks of future optoelectronic devices and systems. Many kinds of methods have been developed for the synthesis of 1-D nanoscale heterostructures. This article reviews the most recent development, with an emphasize on our own recent efforts, on 1-D nanoscale heterostructures, especially those synthesized from the vapor deposition methods, in which all the reactive precursors are mixed together in the reaction chamber. Three types of 1-D nanoscale heterostructures, defined from their morphologies characteristics, are discussed in detail, which include 1-D co-axial core-shell heterostructures, 1-D segmented heterostructures and hierarchical heterostructures. This article begins with a brief survey of various methods that have been developed for synthesizing 1-D nanoscale heterostructures and then mainly focuses on the synthesis, structures and properties of the above three types of nanoscale heterostructures. Finally, this review concludes with personal views towards the topic of 1-D nanoscale heterostructures.

  13. One-dimensional nanomaterials: Synthesis and applications

    Science.gov (United States)

    Lei, Bo

    My research mainly covers three types of one-dimensional (1D) nanomaterials: metal oxide nanowires, transition metal oxide core-shell nanowires and single-walled carbon nanotubes. This new class of nanomaterials has generated significant impact in multiple fields including electronics, medicine, computing and energy. Their peculiar, fascinating properties are promising for unique applications on electronics, spintronics, optical and chemical/biological sensing. This dissertation will summarize my research work on these three 1D nanomaterials and propose some ideas that may lead to further development. Chapter 1 will give a brief introduction of nanotechnology journey and 1D nanomaterials. Chapter 2 and 3 will discuss indium oxide nanowires, as the representative of metal oxide nanwires. More specifically, chapter 2 is focused on the synthesis, material characterization, transport studies and doping control of indium oxide nanowires; Chapter 3 will give a comprehensive review of our systematic studies on molecular memory applications based on molecule/indium oxide nanowire heterostructures. Chapter 4 will introduce another 1D nanomaterial-transition metal oxide (TMO) core-shell nanowires. The discuss will focus on the synthesis of TMO nanowires, material analysis and their electronic properties as a function of temperature and magnetic field. Chapter 5 is dedicated to aligned single-walled carbon nanotubes (SWNTs) on synthesis with rational control of position and orientation, detailed characterization and construction of scaled top-gated transistors. This chapter presents a way to produce the p- and n-type nanotube transistors based on gate voltage polarity control during electrical breakdown. Finally, chapter 6 summarizes the above discussions and proposes some suggestions for future studies.

  14. Hydrogen peroxide stabilization in one-dimensional flow columns

    Science.gov (United States)

    Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.

    2011-09-01

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.

  15. 一种基于AODV改进的城市车载自组网路由协议研究%An improved AODV routing protocol in urban vehicular ad hoc networks

    Institute of Scientific and Technical Information of China (English)

    蔡菁; 朱余兵

    2013-01-01

    Considering the characteristics of VANET in urban traffic environment and the shortage of broadcast routing detection of the AODV protocol, proposes an improved AODV routing protocol, where the routing detection combines the greedy forwarding unicast routing detection with the broadcast routing detection of classical AODV protocol. Furthermore, selecting the next hop forwarding node in the unicast routing detection takes into account both the greedy forwarding and the link stability to reduce the broadcast frames and improve the routing stability. The simulation results show that the improved AODV protocol is more suitable for Urban Vehicular Ad Hoc Networks.%针对城市环境下车载自组网的特点及AODV协议广播式路由探测的不足,采用贪婪转发的单播式路由探测和经典AODV协议的广播式路由探测相结合的路由探测方式,并且单播路由探测在选择下一跳转发节点时同时考虑贪婪转发和链路稳定两个因素,减少了广播帧的发送,提高了路由的稳定性.仿真实验表明,改进后AODV协议比经典AODV协议更加适合城市车载自组网.

  16. MARCUSE’S ONE-DIMENSIONAL SOCIETY IN ONE-DIMENSIONAL MAN

    Directory of Open Access Journals (Sweden)

    MILOS RASTOVIC

    2013-05-01

    Full Text Available Nowadays, Marcuse’s main book One-Dimensional Man is almost obsolete, or rather passé. However, there are reasons to renew the reading of his book because of “the crisis of capitalism,” and the prevailing framework of technological domination in “advanced industrial society” in which we live today. “The new forms of control” in “advanced industrial societies” have replaced traditional methods of political and economic administration. The dominant structural element of “advanced industrial society” has become a technical and scientific apparatus of production and distribution of technology and administrative practice based on application of impersonal rules by a hierarchy of associating authorities. Technology has been liberated from the control of particular interests, and it has become the factor of domination in itself. Technological domination stems from the technical development of the productive apparatus that reproduces its ability into all spheres of social life (cultural, political, and economic. Based upon this consideration, in this paper, I will examine Marcuse’s ideas of “the new forms of control,” which creates a one–dimensional society. Marcuse’s fundamental thesis in One-Dimensional Man is that technological rationality is the most dominant factor in an “advanced industrial society,” which unites two earlier opposing forces of dissent: the bourgeoisie and the proletariat.

  17. Towards autonomous vehicular clouds

    Directory of Open Access Journals (Sweden)

    Stephan Olariu

    2011-09-01

    Full Text Available The dawn of the 21st century has seen a growing interest in vehicular networking and its myriad potential applications. The initial view of practitioners and researchers was that radio-equipped vehicles could keep the drivers informed about potential safety risks and increase their awareness of road conditions. The view then expanded to include access to the Internet and associated services. This position paper proposes and promotes a novel and more comprehensive vision namely, that advances in vehicular networks, embedded devices and cloud computing will enable the formation of autonomous clouds of vehicular computing, communication, sensing, power and physical resources. Hence, we coin the term, autonomous vehicular clouds (AVCs. A key feature distinguishing AVCs from conventional cloud computing is that mobile AVC resources can be pooled dynamically to serve authorized users and to enable autonomy in real-time service sharing and management on terrestrial, aerial, or aquatic pathways or theaters of operations. In addition to general-purpose AVCs, we also envision the emergence of specialized AVCs such as mobile analytics laboratories. Furthermore, we envision that the integration of AVCs with ubiquitous smart infrastructures including intelligent transportation systems, smart cities and smart electric power grids will have an enormous societal impact enabling ubiquitous utility cyber-physical services at the right place, right time and with right-sized resources.

  18. Gibbs measures and phase transitions in one-dimensional models

    OpenAIRE

    Mallak, Saed

    2000-01-01

    Ankara : Department of Mathematics and the Institute of Engineering and Sciences of Bilkent University, 2000. Thesis (Ph.D.) -- Bilkent University, 2000. Includes bibliographical references leaves 63-64 In this thesis we study the problem of limit Gibbs measures in one-dimensional models. VVe investigate uniqueness conditions for the limit Gibbs measures for one-dimensional models. VVe construct a one-dimensional model disproving a uniqueness conjecture formulated before for...

  19. One dimensional Convolutional Goppa Codes over the projective line

    CERN Document Server

    Pérez, J A Domínguez; Sotelo, G Serrano

    2011-01-01

    We give a general method to construct MDS one-dimensional convolutional codes. Our method generalizes previous constructions of H. Gluesing-Luerssen and B. Langfeld. Moreover we give a classification of one-dimensional Convolutional Goppa Codes and propose a characterization of MDS codes of this type.

  20. One-dimensional diffusion model in an Inhomogeneous region

    CSIR Research Space (South Africa)

    Fedotov, I

    2006-01-01

    Full Text Available A one-dimensional model is developed to describe atomic diffusion in a graphite tube atomizer for electrothermal atomic adsorption spectrometry. The underlying idea of the model is the solution of an inhomogeneous one-dimensional diffusion equation...

  1. Vehicular-to-vehicular channel characterization and measurement results

    OpenAIRE

    CAMPUZANO CANDEL, ANDRÉS JOSÉ; FERNÁNDEZ GONZÁLEZ, HERMAN ANTONIO; BALAGUER ANDRÉS, DAVID; Vila Jiménez, Antonio; Bernardo Clemente, Bernardo; Rodrigo Peñarrocha, Vicent Miquel; Reig, Juan; Valero-Nogueira, Alejandro; Rubio Arjona, Lorenzo

    2012-01-01

    Vehicular-to-Vehicular (V2V) communications are receiving considerable attention due to the introduction of the intelligent transportation system (ITS) concept. To design, evaluate and optimize ITS applications oriented to vehicular safety based on wireless systems, the knowledge of the propagation channel is vital, in particular the path loss. From a narrowband V2V channel measurements campaign carried out in a suburban area of the city of Valencia (Spain), this paper...

  2. A disorder-enhanced quasi-one-dimensional superconductor.

    Science.gov (United States)

    Petrović, A P; Ansermet, D; Chernyshov, D; Hoesch, M; Salloum, D; Gougeon, P; Potel, M; Boeri, L; Panagopoulos, C

    2016-01-01

    A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2-δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials.

  3. Connectivity of Highway Vehicular Networks

    OpenAIRE

    Gramaglia, Marco; Trullols-Cruces, Oscar; Naboulsi, Diala; Fiore, Marco; Calderon, Maria

    2014-01-01

    National audience; There is a growing need for vehicular mobility datasets that can be employed in the simulative evaluation of protocols and architectures designed for upcoming vehicular networks. Such datasets should be realistic, publicly available, and heterogeneous, i.e., they should capture varied traffic con- ditions. In this paper, we contribute to the ongoing effort to define such mobility scenarios by introducing a novel set of traces for vehicular network simulation. Our traces are...

  4. 城市环境下车载Ad Hoc网络路由协议研究%Research on Routing Protocol in Vehicular Ad Hoc Networks in Urban Environment

    Institute of Scientific and Technical Information of China (English)

    陈鹏; 何涛; 李茁

    2012-01-01

    考虑到城市环境中障碍物对网络性能的重要影响,在NS2(Network Simulator version 2)中加入了代表障碍物的概率穿透模型,使仿真环境更接近真实环境。针对AODV(Ad hoc On-Demand Distance Vector Routing)协议应用在城市场景下的缺陷,提出了一种改进的AODV协议——GE-AODV(Geocast Enhanced AODV)协议,该协议是基于位置信息的协议,并采用了多播方式来转发控制信息。仿真表明,GE-AODV降低了网络时延和控制开销,提高了网络可靠性。%Considering the significant influence of obstacles on network performance in urban environment, the probabilistic penetration model which is closer to the real scene is proposed in this paper and added into the Network Simulator version 2 ( NS2 ). Aiming to the defects of Ad hoc On-Demand Distance Vector Routing(AODV) used in the urban scenario, we propose an enhanced AODV protocol, named as Geocast Enhanced AODV (GE-AODV), which is based on the location information and adopts the multicasting mode to transmit the control messages. The results of related experiments show that the protocol can shorten the network delay, reduce the control overhead, and improve the reliability of network.

  5. Torsional Detwinning Domino in Nanotwinned One-Dimensional Nanostructures.

    Science.gov (United States)

    Zhou, Haofei; Li, Xiaoyan; Wang, Ying; Liu, Zishun; Yang, Wei; Gao, Huajian

    2015-09-09

    How to maintain sustained deformation in one-dimensional nanostructures without localized failure is an important question for many applications of nanotechnology. Here we report a phenomenon of torsional detwinning domino that leads to giant rotational deformation without localized failure in nanotwinned one-dimensional metallic nanostructures. This mechanism is demonstrated in nanotwinned Cu nanorods via molecular dynamics simulations, where coherent twin boundaries are transformed into twist boundaries and then dissolved one by one, resulting in practically unlimited rotational deformation. This finding represents a fundamental advance in our understanding of deformation mechanisms in one-dimensional metallic nanostructures.

  6. Sliding Window-based Network Coding Transmission Scheme for Vehicular Ad hoc Networks%车载自组网中基于滑动窗口的网络编码传输策略

    Institute of Scientific and Technical Information of China (English)

    王万良; 李桂森; 姚信威; 岑跃峰

    2012-01-01

    Time-sensitive data transmission in vehicular Ad hoc networks (VANET) is particularly challenging due to the high mobility and the rapidly changing topology. To address this problem, we proposed a scheme that uses network coding with dynamic sliding window in opportunistic routing. By adjusting the window size according to the network status, it encodes different number of native packets into a coded packet such that it can tolerate the acknowledgement delay and improve the throughput in different cases. The scheme uses a lower triangular matrix coding method to smooth the decoding interval in the receiver. Simulations show that the scheme is able to increase the throughput and decrease the delay jitter efficiently. It is especially appropriate for time sensitive multimedia applications in VANET.%由于节点的高速移动和拓扑的快速变化,使得在车载自组网中传输时延敏感的数据是一个很大的挑战.针对此问题,提出了一种在机会路由上使用基于滑动窗口的网络编码传输策略.该策略根据网络状态自适应地调整滑动窗口的大小,来编码不同长度的编码包,去容忍ACK的延迟,使得在各种网络条件下都能保持较高的吞吐率;使用下三角形式的渐进编码使接收端逐步解码,从而平滑接收端的解码时间间隔.仿真结果表明,该策略具有更高的吞吐率,同时能够在接收端形成时延抖动小的数据流,为车载自组网中流媒体等时延敏感的数据流传输提供更好的服务质量.

  7. Visualizing One-Dimensional Electronic States and their Scattering in Semi-conducting Nanowires

    Science.gov (United States)

    Beidenkopf, Haim; Reiner, Jonathan; Norris, Andrew; Nayak, Abhay Kumar; Avraham, Nurit; Shtrikman, Hadas

    One-dimensional electronic systems constitute a fascinating playground for the emergence of exotic electronic effects and phases, within and beyond the Tomonaga-Luttinger liquid paradigm. More recently topological superconductivity and Majorana modes were added to that long list of phenomena. We report scanning tunneling microscopy and spectroscopy measurements conducted on pristine, epitaxialy grown InAs nanowires. We resolve the 1D electronic band structure manifested both via Van-Hove singularities in the local density-of-states, as well as by the quasi-particle interference patterns, induced by scattering from surface impurities. By studying the scattering of the one-dimensional electronic states off various scatterers, including crystallographic defects and the nanowire end, we identify new one-dimensional relaxation regimes and yet unexplored effects of interactions. Some of these may bear implications on the topological superconducting state and Majorana modes therein. The authors acknowledge support from the Israeli Science Foundation (ISF).

  8. A NEW ONE-DIMENSIONAL CHAOTIC MAP WITH INFINITE COLLAPSES

    Institute of Scientific and Technical Information of China (English)

    Qiu Yuehong; He Chen; Zhu Hongwen

    2002-01-01

    This letter presents a new one-dimensional chaotic map with infinite collapses. Theoretical analyses show that the map has complicated dynamical behavior and ideal distribution.The map can be applied in chaotic spreading spectrum communication and chaotic cipher.

  9. One-dimensional spatially dependent solute transport in semi ...

    African Journals Online (AJOL)

    One-dimensional spatially dependent solute transport in semi-infinite porous media: an analytical solution. ... Journal Home > Vol 9, No 4 (2017) > ... In this mathematical model the dispersion coefficient is considered spatially dependent while ...

  10. One-Dimensional Tunable Photonic-Crystal IR Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  11. One-Dimensional Tunable Photonic-Crystal IR Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  12. One dimensional models of excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia Decebal; Duclos, P.; Pedersen, Thomas Garm

    Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....

  13. An investigation of dopping profile for a one dimensional heterostructure

    Science.gov (United States)

    Huang, Zhaohui

    2005-03-01

    A one-dimensional junction is formed by joining two silicon nanowires whose surfaces are terminated with capping groups of different electronegativity and polarizability. If this heterostructure is doped (with e.g. phosphorous) on the side with the higher bandgap, the system becomes a modulation doped heterostructure with novel one-dimensional electrostatics. We use density functional theory calculations in the pseudopotential approximation, plus empirical model calculations, to investigate doping profiles in this new class of nanostructures.

  14. Fidelity of an electron in one-dimensional determined potentials

    Institute of Scientific and Technical Information of China (English)

    Song Wen-Guang; Tong Pei-Qing

    2009-01-01

    We numerically study the fidelity of an electron in the one-dimensional Harper model and in the one-dimensional slowly varying potential model. Our results show that many properties of the two models can be well reflected by the fidelity: (i) the mobility edge and metal-insulator transition can be characterized by the static fidelity; (ii) the extended state and localized state can be identified by the dynamic fidelity. Therefore, it may broaden the applied areas of the fidelity.

  15. One dimensional speckle fields generated by three phase level diffusers

    Science.gov (United States)

    Cabezas, L.; Amaya, D.; Bolognini, N.; Lencina, A.

    2015-02-01

    Speckle patterns have usually been obtained by using ground glass as random diffusers. Liquid-crystal spatial light modulators have opened the possibility of engineering tailored speckle fields obtained from designed diffusers. In this work, one-dimensional Gaussian speckle fields with fully controllable features are generated. By employing a low-cost liquid-crystal spatial light modulator, one-dimensional three phase level diffusers are implemented. These diffusers make it possible to control average intensity distribution and statistical independence among the generated patterns. The average speckle size is governed by an external slit pupil. A theoretical model to describe the generated speckle patterns is developed. Experimental and theoretical results confirming the generation of one-dimensional speckle fields are presented. Some possible applications of these speckles, such as atom trapping and super-resolution imaging, are briefly envisaged.

  16. Analysis of one dimensional and two dimensional fuzzy controllers

    Institute of Scientific and Technical Information of China (English)

    Ban Xiaojun; Gao Xiaozhi; Huang Xianlin; Wu Tianbao

    2006-01-01

    The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail.The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.

  17. A review on one dimensional perovskite nanocrystals for piezoelectric applications

    Directory of Open Access Journals (Sweden)

    Li-Qian Cheng

    2016-03-01

    Full Text Available In recent years, one-dimensional piezoelectric nanomaterials have become a research topic of interest because of their special morphology and excellent piezoelectric properties. This article presents a short review on one dimensional perovskite piezoelectric materials in different systems including Pb(Zr,TiO3, BaTiO3 and (K,NaNbO3 (KNN. We emphasize KNN as a promising lead-free piezoelectric compound with a high Curie temperature and high piezoelectric properties and describe its synthesis and characterization. In particular, details are presented for nanoscale piezoelectricity characterization of a single KNN nanocrystal by piezoresponse force microscopy. Finally, this review describes recent progress in applications based on one dimensional piezoelectric nanostructures with a focus on energy harvesting composite materials.

  18. One-dimensional models of excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia Decebal; Duclos, Pierre; Pedersen, Thomas Garm

    2004-01-01

    Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one-dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one-dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....

  19. One-dimensional Nanostructured Materials From Organic Precursor

    Institute of Scientific and Technical Information of China (English)

    K. F. Cai

    2005-01-01

    @@ 1Introduction One-dimensional nanostructured materials, such as nanowires, nanobelts, nanotubes and nanocables have been attracting a great research interest in the last decade due to their superior electrical, optical, mechanical and thermal properties, and many methods have been explored to synthesis of the materials, e.g., arc discharge, laser ablation, chemical vapor deposition, thermal evaporation, sol-gel method, template method and so on. In this work, we present a novel and simple method to one-dimensional nanostructured materials by pyrolysis of organic precursor.

  20. Branching solutions to one-dimensional variational problems

    CERN Document Server

    Ivanov, A O

    2001-01-01

    This book deals with the new class of one-dimensional variational problems - the problems with branching solutions. Instead of extreme curves (mappings of a segment to a manifold) we investigate extreme networks, which are mappings of graphs (one-dimensional cell complexes) to a manifold. Various applications of the approach are presented, such as several generalizations of the famous Steiner problem of finding the shortest network spanning given points of the plane. Contents: Preliminary Results; Networks Extremality Criteria; Linear Networks in R N; Extremals of Length Type Functionals: The

  1. Vehicular engine design

    CERN Document Server

    Hoag, Kevin

    2016-01-01

    This book provides an introduction to the design and mechanical development of reciprocating piston engines for vehicular applications. Beginning from the determination of required displacement and performance, coverage moves into engine configuration and architecture. Critical layout dimensions and design trade-offs are then presented for pistons, crankshafts, engine blocks, camshafts, valves, and manifolds.  Coverage continues with material strength and casting process selection for the cylinder block and cylinder heads. Each major engine component and sub-system is then taken up in turn, from lubrication system, to cooling system, to intake and exhaust systems, to NVH. For this second edition latest findings and design practices are included, with the addition of over sixty new pictures and many new equations.

  2. Time division multiple access for vehicular communications

    CERN Document Server

    Omar, Hassan Aboubakr

    2014-01-01

    This brief focuses on medium access control (MAC) in vehicular ad hoc networks (VANETs), and presents VeMAC, a novel MAC scheme based on distributed time division multiple access (TDMA) for VANETs. The performance of VeMAC is evaluated via mathematical analysis and computer simulations in comparison with other existing MAC protocols, including the IEEE 802.11p standard. This brief aims at proposing TDMA as a suitable MAC scheme for VANETs, which can support the quality-of-service requirements of high priority VANET applications.

  3. Symmetricity of Distribution for One-Dimensional Hadamard Walk

    CERN Document Server

    Konno, N; Soshi, T; Konno, Norio; Namiki, Takao; Soshi, Takahiro

    2002-01-01

    In this paper we study a one-dimensional quantum random walk with the Hadamard transformation which is often called the Hadamard walk. We construct the Hadamard walk using a transition matrix on probability amplitude and give some results on symmetricity of probability distributions for the Hadamard walk.

  4. The electromagnetic Brillouin precursor in one-dimensional photonic crystals

    NARCIS (Netherlands)

    Uitham, R.; Hoenders, B. J.

    2008-01-01

    We have calculated the electromagnetic Brillouin precursor that arises in a one-dimensional photonic crystal that consists of two homogeneous slabs which each have a single electron resonance. This forerunner is compared with the Brillouin precursor that arises in a homogeneous double-electron reson

  5. Time correlation functions for the one-dimensional Lorentz gas

    NARCIS (Netherlands)

    Mazo, R.M.; Beijeren, H. van

    1983-01-01

    The velocity autocorrelation function and related quantities are investigated for the one-dimensional deterministic Lorentz gas, consisting of randomly distributed fixed scatterers and light particles moving back and forth between two of these at a constant given speed. An expansion for the velocity

  6. Current-Voltage Characteristics of Quasi-One-Dimensional Superconductors

    DEFF Research Database (Denmark)

    Vodolazov, D.Y.; Peeters, F.M.; Piraux, L.

    2003-01-01

    The current-voltage (I-V) characteristics of quasi-one-dimensional superconductors were discussed. The I-V characteristics exhibited an unusual S behavior. The dynamics of superconducting condensate and the existence of two different critical currents resulted in such an unusual behavior....

  7. The Long Decay Model of One-Dimensional Projectile Motion

    Science.gov (United States)

    Lattery, Mark Joseph

    2008-01-01

    This article introduces a research study on student model formation and development in introductory mechanics. As a point of entry, I present a detailed analysis of the Long Decay Model of one-dimensional projectile motion. This model has been articulated by Galileo ("in De Motu") and by contemporary students. Implications for instruction are…

  8. The electromagnetic Brillouin precursor in one-dimensional photonic crystals

    NARCIS (Netherlands)

    Uitham, R.; Hoenders, B. J.

    2008-01-01

    We have calculated the electromagnetic Brillouin precursor that arises in a one-dimensional photonic crystal that consists of two homogeneous slabs which each have a single electron resonance. This forerunner is compared with the Brillouin precursor that arises in a homogeneous double-electron

  9. Quasi-one-dimensional scattering in a discrete model

    DEFF Research Database (Denmark)

    Valiente, Manuel; Mølmer, Klaus

    2011-01-01

    that more than one confinement-induced resonances appear due to the nonseparability of the center-of-mass and relative coordinates on the lattice. This is done by solving its corresponding Lippmann-Schwinger-like equation. We characterize the effective one-dimensional interaction and compare it with a model...

  10. One-dimensional Bose gas on an atom chip

    NARCIS (Netherlands)

    van Amerongen, A.H.

    2008-01-01

    We describe experiments investigating the (coherence) properties of a finite-temperature one-dimensional (1D) Bose gas with repulsive interactions. The confining magnetic field is generated with a micro-electronic circuit. This microtrap for atoms or `atom chip' is particularly suited to generate a

  11. Quantum Dynamics of One-Dimensional Nanocrystalline Solids

    Institute of Scientific and Technical Information of China (English)

    丁建文; 颜晓红; 曹觉先; 王登龙

    2002-01-01

    A novel ballistic-nonballistic dynamic transition in one-dimensional nanocrystalline solids is found upon varyingthe strength of the composition modulation and the grain-boundary effect. This can contribute to the under-standing of the strange electronic transport properties of nanostructured systems.

  12. One-dimensional models of thermal activation under shear stress

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2003-01-01

    Full Text Available The analysis of thermal activation under shear stress in three- and even two-dimensional models presents unresolved problems. The analysis of one-dimensional models presented here may illuminate the study of more realistic models. For the model...

  13. How good are one-dimensional Josephson junction models?

    DEFF Research Database (Denmark)

    Lomdahl, P. S.; Olsen, O.H.; Eilbeck, J. C.

    1985-01-01

    A two-dimensional model of Josephson junctions of overlap type is presented and shown to reduce to the usual one-dimensional (1D) model in the limit of a very narrow junction. Comparisons between the stability limits for fluxon reflection obtained from the two models suggest that the many results...

  14. Quasi-one-dimensional intermittent flux behavior in superconducting films

    DEFF Research Database (Denmark)

    Qviller, A. J.; Yurchenko, V. V.; Galperin, Y. M.

    2012-01-01

    . The intermittent behavior shows no threshold value in the applied field, in contrast to conventional flux jumping. The results strongly suggest that the quasi-one-dimensional flux jumps are of a different nature than the thermomagnetic dendritic (branching) avalanches that are commonly found in superconducting...

  15. Radiative decay of the one-dimensional large acoustic polaron

    Energy Technology Data Exchange (ETDEWEB)

    Ivic, Zoran; Zekovic, Slobodan; Przulj, Zeljko

    2002-12-30

    Finite temperature dynamics and stability of the adiabatic large acoustic polaron in one-dimensional systems have been examined by means of the perturbation method based upon the inverse scattering transform. Polaron life-time was estimated in dependence of temperature and electron (exciton)-phonon coupling constant.

  16. Novel Progress in One-Dimensional Carbon Nanotubes Studies

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ One-dimensional carbon nanotubes (CNT) have received considerable attention from researchers worldwide. It is not only because of their unique physical properties, but also their potential applications. Recently, researchers of the CAS Institute of Physics have made new progress in the field.

  17. Quantum transport in strongly interacting one-dimensional nanostructures

    NARCIS (Netherlands)

    Agundez, R. R.

    2015-01-01

    In this thesis we study quantum transport in several one-dimensional systems with strong electronic interactions. The first chapter contains an introduction to the concepts treated throughout this thesis, such as the Aharonov-Bohm effect, the Kondo effect, the Fano effect and quantum state transfer.

  18. Bloch oscillations in an aperiodic one-dimensional potential

    NARCIS (Netherlands)

    de Moura, FABF; Lyra, ML; Dominguez-Adame, F; Malyshev, V.A.

    2005-01-01

    We study the dynamics of an electron subjected to a static uniform electric field within a one-dimensional tight-binding model with a slowly varying aperiodic potential. The unbiased model is known to support phases of localized and extended one-electron states separated by two mobility edges. We sh

  19. Lie symmetry algebra of one-dimensional nonconservative dynamical systems

    Institute of Scientific and Technical Information of China (English)

    Liu Cui-Mei; Wu Run-Heng; Fu Jing-Li

    2007-01-01

    Lie symmetry algebra of linear nonconservative dynamical systems is studied in this paper. By using 1-1 mapping,the Lie point and Lie contact symmetry algebras are obtained from two independent solutions of the one-dimensional linear equations of motion.

  20. Intertwining technique for the one-dimensional stationary Dirac equation

    CERN Document Server

    Nieto, L M; Samsonov, B F; Samsonov, Boris F.

    2003-01-01

    The technique of differential intertwining operators (or Darboux transformation operators) is systematically applied to the one-dimensional Dirac equation. The following aspects are investigated: factorization of a polynomial of Dirac Hamiltonians, quadratic supersymmetry, closed extension of transformation operators, chains of transformations, and finally particular cases of pseudoscalar and scalar potentials. The method is widely illustrated by numerous examples.

  1. One Dimensional Quasi-Exactly Solvable Differential Equations

    OpenAIRE

    Fasihi, Mohammad A.

    2006-01-01

    In this paper by means of similarity transformation we find some one-dimensional quasi-exactly solvable differential equations and their related Hamiltonians which appear in physical problems. We have provided also two examples with application of these differential equations.

  2. Quantum dynamics of one-dimensional nanocrystalline solids

    CERN Document Server

    Ding Jian Wen; Cao Jue Xian; Wang Deng Long

    2002-01-01

    A novel ballistic-non-ballistic dynamic transition in one-dimensional nanocrystalline solids is found upon varying the strength of the composition modulation and the grain-boundary effect. This can contribute to the understanding of the strange electronic transport properties of nano-structured systems

  3. Exact results for one dimensional fluids through functional integration

    CERN Document Server

    Fantoni, Riccardo

    2016-01-01

    We review some of the exactly solvable one dimensional continuum fluid models of equilibrium classical statistical mechanics under the unified setting of functional integration in one dimension. We make some further developments and remarks concerning fluids with penetrable particles. We then apply our developments to the study of the Gaussian core model for which we are unable to find a well defined thermodynamics.

  4. Transport through a Finite One-Dimensional Crystal

    NARCIS (Netherlands)

    Kouwenhoven, L.P.; Hekking, F.W.J.; Wees, B.J. van; Harmans, C.J.P.M.; Timmering, C.E.; Foxon, C.T.

    1990-01-01

    We have studied the magnetotransport properties of an artificial one-dimensional crystal. The crystal consists of a sequence of fifteen quantum dots, defined in the two-dimensional electron gas of a GaAs/AlGaAs heterostructure by means of a split-gate technique. At a fixed magnetic field of 2 T, two

  5. Current technologies in vehicular communication

    CERN Document Server

    Dimitrakopoulos, George

    2017-01-01

    This book provides a concise and comprehensive overview of vehicular communication technologies. It classifies all relevant standards, protocols and applications, so as to enable the reader to gain a holistic approach towards the subject of vehicular communications. The primary methods are algorithmic processes and simulation results. First, an overview and classification of vehicular technologies is presented. Then, the book focuses on specific applications of V2V and V2I communications. Special attention is given to recent research and development results regarding R&D projects in the field, in cooperation with car manufacturing companies and universities at a global level. Designed to facilitate understanding of vehicle to vehicle and vehicle to infrastructure technologies, this textbook is appropriate for undergraduate and graduate students of vehicular communications or mobile networks.

  6. Vehicular Channel Characterization and Modeling

    OpenAIRE

    Oestges, Claude; 10th European Conference on Antennas and Propagation (EuCAP)

    2016-01-01

    Vehicle-to-vehicle transmissions have emerged as a key component of future communication standards, whose design and testing critically depends upon the understanding of propagation mechanisms. An important and specific aspect of vehicular communication channels lies in the fact that these are essentially non-stationary. Hence, this communication addresses two recent contributions in the field of non-stationary vehicular propagation, based on extensive measurements conducted at 5.3 GHz in sub...

  7. Resilient in-network aggregation for vehicular networks

    NARCIS (Netherlands)

    Dietzel, Stefan

    2015-01-01

    Applications for vehicular ad hoc networks (VANETs) are an active field of research with the potential to significantly contribute to driver safety, traffic efficiency, and comfort. Messages are typically exchanged and forwarded between vehicles using wireless communication, thereby creating a wirel

  8. Contextual Risk-based Decision Modeling for Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Vijey Thayananthan

    2016-09-01

    Full Text Available A vehicular ad hoc network (VANET is the emerging technology that allows the drivers to keep the road safety throughout the journey. In VANETs, vehicles can collaborate with each other by exchanging the messages. When these messages are incorrect, drivers will have to face many serious problems which include traffic congestion and minor to fatal road accidents. Therefore, drivers need a method which provides the correct decision using risk analysis calculated from the vehicle context. For this purpose, we propose a new contextual risk-based decision methodology for vehicular networks. This methodology can be used to provide robust and reliable decisions.

  9. Vehicular road influence areas

    Science.gov (United States)

    Huertas, María E.; Huertas, José I.; Valencia, Alexander

    2017-02-01

    Vehicle operation over paved and unpaved roads is an emission source that significantly contributes to air pollution. Emissions are derived from vehicle exhaust pipes and re-suspension of particulate matter generated by wind erosion and tire to road surface interactions. Environmental authorities require a methodology to evaluate road impact areas, which enable managers to initiate counter-measures, particularly under circumstances where historic meteorological and/or air quality data is unavailable. The present study describes an analytical and experimental work developed to establish a simplified methodology to estimate the area influenced by vehicular roads. AERMOD was chosen to model pollutant dispersion generated by two roads of common attributes (straight road over flat terrain) under the effects of several arbitrary chosen weather conditions. The resulting pollutant concentration vs. Distance curves collapsed into a single curve when concentration and distance were expressed as dimensionless numbers and this curve can be described by a beta distribution function. This result implied that average concentration at a given distance was proportional to emission intensity and that it showed minor sensitivity to meteorological conditions. Therefore, road influence was defined by the area adjacent to the road limited by distance at which the beta distribution function equaled the limiting value specified by the national air quality standard for the pollutant under consideration.

  10. Direct Current Hopping Conductivity in One-Dimensional Nanometre Systems

    Institute of Scientific and Technical Information of China (English)

    宋祎璞; 徐慧; 罗峰

    2003-01-01

    A one-dimensional random nanocrystalline chain model is established. A dc electron-phonon-field conductance model of electron tunnelling transfer is set up, and a new dc conductance formula in one-dimensional nanometre systems is derived. By calculating the dc conductivity, the relationship among the electric field, temperature and conductivity is analysed, and the effect of the crystalline grain size and the distortion of interfacial atoms on the dc conductance is discussed. The result shows that the nanometre system appears the characteristic of negative differential dependence of resistance and temperature at low temperature. The dc conductivity of nanometre systems varies with the change of electric field and trends to rise as the crystalline grain size increases and to decrease as the distorted degree of interfacial atoms increases.

  11. True Bilayer Exciton Condensate of One-Dimensional Electrons

    Science.gov (United States)

    Kantian, A.; Abergel, D. S. L.

    2017-07-01

    We theoretically predict that a true bilayer exciton condensate, characterized by off-diagonal long-range order and global phase coherence, can be created in one-dimensional solid state electron systems. The mechanism by which this happens is to introduce a single particle hybridization of electron and hole populations, which locks the phase of the relevant mode and hence invalidates the Mermin-Wagner theorem. Electron-hole interactions then amplify this tendency towards off-diagonal long-range order, enhancing the condensate properties by more than an order of magnitude over the noninteracting limit. We show that the temperatures below which a substantial condensate fraction would form could reach hundreds of Kelvin, a benefit of the weak screening in one-dimensional systems.

  12. Fate of classical solitons in one-dimensional quantum systems.

    Energy Technology Data Exchange (ETDEWEB)

    Pustilnik, M.; Matveev, K. A.

    2015-11-23

    We study one-dimensional quantum systems near the classical limit described by the Korteweg-de Vries (KdV) equation. The excitations near this limit are the well-known solitons and phonons. The classical description breaks down at long wavelengths, where quantum effects become dominant. Focusing on the spectra of the elementary excitations, we describe analytically the entire classical-to-quantum crossover. We show that the ultimate quantum fate of the classical KdV excitations is to become fermionic quasiparticles and quasiholes. We discuss in detail two exactly solvable models exhibiting such crossover, the Lieb-Liniger model of bosons with weak contact repulsion and the quantum Toda model, and argue that the results obtained for these models are universally applicable to all quantum one-dimensional systems with a well-defined classical limit described by the KdV equation.

  13. Resonance Raman spectroscopy in one-dimensional carbon materials

    Directory of Open Access Journals (Sweden)

    Dresselhaus Mildred S.

    2006-01-01

    Full Text Available Brazil has played an important role in the development and use of resonance Raman spectroscopy as a powerful characterization tool for materials science. Here we present a short history of Raman scattering research in Brazil, highlighting the important contributions to the field coming from Brazilian researchers in the past. Next we discuss recent and important contributions where Brazil has become a worldwide leader, that is on the physics of quasi-one dimensional carbon nanotubes. We conclude this article by presenting results from a very recent resonance Raman study of exciting new materials, that are strictly one-dimensional carbon chains formed by the heat treatment of very pure double-wall carbon nanotube samples.

  14. One-dimensional XY model: Ergodic properties and hydrodynamic limit

    Science.gov (United States)

    Shuhov, A. G.; Suhov, Yu. M.

    1986-11-01

    We prove theorems on convergence to a stationary state in the course of time for the one-dimensional XY model and its generalizations. The key point is the well-known Jordan-Wigner transformation, which maps the XY dynamics onto a group of Bogoliubov transformations on the CAR C *-algebra over Z 1. The role of stationary states for Bogoliubov transformations is played by quasifree states and for the XY model by their inverse images with respect to the Jordan-Wigner transformation. The hydrodynamic limit for the one-dimensional XY model is also considered. By using the Jordan-Wigner transformation one reduces the problem to that of constructing the hydrodynamic limit for the group of Bogoliubov transformations. As a result, we obtain an independent motion of "normal modes," which is described by a hyperbolic linear differential equation of second order. For the XX model this equation reduces to a first-order transfer equation.

  15. One-dimensional Si nanolines in hydrogenated Si(001)

    Science.gov (United States)

    François, Bianco; Köster, Sigrun A.; Owen, James G. H.; Renner, Christoph; Bowler, David R.

    2012-02-01

    We present a detailed study of the structural and electronic properties of a self-assembled silicon nanoline embedded in the H-terminated silicon (001) surface, known as the Haiku stripe. The nanoline is a perfectly straight and defect free endotaxial structure of huge aspect ratio; it can grow micrometre long at a constant width of exactly four Si dimers (1.54 nm). Another remarkable property is its capacity to be exposed to air without suffering any degradation. The nanoline grows independently of any step edges at tunable densities, from isolated nanolines to a dense array of nanolines. In addition to these unique structural characteristics, scanning tunnelling microscopy and density functional theory reveal a one-dimensional state confined along the Haiku core. This nanoline is a promising candidate for the long sought after electronic solid-state one-dimensional model system to explore the fascinating quantum properties emerging in such reduced dimensionality. Phys. Rev. B, 84, 035328 (2011)

  16. Luttinger parameter of quasi-one-dimensional para -H2

    Science.gov (United States)

    Ferré, G.; Gordillo, M. C.; Boronat, J.

    2017-02-01

    We have studied the ground-state properties of para-hydrogen in one dimension and in quasi-one-dimensional configurations using the path-integral ground-state Monte Carlo method. This method produces zero-temperature exact results for a given interaction and geometry. The quasi-one-dimensional setup has been implemented in two forms: the inner channel inside a carbon nanotube coated with H2 and a harmonic confinement of variable strength. Our main result is the dependence of the Luttinger parameter on the density within the stable regime. Going from one dimension to quasi-one dimension, keeping the linear density constant, produces a systematic increase of the Luttinger parameter. This increase is, however, not enough to reach the superfluid regime and the system always remain in the quasicrystal regime, according to Luttinger liquid theory.

  17. Kinetic properties of small one-dimensional Ising magnetic

    Science.gov (United States)

    Udodov, Vladimir; Spirin, Dmitriy; Katanov Khakas State University Team

    2011-03-01

    Within the framework of a generalized Ising model, a one-dimensional magnetic of a finite length with free ends is considered. The correlation length critical exponent ν and kinetic critical exponent z of the magnet is calculated taking into account the next nearest neighbor interactions and the external field. Of special interest are non-equilibrium processes taking place within the critical temperature interval, which are characterized critical exponent y and dynamic critical index z . Due to significant difficulties encountered in the experimental investigations (e.g., measurement of z) , a natural solution to this complex problem would be modeling of those non-eqilibrium processes. This work addresses non-equilibrium processes in one-dimensional magnetics. Using the Monte Carlo method, an equilibrium critical exponent of the correlation length ν and the dynamic critical index z are calculated for a finite-size magnetic.

  18. Dark Matter in a One-dimensional Universe

    CERN Document Server

    Sigismondi, C

    2003-01-01

    A computer code to simulate temporal evolution of overdensities in a one-dimensional Universe is presented for didactic purposes. The formation of large scale structures in this one-dimensional universe can be studied both in matter or radiation dominated eras. Since large scale structures are already observed at z > 7, primordial dark matter overdensities delta_DM which are 90 times larger than the observed barionic delta_B in the cosmic microwave background are required at z~1000. This makes possible non-linear gravitational collapse at redshift z >7 and the formation of the structures. Primordial perturbations delta_B~10^-5 do not leave the linear regime of growth without the aid of dark matter's potential wells. This code is suitable for commercial worksheets like MSExcel, StarOffice, or OpenOffice.

  19. The Quantum Well of One-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Xiao-Jing Liu

    2015-01-01

    Full Text Available We have studied the transmissivity of one-dimensional photonic crystals quantum well (QW with quantum theory approach. By calculation, we find that there are photon bound states in the QW structure (BA6(BBABBn(AB6, and the numbers of the bound states are equal to n+1. We have found that there are some new features in the QW, which can be used to design optic amplifier, attenuator, and optic filter of multiple channel.

  20. Bose gases in one-dimensional harmonic trap

    Indian Academy of Sciences (India)

    JI-XUAN HOU; JING YANG

    2016-10-01

    Thermodynamic quantities, occupation numbers and their fluctuations of a one-dimensional Bose gas confined by a harmonic potential are studied using different ensemble approaches. Combining number theory methods, a new approach is presented to calculate the occupation numbers of different energy levels in microcanonical ensemble. The visible difference of the ground state occupation number in grand-canonical ensemble and microcanonical ensemble is found to decrease by power law as the number of particles increases.

  1. Nonequilibrium statistical mechanics in one-dimensional bose gases

    Science.gov (United States)

    Baldovin, F.; Cappellaro, A.; Orlandini, E.; Salasnich, L.

    2016-06-01

    We study cold dilute gases made of bosonic atoms, showing that in the mean-field one-dimensional regime they support stable out-of-equilibrium states. Starting from the 3D Boltzmann-Vlasov equation with contact interaction, we derive an effective 1D Landau-Vlasov equation under the condition of a strong transverse harmonic confinement. We investigate the existence of out-of-equilibrium states, obtaining stability criteria similar to those of classical plasmas.

  2. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    OpenAIRE

    Nikola Stefanović

    2007-01-01

    In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic ...

  3. One-Dimensional Tunable Josephson Metamaterials - Eindimensionale stimmbare Josephson Metamaterialien

    OpenAIRE

    Butz, Susanne

    2014-01-01

    This thesis presents a novel approach to the experimental realization of tunable, superconducting metamaterials. Therefore, conventional resonant meta-atoms are replaced by meta-atoms that contain Josephson junctions, which renders their resonance frequency tunable by an external magnetic field. This tunability is theoretically and experimentally investigated in one-dimensional magnetic and electric metamaterials. For the magnetic metamaterial, the effective, magnetic permeability is determined.

  4. Few interacting fermions in one-dimensional harmonic trap

    CERN Document Server

    Sowiński, Tomasz; Dutta, Omjyoti; Lewenstein, Maciej

    2013-01-01

    We study spin-1/2 fermions, interacting via a two-body contact potential, in a one-dimensional harmonic trap. Applying exact diagonalization, we investigate the behavior at finite interaction strength, and discuss the role of a ground state degeneracy which occurs for sufficiently strong repulsive interaction. Even low temperature or a completely depolarizing channel may then dramatically influence the system's behavior. We calculate level occupation numbers as signatures of thermalization, and we discuss the mechanisms to break the degeneracy.

  5. Hidden Symmetry from Supersymmetry in One-Dimensional Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Alexander A. Andrianov

    2009-06-01

    Full Text Available When several inequivalent supercharges form a closed superalgebra in Quantum Mechanics it entails the appearance of hidden symmetries of a Super-Hamiltonian. We examine this problem in one-dimensional QM for the case of periodic potentials and potentials with finite number of bound states. After the survey of the results existing in the subject the algebraic and analytic properties of hidden-symmetry differential operators are rigorously elaborated in the Theorems and illuminated by several examples.

  6. Thermal breakage of a discrete one-dimensional string.

    Science.gov (United States)

    Lee, Chiu Fan

    2009-09-01

    We study the thermal breakage of a discrete one-dimensional string, with open and fixed ends, in the heavily damped regime. Basing our analysis on the multidimensional Kramers escape theory, we are able to make analytical predictions on the mean breakage rate and on the breakage propensity with respect to the breakage location on the string. We then support our predictions with numerical simulations.

  7. PT-invariant one-dimensional Coulomb problem

    CERN Document Server

    Sinha, A K; Sinha, Anjana; Roychoudhury, Rajkumar

    2002-01-01

    The one-dimensional Coulomb-like potential with a real coupling constant beta, and a centrifugal-like core of strength G = alpha^2 - {1/4}, viz. V(x) = {alpha^2 - (1/4)}/{(x-ic)^2} + beta/|x-ic|, is discussed in the framework of PT-symmetry. The PT-invariant exactly solvable model so formed, is found to admit a double set of real and discrete energies, numbered by a quasi-parity q = +/- 1.

  8. Impurity modes in the one-dimensional XXZ Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, J.M. [Departamento de Física, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, 57072-970 Teresina, Piauí (Brazil); Leite, R.V. [Centro de Ciências Exatas e Tecnologia, Curso de Física, Universidade Estadual Vale do Acaraú, Av. Dr. Guarany 317, Campus Cidao, 62040-730 Sobral, Ceará (Brazil); Landim, R.R. [Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-760 Fortaleza, Ceará (Brazil); Costa Filho, R.N., E-mail: rai@fisica.ufc.br [Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-760 Fortaleza, Ceará (Brazil)

    2014-04-01

    A Green's function formalism is used to calculate the energy of impurity modes associated with one and/or two magnetic impurities in the one-dimensional Heisenberg XXZ magnetic chain. The system can be tuned from the Heisenberg to the Ising model varying a parameter λ. A numerical study is performed showing two types of localized modes (s and p). The modes depend on λ and the degeneracy of the acoustic modes is broken.

  9. Universal correlations of one-dimensional electrons at low density

    OpenAIRE

    Göhmann, F.

    2000-01-01

    We summarize results on the asymptotics of the two-particle Green functions of interacting electrons in one dimension. Below a critical value of the chemical potential the Fermi surface vanishes, and the system can no longer be described as a Luttinger liquid. Instead, the non-relativistic Fermi gas with infinite point-like repulsion becomes the universal model for the long-wavelength, low temperature physics of the one-dimensional electrons. This model, which we call the impenetrable electro...

  10. One Dimensional Polymeric Organic Photonic Crystals for DFB Lasers

    Directory of Open Access Journals (Sweden)

    F. Scotognella

    2008-01-01

    Full Text Available We present a very simple method to realize a one-dimensional photonic crystal (1D PC, consisting of a dye-doped polymeric multilayer. Due to the high photonic density of states at the edges of the photonic band-gap (PBG, a surface emitting distributed feedback (DFB laser is obtained with this structure. Furthermore, the incidence angle dependence of the PBG of the polymeric multilayer is reported.

  11. PERIODIC SOLUTIONS IN ONE-DIMENSIONAL COUPLED MAP LATTICES

    Institute of Scientific and Technical Information of China (English)

    郑永爱; 刘曾荣

    2003-01-01

    It is proven that the existence of nonlinear solutions with time period in one-dimensional coupled map lattice with nearest neighbor coupling. This is a class of systemswhose behavior can be regarded as infinite array of coupled oscillators. A method forestimating the critical coupling strength below which these solutions with time period persistis given. For some particular nonlinear solutions with time period, exponential decay inspace is proved.

  12. One-dimensional photonic crystals bound by light

    Science.gov (United States)

    Cui, Liyong; Li, Xiao; Chen, Jun; Cao, Yongyin; Du, Guiqiang; Ng, Jack

    2017-08-01

    Through rigorous simulations, the light scattering induced optical binding of one-dimensional (1D) dielectric photonic crystals is studied. The optical forces corresponding to the pass band, band gap, and band edge are qualitatively different. It is shown that light can induce self-organization of dielectric slabs into stable photonic crystals, with its lower band edge coinciding with the incident light frequency. Incident light at normal and oblique incidence and photonic crystals with parity-time symmetry are also considered.

  13. One-dimensional contact process: duality and renormalization.

    Science.gov (United States)

    Hooyberghs, J; Vanderzande, C

    2001-04-01

    We study the one-dimensional contact process in its quantum version using a recently proposed real-space renormalization technique for stochastic many-particle systems. Exploiting the duality and other properties of the model, we can apply the method for cells with up to 37 sites. After suitable extrapolation, we obtain exponent estimates that are comparable in accuracy with the best known in the literature.

  14. Correlation functions of one-dimensional bosons at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maillet, J.M. [CNRS, ENS Lyon (France). Lab. de Physique; Slavnov, N.A. [Steklov Mathematical Institute, Moscow (Russian Federation)

    2010-12-15

    We consider the low-temperature limit of the long-distance asymptotic behavior of the finite temperature density-density correlation function in the one-dimensional Bose gas derived recently in the algebraic Bethe Ansatz framework. Our results confirm the predictions based on the Luttinger liquid and conformal field theory approaches. We also demonstrate that the amplitudes arising in this asymptotic expansion at low-temperature coincide with the amplitudes associated with the so-called critical form factors. (orig.)

  15. Fast Integration of One-Dimensional Boundary Value Problems

    Science.gov (United States)

    Campos, Rafael G.; Ruiz, Rafael García

    2013-11-01

    Two-point nonlinear boundary value problems (BVPs) in both unbounded and bounded domains are solved in this paper using fast numerical antiderivatives and derivatives of functions of L2(-∞, ∞). This differintegral scheme uses a new algorithm to compute the Fourier transform. As examples we solve a fourth-order two-point boundary value problem (BVP) and compute the shape of the soliton solutions of a one-dimensional generalized Korteweg-de Vries (KdV) equation.

  16. The one-dimensional extended Bose-Hubbard model

    Indian Academy of Sciences (India)

    Ramesh V Pai; Rahul Pandit

    2003-10-01

    We use the finite-size, density-matrix-renormalization-group (DMRG) method to obtain the zero-temperature phase diagram of the one-dimensional, extended Bose-Hubbard model, for mean boson density ρ = 1, in the - plane ( and are respectively, onsite and nearest-neighbour repulsive interactions between bosons). The phase diagram includes superfluid (SF), bosonic-Mott-insulator (MI), and mass-density-wave (MDW) phases. We determine the natures of the quantum phase transitions between these phases.

  17. Statistics of resonances in one-dimensional continuous systems

    Indian Academy of Sciences (India)

    Joshua Feinberg

    2009-09-01

    We study the average density of resonances (DOR) of a disordered one-dimensional continuous open system. The disordered system is semi-infinite, with white-noise random potential, and it is coupled to the external world by a semi-infinite continuous perfect lead. Our main result is an integral representation for the DOR which involves the probability density function of the logarithmic derivative of the wave function at the contact point.

  18. Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals

    OpenAIRE

    Jesus Eduardo Lugo; Rafael Doti; Jocelyn Faubert

    2011-01-01

    BACKGROUND: Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity d...

  19. Exchange effects in a quasi-one-dimensional electron gas

    Science.gov (United States)

    Gold, A.; Ghazali, A.

    1990-04-01

    We calculate the electron exchange of a quasi-one-dimensional electron gas in a quantum-well wire of radius R0. A two-subband model is considered and the exchange self-energy for the first and second subband is calculated under the assumption that only the lowest subband is partially filled with electrons. Band-bending effects are also discussed. Results for the total energy per electron including kinetic and exchange energy are presented.

  20. Topological modes in one-dimensional solids and photonic crystals

    Science.gov (United States)

    Atherton, Timothy J.; Butler, Celia A. M.; Taylor, Melita C.; Hooper, Ian R.; Hibbins, Alastair P.; Sambles, J. Roy; Mathur, Harsh

    2016-03-01

    It is shown theoretically that a one-dimensional crystal with time-reversal and particle-hole symmetries is characterized by a topological invariant that predicts the existence or otherwise of edge states. This is confirmed experimentally through the construction and simulation of a photonic crystal analog in the microwave regime. It is shown that the edge mode couples to modes external to the photonic crystal via a Fano resonance.

  1. One-dimensional photonic band gaps in optical lattices

    CERN Document Server

    Samoylova, Marina; Holynski, Michael; Courteille, Philippe Wilhelm; Bachelard, Romain

    2013-01-01

    The phenomenon of photonic band gaps in one-dimensional optical lattices is reviewed using a microscopic approach. Formally equivalent to the transfer matrix approach in the thermodynamic limit, a microscopic model is required to study finite-size effects, such as deviations from the Bragg condition. Microscopic models describing both scalar and vectorial light are proposed, as well as for two- and three-level atoms. Several analytical results are compared to experimental data, showing a good agreement.

  2. Morphology-Controlled Growth of AIN One-Dimensional Nanostructures

    Institute of Scientific and Technical Information of China (English)

    Ting XIE; Min YE; Xiaosheng FANG; Zhi JIANG; Li CHEN; Mingguang KONG; Yucheng WU; Lide ZHANG

    2008-01-01

    Aluminum nitride (AIN) nanowires, serrated nanoribbons, and nanoribbons were selectively obtained through a simple chloride assisted chemical vapor deposition process. The morphologies of the products could be controlled by adjusting the deposition position and the flux of the reactant gas. The morphologies and structures of the AIN products were investigated in detail. The formation mechanism of the as-prepared different morphologies of AIN one-dimensional (1D) nanostructures was discussed on the basis of the experimental results.

  3. Analysis of necking based on a one-dimensional model

    Science.gov (United States)

    Audoly, Basile; Hutchinson, John W.

    2016-12-01

    Dimensional reduction is applied to derive a one-dimensional energy functional governing tensile necking localization in a family of initially uniform prismatic solids, including as particular cases rectilinear blocks in plane strain and cylindrical bars undergoing axisymmetric deformations. The energy functional depends on both the axial stretch and its gradient. The coefficient of the gradient term is derived in an exact and general form. The one-dimensional model is used to analyze necking localization for nonlinear elastic materials that experience a maximum load under tensile loading, and for a class of nonlinear materials that mimic elastic-plastic materials by displaying a linear incremental response when stretch switches from increasing to decreasing. Bifurcation predictions for the onset of necking from the simplified theory compared with exact results suggest the approach is highly accurate at least when the departures from uniformity are not too large. Post-bifurcation behavior is analyzed to the point where the neck is fully developed and localized to a region on the order of the thickness of the block or bar. Applications to the nonlinear elastic and elastic-plastic materials reveal the highly unstable nature of necking for the former and the stable behavior for the latter, except for geometries where the length of the block or bar is very large compared to its thickness. A formula for the effective stress reduction at the center of a neck is established based on the one-dimensional model, which is similar to that suggested by Bridgman (1952).

  4. Gravitational anomalies and one-dimensional behavior of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Bibhas Ranjan, E-mail: bibhas.majhi@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam (India)

    2015-12-08

    It has been pointed out by Bekenstein and Mayo that the behavior of the black hole’s entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S{sup .}) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S{sup .} on the power is S{sup .} ∝P{sup 1/2}, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry’s formula, while in the latter situation its value decreases.

  5. Gravitational anomalies and one-dimensional behavior of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Bibhas Ranjan [Indian Institute of Technology Guwahati, Department of Physics, Guwahati, Assam (India)

    2015-12-15

    It has been pointed out by Bekenstein and Mayo that the behavior of the black hole's entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S on the power is S ∝ P{sup 1/2}, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry's formula, while in the latter situation its value decreases. (orig.)

  6. Gravitational anomalies and one dimensional behaviour of black holes

    CERN Document Server

    Majhi, Bibhas Ranjan

    2015-01-01

    It has been pointed out by Bekenstein and Mayo that the behavior of the Black hole's entropy or information flow is similar to that through one-dimensional channel. Here I analyse the same issue with the use of gravitational anomalies. The rate of the entropy change ($\\dot{S}$) and the power ($P$) of the Hawking emission are calculated from the relevant components of the anomalous stress-tensor under the Unruh vacuum condition. I show that the dependence of $\\dot{S}$ on power is $\\dot{S}\\propto P^{1/2}$ which is identical to that for the information flow in one dimensional system. This is established by using the ($1+1$) dimensional gravitational anomalies first. Then the fact is further bolstered by considering the ($1+3$) dimensional gravitational anomalies. It is found that in the former case, the proportionality constant is exactly identical to one dimensional situation, known as Pendry's formula, while in later situation its value decreases.

  7. Quasi-one-dimensional scattering in a discrete model

    Energy Technology Data Exchange (ETDEWEB)

    Valiente, Manuel; Moelmer, Klaus [Lundbeck Foundation Theoretical Center for Quantum System Research, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark)

    2011-11-15

    We study quasi-one-dimensional scattering of one and two particles with short-range interactions on a discrete lattice model in two dimensions. One of the directions is tightly confined by an arbitrary trapping potential. We obtain the collisional properties of these systems both at finite and zero Bloch quasimomenta, considering as well finite sizes and transversal traps that support a continuum of states. This is made straightforward by using the exact ansatz for the quasi-one-dimensional states from the beginning. In the more interesting case of genuine two-particle scattering, we find that more than one confinement-induced resonances appear due to the nonseparability of the center-of-mass and relative coordinates on the lattice. This is done by solving its corresponding Lippmann-Schwinger-like equation. We characterize the effective one-dimensional interaction and compare it with a model that includes only the effect of the dominant, broadest resonance, which amounts to a single-pole approximation for the interaction coupling constant.

  8. Hot-wire probe used for measurement of one dimensional flow with bidirection

    Science.gov (United States)

    Tu, Chengxu

    2010-08-01

    In order to solve the difficulties of the measurement of one-dimensional and bi-direction flow by a hot-wire probe, a test method and the model experiment are presented in this paper. Based on the exiting hot-wire sensor, another same sensor is added. The two sensors are installed in parallel whose distance is 6 times their diameters, and they are separately connected to the controller. If the flow goes around two circular cylinders in tandem with the low Reynolds number, an obvious velocity drop between free-stream and gap flow can be found. Consequently, the velocity detected by the upstream sensor is higher than that by the downstream one. Because the relatively fixed position of the pair of sensors has been determined beforehand, the direction of the one-dimensional flow can be deduced from the plus and minus of velocity drop detected by the two sensors.

  9. One-dimensional Transport Simulation of Pollutants in Natural Streams

    Directory of Open Access Journals (Sweden)

    Mostafa Ramezani

    2016-10-01

    Full Text Available Rivers are the main sources of freshwater systems which governments need to manage and plan to maintain them as per an acceptable quality. In this research, a numerical scheme was used and implemented in MATLAB to provide a one-dimensional water quality tool. This code then was tested with two datasets of Chattahoochee and Mackinaw rivers. To evaluate the model performance, results and sampled data were checked in terms of conformity by using three metrics: CE, MARE, and RMSE. Results were almost near to observed data and metrics’ values were found satisfactory, showing that the employed numerical approach is an appropriate method for surface water quality planning and management.

  10. Universality of anomalous one-dimensional heat conductivity

    Science.gov (United States)

    Lepri, Stefano; Livi, Roberto; Politi, Antonio

    2003-12-01

    In one and two dimensions, transport coefficients may diverge in the thermodynamic limit due to long-time correlation of the corresponding currents. The effective asymptotic behavior is addressed with reference to the problem of heat transport in one-dimensional crystals, modeled by chains of classical nonlinear oscillators. Extensive accurate equilibrium and nonequilibrium numerical simulations confirm that the finite-size thermal conductivity diverges with system size L as κ∝Lα. However, the exponent α deviates systematically from the theoretical prediction α=1/3 proposed in a recent paper [O. Narayan and S. Ramaswamy, Phys. Rev. Lett. 89, 200601 (2002)].

  11. One-dimensional hydrodynamic model generating turbulent cascade

    CERN Document Server

    Matsumoto, Takeshi

    2016-01-01

    As a minimal mathematical model generating cascade analogous to that of the Navier-Stokes turbulence in the inertial range, we propose a one-dimensional partial-differential-equation model that conserves the integral of the squared vorticity analogue (enstrophy) in the inviscid case. With a large-scale forcing and small viscosity, we find numerically that the model exhibits the enstrophy cascade, the broad energy spectrum with a sizable correction to the dimensional-analysis prediction, peculiar intermittency and self-similarity in the dynamical system structure.

  12. On Global One-Dimensionality proposal in Quantum General Relativity

    CERN Document Server

    Glinka, L A

    2008-01-01

    Quantum General Relativity, better known as Quantum Gravity with additional epithets, currently is faraway from phenomenology. This mental crisis leads at most to empty hypotheses, but not to realistic physics. However, there exists the way, investigated by Dirac, which is constructive for experimental data predictions in astrophysics, high energy physics, and condensed matter physics. It is Field Theory. This article presents certain proposal for new discussion. General Relativity in 3+1 metric field gauge and its canonical quantization is developed. Reduction of the quantum geometrodynamics to Global One-Dimensional bosonic field theory, its quantization, and some conclusions are presented.

  13. Exactly integrable analogue of a one-dimensional gravitating system

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Bruce N. [Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States)]. E-mail: b.miller@tcu.edu; Yawn, Kenneth R. [Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States); Maier, Bill [Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States)

    2005-10-10

    Exchange symmetry in acceleration partitions the configuration space of an N particle one-dimensional gravitational system (OGS) into N{exclamation_point} equivalent cells. We take advantage of the resulting small angular separation between the forces in neighboring cells to construct a related integrable version of the system that takes the form of a central force problem in N-1 dimensions. The properties of the latter, including the construction of trajectories and possible continuum limits, are developed. Dynamical simulation is employed to compare the two models. For some initial conditions, excellent agreement is observed.

  14. One-dimensional inverse problems of mathematical physics

    CERN Document Server

    Lavrent'ev, M M; Yakhno, V G; Schulenberger, J R

    1986-01-01

    This monograph deals with the inverse problems of determining a variable coefficient and right side for hyperbolic and parabolic equations on the basis of known solutions at fixed points of space for all times. The problems are one-dimensional in nature since the desired coefficient of the equation is a function of only one coordinate, while the desired right side is a function only of time. The authors use methods based on the spectral theory of ordinary differential operators of second order and also methods which make it possible to reduce the investigation of the inverse problems to the in

  15. Solution of One-dimensional Dirac Equation via Poincare Map

    CERN Document Server

    Bahlouli, Hocine; Jellal, Ahmed

    2011-01-01

    We solve the general one-dimensional Dirac equation using a "Poincare Map" approach which avoids any approximation to the spacial derivatives and reduces the problem to a simple recursive relation which is very practical from the numerical implementation point of view. To test the efficiency and rapid convergence of this approach we apply it to a vector coupling Woods--Saxon potential, which is exactly solvable. Comparison with available analytical results is impressive and hence validates the accuracy and efficiency of this method.

  16. Fluctuation dissipation ratio in the one dimensional kinetic Ising model

    OpenAIRE

    Lippiello, E.; Zannetti, M.

    2000-01-01

    The exact relation between the response function $R(t,t^{\\prime})$ and the two time correlation function $C(t,t^{\\prime})$ is derived analytically in the one dimensional kinetic Ising model subjected to a temperature quench. The fluctuation dissipation ratio $X(t,t^{\\prime})$ is found to depend on time through $C(t,t^{\\prime})$ in the time region where scaling $C(t,t^{\\prime}) = f(t/t^{\\prime})$ holds. The crossover from the nontrivial form $X(C(t,t^{\\prime}))$ to $X(t,t^{\\prime}) \\equiv 1$ t...

  17. Enhanced dipolar transport in one-dimensional waveguide arrays

    CERN Document Server

    Cantillano, Camilo; Real, Bastián; Rojas-Rojas, Santiago; Delgado, Aldo; Szameit, Alexander; Vicencio, Rodrigo A

    2016-01-01

    We study the transport properties of fundamental and dipolar (first-excited) modes on one-dimensional coupled waveguide arrays. By modulating an optical beam, we are able to generate fundamental and dipolar modes to study discrete diffraction (single-site excitation) and gaussian beam propagation (multi-site excitation \\& phase gradient). We find that dipolar modes experience a coupling constant more than two times larger than the one for fundamental modes. This implies an enhanced transport of energy for dipoles in a tight-binding lattice. Additionally, we study disordered systems and find that while fundamental modes are already trapped in a weakly disorder array, dipoles still diffract across the lattice.

  18. Impedance of rigid bodies in one-dimensional elastic collisions

    OpenAIRE

    Santos, Janilo; de Oliveira, Bruna P. W.; Nelson,Osman Rosso

    2012-01-01

    In this work we study the problem of one-dimensional elastic collisions of billiard balls, considered as rigid bodies, in a framework very different from the classical one presented in text books. Implementing the notion of impedance matching as a way to understand efficiency of energy transmission in elastic collisions, we find a solution which frames the problem in terms of this conception. We show that the mass of the ball can be seen as a measure of its impedance and verify that the probl...

  19. One-dimensional hydrodynamic model generating a turbulent cascade

    Science.gov (United States)

    Matsumoto, Takeshi; Sakajo, Takashi

    2016-05-01

    As a minimal mathematical model generating cascade analogous to that of the Navier-Stokes turbulence in the inertial range, we propose a one-dimensional partial-differential-equation model that conserves the integral of the squared vorticity analog (enstrophy) in the inviscid case. With a large-scale random forcing and small viscosity, we find numerically that the model exhibits the enstrophy cascade, the broad energy spectrum with a sizable correction to the dimensional-analysis prediction, peculiar intermittency, and self-similarity in the dynamical system structure.

  20. Quantum Simulations of One-Dimensional Nanostructures under Arbitrary Deformations

    Science.gov (United States)

    Koskinen, Pekka

    2016-09-01

    A powerful technique is introduced for simulating mechanical and electromechanical properties of one-dimensional nanostructures under arbitrary combinations of bending, twisting, and stretching. The technique is based on an unconventional control of periodic symmetry which eliminates artifacts due to deformation constraints and quantum finite-size effects and allows transparent electronic-structure analysis. Via density-functional tight-binding implementation, the technique demonstrates its utility by predicting nonlinear electromechanical properties in carbon nanotubes and abrupt behavior in the structural yielding of Au7 and Mo6 S6 nanowires. The technique drives simulations markedly closer to the realistic modeling of these slender nanostructures under experimental conditions.

  1. Beam interactions in one-dimensional saturable waveguide arrays

    CERN Document Server

    Stepic, M; Rueter, C E; Shandarov, V; Kip, D; Stepic, Milutin; Smirnov, Eugene; Rueter, Christian E.; Shandarov, Vladimir; Kip, Detlef

    2006-01-01

    The interaction between two parallel beams in one-dimensional discrete saturable systems has been investigated using lithium niobate nonlinear waveguide arrays. When the beams are separated by one channel and in-phase it is possible to observe soliton fusion at low power levels. This new result is confirmed numerically. By increasing the power, soliton-like propagation of weakly-coupled beams occurs. When the beams are out-of-phase the most interesting result is the existence of oscillations which resemble the recently discovered Tamm oscillations.

  2. Waves and instability in a one-dimensional microfluidic array

    CERN Document Server

    Liu, Bin; Feng, Yan

    2012-01-01

    Motion in a one-dimensional (1D) microfluidic array is simulated. Water droplets, dragged by flowing oil, are arranged in a single row, and due to their hydrodynamic interactions spacing between these droplets oscillates with a wave-like motion that is longitudinal or transverse. The simulation yields wave spectra that agree well with experiment. The wave-like motion has an instability which is confirmed to arise from nonlinearities in the interaction potential. The instability's growth is spatially localized. By selecting an appropriate correlation function, the interaction between the longitudinal and transverse waves is described.

  3. Fragmented one dimensional man / El hombre unidimensional fragmentado

    Directory of Open Access Journals (Sweden)

    Juan Antonio Rodríguez del Pino

    2013-10-01

    Full Text Available Paraphrase the title of the famous essay by Herbert Marcuse, since the image has traditionally been generated of man, masculinity, has been one-dimensional. I mean, the man was characterized by traits and behaviors established and entrenched since ancient time, considering all other distinguishing signs as mere deviations from the normative improper. But observe that this undeniable reality, as analyzed various researchers through what has come to be called Men's studies, has proven to be a fallacy difficult to maintain throughout history and today turns into fallacious and ineffective against changes in our current existing corporate models.

  4. Molecular nanostamp based on one-dimensional porphyrin polymers.

    Science.gov (United States)

    Kanaizuka, Katsuhiko; Izumi, Atsushi; Ishizaki, Manabu; Kon, Hiroki; Togashi, Takanari; Miyake, Ryosuke; Ishida, Takao; Tamura, Ryo; Haga, Masa-aki; Moritani, Youji; Sakamoto, Masatomi; Kurihara, Masato

    2013-08-14

    Surface design with unique functional molecules by a convenient one-pot treatment is an attractive project for the creation of smart molecular devices. We have employed a silane coupling reaction of porphyrin derivatives that form one-dimensional polymer wires on substrates. Our simple one-pot treatment of a substrate with porphyrin has successfully achieved the construction of nanoscale bamboo shoot structures. The nanoscale bamboo shoots on the substrates were characterized by atomic force microscopy (AFM), UV-vis spectra, and X-ray diffraction (XRD) measurements. The uneven and rigid nanoscale structure has been used as a stamp for constructing bamboo shoot structures of fullerene.

  5. Dynamical Structure Factors of quasi-one-dimensional antiferromagnets

    Science.gov (United States)

    Hagemans, Rob; Caux, Jean-Sébastien; Maillet, Jean Michel

    2007-03-01

    For a long time it has been impossible to accurately calculate the dynamical structure factors (spin-spin correlators as a function of momentum and energy) of quasi-one-dimensional antiferromagnets. For integrable Heisenberg chains, the recently developed ABACUS method (a first-principles computational approach based on the Bethe Ansatz) now yields highly accurate (over 99% of the sum rule) results for the DSF for finite chains, allowing for a very precise description of neutron-scattering data over the full momentum and energy range. We show remarkable agreement between results obtained with ABACUS and experiment.

  6. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  7. Strongly anisotropic wetting on one-dimensional nanopatterned surfaces.

    Science.gov (United States)

    Xia, Deying; Brueck, S R J

    2008-09-01

    This communication reports strongly anisotropic wetting behavior on one-dimensional nanopatterned surfaces. Contact angles, degree of anisotropy, and droplet distortion are measured on micro- and nanopatterned surfaces fabricated with interference lithography. Both the degree of anisotropy and the droplet distortion are extremely high as compared with previous reports because of the well-defined nanostructural morphology. The surface is manipulated to tune with the wetting from hydrophobic to hydrophilic while retaining the structural wetting anisotropy with a simple silica nanoparticle overcoat. The wetting mechanisms are discussed. Potential applications in microfluidic devices and evaporation-induced pattern formation are demonstrated.

  8. Spiral Magnetic Order in the One-Dimensional Kondo Lattice

    Institute of Scientific and Technical Information of China (English)

    LIU Zhen-Rong; LI Zheng-Zhong; SHEN Rui

    2001-01-01

    The effects of c-f (conduction-f electrons) hybridization on the spiral spin magnetism in the one dimensional Kondo lattice are studied. By using the mean-field approximation, a close set of equations of the Green's functions with arbitrary wave vector Q for the spiral ordering of spins is deduced. The magnetic phase boundary between the spiral magnetism and ferromagnetism has been calculated approximately. From our qualitative results, one can find that the ferromagnetic region is enlarged due to the c f hybridization. Moreover, some new results reflecting the Kondo effect, such as the modified dispersion relation and the weakening of the localized magnetic moments are also obtained.

  9. Obstacle Effects on One-Dimensional Translocation of ATPase

    Institute of Scientific and Technical Information of China (English)

    WANG Xian-Ju; AI Bao-Quan; LIU Liang-Gang

    2002-01-01

    We apply a general random walk model to the study of the ATPase's one-dimensional translocation along obstacle biological environment, and show the effects of random obstacles on the ATPase translocation along single stranded DNA. We find that the obstacle environment can reduce the lifetime of ATPase lattice-bound state which results in the inhibition of ATPase activity. We also carry out the ranges of rate constant of ATPase unidirectonal translocation and bidirectional translocation. Our results are consistent with the experiments and relevant theoretical consideration, and can be used to explain some physiological phenomena.

  10. Longitudinal waves in one dimensional non-uniform waveguides

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Wave approach is used to analyze the longitudinal wave motion in one dimensional non-uniform waveguides.With assumptions of constant wave velocity and no wave conversion,there exist four types of non-uniform rods and corresponding traveling wave solutions are investigated.The obtained results indicate that the kinetic energy is preserved as a constant and the wave amplitude is inversely proportional to square root of the cross-sectional area of the rod.Under certain condition,there exists a cut-off frequ...

  11. Bloch oscillations in a one-dimensional spinor gas.

    Science.gov (United States)

    Gangardt, D M; Kamenev, A

    2009-02-20

    A force applied to a spin-flipped particle in a one-dimensional spinor gas may lead to Bloch oscillations of the particle's position and velocity. The existence of Bloch oscillations crucially depends on the viscous friction force exerted by the rest of the gas on the spin excitation. We evaluate the friction in terms of the quantum fluid parameters. In particular, we show that the friction is absent for integrable cases, such as an SU(2) symmetric gas of bosons or fermions. For small deviations from the exact integrability the friction is very weak, opening the possibility to observe Bloch oscillations.

  12. Black Phosphorus based One-dimensional Photonic Crystals and Microcavities

    CERN Document Server

    Kriegel, I

    2016-01-01

    The latest achievements in the fabrication of black phosphorus thin layers, towards the technological breakthrough of a phosphorene atomically thin layer, are paving the way for a their employment in electronics, optics, and optoelectronics. In this work, we have simulated the optical properties of one-dimensional photonic structures, i.e. photonic crystals and microcavities, in which few-layer black phosphorus is one of the components. The insertion of the 5 nm black phosphorous layers leads to a photonic band gap in the photonic crystals and a cavity mode in the microcavity interesting for light manipulation and emission enhancement.

  13. Fourier's law for quasi-one-dimensional chaotic quantum systems

    Science.gov (United States)

    Seligman, Thomas H.; Weidenmüller, Hans A.

    2011-05-01

    We derive Fourier's law for a completely coherent quasi-one-dimensional chaotic quantum system coupled locally to two heat baths at different temperatures. We solve the master equation to first order in the temperature difference. We show that the heat conductance can be expressed as a thermodynamic equilibrium coefficient taken at some intermediate temperature. We use that expression to show that for temperatures large compared to the mean level spacing of the system, the heat conductance is inversely proportional to the level density and, thus, inversely proportional to the length of the system.

  14. Coherent Backscattering of Light Off One-Dimensional Atomic Strings

    Science.gov (United States)

    Sørensen, H. L.; Béguin, J.-B.; Kluge, K. W.; Iakoupov, I.; Sørensen, A. S.; Müller, J. H.; Polzik, E. S.; Appel, J.

    2016-09-01

    We present the first experimental realization of coherent Bragg scattering off a one-dimensional system—two strings of atoms strongly coupled to a single photonic mode—realized by trapping atoms in the evanescent field of a tapered optical fiber, which also guides the probe light. We report nearly 12% power reflection from strings containing only about 1000 cesium atoms, an enhancement of 2 orders of magnitude compared to reflection from randomly positioned atoms. This result paves the road towards collective strong coupling in 1D atom-photon systems. Our approach also allows for a straightforward fiber connection between several distant 1D atomic crystals.

  15. Multiple nonequilibrium steady states for one-dimensional heat flow.

    Science.gov (United States)

    Zhang, F; Isbister, D J; Evans, D J

    2001-08-01

    A nonequilibrium molecular dynamics model of heat flow in one-dimensional lattices is shown to have multiple steady states for any fixed heat field strength f(e) ranging from zero to a certain positive value. We demonstrate that, depending on the initial conditions, there are at least two possibilities for the system's evolution: (i) formation of a stable traveling wave (soliton), and (ii) chaotic motion throughout the entire simulation. The percentage of the soliton-generating trajectories is zero for small field strength f(e), but increases sharply to unity over a critical region of the parameter f(e).

  16. Nonlocal separable potential in the one-dimensional Dirac equation

    Energy Technology Data Exchange (ETDEWEB)

    Calkin, M.G.; Kiang, D.; Nogami, Y.

    1988-08-01

    The one-dimensional Dirac equation is solved for a separable potential of the form of Lorentz scalar plus vector, (..beta..g+h)v(x)v(x'). Exact analytic solutions are obtained for bound and scattering states for arbitrary v(x). For a particular combination of the values of g and h, degeneracy of the bound state occurs, and total reflection also takes place for a certain incident energy. The limiting case, in which v(x) becomes a delta function, is discussed in detail.

  17. Lateral shift in one-dimensional quasiperiodic chiral photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Da, Jian, E-mail: dajian521@sina.com [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Mo, Qi, E-mail: moqiyueyang@163.com [School of Software, Yunnan University, Cuihu Bai Road, Kunming City, Yunnan Province 650091 (China); Cheng, Yaokun [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Liu, Taixiang [Taishan Vocational College of Nursing, Shandong Province 271000 (China)

    2015-02-01

    We investigate the lateral shift of a one-dimensional quasiperiodic photonic crystal consisting of chiral and conventional dielectric materials. The effect of structural irregularity on lateral shift is evaluated by stationary-phase approach. Our results show that the lateral shift can be modulated by varying the structural irregularity in quasiperiodic structure. Besides, the position of peak in lateral shift spectrum stays sensitive to the chiral factor of chiral materials. In comparison with that of periodic structure, quasiperiodic structure provides an extra degree of freedom to manipulate the lateral shift.

  18. One-Dimensional Metals Conjugated Polymers, Organic Crystals, Carbon Nanotubes

    CERN Document Server

    Roth, Siegmar

    2004-01-01

    Low-dimensional solids are of fundamental interest in materials science due to their anisotropic properties. Written not only for experts in the field, this book explains the important concepts behind their physics and surveys the most interesting one-dimensional systems and discusses their present and emerging applications in molecular scale electronics. The second edition of this successful book has been completely revised to include the remarkable achievements of the last ten years of research and applications. Chemists, polymer and materials scientists as well as students will find this bo

  19. Immobilization and One-Dimensional Arrangement of Virus Capsids with Nanoscale Precision Using DNA Origami

    Energy Technology Data Exchange (ETDEWEB)

    Stephanopoulos, Nicholas [Univ. of California, Berkeley, CA (United States); Liu, Minghui [Arizona State Univ., Tempe, AZ (United States); Tong, Gary J [Univ. of California, Berkeley, CA (United States); Li, Zhe [Arizona State Univ., Tempe, AZ (United States); Liu, Yan [Arizona State Univ., Tempe, AZ (United States); Yan, Hao [Arizona State Univ., Tempe, AZ (United States); Francis, Matthew B [Univ. of California, Berkeley, CA (United States)

    2010-06-24

    DNA origami was used as a scaffold to arrange spherical virus capsids into one-dimensional arrays with precise nanoscale positioning. To do this, we first modified the interior surface of bacteriophage MS2 capsids with fluorescent dyes as a model cargo. An unnatural amino acid on the external surface was then coupled to DNA strands that were complementary to those extending from origami tiles. Two different geometries of DNA tiles (rectangular and triangular) were used. The capsids associated with tiles of both geometries with virtually 100% efficiency under mild annealing conditions, and the location of capsid immobilization on the tile could be controlled by the position of the probe strands. The rectangular tiles and capsids could then be arranged into one-dimensional arrays by adding DNA strands linking the corners of the tiles. The resulting structures consisted of multiple capsids with even spacing (~100 nm). We also used a second set of tiles that had probe strands at both ends, resulting in a one-dimensional array of alternating capsids and tiles. This hierarchical self-assembly allows us to position the virus particles with unprecedented control and allows the future construction of integrated multicomponent systems from biological scaffolds using the power of rationally engineered DNA nanostructures.

  20. Quasi-Dirac points in one-dimensional graphene superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.H.; Tseng, P.; Hsueh, W.J., E-mail: hsuehwj@ntu.edu.tw

    2016-08-26

    Quasi-Dirac points (QDPs) with energy different from the traditional Dirac points (TDPs) have been found for the first time in one-dimensional graphene superlattices. The angular-averaged conductance reaches a minimum value at the QDPs, at which the Fano factor approaches 1/3. Surprisingly, the minimum conductance at these QDPs may be lower than that at the TDPs under certain conditions. This is remarkable as the minimum conductance attainable in graphene superlattices was believed to appear at TDPs. - Highlights: • Quasi-Dirac points (QDPs) are found for the first time in one-dimensional graphene superlattices. • The QDP is different from the traditional Dirac points (TDPs) in graphene superlattices. • The angular-averaged conductance reaches a minimum value at the QDPs, at which the Fano factor approaches 1/3. • The minimum conductance at these QDPs may be lower than that at the TDPs under certain conditions. • The minimum conductance attainable in graphene superlattices was believed to appear at TDPs.

  1. One-Dimensional Forward–Forward Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.

    2016-11-01

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  2. Neutron scattering studies of three one-dimensional antiferromagnets

    CERN Document Server

    Kenzelmann, M

    2001-01-01

    observed in the disordered phase of spin-1/2 chains. The magnetic order of the one-dimensional spin-1/2 XY antiferromagnet Cs sub 2 CoCl sub 4 was investigated using neutron diffraction. The magnetic structure has an ordering wave-vector (0, 0.5, 0.5) for T < 217 mK and the magnetic structure is a non-linear structure with the magnetic moments at a small angle to the b axis. Above a field of H = 2.1 T the magnetic order collapses in an apparent first order phase transition, suggesting a transition to a spin-liquid phase. Low-dimensional magnets with low-spin quantum numbers are ideal model systems for investigating strongly interacting macroscopic quantum ground states and their non-linear spin excitations. This thesis describes neutron scattering experiments of three one-dimensional low-spin antiferromagnets where strong quantum fluctuations lead to highly-correlated ground states and unconventional cooperative spin excitations. The excitation spectrum of the antiferromagnetic spin-1 Heisenberg chain CsNi...

  3. One-Dimensional Forward–Forward Mean-Field Games

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Diogo A., E-mail: diogo.gomes@kaust.edu.sa; Nurbekyan, Levon; Sedjro, Marc [King Abdullah University of Science and Technology (KAUST), CEMSE Division (Saudi Arabia)

    2016-12-15

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  4. Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization

    CERN Document Server

    Pu, Shi; Rezzolla, Luciano; Rischke, Dirk H

    2016-01-01

    We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work [1], we consider the fluid to have a non-zero magnetization. First, we assume a constant magnetic susceptibility $\\chi_{m}$ and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with $\\chi_{m}>0$), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with $\\chi_{m}<0$), the energy density decays faster because it feeds energy into the magnetic field. Furthermore, when the magnetic field is taken to be external and to decay in proper time $\\tau$ with a power law $\\sim\\tau^{-a}$, two distinct solutions can be found depending on the values of $a$ and $\\chi_m$. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional...

  5. Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization

    Science.gov (United States)

    Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.

    2016-04-01

    We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χmlaw ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.

  6. VANET '13: Proceeding of the Tenth ACM International Workshop on Vehicular Inter-networking, Systems, and Applications

    NARCIS (Netherlands)

    Gozalvez, J.; Kargl, Frank; Mittag, J.; Kravets, R.; Tsai, M.; Unknown, [Unknown

    This year marks a very important date for the ACM international workshop on Vehicular inter-networking, systems, and applications as ACM VANET celebrates now its 10th edition. Starting in 2004 as "ACM international workshop on Vehicular ad hoc networks" already the change in title indicates that

  7. Lime Kiln Modeling. CFD and One-dimensional simulations

    Energy Technology Data Exchange (ETDEWEB)

    Svedin, Kristoffer; Ivarsson, Christofer; Lundborg, Rickard

    2009-03-15

    The incentives for burning alternative fuels in lime kilns are growing. An increasing demand on thorough investigations of alternative fuel impact on lime kiln performance have been recognized, and the purpose of this project has been to develop a lime kiln CFD model with the possibility to fire fuel oil and lignin. The second part of the project consists of three technical studies. Simulated data from a one-dimensional steady state program has been used to support theories on the impact of biofuels and lime mud dryness. The CFD simulations was carried out in the commercial code FLUENT. Due to difficulties with the convergence of the model the calcination reaction is not included. The model shows essential differences between the two fuels. Lignin gives a different flame shape and a longer flame length compared to fuel oil. Mainly this depends on how the fuel is fed into the combustion chamber and how much combustion air that is added as primary and secondary air. In the case of lignin combustion the required amount of air is more than in the fuel oil case. This generates more combustion gas and a different flow pattern is created. Based on the values from turbulent reaction rate for the different fuels an estimated flame length can be obtained. For fuel oil the combustion is very intense with a sharp peak in the beginning and a rapid decrease. For lignin the combustion starts not as intense as for the fuel oil case and has a smoother shape. The flame length appears to be approximately 2-3 meter longer for lignin than for fuel oil based on turbulent reaction rate in the computational simulations. The first technical study showed that there are many benefits of increasing dry solids content in the lime mud going into a kiln such as increased energy efficiency, reduced TRS, and reduced sodium in the kiln. However, data from operating kilns indicates that these benefits can be offset by increasing exit gas temperature that can limit kiln production capacity. Simulated

  8. Lime Kiln Modeling. CFD and One-dimensional simulations

    Energy Technology Data Exchange (ETDEWEB)

    Svedin, Kristoffer; Ivarsson, Christofer; Lundborg, Rickard

    2009-03-15

    The incentives for burning alternative fuels in lime kilns are growing. An increasing demand on thorough investigations of alternative fuel impact on lime kiln performance have been recognized, and the purpose of this project has been to develop a lime kiln CFD model with the possibility to fire fuel oil and lignin. The second part of the project consists of three technical studies. Simulated data from a one-dimensional steady state program has been used to support theories on the impact of biofuels and lime mud dryness. The CFD simulations was carried out in the commercial code FLUENT. Due to difficulties with the convergence of the model the calcination reaction is not included. The model shows essential differences between the two fuels. Lignin gives a different flame shape and a longer flame length compared to fuel oil. Mainly this depends on how the fuel is fed into the combustion chamber and how much combustion air that is added as primary and secondary air. In the case of lignin combustion the required amount of air is more than in the fuel oil case. This generates more combustion gas and a different flow pattern is created. Based on the values from turbulent reaction rate for the different fuels an estimated flame length can be obtained. For fuel oil the combustion is very intense with a sharp peak in the beginning and a rapid decrease. For lignin the combustion starts not as intense as for the fuel oil case and has a smoother shape. The flame length appears to be approximately 2-3 meter longer for lignin than for fuel oil based on turbulent reaction rate in the computational simulations. The first technical study showed that there are many benefits of increasing dry solids content in the lime mud going into a kiln such as increased energy efficiency, reduced TRS, and reduced sodium in the kiln. However, data from operating kilns indicates that these benefits can be offset by increasing exit gas temperature that can limit kiln production capacity. Simulated

  9. Probabilistic Adaptive Anonymous Authentication in Vehicular Networks

    Institute of Scientific and Technical Information of China (English)

    Yong Xi; Ke-Wei Sha; Wei-Song Shi; Loren Schwiebert; Tao Zhang

    2008-01-01

    Vehicular networks have attracted extensive attention in recent years for their promises in improving safety and enabling other value-added services. Most previous work focuses on designing the media access and physical layer protocols.Privacy issues in vehicular systems have not been well addressed. We argue that privacy is a user-specific concept, and a good privacy protection mechanism should allow users to select the levels of privacy they wish to have. To address this requirement, we propose an adaptive anonymous authentication mechanism that can trade off the anonymity level with computational and communication overheads (resource usage). This mechanism, to our knowledge, is the first effort on adaptive anonymous authentication. The resources used by our protocol are few. A high traffic volume of 2000 vehicles per hour consumes about 60kbps bandwidth, which is less than one percent of the bandwidth of DSRC (Dedicated Short Range Communications). By using adaptive anonymity, the protocol response time can further be improved 2~4 times with lessthan 20% bandwidth overheads.

  10. Data dissemination in vehicular environments

    NARCIS (Netherlands)

    Schwartz, Ramon de Souza

    2013-01-01

    In the last few decades, Intelligent Transportation Systems (ITS) have been deployed to reduce congestion, enhance mobility, and help save lives. Among the various technologies incorporated is vehicular communication which consists in equipping vehicles with inexpensive wireless devices to enable a

  11. Wireless vehicular networks for car collision avoidance

    CERN Document Server

    2013-01-01

    Wireless Vehicular Networks for Car Collision Avoidance focuses on the development of the ITS (Intelligent Transportation Systems) in order to minimize vehicular accidents. The book presents and analyses a range of concrete accident scenarios while examining the causes of vehicular collision and proposing countermeasures based on wireless vehicular networks. The book also describes the vehicular network standards and quality of service mechanisms focusing on improving critical dissemination of safety information. With recommendations on techniques and protocols to consider when improving road safety policies in order to minimize crashes and collision risks.

  12. Crystallographic shear mechanisms in Rh one-dimensional oxides

    Science.gov (United States)

    Hernando, María; Boulahya, Khalid; Parras, Marina; González-Calbet, José M.

    2005-02-01

    Electron diffraction and high resolution electron microscopy have been used to characterize two new one-dimensional superstructures in the A sbnd Rh sbnd O system (A = Ca, Sr) related to the 2H-ABO 3-type. They are formed by the intergrowth of n A 3A'BO 6 blocks, showing the Sr 4RhO 6-type, with A 12A' 2B 8O 30 blocks, constituted by two A 3O 9 and two A 3A'O 6 layers alternating in the stacking sequence 1:1, leading to the A 27A' 7B 13O 60 ( n=5) and A 30A' 8B 14O 66 ( n=6) compositions. A crystallographic shear mechanism is proposed to describe the structural relationship between Sr 4RhO 6 (A 3A'BO 6-type) and the new superstructures.

  13. One-dimensional modeling of piping flow erosion

    Science.gov (United States)

    Lachouette, Damien; Golay, Frédéric; Bonelli, Stéphane

    2008-09-01

    A process called "piping", which often occurs in water-retaining structures (earth-dams, dykes, levees), involving the formation and progression of a continuous tunnel between the upstream and downstream sides, is one of the main cause of structure failure. Starting with the diphasic flow volume equations and the jump equations including the erosion processes, a simplified one-dimensional model for two-phase piping flow erosion was developed. The numerical simulation based on constant input and output pressures showed that the particle concentration can be a significant factor at the very beginning of the process, resulting in the enlargement of the hole at the exit. However, it was concluded that this influence is a secondary factor: the dilute flow assumption, which considerably simplifies the description, is relevant here. To cite this article: D. Lachouette et al., C. R. Mecanique 336 (2008).

  14. Impedance of rigid bodies in one-dimensional elastic collisions

    CERN Document Server

    Santos, Janilo; Nelson, Osman Rosso

    2012-01-01

    In this work we study the problem of one-dimensional elastic collisions of billiard balls, considered as rigid bodies, in a framework very different from the classical one presented in text books. Implementing the notion of impedance matching as a way to understand eficiency of energy transmission in elastic collisions, we find a solution which frames the problem in terms of this conception. We show that the mass of the ball can be seen as a measure of its impedance and verify that the problem of maximum energy transfer in elastic collisions can be thought of as a problem of impedance matching between different media. This approach extends the concept of impedance, usually associated with oscillatory systems, to system of rigid bodies.

  15. Strongly interacting photons in one-dimensional continuum

    CERN Document Server

    Roy, Dibyendu; Firstenberg, Ofer

    2016-01-01

    The photon-photon scattering in vacuum is extremely weak. However, strong effective interactions between single photons can be realized by employing strong light-matter coupling. These interactions are a fundamental building block for quantum optics, bringing many-body physics to the photonic world and providing important resources for quantum photonic devices and for optical metrology. In this Colloquium, we review the physics of strongly-interacting photons in one-dimensional systems with no optical confinement along the propagation direction. We focus on two recently-demonstrated experimental realizations: (i) superconducting qubits coupled to open transmission lines, and (ii) interacting Rydberg atoms in a cold gas. Advancements in the theoretical understanding of these systems are presented in complementary formalisms and compared to experimental results. The experimental achievements are summarized alongside of a systematic description of the quantum optical effects and quantum devices emerging from the...

  16. One-dimensional long-range percolation: A numerical study

    Science.gov (United States)

    Gori, G.; Michelangeli, M.; Defenu, N.; Trombettoni, A.

    2017-07-01

    In this paper we study bond percolation on a one-dimensional chain with power-law bond probability C /rd +σ , where r is the distance length between distinct sites and d =1 . We introduce and test an order-N Monte Carlo algorithm and we determine as a function of σ the critical value Cc at which percolation occurs. The critical exponents in the range 0 introduction of a suitably defined effective dimension deff relating the long-range model with a short-range one in dimension deff. We finally present a formulation of our algorithm for bond percolation on general graphs, with order N efficiency on a large class of graphs including short-range percolation and translationally invariant long-range models in any spatial dimension d with σ >0 .

  17. Configurational and energy landscape in one-dimensional Coulomb systems.

    Science.gov (United States)

    Varela, Lucas; Téllez, Gabriel; Trizac, Emmanuel

    2017-02-01

    We study a one-dimensional Coulomb system, where two charged colloids are neutralized by a collection of point counterions, with global neutrality. With temperature being given, two situations are addressed: Either the colloids are kept at fixed positions (canonical ensemble) or the force acting on the colloids is fixed (isobaric-isothermal ensemble). The corresponding partition functions are worked out exactly, in view of determining which arrangement of counterions is optimal. How many counterions should be in the confined segment between the colloids? For the remaining ions outside, is there a left-right symmetry breakdown? We evidence a cascade of transitions as system size is varied in the canonical treatment or as pressure is increased in the isobaric formulation.

  18. The statistical distributions of one-dimensional “turbulence”

    Science.gov (United States)

    Peyrard, Michel

    2004-06-01

    We study a one-dimensional discrete analog of the von Kármán flow widely investigated in turbulence, made of a lattice of anharmonic oscillators excited by both ends in the presence of a dissipative term proportional to the second-order finite difference of the velocities, similar to the viscous term in a fluid. The dynamics of the model shows striking similarities with an actual turbulent flow, both at local and global scales. Calculations of the probability distribution function of velocity increments, extensively studied in turbulence, with a very large number of points in order to determine accurately the statistics of rare events, allow us to provide a meaningful comparison of different theoretical expressions of the PDFs.

  19. Scale dependent partitioning of one-dimensional aperiodic set diffraction

    Science.gov (United States)

    Elkharrat, A.

    2004-06-01

    We give a multiresolution partition of pure point parts of diffraction patterns of one-dimensional aperiodic sets. When an aperiodic set is related to the Golden Ratio, denoted by tau, it is well known that the pure point part of its diffractive measure is supported by the extension ring of tau, denoted by mathbb{Z}[tau]. The partition we give is based on the formalism of the so called tau-integers, denoted by mathbb{Z}_tau. The set of tau-integers is a selfsimilar set obeying mathbb{Z}_tau/tau^{j-1}subsetmathbb{Z}_tau/tau^j subset mathbb{Z}_tau/tau^{j + 1} subsetmathbb{Z}[tau], jinmathbb{Z}. The pure point spectrum is then partitioned with respect to this “Russian doll” like sequence of subsets mathbb{Z}_tau/tau^j. Thus we deduce the partition of the pure point part of the diffractive measure of aperiodic sets.

  20. Explicit Solutions for One-Dimensional Mean-Field Games

    KAUST Repository

    Prazeres, Mariana

    2017-04-05

    In this thesis, we consider stationary one-dimensional mean-field games (MFGs) with or without congestion. Our aim is to understand the qualitative features of these games through the analysis of explicit solutions. We are particularly interested in MFGs with a nonmonotonic behavior, which corresponds to situations where agents tend to aggregate. First, we derive the MFG equations from control theory. Then, we compute explicit solutions using the current formulation and examine their behavior. Finally, we represent the solutions and analyze the results. This thesis main contributions are the following: First, we develop the current method to solve MFG explicitly. Second, we analyze in detail non-monotonic MFGs and discover new phenomena: non-uniqueness, discontinuous solutions, empty regions and unhappiness traps. Finally, we address several regularization procedures and examine the stability of MFGs.

  1. Numerical method of characteristics for one-dimensional blood flow

    CERN Document Server

    Acosta, Sebastian; Riviere, Beatrice; Penny, Daniel J; Rusin, Craig G

    2014-01-01

    Mathematical modeling at the level of the full cardiovascular system requires the numerical approximation of solutions to a one-dimensional nonlinear hyperbolic system describing flow in a single vessel. This model is often simulated by computationally intensive methods like finite elements and discontinuous Galerkin, while some recent applications require more efficient approaches (e.g. for real-time clinical decision support, phenomena occurring over multiple cardiac cycles, iterative solutions to optimization/inverse problems, and uncertainty quantification). Further, the high speed of pressure waves in blood vessels greatly restricts the time-step needed for stability in explicit schemes. We address both cost and stability by presenting an efficient and unconditionally stable method for approximating solutions to diagonal nonlinear hyperbolic systems. Theoretical analysis of the algorithm is given along with a comparison of our method to a discontinuous Galerkin implementation. Lastly, we demonstrate the ...

  2. Study on pile drivability with one dimensional wave propagation theory

    Institute of Scientific and Technical Information of China (English)

    陈仁朋; 王仕方; 陈云敏

    2003-01-01

    Pile drivability is a key problem during the stage of design and construction installation of pile foundations. The solution to the one dimensional wave equation was used to determine the impact force at the top of a concrete pile for a given ram mass, cushion stiffness, and pile impedance. The kinematic equation of pile toe was established and solved based on wave equation theory. The movements of the pile top and pile toe were presented, which clearly showed the dynamic displacement, including rebound and penetration of pile top and toe. A parametric study was made with a full range of practical values of ram weight, cushion stiffness, dropheight, and pile impedance. Suggestions for optimizing the parameters were also presented. Comparisons between the results obtained by the present solution and in-situ measurements indicated the reliability and validity of the method.

  3. Testing of a one dimensional model for Field II calibration

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2008-01-01

    to the calibrated Field II program for 1, 4, and 10 cycle excitations. Two parameter sets were applied for modeling, one real valued Pz27 parameter set, manufacturer supplied, and one complex valued parameter set found in literature, Alguer´o et al. [11]. The latter implicitly accounts for attenuation. Results show......Field II is a program for simulating ultrasound transducer fields. It is capable of calculating the emitted and pulse-echoed fields for both pulsed and continuous wave transducers. To make it fully calibrated a model of the transducer’s electro-mechanical impulse response must be included. We...... examine an adapted one dimensional transducer model originally proposed by Willatzen [9] to calibrate Field II. This model is modified to calculate the required impulse responses needed by Field II for a calibrated field pressure and external circuit current calculation. The testing has been performed...

  4. Automated quantification of one-dimensional nanostructure alignment on surfaces

    CERN Document Server

    Dong, Jianjin; Abukhdeir, Nasser Mohieddin

    2016-01-01

    A method for automated quantification of the alignment of one-dimensional nanostructures from microscopy imaging is presented. Nanostructure alignment metrics are formulated and shown to able to rigorously quantify the orientational order of nanostructures within a two-dimensional domain (surface). A complementary image processing method is also presented which enables robust processing of microscopy images where overlapping nanostructures might be present. Scanning electron microscopy (SEM) images of nanowire-covered surfaces are analyzed using the presented methods and it is shown that past single parameter alignment metrics are insufficient for highly aligned domains. Through the use of multiple parameter alignment metrics, automated quantitative analysis of SEM images is shown to be possible and the alignment characteristics of different samples are able to be rigorously compared using a similarity metric. The results of this work provide researchers in nanoscience and nanotechnology with a rigorous metho...

  5. Coherent backscattering of light off one-dimensional atomic strings

    CERN Document Server

    Sørensen, H L; Kluge, K W; Iakoupov, I; Sørensen, A S; Müller, J H; Polzik, E S; Appel, J

    2016-01-01

    Bragg scattering, well known in crystallography, has become a powerful tool for artificial atomic structures such as optical lattices. In an independent development photonic waveguides have been used successfully to boost quantum light-matter coupling. We combine these two lines of research and present the first experimental realisation of coherent Bragg scattering off a one-dimensional (1D) system - two strings of atoms strongly coupled to a single photonic mode - realised by trapping atoms in the evanescent field of a tapered optical fibre (TOF), which also guides the probe light. We report nearly 12% power reflection from strings containing only about one thousand caesium atoms, an enhancement of more than two orders of magnitude compared to reflection from randomly positioned atoms. This result paves the road towards collective strong coupling in 1D atom-photon systems. Our approach also allows for a straightforward fibre connection between several distant 1D atomic crystals.

  6. A Reduced Order, One Dimensional Model of Joint Response

    Energy Technology Data Exchange (ETDEWEB)

    DOHNER,JEFFREY L.

    2000-11-06

    As a joint is loaded, the tangent stiffness of the joint reduces due to slip at interfaces. This stiffness reduction continues until the direction of the applied load is reversed or the total interface slips. Total interface slippage in joints is called macro-slip. For joints not undergoing macro-slip, when load reversal occurs the tangent stiffness immediately rebounds to its maximum value. This occurs due to stiction effects at the interface. Thus, for periodic loads, a softening and rebound hardening cycle is produced which defines a hysteretic, energy absorbing trajectory. For many jointed sub-structures, this hysteretic trajectory can be approximated using simple polynomial representations. This allows for complex joint substructures to be represented using simple non-linear models. In this paper a simple one dimensional model is discussed.

  7. Properties of surface modes in one dimensional plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, S.; Prasad, S., E-mail: prasad.surendra@gmail.com; Singh, V. [Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India)

    2015-02-15

    Properties of surface modes supported at the interface of air and a semi-infinite one dimensional plasma photonic crystal are analyzed. The surface mode equation is obtained by using transfer matrix method and applying continuity conditions of electric fields and its derivatives at the interface. It is observed that with increase in the width of cap layer, frequencies of surface modes are shifted towards lower frequency side, whereas increase in tangential component of wave-vector increases the mode frequency and total energy carried by the surface modes. With increase in plasma frequency, surface modes are found to shift towards higher frequency side. The group velocity along interface is found to control by cap layer thickness.

  8. Singularity formation for one dimensional full Euler equations

    Science.gov (United States)

    Pan, Ronghua; Zhu, Yi

    2016-12-01

    We investigate the basic open question on the global existence v.s. finite time blow-up phenomena of classical solutions for the one-dimensional compressible Euler equations of adiabatic flow. For isentropic flows, it is well-known that the solutions develop singularity if and only if initial data contain any compression (the Riemann variables have negative spatial derivative). The situation for non-isentropic flow is not quite clear so far, due to the presence of non-constant entropy. In [4], it is shown that initial weak compressions do not necessarily develop singularity in finite time, unless the compression is strong enough for general data. In this paper, we identify a class of solutions of the full (non-isentropic) Euler equations, developing singularity in finite time even though their initial data do not contain any compression. This is in sharp contrast to the isentropic flow.

  9. One-dimensional topological edge states of bismuth bilayers

    Science.gov (United States)

    Drozdov, Ilya K.; Alexandradinata, A.; Jeon, Sangjun; Nadj-Perge, Stevan; Ji, Huiwen; Cava, R. J.; Andrei Bernevig, B.; Yazdani, Ali

    2014-09-01

    The hallmark of a topologically insulating state of matter in two dimensions protected by time-reversal symmetry is the existence of chiral edge modes propagating along the perimeter of the sample. Among the first systems predicted to be a two-dimensional topological insulator are bilayers of bismuth. Here we report scanning tunnelling microscopy experiments on bulk Bi crystals that show that a subset of the predicted Bi-bilayers' edge states are decoupled from the states of the substrate and provide direct spectroscopic evidence of their one-dimensional nature. Moreover, by visualizing the quantum interference of edge-mode quasi-particles in confined geometries, we demonstrate their remarkable coherent propagation along the edge with scattering properties consistent with strong suppression of backscattering as predicted for the propagating topological edge states.

  10. Spin accumulation on a one-dimensional mesoscopic Rashba ring

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiyong [Department of Physics, Nanjing University, Nanjing 210093 (China)

    2006-04-26

    The nonequilibrium spin accumulation on a one-dimensional (1D) mesoscopic Rashba ring is investigated with unpolarized current injected through ideal leads. Due to the Rashba spin-orbit (SO) coupling and back-scattering at the interfaces between the leads and the ring, a beating pattern is formed in the fast oscillation of spin accumulation. If every beating period is complete, a plateau is formed, where the variation of spin accumulation with the external voltage is slow, but if new incomplete periods emerge in the envelope function, a transitional region appears. This plateau structure and the beating pattern are related to the tunnelling through spin-dependent resonant states. Because of the Aharonov-Casher (AC) effect, the average spin accumulation oscillates quasi-periodically with the Rashba SO coupling and has a series of zeros. In some situations, the direction of the average spin accumulation can be reversed by the external voltage in this 1D Rashba ring.

  11. Spin accumulation on a one-dimensional mesoscopic Rashba ring.

    Science.gov (United States)

    Zhang, Zhi-Yong

    2006-04-26

    The nonequilibrium spin accumulation on a one-dimensional (1D) mesoscopic Rashba ring is investigated with unpolarized current injected through ideal leads. Due to the Rashba spin-orbit (SO) coupling and back-scattering at the interfaces between the leads and the ring, a beating pattern is formed in the fast oscillation of spin accumulation. If every beating period is complete, a plateau is formed, where the variation of spin accumulation with the external voltage is slow, but if new incomplete periods emerge in the envelope function, a transitional region appears. This plateau structure and the beating pattern are related to the tunnelling through spin-dependent resonant states. Because of the Aharonov-Casher (AC) effect, the average spin accumulation oscillates quasi-periodically with the Rashba SO coupling and has a series of zeros. In some situations, the direction of the average spin accumulation can be reversed by the external voltage in this 1D Rashba ring.

  12. SUSY-inspired one-dimensional transformation optics

    CERN Document Server

    Miri, Mohammad-Ali; Christodoulides, Demetrios N

    2014-01-01

    Transformation optics aims to identify artificial materials and structures with desired electromagnetic properties by means of pertinent coordinate transformations. In general, such schemes are meant to appropriately tailor the constitutive parameters of metamaterials in order to control the trajectory of light in two and three dimensions. Here we introduce a new class of one-dimensional optical transformations that exploits the mathematical framework of supersymmetry (SUSY). This systematic approach can be utilized to synthesize photonic configurations with identical reflection and transmission characteristics, down to the phase, for all incident angles, thus rendering them perfectly indistinguishable to an external observer. Along these lines, low-contrast dielectric arrangements can be designed to fully mimic the behavior of a given high-contrast structure that would have been otherwise beyond the reach of available materials and existing fabrication techniques. Similar strategies can also be adopted to re...

  13. Characterizing high- n quasi-one-dimensional strontium Rydberg atoms

    Science.gov (United States)

    Hiller, Moritz; Yoshida, Shuhei; Burgdörfer, Joachim; Ye, Shuzhen; Zhang, Xinyue; Dunning, F. Barry

    2014-05-01

    The production of high- n, n ~ 300 , quasi-one-dimensional strontium Rydberg atoms by two-photon excitation of selected extreme Stark states in the presence of a weak dc field is examined using a crossed laser-atom beam geometry. The polarization of the product states is probed using three independent techniques which are analyzed with the aid of classical-trajectory Monte Carlo simulations that employ initial ensembles based on quantum calculations using a two-active-electron model. Comparisons between theory and experiment demonstrate that the product states have large dipole moments, ~ 1 . 0 - 1 . 2n2 a . u . and that they can be engineered using pulsed electric fields to create a wide variety of target states. Research supported by the NSF, the Robert A Welch Foundation, and the FWF (Austria).

  14. Topologically protected states in one-dimensional systems

    CERN Document Server

    Fefferman, C L; Weinstein, M I

    2017-01-01

    The authors study a class of periodic Schrödinger operators, which in distinguished cases can be proved to have linear band-crossings or "Dirac points". They then show that the introduction of an "edge", via adiabatic modulation of these periodic potentials by a domain wall, results in the bifurcation of spatially localized "edge states". These bound states are associated with the topologically protected zero-energy mode of an asymptotic one-dimensional Dirac operator. The authors' model captures many aspects of the phenomenon of topologically protected edge states for two-dimensional bulk structures such as the honeycomb structure of graphene. The states the authors construct can be realized as highly robust TM-electromagnetic modes for a class of photonic waveguides with a phase-defect.

  15. One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis.

    Science.gov (United States)

    Xiao, Fang-Xing; Miao, Jianwei; Tao, Hua Bing; Hung, Sung-Fu; Wang, Hsin-Yi; Yang, Hong Bin; Chen, Jiazang; Chen, Rong; Liu, Bin

    2015-05-13

    Semiconductor-based photocatalysis and photoelectrocatalysis have received considerable attention as alternative approaches for solar energy harvesting and storage. The photocatalytic or photoelectrocatalytic performance of a semiconductor is closely related to the design of the semiconductor at the nanoscale. Among various nanostructures, one-dimensional (1D) nanostructured photocatalysts and photoelectrodes have attracted increasing interest owing to their unique optical, structural, and electronic advantages. In this article, a comprehensive review of the current research efforts towards the development of 1D semiconductor nanomaterials for heterogeneous photocatalysis and photoelectrocatalysis is provided and, in particular, a discussion of how to overcome the challenges for achieving full potential of 1D nanostructures is presented. It is anticipated that this review will afford enriched information on the rational exploration of the structural and electronic properties of 1D semiconductor nanostructures for achieving more efficient 1D nanostructure-based photocatalysts and photoelectrodes for high-efficiency solar energy conversion.

  16. Polaron and bipolaron of uniaxially strained one dimensional zigzag ladder

    Energy Technology Data Exchange (ETDEWEB)

    Yavidov, B.Ya., E-mail: bakhrom.yavidov@gmail.com

    2016-09-15

    An influence of the uniaxial strains in one dimensional zigzag ladder (1DZL) on the properties of polarons and bipolarons is considered. It is shown that strain changes all the parameters of the system, in particular, spectrum, existing bands and the masses of charge carriers. Numerical results obtained by taking into an account the Poisson effect clearly indicate that the properties of the (bi)polaronic system can be tuned via strain. Mass of bipolaron can be manipulated by the strain too which in turn leads to the way of tuning Bose–Einstein condensation temperature T{sub BEC} of bipolarons. It is shown that T{sub BEC} of bipolarons in strained 1DZL reasonably correlates with the values of critical temperature of superconductivity of certain perovskites.

  17. Thermal radiation in one-dimensional photonic quasicrystals with graphene

    Science.gov (United States)

    Costa, C. H.; Vasconcelos, M. S.; Fulco, U. L.; Albuquerque, E. L.

    2017-10-01

    In this work we investigate the thermal power spectra of the electromagnetic radiation through one-dimensional stacks of dielectric layers, with graphene at their interfaces, arranged according to a quasiperiodic structure obeying the Fibonacci (FB), Thue-Morse (TM) and double-period (DP) sequences. The thermal radiation power spectra are determined by means of a theoretical model based on a transfer matrix formalism for both normal and oblique incidence geometries, considering the Kirchhoff's law of thermal radiation. A systematic study of the consequences of the graphene layers in the thermal emittance spectra is presented and discussed. We studied also the radiation spectra considering the case where the chemical potential is changed in order to tune the omnidirectional photonic band gap.

  18. One-dimensional quasi-relativistic particle in the box

    CERN Document Server

    Kaleta, Kamil; Malecki, Jacek

    2011-01-01

    Two-term Weyl-type asymptotic law for the eigenvalues of one-dimensional quasi-relativistic Hamiltonian (-h^2 c^2 d^2/dx^2 + m^2 c^4)^(1/2) + V_well(x) (the Klein-Gordon square-root operator with electrostatic potential) with the infinite square well potential V_well(x) is given: the n-th eigenvalue is equal to (n pi/2 - pi/8) h c/a + O(1/n), where 2a is the width of the potential well. Simplicity of eigenvalues is proved. Some L^2 and L^infinity properties of eigenfunctions are also studied. Eigenvalues represent energies of a `massive particle in the box' quasi-relativistic model.

  19. Novel superconducting phenomena in quasi-one-dimensional Bechgaard salts

    Science.gov (United States)

    Jerome, Denis; Yonezawa, Shingo

    2016-03-01

    It is the saturation of the transition temperature Tc in the range of 24 K for known materials in the late sixties that triggered the search for additional materials offering new coupling mechanisms leading in turn to higher Tc's. As a result of this stimulation, superconductivity in organic matter was discovered in tetramethyl-tetraselenafulvalene-hexafluorophosphate, (TMTSF)2PF6, in 1979, in the laboratory founded at Orsay by Professor Friedel and his colleagues in 1962. Although this conductor is a prototype example for low-dimensional physics, we mostly focus in this article on the superconducting phase of the ambient-pressure superconductor (TMTSF)2ClO4, which has been studied most intensively among the TMTSF salts. We shall present a series of experimental results supporting nodal d-wave symmetry for the superconducting gap in these prototypical quasi-one-dimensional conductors. xml:lang="fr"

  20. One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hust, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McClelland, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gresshoff, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-12

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).

  1. Capillary condensation in one-dimensional irregular confinement

    Science.gov (United States)

    Handford, Thomas P.; Pérez-Reche, Francisco J.; Taraskin, Sergei N.

    2013-07-01

    A lattice-gas model with heterogeneity is developed for the description of fluid condensation in finite sized one-dimensional pores of arbitrary shape. Mapping to the random-field Ising model allows an exact solution of the model to be obtained at zero-temperature, reproducing the experimentally observed dependence of the amount of fluid adsorbed in the pore on external pressure. It is demonstrated that the disorder controls the sorption for long pores and can result in H2-type hysteresis. Finite-temperature Metropolis dynamics simulations support analytical findings in the limit of low temperatures. The proposed framework is viewed as a fundamental building block of the theory of capillary condensation necessary for reliable structural analysis of complex porous media from adsorption-desorption data.

  2. Compaction of quasi-one-dimensional elastoplastic materials

    Science.gov (United States)

    Shaebani, M. Reza; Najafi, Javad; Farnudi, Ali; Bonn, Daniel; Habibi, Mehdi

    2017-06-01

    Insight into crumpling or compaction of one-dimensional objects is important for understanding biopolymer packaging and designing innovative technological devices. By compacting various types of wires in rigid confinements and characterizing the morphology of the resulting crumpled structures, here, we report how friction, plasticity and torsion enhance disorder, leading to a transition from coiled to folded morphologies. In the latter case, where folding dominates the crumpling process, we find that reducing the relative wire thickness counter-intuitively causes the maximum packing density to decrease. The segment size distribution gradually becomes more asymmetric during compaction, reflecting an increase of spatial correlations. We introduce a self-avoiding random walk model and verify that the cumulative injected wire length follows a universal dependence on segment size, allowing for the prediction of the efficiency of compaction as a function of material properties, container size and injection force.

  3. One-dimensional photonic crystal fishbone hybrid nanocavity with nanoposts

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Tsan-Wen; Lin, Pin-Tso; Lee, Po-Tsung, E-mail: potsung@mail.nctu.edu.tw [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Rm. 413 CPT Building, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan (China)

    2014-05-12

    We propose and investigate a one-dimensional photonic crystal (PhC) fishbone (FB) hybrid nanocavity lying on silver substrate with a horizontal air slot. With very few PhC periods, the confined transverse-magnetic, TM{sub 10} hybrid mode concentrated within the air slot shows high quality factor over effective mode volume ratio larger than 10{sup 5}λ{sup −3}. Most importantly, this FB hybrid nanocavity allows formation of low-index nanoposts within the air slot without significantly affecting the mode properties. These nanoposts guarantee the structural stabilities under different environmental perturbations. Furthermore, capabilities of our proposed design in serving as optical sensors and tweezers for bio-sized nanoparticles are also investigated.

  4. Reprint of : Absorbing/Emitting Phonons with one dimensional MOSFETs

    Science.gov (United States)

    Bosisio, Riccardo; Gorini, Cosimo; Fleury, Geneviève; Pichard, Jean-Louis

    2016-08-01

    We consider nanowires in the field effect transistor device configuration. Modeling each nanowire as a one dimensional lattice with random site potentials, we study the heat exchanges between the nanowire electrons and the substrate phonons, when electron transport is due to phonon-assisted hops between localized states. Shifting the nanowire conduction band with a metallic gate induces different behaviors. When the Fermi potential is located near the band center, a bias voltage gives rise to small local heat exchanges which fluctuate randomly along the nanowire. When it is located near one of the band edges, the bias voltage yields heat currents which flow mainly from the substrate towards the nanowire near one boundary of the nanowire, and in the opposite direction near the other boundary. This opens interesting perspectives for heat management at submicron scales: arrays of parallel gated nanowires could be used for a field control of phonon emission/absorption.

  5. Charge diffusion in the one-dimensional Hubbard model

    Science.gov (United States)

    Steinigeweg, R.; Jin, F.; De Raedt, H.; Michielsen, K.; Gemmer, J.

    2017-08-01

    We study the real-time and real-space dynamics of charge in the one-dimensional Hubbard model in the limit of high temperatures. To this end, we prepare pure initial states with sharply peaked density profiles and calculate the time evolution of these nonequilibrium states, by using numerical forward-propagation approaches to chains as long as 20 sites. For a class of typical states, we find excellent agreement with linear-response theory and unveil the existence of remarkably clean charge diffusion in the regime of strong particle-particle interactions. We additionally demonstrate that, in the half-filling sector, this diffusive behavior does not depend on certain details of our initial conditions, i.e., it occurs for five different realizations with random and nonrandom internal degrees of freedom, single and double occupation of the central site, and displacement of spin-up and spin-down particles.

  6. Analytical models of optical response in one-dimensional semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Thomas Garm, E-mail: tgp@nano.aau.dk

    2015-09-04

    The quantum mechanical description of the optical properties of crystalline materials typically requires extensive numerical computation. Including excitonic and non-perturbative field effects adds to the complexity. In one dimension, however, the analysis simplifies and optical spectra can be computed exactly. In this paper, we apply the Wannier exciton formalism to derive analytical expressions for the optical response in four cases of increasing complexity. Thus, we start from free carriers and, in turn, switch on electrostatic fields and electron–hole attraction and, finally, analyze the combined influence of these effects. In addition, the optical response of impurity-localized excitons is discussed. - Highlights: • Optical response of one-dimensional semiconductors including excitons. • Analytical model of excitonic Franz–Keldysh effect. • Computation of optical response of impurity-localized excitons.

  7. A one-dimensional toy model of globular clusters

    CERN Document Server

    Fanelli, D; Ruffo, S; Fanelli, Duccio; Merafina, Marco; Ruffo, Stefano

    2001-01-01

    We introduce a one-dimensional toy model of globular clusters. The model is a version of the well-known gravitational sheets system, where we take additionally into account mass and energy loss by evaporation of stars at the boundaries. Numerical integration by the "exact" event-driven dynamics is performed, for initial uniform density and Gaussian random velocities. Two distinct quasi-stationary asymptotic regimes are attained, depending on the initial energy of the system. We guess the forms of the density and velocity profiles which fit numerical data extremely well and allow to perform an independent calculation of the self-consistent gravitational potential. Some power-laws for the asymptotic number of stars and for the collision times are suggested.

  8. Magnons in one-dimensional k-component Fibonacci structures

    Science.gov (United States)

    Costa, C. H.; Vasconcelos, M. S.

    2014-05-01

    We have studied the magnon transmission through of one-dimensional magnonic k-component Fibonacci structures, where k different materials are arranged in accordance with the following substitution rule: Sn(k)=Sn-1(k)Sn-k(k) (n ≥k=0,1,2,…), where Sn(k) is the nth stage of the sequence. The calculations were carried out in exchange dominated regime within the framework of the Heisenberg model and taking into account the RPA approximation. We have considered multilayers composed of simple cubic spin-S Heisenberg ferromagnets, and, by using the powerful transfer-matrix method, the spin wave transmission is obtained. It is demonstrated that the transmission coefficient has a rich and interesting magnonic pass- and stop-bands structures, which depends on the frequency of magnons and the k values.

  9. Magnons in one-dimensional k-component Fibonacci structures

    Energy Technology Data Exchange (ETDEWEB)

    Costa, C. H., E-mail: carloshocosta@hotmail.com [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Vasconcelos, M. S. [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil)

    2014-05-07

    We have studied the magnon transmission through of one-dimensional magnonic k-component Fibonacci structures, where k different materials are arranged in accordance with the following substitution rule: S{sub n}{sup (k)}=S{sub n−1}{sup (k)}S{sub n−k}{sup (k)} (n≥k=0,1,2,…), where S{sub n}{sup (k)} is the nth stage of the sequence. The calculations were carried out in exchange dominated regime within the framework of the Heisenberg model and taking into account the RPA approximation. We have considered multilayers composed of simple cubic spin-S Heisenberg ferromagnets, and, by using the powerful transfer-matrix method, the spin wave transmission is obtained. It is demonstrated that the transmission coefficient has a rich and interesting magnonic pass- and stop-bands structures, which depends on the frequency of magnons and the k values.

  10. Well-posedness of one-dimensional Korteweg models

    Directory of Open Access Journals (Sweden)

    Sylvie Benzoni-Gavage

    2006-05-01

    Full Text Available We investigate the initial-value problem for one-dimensional compressible fluids endowed with internal capillarity. We focus on the isothermal inviscid case with variable capillarity. The resulting equations for the density and the velocity, consisting of the mass conservation law and the momentum conservation with Korteweg stress, are a system of third order nonlinear dispersive partial differential equations. Additionally, this system is Hamiltonian and admits travelling solutions, representing propagating phase boundaries with internal structure. By change of unknown, it roughly reduces to a quasilinear Schrodinger equation. This new formulation enables us to prove local well-posedness for smooth perturbations of travelling profiles and almost-global existence for small enough perturbations. A blow-up criterion is also derived.

  11. Magnetic properties of manganese based one-dimensional spin chains.

    Science.gov (United States)

    Asha, K S; Ranjith, K M; Yogi, Arvind; Nath, R; Mandal, Sukhendu

    2015-12-14

    We have correlated the structure-property relationship of three manganese-based inorganic-organic hybrid structures. Compound 1, [Mn2(OH-BDC)2(DMF)3] (where BDC = 1,4-benzene dicarboxylic acid and DMF = N,N'-dimethylformamide), contains Mn2O11 dimers as secondary building units (SBUs), which are connected by carboxylate anions forming Mn-O-C-O-Mn chains. Compound 2, [Mn2(BDC)2(DMF)2], contains Mn4O20 clusters as SBUs, which also form Mn-O-C-O-Mn chains. In compound 3, [Mn3(BDC)3(DEF)2] (where DEF = N,N'-diethylformamide), the distorted MnO6 octahedra are linked to form a one-dimensional chain with Mn-O-Mn connectivity. The magnetic properties were investigated by means of magnetization and heat capacity measurements. The temperature dependent magnetic susceptibility of all the three compounds could be nicely fitted using a one-dimensional S = 5/2 Heisenberg antiferromagnetic chain model and the value of intra-chain exchange coupling (J/k(B)) between Mn(2+) ions was estimated to be ∼1.1 K, ∼0.7 K, and ∼0.46 K for compounds 1, 2, and 3, respectively. Compound 1 does not undergo any magnetic long-range-order down to 2 K while compounds 2 and 3 undergo long-range magnetic order at T(N) ≈ 4.2 K and ≈4.3 K, respectively, which are of spin-glass type. From the values of J/k(B) and T(N) the inter-chain coupling (J(⊥)/k(B)) was calculated to be about 0.1J/k(B) for both compounds 2 and 3, respectively.

  12. A One-Dimensional Synthetic-Aperture Microwave Radiometer

    Science.gov (United States)

    Doiron, Terence; Piepmeier, Jeffrey

    2010-01-01

    A proposed one-dimensional synthetic- aperture microwave radiometer could serve as an alternative to either the two-dimensional synthetic-aperture radiometer described in the immediately preceding article or to a prior one-dimensional one, denoted the Electrically Scanned Thinned Array Radiometer (ESTAR), mentioned in that article. The proposed radiometer would operate in a pushbroom imaging mode, utilizing (1) interferometric cross-track scanning to obtain cross-track resolution and (2) the focusing property of a reflector for along-track resolution. The most novel aspect of the proposed system would be the antenna (see figure), which would include a cylindrical reflector of offset parabolic cross section. The reflector could be made of a lightweight, flexible material amenable to stowage and deployment. Other than a stowage/deployment mechanism, the antenna would not include moving parts, and cross-track scanning would not entail mechanical rotation of the antenna. During operation, the focal line, parallel to the cylindrical axis, would be oriented in the cross-track direction, so that placement of receiving/radiating elements at the focal line would afford the desired along-track resolution. The elements would be microwave feed horns sparsely arrayed along the focal line. The feed horns would be oriented with their short and long cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis to obtain fan-shaped beams having their broad and narrow cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis. The interference among the beams would be controlled in the same manner as in the ESTAR to obtain along-cylindrical- axis (cross-track) resolution and cross-track scanning.

  13. Negative refraction angular characterization in one-dimensional photonic crystals.

    Directory of Open Access Journals (Sweden)

    Jesus Eduardo Lugo

    Full Text Available BACKGROUND: Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. METHODOLOGY/PRINCIPAL FINDINGS: By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. CONCLUSIONS/SIGNIFICANCE: Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.

  14. Charge transport through one-dimensional Moiré crystals

    Science.gov (United States)

    Bonnet, Roméo; Lherbier, Aurélien; Barraud, Clément; Rocca, Maria Luisa Della; Lafarge, Philippe; Charlier, Jean-Christophe

    2016-01-01

    Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers and graphene deposited on hexagonal boron-nitride. In this letter, we report both experimentally and theoretically evidence of superlattices physics in transport properties of one-dimensional (1D) Moiré crystals. Rolling-up few layers of graphene to form a multiwall carbon nanotube adds boundaries conditions that can be translated into interference fringes-like Moiré patterns along the circumference of the cylinder. Such a 1D Moiré crystal exhibits a complex 1D multiple bands structure with clear and robust interband quantum transitions due to the presence of mini-Dirac points and pseudo-gaps. Our devices consist in a very large diameter (>80 nm) multiwall carbon nanotubes of high quality, electrically connected by metallic electrodes acting as charge reservoirs. Conductance measurements reveal the presence of van Hove singularities assigned to 1D Moiré superlattice effect and illustrated by electronic structure calculations.

  15. Negative refraction angular characterization in one-dimensional photonic crystals.

    Science.gov (United States)

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-04-06

    Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.

  16. One-dimensional consolidation in unsaturated soils under cyclic loading

    Science.gov (United States)

    Lo, Wei-Cheng; Sposito, Garrison; Lee, Jhe-Wei; Chu, Hsiuhua

    2016-05-01

    The one-dimensional consolidation model of poroelasticity of Lo et al. (2014) for an unsaturated soil under constant loading is generalized to include an arbitrary time-dependent loading. A closed-form solution for the pore water and air pressures along with the total settlement is derived by employing a Fourier series representation in the spatial domain and a Laplace transformation in the time domain. This solution is illustrated for the important example of a fully-permeable soil cylinder with an undrained initial condition acted upon by a periodic stress. Our results indicate that, in terms of a dimensionless time scale, the transient solution decays to zero most slowly in a water-saturated soil, whereas for an unsaturated soil, the time for the transient solution to die out is inversely proportional to the initial water saturation. The generalization presented here shows that the diffusion time scale for pore water in an unsaturated soil is orders of magnitude greater than that in a water-saturated soil, mainly because of the much smaller hydraulic conductivity of the former.

  17. Integral Transport Theory in One-dimensional Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Carlvik, I.

    1966-06-15

    A method called DIT (Discrete Integral Transport) has been developed for the numerical solution of the transport equation in one-dimensional systems. The characteristic features of the method are Gaussian integration over the coordinate as described by Kobayashi and Nishihara, and a particular scheme for the calculation of matrix elements in annular and spherical geometry that has been used for collision probabilities in earlier Flurig programmes. The paper gives a general theory including such things as anisotropic scattering and multi-pole fluxes, and it gives a brief description of the Flurig scheme. Annular geometry is treated in some detail, and corresponding formulae are given for spherical and plane geometry. There are many similarities between DIT and the method of collision probabilities. DIT is in many cases faster, because for a certain accuracy in the fluxes DIT often needs fewer space points than the method of collision probabilities needs regions. Several computer codes using DIT, both one-group and multigroup, have been written. It is anticipated that experience gained in calculations with these codes will be reported in another paper.

  18. Solitary Wave in One-dimensional Buckyball System at Nanoscale

    Science.gov (United States)

    Xu, Jun; Zheng, Bowen; Liu, Yilun

    2016-01-01

    We have studied the stress wave propagation in one-dimensional (1-D) nanoscopic buckyball (C60) system by molecular dynamics (MD) simulation and quantitative modeling. Simulation results have shown that solitary waves are generated and propagating in the buckyball system through impacting one buckyball at one end of the buckyball chain. We have found the solitary wave behaviors are closely dependent on the initial temperature and impacting speed of the buckyball chain. There are almost no dispersion and dissipation of the solitary waves (stationary solitary wave) for relatively low temperature and high impacting speed. While for relatively high temperature and low impacting speed the profile of the solitary waves is highly distorted and dissipated after propagating several tens of buckyballs. A phase diagram is proposed to describe the effect of the temperature and impacting speed on the solitary wave behaviors in buckyball system. In order to quantitatively describe the wave behavior in buckyball system, a simple nonlinear-spring model is established, which can describe the MD simulation results at low temperature very well. The results presented in this work may lay a solid step towards the further understanding and manipulation of stress wave propagation and impact energy mitigation at nanoscale. PMID:26891624

  19. Correlation effects for a quasi-one-dimensional polaron gas

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Paulo Cesar Miranda [Escola de Engenharia Eletrica e de Computacao, Universidade Federal de Goias, Goiania (Brazil); Borges, Antonio Newton; Osorio, Francisco Aparecido Pinto [Instituto de Fisica, Universidade Federal de Goias, Goiania (Brazil); Nucleo de Pesquisa em Fisica, Pontificia Universidade Catolica de Goias, Goiania (Brazil)

    2011-04-15

    In this work, we investigate the plasmon-LO phonon interaction effects on the intrasubband structure factor, electron-electron effective potential, and plasmon energy associated with the lowest subband in a GaAs-AlGaAs rectangular quantum-well wire (QWW) as a function of the electronic density. Our calculations are performed using the self-consistent field approximation, which includes the local-field correction (LFC) within the Singwi, Tosi, Land, and Sjolander (STLS) theory, at zero temperature and assuming a three-subband model, where only the first subband is occupied by electrons. We report for the first time dips in the structure factor spectra as a function of the quasi-one-dimensional (Q1D) plasmon-LO phonon wavevector that are directly related with the resonant split of the collective excitation energy into two branches due to the polaronic effects. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Solution-phase Synthesis of One-dimensional Semiconductor Nanostructures

    Institute of Scientific and Technical Information of China (English)

    Jianfeng YE; Limin QI

    2008-01-01

    The synthesis of one-dimensional (1D) semiconductor nanostructures has been studied intensively for a wide range of materials due to their unique structural and physical properties and promising potential for future technological applications. Among various strategies for synthesizing 1D semiconductor nanostructures, solution-phase synthetic routes are advantageous in terms of cost, throughput, modulation of composition, and the potential for large-scale and environmentally benign production. This article gives a concise review on the recent developments in the solution-phase synthesis of 1D semiconductor nanostructures of different compositions, sizes, shapes, and architectures. We first introduce several typical solution-phase synthetic routes based on controlled precipitation from homogeneous solutions, including hydrothermal/solvothermal process, solution-liquid-solid (SLS) process, high-temperature organic-solution process, and low-temperature aqueous-solution process. Subsequently, we discuss two solution-phase synthetic strategies involving solid templates or substrates, such as the chemical transformation of 1D sacrificial templates and the oriented growth of 1D nanostructure arrays on solid substrates. Finally, prospects of the solution-phase approaches to 1D semiconductor nanostructures will be briefly discussed.

  1. Controlled Growth of One-Dimensional Oxide Nanomaterials

    Institute of Scientific and Technical Information of China (English)

    Xiaosheng FANG; Lide ZHANG

    2006-01-01

    This article reviews the recent developments in the controlled growth of one-dimensional (1D) oxide nanomaterials, including ZnO, SnO2, In2O3, Ga2O3, SiOx, MgO, and Al2O3. The growth of 1D oxide nanomaterials was carried out in a simple chemical vapor transport and condensation system. This article will begin with a survey of nanotechnology and 1D nanomaterials achieved by many researchers, and then mainly discuss on the controlled growth of 1D oxide nanomaterials with their morphologies, sizes, compositions, and microstructures controlled by altering experimental parameters, such as the temperature at the source material and the substrate, temperature gradient in the tube furnace, the total reaction time, the heating rate of the furnace, the gas flow rate, and the starting material. Their roles in the formation of various morphologies are analyzed and discussed. Finally, this review will be concluded with personal perspectives on the future research directions of this area.

  2. Approximate Relativistic Solutions for One-Dimensional Cylindrical Coaxial Diode

    Institute of Scientific and Technical Information of China (English)

    曾正中; 刘国治; 邵浩

    2002-01-01

    Two approximate analytical relativistic solutions for one-dimensional, space-chargelimited cylindrical coaxial diode are derived and utilized to compose best-fitting approximate solutions. Comparison of the best-fitting solutions with the numerical one demonstrates an error of about 11% for cathode-inside arrangement and 12% in the cathode-outside case for ratios of larger to smaller electrode radius from 1.2 to 10 and a voltage above 0.5 MV up to 5 MV. With these solutions the diode lengths for critical self-magnetic bending and for the condition under which the parapotential model validates are calculated to be longer than 1 cm up to more than 100 cm depending on voltage, radial dimensions and electrode arrangement. The influence of ion flow from the anode on the relativistic electron-only solution is numerically computed, indicating an enhancement factor of total diode current of 1.85 to 4.19 related to voltage, radial dimension and electrode arrangement.

  3. Negativity spectrum of one-dimensional conformal field theories

    CERN Document Server

    Ruggiero, Paola; Calabrese, Pasquale

    2016-01-01

    The partial transpose $\\rho_A^{T_2}$ of the reduced density matrix $\\rho_A$ is the key object to quantify the entanglement in mixed states, in particular through the presence of negative eigenvalues in its spectrum. Here we derive analytically the distribution of the eigenvalues of $\\rho_A^{T_2}$, that we dub negativity spectrum, in the ground sate of gapless one-dimensional systems described by a Conformal Field Theory (CFT), focusing on the case of two adjacent intervals. We show that the negativity spectrum is universal and depends only on the central charge of the CFT, similarly to the entanglement spectrum. The precise form of the negativity spectrum depends on whether the two intervals are in a pure or mixed state, and in both cases, a dependence on the sign of the eigenvalues is found. This dependence is weak for bulk eigenvalues, whereas it is strong at the spectrum edges. We also investigate the scaling of the smallest (negative) and largest (positive) eigenvalues of $\\rho_A^{T_2}$. We check our resu...

  4. One-Dimensional Electron Transport Layers for Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Ujwal K. Thakur

    2017-04-01

    Full Text Available The electron diffusion length (Ln is smaller than the hole diffusion length (Lp in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D structures such as nanowires (NWs and nanotubes (NTs as electron transport layers (ETLs is a promising method of achieving high performance halide perovskite solar cells (HPSCs. ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs. This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells.

  5. Digital noise generators using one-dimensional chaotic maps

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Ñonthe, J. A; Palacios-Luengas, L.; Cruz-Irisson, M.; Vazquez Medina, R. [Instituto Politécnico Nacional, ESIME-Culhuacan, Santa Ana 1000, 04430, D.F. (Mexico); Díaz Méndez, J. A. [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Tonantzintla, Puebla (Mexico)

    2014-05-15

    This work shows how to improve the statistical distribution of signals produced by digital noise generators designed with one-dimensional (1-D) chaotic maps. It also shows that in a digital electronic design the piecewise linear chaotic maps (PWLCM) should be considered because they do not have stability islands in its chaotic behavior region, as it occurs in the case of the logistic map, which is commonly used to build noise generators. The design and implementation problems of the digital noise generators are analyzed and a solution is proposed. This solution relates the output of PWLCM, usually defined in the real numbers' domain, with a codebook of S elements, previously defined. The proposed solution scheme produces digital noise signals with a statistical distribution close to a uniform distribution. Finally, this work shows that it is possible to have control over the statistical distribution of the noise signal by selecting the control parameter of the PWLCM and using, as a design criterion, the bifurcation diagram.

  6. A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals

    Science.gov (United States)

    Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin

    2015-12-01

    To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g-1 with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics.

  7. Cooperative eigenmodes and scattering in one-dimensional atomic arrays

    Science.gov (United States)

    Bettles, Robert J.; Gardiner, Simon A.; Adams, Charles S.

    2016-10-01

    Collective coupling between dipoles can dramatically modify the optical response of a medium. Such effects depend strongly on the geometry of the medium and the polarization of the light. Using a classical coupled dipole model, here we investigate the simplest case of one-dimensional arrays of interacting atomic dipoles driven by a weak laser field. Changing the polarization and direction of the driving field allows us to separately address superradiant, subradiant, redshifted, and blueshifted eigenmodes, as well as observe strong Fano-like interferences between different modes. The cooperative eigenvectors can be characterized by the phase difference between nearest-neighbor dipoles, ranging from all oscillating in phase to all oscillating out of phase with their nearest neighbors. Investigating the eigenvalue behavior as a function of atom number and lattice spacing, we find that certain eigenmodes of an infinite atomic chain have the same decay rate as a single atom between two mirrors. The effects we observe provide a framework for collective control of the optical response of a medium, giving insight into the behavior of more complicated geometries, as well as providing further evidence for the dipolar analog of cavity QED.

  8. One-Dimensional Electron Transport Layers for Perovskite Solar Cells

    Science.gov (United States)

    Thakur, Ujwal K.; Kisslinger, Ryan; Shankar, Karthik

    2017-01-01

    The electron diffusion length (Ln) is smaller than the hole diffusion length (Lp) in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D) structures such as nanowires (NWs) and nanotubes (NTs) as electron transport layers (ETLs) is a promising method of achieving high performance halide perovskite solar cells (HPSCs). ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs) as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs). This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells. PMID:28468280

  9. Nucleation and growth of nanoscaled one-dimensional materials

    Science.gov (United States)

    Cui, Hongtao

    Nanoscaled one-dimensional materials have attracted great interest due to their novel physical and chemical properties. The purpose of this dissertation is to study the nucleation and growth mechanisms of carbon nanotubes and silicon nitride nanowires with their field emission applications in mind. As a result of this research, a novel methodology has been developed to deposit aligned bamboo-like carbon nanotubes on substrates using a methane and ammonia mixture in microwave plasma enhanced chemical deposition. Study of growth kinetics suggests that the carbon diffusion through bulk catalyst particles controls growth in the initial deposition process. Microstructures of carbon nanotubes are affected by the growth temperature and carbon concentration in the gas phase. High-resolution transmission electron microscope confirms the existence of the bamboo-like structure. Electron diffraction reveals that the iron-based catalyst nucleates and sustains the growth of carbon nanotubes. A nucleation and growth model has been constructed based upon experimental data and observations. In the study of silicon nitride nanoneedles, a vapor-liquid-solid model is employed to explain the nucleation and growth processes. Ammonia plasma etching is proposed to reduce the size of the catalyst and subsequently produce the novel needle-like nanostructure. High-resolution transmission electron microscope shows the structure is well crystallized and composed of alpha-silicon nitride. Other observations in the structure are also explained.

  10. Spin interference in silicon one-dimensional rings

    Energy Technology Data Exchange (ETDEWEB)

    Bagraev, N T [Ioffe Physico-Technical Institute, RAS, 194021 St Petersburg (Russian Federation); Galkin, N G [Ioffe Physico-Technical Institute, RAS, 194021 St Petersburg (Russian Federation); Gehlhoff, W [Institut fuer Festkoerperphysik, TU Berlin, D-10623 Berlin (Germany); Klyachkin, L E [Ioffe Physico-Technical Institute, RAS, 194021 St Petersburg (Russian Federation); Malyarenko, A M [Ioffe Physico-Technical Institute, RAS, 194021 St Petersburg (Russian Federation); Shelykh, I A [Physics and Astronomy School, University of Southampton, Highfield, Southampton, S017 1BJ (United Kingdom)

    2006-11-15

    We present the first findings of the spin transistor effect in a Rashba gate-controlled ring embedded in a p-type self-assembled silicon quantum well that is prepared on an n-type Si(100) surface. The coherence and phase sensitivity of the spin-dependent transport of holes are studied by varying the values of the external magnetic field and the bias voltage that are applied perpendicularly to the plane of the double-slit ring. First, the amplitude and phase sensitivity of the 0.7 x (2e{sup 2}/h) feature of the hole quantum conductance staircase revealed by the quantum point contact inserted in one of the arms of the double-slit ring are found to result from the interplay of the spontaneous spin polarization and the Rashba spin-orbit interaction. Second, the quantum scatterers connected to two one-dimensional leads and the quantum point contact inserted are shown to define the amplitude and the phase of the Aharonov-Bohm and the Aharonov-Casher conductance oscillations. (letter to the editor)

  11. Multi-symplectic, Lagrangian, one-dimensional gas dynamics

    Science.gov (United States)

    Webb, G. M.

    2015-05-01

    The equations of Lagrangian, ideal, one-dimensional, compressible gas dynamics are written in a multi-symplectic form using the Lagrangian mass coordinate m and time t as independent variables, and in which the Eulerian position of the fluid element x = x(m, t) is one of the dependent variables. This approach differs from the Eulerian, multi-symplectic approach using Clebsch variables. Lagrangian constraints are used to specify equations for xm, xt, and St consistent with the Lagrangian map, where S is the entropy of the gas. We require St = 0 corresponding to advection of the entropy S with the flow. We show that the Lagrangian Hamiltonian equations are related to the de Donder-Weyl multi-momentum formulation. The pullback conservation laws and the symplecticity conservation laws are discussed. The pullback conservation laws correspond to invariance of the action with respect to translations in time (energy conservation) and translations in m in Noether's theorem. The conservation law due to m-translation invariance gives rise to a novel nonlocal conservation law involving the Clebsch variable r used to impose ∂S(m, t)/∂t = 0. Translation invariance with respect to x in Noether's theorem is associated with momentum conservation. We obtain the Cartan-Poincaré form for the system, and use it to obtain a closed ideal of two-forms representing the equation system.

  12. A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals.

    Science.gov (United States)

    Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin

    2015-12-22

    To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g(-1) with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics.

  13. Transmission properties of one-dimensional ternary plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shiveshwari, Laxmi [Department of Physics, K. B. Womens' s College, Hazaribagh 825 301 (India); Awasthi, S. K. [Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, Noida 201 304 (India)

    2015-09-15

    Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter.

  14. Phonons in a one-dimensional microfluidic crystal

    CERN Document Server

    Beatus, Tsevi; Bar-Ziv, Roy; 10.1038/nphys432

    2010-01-01

    The development of a general theoretical framework for describing the behaviour of a crystal driven far from equilibrium has proved difficult1. Microfluidic crystals, formed by the introduction of droplets of immiscible fluid into a liquid-filled channel, provide a convenient means to explore and develop models to describe non-equilibrium dynamics2, 3, 4, 5, 6, 7, 8, 9, 10, 11. Owing to the fact that these systems operate at low Reynolds number (Re), in which viscous dissipation of energy dominates inertial effects, vibrations are expected to be over-damped and contribute little to their dynamics12, 13, 14. Against such expectations, we report the emergence of collective normal vibrational modes (equivalent to acoustic 'phonons') in a one-dimensional microfluidic crystal of water-in-oil droplets at Reapprox10-4. These phonons propagate at an ultra-low sound velocity of approx100 mum s-1 and frequencies of a few hertz, exhibit unusual dispersion relations markedly different to those of harmonic crystals, and g...

  15. Trapped Atoms in One-Dimensional Photonic Crystals

    Science.gov (United States)

    Kimble, H.

    2013-05-01

    I describe one-dimensional photonic crystals that support a guided mode suitable for atom trapping within a unit cell, as well as a second probe mode with strong atom-photon interactions. A new hybrid trap is analyzed that combines optical and Casimir-Polder forces to form stable traps for neutral atoms in dielectric nanostructures. By suitable design of the band structure, the atomic spontaneous emission rate into the probe mode can exceed the rate into all other modes by more than tenfold. The unprecedented single-atom reflectivity r0 ~= 0 . 9 for the guided probe field could create new scientific opportunities, including quantum many-body physics for 1 D atom chains with photon-mediated interactions and high-precision studies of vacuum forces. Towards these goals, my colleagues and I are pursuing numerical simulation, device fabrication, and cold-atom experiments with nanoscopic structures. Funding is provided by by the IQIM, an NSF PFC with support of the Moore Foundation, by the AFOSR QuMPASS MURI, by the DoD NSSEFF program (HJK), and by NSF Grant PHY0652914 (HJK). DEC acknowledges funding from Fundacio Privada Cellex Barcelona.

  16. Conjugated Molecules Described by a One-Dimensional Dirac Equation.

    Science.gov (United States)

    Ernzerhof, Matthias; Goyer, Francois

    2010-06-08

    Starting from the Hückel Hamiltonian of conjugated hydrocarbon chains (ethylene, allyl radical, butadiene, pentadienyl radical, hexatriene, etc.), we perform a simple unitary transformation and obtain a Dirac matrix Hamiltonian. Thus already small molecules are described exactly in terms of a discrete Dirac equation, the continuum limit of which yields a one-dimensional Dirac Hamiltonian. Augmenting this Hamiltonian with specially adapted boundary conditions, we find that all the orbitals of the unsaturated hydrocarbon chains are reproduced by the continuous Dirac equation. However, only orbital energies close to the highest occupied molecular orbital/lowest unoccupied molecular orbital energy are accurately predicted by the Dirac equation. Since it is known that a continuous Dirac equation describes the electronic structure of graphene around the Fermi energy, our findings answer the question to what extent this peculiar electronic structure is already developed in small molecules containing a delocalized π-electron system. We illustrate how the electronic structure of small polyenes carries over to a certain class of rectangular graphene sheets and eventually to graphene itself. Thus the peculiar electronic structure of graphene extends to a large degree to the smallest unsaturated molecule (ethylene).

  17. Validation and Comparison of One-Dimensional Graound Motion Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    B. Darragh; W. Silva; N. Gregor

    2006-06-28

    Both point- and finite-source stochastic one-dimensional ground motion models, coupled to vertically propagating equivalent-linear shear-wave site response models are validated using an extensive set of strong motion data as part of the Yucca Mountain Project. The validation and comparison exercises are presented entirely in terms of 5% damped pseudo absolute response spectra. The study consists of a quantitative analyses involving modeling nineteen well-recorded earthquakes, M 5.6 to 7.4 at over 600 sites. The sites range in distance from about 1 to about 200 km in the western US (460 km for central-eastern US). In general, this validation demonstrates that the stochastic point- and finite-source models produce accurate predictions of strong ground motions over the range of 0 to 100 km and for magnitudes M 5.0 to 7.4. The stochastic finite-source model appears to be broadband, producing near zero bias from about 0.3 Hz (low frequency limit of the analyses) to the high frequency limit of the data (100 and 25 Hz for response and Fourier amplitude spectra, respectively).

  18. Fermion Coherent State Studies of One-Dimensional Hubbard Model

    Institute of Scientific and Technical Information of China (English)

    LIN Ji; GAO Xian-Long; WANG Ke-Lin

    2007-01-01

    We present a comparative study of the ground state of the one-dimensional Hubbard model. We first use a new fermion coherent state method in the framework of Fermi liquid theory by introducing a hole operator and considering the interactions of two pairs electrons and holes. We construct the ground state of the Hubbard model as |〉 = [f + ∑′ψc+k1σ1 h+k2σ2 c+k3σ3 h+k4σ4 ∏exp(ρc+k1σ1 h+k2σ2)] [〉0, where ψ and ρ are the coupling constants. Our results are then compared to those of variational methods, density functional theory based on the exact solvable Bethe ansatz solutions, variational Monto-Carlo method (VMC) as well as to the exact result of the infinite system. We find satisfactory agreement between the fermion coherent state scheme and the VMC data, and provide a new picture to deal with the strongly correlated system.

  19. Topological water wave states in a one-dimensional structure

    Science.gov (United States)

    Yang, Zhaoju; Gao, Fei; Zhang, Baile

    2016-01-01

    Topological concepts have been introduced into electronic, photonic, and phononic systems, but have not been studied in surface-water-wave systems. Here we study a one-dimensional periodic resonant surface-water-wave system and demonstrate its topological transition. By selecting three different water depths, we can construct different types of water waves - shallow, intermediate and deep water waves. The periodic surface-water-wave system consists of an array of cylindrical water tanks connected with narrow water channels. As the width of connecting channel varies, the band diagram undergoes a topological transition which can be further characterized by Zak phase. This topological transition holds true for shallow, intermediate and deep water waves. However, the interface state at the boundary separating two topologically distinct arrays of water tanks can exhibit different bands for shallow, intermediate and deep water waves. Our work studies for the first time topological properties of water wave systems, and paves the way to potential management of water waves. PMID:27373982

  20. Charge transport through one-dimensional Moiré crystals.

    Science.gov (United States)

    Bonnet, Roméo; Lherbier, Aurélien; Barraud, Clément; Della Rocca, Maria Luisa; Lafarge, Philippe; Charlier, Jean-Christophe

    2016-01-20

    Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers and graphene deposited on hexagonal boron-nitride. In this letter, we report both experimentally and theoretically evidence of superlattices physics in transport properties of one-dimensional (1D) Moiré crystals. Rolling-up few layers of graphene to form a multiwall carbon nanotube adds boundaries conditions that can be translated into interference fringes-like Moiré patterns along the circumference of the cylinder. Such a 1D Moiré crystal exhibits a complex 1D multiple bands structure with clear and robust interband quantum transitions due to the presence of mini-Dirac points and pseudo-gaps. Our devices consist in a very large diameter (>80 nm) multiwall carbon nanotubes of high quality, electrically connected by metallic electrodes acting as charge reservoirs. Conductance measurements reveal the presence of van Hove singularities assigned to 1D Moiré superlattice effect and illustrated by electronic structure calculations.

  1. Redshift distortions in one-dimensional power spectra

    CERN Document Server

    Desjacques, V; Desjacques, Vincent; Nusser, Adi

    2004-01-01

    We present a model for one-dimensional (1D) matter power spectra in redshift space as estimated from data provided along individual lines of sight. We derive analytic expressions for these power spectra in the linear and nonlinear regimes, focusing on redshift distortions arising from peculiar velocities. In the linear regime, redshift distortions enhance the 1D power spectra only on small scales, and do not affect the power on large scales. This is in contrast to the effect of distortions on three-dimensional (3D) power spectra estimated from data in 3D space, where the enhancement is independent of scale. For CDM cosmologies, the 1D power spectra in redshift and real space are similar for wavenumbers $q<0.1h/Mpc$ where both have a spectral index close to unity, independent of the details of the 3D power spectrum. Nonlinear corrections drive the 1D power spectrum in redshift space into a nearly universal shape over scale $q<10h/Mpc$, and suppress the power on small scales as a result of the strong velo...

  2. Electron Rydberg wave packets in one-dimensional atoms

    Indian Academy of Sciences (India)

    Supriya Chatterjee; Amitava Choudhuri; Aparna Saha; B Talukdar

    2010-09-01

    An expression for the transition probability or form factor in one-dimensional Rydberg atom irradiated by short half-cycle pulse was constructed. In applicative contexts, our expression was found to be more useful than the corresponding result given by Landau and Lifshitz. Using the new expression for the form factor, the motion of a localized quantum wave packet was studied with particular emphasis on its revival and super-revival properties. Closed form analytical expressions were derived for expectation values of the position and momentum operators that characterized the widths of the position and momentum distributions. Transient phase-space localization of the wave packet produced by the application of a single impulsive kick was explicitly demonstrated. The undulation of the uncertainty product as a function of time was studied in order to visualize how the motion of the wave packet in its classical trajectory spreads throughout the orbit and the system becomes nonclassical. The process, however, repeats itself such that the atom undergoes a free evolution from a classical, to a nonclassical, and back to a classical state.

  3. One-dimensional Ising model with multispin interactions

    CERN Document Server

    Turban, L

    2016-01-01

    We study the spin-$1/2$ Ising chain with multispin interactions $K$ involving the product of $m$ successive spins, for general values of $m$. Using a change of spin variables the zero-field partition function of a finite chain is obtained for free and periodic boundary conditions (BC) and we calculate the two-spin correlation function. When placed in an external field $H$ the system is shown to be self-dual. Using another change of spin variables the one-dimensional (1D) Ising model with multispin interactions in a field is mapped onto a zero-field rectangular Ising model with first-neighbour interactions $K$ and $H$. The 2D system, with size $m\\times N/m$, has the topology of a cylinder with helical BC. In the thermodynamic limit $N/m\\to\\infty$, $m\\to\\infty$, a 2D critical singularity develops on the self-duality line, $\\sinh 2K\\sinh 2H=1$.

  4. One dimensional numerical simulation of small scale CFB combustors

    Energy Technology Data Exchange (ETDEWEB)

    Gungor, Afsin [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Nigde University, 51100 Nigde (Turkey)

    2009-03-15

    In this study, a one-dimensional model which includes volatilization, attrition and combustion of char particles for a circulating fluidized bed (CFB) combustor has been developed. In the modeling, the CFB combustor is analyzed in two regions: bottom zone considering as a bubbling fluidized bed in turbulent fluidization regime and upper zone core-annulus solids flow structure is established. In the bottom zone, a single-phase back-flow cell model is used to represent the solid mixing. Solids exchange, between the bubble phase and emulsion phase is a function of the bubble diameter and varies along the axis of the combustor. In the upper zone, particles move upward in the core and downward in the annulus. Thickness of the annulus varies according to the combustor height. Using the developed simulation program, the effects of operational parameters which are the particle diameter, superficial velocity and air-to-fuel ratio on net solids flux, oxygen and carbon dioxide mole ratios along the bed height and carbon content and bed temperature on the top of the riser are investigated. Simulation results are compared with test results obtained from the 50 kW Gazi University Heat Power Laboratory pilot scale unit and good agreement is observed. (author)

  5. One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties

    Science.gov (United States)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur

    2016-11-01

    Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.

  6. Automated quantification of one-dimensional nanostructure alignment on surfaces

    Science.gov (United States)

    Dong, Jianjin; Goldthorpe, Irene A.; Mohieddin Abukhdeir, Nasser

    2016-06-01

    A method for automated quantification of the alignment of one-dimensional (1D) nanostructures from microscopy imaging is presented. Nanostructure alignment metrics are formulated and shown to be able to rigorously quantify the orientational order of nanostructures within a two-dimensional domain (surface). A complementary image processing method is also presented which enables robust processing of microscopy images where overlapping nanostructures might be present. Scanning electron microscopy (SEM) images of nanowire-covered surfaces are analyzed using the presented methods and it is shown that past single parameter alignment metrics are insufficient for highly aligned domains. Through the use of multiple parameter alignment metrics, automated quantitative analysis of SEM images is shown to be possible and the alignment characteristics of different samples are able to be quantitatively compared using a similarity metric. The results of this work provide researchers in nanoscience and nanotechnology with a rigorous method for the determination of structure/property relationships, where alignment of 1D nanostructures is significant.

  7. Stepwise Nanopore Evolution in One-Dimensional Nanostructures

    KAUST Repository

    Choi, Jang Wook

    2010-04-14

    We report that established simple lithium (Li) ion battery cycles can be used to produce nanopores inside various useful one-dimensional (1D) nanostructures such as zinc oxide, silicon, and silver nanowires. Moreover, porosities of these 1D nanomaterials can be controlled in a stepwise manner by the number of Li-battery cycles. Subsequent pore characterization at the end of each cycle allows us to obtain detailed snapshots of the distinct pore evolution properties in each material due to their different atomic diffusion rates and types of chemical bonds. Also, this stepwise characterization led us to the first observation of pore size increases during cycling, which can be interpreted as a similar phenomenon to Ostwald ripening in analogous nanoparticle cases. Finally, we take advantage of the unique combination of nanoporosity and 1D materials and demonstrate nanoporous silicon nanowires (poSiNWs) as excellent supercapacitor (SC) electrodes in high power operations compared to existing devices with activated carbon. © 2010 American Chemical Society.

  8. A one-dimensional theory for Higgs branch operators

    CERN Document Server

    Dedushenko, Mykola; Yacoby, Ran

    2016-01-01

    We use supersymmetric localization to calculate correlation functions of half-BPS local operators in 3d ${\\cal N} = 4$ superconformal field theories whose Lagrangian descriptions consist of vectormultiplets coupled to hypermultiplets. The operators we primarily study are certain twisted linear combinations of Higgs branch operators that can be inserted anywhere along a given line. These operators are constructed from the hypermultiplet scalars. They form a one-dimensional non-commutative operator algebra with topological correlation functions. The 2- and 3-point functions of Higgs branch operators in the full 3d ${\\cal N}=4$ theory can be simply inferred from the 1d topological algebra. After conformally mapping the 3d superconformal field theory from flat space to a round three-sphere, we preform supersymmetric localization using a supercharge that does not belong to any 3d ${\\cal N} = 2$ subalgebra of the ${\\cal N}=4$ algebra. The result is a simple model that can be used to calculate correlation functions ...

  9. Synthesis and application of one-dimensional nanomaterials

    Science.gov (United States)

    Zhang, Daihua

    My research has been focused on the synthesis, characterization and application of three types of one-dimensional (1D) nanostructures, including metal oxide nanowires, transition metal oxide core-shell nanocables, and carbon nanotubes. They represent a new class of materials that have attracted steadily growing interest due to their peculiar properties and unique applications complementary to bulk materials. This dissertation will summarize my studies on these three 1D nanomaterials, as well as propose future research work that may lead to further development of this field. Following a brief introduction to 1D nanomaterials in Chapter 1, Chapter 2 will focus on the first material - metal oxide nanowires. The discussion starts from the synthesis approach and material characterization of metal oxide nanowires, and then shifts to the electron transport properties and potential applications. A series of functional devices based on In2O 3 and SnO2 nanowires will be demonstrated and evaluated, which range from field effect transistors (FETs), nonvolatile memories, to photo-detecting devices and chemical sensors. Chapter 3 will discuss the fabrication of transition metal oxide (TMO) core-shell nanocables and their electron transport properties as a function of temperature and external magnetic field. The discussion will primarily focus on one of the TMO materials---magnetite (Fe3O 4) core-shell nanowires and nanotubes. Chapter 4 focuses on the application of carbon nanotubes (CNTs) in macroelectronics and explores the feasibility of using CNT films as transparent electrodes for organic light emitting diodes (OLEDs). Chapter 5, in the end, summarizes the above discussions and proposes future research directions in 1D nanomaterials.

  10. One-dimensional semirelativistic Hamiltonian with multiple Dirac delta potentials

    Science.gov (United States)

    Erman, Fatih; Gadella, Manuel; Uncu, Haydar

    2017-02-01

    In this paper, we consider the one-dimensional semirelativistic Schrödinger equation for a particle interacting with N Dirac delta potentials. Using the heat kernel techniques, we establish a resolvent formula in terms of an N ×N matrix, called the principal matrix. This matrix essentially includes all the information about the spectrum of the problem. We study the bound state spectrum by working out the eigenvalues of the principal matrix. With the help of the Feynman-Hellmann theorem, we analyze how the bound state energies change with respect to the parameters in the model. We also prove that there are at most N bound states and explicitly derive the bound state wave function. The bound state problem for the two-center case is particularly investigated. We show that the ground state energy is bounded below, and there exists a self-adjoint Hamiltonian associated with the resolvent formula. Moreover, we prove that the ground state is nondegenerate. The scattering problem for N centers is analyzed by exactly solving the semirelativistic Lippmann-Schwinger equation. The reflection and the transmission coefficients are numerically and asymptotically computed for the two-center case. We observe the so-called threshold anomaly for two symmetrically located centers. The semirelativistic version of the Kronig-Penney model is shortly discussed, and the band gap structure of the spectrum is illustrated. The bound state and scattering problems in the massless case are also discussed. Furthermore, the reflection and the transmission coefficients for the two delta potentials in this particular case are analytically found. Finally, we solve the renormalization group equations and compute the beta function nonperturbatively.

  11. Filtration-guided assembly for patterning one-dimensional nanostructures

    Science.gov (United States)

    Zhang, Yaozhong; Wang, Chuan; Yeom, Junghoon

    2017-04-01

    Tremendous progress has been made in synthesizing various types of one-dimensional (1D) nanostructures (NSs), such as nanotubes and nanowires, but some technical challenges still remain in the deterministic assembly of the solution-processed 1D NSs for device integration. In this work we investigate a scalable yet inexpensive nanomaterial assembly method, namely filtration-guided assembly (FGA), to place nanomaterials into desired locations as either an individual entity or ensembles, and form functional devices. FGA not only addresses the assembly challenges but also encompasses the notion of green nanomanufacturing, maximally utilizing nanomaterials and eliminating a waste stream of nanomaterials into the environment. FGA utilizes selective filtration of 1D NSs through the open windows on the nanoporous filter membrane whose surface is patterned by a polymer mask for guiding the 1D NS deposition. The modified soft-lithographic technique called blanket transfer (BT) is employed to create the various photoresist patterns of sub-10-micron resolution on the nanoporous filter membrane like mixed cellulose acetate. We use single-walled carbon nanotubes (SWCNTs) as a model 1D NS and demonstrate the fabrication of an array pattern of homogeneous 1D NS network films over an area of 20 cm2 within 10 min. The FGA-patterned SWCNT network films are transferred onto the substrate using the adhesive-based transfer technique, and show the highly uniform film thickness and resistance measurements across the entire substrate. Finally, the electrical performance of the back-gated transistors made from the FGA and transfer method of 95% pure SWCNTs is demonstrated.

  12. Spatial modes in one-dimensional models for capillary jets

    Science.gov (United States)

    Guerrero, J.; González, H.; García, F. J.

    2016-03-01

    One-dimensional (1D) models are widely employed to simplify the analysis of axisymmetric capillary jets. These models postulate that, for slender deformations of the free surface, the radial profile of the axial velocity can be approximated as uniform (viscous slice, averaged, and Cosserat models) or parabolic (parabolic model). In classical works on spatial stability analysis with 1D models, considerable misinterpretation was generated about the modes yielded by each model. The already existing physical analysis of three-dimensional (3D) axisymmetric spatial modes enables us to relate these 1D spatial modes to the exact 3D counterparts. To do so, we address the surface stimulation problem, which can be treated as linear, by considering the effect of normal and tangential stresses to perturb the jet. A Green's function for a spatially local stimulation having a harmonic time dependence provides the general formalism to describe any time-periodic stimulation. The Green's function of this signaling problem is known to be a superposition of the spatial modes, but in fact these modes are of fundamental nature, i.e., not restricted to the surface stimulation problem. The smallness of the wave number associated with each mode is the criterion to validate or invalidate the 1D approaches. The proposed axial-velocity profiles (planar or parabolic) also have a remarkable influence on the outcomes of each 1D model. We also compare with the classical 3D results for (i) conditions for absolute instability, and (ii) the amplitude of the unstable mode resulting from both normal and tangential surface stress stimulation. Incidentally, as a previous task, we need to re-deduce 1D models in order to include eventual stresses of various possible origins (electrohydrodynamic, thermocapillary, etc.) applied on the free surface, which were not considered in the previous general formulations.

  13. Rashba electron transport in one-dimensional quantum waveguides

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The properties of Rashba wave function in the planar one-dimensional waveguide are studied, and the following results are obtained. Due to the Rashba effect, the plane waves of electron with the energy E divide into two kinds of waves with the wave vectors k 1 =k 0 +k δ and k 2 =k 0 -k δ , where k δ is proportional to the Rashba coefficient, and their spin orientations are +π/2 (spin up) and -π/2 (spin down) with respect to the circuit, respectively. If there is gate or ferromagnetic contact in the circuit, the Rashba wave function becomes standing wave form exp(±ik δ l)sin[k 0 (l-L)], where L is the position coordinate of the gate or contact. Unlike the electron without considering the spin, the phase of the Rashba plane or standing wave function depends on the direction angle θ of the circuit. The travel velocity of the Rashba waves with the wave vector k 1 or k 2 are the same hk0/m * . The boundary conditions of the Rashba wave functions at the intersection of circuits are given from the continuity of wave functions and the conservation of current density. Using the boundary conditions of Rashba wave functions we study the transmission and reflection probabilities of Rashba electron moving in several structures, and find the interference effects of the two Rashba waves with different wave vectors caused by ferromagnetic contact or the gate. Lastly we derive the general theory of multiple branches structure. The theory can be used to design various spin polarized devices.

  14. Hardening transition in a one-dimensional model for ferrogels

    Science.gov (United States)

    Annunziata, Mario Alberto; Menzel, Andreas M.; Löwen, Hartmut

    2013-05-01

    We introduce and investigate a coarse-grained model for quasi one-dimensional ferrogels. In our description the magnetic particles are represented by hard spheres with a magnetic dipole moment in their centers. Harmonic springs connecting these spheres mimic the presence of a cross-linked polymer matrix. A special emphasis is put on the coupling of the dipolar orientations to the elastic deformations of the matrix, where a memory effect of the orientations is included. Although the particles are displaced along one spatial direction only, the system already shows rich behavior: as a function of the magnetic dipole moment, we find a phase transition between "soft-elastic" states with finite interparticle separation and finite compressive elastic modulus on the one hand, and "hardened" states with touching particles and therefore diverging compressive elastic modulus on the other hand. Corresponding phase diagrams are derived neglecting thermal fluctuations of the magnetic particles. In addition, we consider a situation in which a spatially homogeneous magnetization is initially imprinted into the material. Depending on the strength of the magneto-mechanical coupling between the dipole orientations and the elastic deformations, the system then relaxes to a uniaxially ferromagnetic, an antiferromagnetic, or a spiral state of magnetization to minimize its energy. One purpose of our work is to provide a largely analytically solvable approach that can provide a benchmark to test future descriptions of higher complexity. From an applied point of view, our results could be exploited, for example, for the construction of novel damping devices of tunable shock absorbance.

  15. Fractal spectra in generalized Fibonacci one-dimensional magnonic quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Costa, C.H.O. [Departamento de Fisica Teorica e Experimental, Universidade Federal do Rio grande do Norte, 59072-970 Natal-RN (Brazil); Vasconcelos, M.S., E-mail: manoelvasconcelos@yahoo.com.br [Escola de Ciencias e Tecnologia, Universidade Federal do Rio grande do Norte, 59072-970 Natal-RN (Brazil); Barbosa, P.H.R.; Barbosa Filho, F.F. [Departamento de Fisica, Universidade Federal do Piaui, 64049-550 Teresina-Pi (Brazil)

    2012-07-15

    In this work we carry out a theoretical analysis of the spectra of magnons in quasiperiodic magnonic crystals arranged in accordance with generalized Fibonacci sequences in the exchange regime, by using a model based on a transfer-matrix method together random-phase approximation (RPA). The generalized Fibonacci sequences are characterized by an irrational parameter {sigma}(p,q), which rules the physical properties of the system. We discussed the magnonic fractal spectra for first three generalizations, i.e., silver, bronze and nickel mean. By varying the generation number, we have found that the fragmentation process of allowed bands makes possible the emergence of new allowed magnonic bulk bands in spectra regions that were magnonic band gaps before, such as which occurs in doped semiconductor devices. This interesting property arises in one-dimensional magnonic quasicrystals fabricated in accordance to quasiperiodic sequences, without the need to introduce some deferent atomic layer or defect in the system. We also make a qualitative and quantitative investigations on these magnonic spectra by analyzing the distribution and magnitude of allowed bulk bands in function of the generalized Fibonacci number F{sub n} and as well as how they scale as a function of the number of generations of the sequences, respectively. - Highlights: Black-Right-Pointing-Pointer Quasiperiodic magnonic crystals are arranged in accordance with the generalized Fibonacci sequence. Black-Right-Pointing-Pointer Heisenberg model in exchange regime is applied. Black-Right-Pointing-Pointer We use a theoretical model based on a transfer-matrix method together random-phase approximation. Black-Right-Pointing-Pointer Fractal spectra are characterized. Black-Right-Pointing-Pointer We analyze the distribution of allowed bulk bands in function of the generalized Fibonacci number.

  16. Flat bands and PT symmetry in quasi-one-dimensional lattices

    Science.gov (United States)

    Molina, Mario I.

    2015-12-01

    We examine the effect of adding PT -symmetric gain and loss terms to quasi-one-dimensional lattices (ribbons) that possess flat bands. We focus on three representative cases: the Lieb ribbon, the kagome ribbon, and the stub ribbon. In general, we find that the effect on the flat band depends strongly on the geometrical details of the lattice being examined. One interesting result that emerges from an analytical calculation of the band structure of the Lieb ribbon including gain and loss is that its flat band survives the addition of P T symmetry for any amount of gain and loss and also survives the presence of anisotropic couplings. For the other two lattices, any presence of gain and loss destroys their flat bands. For all three ribbons, there are finite stability windows whose size decreases with the strength of the gain and loss parameter. For the Lieb and kagome cases, the size of this window converges to a finite value. The existence of finite stability windows plus the constancy of the Lieb flat band are in marked contrast to the behavior of a pure one-dimensional lattice.

  17. Strong correlations and topological order in one-dimensional systems

    Science.gov (United States)

    De Gottardi, Wade Wells

    This thesis presents theoretical studies of strongly correlated systems as well as topologically ordered systems in 1D. Non-Fermi liquid behavior characteristic of interacting 1D electron systems is investigated with an emphasis on experimentally relevant setups and observables. The existence of end Majorana fermions in a 1D p-wave superconductor subject to periodic, incommensurate and disordered potentials is studied. The Tomonaga-Luttinger liquid (TLL), a model of interacting electrons in one spatial dimension, is considered in the context of two systems of experimental interest. First, a study of the electronic properties of single-walled armchair carbon nanotubes in the presence of transverse electric and magnetic fields is presented. As a result of their effect on the band structure and electron wave functions, fields alter the nature of the (effective) Coulomb interaction in tubes. In particular, it is found that fields couple to nanotube bands (or valleys), a quantum degree of freedom inherited from the underlying graphene lattice. As revealed by a detailed TLL calculation, it is predicted that fields induce electrons to disperse into their spin, band, and charge components. Fields also provide a means of tuning the shell-filling behavior associated with short tubes. The phenomenon of charge fractionalization is investigated in a one-dimensional ring. TLL theory predicts that momentum-resolved electrons injected into the ring will fractionalize into clockwise- and counterclockwise-moving quasiparticles. As a complement to transport measurements in quantum wires connected to leads, non-invasive measures involving the magnetic field profiles around the ring are proposed. Topological aspects of 1D p-wave superconductors are explored. The intimate connection between non-trivial topology (fermions) and spontaneous symmetry breaking (spins) in one-dimension is investigated. Building on this connection, a spin ladder system endowed with vortex degrees of freedom is

  18. Selective data collection in vehicular networks for traffic control applications

    CERN Document Server

    Płaczek, Bartłomiej

    2011-01-01

    Vehicular sensor network (VSN) is an emerging technology, which combines wireless communication offered by vehicular ad hoc networks (VANET) with sensing devices installed in vehicles. VSN creates a huge opportunity to extend the road-side sensor infrastructure of existing traffic control systems. The efficient use of the wireless communication medium is one of the basic issues in VSN applications development. This paper introduces a novel method of selective data collection for traffic control applications, which provides a significant reduction in data amounts transmitted through VSN. The underlying idea is to detect the necessity of data transfers on the basis of uncertainty determination of the traffic control decisions. According to the proposed approach, sensor data are transmitted from vehicles to the control node only at selected time moments. Data collected in VSN are processed using on-line traffic simulation technique, which enables traffic flow prediction, performance evaluation of control strateg...

  19. Routing in Vehicular Networks: Feasibility, Modeling, and Security

    Directory of Open Access Journals (Sweden)

    Ioannis Broustis

    2008-01-01

    Full Text Available Vehicular networks are sets of surface transportation systems that have the ability to communicate with each other. There are several possible network architectures to organize their in-vehicle computing systems. Potential schemes may include vehicle-to-vehicle ad hoc networks, wired backbone with wireless last hops, or hybrid architectures using vehicle-to-vehicle communications to augment roadside communication infrastructures. Some special properties of these networks, such as high mobility, network partitioning, and constrained topology, differentiate them from other types of wireless networks. We provide an in-depth discussion on the important studies related to architectural design and routing for such networks. Moreover, we discuss the major security concerns appearing in vehicular networks.

  20. The Dynamics of Vehicular Networks in Urban Environments

    CERN Document Server

    Loulloudes, Nicholas; Dikaiakos, Marios D

    2010-01-01

    Vehicular Ad hoc NETworks (VANETs) have emerged as a platform to support intelligent inter-vehicle communication and improve traffic safety and performance. The road-constrained and high mobility of vehicles, their unbounded power source, and the emergence of roadside wireless infrastructures make VANETs a challenging research topic. A key to the development of protocols for intervehicle communication and services lies in the knowledge of the topological characteristics of the VANET communication graph. This paper explores the dynamics of VANETs in urban environments. Using both real and realistic mobility traces, we study the networking shape of VANETs in urban environments under different transmission and market penetration ranges. Given that a number of RSUs have to be deployed for disseminating information to vehicles in an urban area, we also study their impact on vehicular connectivity. Several latent facts about the VANET graph are revealed and implications for their exploitation in protocol design are...

  1. Preparation of one-dimensional nanostructured ZnO

    Institute of Scientific and Technical Information of China (English)

    Xiuping Jiang; Youzhi Liu; Yanyang Cao; Xuejun Zhang; Lihong Shi

    2010-01-01

    Rod-like ZnO particles were synthesized via a sol-gel method by adding ethylene diamine(EDA)to the were characterized by XRD(X-ray powder diffractometer)and TEM(transmission electron microscope).Rod-like ZnO belongs to the hexagonal Wurtzite system,with diameters and lengths of about 20-200nm and 0.2-1.5μm,respectively.Experimental results showed that the morphology of nano-ZnO can be controlled by modulating the quantities of EDA added into the reaction system and that EDA plays an important role in the formation of rod-like ZnO particles.The growth mechanism of the rod-like nano-ZnO was briefly discussed.The proposed facile,reproducible,effective and low-cost synthesis promises future large-scale preparation of nanostructured ZnO for application in nanotechnology.

  2. Algebraic geometry methods associated to the one-dimensional Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Martins, M.J., E-mail: martins@df.ufscar.br

    2016-06-15

    In this paper we study the covering vertex model of the one-dimensional Hubbard Hamiltonian constructed by Shastry in the realm of algebraic geometry. We show that the Lax operator sits in a genus one curve which is not isomorphic but only isogenous to the curve suitable for the AdS/CFT context. We provide an uniformization of the Lax operator in terms of ratios of theta functions allowing us to establish relativistic like properties such as crossing and unitarity. We show that the respective R-matrix weights lie on an Abelian surface being birational to the product of two elliptic curves with distinct J-invariants. One of the curves is isomorphic to that of the Lax operator but the other is solely fourfold isogenous. These results clarify the reason the R-matrix can not be written using only difference of spectral parameters of the Lax operator.

  3. 40 CFR 247.11 - Vehicular products.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Vehicular products. 247.11 Section 247.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES COMPREHENSIVE PROCUREMENT GUIDELINE FOR PRODUCTS CONTAINING RECOVERED MATERIALS Item Designations § 247.11 Vehicular products. (a) Lubricating oils...

  4. Towards a service centric contextualized vehicular cloud

    NARCIS (Netherlands)

    Hu, Xiping; Wang, Lei; Sheng, Zhengguo; TalebiFard, Peyman; Zhou, Li; Liu, Jia; Leung, Victor C.M.

    2014-01-01

    This paper proposes a service-centric contextualized vehicular (SCCV) cloud platform to facilitate the deployment and delivery of cloud-based mobile applications over vehicular networks. SCCV cloud employs a multi-tier architecture that consists of the network, mobile device, and cloud tiers. Based

  5. Vehicular Internet: Security & Privacy Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Kamran Zaidi

    2015-07-01

    Full Text Available The vehicular internet will drive the future of vehicular technology and intelligent transportation systems (ITS. Whether it is road safety, infotainment, or driver-less cars, the vehicular internet will lay the foundation for the future of road travel. Governments and companies are pursuing driver-less vehicles as they are considered to be more reliable than humans and, therefore, safer. The vehicles today are not just a means of transportation but are also equipped with a wide range of sensors that provide valuable data. If vehicles are enabled to share data that they collect with other vehicles or authorities for decision-making and safer driving, they thereby form a vehicular network. However, there is a lot at stake in vehicular networks if they are compromised. With the stakes so high, it is imperative that the vehicular networks are secured and made resilient to any attack or attempt that may have serious consequences. The vehicular internet can also be the target of a cyber attack, which can be devastating. In this paper, the opportunities that the vehicular internet offers are presented and then various security and privacy aspects are discussed and some solutions are presented.

  6. Fabrication and characterization of one dimensional zinc oxide nanostructures

    Science.gov (United States)

    Cheng, Chun

    In this thesis, one dimensional (1D) ZnO nanostructures with controlled morphologies, defects and alignment have been fabricated by a simple vapor transfer method. The crystal structures, interfaces, growth mechanisms and optical properties of ZnO nanostructures have been investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. Great efforts have been devoted to the patterned growth and assembly of ZnO nanostructures as well as the stability of ZnO nanowires (NWs). Using carbonized photoresists, a simple and very effective method has been developed for fabricating and patterning high-quality ZnO NW arrays. ZnO NWs from this method show excellent alignment, crystal quality, and optical properties that are independent of the substrates. The carbonized photoresists provide perfect nucleation sites for the growth of aligned ZnO NWs and also perfectly connect to the NWs to form ideal electrodes. This approach is further extended to realize large area growth of different forms of ZnO NW arrays (e.g., the horizontal growth and multilayered ZnO NW arrays) on other kinds of carbon-based materials. In addition, the as-synthesized vertically aligned ZnO NW arrays show a low weighted reflectance (Rw) and can be used as antireflection coatings. Moreover, non c-axis growth of 1D ZnO nanostructures (e.g., nanochains, nanobrushes and nanobelts) and defect related 1D ZnO nanostructures (e.g., Y-shaped twinned nanobelts and hierarchical nanostructures decorated by flowers induced by screw dislocations) is also present. Using direct oxidization of pure Zn at high temperatures in air, uniformed ZnO NWs and tetrapods have been fabricated. The spatially-resolved PL study on these two kinds of nanostructures suggests that the defects leading to the green luminescence (GL) should originate from the structural changes along the legs of the tetrapods. Surface defects in these ZnO nanostructures play an unimportant

  7. On vehicular traffic data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins; Mahnke, Reinhard [Institute of Physics, Rostock University (Germany)

    2011-07-01

    This contribution consists of analysis of empirical vehicular traffic flow data. The main focus lies on the Next Generation Simulation (NGSIM) data. The first findings show that there are artificial structures within the data due to errors of monitoring as well as smoothing position measurement data. As a result speed data show discretisation in 5 feet per second. The aim of this investigation is to construct microscopic traffic flow models which are in agreement to the analysed empirical data. The ongoing work follows the subject of research summarized by Christof Liebe in his PhD thesis entitled ''Physics of traffic flow: Empirical data and dynamical models'' (Rostock, 2010).

  8. Localized surface plasmon of quasi-one-dimensional metallic nanostructures

    Science.gov (United States)

    Liu, Mingzhao

    2007-05-01

    The plasmon resonance of noble metal nanoparticles provides interesting optical properties in the visible and near-infrared region, and is highly tunable by varying the shape and the composition of the nanoparticles. The rod-like gold nanostructures can be synthesized by a seed-mediated method in aqueous surfactant solutions. Starting from different types of gold seeds, either single crystalline gold nanorods or penta-fold twinned gold bipyramids can be synthesized in decent yield with silver(I) added into the growth solution. These nanostructures have pronounced plasmon resonance varying in the 1˜2 eV range. The bipyramids are strikingly monodisperse in shape, which leads to the sharpest ensemble longitudinal plasmon resonance reported so far for metal colloid solutions. A mechanism based on the underpotential deposition of silver was thus suggested to explain the essential role of Ag(I) in the growth process. The optical spectra of the gold colloids were simulated with the finite-difference time-domain (FDTD) method. The results show excellent agreement with recent experimental optical spectra. The local field enhancement (|E|/|E0|) was studied at the plasmon resonance. Sharper structural features produce more significant enhancement and the largest enhancement of more than a factor of 200 is seen around the poles of the bipyramid. A large internal field enhancement by more than a factor of 30 is found for the bipyramids, which suggests that they will exhibit very strong optical nonlinearities. The plasmon can be further tuned by introducing the core/shell nanostructures such as metal/metal or metal/semiconductor nanorods. Following a simple procedure, a homogeneous layer of silver with 1-4 nm thickness can be plated onto the gold nanorods, which shifts the longitudinal plasmon mode of the nanorods toward blue. The silver layer can be converted to semiconductors silver sulfide or selenide, with the longitudinal plasmon resonance tuned toward red. The metal

  9. An Effect of Route Caching Scheme in DSR for Vehicular Adhoc Networks

    Directory of Open Access Journals (Sweden)

    Poonam kori

    2012-01-01

    Full Text Available Routing is one of the most significant challenges in Vehicular ad hoc networks and is critical for the basic network operations. Nodes (vehicles in a Vehicular ad hoc network are allowed to move in anuncontrolled manner. Such node mobility results in a highly dynamic network with rapid topological changes. Caching the routing information can significantly improve the efficiency of routing mechanism in a wireless ad hoc network by reducing the access latency and bandwidth usage. Our work presents an analysis of the effects of route cache for this caching in on-demand routing protocols in Vehicular ad hoc networks. Our analysis is based on the Dynamic Source Routing protocol (DSR, which operates entirely on-demand. Using detailed simulations of Vehicular ad hoc networks, we studied a caching algorithm that utilize cache size as a design choice, and simulated each cache primarily over different movement scenarios drawn from various mobility models. We also evaluated a set of mobility metrics that allow accurate characterization of the relative difficulty that a given movement scenario presents to a Vehicularad hoc network routing protocol, and we analyze each mobility metric’s ability to predict the actual difficulty in terms of routing overhead and packet delivery ratio experienced by the routing protocolacross the highway and city traffic scenarios in our study. Finally we have shown that caching the routing data is beneficial.

  10. One-dimensional Array Grammars and P Systems with Array Insertion and Deletion Rules

    Directory of Open Access Journals (Sweden)

    Rudolf Freund

    2013-09-01

    Full Text Available We consider the (one-dimensional array counterpart of contextual as well as insertion and deletion string grammars and consider the operations of array insertion and deletion in array grammars. First we show that the emptiness problem for P systems with (one-dimensional insertion rules is undecidable. Then we show computational completeness of P systems using (one-dimensional array insertion and deletion rules even of norm one only. The main result of the paper exhibits computational completeness of one-dimensional array grammars using array insertion and deletion rules of norm at most two.

  11. Routing Protocols simulation for Efficiency Applications in Vehicular Environments

    OpenAIRE

    Orozco, Ana María; Michoud, Roger; Llano Ramírez, Gonzalo

    2013-01-01

    Los recientes esfuerzos de investigación realizados desde la comunidad académica, la industria automovilística y el sector de transportes, apuntan a los sistemas inteligentes de transporte como una tecnología clave para mejorar la seguridad en las carreteras, la eficiencia en el tráfico y el confort de los conductores. Las redes vehiculares Ad Hoc [VANETs] tienen el potencial de habilitar aplicaciones para seguridad en el tráfico, eficiencia en el transporte y movilidad sostenible. Los método...

  12. Secure cluster-based in-network information aggregation for vehicular networks

    NARCIS (Netherlands)

    Dietzel, Stefan; Peter, Andreas; Kargl, Frank

    2015-01-01

    Vehicular ad-hoc networks are a promising research area. Besides improving safety, traffic efficiency enhancements are a major expected benefit. In this paper, we present a novel security mechanism for traffic efficiency applications that lever- ages on velocity-based vehicle clustering and uses Hyp

  13. A scalable data dissemination protocol for both highway and urban vehicular environments

    NARCIS (Netherlands)

    Schwartz, Ramon S.; Scholten, Hans; Havinga, Paul

    2013-01-01

    Vehicular ad hoc networks (VANETs) enable the timely broadcast dissemination of event-driven messages to interested vehicles. Especially when dealing with broadcast communication, data dissemination protocols must achieve a high degree of scalability due to frequent deviations in the network density

  14. Stationary bottom generated velocity fluctuations in one-dimensional open channel flow

    NARCIS (Netherlands)

    Jong, de Bartele

    1993-01-01

    Statistical characteristics are calculated for stationary velocity fluctuations in a one-dimensional open channel flow with a given vertical velocity profile and with one-dimensional irregular bottom waves, characterized by a spectral density function. The calculations are based on an approximate ca

  15. Synthesis and magneticproperties of one-dimensional Mn(Ⅱ) complexes linked bydithiooxalato

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Three dithiooxalato (Dto) bridging one-dimensional Mn(Ⅱ) complexes [Mn(L)Dto](L = Phen (1), Bpy (2) and en (3)) were synthesized. All of the complexes have the similar one-dimensional structure through Dto bridge. The measurement of the variable temperature magnetic susceptibility of complex 1 showed that there are weak antiferromag- netic interactions between the Mn(Ⅱ) ions.

  16. One dimensional modeling of a diesel-CNG dual fuel engine

    Science.gov (United States)

    Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir

    2017-04-01

    Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.

  17. One-dimensional ion-beam figuring for grazing-incidence reflective optics.

    Science.gov (United States)

    Zhou, Lin; Idir, Mourad; Bouet, Nathalie; Kaznatcheev, Konstantine; Huang, Lei; Vescovi, Matthew; Dai, Yifan; Li, Shengyi

    2016-01-01

    One-dimensional ion-beam figuring (1D-IBF) can improve grazing-incidence reflective optics, such as Kirkpatrick-Baez mirrors. 1D-IBF requires only one motion degree of freedom, which reduces equipment complexity, resulting in compact and low-cost IBF instrumentation. Furthermore, 1D-IBF is easy to integrate into a single vacuum system with other fabrication processes, such as a thin-film deposition. The NSLS-II Optical Metrology and Fabrication Group has recently integrated the 1D-IBF function into an existing thin-film deposition system by adding an RF ion source to the system. Using a rectangular grid, a 1D removal function needed to perform 1D-IBF has been produced. In this paper, demonstration experiments of the 1D-IBF process are presented on one spherical and two plane samples. The final residual errors on both plane samples are less than 1 nm r.m.s. The surface error on the spherical sample has been successfully reduced by a factor of 12. The results show that the 1D-IBF method is an effective method to process high-precision 1D synchrotron optics.

  18. Correlations in the ground state of the one-dimensional Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qingwei, E-mail: wqw03@mails.thu.edu.c [Institute for Advanced Study, Tsinghua University, Beijing 100084 (China); Liu Yuliang, E-mail: ylliu@ruc.edu.c [Department of Physics, Renmin University of China, Beijing 100872 (China)

    2009-12-14

    With eigenfunctional theory and a rigorous expression of exchange-correlation energy of a general interacting electron system, we study the ground state properties of the one-dimensional Hubbard model, and calculate the ground-state energy as well as the charge gap at half-filling for arbitrary coupling strength u=U/(4t) and electron density n{sub c}. We find that the simple linear approximation of the phase field works well in weak coupling case, but it becomes inappropriate as the on-site Coulomb interaction becomes strong where the fluctuations of the bosonic auxiliary field are strong. Then we propose a new scheme by adding Gutzwiller projection which suppresses the density fluctuations and the new results are quite close to the exact ones up to considerably strong coupling strength u=3.0 and for arbitrary electron density n{sub c}. Our calculation scheme is proved to be effective for strongly correlated electron systems in one dimension, and its extension to higher dimensions is straightforward.

  19. Internal Radiation Field in the Nonlinear Transfer Problem for a One-Dimensional Anisotropic Medium. II

    Science.gov (United States)

    Pikichyan, H. V.

    2016-06-01

    It is shown that for the nonlinear boundary value problem of determining the radiation field inside a one-dimensional anisotropic medium illuminated from outside at its boundaries on both sides, the formulas for adding layers in semilinear systems of differential equations for radiative transfer, invariant embedding, and total Ambartsumyan invariance can be used to reduce the equations for the problem to separable equations with initial conditions. The fields travelling to the left and right are thereby found independently of one another. In addition, when one of them has been determined, the other can be found directly using an explicit expression. A general equivalence property of operators with respect to a certain mathematical form, expression, or functional is formulated mathematically. New equations, referred to as kinetic equations of equivalency, are derived from the mutual equivalence of the differential operators of the Boltzmann kinetic equation (the equations of radiative transfer) and the functional equation of the Ambartsumian's complete invariance. Besides separability, these new equations also have the property of linearity. Formulas are also introduced for special problems of single sided illumination of a medium that in this case serve as supplementary information in the initial conditions for formulating Cauchy problems.

  20. Improved Vehicular Information Network Architecture Using Fuzzy Based Named Data NetworkingNDN

    Directory of Open Access Journals (Sweden)

    Kanwalpreet Kaur

    2015-08-01

    Full Text Available Vehicular Ad-hoc System VANETs is really a component with smart transport systems. It has ability to prevent accidents and the road congestion issues on highways but it suffers from the accomplishment and scalability issues. To handle these difficulties from the Inter Vehicular Communication IVC we apply Name Data Networking NDN. All though in NDN the users are only concerned about necessary data and give no attention on the number of locations from where the data is coming. The NDN layout is usually much more worthy for IVC circumstance getting the ordered material labeling design as well as amp64258exible material retrieval. In this report we propose vehicular network dependent on fuzzy membership function which offers the fundamental NDN style to improve support location dependent forwarding content aggregation and distributed mobility management. This paper finally winds up the several boundaries regarding earlier approaches.

  1. A Reliable Routing Protocol for Wireless Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Mohsen Madani

    2012-07-01

    Full Text Available Recently, much attention has been paid to Vehicular Ad hoc Network (VANET. VANETs address direct communication between vehicle-to-vehicle and vehicles to roadside units (RSUs. They are similar to the Mobile and Ad hoc Networks (MANET in their rapid and dynamic network topology changes due to the fast motion of nodes. High mobility of nodes and network resources limitations have made the routing, one of the most important challenges in VANET researches. Therefore, guaranteeing a stable and reliable routing algorithm over VANET is one of the main steps to realize an effective vehicular communications. In this paper, a two-step AODV-based routing protocol is proposed for VANET networks. At first, node-grouping is done using their mobility information such as speed and movement direction. If the first step cannot respond efficiently, the algorithm enters the second step which uses link expiration time (LET information in the formation of the groups. The goal of the proposed protocol is increasing the stability of routing algorithm by selecting long-lived routes and decreasing link breakages. The comparison of proposed algorithm with AODV and DSR protocols is performed via the Network Simulator NS-2. It is shown that the proposed algorithm increases the delivery ratio and also decreases the routing control overhead.

  2. One-Dimensional Perovskite Manganite Oxide Nanostructures: Recent Developments in Synthesis, Characterization, Transport Properties, and Applications.

    Science.gov (United States)

    Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua

    2016-12-01

    One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future

  3. Effect of interchain frustration in quasi-one-dimensional conductors at half-filling

    Science.gov (United States)

    Tsuchiizu, M.; Suzumura, Y.; Bourbonnais, C.

    2007-04-01

    We examine the effect of frustrated interchain hoppings t_{\\perp 1} and t_{\\perp 2} on one-dimensional Mott insulators. By applying an N_\\perp -chain two-loop renormalization-group method to the half-filled quasi-one-dimensional Hubbard model, we show that the system remains insulating even for the large t_{\\perp 1} as far as t_{\\perp 2}=0 and vice versa, whereas a metallic state emerges by increasing both interchain hoppings. We also discuss the metallic behaviour suggested in the quasi-one-dimensional organic compound (TTM-TTP)I3 under high pressure.

  4. A Large Class of Exact Solutions to the One-Dimensional Schrodinger Equation

    Science.gov (United States)

    Karaoglu, Bekir

    2007-01-01

    A remarkable property of a large class of functions is exploited to generate exact solutions to the one-dimensional Schrodinger equation. The method is simple and easy to implement. (Contains 1 table and 1 figure.)

  5. Steen-Ermakov-Pinney equation and integrable nonlinear deformation of one-dimensional Dirac equation

    OpenAIRE

    Prykarpatskyy, Yarema

    2017-01-01

    The paper deals with nonlinear one-dimensional Dirac equation. We describe its invariants set by means of the deformed linear Dirac equation, using the fact that two ordinary differential equations are equivalent if their sets of invariants coincide.

  6. ABOUT OF SOME ONE-DIMENSIONAL OPTIMIZATION ALGORITHMS WITH ECONOMIC APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Radu R. Şerban

    2012-12-01

    Full Text Available In this paper, a new algorithm for one dimensional optimization is presented. The algorithm is based on the “parabola tangent” method for solving a class of equations, without divergence points.

  7. Computational method for the quantum Hamilton-Jacobi equation: one-dimensional scattering problems.

    Science.gov (United States)

    Chou, Chia-Chun; Wyatt, Robert E

    2006-12-01

    One-dimensional scattering problems are investigated in the framework of the quantum Hamilton-Jacobi formalism. First, the pole structure of the quantum momentum function for scattering wave functions is analyzed. The significant differences of the pole structure of this function between scattering wave functions and bound state wave functions are pointed out. An accurate computational method for the quantum Hamilton-Jacobi equation for general one-dimensional scattering problems is presented to obtain the scattering wave function and the reflection and transmission coefficients. The computational approach is demonstrated by analysis of scattering from a one-dimensional potential barrier. We not only present an alternative approach to the numerical solution of the wave function and the reflection and transmission coefficients but also provide a computational aspect within the quantum Hamilton-Jacobi formalism. The method proposed here should be useful for general one-dimensional scattering problems.

  8. Theory of optimal beam splitting by phase gratings. I. One-dimensional gratings.

    Science.gov (United States)

    Romero, Louis A; Dickey, Fred M

    2007-08-01

    We give an analytical basis for the theory of optimal beam splitting by one-dimensional gratings. In particular, we use methods from the calculus of variations to derive analytical expressions for the optimal phase function.

  9. Envelope Periodic Solutions to One-Dimensional Gross-Pitaevskii Equation in Bose-Einstein Condensation

    Institute of Scientific and Technical Information of China (English)

    LIU Shi-Kuo; GAO Bin; FU Zun-Tao; LIU Shi-Da

    2009-01-01

    In this paper, applying the dependent and independent variables transformations as well as the Jacobi elliptic function expansion method, the envelope periodic solutions to one-dimensional Gross-Pitaevskii equation in Bose-Einstein condensates are obtained.

  10. Neutron and photon (light) scattering on solitons in the quasi-one-dimensional magnetics

    CERN Document Server

    Abdulloev, K O

    1999-01-01

    The general expression we have found earlier for the dynamics form-factor is used to analyse experiments on the neutron and photon (light) scattering by the gas of solitons in quasi-one-dimensional magnetics (Authors)

  11. Exact solution to the one-dimensional Dirac equation of linear potential

    Institute of Scientific and Technical Information of China (English)

    Long Chao-Yun; Qin Shui-Jie

    2007-01-01

    In this paper the one-dimensional Dirac equation with linear potential has been solved by the method of canonical transformation. The bound-state wavefunctions and the corresponding energy spectrum have been obtained for all bound states.

  12. Modeling of an one-dimensional harmonious ostsillyator in the environment of MATLAB/SIMULINK

    Directory of Open Access Journals (Sweden)

    B. A. Golodenko

    2012-01-01

    Full Text Available Results of modeling one-dimensional harmonious oscillator are stated by means MATLAB/SIMULINK. On example oscillators, possible approaches and technologies of construction of models of real physical systems based on their mathematical description are shown.

  13. High-resolution numerical algorithm for one-dimensional scalar conservation laws with a constrained solution

    Science.gov (United States)

    Goloviznin, V. M.; Kanaev, A. A.

    2012-03-01

    The CABARET computational algorithm is generalized to one-dimensional scalar quasilinear hyperbolic partial differential equations with allowance for inequality constraints on the solution. This generalization can be used to analyze seepage of liquid radioactive wastes through the unsaturated zone.

  14. Prediction of inorganic superconductors with quasi-one-dimensional crystal structure

    OpenAIRE

    Volkova, L. M.; Marinin, D. V.

    2012-01-01

    Models of superconductors having a quasi-one-dimensional crystal structure based on the convoluted into a tube Ginzburg sandwich, which comprises a layered dielectric-metal-dielectric structure, have been suggested. The critical crystal chemistry parameters of the Ginzburg sandwich determining the possibility of the emergence of superconductivity and the Tc value in layered high-Tc cuprates, which could have the same functions in quasi-one-dimensional fragments (sandwich-type tubes), have bee...

  15. Note on Invariance of One-Dimensional Lattice-Boltzmann Equation

    Institute of Scientific and Technical Information of China (English)

    RAN Zheng

    2007-01-01

    Invariance of the one-dimensional lattice Boltzmann model is proposed together with its rigorous theoretical background.It is demonstrated that the symmetry inherent in Navier-Stokes equations is not really recovered in the one-dimensional lattice Boltzmann equation (LBE),especially for shock calculation.Symmetry breaking may be the inherent cause for the non-physical oscillations in the vicinity of the shock for LBE calculation.

  16. An approach to one-dimensional elliptic quasi-exactly solvable models

    Indian Academy of Sciences (India)

    M A Fasihi; M A Jafarizadeh; M Rezaei

    2008-04-01

    One-dimensional Jacobian elliptic quasi-exactly solvable second-order differential equations are obtained by introducing the generalized third master functions. It is shown that the solutions of these differential equations are generating functions for a new set of polynomials in terms of energy with factorization property. The roots of these polynomials are the same as the eigenvalues of the differential equations. Some one-dimensional elliptic quasi-exactly quantum solvable models are obtained from these differential equations.

  17. One- and Two- Magnon Excitations in a One-Dimensional Antiferromagnet in a Magnetic Field

    DEFF Research Database (Denmark)

    Heilmann, I.U.; Kjems, Jørgen; Endoh, Y.;

    1981-01-01

    We have carried out a comprehensive experimental and theoretical study of the inelastic scattering in the one-dimensional near-Heisenberg antiferromagnet (CD3)4NMnCl3 (TMMC) at low temperatures, 0.3......We have carried out a comprehensive experimental and theoretical study of the inelastic scattering in the one-dimensional near-Heisenberg antiferromagnet (CD3)4NMnCl3 (TMMC) at low temperatures, 0.3...

  18. Effective one-dimensionality of universal ac hopping conduction in the extreme disorder limit

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Schrøder, Thomas

    1996-01-01

    A phenomenological picture of ac hopping in the symmetric hopping model (regular lattice, equal site energies, random energy barriers) is proposed according to which conduction in the extreme disorder limit is dominated by essentially one-dimensional "percolation paths." Modeling a percolation path...... as strictly one dimensional with a sharp jump rate cutoff leads to an expression for the universal ac conductivity that fits computer simulations in two and three dimensions better than the effective medium approximation....

  19. Some New Band Characteristics in One-Dimensional Plasma Dielectric Photonic Crystals%Some New Band Characteristics in One-Dimensional Plasma Dielectric Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    Laxmi SHIVESHWARI

    2011-01-01

    Propagation of electromagnetic waves in one-dimensional plasma dielectric photonic crystals, the superlattice structure consisting of alternating plasma and dielectric materials, is studied theoretically for oblique incidence by using the transfer matrix method. Our results show that complete photonic band gaps for all polarizations can be obtained in one-dimensional plasma dielectric photonic crystals. These structures can exhibit a new type of band or gap, for the incidence other than the normal one, near frequencies where the electric permittivity of the plasma layer changes sign. This new band or gap arises, from the dispersive properties of the plasma layer, only for transverse magnetic polarized waves, and its width increases with the increase in incident angle. This differential behavior under polarization can be utilized in the design of an efficient polarization splitter. The existence of both photonic gaps and resonance transmission bands is demonstrated for experimentally realizable structures such as double electromagnetic barriers.

  20. Dynamic ad hoc networks

    CERN Document Server

    Rashvand, Habib

    2013-01-01

    Motivated by the exciting new application paradigm of using amalgamated technologies of the Internet and wireless, the next generation communication networks (also called 'ubiquitous', 'complex' and 'unstructured' networking) are changing the way we develop and apply our future systems and services at home and on local, national and global scales. Whatever the interconnection - a WiMAX enabled networked mobile vehicle, MEMS or nanotechnology enabled distributed sensor systems, Vehicular Ad hoc Networking (VANET) or Mobile Ad hoc Networking (MANET) - all can be classified under new networking s

  1. SPEFO---A Simple, Yet Powerful Program for One-Dimensional Spectra Processing

    Science.gov (United States)

    Skoda, Petr

    SPEFO is a small, yet powerful program used for processing stellar spectra at the Astronomical Institute of the Academy of Sciences of the Czech Republic in Ondřejov. It was originally written in 1990 by Dr. Jiři Horn for processing spectral plates obtained with the 2m telescope of the Ondřejov observatory and scanned with the local five channel microphotometer. Since then the code had been under constant improvement until the sudden death of the author in December 1994. Currently SPEFO is used mainly for the reduction of data from the Ondřejov Reticon detector (1872 pixels, 12 bit A/D), however it can process data from other instruments too, provided that they are in FITS one-dimensional format. The code was written in Turbo Pascal for MS-DOS; the size of the binaries is less than 350 KB. SPEFO will run on an ordinary PC computer with very modest hardware demands (PC AT 286, 1 MB RAM, 30 MB HD color EGA or VGA). Despite its small size the program is very powerful, and user friendly as well. The basic data reduction tasks such as derivation of the dispersion function, spectrum rectification, Fourier noise filtering, radial velocity and equivalent width measurements are performed in an easy manner, and the user can immediately see changes to the data on a screen plot (e.g., the line position is determined in the ``oscilloscopic'' mode by finding the coincidence of the displayed line and its interactively shifted mirrored profile, the continuum level spline is recalculated after fixing each new point, etc.). The main output of SPEFO is a table of radial velocities of measured stellar lines (including the atmospheric line correction), their equivalent widths and higher order moments, relative central line intensities and FWHM, together with the HPGL plot file. The program can do basic operations on spectra like comparison of two spectra, subtraction, adding, production of differential spectra or the transformation by rotational broadening. SPEFO can also deal with

  2. Location-based Forwarding in Vehicular Networks

    NARCIS (Netherlands)

    Klein Wolterink, W.

    2013-01-01

    In this thesis we focus on location-based message forwarding in vehicular networks to support intelligent transportation systems (ITSs). ITSs are transport systems that utilise information and communication technologies to increase their level of automation, in this way levering the performance of

  3. Dependable and Secure Geocast in Vehicular Networks

    NARCIS (Netherlands)

    Schoch, Elmar; Bako, Boto; Dietzel, Stefan; Kargl, Frank

    2010-01-01

    Inter-vehicular communication envisions many applications to enhance traffic safety. One fundamental communication paradigm used to realize a wide range of such applications is called Geocast, that is, multi-hop broadcast dissemination of messages within a geographically restricted destination regio

  4. Disseminating Traffic Information in Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Muhammad Alyas Shahid

    2015-11-01

    Full Text Available In this paper Wifi based system is described for disseminating traffic information in vehicular networks. Basic aim of this approach is to distribute information regarding the traffic conditions such as traffic congestions or safety warnings to vehicles in an effective way.

  5. The effect of cross flow on one-dimensional spectra measured using hot wires

    Science.gov (United States)

    Ewing, D.

    Expressions were developed to estimate the cross-flow error that occurs in the one-dimensional velocity spectra determined by applying Taylor's frozen field hypothesis to measurements with single- and cross-wire probes. The cross-flow error and the error caused by the unsteady convection of the small-scale motions were evaluated for typical measurements. It was found that the cross-flow error could be significant in inertial range of the measured one-dimensional spectra, and was much larger than the error caused by the unsteady convection of the small-scale motions in the one-dimensional spectra of the cross-stream velocity components, $ F2}{22 {( {k1 } )} and F1}{33 {( {k1 } )} . The results indicate that the one-dimensional spectra of the streamwise velocity component F1}{11 {( {k1 } )} $ measured with a single-wire probe should be significantly more accurate than the spectra measured with a cross-wire probe. The cross-flow error in the one-dimensional spectra also becomes much less important in the dissipation range of the measured spectra.

  6. Quantum Solitons and Localized Modes in a One-Dimensional Lattice Chain with Nonlinear Substrate Potential

    Institute of Scientific and Technical Information of China (English)

    LI De-Jun; MI Xian-Wu; DENG Ke; TANG Yi

    2006-01-01

    In the classical lattice theory, solitons and locaLized modes can exist in many one-dimensional nonlinear lattice chains, however, in the quantum lattice theory, whether quantum solitons and localized modes can exist or not in the one-dimensional lattice chains is an interesting problem. By using the number state method and the Hartree approximation combined with the method of multiple scales, we investigate quantum solitons and localized modes in a one-dimensional lattice chain with the nonlinear substrate potential. It is shown that quantum solitons do exist in this nonlinear lattice chain, and at the boundary of the phonon Brillouin zone, quantum solitons become quantum localized modes, phonons are pinned to the lattice of the vicinity at the central position j = j0.

  7. Multi-site Compact-Like Discrete Breather in Discrete One-Dimensional Monatomic Chains

    Institute of Scientific and Technical Information of China (English)

    XU Quan; TIAN Qiang

    2007-01-01

    Multi-site compact-like discrete breathers in djscrete one-dimensional monatomic chains are irIvestigated by discussing a generalized discrete one-dimensional monatomic model.We obtain that the two-site compact-like discrete breathers with codes σ={0,…,0,1,1,0…,0}and codes σ={0,…,0,1,-1,0…,0}can exist in discrete one-dimensional monatomic chain with quartic on-site and inter-site potentials.However,the former can only exist in hard quartic on-site potential and cannot exist in soft quartic on-site potential,whereas the latter is just reversed.All of the two-site Compact-like discrete breathers with codes σ={0,…,0,1,1,0,…,0}and σ={0,…,0,1,-1,0…,0}cannot exist in a pure K4 chain.

  8. Comparison of the elastic coefficients and Calculation Models of the Mechanical Behavior one- Dimensional Composites

    Directory of Open Access Journals (Sweden)

    Saleh Alsubari

    2011-09-01

    Full Text Available In this paper, we present the mechanical models that are devoted to the elastic properties of one-dimensional composite. We have compared the equivalent coefficients of one-dimensional composite, resulting from different models. The validation of the results was made through effective experiments on a one-dimensional composite consisting of fibers of alumina and a matrix of aluminum. This study allows us to better assess the rigidity of composite structures, and the results of calculation of the mechanical behavior, resulting from each model. It appears that the finite element model is the best suited to the approach of a refined conception. For more insurance, we have chosen to make our calculations by finite element in the three-dimensional case, using the technique of homogenization by asymptotic development.

  9. Hydrothermal Synthesis and Characterization of Nd Doped One-dimensional Hexagonal CePO_4 Nanowires

    Institute of Scientific and Technical Information of China (English)

    张新奇

    2012-01-01

    One-dimensional Nd doped CePO4 hexagonal nanowires have been synthesized for the first time at 140 ℃ for 24 hours via a hydrothermal method using P123 surfactant as the template.The products were characterized by X-ray diffraction,transmission electron microscopy,photoluminescence and high-resolution transmission electron microscopy.Compared with CePO4,one-dimensional nanomaterials we have synthesized,Nd doped CePO4 nanomaterials remain their hexagonal one-dimensional morphology and smooth surface.However,their photoluminescence emissions are greatly enhanced at the wavelength of 348 nm.With their novel fluorescence-emission property,the Nd doped CePO4 nanomaterials are potential in many fields such as optics and electronics.

  10. Robust unidirectional transport in a one-dimensional metacrystal with long-range hopping

    CERN Document Server

    Longhi, Stefano

    2016-01-01

    In two- and three-dimensional structures, topologically-protected chiral edge modes offer a powerful mean to realize robust light transport. However, little attention has been paid so far to robust one-way transport in one-dimensional systems. Here it is shown that unidirectional transport, which is immune to disorder and backscattering, can occur in certain one-dimensional metacrystals with long-range hopping without resorting to topological protection. Such metacrystals are described by an effective Hermitian Hamiltonian with broken time reversal symmetry, and transport does not require adiabatic (Thouless) pumping. A simple implementation in optics of such one-dimensional metacrystals, based on transverse light dynamics in a self-imaging optical cavity with phase gratings, is suggested

  11. One dimensional light localization with classical scatterers; an advanced undergraduate laboratory experiment

    CERN Document Server

    Kemp, K J; Guthrie, J; Hagood, B; Havey, M D

    2016-01-01

    The phenomenon of electronic wave localization through disorder was introduced by Anderson in 1958 in the context of electron transport in solids. It remains an important area of fundamental and applied research. Localization of all wave phenomena, including light, is thought to exist in a restricted one dimensional geometry. We present here a series of experiments which illustrate, using a simple experimental arrangement and approach, localization of light in a quasi one dimensional physical system. In the experiments, reflected and transmitted light from a stack of glass slides of varying thickness reveals an Ohm's Law type behavior for small thicknesses, and evolution to exponential decay of the transmitted power for thicker slide stacks. Light absorption is negligible in our realization of the experiment. For larger stacks of slides, weak departure from a one dimensional behavior is also observed. The experiment and analysis of the results, then showing many of the essential features of wave localization,...

  12. One-dimensional light localization with classical scatterers: An advanced undergraduate laboratory experiment

    Science.gov (United States)

    Kemp, K. J.; Barker, S.; Guthrie, J.; Hagood, B.; Havey, M. D.

    2016-10-01

    The phenomenon of electronic wave localization through disorder remains an important area of fundamental and applied research. Localization of all wave phenomena, including light, is thought to exist in a restricted one-dimensional geometry. We present here a series of experiments to illustrate, using a straightforward experimental arrangement and approach, the localization of light in a quasi-one-dimensional physical system. In the experiments, reflected and transmitted light from a stack of glass slides of varying thickness reveals an Ohm's law type behavior for small thicknesses, and evolution to exponential decay of the transmitted power for larger thicknesses. For larger stacks of slides, a weak departure from one-dimensional behavior is also observed. The experiment and analysis of the results, showing many of the essential features of wave localization, is relatively straightforward, economical, and suitable for laboratory experiments at an undergraduate level.

  13. Simple Method Obtaining Analytical Expressions of Particle and Kinetic-Energy Densities for One-Dimensional Confined Fermi Gases

    Institute of Scientific and Technical Information of China (English)

    YANG XiaoXue; WU Ying

    2002-01-01

    We develop a simple approach to obtain explicitly exact analytical expressions of particle and kinetic-energy densities for noninteracting Fermi gases in one-dimensional harmonic confinement, and in one-dimensional boxconfinement as well.

  14. One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials

    KAUST Repository

    Choi, Nam-Soon

    2011-01-01

    There has been tremendous interest in using nanomaterials for advanced Li-ion battery electrodes, particularly to increase the energy density by using high specific capacity materials. Recently, it was demonstrated that one dimensional (1D) Si/Sn nanowires (NWs) and nanotubes (NTs) have great potential to achieve high energy density as well as long cycle life for the next generation of advanced energy storage applications. In this feature article, we review recent progress on Si-based NWs and NTs as high capacity anode materials. Fundamental understanding and future challenges on one dimensional nanostructured anode are also discussed. © 2010 The Royal Society of Chemistry.

  15. UNIVERSAL THEORY OF STEADY-STATE ONE-DIMENSIONAL PHOTOREFRACTIVE SOLITONS

    Institute of Scientific and Technical Information of China (English)

    刘劲松

    2001-01-01

    A universal theory of steady-state one-dimensional photorefractive spatial solitons is developed which applies to the steady-state one-dimensional photorefractive solitons under various realizations, including the screening solitons in a biased photorefractive medium, the photovoltaic solitons in open- and closed-circuit photovoltaic-photorefractive media and the screening-photovoltaic solitons in biased photovoltaic-photorefractive media. Previous theories advanced individually elsewhere for these solitons can be obtained by simplifying the universal theory under the appropriate conditions.

  16. Generalization of the one-dimensional ideal plasma flow with spherical waves

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, Sergey V [Queen' s University, Kingston, Ontario K7 L 3N6 (Canada)

    2006-06-09

    We give a description of the ideal plasma flow, which is governed by an exact partially invariant solution of the magnetohydrodynamics equations. The solution generalizes known one-dimensional flow with spherical waves. The generalization consists in addition of the special tangent vector components of the velocity and the magnetic field at any plasma particle. In the special case of zeroth tangential component the solution coincides with the classical one-dimensional one. This paper describes a three-dimensional picture of the plasma flow, governed by the obtained solution.

  17. Metal-insulator transition in one-dimensional lattices with chaotic energy sequences

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, R.A. [Laboratorio de Fisica Estadistica, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A (Venezuela)]. E-mail: ripinto@ivic.ve; Rodriguez, M. [Laboratorio de Fisica Estadistica, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A (Venezuela); Gonzalez, J.A. [Laboratorio de Fisica Computacional, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A (Venezuela); Medina, E. [Laboratorio de Fisica Estadistica, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A (Venezuela)

    2005-06-20

    We study electronic transport through a one-dimensional array of sites by using a tight binding Hamiltonian, whose site-energies are drawn from a chaotic sequence. The correlation degree between these energies is controlled by a parameter regulating the dynamic Lyapunov exponent measuring the degree of chaos. We observe the effect of chaotic sequences on the localization length, conductance, conductance distribution and wave function, finding evidence of a metal-insulator transition (MIT) at a critical degree of chaos. The one-dimensional metallic phase is characterized by a Gaussian conductance distribution and exhibits a peculiar non-selfaveraging.

  18. Optical Properties of One-dimensional Three-component Photonic Band Gap Structure

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Theoretical study of the optical properties of one-dimensional three-component photonic band gap structure, which is composed of three alternating dielectric layers of different refractive indices and thickness in a unit cell, is performed. This one-dimensional photonic band gap structure exhibits the transparency band and forbidden band. We find that there are several mini-bands of the allowed transmission to be created within the photonic band gap region of the structure if a defect designed specially is introduced inside the structure. This characteristic is very important for some practical applications.

  19. Neutron beam applications - Development of one dimensional position sensitive neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Yun; Kang, Hee Dong; Kim, Wan; Moon, Myung Kook [Kyungpook National University, Taegu (Korea)

    2000-04-01

    This research is sponsored and supported by KAERI as a part of {sup D}evelopment of One Dimensional Position Sensitive Neutron Detector{sup .} To apply residual stress measurement and small angle neutron scattering the one dimensional position sensitive neutron detectors which have wide window and good position resolution were designed and fabricated. The detection area are 200 mm x 100, 120 mm x 80 mm. The thermal neutron detection efficiency are about 60%. The spatial resolution of the detector are less than 2mm. The characteristics of the detectors were studied. Using the detector we could get neutron diffraction patterns from some samples. 19 refs., 103 figs., 4 tabs. (Author)

  20. Fluctuations of the heat flux of a one-dimensional hard particle gas

    Science.gov (United States)

    Brunet, E.; Derrida, B.; Gerschenfeld, A.

    2010-04-01

    Momentum-conserving one-dimensional models are known to exhibit anomalous Fourier's law, with a thermal conductivity varying as a power law of the system size. Here we measure, by numerical simulations, several cumulants of the heat flux of a one-dimensional hard particle gas. We find that the cumulants, like the conductivity, vary as power laws of the system size. Our results also indicate that cumulants higher than the second follow different power laws when one compares the ring geometry at equilibrium and the linear case in contact with two heat baths (at equal or unequal temperatures).

  1. PERTURBATION TRANSFER MATRIX METHOD FOR EIGENDATA OF ONE-DIMENSIONAL STRUCTURAL SYSTEM WITH PARAMETER UNCERTAINTIES

    Institute of Scientific and Technical Information of China (English)

    刘保国; 殷学纲; 蹇开林; 吴永

    2003-01-01

    A general method based on Riccati transfer matrix is presented to calculate the2 nd order perturbations of eigendatas for one-dimensional structural system with parameteruncertainties. The method is applicable to both real and complex eigendatas of any one-dimensional structural system. The formulas for calculating the sensitivity derivatives ofeigendatas based on this method are also presented. The method is applied to theperturbation analysis for the eigendatas of a rotor with gyroscopic moment, and thedifferences between the perturbation results and the accurate calculating results are small.

  2. Peak, multi-peak and broadband absorption in graphene-based one-dimensional photonic crystal

    Science.gov (United States)

    Miloua, R.; Kebbab, Z.; Chiker, F.; Khadraoui, M.; Sahraoui, K.; Bouzidi, A.; Medles, M.; Mathieu, C.; Benramdane, N.

    2014-11-01

    We theoretically investigate the possibility of enhancing light absorption in graphene-based one dimensional photonic crystal. We demonstrate that it is possible to achieve total light absorption at technologically important wavelengths using one-dimensional graphene-based photonic crystals. By means of the transfer matrix method, we investigate the effect of refractive indices and layer numbers on the optical response of the structure. We found that it is possible to achieve one peak, multi-peak or broadband, and complete optical absorption. As a result, the proposed photonic structures enable myriad potential applications such as photodetection, shielding and optical sensing.

  3. Extended Wronskian Determinant Approach and Iterative Solutions of One-Dimensional Dirac Equation

    Institute of Scientific and Technical Information of China (English)

    XU Ying; LU Meng; SU Ru-Keng

    2004-01-01

    An approximation method, namely, the Extended Wronskian Determinant Approach, is suggested to study the one-dimensional Dirac equation. An integral equation, which can be solved by iterative procedure to find the wave functions, is established. We employ this approach to study the one-dimensional Dirac equation with one-well potential,and give the energy levels and wave functions up to the first order iterative approximation. For double-well potential,the energy levels up to the first order approximation are given.

  4. Von Neumann Entropy of an Electron in One-Dimensional Determined Potentials

    Institute of Scientific and Technical Information of China (English)

    GONG Long-Yan; TONG Pei-Qing

    2005-01-01

    @@ By using the measure of von Neumann entropy, we numerically investigate quantum entanglement of an electronmoving in the one-dimensional Harper model and in the one-dimensional slowly varying potential model. Thedelocalized and localized eigenstates can be distinguished by von Neumann entropy of the individual eigenstates.There are drastic decreases in yon Neumann entropy of the individual eigenstates at mobility edges. In the curveof the spectrum averaged yon Neumann entropy as a function of potential parameter λ, a sharp transition existsat the metal-insulator transition point λc = 2. It is found that the yon Neumann entropy is a good quantity toreflect localization and metal-insulator transition.

  5. Correlations in light propagation in one-dimensional waveguides for classical and quantum degenerate atoms

    CERN Document Server

    Ruostekoski, Janne

    2016-01-01

    We study the transmission of light through a one-dimensional waveguide that confines strongly coupled classical or quantum degenerate fermionic atomic ensembles. The emergence of light-induced correlation effects between the atoms is analyzed by using stochastic Monte-Carlo simulations and transfer matrix methods of transport theory. The conditions of the correlated collective response are identified in terms of the atom density, thermal broadening, and photon losses. We also calculate the "cooperative Lamb shift" for the waveguide transmission resonance, and discuss line shifts that are specific to effectively one-dimensional waveguide systems.

  6. Quantum quenches to the attractive one-dimensional Bose gas: exact results

    Directory of Open Access Journals (Sweden)

    Lorenzo Piroli, Pasquale Calabrese, Fabian H. L. Essler

    2016-09-01

    Full Text Available We study quantum quenches to the one-dimensional Bose gas with attractive interactions in the case when the initial state is an ideal one-dimensional Bose condensate. We focus on properties of the stationary state reached at late times after the quench. This displays a finite density of multi-particle bound states, whose rapidity distribution is determined exactly by means of the quench action method. We discuss the relevance of the multi-particle bound states for the physical properties of the system, computing in particular the stationary value of the local pair correlation function $g_2$.

  7. Exact and LDA entanglement of tailored densities in an interacting one-dimensional electron system

    Energy Technology Data Exchange (ETDEWEB)

    Coe, J P; D' Amico, I, E-mail: jpc503@york.ac.u, E-mail: ida500@york.ac.u [Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2010-01-01

    We calculate the 'exact' potential corresponding to a one-dimensional interacting system of two electrons with a specific, tailored density. We use one-dimensional density-functional theory with a local-density approximation (LDA) on the same system and calculate densities and energies, which are compared with the 'exact' ones. The 'interacting-LDA system'[4] corresponding to the LDA density is then found and its potential compared with the original one. Finally we calculate and compare the spatial entanglement of the electronic systems corresponding to the interacting-LDA and original interacting system.

  8. Design and Experimental Evaluation of a Vehicular Network Based on NEMO and MANET

    Science.gov (United States)

    Tsukada, Manabu; Santa, José; Mehani, Olivier; Khaled, Yacine; Ernst, Thierry

    2010-12-01

    Mobile Ad hoc Network (MANET) routing protocols and Network Mobility (NEMO) Basic Support are considered key technologies for vehicular networks. MANEMO, that is, the combination of MANET (for infrastructureless communications) and NEMO (for infrastructure-based communications) offers a number of benefits, such as route optimization or multihoming. With the aim of assessing the benefits of this synergy, this paper presents a policy-based solution to distribute traffic among multiple paths to improve the overall performance of a vehicular network. An integral vehicular communication testbed has been developed to carry out field trials. First, the performance of the Optimized Link State Routing protocol (OLSR) is evaluated in a vehicular network with up to four vehicles. To analyze the impact of the vehicles' position and movement on network performances, an integrated evaluation environment called AnaVANET has been developed. Performance results have been geolocated using GPS information. Second, by switching from NEMO to MANET, routes between vehicles are optimized, and the final performance is improved in terms of latency and bandwidth. Our experimental results show that the network operation is further improved with simultaneous usage of NEMO and MANET.

  9. Building, Sharing and Exploiting Spatio-Temporal Aggregates in Vehicular Networks

    OpenAIRE

    Dorsaf Zekri; Bruno Defude; Thierry Delot

    2014-01-01

    This article focuses on data aggregation in vehicular ad hoc networks (VANETs). In such networks, data produced by sensors or crowdsourcers are exchanged between vehicles in order to warn or inform drivers when an event occurs (e.g., an accident, a traffic congestion, a parking space released, a vehicle with non-functioning brake lights, etc.). In the following, we propose to generate spatio-temporal aggregates containing these data in order to keep a summary of past events. We therefore use ...

  10. Lagrangian formulation of the one-dimensional Vlasov equation. [in plasma physics

    Science.gov (United States)

    Lewak, G. J.

    1974-01-01

    A new formulation of the one-dimensional Vlasov equation is derived which is analogous to the Kalman-transformed cold-plasma equations. The equations are shown to yield nonsecular, nonlinear approximations to a source or boundary-value problem. It is suggested that the formulation may have other applications in nonlinear plasma theory.

  11. Electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.;

    2003-01-01

    We study the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ by means of density-functional band theory, Hubbard model calculations, and angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant quantitative and qualitative...

  12. One-dimensional organic lead halide perovskites with efficient bluish white-light emission

    Science.gov (United States)

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-01

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2-]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.

  13. Critical exponents in the transition to chaos in one-dimensional discrete systems

    Indian Academy of Sciences (India)

    G Ambika; N V Sujatha

    2002-07-01

    We report the numerically evaluated critical exponents associated with the scaling of generalized fractal dimensions during the transition from order to chaos. The analysis is carried out in detail in the context of unimodal and bimodal maps representing typical one-dimensional discrete dynamical systems. The behavior of Lyapunov exponents (LE) in the cross over region is also studied for a complete characterization.

  14. Functional equation for the crossover in the model of one-dimensional Weierstrass random walks

    Science.gov (United States)

    Rudoi, Yu. G.; Kotel'nikova, O. A.

    2016-12-01

    We consider the problem of one-dimensional symmetric diffusion in the framework of Markov random walks of the Weierstrass type using two-parameter scaling for the transition probability. We construct a solution for the characteristic Lyapunov function as a sum of regular (homogeneous) and singular (nonhomogeneous) solutions and find the conditions for the crossover from normal to anomalous diffusion.

  15. Observation of Zero-Dimensional States in a One-Dimensional Electron Interferometer

    NARCIS (Netherlands)

    Wees, B.J. van; Kouwenhoven, L.P.; Harmans, C.J.P.M.; Williamson, J.G.; Timmering, C.E.; Broekaart, M.E.I.; Foxon, C.T.; Harris, J.J.

    1989-01-01

    We have studied the electron transport in a one-dimensional electron interferometer. It consists of a disk-shaped two-dimensional electron gas, to which quantum point contacts are attached. Discrete zero-dimensional states are formed due to constructive interference of electron waves traveling along

  16. The exact solution to the one-dimensional Poisson–Boltzmann equation with asymmetric boundary conditions

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2014-01-01

    The exact solution to the one-dimensional Poisson–Boltzmann equation with asymmetric boundary conditions can be expressed in terms of the Jacobi elliptic functions. The boundary conditions determine the modulus of the Jacobi elliptic functions. The boundary conditions can not be solved analytically...

  17. Absolute and convective instabilities in a one-dimensional Brusselator flow model

    DEFF Research Database (Denmark)

    Kuznetsov, S.P.; Mosekilde, Erik; Dewel, G.

    1997-01-01

    The paper considers a one-dimensional Brusselator model with a uniform flow of the mixture of reaction components. An absolute as well as a convective instability can arise for both the Hopf and the Turing modes. The corresponding linear stability analysis is presented and supported by the results...

  18. Apparent power-law behavior of conductance in disordered quasi-one-dimensional systems.

    Science.gov (United States)

    Rodin, A S; Fogler, M M

    2010-09-03

    The dependence of hopping conductance on temperature and voltage for an ensemble of modestly long one-dimensional wires is studied numerically using the shortest-path algorithm. In a wide range of parameters this dependence can be approximated by a power law rather than the usual stretched-exponential form. The relation to recent experiments and prior analytical theory is discussed.

  19. Explicit solutions of one-dimensional, first-order, stationary mean-field games with congestion

    KAUST Repository

    Gomes, Diogo A.

    2017-01-05

    Here, we consider one-dimensional first-order stationary mean-field games with congestion. These games arise when crowds face difficulty moving in high-density regions. We look at both monotone decreasing and increasing interactions and construct explicit solutions using the current formulation. We observe new phenomena such as discontinuities, unhappiness traps and the non-existence of solutions.

  20. Controllable plasma energy bands in a one-dimensional crystal of fractional Josephson vortices

    NARCIS (Netherlands)

    Susanto, H.; Goldobin, E.; Koelle, D.; Kleiner, R.; Gils, van S.A.

    2005-01-01

    We consider a one-dimensional chain of fractional vortices in a long Josephson junction with alternating ±kappa phase discontinuities. Since each vortex has its own eigenfrequency, the intervortex coupling results in eigenmode splitting and in the formation of an oscillatory energy band for plasma w

  1. Vortex-lattice melting in a one-dimensional optical lattice

    NARCIS (Netherlands)

    Snoek, M.; Stoof, H.T.C.

    2006-01-01

    We investigate quantum fluctuations of a vortex lattice in a one-dimensional optical lattice. Our method gives full access to all the modes of the vortex lattice and we discuss in particular the Bloch bands of the Tkachenko modes. Because of the small number of particles in the pancake

  2. Theory of vortex-lattice melting in a one-dimensional optical lattice

    NARCIS (Netherlands)

    Snoek, M.; Stoof, H.T.C.

    2006-01-01

    We investigate quantum and temperature fluctuations of a vortex lattice in a one-dimensional optical lattice. We discuss in particular the Bloch bands of the Tkachenko modes and calculate the correlation function of the vortex positions along the direction of the optical lattice. Because of the

  3. Vortex-lattice melting in a one-dimensional optical lattice

    NARCIS (Netherlands)

    Snoek, M.; Stoof, H.T.C.

    2006-01-01

    We investigate quantum fluctuations of a vortex lattice in a one-dimensional optical lattice for realistic numbers of particles and vortices. Our method gives full access to all the modes of the vortex lattice and we discuss in particular the Bloch bands of the Tkachenko modes. Because of the

  4. Study on one-dimensional consolidation of soil under cyclic loading and with varied compressibility

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Ying-chun; XIE Kang-he

    2005-01-01

    This paper presents a semi-analytical method to solve one dimensional consolidation problem by taking consideration of varied compressibility of soil under cyclic loading. In the method, soil stratum is divided equally into n layers while load and consolidation time are also divided into small parts and time intervals accordingly. The problem of one-dimensional consolidation of soil stratum under cyclic loading can then be dealt with at each time interval as one-dimensional linear consolidation of multi-layered soils under constant loading. The compression or rebounding of each soil layer can be judged by the effective stress of the layer. When the effective stress is larger than that in the last time interval, the soil layer is compressed, and when it is smaller, the soil layer rebounds. Thus, appropriate compressibility can be chosen and the consolidation of the layered system can be analyzed by the available analytical linear consolidation theory. Based on the semi-analytical method, a computer program was developed and the behavior of one-dimensional consolidation of soil with varied compressibility under cyclic loading was investigated, and compared with the available consolidation theory which takes no consideration of varied compressibility of soil under cyclic loading. The results showed that by taking the variable compressibility into account, the rate of consolidation of soil was greater than the one predicted by conventional consolidation theory.

  5. Characterization for defect modes of one-dimensional photonic crystals containing metamaterials

    Institute of Scientific and Technical Information of China (English)

    Ling Tang; Lei Gao; Jianxing Fang

    2008-01-01

    Transmission studies for one-dimensional photonic crystals(1DPCs)containing single-negative(SNG)materials inserted with multiple defects are presented.The numbers and positions of the defect modes inside zero-phase(zero-φeff)gap are found to be well characterized by effective medium theory.

  6. Quasi-one-dimensional photonic crystal as a compact building block for refractometric optical sensors

    NARCIS (Netherlands)

    Hopman, Wico C.L.; Pottier, Pierre; Yudistira, Didit; Lith, van Joris; Lambeck, Paul V.; De La Rue, Richard M.; Driessen, Alfred; Hoekstra, Hugo J.W.M.; Ridder, de René M.

    2005-01-01

    We report the fabrication and the characterization of the refractometric and thermo-optical properties of a quasi-one-dimensional waveguide photonic crystal-a strong, 76-micron-long Bragg grating. The transmission spectra (around 660 nm) of the structure have been measured as a function of both the

  7. Spectroscopy of photonic band gaps in mesoporous one-dimensional photonic crystals based on aluminum oxide

    Science.gov (United States)

    Gorelik, V. S.; Voinov, Yu. P.; Shchavlev, V. V.; Bi, Dongxue; Shang, Guo Liang; Fei, Guang Tao

    2016-12-01

    Mesoporous one-dimensional photonic crystals based on aluminum oxide have been synthesized by electrochemical etching method. Reflection spectra of the obtained mesoporous samples in a wide spectral range that covers several band gaps are presented. Microscopic parameters of photonic crystals are calculated and corresponding reflection spectra for the first six band gaps are presented.

  8. Comparing the Impact of Dynamic and Static Media on Students' Learning of One-Dimensional Kinematics

    Science.gov (United States)

    Mešic, Vanes; Dervic, Dževdeta; Gazibegovic-Busuladžic, Azra; Salibašic, Džana; Erceg, Nataša

    2015-01-01

    In our study, we aimed to compare the impact of simulations, sequences of printed simulation frames and conventional static diagrams on the understanding of students with regard to the one-dimensional kinematics. Our student sample consisted of three classes of middle years students (N = 63; mostly 15 year-olds). These three classes served as…

  9. Entanglement in One-Dimensional Random XY Spin Chain with Dzyaloshinskii-Moriya Interaction

    Institute of Scientific and Technical Information of China (English)

    SHAN Chuan-Jia; CHENG Wei-Wen; LIU Tang-Kun; HUANG Yan-Xia; LI Hong

    2008-01-01

    @@ The impurities of exchange couplings,external magnetic fields and Dzyaloshinskii-Moriya (DM)interaction considered as Ganssian distribution.and the entanglement in one-dimensional random XY spin systems is investigated by the method of solving the different spin-spin correlation functions and the average magnetization per spin.

  10. Global solutions with infinite energy for the one-dimensional Zakharov system

    Directory of Open Access Journals (Sweden)

    Hartmut Pecher

    2005-04-01

    Full Text Available The one-dimensional Zakharov system is shown to have a unique global solution for data without finite energy. The proof uses the ``I-method'' introduced by Colliander, Keel, Staffilani, Takaoka, and Tao in connection with a refined bilinear Strichartz estimate.

  11. Exact Solution to the One-Dimensional Dirac Equation with Time Varying Mass

    Institute of Scientific and Technical Information of China (English)

    YANG Jin; XIANG An-Ping; YU Wan-Lun

    2003-01-01

    We directly use the quantum-invariant operator method to obtain the closed-form solution to the one-dimensional Dirac equation with a time-changing mass with a little manipulation. The solution got is also applicable forthe case with time-independence mass.

  12. Exact Solution to the One-Dimensional Dirac Equation with Time Varying Mass

    Institute of Scientific and Technical Information of China (English)

    YANGJin; XIANGAn-Ping; YUWan-Lun

    2003-01-01

    We directly use the quantum-invariant operator method to obtain the closed-form solution to the one-dimensional Dirac equation with a time-changing mass with a little manipulation. The solution got is also applicable for the case with time-independence mass.

  13. Pairing and phase separation in a one-dimensional spin-bag liquid

    NARCIS (Netherlands)

    Wrobel, P.; Eder, R

    1996-01-01

    We study the one-dimensional t-J model in a staggered magnetic field by a variational calculation based on the string picture. Our key assumption is the separation of energy scales between rapid incoherent hole motion on scale t and slow coherent motion on scale J. We discuss pair formation and phas

  14. Sol-gel fabrication of one-dimensional photonic crystals with predicted transmission spectra

    Science.gov (United States)

    Ilinykh, V. A.; Matyushkin, L. B.

    2016-08-01

    One-dimensional multilayer structures of periodically alternating low refractive index (silica) and high refractive index (titania) materials have been deposited by sol-gel spincoating. Experimental spectra of the structures are in agreement with spectra calculated by transfer matrix technique. As an example, theoretical and experimental spectra with a stop band corresponding 600 nm-reflection are shown.

  15. Riemann problem for one-dimensional binary gas enhanced coalbed methane process

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With an extended Langmuir isotherm, a Riemann problem for one-dimensional binary gas enhanced coalbed methane (ECBM) process is investigated. A new analytical solution to the Riemann problem, based on the method of characteristics, is developed by introducing a gas selectivity ratio representing the gas relative sorption affinity. The influence of gas selectivity ratio on the enhanced coalbed methane processes is identified.

  16. Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.

    2003-01-01

    We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)(2)PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray-induced photoemission spectroscopy turns out to be a valuable nondestructive d...

  17. Existence, Multiplicity and Infinite Solvability of Positive Solutions for One-Dimensional p-Laplacian

    Institute of Scientific and Technical Information of China (English)

    Qing Liu YAO

    2005-01-01

    The existence, multiplicity and infinite solvability of positive solutions are established for some two-point boundary value problems of one-dimensional p-Laplacian. In this paper, by multiplicity we mean the existence of m solutions, where m is an arbitrary natural number.

  18. Yang-Yang thermometry and momentum distribution of a trapped one-dimensional Bose gas

    NARCIS (Netherlands)

    Davis, M.J.; Blakie, P.B.; van Amerongen, A.H.; van Druten, N.J.; Kheruntsyan, K.V.

    2012-01-01

    We describe the use of the exact Yang-Yang solutions for the one-dimensional Bose gas to enable accurate kinetic-energy thermometry based on the root-mean-square width of an experimentally measured momentum distribution. Furthermore, we use the stochastic projected Gross-Pitaevskii theory to provide

  19. Finite-temperature correlations in the Lieb-Liniger one-dimensional Bose gas

    NARCIS (Netherlands)

    Panfil, M.; Caux, J.-S.

    2014-01-01

    We address the problem of calculating finite-temperature response functions of an experimentally relevant low-dimensional, strongly correlated system: the integrable one-dimensional Bose gas with a repulsive δ-function interaction (the Lieb-Liniger model). Focusing on the dynamical density-density f

  20. Comparison between one-dimensional and two-dimensional models for Josephson junctions of overlap type

    DEFF Research Database (Denmark)

    Eilbeck, J. C; Lomdahl, P.S.; Olsen, O.H.

    1985-01-01

    A two-dimensional model of Josephson junction of overlap type is presented. The energy input is provided through induced magnetic fields modeled by a set of boundary conditions. In the limit of a very narrow junction, this model reduces to the one-dimensional model. Further, an equation derived f...

  1. Scaling Relations and Optimization of Excitonic Energy Transfer Rates between One-Dimensional Molecular Aggregates

    NARCIS (Netherlands)

    Chuang, Chern; Knoester, Jasper; Cao, Jianshu

    2014-01-01

    We theoretically study the distance, chain length, and temperature dependence of the electronic couplings as well as the excitonic energy transfer rates between one-dimensional (1D) chromophore aggregates. In addition to the well-known geometry dependent factor that leads to the deviation from Forst

  2. Cooperative jump motions of jammed particles in a one-dimensional periodic potential.

    Science.gov (United States)

    Sakaguchi, Hidetsugu

    2009-12-01

    Cooperative jump motions are studied for mutually interacting particles in a one-dimensional periodic potential. The diffusion constant for the cooperative motion in systems including a small number of particles is numerically calculated and it is compared with theoretical estimates. We find that the size distribution of the cooperative jump motions obeys an exponential law in a large system.

  3. Cooperative jump motions of jammed particles in a one-dimensional periodic potential

    OpenAIRE

    Sakaguchi, Hidetsugu

    2009-01-01

    Cooperative jump motions are studied for mutually interacting particles in a one-dimensional periodic potential. The diffusion constant for the cooperative motion in systems including a small number of particles is numerically calculated and it is compared with theoretical estimates. We find that the size distribution of the cooperative jump motions obeys an exponential law in a large system.

  4. One-dimensional model for heat transfer to a supercritical water flow in a tube

    NARCIS (Netherlands)

    Sallevelt, J.L.H.P.; Withag, J.A.M.; Bramer, E.A.; Brilman, D.W.F.; Brem, G.

    2012-01-01

    Heat transfer in water at supercritical pressures has been investigated numerically using a one-dimensional modeling approach. A 1D plug flow model has been developed in order to make fast predictions of the bulk-fluid temperature in a tubular flow. The chosen geometry is a vertical tube with an inn

  5. Hydrodynamical form for the one-dimensional Gross-Pitaevskii equation

    Directory of Open Access Journals (Sweden)

    Haidar Mohamad

    2014-06-01

    Full Text Available We establish a well-posedness result for the hydrodynamical form (HGP of the one dimensional Gross-Pitaevskii equation (GP via the classical form of this equation. The result established in this way proves that (HGP is locally well-posed since the solution of (GP can vanished at some $t\

  6. Optimization of the principal eigenvalue of the one-dimensional Schrodinger operator

    Directory of Open Access Journals (Sweden)

    Ryan I. Fernandes

    2008-04-01

    Full Text Available In this paper we consider two optimization problems related to the principal eigenvalue of the one dimensional Schrodinger operator. These optimization problems are formulated relative to the rearrangement of a fixed function. We show that both problems have unique solutions, and each of these solutions is a fixed point of an appropriate function.

  7. Numerical simulation of the one-dimensional population dynamics with nonlocal competitive losses and convection

    Science.gov (United States)

    Aleutdinova, V. A.; Borisov, A. V.; Shaparev, V. É.; Shapovalov, A. V.

    2011-09-01

    Numerical solutions of the generalized one-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation with nonlocal competitive losses and convection are constructed. The influence function for nonlocal losses is chosen in the form of a Gaussian distribution. The effect of convection on the dynamics of the spatially inhomogeneous distribution of the population density is investigated.

  8. $C_{0}$-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain

    NARCIS (Netherlands)

    Jacob, Birgit; Morris, Kirsten; Zwart, Hans

    2015-01-01

    Hyperbolic partial differential equations on a one-dimensional spatial domain are studied. This class of systems includes models of beams and waves as well as the transport equation and networks of nonhomogeneous transmission lines. The main result of this paper is a simple test for $C_{0}$-semigrou

  9. ONE-DIMENSIONAL HYDRODYNAMIC/SEDIMENT TRANSPORT MODEL FOR STREAM NETWORKS: TECHNICAL REPORT

    Science.gov (United States)

    This technical report describes a new sediment transport model and the supporting post-processor, and sampling procedures for sediments in streams. Specifically, the following items are described herein: EFDC1D - This is a new one-dimensional hydrodynamic and sediment tr...

  10. An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems

    DEFF Research Database (Denmark)

    Andersen, Molte Emil Strange; Salami Dehkharghani, Amin; Volosniev, A. G.;

    2016-01-01

    beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly...

  11. One-dimensional organic lead halide perovskites with efficient bluish white-light emission

    Science.gov (United States)

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-01

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2−]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials. PMID:28051092

  12. Coupled optical defect microcavities in one-dimensional photonic crystals and quasi-normal modes

    NARCIS (Netherlands)

    Maksimovic, Milan; Lohmeyer, Manfred; van Groesen, Embrecht W.C.

    2008-01-01

    We analyze coupled optical defect cavities realized in finite one-dimensional photonic crystals (PC). Viewing these as open systems, where waves are permitted to leave the structures, one obtains eigenvalue problems for complex frequencies (eigenvalues) and quasi-normal modes (QNM) (eigenfunctions).

  13. Simple Two-Dimensional Corrections for One-Dimensional Pulse Tube Models

    Science.gov (United States)

    Lee, J. M.; Kittel, P.; Timmerhaus, K. D.; Radebaugh, R.

    2004-01-01

    One-dimensional oscillating flow models are very useful for designing pulse tubes. They are simple to use, not computationally intensive, and the physical relationship between temperature, pressure and mass flow are easy to understand when used in conjunction with phasor diagrams. They do not possess, however, the ability to directly calculate thermal and momentum diffusion in the direction transverse to the oscillating flow. To account for transverse effects, lumped parameter corrections, which are obtained though experiment, must be used. Or two-dimensional solutions of the differential fluid equations must be obtained. A linear two-dimensional solution to the fluid equations has been obtained. The solution provides lumped parameter corrections for one-dimensional models. The model accounts for heat transfer and shear flow between the gas and the tube. The complex Nusselt number and complex shear wall are useful in describing these corrections, with phase relations and amplitudes scaled with the Prandtl and Valensi numbers. The calculated ratio, a, between a two-dimensional solution of the oscillating temperature and velocity and a one-dimensional solution for the same shows a scales linearly with Va for Va less than 30. In this region alpha less than 0.5, that is, the enthalpy flow calculated with a two-dimensional model is 50% of a calculation using a one-dimensional model. For Va greater than 250, alpha = 0.8, showing that diffusion is still important even when it is confined to a thing layer near the tube wall.

  14. Ultracold bosons in a one-dimensional optical lattice chain: Newton's cradle and Bose enhancement effect

    Science.gov (United States)

    Wang, Ji-Guo; Yang, Shi-Jie

    2017-05-01

    We study a model to realize the long-distance correlated tunneling of ultracold bosons in a one-dimensional optical lattice chain. The model reveals the behavior of a quantum Newton's cradle, which is the perfect transfer between two macroscopic quantum states. Due to the Bose enhancement effect, we find that the resonantly tunneling through a Mott domain is greatly enhanced.

  15. Transition regime of the one-dimensional two-stream instability

    CERN Document Server

    Lotov, K V

    2014-01-01

    The transition between kinetic and hydrodynamic regimes of the one-dimensional two-stream instability is numerically analyzed, and the correction coefficients to the well-known textbook formulae are calculated. The approximate expressions are shown to overestimate the growth rate several times in a wide parameter area.

  16. The dynamics of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates

    Institute of Scientific and Technical Information of China (English)

    Lü Bin-Bin; Hao Xue; Tian Qiang

    2011-01-01

    This paper investigates the dynamical properties of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates. It gives three kinds of stationary solutions to this model and develops a general method of constructing nonstationary solutions. It obtains the unique features about general evolution and soliton evolution of nonstationary solutions in this model.

  17. Critical Behaviour of the One-Dimensional Ferromagnetic t - J Model

    Institute of Scientific and Technical Information of China (English)

    杨赋; 王玉鹏

    2002-01-01

    The one-dimensional super-symmetric ferromagnetic t - J model is studied via the thermal Bethe ansatz. Analytic expressions of the free energy for T → 0 are obtained. A new critical behaviour beyond the universal class of Luttinger liquids is found in this system.

  18. Results from field tests of the one-dimensional Time-Encoded Imaging System.

    Energy Technology Data Exchange (ETDEWEB)

    Marleau, Peter; Brennan, James S.; Brubaker, Erik

    2014-09-01

    A series of field experiments were undertaken to evaluate the performance of the one dimensional time encoded imaging system. The significant detection of a Cf252 fission radiation source was demonstrated at a stand-off of 100 meters. Extrapolations to different quantities of plutonium equivalent at different distances are made. Hardware modifications to the system for follow on work are suggested.

  19. Derivation of Ginzburg-Landau theory for a one-dimensional system with contact interaction

    DEFF Research Database (Denmark)

    Frank, Rupert; Hanizl, Christian; Seiringer, Robert

    2013-01-01

    In a recent paper we give the first rigorous derivation of the celebrated Ginzburg-Landau (GL) theory, starting from the microscopic Bardeen-Cooper-Schrieffer (BCS) model. Here we present our results in the simplified case of a one-dimensional system of particles interacting via a delta-potential....

  20. Simple One-Dimensional Quantum-Mechanical Model for a Particle Attached to a Surface

    Science.gov (United States)

    Fernandez, Francisco M.

    2010-01-01

    We present a simple one-dimensional quantum-mechanical model for a particle attached to a surface. It leads to the Schrodinger equation for a harmonic oscillator bounded on one side that we solve in terms of Weber functions and discuss the behaviour of the eigenvalues and eigenfunctions. We derive the virial theorem and other exact relationships…

  1. The homoclinic and heteroclinic C*-algebra of a generalized one-dimensional solenoid

    DEFF Research Database (Denmark)

    Thomsen, Klaus

    2010-01-01

    D. Ruelle and I. Putnam have constructed three C*-algebras from the homoclinic and heteroclinic structure of a Smale space. This paper gives gives a complete description of these algebras when the Smale space is one of the generalized one-dimensional solenoids studied by R. Williams and I. Yi....

  2. Impenetrable Mass-Imbalanced Particles in One-Dimensional Harmonic Traps

    DEFF Research Database (Denmark)

    Salami Dehkharghani, Amin; Volosniev, A. G.; Zinner, N. T.

    2016-01-01

    . This is particularly important since such problems are generally considered non-integrable and thus the hugely successful Bethe ansatz approach cannot be applied. Here we discuss some initial steps towards this goal by investigating small ensembles of one-dimensional harmonically trapped particles where pairwise...

  3. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers

    NARCIS (Netherlands)

    de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries

    2014-01-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic

  4. Quasi One-Dimensional Photonic Crystals as Building Block for Compact Integrated Optical Refractometric Sensors

    NARCIS (Netherlands)

    Hopman, Wico; Pottier, Pierre; Yudistira, Didit; Lith, van Joris; Lambeck, Paul; De La Rue, Richard; Driessen, Alfred; Hoekstra, Hugo J.W.M.; Ridder, de René M.

    2004-01-01

    A quasi one-dimensional photonic crystal has been fabricated and the applicability of this strong grating for optical sensing has been investigated by measuring the transmission spectra as a function of the cladding refractive index. The cladding index was varied a small range. By monitoring the tra

  5. Solution to the one-dimensional Rayleigh-Plesset equation by the Differential Transform method

    CERN Document Server

    Narendranath, Aneet Dharmavaram

    2016-01-01

    The differential transform method (DTM) is a relatively new technique that may be used to find a series solution to differential equations (both linear and nonlinear) through an iterative process. This brief manuscript is an initial effort in applying the DTM to provide a series solution to the one-dimensional Rayleigh-Plesset equation (RPE).

  6. Flow Patterns and Thermal Drag in a One-Dimensional Inviscid Channel with Heating or Cooling

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    In this paper investigations on the flow patterns and the thermal drag phenomenon in one -dimensional inviscid channel flow with heating or cooling are described and discussed:expressions of flow rate ratio and thermal drag coefficient for different flow patterns and its physical mechanism are presented.

  7. Simple One-Dimensional Quantum-Mechanical Model for a Particle Attached to a Surface

    Science.gov (United States)

    Fernandez, Francisco M.

    2010-01-01

    We present a simple one-dimensional quantum-mechanical model for a particle attached to a surface. It leads to the Schrodinger equation for a harmonic oscillator bounded on one side that we solve in terms of Weber functions and discuss the behaviour of the eigenvalues and eigenfunctions. We derive the virial theorem and other exact relationships…

  8. Benchmarking high order finite element approximations for one-dimensional boundary layer problems

    NARCIS (Netherlands)

    Malagu, M.; Benvenuti, E.; Simone, A.

    2013-01-01

    In this article we investigate the application of high order approximation techniques to one-dimensional boundary layer problems. In particular, we use second order differential equations and coupled second order differential equations as case studies. The accuracy and convergence rate of numerical

  9. Theory of coherent time-dependent transport in one-dimensional multiband semiconductor super-lattices

    DEFF Research Database (Denmark)

    Rotvig, J.; Smith, H.; Jauho, Antti-Pekka

    1996-01-01

    We present an analytical study of one-dimensional semiconductor superlattices in external electric fields, which may be time dependent. A number of general results for the (quasi)energies and eigenstates are derived. An equation of motion for the density matrix is obtained for a two-band model an....... 74, 1831 (1995)], where a set of numerical simulations was presented....

  10. Well-posedness for one-dimensional anisotropic Cahn-Hilliard and Allen-Cahn systems

    Directory of Open Access Journals (Sweden)

    Ahmad Makki

    2015-01-01

    Full Text Available Our aim is to prove the existence and uniqueness of solutions for one-dimensional Cahn-Hilliard and Allen-Cahn type equations based on a modification of the Ginzburg-Landau free energy proposed in [8]. In particular, the free energy contains an additional term called Willmore regularization and takes into account strong anisotropy effects.

  11. One-dimensional modelling of limit-cycle oscillation and H-mode power scaling

    DEFF Research Database (Denmark)

    Wu, Xingquan; Xu, Guosheng; Wan, Baonian

    2015-01-01

    To understand the connection between the dynamics of microscopic turbulence and the macroscale power scaling in the L-I-H transition in magnetically confined plasmas, a new time-dependent, one-dimensional (in radius) model has been developed. The model investigates the radial force balance equati...

  12. The effects of one-dimensional glide on the reaction kinetics of interstitial clusters

    DEFF Research Database (Denmark)

    Heinisch, H.L.; Singh, B.N.; Golubov, S.I.

    2000-01-01

    Collision cascades in metals produce small interstitial clusters and perfect dislocation loops that glide in thermally activated one-dimensional (1D) random walks. These gliding defects can change their Burgers vectors by thermal activation or by interactions with other defects. Their migration i...

  13. Transport in an Electron Interferometer and an Artificial One-Dimensional Crystal

    NARCIS (Netherlands)

    Wees, B.J. van; Kouwenhoven, L.P.; Kraayeveld, J.R.; Hekking, F.W.J.; Harmans, C.J.P.M.; Williamson, J.G.

    1990-01-01

    We have studied the electron transport in a one-dimensional electron interferometer. It consists of a quantum dot, defined in a two-dimensional electron gas, to which quantum point contacts are attached. Discrete electronic states are formed due to the constructive interference of electron waves whi

  14. Opportunistic spectrum utilization in vehicular communication networks

    CERN Document Server

    Cheng, Nan

    2016-01-01

    This brief examines current research on improving Vehicular Networks (VANETs), examining spectrum scarcity due to the dramatic growth of mobile data traffic and the limited bandwidth of dedicated vehicular communication bands and the use of opportunistic spectrum bands to mitigate congestion. It reviews existing literature on the use of opportunistic spectrum bands for VANETs, including licensed and unlicensed spectrum bands and a variety of related technologies, such as cognitive radio, WiFi and device-to-device communications. Focused on analyzing spectrum characteristics, designing efficient spectrum exploitation schemes, and evaluating the date delivery performance when utilizing different opportunistic spectrum bands, the results presented in this brief provide valuable insights on improving the design and deployment of future VANETs.

  15. Safety message broadcast in vehicular networks

    CERN Document Server

    Bi, Yuanguo; Zhuang, Weihua; Zhao, Hai

    2017-01-01

    This book presents the current research on safety message dissemination in vehicular networks, covering medium access control and relay selection for multi-hop safety message broadcast. Along with an overall overview of the architecture, characteristics, and applications of vehicular networks, the authors discuss the challenging issues in the research on performance improvement for safety applications, and provide a comprehensive review of the research literature. A cross layer broadcast protocol is included to support efficient safety message broadcast by jointly considering geographical location, physical-layer channel condition, and moving velocity of vehicles in the highway scenario. To further support multi-hop safety message broadcast in a complex road layout, the authors propose an urban multi-hop broadcast protocol that utilizes a novel forwarding node selection scheme. Additionally, a busy tone based medium access control scheme is designed to provide strict priority to safety applications in vehicle...

  16. Passive magnetic bearings for vehicular electromechanical batteries

    Energy Technology Data Exchange (ETDEWEB)

    Post, R

    1996-03-01

    This report describes the design of a passive magnetic bearing system to be used in electromechanical batteries (flywheel energy storage modules) suitable for vehicular use. One or two such EMB modules might, for example, be employed in a hybrid-electric automobile, providing efficient means for power peaking, i.e., for handling acceleration and regenerative braking power demands at high power levels. The bearing design described herein will be based on a ''dual-mode'' operating regime.

  17. Rational solutions to two- and one-dimensional multicomponent Yajima–Oikawa systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junchao [Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, 200062 (China); Department of Mathematics, The University of Texas – Pan American, Edinburg, TX 78541 (United States); Chen, Yong, E-mail: ychen@sei.ecnu.edu.cn [Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, 200062 (China); Feng, Bao-Feng, E-mail: feng@utpa.edu [Department of Mathematics, The University of Texas – Pan American, Edinburg, TX 78541 (United States); Maruno, Ken-ichi, E-mail: kmaruno@waseda.jp [Department of Applied Mathematics, School of Fundamental Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2015-07-31

    Exact explicit rational solutions of two- and one-dimensional multicomponent Yajima–Oikawa (YO) systems, which contain multi-short-wave components and single long-wave one, are presented by using the bilinear method. For two-dimensional system, the fundamental rational solution first describes the localized lumps, which have three different patterns: bright, intermediate and dark states. Then, rogue waves can be obtained under certain parameter conditions and their behaviors are also classified to above three patterns with different definition. It is shown that the simplest (fundamental) rogue waves are line localized waves which arise from the constant background with a line profile and then disappear into the constant background again. In particular, two-dimensional intermediate and dark counterparts of rogue wave are found with the different parameter requirements. We demonstrate that multirogue waves describe the interaction of several fundamental rogue waves, in which interesting curvy wave patterns appear in the intermediate times. Different curvy wave patterns form in the interaction of different types fundamental rogue waves. Higher-order rogue waves exhibit the dynamic behaviors that the wave structures start from lump and then retreat back to it, and this transient wave possesses the patterns such as parabolas. Furthermore, different states of higher-order rogue wave result in completely distinguishing lumps and parabolas. Moreover, one-dimensional rogue wave solutions with three states are constructed through the further reduction. Specifically, higher-order rogue wave in one-dimensional case is derived under the parameter constraints. - Highlights: • Exact explicit rational solutions of two-and one-dimensional multicomponent Yajima–Oikawa systems. • Two-dimensional rogue wave contains three different patterns: bright, intermediate and dark states. • Multi- and higher-order rogue waves exhibit distinct dynamic behaviors in two-dimensional case

  18. Cooperative vehicular communications in the drive-thru internet

    CERN Document Server

    Zhou, Haibo; Yu, Quan; Shen, Xuemin (Sherman)

    2015-01-01

    This brief presents a unified analytical framework for the evaluation of drive-thru Internet performance and accordingly proposes an optimal spatial access control management approach. A comprehensive overview and in-depth discussion of the research literature is included. It summarizes the main concepts and methods, and highlights future research directions. The brief also introduces a novel cooperative vehicular communication framework together with a delicate linear cluster formation scheme and low-delay content forwarding approach to provide a flexible and efficient vehicular content distribution in the drive-thru Internet. The presented medium access control and vehicular content distribution related research results in this brief provide useful insights for the design approach of Wi-Fi enabled vehicular communications and it motivates a new line of thinking for the performance enhancements of future vehicular networking. Advanced-level students, researchers and professionals interested in vehicular netw...

  19. Spin-incoherent one-dimensional spin-1 Bose Luttinger liquid

    Science.gov (United States)

    Jen, H. H.; Yip, S.-K.

    2016-09-01

    We investigate spin-incoherent Luttinger liquid of a one-dimensional spin-1 Bose gas in a harmonic trap. In this regime highly degenerate spin configurations emerge since the energy splitting between different spin states is much less than the thermal energy of the system, while the temperature is low enough that the lowest energetic orbitals are occupied. As an example we numerically study the momentum distribution of a one-dimensional spin-1 Bose gas in Tonks-Girardeau gas limit and in the sector of zero magnetization. We find that the momentum distributions broaden as the number of atoms increase due to the averaging of spin function overlaps. Large momentum (p ) asymptotic is analytically derived, showing the universal 1 /p4 dependence. We demonstrate that the spin-incoherent Luttinger liquid has a momentum distribution also distinct from spinless bosons at finite temperature.

  20. Study of ac hopping conductivity on one-dimensional nanometre systems

    Institute of Scientific and Technical Information of China (English)

    徐慧; 宋祎璞

    2002-01-01

    In this paper, we establish a one-dimensional random nanocrystalline chain model, we derive a new formula of ac electron-phonon-field conductance for electron tunnelling transfer in one-dimensional nanometre systems. By calculating the ac conductivity, the relationship between the electric field, temperature and conductivity is analysed, and the effect of crystalline grain size and distortion of interfacial atoms on the ac conductance is discussed. A characteristic of negative differential dependence of resistance and temperature in the low-temperature region for a nanometre system is found. The ac conductivity increases linearly with rising frequency of the electric field, and it tends to increase as the crystalline grain size increases and to decrease as the distorted degree of interfacial atoms increases.