WorldWideScience

Sample records for one-dimensional nanostructure effects

  1. Constructing Two-, Zero-, and One-Dimensional Integrated Nanostructures: an Effective Strategy for High Microwave Absorption Performance.

    Science.gov (United States)

    Sun, Yuan; Xu, Jianle; Qiao, Wen; Xu, Xiaobing; Zhang, Weili; Zhang, Kaiyu; Zhang, Xing; Chen, Xing; Zhong, Wei; Du, Youwei

    2016-11-23

    A novel "201" nanostructure composite consisting of two-dimensional MoS 2 nanosheets, zero-dimensional Ni nanoparticles and one-dimensional carbon nanotubes (CNTs) was prepared successfully by a two-step method: Ni nanopaticles were deposited onto the surface of few-layer MoS 2 nanosheets by a wet chemical method, followed by chemical vapor deposition growth of CNTs through the catalysis of Ni nanoparticles. The as-prepared 201-MoS 2 -Ni-CNTs composites exhibit remarkably enhanced microwave absorption performance compared to Ni-MoS 2 or Ni-CNTs. The minimum reflection loss (RL) value of 201-MoS 2 -Ni-CNTs/wax composites with filler loading ratio of 30 wt % reached -50.08 dB at the thickness of 2.4 mm. The maximum effective microwave absorption bandwidth (RL< -10 dB) of 6.04 GHz was obtained at the thickness of 2.1 mm. The excellent absorption ability originates from appropriate impedance matching ratio, strong dielectric loss and large surface area, which are attributed to the "201" nanostructure. In addition, this method could be extended to other low-dimensional materials, proving to be an efficient and promising strategy for high microwave absorption performance.

  2. One-Dimensional Hetero-Nanostructures for Rechargeable Batteries.

    Science.gov (United States)

    Mai, Liqiang; Sheng, Jinzhi; Xu, Lin; Tan, Shuangshuang; Meng, Jiashen

    2018-04-17

    Rechargeable batteries are regarded as one of the most practical electrochemical energy storage devices that are able to convert and store the electrical energy generated from renewable resources, and they function as the key power sources for electric vehicles and portable electronics. The ultimate goals for electrochemical energy storage devices are high power and energy density, long lifetime, and high safety. To achieve the above goals, researchers have tried to apply various morphologies of nanomaterials as the electrodes to enhance the electrochemical performance. Among them, one-dimensional (1D) materials show unique superiorities, such as cross-linked structures for external stress buffering and large draw ratios for internal stress dispersion. However, a homogeneous single-component electrode material can hardly have the characteristics of high electronic/ionic conductivity and high stability in the electrochemical environment simultaneously. Therefore, designing well-defined functional 1D hetero-nanostructures that combine the advantages and overcome the limitations of different electrochemically active materials is of great significance. This Account summarizes fabrication strategies for 1D hetero-nanostructures, including nucleation and growth, deposition, and melt-casting and electrospinning. Besides, the chemical principles for each strategy are discussed. The nucleation and growth strategy is suitable for growing and constructing 1D hetero-nanostructures of partial transition metal compounds, and the experimental conditions for this strategy are relatively accessible. Deposition is a reliable strategy to synthesize 1D hetero-nanostructures by decorating functional layers on 1D substrate materials, on the condition that the preobtained substrate materials must be stable in the following deposition process. The melt-casting strategy, in which 1D hetero-nanostructures are synthesizes via a melting and molding process, is also widely used. Additionally

  3. Quantum transport in strongly interacting one-dimensional nanostructures

    NARCIS (Netherlands)

    Agundez, R.R.

    2015-01-01

    In this thesis we study quantum transport in several one-dimensional systems with strong electronic interactions. The first chapter contains an introduction to the concepts treated throughout this thesis, such as the Aharonov-Bohm effect, the Kondo effect, the Fano effect and quantum state transfer.

  4. Stepwise Nanopore Evolution in One-Dimensional Nanostructures

    KAUST Repository

    Choi, Jang Wook

    2010-04-14

    We report that established simple lithium (Li) ion battery cycles can be used to produce nanopores inside various useful one-dimensional (1D) nanostructures such as zinc oxide, silicon, and silver nanowires. Moreover, porosities of these 1D nanomaterials can be controlled in a stepwise manner by the number of Li-battery cycles. Subsequent pore characterization at the end of each cycle allows us to obtain detailed snapshots of the distinct pore evolution properties in each material due to their different atomic diffusion rates and types of chemical bonds. Also, this stepwise characterization led us to the first observation of pore size increases during cycling, which can be interpreted as a similar phenomenon to Ostwald ripening in analogous nanoparticle cases. Finally, we take advantage of the unique combination of nanoporosity and 1D materials and demonstrate nanoporous silicon nanowires (poSiNWs) as excellent supercapacitor (SC) electrodes in high power operations compared to existing devices with activated carbon. © 2010 American Chemical Society.

  5. Synthesis and applications of one-dimensional nano-structured polyaniline: An overview

    International Nuclear Information System (INIS)

    Zhang Donghua; Wang Yangyong

    2006-01-01

    This paper summarizes and reviews the various synthesizing approaches of one-dimensional nano-structured polyaniline (PANI) and several potential applications of the nanomaterial. The synthesizing approaches can be generally categorized into template synthesis and non-template synthesis according to whether template(s), hard (physical template) or soft (chemical template), is (are) used or not. However, though the various approaches established, preparation of one-dimensional nano-structured PANI with controllable morphologies and sizes, especially well oriented arrays on a large scale is still a major challenge. Furthermore, the formation mechanisms of the nanostructures are still unclear. On the other hand, one-dimensional nano-structured PANI exhibits high surface area, high conductivity, as well as controllable chemical/physical properties and good environmental stability, rendering the nanomaterial promising candidate for application ranging from sensors, energy storage and flash welding to digital nonvolatile memory

  6. High Speed Water Sterilization Using One-Dimensional Nanostructures

    KAUST Repository

    Schoen, David T.; Schoen, Alia P.; Hu, Liangbing; Kim, Han Sun; Heilshorn, Sarah C.; Cui, Yi

    2010-01-01

    The removal of bacteria and other organisms from water is an extremely important process, not only for drinking and sanitation but also industrially as biofouling is a commonplace and serious problem. We here present a textile based multiscale device for the high speed electrical sterilization of water using silver nanowires, carbon nanotubes, and cotton. This approach, which combines several materials spanning three very different length scales with simple dying based fabrication, makes a gravity fed device operating at 100000 L/(h m2) which can inactivate >98% of bacteria with only several seconds of total incubation time. This excellent performance is enabled by the use of an electrical mechanism rather than size exclusion, while the very high surface area of the device coupled with large electric field concentrations near the silver nanowire tips allows for effective bacterial inactivation. © 2010 American Chemical Society.

  7. High Speed Water Sterilization Using One-Dimensional Nanostructures

    KAUST Repository

    Schoen, David T.

    2010-09-08

    The removal of bacteria and other organisms from water is an extremely important process, not only for drinking and sanitation but also industrially as biofouling is a commonplace and serious problem. We here present a textile based multiscale device for the high speed electrical sterilization of water using silver nanowires, carbon nanotubes, and cotton. This approach, which combines several materials spanning three very different length scales with simple dying based fabrication, makes a gravity fed device operating at 100000 L/(h m2) which can inactivate >98% of bacteria with only several seconds of total incubation time. This excellent performance is enabled by the use of an electrical mechanism rather than size exclusion, while the very high surface area of the device coupled with large electric field concentrations near the silver nanowire tips allows for effective bacterial inactivation. © 2010 American Chemical Society.

  8. Facile Synthesis and Tensile Behavior of TiO2 One-Dimensional Nanostructures

    Directory of Open Access Journals (Sweden)

    Li Shu-you

    2009-01-01

    Full Text Available Abstract High-yield synthesis of TiO2 one-dimensional (1D nanostructures was realized by a simple annealing of Ni-coated Ti grids in an argon atmosphere at 950 °C and 760 torr. The as-synthesized 1D nanostructures were single crystalline rutile TiO2 with the preferred growth direction close to [210]. The growth of these nanostructures was enhanced by using catalytic materials, higher reaction temperature, and longer reaction time. Nanoscale tensile testing performed on individual 1D nanostructures showed that the nanostructures appeared to fracture in a brittle manner. The measured Young’s modulus and fracture strength are ~56.3 and 1.4 GPa, respectively.

  9. Nanostructural evolution from nanosheets to one-dimensional nanoparticles for manganese oxide

    International Nuclear Information System (INIS)

    Pan, Hongmei; Kong, Xingang; Wen, Puhong; Kitayama, Tomonori; Feng, Qi

    2012-01-01

    Highlights: ► Nanosheets were transformed to other one-dimensional nanoparticles. ► Nanofibers, nanotubes, nanoribbons, and nanobelts were obtained. ► Nanoparticle morphology can be controlled with organic amines. ► Organic amines act as morphology directing agent. -- Abstract: This paper introduces a novel hydrothermal soft chemical synthesis process for manganese oxide nanostructured particles using two-dimensional manganese oxide nanosheets as precursor. In this process, a birnessite-type manganese oxide with a layered structure was exfoliated into its elementary layer nanosheets, and then the nanosheets were hydrothermally treated to transform the two-dimensional morphology of the nanosheets to one-dimensional nanoparticles. The manganese oxide nanofibers, nanotubes, nanobelts, nanoribbons, and fabric-ribbon-like particles constructed from nanofibers or nanobelts were obtained using this hydrothermal soft chemical process. The nanostructural evolution from the two-dimensional nanosheets to the one-dimensional nanoparticles was characterized by XRD, SEM, TEM, and TG-DTA analysis. The morphology and nanostructure of the products are strongly dependent on the molecular dimension of organic amine cations added in the reaction system. The organic amine cations act as a morphology directing agent in the nanostructural evolution process.

  10. One-dimensional titania nanostructures: Synthesis and applications in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Guo, Zhiguang, E-mail: zguo@licp.cas.cn [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Shimin [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); Liu, Weimin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-05-02

    One-dimensional (1D) titania (TiO{sub 2}) in the form of nanorods, nanowires, nanobelts and nanotubes have attracted much attention due to their unique physical, chemical and optical properties enabling extraordinary performance in biomedicine, sensors, energy storage, solar cells and photocatalysis. In this review, we mainly focus on synthetic methods for 1D TiO{sub 2} nanostructures and the applications of 1D TiO{sub 2} nanostructures in dye-sensitized solar cells (DSCs). Traditional nanoparticle-based DSCs have numerous grain boundaries and surface defects, which increase the charge recombination from photoanode to electrolyte. 1D TiO{sub 2} nanostructures can provide direct and rapid electron transport to the electron collecting electrode, indicating a promising choice for DSCs. We divide the applications of 1D TiO{sub 2} nanostructures in DSCs into four parts, that is, 1D TiO{sub 2} nanostructures only, 1D TiO{sub 2} nanostructure/nanoparticle composites, branched 1D TiO{sub 2} nanostructures, and 1D TiO{sub 2} nanostructures combined with other materials. This work will provide guidance for preparing 1D TiO{sub 2} nanostructures, and using them as photoanodes in efficient DSCs. - Graphical abstract: 1D TiO{sub 2} nanostructures which can provide direct and rapid pathways for electron transport have promising applications in dye-sensitized solar cells (DSCs). The synthetic methods and applications of 1D TiO{sub 2} nanostructures in DSCs are summarized in this review article.

  11. Synthesis and Application of One-Dimensional La(OH3 Nanostructures: An Overview

    Directory of Open Access Journals (Sweden)

    Xiang Xiao

    2014-01-01

    Full Text Available One-dimensional (1D semiconductor nanomaterials are of particular importance owing to their unique properties and potential applications. This review attempts to provide a comprehensive introduction of 1D La(OH3 nanostructures including nanowires, nanoneedles, nanobelts, and nanorods. Firstly, various strategies developed to fabricate the 1D La(OH3 nanostructures are discussed, such as precipitation and composite-hydroxide-mediated, hydrothermal, and solvothermal methods, accompanying the description of the corresponding growth mechanisms. Then, the unique properties such as novel physical properties of 1D La(OH3 nanostructures resulting from their unique electronic structures and numerous transition modes involving the 4f shells of these ions are represented in detail. Also, the wide applications in photocatalyst, capacitors, and photoluminescence based on the unique properties are discussed. Finally, the paper ends with a summary and some perspectives on the challenges and new directions in this emerging area.

  12. Synthesis and integration of one-dimensional nanostructures for chemical gas sensing applications

    Science.gov (United States)

    Parthangal, Prahalad Madhavan

    The need for improved measurement technology for the detection and monitoring of gases has increased tremendously for maintenance of domestic and industrial health and safety, environmental surveys, national security, food-processing, medical diagnostics and various other industrial applications. Among the several varieties of gas sensors available in the market, solid-state sensors are the most popular owing to their excellent sensitivity, ruggedness, versatility and low cost. Semiconducting metal oxides such as tin oxide (SnO2), zinc oxide (ZnO), and tungsten oxide (WO3) are routinely employed as active materials in these sensors. Since their performance is directly linked to the exposed surface area of the sensing material, one-dimensional nanostructures possessing very high surface to volume ratios are attractive candidates for designing the next generation of sensors. Such nano-sensors also enable miniaturization thereby reducing power consumption. The key to achieve success in one-dimensional nanotechnologies lies in assembly. While synthesis techniques and capabilities continue to expand rapidly, progress in controlled assembly has been sluggish due to numerous technical challenges. In this doctoral thesis work, synthesis and characterization of various one-dimensional nanostructures including nanotubes of SnO2, and nanowires of WO3 and ZnO, as well as their direct integration into miniature sensor platforms called microhotplates have been demonstrated. The key highlights of this research include devising elegant strategies for growing metal oxide nanotubes using carbon nanotubes as templates, substantially reducing process temperatures to enable growth of WO3 nanowires on microhotplates, and successfully fabricating a ZnO nanowire array based sensor using a hybrid nanowire-nanoparticle assembly approach. In every process, the gas-sensing properties of one-dimensional nanostructures were observed to be far superior in comparison with thin films of the same

  13. Electric Field Guided Assembly of One-Dimensional Nanostructures for High Performance Sensors

    Directory of Open Access Journals (Sweden)

    Wing Kam Liu

    2012-05-01

    Full Text Available Various nanowire or nanotube-based devices have been demonstrated to fulfill the anticipated future demands on sensors. To fabricate such devices, electric field-based methods have demonstrated a great potential to integrate one-dimensional nanostructures into various forms. This review paper discusses theoretical and experimental aspects of the working principles, the assembled structures, and the unique functions associated with electric field-based assembly. The challenges and opportunities of the assembly methods are addressed in conjunction with future directions toward high performance sensors.

  14. Large-scale one-dimensional Bi x O y I z nanostructures: synthesis, characterization, and photocatalytic applications

    Science.gov (United States)

    Liu, Chaohong; Zhang, Dun

    2015-03-01

    The performances of Bi x O y I z photofunctional materials are very sensitive to their composition and microstructures; however, the morphology evolution and crystallization process of one-dimensional Bi x O y I z nanostructures, the roles of experimental factors, and related reaction mechanisms remain poorly understood. In this work, large-scale one-dimensional Bi x O y I z nanostructures were fabricated using simple inorganic iodine source. By combing the results of X-ray diffraction and scanning electron microscope, the effect of volume ratios of water and ethanol, concentration of NaOH, and reaction time on the morphologies and crystal phases of Bi x O y I z were elaborated. On the basis of characterizations, a possible process for the growth of Bi5O7I nanobelts was proposed. The optical performances of Bi x O y I z nanostructures were evaluated by ultraviolet-visible-near infrared diffuse reflectance spectra as well as photocatalytic degradation of organic dye and corrosive bacteria. The as-prepared Bi5O7I/Bi2O2CO3/BiOI composite showed excellent photocatalytic activity over malachite green under visible light irradiation, which was deduced closely related to its heterojunction structures.

  15. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy

    Science.gov (United States)

    Lee, Jung Ah; Rok Lim, Young; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae

    2016-10-01

    To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.

  16. A Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures

    Directory of Open Access Journals (Sweden)

    Liwen Sang

    2013-08-01

    Full Text Available Ultraviolet (UV photodetectors have drawn extensive attention owing to their applications in industrial, environmental and even biological fields. Compared to UV-enhanced Si photodetectors, a new generation of wide bandgap semiconductors, such as (Al, In GaN, diamond, and SiC, have the advantages of high responsivity, high thermal stability, robust radiation hardness and high response speed. On the other hand, one-dimensional (1D nanostructure semiconductors with a wide bandgap, such as β-Ga2O3, GaN, ZnO, or other metal-oxide nanostructures, also show their potential for high-efficiency UV photodetection. In some cases such as flame detection, high-temperature thermally stable detectors with high performance are required. This article provides a comprehensive review on the state-of-the-art research activities in the UV photodetection field, including not only semiconductor thin films, but also 1D nanostructured materials, which are attracting more and more attention in the detection field. A special focus is given on the thermal stability of the developed devices, which is one of the key characteristics for the real applications.

  17. High electro-catalytic activities of glucose oxidase embedded one-dimensional ZnO nanostructures

    International Nuclear Information System (INIS)

    Sarkar, Nirmal K; Bhattacharyya, Swapan K

    2013-01-01

    One-dimensional ZnO nanorods and nanowires are separately synthesized on Zn substrate by simple hydrothermal processes at low temperatures. Electro-catalytic responses of glucose oxidase/ZnO/Zn electrodes using these two synthesized nanostructures of ZnO are reported and compared with others available in literature. It is apparent the Michaelis–Menten constant, K M app , for the present ZnO nanowire, having a greater aspect ratio, is found to be the lowest when compared with others. This sensor shows lower oxidation peak potential with a long detection range of 6.6 μM–380 mM and the highest sensitivity of ∼35.1 μA cm −2 mM −1 , among the reported values in the literature. Enzyme catalytic efficiency and turnover numbers are also found to be remarkably high. (paper)

  18. Structural characterization of one-dimensional ZnO-based nanostructures grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Sallet, Vincent; Falyouni, Farid; Marzouki, Ali; Haneche, Nadia; Sartel, Corinne; Lusson, Alain; Galtier, Pierre [Groupe d' Etude de la Matiere Condensee (GEMAC), CNRS-Universite de Versailles St-Quentin, Meudon (France); Agouram, Said [SCSIE, Universitat de Valencia, Burjassot (Spain); Enouz-Vedrenne, Shaima [Thales Research and Technology France, Palaiseau (France); Munoz-Sanjose, Vicente [Departamento de Fisica Aplicada y Electromagnetismo, Universitat de Valencia, Burjassot (Spain)

    2010-07-15

    Various one-dimensional (1D) ZnO-based nanostructures, including ZnO nano-wires (NWs) grown using vapour-liquid-solid (VLS) process, ZnO/ZnSe core/shell, nitrogen-doped ZnO and ZnMgO NWs were grown by metalorganic chemical vapour deposition (MOCVD). Transmission electron microscopy (TEM) analysis is presented. For all the samples, a high crystalline quality is observed. Some features are emphasized such as the gold contamination of ZnO wires grown under the metal droplets in the VLS process. It is concluded that MOCVD is a suitable technique for the realization of original ZnO nanodevices. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  19. Quantitative Method to Measure Thermal Conductivity of One-Dimensional Nanostructures Based on Scanning Thermal Wave Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Bae; Chung, Jae Hun; Hwang, Gwang Seok; Jung, Eui Han; Kwon, Oh Myoung [Korea University, Seoul (Korea, Republic of)

    2014-12-15

    We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.

  20. Facile synthesis of one dimensional ZnO nanostructures for DSSC applications

    International Nuclear Information System (INIS)

    Marimuthu, T.; Anandhan, N.

    2016-01-01

    Development of zinc oxide (ZnO) nanostructure based third generation dye sensitized solar cell is interesting compared to conventional silicon solar cells. ZnO nanostructured thin films were electrochemically deposited onto fluorine doped tin oxide (FTO) glass substrate. The effect of ethylene-diamine-tetra-acetic acid (EDTA) on structural, morphological and optical properties is investigated using X-ray diffraction (XRD) meter, field emission scanning electron microscope (FE-SEM) and micro Raman spectroscopy. XRD patterns reveal that the prepared nanostructures are hexagonal wutrzite structures with (101) plane orientation, the nanostructure prepared using EDTA exhibits better crystallinity. FE-SEM images illustrate that the morphological changes are observed from nanorod structure to cauliflower like structure as EDTA is added. Micro Raman spectra predict that cauliflower like structure possesses a higher crystalline nature with less atomic defects compared to nanorod structures. Dye sensitized solar cell (DSSC) is constructed for the optimized cauliflower structure, and open circuit voltage, short circuit density, fill factor and efficiency are estimated from the J-V curve.

  1. Facile synthesis of one dimensional ZnO nanostructures for DSSC applications

    Energy Technology Data Exchange (ETDEWEB)

    Marimuthu, T.; Anandhan, N., E-mail: anandhan-kn@rediffmail.com [Advanced Materials and Thin Film Physics Lab, School of Physics, Alagappa University, Karaikudi – 630 003, India. (India)

    2016-05-06

    Development of zinc oxide (ZnO) nanostructure based third generation dye sensitized solar cell is interesting compared to conventional silicon solar cells. ZnO nanostructured thin films were electrochemically deposited onto fluorine doped tin oxide (FTO) glass substrate. The effect of ethylene-diamine-tetra-acetic acid (EDTA) on structural, morphological and optical properties is investigated using X-ray diffraction (XRD) meter, field emission scanning electron microscope (FE-SEM) and micro Raman spectroscopy. XRD patterns reveal that the prepared nanostructures are hexagonal wutrzite structures with (101) plane orientation, the nanostructure prepared using EDTA exhibits better crystallinity. FE-SEM images illustrate that the morphological changes are observed from nanorod structure to cauliflower like structure as EDTA is added. Micro Raman spectra predict that cauliflower like structure possesses a higher crystalline nature with less atomic defects compared to nanorod structures. Dye sensitized solar cell (DSSC) is constructed for the optimized cauliflower structure, and open circuit voltage, short circuit density, fill factor and efficiency are estimated from the J-V curve.

  2. The prevalent synthesis of one-dimensional noble metal nanostructures based on sulfonated polyaniline at room temperature

    International Nuclear Information System (INIS)

    Xia Youyi

    2011-01-01

    We describe a prevalent method of synthesizing one-dimensional (1D) noble metal nanostructures (silver nanobelts and palladium nanowires) by treatment of corresponding noble metal ions only in the presence of the conductive sulfonated polyaniline without using any other reducing agents or energies. The results show that the sulfonated polyaniline provides the dual reductant and “soft template” roles to promoting noble metal ions to form shape-controlled 1D noble metal nanostructures in high yield. The employed approach may also shed some light on the preparation of other noble metal nanostructure by using conductive polymer.

  3. Exploring arrays of vertical one-dimensional nanostructures for cellular investigations

    International Nuclear Information System (INIS)

    Bonde, Sara; Buch-Månson, Nina; Rostgaard, Katrine R; Andersen, Tor Kristian; Berthing, Trine; Martinez, Karen L

    2014-01-01

    The endeavor of exploiting arrays of vertical one-dimensional (1D) nanostructures (NSs) for cellular applications has recently been experiencing a pronounced surge of activity. The interest is rooted in the intrinsic properties of high-aspect-ratio NSs. With a height comparable to a mammalian cell, and a diameter 100–1000 times smaller, NSs should intuitively reach far into a cell and, due to their small diameter, do so without compromising cell health. Single NSs would thus be expedient for measuring and modifying cell response. Further organization of these structures into arrays can provide up-scaled and detailed spatiotemporal information on cell activity, an achievement that would entail a massive leap forward in disease understanding and drug discovery. Numerous proofs-of-principle published recently have expanded the large toolbox that is currently being established in this rapidly advancing field of research. Encouragingly, despite the diversity of NS platforms and experimental conditions used thus far, general trends and conclusions from combining cells with NSs are beginning to crystallize. This review covers the broad spectrum of NS materials and dimensions used; the observed cellular responses with specific focus on adhesion, morphology, viability, proliferation, and migration; compares the different approaches used in the field to provide NSs with the often crucial cytosolic access; covers the progress toward biological applications; and finally, envisions the future of this technology. By maintaining the impressive rate and quality of recent progress, it is conceivable that the use of vertical 1D NSs may soon be established as a superior choice over other current techniques, with all the further benefits that may entail. (topical review)

  4. One-Dimensional Vanadium Dioxide Nanostructures for Room Temperature Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Aline Simo

    2015-06-01

    Full Text Available In relation to hydrogen (H2 economy in general and gas sensing in particular, an extensive set of one dimensional (1-D nano-scaled oxide materials are being investigated as ideal candidates for potential gas sensing applications. This is correlated to their set of singular surface characteristics, shape anisotropy and readiness for integrated devices. Nanostructures of well- established gas sensing materials such as Tin Oxide (SnO2, Zinc Oxide (ZnO, Indium (III Oxide (In2O3, and Tungsten Trioxide (WO3 have shown higher sensitivity and gas selectivity, quicker response, faster time recovery, as well as an enhanced capability to detect gases at low concentrations. While the overall sensing characteristics of these so called 1-D nanomaterials are superior, they are efficient at high temperature; generally above 200 0C. This operational impediment results in device complexities in integration that limit their technological applications, specifically in their miniaturized arrangements. Unfortunately, for room temperature applications, there is a necessity to dope the above mentioned nano-scaled oxides with noble metals such as Platinum (Pt, Palladium (Pd, Gold (Au, Ruthenium (Ru. This comes at a cost. This communication reports, for the first time, on the room temperature enhanced H2 sensing properties of a specific phase of pure Vanadium Dioxide (VO2 phase A in their nanobelt form. The relatively observed large H2 room temperature sensing in this Mott type specific oxide seems to reach values as low as 14 ppm H2 which makes it an ideal gas sensing in H2 fuelled systems.

  5. Study of Growth Kinetics in One Dimensional and Two Dimensional ZnO Nanostructures

    Science.gov (United States)

    Yin, Xin

    Because of the merits arising from the unique geometry, nanostructure materials have been an essential class of materials, which have shown great potentials in the fields of electronics, photonics, and biology. With various nanostructures being intensively investigated and successfully complemented into device applications, there has been one increasing demand to the investigation of the growth mechanism devoted to the controlled nanostructure synthesis. Motivated by this situation, this thesis is focused on the fundamental understanding of the nanostructure growth. Specifically, by taking zinc oxide as an example material, through controlling the basic driving force, that is, the supersaturation, I have rationally designed and synthesized various of nanostructures, and further applied the classical layer-by-layer growth mechanism to the understanding on the formation of these nanostructures, they are, the convex-plate-capped nanowires, the concave-plate-capped nanowires, the facet evolution at the tip of the nanowires, and the ultrathin 2D nanosheets.

  6. Synthesis, Characterization and Applications of One-Dimensional Metal Oxide Nanostructures

    Science.gov (United States)

    Santulli, Alexander

    Nanomaterials have been of keen research interest, owing to their exciting and unique properties (e.g. optical, magnetic, electronic, and mechanical). These properties allow nanomaterials to have many applications in areas of medicine, alternative energy, catalysis, and information storage. In particular, one-dimensional (1D) nanomaterials are highly advantageous, owing to the inherent anisotropic nature, which allows for effective transport and study of properties on the nanoscale. More specifically, 1D metal oxide nanomaterials are of particular interest, owing to their high thermal and chemical stability, as well as their intriguing optical, electronic, and magnetic properties. Herein, we will investigate the synthesis and characterization of vanadium oxide, lithium niobate and chromium oxide. We will explore the methodologies utilized for the synthesis of these materials, as well as the overall properties of these unique nanomaterials. Furthermore, we will explore the application of titanium dioxide nanomaterials as the electron transport layer in dye sensitized solar cells (DSSCs), with an emphasis on the effect of the nanoscale morphology on the overall device efficiency.

  7. One-dimensional nanostructured materials for lithium-ion battery and supercapacitor electrodes

    Science.gov (United States)

    Chan, Candace Kay

    The need for improved electrochemical storage devices has necessitated research on new and advanced electrode materials. One-dimensional nanomaterials such as nanowires, nanotubes, and nanoribbons, can provide a unique opportunity to engineer electrochemical devices to have improved electronic and ionic conductivity as well as electrochemical and structural transformations. Silicon and germanium nanowires (NWs) were studied as negative electrode materials for lithiumion batteries because of their ability to alloy with large amounts of lithium, leading to 4-10 times higher specific capacities than the graphite standard. These nanowires could be grown vertically off of metallic current collector substrates using the gold-catalyzed vapor-liquid-solid synthesis. Electrochemical measurements of the SiNWs showed that capacities greater than 3,500 mAh/g could be obtained for tens of cycles, while hundreds of cycles could be obtained at lower capacities. As opposed to bulk Si, the SiNWs were observed to maintain their morphology during cycling and did not pulverize due to the large volume changes. Detailed TEM and XRD characterization showed that the SiNWs became amorphous during the first lithiation (charge) and formed a two-phase region between crystalline Si and amorphous Li xSi. Afterwards, the SiNWs remained amorphous and subsequent reaction was through a single-phase cycling of amorphous Si. The good cycling behavior compared to bulk and micron-sized Si particles was attributed to the nanowire morphology and electrode design. The surface chemistry and solid-electrolyte interphase (SEI) were studied using XPS as a function of charge and discharge potential. The common reduction productions expected in the electrolyte (1 M LiPF6 in 1:1 EC/DEC) were observed, with the main component being Li2CO3. The morphology of the SEI was found to change at different potentials, indicating a dynamic process involving deposition, dissolution, and re-deposition on the SiNWs. Longterm

  8. Surface engineering of one-dimensional tin oxide nanostructures for chemical sensors

    International Nuclear Information System (INIS)

    Ma, Yuanyuan; Qu, Yongquan; Zhou, Wei

    2013-01-01

    Nanostructured materials are promising candidates for chemical sensors due to their fascinating physicochemical properties. Among various candidates, tin oxide (SnO 2 ) has been widely explored in gas sensing elements due to its excellent chemical stability, low cost, ease of fabrication and remarkable reproducibility. We are presenting an overview on recent investigations on 1-dimensional (1D) SnO 2 nanostructures for chemical sensing. In particular, we focus on the performance of devices based on surface engineered SnO 2 nanostructures, and on aspects of morphology, size, and functionality. The synthesis and sensing mechanism of highly selective, sensitive and stable 1D nanostructures for use in chemical sensing are discussed first. This is followed by a discussion of the relationship between the surface properties of the SnO 2 layer and the sensor performance from a thermodynamic point of view. Then, the opportunities and recent progress of chemical sensors fabricated from 1D SnO 2 heterogeneous nanostructures are discussed. Finally, we summarize current challenges in terms of improving the performance of chemical (gas) sensors using such nanostructures and suggest potential applications. (author)

  9. A comparative study of field-emission from different one dimensional carbon nanostructures synthesized via thermal CVD system

    International Nuclear Information System (INIS)

    Jha, A.; Banerjee, D.; Chattopadhyay, K.K.

    2011-01-01

    Different one dimensional (1D) carbon nanostructures, such as carbon nanonoodles (CNNs), carbon nanospikes (CNSs) and carbon nanotubes (CNTs) have been synthesized via thermal chemical vapour deposition (TCVD) technique. The different 1D morphologies were synthesized by varying the substrate material and the deposition conditions. The as-prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). FESEM and TEM images showed that the diameters of the CNNs and CNTs were ∼40 nm while the diameters of the CNSs were around 100 nm. Field emission studies of the as-prepared samples showed that CNSs to be a better field emitter than CNNs, whereas CNTs are the best among the three producing large emission current. The variation of field emission properties with inter-electrode distance has been studied in detail. Also the time dependent field emission studies of all the nanostructures have been carried out.

  10. One-Dimensional TiO2 Nanostructures as Photoanodes for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Jie Qu

    2013-01-01

    Full Text Available Titanium dioxide (TiO2 is star materials due to its remarkable optical and electronic properties, resulting in various applications, especially in the fields of dye-sensitized solar cells (DSSCs. Photoanode is the most important part of the DSSCs, which help to adsorb dye molecules and transport the injected electrons. The size, structure, and morphology of TiO2 photoanode have been found to show significant influence on the photovoltaic performance of DSSCs. In this paper, we briefly summarize the synthesis and properties of one-dimensional (1D TiO2 nanomaterials (bare 1D TiO2 nanomaterial and 1D hierarchical TiO2 and their photovoltaic performance in DSSCs.

  11. An effective one-dimensional anisotropic fingerprint enhancement algorithm

    Science.gov (United States)

    Ye, Zhendong; Xie, Mei

    2012-01-01

    Fingerprint identification is one of the most important biometric technologies. The performance of the minutiae extraction and the speed of the fingerprint verification system rely heavily on the quality of the input fingerprint images, so the enhancement of the low fingerprint is a critical and difficult step in a fingerprint verification system. In this paper we proposed an effective algorithm for fingerprint enhancement. Firstly we use normalization algorithm to reduce the variations in gray level values along ridges and valleys. Then we utilize the structure tensor approach to estimate each pixel of the fingerprint orientations. At last we propose a novel algorithm which combines the advantages of onedimensional Gabor filtering method and anisotropic method to enhance the fingerprint in recoverable region. The proposed algorithm has been evaluated on the database of Fingerprint Verification Competition 2004, and the results show that our algorithm performs within less time.

  12. Facile hydrothermal synthesis of one-dimensional nanostructured α-MnO2 for supercapacitors

    Science.gov (United States)

    Wei, Hongmei; Wang, Jinxing; Yang, Shengwei; Zhang, Yangyang; Li, Tengfei; Zhao, Shuoqing

    2016-09-01

    α-MnO2 recently becomes a promising candidate of electrode materials for high effective supercapacitors in which it possesses of unique structure of 2×2 tunnels that can provide more electrons and ions diffusion paths. In this work, different morphologies MnO2 with α-phase crystalline structure have been prepared via a one-step facile hydrothermal method by adding various reagents. Compositions, microstructures and morphologies of these as-synthesized materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and electrochemical properties of α-MnO2 electrodes were studied by the cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) in 1 M Na2SO4 aqueous solution. The specific capacitance of nanowires were 158 F g-1 while the specific capacitance of nanorods were 106 F g-1 at current density of 4 A g-1, and improved performance of the wire-like electrode material was probably ascribed to the larger specific surface area that can provide relatively more active sites for high capacity. Meanwhile, both the nanowires and nanorods of MnO2 presented fine cycle stability after continuous multiple charge/discharge times.

  13. Synthesis of One Dimensional Li2MoO4 Nanostructures and Their Electrochemical Performance as Anode Materials for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Liu, Xudong; Zhao, Yanming; Dong, Youzhong; Fan, Qinghua; Kuang, Quan; Liang, Zhiyong; Lin, Xinghao; Han, Wei; Li, Qidong; Wen, Mingming

    2015-01-01

    Highlights: • One dimensional Li 2 MoO 4 nanostructures including nanorods and nanotubes have been successfully fabricated via a simple sol-gel method firstly. • Possible crystal formation mechanisms are proposed for these one dimensional Li 2 MoO 4 nanostructures. • These one dimensional Li 2 MoO 4 nanostructure electrode materials present outstanding rate abilities and cycle capabilities in electrochemical performance compared to the carbon-free powder sample when evaluated as anode materials for Lithium-ion batteries. • The carbon-coated Li 2 MoO 4 nanotube electrode improves the charging/discharging capacities of graphite even after applying 60 cycles at very high current density. - Abstract: One dimensional Li 2 MoO 4 nanostructures including nanorods and nanotubes have been successfully fabricated via a simple sol-gel method adding Li 2 CO 3 and MoO 3 powders into distilled water with citric acid as an assistant agent and carbon source. Our experimental results show that the formation of the one dimensional nanostructure morphology is evaporation and crystallization process with self-adjusting into a rod-like hexagonal cross-section structure, while the citric acid played an important role during the formation of Li 2 MoO 4 nanotubes under the acidic environment by capping, stabilizing the {1010} facet of Li 2 MoO 4 structure and controlling the concentration of H + (pH value) of the aqueous solution. Finally, basic electrochemical performance of these one dimensional Li 2 MoO 4 nanostructures including nanorods and nanotubes evaluated as anode materials for lithium-ion batteries (LIBs) are discussed, for comparison, the properties of carbon-free powder sample synthesized by solid-state reaction are also displayed. Experimental results show that different morphology and carbon-coating on the surface have an important influence on electrochemical performance

  14. Facile synthesis of α-MnO2 one-dimensional (1D) nanostructure and energy storage ability studies

    International Nuclear Information System (INIS)

    Yousefi, Taher; Golikand, Ahmad Nozad; Hossein Mashhadizadeh, Mohammad; Aghazadeh, Mustafa

    2012-01-01

    The dense manganese oxide nanorods with an extremely narrow distribution are synthesized at a low temperature using first cathodic electrodeposition subsequently heat treatment. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show that the nanorods have bar shapes, and their average diameter is less than 50 nm. The Fourier transform infrared (FT-IR) study, the selected area electron diffraction (SAED) pattern in TEM images and the X-ray diffraction (XRD) result show that the nanorods are α-MnO 2 single crystal. The results of N 2 adsorption–desorption analysis indicate that the BET surface area of the α-MnO 2 nanorods is 93 m 2 g −1 . By recording the potential–time curve during the electrodeposition process, it is revealed that water reduction reaction has a major role in the electrogeneration of base at the cathode surface under the applied electrochemical conditions. Finally, based on the H 2 bubbling on the cathode surface, the mechanism of the formation and the growth of α-MnO 2 nanorods are proposed and discussed. For the electrochemical supercapacitor application, electrochemically prepared α-MnO 2 is found to be stable for a large number of cycles with high specific capacitance, 338 F g −1 at a scan rate of 10 mV s −1 . Finally, the charge–discharge mechanism is discussed. - Graphical abstract: Highlights: ► New nanostructures of MnO 2 is synthesized by simple method of cathodicelectrodeposition. ► The product has unique one-dimensional morphology with average diameter size of 50 nm. ► The experiment conditions (temperature, current density) has not been reported. ► The one-nanostructures obtained without using of hard template or surfactant.

  15. Facile solvothermal synthesis of abnormal growth of one-dimensional ZnO nanostructures by ring-opening reaction of polyvinylpyrrolidone

    Energy Technology Data Exchange (ETDEWEB)

    Xu, G., E-mail: gxu@alum.imr.ac.cn; Wang, X.L.; Liu, G.Z.

    2015-02-28

    Graphical abstract: - Highlights: • Facile solvothermal synthesis of ZnO nanostructures in super high alkaline alcoholic condition. • The exact role and chemical transformations of PVP in solvothermal synthesis of ZnO nanostructures was revealed. • Mechanism of abnormal growth of ZnO nanopyramids was proposed based on ring-opening reaction of PVP. - Abstract: Abnormal growth of one-dimensional (1-D) ZnO nanostructures (NSs) have been accomplished with the assistance of polyvinylpyrrolidone (PVP) under a super high alkaline alcoholic solvothermal condition. The products were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ({sup 1}H NMR) spectroscopy. The effect of synthetic conditions, such as reaction temperature and the addition of PVP, on the morphologies of ZnO products were investigated. The results show that PVP molecules had the significant role in the transformation of morphologies of ZnO NSs ranging from nanorods, nanoparticles to pyramids, as well as flower-like assembly features. The possible growth mechanism of ZnO pyramids was proposed based on ring-opening reaction of PVP.

  16. Effective one-dimensionality of universal ac hopping conduction in the extreme disorder limit

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Schrøder, Thomas

    1996-01-01

    A phenomenological picture of ac hopping in the symmetric hopping model (regular lattice, equal site energies, random energy barriers) is proposed according to which conduction in the extreme disorder limit is dominated by essentially one-dimensional "percolation paths." Modeling a percolation path...... as strictly one dimensional with a sharp jump rate cutoff leads to an expression for the universal ac conductivity that fits computer simulations in two and three dimensions better than the effective medium approximation....

  17. Kinetically Controlled Synthesis of Pt-Based One-Dimensional Hierarchically Porous Nanostructures with Large Mesopores as Highly Efficient ORR Catalysts.

    Science.gov (United States)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua; Engelhard, Mark H; Xia, Haibing; Du, Dan; Lin, Yuehe

    2016-12-28

    Rational design and construction of Pt-based porous nanostructures with large mesopores have triggered significant considerations because of their high surface area and more efficient mass transport. Hydrochloric acid-induced kinetically controlled reduction of metal precursors in the presence of soft template F-127 and hard template tellurium nanowires has been successfully demonstrated to construct one-dimensional hierarchical porous PtCu alloy nanostructures with large mesopores. Moreover, the electrochemical experiments demonstrated that the PtCu hierarchically porous nanostructures synthesized under optimized conditions exhibit enhanced electrocatalytic performance for oxygen reduction reaction in acid media.

  18. Kinetically Controlled Synthesis of Pt-Based One-Dimensional Hierarchically Porous Nanostructures with Large Mesopores as Highly Efficient ORR Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua; Engelhard, Mark H.; Xia, Haibing; Du, Dan; Lin, Yuehe

    2016-12-28

    Rational design and construction of Pt-based porous nanostructures with large mesopores have triggered significant considerations because of their high surface area and more efficient mass transport. Hydrochloric acid-induced kinetic reduction of metal precursors in the presence of soft template F-127 and hard template tellurium nanowires has been successfully demonstrated to construct one-dimensional hierarchical porous PtCu alloy nanostructures with large mesopores. Moreover, the electrochemical experiments demonstrated that the resultant PtCu hierarchically porous nanostructures with optimized composition exhibit enhanced electrocatalytic performance for oxygen reduction reaction.

  19. Self-Reconstructed Formation of a One-Dimensional Hierarchical Porous Nanostructure Assembled by Ultrathin TiO2 Nanobelts for Fast and Stable Lithium Storage.

    Science.gov (United States)

    Liu, Yuan; Yan, Xiaodong; Xu, Bingqing; Lan, Jinle; Yu, Yunhua; Yang, Xiaoping; Lin, Yuanhua; Nan, Cewen

    2018-06-06

    Owing to their unique structural advantages, TiO 2 hierarchical nanostructures assembled by low-dimensional (LD) building blocks have been extensively used in the energy-storage/-conversion field. However, it is still a big challenge to produce such advanced structures by current synthetic techniques because of the harsh conditions needed to generate primary LD subunits. Herein, a novel one-dimensional (1D) TiO 2 hierarchical porous fibrous nanostructure constructed by TiO 2 nanobelts is synthesized by combining a room-temperature aqueous solution growth mechanism with the electrospinning technology. The nanobelt-constructed 1D hierarchical nanoarchitecture is evolves directly from the amorphous TiO 2 /SiO 2 composite fibers in alkaline solutions at ambient conditions without any catalyst and other reactant. Benefiting from the unique structural features such as 1D nanoscale building blocks, large surface area, and numerous interconnected pores, as well as mixed phase anatase-TiO 2 (B), the optimum 1D TiO 2 hierarchical porous nanostructure shows a remarkable high-rate performance when tested as an anode material for lithium-ion batteries (107 mA h g -1 at ∼10 A g -1 ) and can be used in a hybrid lithium-ion supercapacitor with very stable lithium-storage performance (a capacity retention of ∼80% after 3000 cycles at 2 A g -1 ). The current work presents a scalable and cost-effective method for the synthesis of advanced TiO 2 hierarchical materials for high-power and stable energy-storage/-conversion devices.

  20. On the effect of memory in one-dimensional K=4 automata on networks

    Science.gov (United States)

    Alonso-Sanz, Ramón; Cárdenas, Juan Pablo

    2008-12-01

    The effect of implementing memory in cells of one-dimensional CA, and on nodes of various types of automata on networks with increasing degrees of random rewiring is studied in this article, paying particular attention to the case of four inputs. As a rule, memory induces a moderation in the rate of changing nodes and in the damage spreading, albeit in the latter case memory turns out to be ineffective in the control of the damage as the wiring network moves away from the ordered structure that features proper one-dimensional CA. This article complements the previous work done in the two-dimensional context.

  1. Effects of interaction imbalance in a strongly repulsive one-dimensional Bose gas

    DEFF Research Database (Denmark)

    Barfknecht, Rafael Emilio; Zinner, Nikolaj Thomas; Foerster, Angela

    2018-01-01

    We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate...

  2. Transverse Kerr effect in one-dimensional magnetophotonic crystals: Experiment and theory

    International Nuclear Information System (INIS)

    Erokhin, S.; Boriskina, Yu.; Vinogradov, A.; Inoue, M.; Kobayashi, D.; Fedyanin, A.; Gan'shina, E.; Kochneva, M.; Granovsky, A.

    2006-01-01

    Magneto-optical transverse Kerr and Faraday effects are studied experimentally and theoretically in one-dimensional magnetophotonic crystals fabricated from a stack of four repetitions of layers of Bi-substituted yttrium iron garnet and SiO 2 layers. The results of theoretical calculations in the framework of modified matrices approach are consistent with the obtained experimental data with the exception of the one cusp at 480 nm in the transverse Kerr effect spectra. Possible mechanisms of this disagreement are discussed

  3. Effects of Interaction Imbalance in a Strongly Repulsive One-Dimensional Bose Gas

    Science.gov (United States)

    Barfknecht, R. E.; Foerster, A.; Zinner, N. T.

    2018-05-01

    We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate the time evolution of the system and show that, for a certain ratio of interactions, the minority population travels through the system as an effective wave packet.

  4. Controllable one-pot synthesis of various one-dimensional Bi2S3 nanostructures and their enhanced visible-light-driven photocatalytic reduction of Cr(VI)

    International Nuclear Information System (INIS)

    Hu, Enlai; Gao, Xuehui; Etogo, Atangana; Xie, Yunlong; Zhong, Yijun; Hu, Yong

    2014-01-01

    Highlights: • 1D Bi 2 S 3 nanostructures were prepared by a facile ethanol-assisted one-pot reaction. • The size and morphology of the products can be conveniently varied. • The sulfur source plays a crucial role in determining the morphologies of products. • 1D Bi 2 S 3 nanostructures exhibit enhanced photocatalytic reduction of Cr(VI). • Bi 2 S 3 nanowires exhibit the highest photoreduction activity among three samples. - Abstract: One-dimensional (1D) Bi 2 S 3 nanostructures with various morphologies, including nanowires, nanorods, and nanotubes, have been successfully synthesized through a facile ethanol-assisted one-pot reaction. It is found that the size, morphology and structure of the products can be conveniently varied or controlled by simply adjusting the volume ratio of ethanol and water in the reaction system. Further experimental results indicate that sulfur source also plays the other crucial role in determining the product morphology. The synthetic strategy developed in this work is highly efficient in producing 1D Bi 2 S 3 nanostructures with high quality and large quantity. Photocatalysis experiments show the as-prepared 1D Bi 2 S 3 nanostructures possess significantly enhanced photocatalytic reduction of Cr(VI) when exposed to visible light irradiation. Especially, Bi 2 S 3 nanowires exhibit the highest photocatalytic activity and can be used repeatedly after washed with dilute HCl

  5. Transverse Kerr effect in one-dimensional magnetophotonic crystals: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Erokhin, S. [Faculty of Physics, Lomonosov Moscow State University, 11992 Moscow (Russian Federation)]. E-mail: yerokhin@magn.ru; Boriskina, Yu. [Faculty of Physics, Lomonosov Moscow State University, 11992 Moscow (Russian Federation); Vinogradov, A. [Institute for Theoretical and Applied Electrodynamics, Izhorskaya 13/19, 127412 Moscow (Russian Federation); Inoue, M. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1 Hibari-Ga-Oka, Tempaku, Toyohashi 441-8580 (Japan); Kobayashi, D. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1 Hibari-Ga-Oka, Tempaku, Toyohashi 441-8580 (Japan); Fedyanin, A. [Faculty of Physics, Lomonosov Moscow State University, 11992 Moscow (Russian Federation); Gan' shina, E. [Faculty of Physics, Lomonosov Moscow State University, 11992 Moscow (Russian Federation); Kochneva, M. [Faculty of Physics, Lomonosov Moscow State University, 11992 Moscow (Russian Federation); Granovsky, A. [Faculty of Physics, Lomonosov Moscow State University, 11992 Moscow (Russian Federation)

    2006-05-15

    Magneto-optical transverse Kerr and Faraday effects are studied experimentally and theoretically in one-dimensional magnetophotonic crystals fabricated from a stack of four repetitions of layers of Bi-substituted yttrium iron garnet and SiO{sub 2} layers. The results of theoretical calculations in the framework of modified matrices approach are consistent with the obtained experimental data with the exception of the one cusp at 480 nm in the transverse Kerr effect spectra. Possible mechanisms of this disagreement are discussed.

  6. A one-dimensional stochastic approach to the study of cyclic voltammetry with adsorption effects

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib J. [The Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19" t" h Avenue, Columbus, Ohio 43210 (United States)

    2016-05-15

    In this study, a one-dimensional stochastic model based on the random walk approach is used to simulate cyclic voltammetry. The model takes into account mass transport, kinetics of the redox reactions, adsorption effects and changes in the morphology of the electrode. The model is shown to display the expected behavior. Furthermore, the model shows consistent qualitative agreement with a finite difference solution. This approach allows for an understanding of phenomena on a microscopic level and may be useful for analyzing qualitative features observed in experimentally recorded signals.

  7. A one-dimensional stochastic approach to the study of cyclic voltammetry with adsorption effects

    International Nuclear Information System (INIS)

    Samin, Adib J.

    2016-01-01

    In this study, a one-dimensional stochastic model based on the random walk approach is used to simulate cyclic voltammetry. The model takes into account mass transport, kinetics of the redox reactions, adsorption effects and changes in the morphology of the electrode. The model is shown to display the expected behavior. Furthermore, the model shows consistent qualitative agreement with a finite difference solution. This approach allows for an understanding of phenomena on a microscopic level and may be useful for analyzing qualitative features observed in experimentally recorded signals.

  8. Effects of weak localization in quasi-one-dimensional electronic system over liquid helium

    CERN Document Server

    Kovdrya, Y Z; Gladchenko, S P

    2001-01-01

    One measured rho sub x sub x magnetoresistance of a quasi-one-dimensional electronic system over liquid helium within gas scattering range (1.3-2.0 K temperature range). It is shown that with increase of magnetic field the magnetoresistance is reduced at first and them upon passing over minimum it begins to increase from rho sub x sub x approx B sup 2 law. One anticipated that the negative magnetoresistance detected in the course of experiments resulted from the effects of weak localization. The experiment results are in qualitative conformity with the theoretical model describing processes of weak localization in single-dimensional nondegenerate electronic systems

  9. Kovacs effect in the one-dimensional Ising model: A linear response analysis

    Science.gov (United States)

    Ruiz-García, M.; Prados, A.

    2014-01-01

    We analyze the so-called Kovacs effect in the one-dimensional Ising model with Glauber dynamics. We consider small enough temperature jumps, for which a linear response theory has been recently derived. Within this theory, the Kovacs hump is directly related to the monotonic relaxation function of the energy. The analytical results are compared with extensive Monte Carlo simulations, and an excellent agreement is found. Remarkably, the position of the maximum in the Kovacs hump depends on the fact that the true asymptotic behavior of the relaxation function is different from the stretched exponential describing the relevant part of the relaxation at low temperatures.

  10. Effect of disorders on topological phases in one-dimensional optical superlattices

    International Nuclear Information System (INIS)

    Wang Zhizhou; Wu Yidong; Du Huijing; Jing Xili

    2016-01-01

    In a recent paper, Lang et al. proposed that edge states and topological phases can be observed in one-dimensional optical superlattices. They showed that the topological phases can be revealed by observing the density profile of a trapped fermion system, which displays plateaus with their positions. However, disorders are not considered in their model. To study the effect of disorders on the topological phases, we introduce random potentials to the model for optical superlattcies. Our calculations show that edge states are robust against the disorders. We find the edge states are very sensitive to the number of the sites in the optical superlattice and we propose a simple rule to describe the relationship between the edge states and the number of sites. The density plateaus are also robust against weak disorders provided that the average density is calculated over a long interval. The widths of the plateaus are proportional to the widths of the bulk energy gaps when there are disorders. The disorders can diminish the bulk energy gaps. So the widths of the plateaus decrease with the increase of disorders and the density plateaus disappear when disorders are too strong. The results in our paper can be used to guide the experimental detection of topological phases in one-dimensional systems. (paper)

  11. Quasi-one-dimensional nanostructured cobalt (Co) intercalated vanadium oxide (V{sub 2}O{sub 5}): Peroxovanadate sol gel synthesis and structural study

    Energy Technology Data Exchange (ETDEWEB)

    Langie da Silva, Douglas, E-mail: douglas.langie@ufpel.edu.br [Departamento de Física, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas 96010-900 (Brazil); Moreira, Eduardo Ceretta [Laboratório de Espectroscopia, Universidade Federal do Pampa, Campus Bagé, Bagé 96400-970 (Brazil); Dias, Fábio Teixeira; Neves Vieira, Valdemar das [Departamento de Física, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas 96010-900 (Brazil); Brandt, Iuri Stefani; Cas Viegas, Alexandre da; Pasa, André Avelino [Laboratório de Filmes Finos e Superfícies, Universidade Federal de Santa Catarina, Caixa Postal 476, Florianópolis 88.040-900 (Brazil)

    2015-01-15

    Nanostructured cobalt vanadium oxide (V{sub 2}O{sub 5}) xerogels spread onto crystalline Si substrates were synthesized via peroxovanadate sol gel route. The resulting products were characterized by distinct experimental techniques. The surface morphology and the nanostructure of xerogels correlate with Co concentration. The decrease of the structural coherence length is followed by the formation of a loose network of nanopores when the concentration of intercalated species was greater than 4 at% of Co. The efficiency of the synthesis route also drops with the increase of Co concentration. The interaction between the Co(OH{sub 2}){sub 6}{sup 2+} cations and the (H{sub 2}V{sub 10}O{sub 28}){sup 4−} anions during the synthesis was suggested as a possible explanation for the incomplete condensation of the V{sub 2}O{sub 5} gel. Finally the experimental results points for the intercalation of Co between the bilayers of the V{sub 2}O{sub 5}. In this scenario two possible preferential occupation sites for the metallic atoms in the framework of the xerogel were proposed. - Graphical abstract: Quasi-one-dimensional nanostructured cobalt (Co) intercalated vanadium oxide (V{sub 2}O{sub 5}) nanoribbons synthesized by peroxovanadate sol gel route. - Highlights: • Nanostructured cobalt V{sub 2}O{sub 5} gel spread onto c{sub S}i were synthesized via peroxovanadate sol gel route. • The micro and nanostructure correlates with the cobalt content. • The efficiency of the synthesis route shows to be also dependent of Co content. • The experimental results points for the intercalation of Co between the bilayers of the V{sub 2}O{sub 5} xerogel.

  12. Diffusion related isotopic fractionation effects with one-dimensional advective–dispersive transport

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bruce S. [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada); Lollar, Barbara Sherwood [Earth Sciences Department, University of Toronto, 22 Russell Street, Toronto, ON M5S 3B1 (Canada); Passeport, Elodie [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada); Chemical Engineering and Applied Chemistry Department, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 (Canada); Sleep, Brent E., E-mail: sleep@ecf.utoronto.ca [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada)

    2016-04-15

    Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining “observable” DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C{sub 0}), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (D{sub mech}/D{sub eff}). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective–dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C{sub 0}/MDL ratios of 50 or higher. Much larger C{sub 0}/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1 m) for a relatively young diffusive plume (< 100 years), and DRIF will not easily be detected by using the conventional sampling approach with “typical” well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where D{sub mech}/D{sub eff} is

  13. Diffusion related isotopic fractionation effects with one-dimensional advective–dispersive transport

    International Nuclear Information System (INIS)

    Xu, Bruce S.; Lollar, Barbara Sherwood; Passeport, Elodie; Sleep, Brent E.

    2016-01-01

    Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining “observable” DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C_0), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (D_m_e_c_h/D_e_f_f). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective–dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C_0/MDL ratios of 50 or higher. Much larger C_0/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1 m) for a relatively young diffusive plume (< 100 years), and DRIF will not easily be detected by using the conventional sampling approach with “typical” well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where D_m_e_c_h/D_e_f_f is larger than 10, DRIF

  14. Green's functions of one-dimensional quasicrystal bi-material with piezoelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liangliang [College of Engineering, China Agricultural University, Beijing 100083 (China); Sinomatech Wind Power Blade Co., Ltd, Beijing 100092 (China); Wu, Di [College of Engineering, China Agricultural University, Beijing 100083 (China); Xu, Wenshuai [College of Science, China Agricultural University, Beijing 100083 (China); Yang, Lianzhi [Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing 100083 (China); Ricoeur, Andreas; Wang, Zhibin [Institute of Mechanics, University of Kassel, 34125 Kassel (Germany); Gao, Yang, E-mail: gaoyangg@gmail.com [College of Science, China Agricultural University, Beijing 100083 (China)

    2016-09-16

    Based on the Stroh formalism of one-dimensional quasicrystals with piezoelectric effect, the problems of an infinite plane composed of two different quasicrystal half-planes are taken into account. The solutions of the internal and interfacial Green's functions of quasicrystal bi-material are obtained. Moreover, numerical examples are analyzed for a quasicrystal bi-material subjected to line forces or line dislocations, showing the contour maps of the coupled fields. The impacts of changing material constants on the coupled field components are investigated. - Highlights: • Green's functions of 1D piezoelectric quasicrystal bi-material are studied. • The coupled fields subjected to line forces or line dislocations are obtained. • Mechanical behavior under the effect of different material constants is researched.

  15. One dimensional analysis of the end effect of an EM pump

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Nam, Ho Yun; Kim, Yong Kyun; Choi, Byoung Hae; Lee, Yong Bum; Kim, Min Joon; Hong, Sang Hee

    1998-01-01

    Longitudinal end effect due to finite length of the pump are analyzed one dimensionally on an annular linear induction electromagnetic (EM) pump for the transportation of the electrically conducting liquid metal. The mathematical regions of the modeled pump is divided into three of the inlet, outlet and developing zone in large parts. Solving governing equations with the applied boundary condition, the distributions of magnetic field and developing force are investigated according to the coordinate of axial direction and compared with those of the pump with infinite length. At both ends of the pump, it is shown that the radial magnetic field is distorted and even the opposite force, which may cause local separation of the flow as the velocity of the pumping fluid is increased, is generated at the inlet region. In the present study, frequency control is suggested as one of the methods for the reduction of the end effect of the pump

  16. Influence of blocking effect and energetic disorder on diffusion in one-dimensional lattice

    International Nuclear Information System (INIS)

    Mai Thi Lan; Nguyen Van Hong; Nguyen Thu Nhan; Hoang Van Hue

    2014-01-01

    The diffusion in one-dimensional disordered lattice with Gaussian distribution of site and transition energies has been studied by mean of kinetic Monte-Carlo simulation. We focus on investigating the influence of energetic disorders and diffusive particle density on diffusivity. In single-particle case, we used both analytical method and kinetic Monte-Carlo simulation to calculate the quantities that relate to diffusive behavior in disordered systems such as the mean time between two consecutive jumps, correlation factor and diffusion coefficient. The calculation shows a good agreement between analytical and simulation results for all disordered lattice types. In many - particle case, the blocking effect results in decreasing correlation factor F and average time τ jump between two consecutive jumps. With increasing the number of particles, the diffusion coefficient D M decreases for site-energy and transition-energy disordered lattices due to the F-effect affect affects stronger than τ-effect. Furthermore, the blocking effect almost is temperature independent for both lattices. (author)

  17. Identification and origin of visible transitions in one dimensional (1D) ZnO nanostructures: Excitation wavelength and morphology dependence study

    Energy Technology Data Exchange (ETDEWEB)

    Baral, Arpit [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India); Khanuja, Manika, E-mail: manikakhanuja@gmail.com [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India); Islam, S.S. [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India); Sharma, Rishabh; Mehta, B.R. [Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2017-03-15

    In this present work, one dimensional (1D) ZnO nanostructures were synthesized by mechanical assisted thermal decomposition process. The samples were characterized by transmission electron microscopy (TEM) for morphology, high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) for structural characterization. Photoluminescence (PL) and Photoluminescence spectra evolution was studied as a function of (i) excitation wavelength (λ{sub Ex:} 310–370 nm) and (ii) morphology (nanoneedles and nanorods). PL spectra were observed to be highly asymmetric with strong dependence on excitation wavelength (λ{sub Ex}). PL spectra categorized into two types as a function of excitation wavelength (λ{sub Ex}): I. λ{sub Ex}≤345 nm and II. λ{sub Ex}≥350 nm. The PL spectra were deconvoluted into multiple Gaussian components for each excitation wavelength. The position of each component is a signature of its origin and corresponds to specific visible transition. The transition involving origin from conduction band (CB) are absent for excitation wavelength λ{sub Ex}≥350 nm. The tunable photoresponse is achieved in 1D ZnO nanostructures by varying (i) excitation wavelength and (ii) morphology: nanoneedles to nanorods. PL intensity increases as aspect ratio decrease from nanoneedles to nanorods morphology. This is attributed to non-radiative quenching by near surface defects.

  18. Collective ratchet effects and reversals for active matter particles on quasi-one-dimensional asymmetric substrates.

    Science.gov (United States)

    McDermott, Danielle; Olson Reichhardt, Cynthia J; Reichhardt, Charles

    2016-10-19

    Using computer simulations, we study a two-dimensional system of sterically interacting self-mobile run-and-tumble disk-shaped particles with an underlying periodic quasi-one-dimensional asymmetric substrate, and show that a rich variety of collective active ratchet behaviors arise as a function of particle density, activity, substrate period, and the maximum force exerted by the substrate. The net dc drift, or ratchet transport flux, is nonmonotonic since it increases with increased activity but is diminished by the onset of self-clustering of the active particles. Increasing the particle density decreases the ratchet transport flux for shallow substrates but increases the ratchet transport flux for deep substrates due to collective hopping events. At the highest particle densities, the ratchet motion is destroyed by a self-jamming effect. We show that it is possible to realize reversals of the direction of the net dc drift in the deep substrate limit when multiple rows of active particles can be confined in each substrate minimum, permitting emergent particle-like excitations to appear that experience an inverted effective substrate potential. We map out a phase diagram of the forward and reverse ratchet effects as a function of the particle density, activity, and substrate properties.

  19. The Effects of One-Dimensional Glide on the Reaction Kinetics of Interstitial Clusters

    International Nuclear Information System (INIS)

    Heinisch, Howard L.; Singh, B N.; Golubov, S I.

    2000-01-01

    Collision cascades in metals produce small interstitial clusters and perfect dislocation loops that glide in thermally activated one-dimensional (1D) random walks. These gliding defects can change their Burgers vectors by thermal activation or by interactions with other defects. Their migration is therefore''mixed 1D/3D migration'' along a 3D path consisting of 1D segments. The defect reaction kinetics under mixed 1D/3D diffusion are different from pure 1D diffusion and pure 3D diffusion, both of which can be formulated within analytical rate theory models of microstructure evolution under irradiation. Atomic-scale kinetic Monte Carlo (kMC) defect migration simulations are used to investigate the effects of mixed 1D/3D migration on defect reaction kinetics as a guide for implementing mixed 1D/3D migration into the analytical rate theory. The functional dependence of the sink strength on the sixe and concentration of sinks under mixed 1D/3D migration is shown to lie between that for pure 1D and pure 3D migration and varies with L, the average distance between direction changes of the gliding defects. It is shown that the sink strength in simulations for spherical sinks of radius R under mixed 1D/3D migration for values of L greater than R can be approximated by an expression that varies directly as R2. For small L, the form of the transition from mixed 1D/3D to pure 3D diffusion as L decreases is demonstrated in the simulations, the results of which can be used in the future development of an analytical expression describing this transition region

  20. Observation of magnetoelastic effects in a quasi-one-dimensional spiral magnet

    Science.gov (United States)

    Wang, Chong; Yu, Daiwei; Liu, Xiaoqiang; Chen, Rongyan; Du, Xinyu; Hu, Biaoyan; Wang, Lichen; Iida, Kazuki; Kamazawa, Kazuya; Wakimoto, Shuichi; Feng, Ji; Wang, Nanlin; Li, Yuan

    2017-08-01

    We present a systematic study of spin and lattice dynamics in the quasi-one-dimensional spiral magnet CuBr2, using Raman scattering in conjunction with infrared and neutron spectroscopy. Along with the development of spin correlations upon cooling, we observe a rich set of broad Raman bands at energies that correspond to phonon-dispersion energies near the one-dimensional magnetic wave vector. The low-energy bands further exhibit a distinct intensity maximum at the spiral magnetic ordering temperature. We attribute these unusual observations to two possible underlying mechanisms: (1) formation of hybrid spin-lattice excitations and/or (2) "quadrumerization" of the lattice caused by spin-singlet entanglement in competition with the spiral magnetism.

  1. Development of calculation method for one-dimensional kinetic analysis in fission reactors, including feedback effects

    International Nuclear Information System (INIS)

    Paixao, S.B.; Marzo, M.A.S.; Alvim, A.C.M.

    1986-01-01

    The calculation method used in WIGLE code is studied. Because of the non availability of such a praiseworthy solution, expounding the method minutely has been tried. This developed method has been applied for the solution of the one-dimensional, two-group, diffusion equations in slab, axial analysis, including non-boiling heat transfer, accountig for feedback. A steady-state program (CITER-1D), written in FORTRAN 4, has been implemented, providing excellent results, ratifying the developed work quality. (Author) [pt

  2. State switching kinetics for quasi-one-dimensional nanosystems: Effects of Finite length and irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Petukhov, B. V., E-mail: petukhov@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation)

    2017-01-15

    The state switching in an extended quasi-one-dimensional material is modeled by the stochastic formation of local new-state nuclei and their subsequent growth along the system axis. An analytical approach is developed to describe the influence of defects, dividing a sample into an ensemble of finite-length segments, on its state switching kinetics. As applied to magnetic systems, the method makes it possible to calculate magnetization curves for different defect concentrations and parameters of material.

  3. Fermi surface of the one-dimensional Hubbard model. Finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Bourbonnais, C.; Nelisse, H.; Reid, A.; Tremblay, A.M.S. (Dept. de Physique and Centre de Recherche en Physique du Solide (C.R.P.S.), Univ. de Sherbrooke, Quebec (Canada))

    1989-12-01

    The results reported here, using a standard numerical algorithm and a simple low temperature extrapolation, appear consistent with numerical results of Sorella et al. for the one-dimensional Hubbard model in the half-filled and quarter-filled band cases. However, it is argued that the discontinuity at the Fermi level found in the quarter-filled case is likely to come from the zero-temperature finite-size dependence of the quasiparticle weight Z, which is also discussed here. (orig.).

  4. Development of a calculation method for one dimensional kinetic analysis in fission reactors, with feedback effects

    International Nuclear Information System (INIS)

    Paixao, S.B.

    1985-01-01

    The methodology used in the WIGLE3 computer code is studied. This methodology has been applied for the steady-state and transient solutions of the one-dimensional, two-group, diffusion equations in slab geometry, in axial type probelm analysis. It's also studied, based in a WIGLE3 computer code, reactor representative models, considering non-boiling heat transfer. A steady-state program for control rod bank position search- CITER 1D- has been developed. Some criticality research on the proposed system has been done using different control rod bank initial positions, time steps and convergence parameters. (E.G.) [pt

  5. VO{sub 2}-like thermo-optical switching effect in one-dimensional nonlinear defective photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Juan, E-mail: juanzhang@staff.shu.edu.cn, E-mail: ywang@siom.ac.cn; Zhang, Rongjun [Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai 200072 (China); Wang, Yang, E-mail: juanzhang@staff.shu.edu.cn, E-mail: ywang@siom.ac.cn [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-06-07

    A new approach to achieve VO{sub 2}-like thermo-optical switching in a one-dimensional photonic crystal by the combination of thermo-optical and optical Kerr effects was proposed and numerically demonstrated in this study. The switching temperature and the hysteresis width can be tuned in a wide temperature range. Steep transition, high optical contrast, and low pumping power can be achieved at the same time. This kind of one-dimensional photonic crystal-based bistable switch will be low-cost, easy-to-fabricate, and versatile in practical applications compared with traditional VO{sub 2}-type one.

  6. Effects of Initial Symmetry on the Global Symmetry of One-Dimensional Legal Cellular Automata

    Directory of Open Access Journals (Sweden)

    Ikuko Tanaka

    2015-09-01

    Full Text Available To examine the development of pattern formation from the viewpoint of symmetry, we applied a two-dimensional discrete Walsh analysis to a one-dimensional cellular automata model under two types of regular initial conditions. The amount of symmetropy of cellular automata (CA models under regular and random initial conditions corresponds to three Wolfram’s classes of CAs, identified as Classes II, III, and IV. Regular initial conditions occur in two groups. One group that makes a broken, regular pattern formation has four types of symmetry, whereas the other group that makes a higher hierarchy pattern formation has only two types. Additionally, both final pattern formations show an increased amount of symmetropy as time passes. Moreover, the final pattern formations are affected by iterations of base rules of CA models of chaos dynamical systems. The growth design formations limit possibilities: the ratio of developing final pattern formations under a regular initial condition decreases in the order of Classes III, II, and IV. This might be related to the difference in degree in reference to surrounding conditions. These findings suggest that calculations of symmetries of the structures of one-dimensional cellular automata models are useful for revealing rules of pattern generation for animal bodies.

  7. Probability distribution of magnetization in the one-dimensional Ising model: effects of boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Antal, T [Physics Department, Simon Fraser University, Burnaby, BC V5A 1S6 (Canada); Droz, M [Departement de Physique Theorique, Universite de Geneve, CH 1211 Geneva 4 (Switzerland); Racz, Z [Institute for Theoretical Physics, Eoetvoes University, 1117 Budapest, Pazmany setany 1/a (Hungary)

    2004-02-06

    Finite-size scaling functions are investigated both for the mean-square magnetization fluctuations and for the probability distribution of the magnetization in the one-dimensional Ising model. The scaling functions are evaluated in the limit of the temperature going to zero (T {yields} 0), the size of the system going to infinity (N {yields} {infinity}) while N[1 - tanh(J/k{sub B}T)] is kept finite (J being the nearest neighbour coupling). Exact calculations using various boundary conditions (periodic, antiperiodic, free, block) demonstrate explicitly how the scaling functions depend on the boundary conditions. We also show that the block (small part of a large system) magnetization distribution results are identical to those obtained for free boundary conditions.

  8. Commensurability effects in one-dimensional Anderson localization: Anomalies in eigenfunction statistics

    International Nuclear Information System (INIS)

    Kravtsov, V.E.; Yudson, V.I.

    2011-01-01

    Highlights: → Statistics of normalized eigenfunctions in one-dimensional Anderson localization at E = 0 is studied. → Moments of inverse participation ratio are calculated. → Equation for generating function is derived at E = 0. → An exact solution for generating function at E = 0 is obtained. → Relation of the generating function to the phase distribution function is established. - Abstract: The one-dimensional (1d) Anderson model (AM), i.e. a tight-binding chain with random uncorrelated on-site energies, has statistical anomalies at any rational point f=(2a)/(λ E ) , where a is the lattice constant and λ E is the de Broglie wavelength. We develop a regular approach to anomalous statistics of normalized eigenfunctions ψ(r) at such commensurability points. The approach is based on an exact integral transfer-matrix equation for a generating function Φ r (u, φ) (u and φ have a meaning of the squared amplitude and phase of eigenfunctions, r is the position of the observation point). This generating function can be used to compute local statistics of eigenfunctions of 1d AM at any disorder and to address the problem of higher-order anomalies at f=p/q with q > 2. The descender of the generating function P r (φ)≡Φ r (u=0,φ) is shown to be the distribution function of phase which determines the Lyapunov exponent and the local density of states. In the leading order in the small disorder we derived a second-order partial differential equation for the r-independent ('zero-mode') component Φ(u, φ) at the E = 0 (f=1/2 ) anomaly. This equation is nonseparable in variables u and φ. Yet, we show that due to a hidden symmetry, it is integrable and we construct an exact solution for Φ(u, φ) explicitly in quadratures. Using this solution we computed moments I m = N 2m > (m ≥ 1) for a chain of the length N → ∞ and found an essential difference between their m-behavior in the center-of-band anomaly and for energies outside this anomaly. Outside the

  9. One-dimensional critical heat flux concerning surface orientation and gap size effects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Hoon; Suh, Kune Y. E-mail: kysuh@snu.ac.kr

    2003-12-01

    Tests were conducted to examine the critical heat flux (CHF) on a one-dimensional downward heating rectangular channel having a narrow gap by changing the orientation of the copper test heater assembly in a pool of saturated water under atmospheric pressure. The test parameters include both the gap sizes of 1, 2, 5 and 10 mm, and the surface orientation angles from the downward-facing position (180 deg.) to the vertical position (90 deg.), respectively. Also, the CHF experiments were performed for pool boiling with varying heater surface orientations in the unconfined space at atmospheric pressure using the rectangular test section. It was observed that the CHF generally decreases as the surface inclination angle increases and as the gap size decreases. In consistency with several studies reported in the literature, it was found that there exists a transition angle at which the CHF changes with a rapid slope. An engineering correlation is developed for the CHF during natural convective boiling in the inclined, confined rectangular channels with the aid of dimensional analysis. This correlation agrees with the experimental data of this study within {+-}20%.

  10. Calculation of band alignments and quantum confinement effects in zero- and one-dimensional pseudomorphic structures

    International Nuclear Information System (INIS)

    Yang, M.; Sturm, J.C.; Prevost, J.

    1997-01-01

    The strain field distributions and band lineups of zero-dimensional and one-dimensional strained pseudomorphic semiconductor particles inside a three-dimensional matrix of another semiconductor have been studied. The resulting strain in the particle and the matrix leads to band alignments considerably different from that in the conventional two-dimensional (2D) pseudomorphic growth case. The models are first applied to an ideal spherical and cylindrical Si 1-x Ge x particle in a large Si matrix. In contrast to the 2D case, the band alignments for both structures are predicted to be strongly type II, where the conduction-band edge and the valence-band edge of the Si matrix are both significantly lower than those in the Si 1-x Ge x inclusion, respectively. Band lineups and the lowest electron endash heavy-hole transition energies of a pseudomorphic V-groove Si 1-x Ge x quantum wire inside a large Si matrix have been calculated numerically for different size structures. The photoluminescence energies of a large Si 1-x Ge x V-groove structure on Si will be lower than those of conventional 2D strained Si 1-x Ge x for similar Ge contents. copyright 1997 The American Physical Society

  11. Effects of delayed nonlinear response on wave packet dynamics in one-dimensional generalized Fibonacci chains

    International Nuclear Information System (INIS)

    Zhang, Jianxin; Zhang, Zhenjun; Tong, Peiqing

    2013-01-01

    We investigate the spreading of an initially localized wave packet in one-dimensional generalized Fibonacci (GF) lattices by solving numerically the discrete nonlinear Schrödinger equation (DNLSE) with a delayed cubic nonlinear term. It is found that for short delay time, the wave packet is self-trapping in first class of GF lattices, that is, the second moment grows with time, but the corresponding participation number does not grow. However, both the second moment and the participation number grow with time for large delay time. This illuminates that the wave packet is delocalized. For the second class of GF lattices, the dynamic behaviors of wave packet depend on the strength of on-site potential. For a weak on-site potential, the results are similar to the case of the first class. For a strong on-site potential, both the second moment and the participation number does not grow with time in the regime of short delay time. In the regime of large delay time, both the second moment and the participation number exhibit stair-like growth

  12. Effects of delayed nonlinear response on wave packet dynamics in one-dimensional generalized Fibonacci chains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianxin; Zhang, Zhenjun [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Tong, Peiqing, E-mail: pqtong@njnu.edu.cn [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023 (China)

    2013-07-15

    We investigate the spreading of an initially localized wave packet in one-dimensional generalized Fibonacci (GF) lattices by solving numerically the discrete nonlinear Schrödinger equation (DNLSE) with a delayed cubic nonlinear term. It is found that for short delay time, the wave packet is self-trapping in first class of GF lattices, that is, the second moment grows with time, but the corresponding participation number does not grow. However, both the second moment and the participation number grow with time for large delay time. This illuminates that the wave packet is delocalized. For the second class of GF lattices, the dynamic behaviors of wave packet depend on the strength of on-site potential. For a weak on-site potential, the results are similar to the case of the first class. For a strong on-site potential, both the second moment and the participation number does not grow with time in the regime of short delay time. In the regime of large delay time, both the second moment and the participation number exhibit stair-like growth.

  13. Ultracold bosons in a one-dimensional optical lattice chain: Newton's cradle and Bose enhancement effect

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji-Guo; Yang, Shi-Jie, E-mail: yangshijie@tsinghua.org.cn

    2017-05-18

    We study a model to realize the long-distance correlated tunneling of ultracold bosons in a one-dimensional optical lattice chain. The model reveals the behavior of a quantum Newton's cradle, which is the perfect transfer between two macroscopic quantum states. Due to the Bose enhancement effect, we find that the resonantly tunneling through a Mott domain is greatly enhanced.

  14. Effects of disorder on atomic density waves and spin-singlet dimers in one-dimensional optical lattices

    International Nuclear Information System (INIS)

    Gao Xianlong

    2008-01-01

    Using the Bethe-ansatz density-functional theory, we study a one-dimensional Hubbard model of confined attractively interacting fermions in the presence of a uniformly distributed disorder. The strongly correlated Luther-Emery nature of the attractive one-dimensional Hubbard model is fully taken into account as the reference system in the density-functional theory. The effects of the disorder are investigated on the atomic density waves in the weak-to-intermediate attractive interaction and on the spin-singlet dimers of doubly occupied sites in the strongly attractive regime. It is found that atomic density waves are sensitive to the disorder and the spin-singlet dimers of doubly occupied sites are quite unstable against the disorder. We also show that a very weak disorder could smear the singularities in the stiffness, thus, suppresses the spin-singlet pairs

  15. The effect of the dust’s electric dipole moment on transverse oscillations of the one dimensional dusty crystals

    Directory of Open Access Journals (Sweden)

    S Karimi

    2013-10-01

    Full Text Available In this paper, we investigated the effect of dipole-dipole interaction between the dust particles on the transverse oscillation of one dimensional dusty crystal. We used the Boltzmann distribution for the electrons and ions density and assumed that dust particles are negatively charged. The equation of motion for dust particles in this one dimensional chain was obtained. It is shown that the direction of dipoles plays an important role in the motion of dusts and significantly changes the oscillation frequency. Also, in the long wavelength approximation, a nonlinear Schrödinger equation for the evolution of the amplitude of the nonlinear oscillations was derived, showing that both the bright solitons and the dark solitons could exist.

  16. Integrability and soliton in a classical one dimensional site dependent biquadratic Heisenberg spin chain and the effect of nonlinear inhomogeneity

    International Nuclear Information System (INIS)

    Kavitha, L.; Daniel, M.

    2002-07-01

    The integrability of one dimensional classical continuum inhomogeneous biquadratic Heisenberg spin chain and the effect of nonlinear inhomogeneity on the soliton of an underlying completely integrable spin model are studied. The dynamics of the spin system is expressed in terms of a higher order generalized nonlinear Schroedinger equation through a differential geometric approach which becomes integrable for a particular choice of the biquadratic exchange interaction and for linear inhomogeneity. The effect of nonlinear inhomogeneity on the spin soliton is studied by carrying out a multiple scale perturbation analysis. (author)

  17. Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Irina V. Soboleva

    2018-01-01

    Full Text Available The review considers the influence of Bloch surface waves on the optical and magneto-optical effects observed in photonic crystals; for example, the Goos–Hänchen effect, the Faraday effect, optical trapping and so on. Prospects for using Bloch surface waves for spatial light modulation, for controlling the polarization of light, for optical trapping and control of micro-objects are discussed.

  18. Effects of Colored Noise on Periodic Orbits in a One-Dimensional Map

    Science.gov (United States)

    Li, Feng-Guo; Ai, Bao-Quan

    2011-06-01

    Noise can induce inverse period-doubling transition and chaos. The effects of the colored noise on periodic orbits, of the different periodic sequences in the logistic map, are investigated. It is found that the dynamical behaviors of the orbits, induced by an exponentially correlated colored noise, are different in the mergence of transition, and the effects of the noise intensity on their dynamical behaviors are different from the effects of the correlation time of noise. Remarkably, the noise can induce new periodic orbits, namely, two new orbits emerge in the period-four sequence at the bifurcation parameter value μ = 3.5, four new orbits in the period-eight sequence at μ = 3.55, and three new orbits in the period-six sequence at μ = 3.846, respectively. Moreover, the dynamical behaviors of the new orbits clearly show the resonancelike response to the colored noise.

  19. Effects of Colored Noise on Periodic Orbits in a One-Dimensional Map

    International Nuclear Information System (INIS)

    Li Fengguo; Ai Baoquan

    2011-01-01

    Noise can induce inverse period-doubling transition and chaos. The effects of the colored noise on periodic orbits, of the different periodic sequences in the logistic map, are investigated. It is found that the dynamical behaviors of the orbits, induced by an exponentially correlated colored noise, are different in the mergence of transition, and the effects of the noise intensity on their dynamical behaviors are different from the effects of the correlation time of noise. Remarkably, the noise can induce new periodic orbits, namely, two new orbits emerge in the period-four sequence at the bifurcation parameter value μ = 3.5, four new orbits in the period-eight sequence at μ = 3.55, and three new orbits in the period-six sequence at μ = 3.846, respectively. Moreover, the dynamical behaviors of the new orbits clearly show the resonancelike response to the colored noise. (general)

  20. Dome effect of black carbon and its key influencing factors: a one-dimensional modelling study

    Science.gov (United States)

    Wang, Zilin; Huang, Xin; Ding, Aijun

    2018-02-01

    Black carbon (BC) has been identified to play a critical role in aerosol-planetary boundary layer (PBL) interaction and further deterioration of near-surface air pollution in megacities, which has been referred to as the dome effect. However, the impacts of key factors that influence this effect, such as the vertical distribution and aging processes of BC, as well as the underlying land surface, have not been quantitatively explored yet. Here, based on available in situ measurements of meteorology and atmospheric aerosols together with the meteorology-chemistry online coupled model WRF-Chem, we conduct a set of parallel simulations to quantify the roles of these factors in influencing the BC dome effect and surface haze pollution. Furthermore, we discuss the main implications of the results to air pollution mitigation in China. We found that the impact of BC on the PBL is very sensitive to the altitude of aerosol layer. The upper-level BC, especially that near the capping inversion, is more essential in suppressing the PBL height and weakening the turbulent mixing. The dome effect of BC tends to be significantly intensified as BC mixed with scattering aerosols during winter haze events, resulting in a decrease in PBL height by more than 15 %. In addition, the dome effect is more substantial (up to 15 %) in rural areas than that in the urban areas with the same BC loading, indicating an unexpected regional impact of such an effect to air quality in countryside. This study indicates that China's regional air pollution would greatly benefit from BC emission reductions, especially those from elevated sources from chimneys and also domestic combustion in rural areas, through weakening the aerosol-boundary layer interactions that are triggered by BC.

  1. Finite-dimensional effects and critical indices of one-dimensional quantum models

    International Nuclear Information System (INIS)

    Bogolyubov, N.M.; Izergin, A.G.; Reshetikhin, N.Yu.

    1986-01-01

    Critical indices, depending on continuous parameters in Bose-gas quantum models and Heisenberg 1/2 spin antiferromagnetic in two-dimensional space-time at zero temperature, have been calculated by means of finite-dimensional effects. In this case the long-wave asymptotics of the correlation functions is of a power character. Derivation of man asymptotics terms is reduced to the determination of a central charge in the appropriate Virassoro algebra representation and the anomalous dimension-operator spectrum in this representation. The finite-dimensional effects allow to find these values

  2. Effect on cavity optomechanics of the interaction between a cavity field and a one-dimensional interacting bosonic gas

    International Nuclear Information System (INIS)

    Sun Qing; Hu Xinghua; Liu, W. M.; Xie, X. C.; Ji Anchun

    2011-01-01

    We investigate optomechanical coupling between one-dimensional interacting bosons and the electromagnetic field in a high-finesse optical cavity. We show that by tuning interatomic interactions, one can realize effective optomechanics with mechanical resonators ranging from side-mode excitations of a Bose-Einstein condensate (BEC) to particle-hole excitations of a Tonks-Girardeau (TG) gas. We propose that this unique feature can be formulated to detect the BEC-TG gas crossover and measure the sine-Gordon transition continuously and nondestructively.

  3. Loading Rate Effects on the One-Dimensional Compressibility of Four Partially Saturated Soils

    Science.gov (United States)

    1986-12-01

    representations are referred to as constitutive models. Numerous constitutive models incorporating loading rate effects have been developed ( Baladi and Rohani...and probably more indicative of the true values of applied pressure and average strain produced during the test. A technique developed by Baladi and...Sand," Technical Report No. AFWL-TR-66-146, Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico, June, 1967. 4. Baladi , George Y., and

  4. The effects of one-dimensional glide on the reaction kinetics of interstitial clusters

    DEFF Research Database (Denmark)

    Heinisch, H.L.; Singh, B.N.; Golubov, S.I.

    2000-01-01

    is therefore 'mixed 1D/3D migration' along a 3D path consisting of 1D segments, The defect reaction kinetics under mixed 1D/3D diffusion are different from pure 1D diffusion and pure 3D diffusion, both of which can be formulated within analytical rate theory models of microstructure evolution under irradiation....... Atomic-scale kinetic Monte Carlo (kMC) defect migration simulations are used to investigate the effects of mixed 1D/3D migration on defect reaction kinetics as a guide for implementing mixed 1D/3D migration into the analytical rate theory. The functional dependence of the sink strength on the size...

  5. Synchronization effects in two coupled one-dimensional lattices of phase oscillators

    International Nuclear Information System (INIS)

    Pando L, Carlos L.

    2001-03-01

    We study synchronization effects in a model consisting of two identical unidirectionally coupled 1-D arrays of phase oscillators. The master array is in the spatio-temporal chaos regime and the coupling across the two arrays is not strong enough in order to reach complete synchronization. The time series of the distance between the arrays is the main object of our study and this shows on-off intermittency. We can approximate the dynamics of the aforementioned time series with that of a first-order Markov process with two symbols. This model can be implemented in arrays of phase-locked loops (PPL) and Josephson junctions. (author)

  6. One dimensional polaron effects and current inhomogeneities in sequential phonon emission

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, E.S.; Harris, J.S.; Hanna, C.; Laughlin, R.B.

    1985-07-01

    We have constructed a physical model to explain the tunneling current oscillations reported by Hickmott et al., for GaAs/AlGaAs heterostructures in high magnetic fields. We propose that the periodic structure observed is due to space charge which builds up in the undepleted layer when electrons enter it with energy just below the phonon emission threshold. Such electrons interact with the lattice to form polarons whose energy is pinned to the phonon energy, and thus has a very small group velocity. The polaron effect is strongly enhanced by the confinement of the electrons by the strong magnetic field. We infer from the current-voltage data that most of the tunneling current flows through a small area of the sample. The combined model gives reasonable quantitative agreement with experiment. 6 refs., 6 figs.

  7. One dimensional polaron effects and current inhomogeneities in sequential phonon emission

    International Nuclear Information System (INIS)

    Hellman, E.S.; Harris, J.S.; Hanna, C.; Laughlin, R.B.

    1985-07-01

    We have constructed a physical model to explain the tunneling current oscillations reported by Hickmott et al., for GaAs/AlGaAs heterostructures in high magnetic fields. We propose that the periodic structure observed is due to space charge which builds up in the undepleted layer when electrons enter it with energy just below the phonon emission threshold. Such electrons interact with the lattice to form polarons whose energy is pinned to the phonon energy, and thus has a very small group velocity. The polaron effect is strongly enhanced by the confinement of the electrons by the strong magnetic field. We infer from the current-voltage data that most of the tunneling current flows through a small area of the sample. The combined model gives reasonable quantitative agreement with experiment. 6 refs., 6 figs

  8. Effect of process operating conditions in the biomass torrefaction: A simulation study using one-dimensional reactor and process model

    International Nuclear Information System (INIS)

    Park, Chansaem; Zahid, Umer; Lee, Sangho; Han, Chonghun

    2015-01-01

    Torrefaction reactor model is required for the development of reactor and process design for biomass torrefaction. In this study, a one-dimensional reactor model is developed based on the kinetic model describing volatiles components and solid evolution and the existing thermochemical model considering the heat and mass balance. The developed reactor model used the temperature and flow rate of the recycled gas as the practical manipulated variables instead of the torrefaction temperature. The temperature profiles of the gas and solid phase were generated, depending on the practical thermal conditions, using developed model. Moreover, the effect of each selected operating variables on the parameters of the torrefaction process and the effect of whole operating variables with particular energy yield were analyzed. Through the results of sensitivity analysis, it is shown that the residence time insignificantly influenced the energy yield when the flow rate of recycled gas is low. Moreover, higher temperature of recycled gas with low flow rate and residence time produces the attractive properties, including HHV and grindability, of torrefied biomass when the energy yield is specified. - Highlights: • A one-dimensional reactor model for biomass torrefaction is developed considering the heat and mass balance. • The developed reactor model uses the temperature and flow rate of the recycled gas as the practical manipulated variables. • The effect of operating variables on the parameters of the torrefaction process is analyzed. • The results of sensitivity analysis represent notable discussions which were not done by the previous researches

  9. Unsteady free surface flow in porous media: One-dimensional model equations including vertical effects and seepage face

    Science.gov (United States)

    Di Nucci, Carmine

    2018-05-01

    This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.

  10. Magneto-electrical transport through MBE-grown III-V semiconductor nanostructures. From zero- to one-dimensional type of transport

    Energy Technology Data Exchange (ETDEWEB)

    Storace, Eleonora

    2009-07-08

    From the development of the first transistor in 1947, great interest has been directed towards the technological development of semiconducting devices and the investigation of their physical properties. A very vital field within this topic focuses on the electrical transport through low-dimensional structures, where the quantum confinement of charge carriers leads to the observation of a wide variety of phenomena that, in their turn, can give an interesting insight on the fundamental properties of the structures under examination. In the present thesis, we will start analyzing zero-dimensional systems, focusing on how electrons localized onto an island can take part in the transport through the whole system; by precisely tuning the tunnel coupling strength between this island and its surroundings, we will then show how it is possible to move from a zero- to a one-dimensional system. Afterwards, the inverse path will be studied: a one-dimensional system is electrically characterized, proving itself to split up due to disorder into several zero-dimensional structures. (orig.)

  11. Magneto-electrical transport through MBE-grown III-V semiconductor nanostructures. From zero- to one-dimensional type of transport

    International Nuclear Information System (INIS)

    Storace, Eleonora

    2009-01-01

    From the development of the first transistor in 1947, great interest has been directed towards the technological development of semiconducting devices and the investigation of their physical properties. A very vital field within this topic focuses on the electrical transport through low-dimensional structures, where the quantum confinement of charge carriers leads to the observation of a wide variety of phenomena that, in their turn, can give an interesting insight on the fundamental properties of the structures under examination. In the present thesis, we will start analyzing zero-dimensional systems, focusing on how electrons localized onto an island can take part in the transport through the whole system; by precisely tuning the tunnel coupling strength between this island and its surroundings, we will then show how it is possible to move from a zero- to a one-dimensional system. Afterwards, the inverse path will be studied: a one-dimensional system is electrically characterized, proving itself to split up due to disorder into several zero-dimensional structures. (orig.)

  12. Phase time delay and Hartman effect in a one-dimensional photonic crystal with four-level atomic defect layer

    Science.gov (United States)

    Jamil, Rabia; Ali, Abu Bakar; Abbas, Muqaddar; Badshah, Fazal; Qamar, Sajid

    2017-08-01

    The Hartman effect is revisited using a Gaussian beam incident on a one-dimensional photonic crystal (1DPC) having a defect layer doped with four-level atoms. It is considered that each atom of the defect layer interacts with three driving fields, whereas a Gaussian beam of width w is used as a probe light to study Hartman effect. The atom-field interaction inside the defect layer exhibits electromagnetically induced transparency (EIT). The 1DPC acts as positive index material (PIM) and negative index material (NIM) corresponding to the normal and anomalous dispersion of the defect layer, respectively, via control of the phase associated with the driving fields and probe detuning. The positive and negative Hartman effects are noticed for PIM and NIM, respectively, via control of the relative phase corresponding to the driving fields and probe detuning. The advantage of using four-level EIT system is that a much smaller absorption of the transmitted beam occurs as compared to three-level EIT system corresponding to the anomalous dispersion, leading to negative Hartman effect.

  13. Growth of uranyl hydroxide nanowires and nanotubes by the electrodeposition method and their transformation to one-dimensional U{sub 3}O{sub 8} nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lin; Zhao, Ran; Gu, Zhan-jun; Zhao, Yu-liang; Shi, Wei-qun [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Chai, Zhi-fang [School of Radiological and Interdisciplinary Sciences, Soochow University, Suzhou (China)

    2014-03-15

    Actinide nanomaterials have great potential for application in the fabrication of nuclear fuels and spent fuel reprocessing in advanced nuclear energy systems. In this work, we used track-etched nanoporous membranes as hard templates to synthesize uranium-based nanomaterials with new structures by electrodeposition. Through electrochemical behavior investigations and subsequent product characterization, the chemical compositions of the deposition product has been confirmed to be uranyl hydroxide. More importantly, accurate control of the morphologies of the deposition product (i.e., nanowires and nanotubes) could be achieved by carefully adjusting the growth parameters such as deposition time and current density. The preferred morphology of the electrodeposition product was nanowires when a low current density was applied, whereas nanotubes could be formed only when a high current density and a short deposition time were both applied. The formation of nanotubes is attributed to the hydrogen bubbles generated by water electrolysis under the overpotential electroreduction conditions. Additionally, we transformed the main chemical composition of the deposition products from uranyl hydroxide to triuranium octoxide by calcination, and SEM results showed that the morphologies of the nanowires and nanotubes were very well maintained after the calcination. Our work provides a useful protocol for the synthesis of one-dimensional uranium-based nanomaterials. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Growth of uranyl hydroxide nanowires and nanotubes by the electrodeposition method and their transformation to one-dimensional U3O8 nanostructures

    International Nuclear Information System (INIS)

    Wang, Lin; Zhao, Ran; Gu, Zhan-jun; Zhao, Yu-liang; Shi, Wei-qun; Chai, Zhi-fang

    2014-01-01

    Actinide nanomaterials have great potential for application in the fabrication of nuclear fuels and spent fuel reprocessing in advanced nuclear energy systems. In this work, we used track-etched nanoporous membranes as hard templates to synthesize uranium-based nanomaterials with new structures by electrodeposition. Through electrochemical behavior investigations and subsequent product characterization, the chemical compositions of the deposition product has been confirmed to be uranyl hydroxide. More importantly, accurate control of the morphologies of the deposition product (i.e., nanowires and nanotubes) could be achieved by carefully adjusting the growth parameters such as deposition time and current density. The preferred morphology of the electrodeposition product was nanowires when a low current density was applied, whereas nanotubes could be formed only when a high current density and a short deposition time were both applied. The formation of nanotubes is attributed to the hydrogen bubbles generated by water electrolysis under the overpotential electroreduction conditions. Additionally, we transformed the main chemical composition of the deposition products from uranyl hydroxide to triuranium octoxide by calcination, and SEM results showed that the morphologies of the nanowires and nanotubes were very well maintained after the calcination. Our work provides a useful protocol for the synthesis of one-dimensional uranium-based nanomaterials. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Effect of presence of benzene ring in surfactant hydrophobic chain on the transformation towards one dimensional aggregate

    Directory of Open Access Journals (Sweden)

    Rabah A. Khalil

    2015-07-01

    Full Text Available The formation of wormlike micelle and the following significant changes in rheological properties suffer misunderstanding from both theoretical and fundamental aspects. Recently, we have introduced a theory for interpreting such important phenomenon which is referred to as critical intermolecular forces (CIF. The theory has stated that the hydrophobic effect is the main factor for the formation of worm-like aggregates. Therefore, it seems interesting to check out the validity of this new physical insight through investigating the presence of benzene ring as less hydrophobic group in contrast to that of alkyl in surfactant tail. The mixture of anionic sodium dodecylbenzenesulphonate (SDBS and cationic cetyltrimethylammonium bromide (CTAB shows a high dynamic viscosity peak at the ratio of 80/20 of 3 wt.% CTAB/SDBS indicating the formation of wormlike micelles. The thermodynamic properties have been evaluated for this mixture exhibiting good agreement with the rheological changes. Interestingly, the results show the presence of benzene ring (in SDBS causing a negative effect towards the formation of one dimensional aggregate in contrast to previous results which support the proposed CIF theory. The presence of nonionic surfactant TritonX-100 in binary and ternary systems of SDBS and CTAB prohibits the formation of wormlike micelles.

  16. Droplet size effects on NO/x/ formation in a one-dimensional monodisperse spray combustion system

    Science.gov (United States)

    Sarv, H.; Nizami, A. A.; Cernansky, N. P.

    1982-01-01

    A one-dimensional monodisperse aerosol spray combustion facility is described and experimental results of post flame NO/NO(x) emissions are presented. Four different hydrocarbon fuels were studied: isopropanol, methanol, n-heptane, and n-octane. The results indicate an optimum droplet size in the range of 48-58 microns for minimizing NO/NO(x) production for all of the test fuels. This NO(x) behavior is associated with droplet interactions and the transition from diffusive type of spray burning to that of a prevaporized and premixed case. Decreasing the droplet size results in a trend of increasing droplet interactions, which suppresses temperatures and reduces NO(x). This trend continues until prevaporization effects begin to dominate and the system tends towards the premixed limit. The occurrence of the minimum NO(x) point at different droplet diameters for the different fuels appears to be governed by the extent of prevaporization of the fuel in the spray, and is consistent with theoretical calculations based on each fuel's physical properties.

  17. A one-dimensional semi-empirical model considering transition boiling effect for dispersed flow film boiling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Jou [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Pan, Chin, E-mail: cpan@ess.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Low Carbon Energy Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2017-05-15

    Highlights: • Seven heat transfer mechanisms are studied numerically by the model. • A semi-empirical method is proposed to account for the transition boiling effect. • The parametric effects on the heat transfer mechanisms are investigated. • The thermal non-equilibrium phenomenon between vapor and droplets is investigated. - Abstract: The objective of this paper is to develop a one-dimensional semi-empirical model for the dispersed flow film boiling considering transition boiling effects. The proposed model consists of conservation equations, i.e., vapor mass, vapor energy, droplet mass and droplet momentum conservation, and a set of closure relations to address the interactions among wall, vapor and droplets. The results show that the transition boiling effect is of vital importance in the dispersed flow film boiling regime, since the flowing situation in the downstream would be influenced by the conditions in the upstream. In addition, the present paper, through evaluating the vapor temperature and the amount of heat transferred to droplets, investigates the thermal non-equilibrium phenomenon under different flowing conditions. Comparison of the wall temperature predictions with the 1394 experimental data in the literature, the present model ranging from system pressure of 30–140 bar, heat flux of 204–1837 kW/m{sup 2} and mass flux of 380–5180 kg/m{sup 2} s, shows very good agreement with RMS of 8.80% and standard deviation of 8.81%. Moreover, the model well depicts the thermal non-equilibrium phenomenon for the dispersed flow film boiling.

  18. One-dimensional fossil-like γ-Fe2O3@carbon nanostructure: preparation, structural characterization and application as adsorbent for fast and selective recovery of gold ions from aqueous solution

    Science.gov (United States)

    Gunawan, Poernomo; Xiao, Wen; Hao Chua, Marcus Wen; Poh-Choo Tan, Cheryl; Ding, Jun; Zhong, Ziyi

    2016-10-01

    One-dimensional (1D) magnetic nanostructures with high thermal stability have important industrial applications, but their fabrication remains a big challenge. Herein we demonstrate a scalable approach for the preparation of stable 1D γ-Fe2O3@carbon, which is also applicable for other metal oxide-core and carbon-shell nanostructures, such as 1D TiO2@carbon. One-dimensional ferric oxyhydroxide (α-FeO(OH)) was initially prepared by a hydrothermal method, followed by carbon coating through hydrothermal treatment of the resulting metal oxide in glucose solution. After calcination in N2 gas at 500 °C and subsequent exposure to air, the initial carbon-coated 1D α-Fe2O3 was converted to 1D γ-Fe2O3@carbon, which was very stable without any observed changes even after 1.5 years of storage under ambient conditions. The materials were then used as adsorbents and found to be highly selective towards Au (III) adsorption, of which the maximum adsorption capacity is about 600 mg Au/g sorbent (1132 mg Au/g carbon). The spent sorbent containing Au after adsorption can be readily collected by applying a magnetic field due to the presence of the magnetic core, and the adsorbed Au particles are subsequently recovered after the combustion and dissolution of the sorbent. This work demonstrates not only a facile approach to the fabrication of robust 1D magnetic materials with a stable carbon shell, but also a possible cyanide-free process for the fast and selective recovery of gold from electronic waste and industrial water.

  19. One-Dimensionality and Whiteness

    Science.gov (United States)

    Calderon, Dolores

    2006-01-01

    This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…

  20. One dimensional model for polytypes

    International Nuclear Information System (INIS)

    Rosato, A.

    1979-01-01

    The general expression for the dispersion relation for a polyatomic one dimensional crystal obtained by the Laplace Transform Method is applied to materials with the fcc and hcp structures, both consisting of close-packed planes of atoms with the stacking sequence of plane ABC/ABC... and AB/AB... respectively. The expression is also applied to polytypes, that is materials caracterized by a stacking sequence with longer repeat unit. The effective mass is cast in a condensed form useful for further calculations. The results from this simple model are only qualitative. (Author) [pt

  1. Exchange correlation effects on plasmons and on charge-density wave instability in narrow-band quasi-one-dimensional metals

    International Nuclear Information System (INIS)

    Nobile, A.; Tosatti, E.

    1979-05-01

    The coexistence of tight-binding and exchange-correlation effects inside each chain of a model quasi-one-dimensional metal, on both plasmon and charge density wave properties have been studied. The results, while in qualitative agreement with other treatments of the problem at long wavelengths, indicate a strong tendency for plasmons to turn into excitons at larger momenta, and to exhibit an ''excitonic'' charge-density wave instability at k approximately 2ksub(F). The nature of the plasmon branches and of the excitonic charge distortion is examined. Relevance to existing quasi-one-dimensional materials is also discussed. (author)

  2. Basic physics of one-dimensional metals

    International Nuclear Information System (INIS)

    Emery, V.J.

    1976-01-01

    Largely nonmathematical qualitative lectures are given on the basic physics of nearly one-dimensional conductors. The main emphasis is placed on the properties of a purely one-dimensional electron gas. The effects of a real system having interchain coupling, impurities, a compressible lattice, lattice distortions and phonon anomalies are discussed

  3. One-Dimensional Nanostructures for Neutron Detection

    International Nuclear Information System (INIS)

    Zhu, Yong; Eapen, Jacob; Hawari, Ayman

    2015-01-01

    This report consists of four parts in addition to a publication/presentation list. Part I is on electronic structure simulations on boron nitride (BN) and BC x N nanotubes using density function theory (DFT), Part II is on fabrication and characterization of nanowire sensors, Part III is on irradiation response of BN nanotubes using molecular dynamics (MD) simulations, and Part IV is on the in-situ transmission electron microscopy (TEM) study of irradiation response of BN nanotubes.

  4. One-Dimensional Nanostructures for Neutron Detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yong [North Carolina State Univ., Raleigh, NC (United States); Eapen, Jacob [North Carolina State Univ., Raleigh, NC (United States); Hawari, Ayman [North Carolina State Univ., Raleigh, NC (United States)

    2015-05-04

    This report consists of four parts in addition to a publication/presentation list. Part I is on electronic structure simulations on boron nitride (BN) and BCxN nanotubes using density function theory (DFT), Part II is on fabrication and characterization of nanowire sensors, Part III is on irradiation response of BN nanotubes using molecular dynamics (MD) simulations, and Part IV is on the in-situ transmission electron microscopy (TEM) study of irradiation response of BN nanotubes.

  5. Effects of a delta-attractive impurity in the thermodynamics properties of an one-dimensional ideal Bose gas

    International Nuclear Information System (INIS)

    Ioriatti Junior, L.C.

    1976-01-01

    The thermodynamic behavior of the one-dimensional bose gas-attractive delta impurity system is studied. The system is shown to undergo the Bose-Einstein condensation and the cause of the phase transition is attributed to the bound state introduced by the impurity in the free particle energy spectrum. The condensed phase is composed by particles captured by the impurity, forming a drop of particles well localized in space. This gives to the Bose-Einstein condensation in this system the appearance of the ordinary vapor-liquid phase transition. The order of the phase transition is analized with the aid of the Clausius-Clayperon equation, leading to the conclusion that the transition is a first order one. This reinforces the interpretation of a vapor-liquid transition. The evaluation of the heat capacity at constant length shows the existence of a finite discontinuity at the transition temperature [pt

  6. Effects of Thermal Resistance on One-Dimensional Thermal Analysis of the Epidermal Flexible Electronic Devices Integrated with Human Skin

    Science.gov (United States)

    Li, He; Cui, Yun

    2017-12-01

    Nowadays, flexible electronic devices are increasingly used in direct contact with human skin to monitor the real-time health of human body. Based on the Fourier heat conduction equation and Pennes bio-heat transfer equation, this paper deduces the analytical solutions of one - dimensional heat transfer for flexible electronic devices integrated with human skin under the condition of a constant power. The influence of contact thermal resistance between devices and skin is considered as well. The corresponding finite element model is established to verify the correctness of analytical solutions. The results show that the finite element analysis agrees well with the analytical solution. With bigger thermal resistance, temperature increase of skin surface will decrease. This result can provide guidance for the design of flexible electronic devices to reduce the negative impact that exceeding temperature leave on human skin.

  7. Temperature effects on the band gaps of Lamb waves in a one-dimensional phononic-crystal plate (L).

    Science.gov (United States)

    Cheng, Y; Liu, X J; Wu, D J

    2011-03-01

    This study investigates the temperature-tuned band gaps of Lamb waves in a one-dimensional phononic-crystal plate, which is formed by alternating strips of ferroelectric ceramic Ba(0.7)Sr(0.3)TiO(3) and epoxy. The sensitive and continuous temperature-tunability of Lamb wave band gaps is demonstrated using the analyses of the band structures and the transmission spectra. The width and position of Lamb wave band gaps shift prominently with variation of temperature in the range of 26 °C-50 °C. For example, the width of the second band gap increases from 0.066 to 0.111 MHz as the temperature is increased from 26 °C to 50 °C. The strong shift promises that the structure could be suitable for temperature-tuned multi-frequency Lamb wave filters. © 2011 Acoustical Society of America

  8. One-dimensional modeling of a recent Ganga avulsion : Assessing the potential effect of tectonic subsidence on a large river

    NARCIS (Netherlands)

    Gupta, Niladri; Kleinhans, Maarten G.; Addink, Elisabeth A.; Atkinson, Peter M.; Carling, Paul A.

    2014-01-01

    River avulsion as studied in small-sized and medium-sized rivers is partly explained by the water surface gradient advantage of a new channel course over the old course, caused by spatial differences in aggradation and compaction. Recently, the effect of meandering upstream of the avulsion node, or

  9. On the unambiguous determination of effective optical properties of periodic metamaterials: a one-dimensional case study

    DEFF Research Database (Denmark)

    Mortensen, Asger; Yan, Min; Sigmund, Ole

    2010-01-01

    We show how branch ambiguities in the extraction of effective parameters is arising as a direct consequence of the underlying Bloch state physics. The mutual importance of the different branches in general depends on the experimental context, and we show how the Fourier spectrum of the field inside...

  10. OCENER, a one-dimensional computer code for the numerical simulation of the mechanical effects of peaceful underground nuclear explosions in rocks

    International Nuclear Information System (INIS)

    Gupta, S.C.; Sikka, S.K.; Chidambaram, R.

    1979-01-01

    An account is given of a one-dimensional spherical symmetric computer code for the numerical simulation of the effects of peaceful underground nuclear explosions in rocks (OCENER). In the code, the nature of the stress field and response of the medium to this field are modelled numerically by finite difference form of the laws of continuum mechanics and the constitutive relations of the rock medium in which the detonation occurs. It enables to approximate well the cavity growth and fracturing of the surrounding rock for contained explosions and the events upto the time the spherical symmetry is valid for cratering-type explosions. (auth.)

  11. Local irradiation effects of one-dimensional ZnO based self-powered asymmetric Schottky barrier UV photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yaxue [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Qi, Junjie, E-mail: junjieqi@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Biswas, Chandan [Department of Electrical Engineering, University of California Los Angeles, California 90095 (United States); Li, Feng; Zhang, Kui; Li, Xin [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Yue, E-mail: yuezhang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-09-15

    A self-powered metal-semiconductor-metal (MSM) UV photodetector was successfully fabricated based on Ag/ZnO/Au structure with asymmetric Schottky barriers. This exhibits excellent performance compared to many previous studies. Very high photo-to-dark current ratio (approximately 10{sup 5}–10{sup 6}) was demonstrated without applying any external bias, and very fast switching time of less than 30 ms was observed during the investigation. Opposite photocurrent direction was generated by irradiating different Schottky diodes in the fabricated photodetector. Furthermore, the device performance was optimized by largely irradiating both the ZnO microwire (MW) junctions. Schottky barrier effect theory and O{sub 2} adsorption–desorption theories were used to investigate the phenomenon. The device has potential applications in self-powered UV detection field and can be used as electrical power source for electronic, optoelectronic and mechanical devices. - Highlights: • A self-powered Schottky barrier UV photodetector based on 1-D ZnO is fabricated. • For the first time we investigate the local irradiation effects of UV detector. • Irradiating both the junctions and ZnO can optimize the performance of the device.

  12. Effect of interactions for one-dimensional asymmetric exclusion processes under periodic and bath-adapted coupling environment

    Science.gov (United States)

    Midha, Tripti; Kolomeisky, Anatoly B.; Gupta, Arvind Kumar

    2018-04-01

    Stimulated by the effect of the nearest neighbor interactions in vehicular traffic and motor proteins, we study a 1D driven lattice gas model, in which the nearest neighbor particle interactions are taken in accordance with the thermodynamic concepts. The non-equilibrium steady-state properties of the system are analyzed under both open and periodic boundary conditions using a combination of cluster mean-field analysis and Monte Carlo simulations. Interestingly, the fundamental diagram of current versus density shows a complex behavior with a unimodal dependence for attractions and weak repulsions that turns into the bimodal behavior for stronger repulsive interactions. Specific details of system-reservoir coupling for the open system have a strong effect on the stationary phases. We produce the steady-state phase diagrams for the bulk-adapted coupling to the reservoir using the minimum and maximum current principles. The strength and nature of interaction energy has a striking influence on the number of stationary phases. We observe that interactions lead to correlations having a strong impact on the system dynamical properties. The correlation between any two sites decays exponentially as the distance between the sites increases. Moreover, they are found to be short-range for repulsions and long-range for attractions. Our results also suggest that repulsions and attractions asymmetrically modify the dynamics of interacting particles in exclusion processes.

  13. The effects of applied current on one-dimensional interdiffusion between copper and nickel in spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Rudinsky, S.; Gauvin, R.; Brochu, M., E-mail: mathieu.brochu@mcgill.ca [Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5 (Canada)

    2014-10-21

    Spark plasma sintering (SPS) is a powder metallurgy technique that employs the use of fast sintering kinetics to produce final consolidated components in a matter of minutes. In order to use blended powders in SPS to obtain fully alloyed parts, diffusion during sintering must be understood. An investigation into the effects of current on the diffusion of copper and nickel was performed using SPS. Bulk specimens were used to generate diffusion couples in SPS in alternating orientations with respect to the direction of the current. Control samples were produced using a horizontal insertion vacuum furnace. Experiments were performed at temperatures between 850°C and 1000°C for 3 h. Concentration profiles were obtained by the use of both energy-dispersive spectroscopy and a Monte Carlo simulated correction curve. Diffusion coefficients and activation energies were calculated for samples produced by SPS and annealing without current. It was shown that, at temperatures near 0.9 T{sub m}, the application of current in SPS inhibits diffusion between copper and nickel due to the re-orientation of electrons caused by the loss of ferromagnetism in nickel. Activation energy for diffusion is, however, decreased due to the temperature gradients arising from the difference in resistivity between the two species.

  14. One Dimensional Finite Element Method Approach to Study Effect of Ryanodine Receptor and Serca Pump on Calcium Distribution in Oocytes

    Science.gov (United States)

    Naik, Parvaiz Ahmad; Pardasani, Kamal Raj

    2013-11-01

    Oocyte is a female gametocyte or germ cell involved in reproduction. Calcium ions (Ca2+) impact nearly all aspects of cellular life as they play an important role in a variety of cellular functions. Calcium ions contributes to egg activation upon fertilization. Since it is the internal stores which provide most of the calcium signal, much attention has been focused on the intracellular channels. There are mainly two types of calcium channels which release calcium from the internal stores to the cytoplasm in many cell types. These channels are IP3-Receptor and Ryanodine Receptor (RyR). Further it is essential to maintain low cytosolic calcium concentration, the cell engages the Serco/Endoplasmic reticulum Ca2+ ATPases (SERCA) present on the ER or SR membrane for the re-uptake of cytosolic calcium at the expense of ATP hydrolysis. In view of above an attempt has been made to study the effect of the Ryanodine receptor (RyR) and the SERCA pump on the calcium distribution in oocytes. The main aim of this paper is to study the calcium concentration in absence and presence of these parameters. The FEM is used to solve the proposed Mathematical model under appreciate initial and boundary conditions. The program has been developed in MATLAB 7.10 for the entire problem to get numerical results.

  15. In-Plane Angular Effect of Magnetoresistance of Quasi-One-Dimensional Organic Metals, (DMET) 2AuBr 2 and (TMTSF) 2ClO 4

    Science.gov (United States)

    Yoshino, Harukazu; Saito, Kazuya; Nishikawa, Hiroyuki; Kikuchi, Koichi; Kobayashi, Keiji; Ikemoto, Isao

    1997-08-01

    Comparative study is presented for the in-plane angular effect of magnetoresistance of quasi-one-dimensional organic conductors, (DMET)2AuBr2 and (TMTSF)2ClO4. The magnetoresistance for the magnetic and electrical fields parallel and perpendicular to the most conducting plane, respectively, was measured at 4.2 K and up to 7.0 T. (DMET)2AuBr2 shows an anomalous hump in the field-orientation dependence of the magnetoresistance for the magnetic field nearly parallel to the most conducting axis and this is very similar to what previously reported for (DMET)2I3. Weak anomaly was detected for the magnetoresistance of (TMTSF)2ClO4 in the Relaxed state, while no anomaly was observed in the SDW phase in the Quenched state. By comparing the numerical angular derivatives of the magnetoresistance, it is shown that the anomaly in the in-plane angular effect continuously develops from zero magnetic field and is closely related to the quasi-one-dimensional Fermi surface. A simple method is proposed to estimate the anisotropy of the transfer integral from the width of the hump anomaly.

  16. Myth and One-Dimensionality

    Directory of Open Access Journals (Sweden)

    William Hansen

    2017-12-01

    Full Text Available A striking difference between the folk-narrative genres of legend and folktale is how the human characters respond to supernatural, otherworldly, or uncanny beings such as ghosts, gods, dwarves, giants, trolls, talking animals, witches, and fairies. In legend the human actors respond with fear and awe, whereas in folktale they treat such beings as if they were ordinary and unremarkable. Since folktale humans treat all characters as belonging to a single realm, folklorists have described the world of the folktale as one-dimensional, in contrast to the two-dimensionality of the legend. The present investigation examines dimensionality in the third major genre of folk narrative: myth. Using the Greek and Hebrew myths of primordial paradise as sample narratives, the present essay finds—surprisingly—that the humans in these stories respond to the otherworldly one-dimensionally, as folktale characters do, and suggests an explanation for their behavior that is peculiar to the world of myth.

  17. One dimensional reactor core model

    International Nuclear Information System (INIS)

    Kostadinov, V.; Stritar, A.; Radovo, M.; Mavko, B.

    1984-01-01

    The one dimensional model of neutron dynamic in reactor core was developed. The core was divided in several axial nodes. The one group neutron diffusion equation for each node is solved. Feedback affects of fuel and water temperatures is calculated. The influence of xenon, boron and control rods is included in cross section calculations for each node. The system of equations is solved implicitly. The model is used in basic principle Training Simulator of NPP Krsko. (author)

  18. Qualities of Wigner function and its applications to one-dimensional infinite potential and one-dimensional harmonic oscillator

    International Nuclear Information System (INIS)

    Xu Hao; Shi Tianjun

    2011-01-01

    In this article,the qualities of Wigner function and the corresponding stationary perturbation theory are introduced and applied to one-dimensional infinite potential well and one-dimensional harmonic oscillator, and then the particular Wigner function of one-dimensional infinite potential well is specified and a special constriction effect in its pure state Wigner function is discovered, to which,simultaneously, a detailed and reasonable explanation is elaborated from the perspective of uncertainty principle. Ultimately, the amendment of Wigner function and energy of one-dimensional infinite potential well and one-dimensional harmonic oscillator under perturbation are calculated according to stationary phase space perturbation theory. (authors)

  19. Thermoelectric effects in magnetic nanostructures

    NARCIS (Netherlands)

    Hatami, Moosa; Bauer, Gerrit E.W.; Zhang, Q.F.; Kelly, Paul J.

    2009-01-01

    We model and evaluate the Peltier and Seebeck effects in magnetic multilayer nanostructures by a finite-element theory of thermoelectric properties. We present analytical expressions for the thermopower and the current-induced temperature changes due to Peltier cooling/heating. The thermopower of a

  20. Coherent control and storage of a microwave pulse in a one-dimensional array of artificial atoms using the Autler-Townes effect and electromagnetically induced transparency

    Science.gov (United States)

    Ayaz, M. Q.; Waqas, Mohsin; Qamar, Sajid; Qamar, Shahid

    2018-02-01

    In this paper we propose a scheme for coherent control and storage of a microwave pulse in superconducting circuits exploiting the idea of electromagnetically induced transparency (EIT) and the Aulter-Townes (AT) effect. We show that superconducting artificial atoms in a four-level tripod configuration act as EIT based coherent microwave (μ w ) memories with gain features, when they are attached to a one-dimensional transmission line. These atoms are allowed to interact with three microwave fields, such that there are two control fields and one probe field. Our proposed system works in such a way that one control field with large Rabi frequency when interacting with atoms, produces the AT effect. While the second control field with relatively small Rabi frequency produces EIT in one of the absorption windows produced due to the AT splitting for the weak probe field. The group velocity of the probe pulse reduces significantly through this EIT window. Interestingly, the output intensity of the probe pulse increases as we increase the number of artificial atoms. Our results show that the probe microwave pulse can be stored and retrieved with high fidelity.

  1. Effects on the Thermo-Mechanical and Crystallinity Properties of Nylon 6,6 Electrospun Fibres Reinforced with One Dimensional (1D and Two Dimensional (2D Carbon

    Directory of Open Access Journals (Sweden)

    Francisco Medellín-Rodríguez

    2013-08-01

    Full Text Available Electrospun one dimensional (1D and two dimensional (2D carbon based polymer nanocomposites are studied in order to determine the effect provided by the two differently structured nanofillers on crystallinity and thermo-mechanical properties of the nanofibres. The nanomaterials studied are pristine carbon nanotubes, oxidised carbon nanotubes, reduced graphene oxide and graphene oxide. Functional groups associated with the order structure of the polymers are analysed by infrared and Raman spectroscopies; the morphology is studied by scanning electron microscopy and the crystallinity properties are investigated by differential scanning calorimetry and X-ray diffraction. Differences in crystallisation behaviour between 1D and 2D carbon based nanofibres are shown by their crystallinity degree and their crystal sizes. The nanocomposite crystal sizes perpendicular to the plane (100 decrease with nanofiller content in all cases. The crystallinity trend and crystal sizes are in accordance with storage modulus response. The results also suggest that functionalisation favours interfacial bonding and dispersion of the nanomaterials within the polymer matrix. As a consequence the number of nucleating sites increases which in turn decreases the crystal size in the nanocomposites. These features explain the improved thermo-mechanical properties in the nanocomposites.

  2. Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures.

    Science.gov (United States)

    Kandemir, Ali; Ozden, Ayberk; Cagin, Tahir; Sevik, Cem

    2017-01-01

    Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions. A comprehensive temperature analysis is evaluated for selected structures as well. The results show that one-dimensional structures are superior candidates in terms of their low lattice thermal conductivity and thermal conductivity tunability by nanostructuring, such as by diameter modulation, interface roughness, periodicity and number of interfaces. We find that thermal conductivity decreases with smaller diameters or cross section areas. Furthermore, interface roughness decreases thermal conductivity with a profound impact. Moreover, we predicted that there is a specific periodicity that gives minimum thermal conductivity in symmetric superlattice structures. The decreasing thermal conductivity is due to the reducing phonon movement in the system due to the effect of the number of interfaces that determine regimes of ballistic and wave transport phenomena. In some nanostructures, such as nanowire superlattices, thermal conductivity of the Si/Ge system can be reduced to nearly twice that of an amorphous silicon thermal conductivity. Additionally, it is found that one crystal orientation, [Formula: see text]100[Formula: see text], is better than the [Formula: see text]111[Formula: see text] crystal orientation in one-dimensional and bulk SiGe systems. Our results clearly point out the importance of lattice thermal conductivity

  3. Numerical analysis of ion temperature effects to the plasma wall transition using a one-dimensional two-fluid model. I. Finite Debye to ionization length ratio

    Science.gov (United States)

    Gyergyek, T.; Kovačič, J.

    2017-06-01

    A one-dimensional, two-fluid, steady state model is used for the analysis of ion temperature effects to the plasma-wall transition. In this paper, the model is solved for a finite ratio ɛ between the Debye and the ionization length, while in Part II [T. Gyergyek and J. Kovačič, Phys Plasmas 24, 063506 (2017)], the solutions for ɛ = 0 are presented. Ion temperature is treated as a given, independent parameter and it is included in the model as a boundary condition. It is shown that when the ion temperature larger than zero is selected, the ion flow velocity and the electric field at the boundary must be consistent with the selected ion temperature. A numerical procedure, how to determine such "consistent boundary conditions," is proposed, and a simple relation between the ion temperature and ion velocity at the boundary of the system is found. The effects of the ion temperature to the pre-sheath length, potential, ion temperature, and ion density drops in the pre-sheath and in the sheath are investigated. It is concluded that larger ion temperature results in a better shielding of the plasma from the wall. An attempt is made to include the ion heat flux qi into the model in its simplest form q i = - K ' /d T i d x , where K ' is a constant heat conduction coefficient. It is shown that inclusion of such a term into the energy transfer equation introduces an additional ion heating mechanism into the system and the ion flow then becomes isothermal instead of adiabatic even in the sheath.

  4. The effect of Coulomb interactions on the ac mobility of charges in quasi-one-dimensional systems. Example : Discotic liquid crystals

    NARCIS (Netherlands)

    Siebbeles, L.D.A.; Movaghar, B.

    2000-01-01

    Using Monte Carlo simulations we calculate the frequency dependence of the diffusive mobility of a group of carriers on a short one-dimensional chain. We allow the carriers to interact with each other through weakly screened long-range Coulomb potentials. We consider both doped systems with discrete

  5. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets

    Energy Technology Data Exchange (ETDEWEB)

    Marocchino, A.; Atzeni, S.; Schiavi, A. [Dipartimento SBAI, Università di Roma “La Sapienza” and CNISM, Roma 00161 (Italy)

    2014-01-15

    In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.

  6. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets

    International Nuclear Information System (INIS)

    Marocchino, A.; Atzeni, S.; Schiavi, A.

    2014-01-01

    In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies

  7. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets

    Science.gov (United States)

    Marocchino, A.; Atzeni, S.; Schiavi, A.

    2014-01-01

    In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.

  8. Pressure effects on nanostructured manganites

    International Nuclear Information System (INIS)

    Acha, C.; Garbarino, G.; Leyva, A.G.

    2007-01-01

    We have measured the pressure sensitivity of magnetic properties on La 5/8-y Pr y Ca 3/8 MnO 3 (y=0.3) nanostructured powders. Samples were synthesized following a microwave assisted denitration process and a final heat treatment at different temperatures to control the grain size of the samples. A span in grain diameters from 40 nm to ∼1000 nm was obtained. Magnetization curves as a function of temperature were measured following different thermomagnetic histories. AC susceptibility as a function of temperature was also measured at different hydrostatic pressures (up to 10 kbar) and for different frequencies. Our results indicate that the nanostructuration plays a role of an internal pressure, producing a structural deformation with similar effects to those obtained under an external hydrostatic pressure

  9. A review on one dimensional perovskite nanocrystals for piezoelectric applications

    Directory of Open Access Journals (Sweden)

    Li-Qian Cheng

    2016-03-01

    Full Text Available In recent years, one-dimensional piezoelectric nanomaterials have become a research topic of interest because of their special morphology and excellent piezoelectric properties. This article presents a short review on one dimensional perovskite piezoelectric materials in different systems including Pb(Zr,TiO3, BaTiO3 and (K,NaNbO3 (KNN. We emphasize KNN as a promising lead-free piezoelectric compound with a high Curie temperature and high piezoelectric properties and describe its synthesis and characterization. In particular, details are presented for nanoscale piezoelectricity characterization of a single KNN nanocrystal by piezoresponse force microscopy. Finally, this review describes recent progress in applications based on one dimensional piezoelectric nanostructures with a focus on energy harvesting composite materials.

  10. One-dimensional hypersonic phononic crystals.

    Science.gov (United States)

    Gomopoulos, N; Maschke, D; Koh, C Y; Thomas, E L; Tremel, W; Butt, H-J; Fytas, G

    2010-03-10

    We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons.

  11. The one-dimensional compression method for extraction of pore water from unsaturated tuff and effects on pore-water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, J.D.; Burger, P.A. [Colorado School of Mines, Golden, CO (United States); Yang, L.C. [Geological Survey, Denver, CO (United States)

    1997-12-31

    Study of the hydrologic system at Yucca Mountain, Nevada, requires extraction of pore-water samples from unsaturated tuff bedrock. Two generations of compression cells have been designed and tested for extracting representative, unaltered pore-water samples from unsaturated tuff cores. The one-dimensional compression cell has a maximum compressive stress rating of 552 MPa. Results from 86 tests show that the minimum degree of saturation for successful extraction of pore water was about 14% for non welded tuff and about 61% for densely welded tuff. The high-pressure, one-dimensional compression cell has a maximum compressive stress rating of 827 MPa. Results from 109 tests show that the minimum degree of saturation for successful extraction of pore water was about 7.5% for non welded tuff and about 34% for densely welded tuff. Geochemical analyses show that, in general, there is a decrease in ion concentration of pore waters as extraction pressures increase. Only small changes in pore-water composition occur during the one-dimensional extraction test.

  12. Study of one dimensional magnetic system via field theory

    International Nuclear Information System (INIS)

    Talim, S.L.

    1988-04-01

    We present a study of one-dimensional magnetic system using field theory methods. We studied the discreteness effects in a classical anisotropic one dimensional antiferromagnet in an external magnetic field. It is shown that for TMMC, at the temperatures and magnetic fields where most experiments have been done, the corrections are small and can be neglected. (author)

  13. Observation of non-linear effects in a quasi-one-dimensional antiferromagnet: magnetic excitations in CsVCl sub 3

    CERN Document Server

    Inami, T; Tanaka, H

    1997-01-01

    The spin dynamics of the hexagonal ABX sub 3 -type quasi-one-dimensional antiferromagnet CsVCl sub 3 is investigated by means of an inelastic neutron scattering technique. In good qualitative agreement with a recent spin-wave calculation including higher-order terms, a large scattering cross-section arising from two-magnon excitations is observed at the one-dimensional antiferromagnetic zone centre. In addition, we measured spin-wave excitations between the chains precisely and revealed that the spin-wave dispersion curves are modified in energy and in intensity on account of the anticrossing between the one-magnon branches and two-magnon continuum. These results demonstrate that anharmonic terms are important in the spin dynamics of CsVCl sub 3 even at low temperatures. We also measured the temperature dependence of the magnetic excitations and found that far above the Neel temperature the two-magnon process gives a considerable contribution to the inelastic spectrum. (author)

  14. One-Dimensional Photonic Crystal Superprisms

    Science.gov (United States)

    Ting, David

    2005-01-01

    Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.

  15. Cohesive motion in one-dimensional flocking

    International Nuclear Information System (INIS)

    Dossetti, V

    2012-01-01

    A one-dimensional rule-based model for flocking, which combines velocity alignment and long-range centering interactions, is presented and studied. The induced cohesion in the collective motion of the self-propelled agents leads to unique group behavior that contrasts with previous studies. Our results show that the largest cluster of particles, in the condensed states, develops a mean velocity slower than the preferred one in the absence of noise. For strong noise, the system also develops a non-vanishing mean velocity, alternating its direction of motion stochastically. This allows us to address the directional switching phenomenon. The effects of different sources of stochasticity on the system are also discussed. (paper)

  16. RETRAN-02 one-dimensional kinetics model: a review

    International Nuclear Information System (INIS)

    Gose, G.C.; McClure, J.A.

    1986-01-01

    RETRAN-02 is a modular code system that has been designed for one-dimensional, transient thermal-hydraulics analysis. In RETRAN-02, core power behavior may be treated using a one-dimensional reactor kinetics model. This model allows the user to investigate the interaction of time- and space-dependent effects in the reactor core on overall system behavior for specific LWR operational transients. The purpose of this paper is to review the recent analysis and development activities related to the one dimensional kinetics model in RETRAN-02

  17. One dimensional models of excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia Decebal; Duclos, P.; Pedersen, Thomas Garm

    Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....

  18. Effect of temperature on terahertz photonic and omnidirectional band gaps in one-dimensional quasi-periodic photonic crystals composed of semiconductor InSb.

    Science.gov (United States)

    Singh, Bipin K; Pandey, Praveen C

    2016-07-20

    Engineering of thermally tunable terahertz photonic and omnidirectional bandgaps has been demonstrated theoretically in one-dimensional quasi-periodic photonic crystals (PCs) containing semiconductor and dielectric materials. The considered quasi-periodic structures are taken in the form of Fibonacci, Thue-Morse, and double periodic sequences. We have shown that the photonic and omnidirectional bandgaps in the quasi-periodic structures with semiconductor constituents are strongly depend on the temperature, thickness of the constituted semiconductor and dielectric material layers, and generations of the quasi-periodic sequences. It has been found that the number of photonic bandgaps increases with layer thickness and generation of the quasi-periodic sequences. Omnidirectional bandgaps in the structures have also been obtained. Results show that the bandwidths of photonic and omnidirectional bandgaps are tunable by changing the temperature and lattice parameters of the structures. The generation of quasi-periodic sequences can also change the properties of photonic and omnidirectional bandgaps remarkably. The frequency range of the photonic and omnidirectional bandgaps can be tuned by the change of temperature and layer thickness of the considered quasi-periodic structures. This work will be useful to design tunable terahertz PC devices.

  19. On the anomalies in gold nanoparticles prepared by micelle nanolithography and their impact on one-dimensional material synthesis. Role of substrate, size effects and impurity

    Energy Technology Data Exchange (ETDEWEB)

    Mbenkum, B.N.

    2007-07-23

    The synthesis of one-dimensional (1-D) inorganic semiconductor materials such as nanotubes and silicon (Si) nanowires is usually achieved by catalyst nanoparticlemediated synthetic routes. Despite the well-established nature of this technique, problems such as low temperature synthesis and adequate control of catalyst nanoparticle diameter in order to control 1-D material diameter still prevail. Additionally, the expansion of this technology from crystalline to cheaper substrates such as glass remains demanding. This work employs a previously established selfassembly route to produce controlled spatial distribution of substrate anchored small diameter gold nanoparticles with controlled size. This enabled successful synthesis of Si 1-D structures with controlled diameters less than 20 nm. Low temperature synthesis due to enhanced catalytic activity was achieved via introduction of impurity by treatment of gold nanoparticles in different plasma environments. This enabled Si 1-D structure growth on Si, SiO{sub x}/Si and borosilicate glass substrates at 320 C. Substrate-induced stress affected Si diffusion at the gold nanoparticle determining whether Si nanowires or nanotubes were grown. These results are of technological relevance because low temperature synthesis provides an economical approach and controlled diameter enhances material functionality. Additionally, exploiting substrate-induced stress to influence Si diffusion in nanoparticles provides an alternate route to tuning Si 1-D structure. (orig.)

  20. One-Dimensional Czedli-Type Islands

    Science.gov (United States)

    Horvath, Eszter K.; Mader, Attila; Tepavcevic, Andreja

    2011-01-01

    The notion of an island has surfaced in recent algebra and coding theory research. Discrete versions provide interesting combinatorial problems. This paper presents the one-dimensional case with finitely many heights, a topic convenient for student research.

  1. Analytical solution of one dimensional temporally dependent ...

    African Journals Online (AJOL)

    user

    transfer of heat in fluids, flow through porous media, and the spread of ... In present paper, advection-dispersion equation is considered one dimensional longitudinal initially solute free semi- .... free. Thus initial and boundary conditions for eq.

  2. Factorizations of one-dimensional classical systems

    International Nuclear Information System (INIS)

    Kuru, Senguel; Negro, Javier

    2008-01-01

    A class of one-dimensional classical systems is characterized from an algebraic point of view. The Hamiltonians of these systems are factorized in terms of two functions that together with the Hamiltonian itself close a Poisson algebra. These two functions lead directly to two time-dependent integrals of motion from which the phase motions are derived algebraically. The systems so obtained constitute the classical analogues of the well known factorizable one-dimensional quantum mechanical systems

  3. One-dimensional photonic crystal design

    International Nuclear Information System (INIS)

    Mee, Cornelis van der; Contu, Pietro; Pintus, Paolo

    2010-01-01

    In this article we present a method to determine the band spectrum, band gaps, and discrete energy levels, of a one-dimensional photonic crystal with localized impurities. For one-dimensional crystals with piecewise constant refractive indices we develop an algorithm to recover the refractive index distribution from the period map. Finally, we derive the relationship between the period map and the scattering matrix containing the information on the localized modes.

  4. One-dimensional reactor kinetics model for RETRAN

    International Nuclear Information System (INIS)

    Gose, G.C.; Peterson, C.E.; Ellis, N.L.; McClure, J.A.

    1981-01-01

    This paper describes a one-dimensional spatial neutron kinetics model that was developed for the RETRAN code. The RETRAN -01 code has a point kinetics model to describe the reactor core behavior during thermal-hydraulic transients. A one-dimensional neutronics model has been developed for RETRAN-02. The ability to account for flux shape changes will permit an improved representation of the thermal and hydraulic feedback effects for many operational transients. 19 refs

  5. One dimensional Bosons: From Condensed Matter Systems to Ultracold Gases

    OpenAIRE

    Cazalilla, M. A.; Citro, R.; Giamarchi, T.; Orignac, E.; Rigol, M.

    2011-01-01

    The physics of one-dimensional interacting bosonic systems is reviewed. Beginning with results from exactly solvable models and computational approaches, the concept of bosonic Tomonaga-Luttinger liquids relevant for one-dimensional Bose fluids is introduced, and compared with Bose-Einstein condensates existing in dimensions higher than one. The effects of various perturbations on the Tomonaga-Luttinger liquid state are discussed as well as extensions to multicomponent and out of equilibrium ...

  6. Few quantum particles on one dimensional lattices

    International Nuclear Information System (INIS)

    Valiente Cifuentes, Manuel

    2010-01-01

    There is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The lattice spacing is fixed by the wavelength of the laser field employed and the angle betwen the pair of laser beams; the lattice depth, defining the magnitude of the different band gaps, is tunable within a large interval of values. This flexibility permits the exploration of different regimes, ranging from the ''free-electron'' picture, modified by the effective mass for shallow optical lattices, to the tight-binding regime of a very deep periodic potential. In the latter case, effective single-band theories, widely used in condensed matter physics, can be implemented with unprecedent accuracy. The tunability of the lattice depth is nowadays complemented by the use of magnetic Feshbach resonances which, at very low temperatures, can vary the relevant atom-atom scattering properties at will. Moreover, optical lattices loaded with gases of effectively reduced dimensionality are experimentally accessible. This is especially important for one spatial dimension, since most of the exactly solvable models in many-body quantum mechanics deal with particles on a line; therefore, experiments with one-dimensional gases serve as a testing ground for many old and new theories which were regarded as purely academic not so long ago. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed. These are used to obtain, in closed form, the two-particle solutions of both the Hubbard and extended Hubbard models

  7. Few quantum particles on one dimensional lattices

    Energy Technology Data Exchange (ETDEWEB)

    Valiente Cifuentes, Manuel

    2010-06-18

    There is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The lattice spacing is fixed by the wavelength of the laser field employed and the angle betwen the pair of laser beams; the lattice depth, defining the magnitude of the different band gaps, is tunable within a large interval of values. This flexibility permits the exploration of different regimes, ranging from the ''free-electron'' picture, modified by the effective mass for shallow optical lattices, to the tight-binding regime of a very deep periodic potential. In the latter case, effective single-band theories, widely used in condensed matter physics, can be implemented with unprecedent accuracy. The tunability of the lattice depth is nowadays complemented by the use of magnetic Feshbach resonances which, at very low temperatures, can vary the relevant atom-atom scattering properties at will. Moreover, optical lattices loaded with gases of effectively reduced dimensionality are experimentally accessible. This is especially important for one spatial dimension, since most of the exactly solvable models in many-body quantum mechanics deal with particles on a line; therefore, experiments with one-dimensional gases serve as a testing ground for many old and new theories which were regarded as purely academic not so long ago. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed. These are used to obtain, in closed form, the two-particle solutions of both the Hubbard and

  8. Enhancement of Faraday effect in one-dimensional magneto-optical photonic crystal including a magnetic layer with wavelength dependent off-diagonal elements of dielectric constant tensor

    International Nuclear Information System (INIS)

    Inui, Chie; Ozaki, Shinsuke; Kura, Hiroaki; Sato, Tetsuya

    2011-01-01

    Optical and magneto-optical properties of one-dimensional magneto-optical photonic crystal (1-D MPC) prepared by the sol-gel dip-coating method, including a magnetic defect layer composed of mixture of CoFe 2 O 4 and SiO 2 , are investigated from both the experimental and theoretical standpoints. The resonant transmission of light was observed around 570 nm in the photonic band gap. The Faraday rotation angle θ F showed two maxima at 490 and 640 nm, and the wavelength dependence of θ F above 760 nm was similar to that of the CoFe 2 O 4 +SiO 2 single-layer film. The two maxima of θ F are attributed to the enhanced Faraday rotation of nonmagnetic TiO 2 layers in the cavity structure and that in magnetic CoFe 2 O 4 +SiO 2 layer through the light localization in MPC. The maximum value of θ F due to the magnetic CoFe 2 O 4 +SiO 2 layer in the MPC was 22-times larger than that in the single-layer film. The simulation study of MPC with CoFe 2 O 4 +SiO 2 magnetic defect layer, based on the matrix approach method, showed that the resonant light transmission was accompanied by the localization of electric field, and large enhancement of θ F appeared at different wavelengths so as to agree with the experimental features. This can be explained in terms of the wavelength dependent off-diagonal components of the dielectric constant tensor in addition to the large extinction coefficient in the CoFe 2 O 4 +SiO 2 magnetic defect layer. - Highlights: → 1-D magnetic photonic crystal (MPC) prepared by sol-gel method. → Enhancement of Faraday rotation due to the magnetic defect layer of CoFe 2 O 4 . → Shift of wavelength of Faraday rotation maximum from resonant light transmission.

  9. Enhancement of the core near-band-edge emission induced by an amorphous shell in coaxial one-dimensional nanostructure: the case of SiC/SiO{sub 2} core/shell self-organized nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, Filippo; Rossi, Francesca; Attolini, Giovanni; Salviati, Giancarlo; Iannotta, Salvatore [IMEM-CNR Institute, Viale Usberti 37/A, I-43124 Parma (Italy); Aversa, Lucrezia; Verucchi, Roberto; Nardi, Marco [IFN-CNR Institute, Via alla Cascata 56/C-Povo, I-38123 Trento (Italy); Fukata, Naoki [International Center for Materials Nanoarchitectonics, National Institute for Materials Science and PRESTO JST, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Dierre, Benjamin; Sekiguchi, Takashi [Nano Device Characterization Group, Advanced Electronic Materials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2010-08-27

    We report the influence of the native amorphous SiO{sub 2} shell on the cathodoluminescence emission of 3C-SiC/SiO{sub 2} core/shell nanowires. A shell-induced enhancement of the SiC near-band-edge emission is observed and studied as a function of the silicon dioxide thickness. Since the diameter of the investigated SiC cores rules out any direct bandgap optical transitions due to confinement effects, this enhancement is ascribed to a carrier diffusion from the shell to the core, promoted by the alignment of the SiO{sub 2} and SiC bands in a type I quantum well. An accurate correlation between the optical emission and structural and SiO{sub 2}-SiC interface properties is also reported.

  10. Size- and morphology-dependent optical properties of ZnS:Al one-dimensional structures

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xianghua, E-mail: xhzeng@yzu.edu.cn; Yan, Shunjun; Cui, Jieya; Liu, Hongfei; Dong, Jing; Xia, Weiwei; Zhou, Min; Chen, Haitao [Yangzhou University, School of Physics Science and Technology & Institute of Optoelectronic Technology (China)

    2015-04-15

    Typical morphology substrates can improve the efficiency of surface-enhanced Raman scattering; the need for SERS substrates of controlled morphology requires an extensive study. In this paper, one-dimensional ZnS:Al nanostructures with the width of approximately 300 nm and the length of tens um, and micro-scale structures with the width of several um and the length of tens um were synthesized via thermal evaporation on Au-coated silicon substrates and were used to study their size effects on Raman scattering and photoluminescent spectra. The photoluminescence spectra reveal the strongest green emission at a 5 at% Al source, which originates from the Al-dopant emission. The Raman spectra reveal that the size and morphology of the ZnS:Al nanowires greatly influences the Raman scattering, whereas the Al-dopant concentration has a lesser effect on the Raman scattering. The observed Raman scattering intensity of the saw-like ZnS:Al nanowires with the width of tens nm was eight times larger than that of the bulk sample. The enhanced Raman scattering can be regarded as multiple scattering and weak exciton—phonon coupling. The branched one-dimensional nanostructure can be used as an ideal substrate to enhance Raman scattering.

  11. One-dimensional model of inertial pumping

    Science.gov (United States)

    Kornilovitch, Pavel E.; Govyadinov, Alexander N.; Markel, David P.; Torniainen, Erik D.

    2013-02-01

    A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.

  12. One-dimensional Gromov minimal filling problem

    International Nuclear Information System (INIS)

    Ivanov, Alexandr O; Tuzhilin, Alexey A

    2012-01-01

    The paper is devoted to a new branch in the theory of one-dimensional variational problems with branching extremals, the investigation of one-dimensional minimal fillings introduced by the authors. On the one hand, this problem is a one-dimensional version of a generalization of Gromov's minimal fillings problem to the case of stratified manifolds. On the other hand, this problem is interesting in itself and also can be considered as a generalization of another classical problem, the Steiner problem on the construction of a shortest network connecting a given set of terminals. Besides the statement of the problem, we discuss several properties of the minimal fillings and state several conjectures. Bibliography: 38 titles.

  13. Pseudo template synthesis of poly (1-naphthylamine): effect of environment on nanostructured morphology

    International Nuclear Information System (INIS)

    Riaz, Ufana; Ahmad, Sharif; Ashraf, S. M.

    2008-01-01

    A template free approach was adopted to explore the effect of polymerization environment on the synthesis of nanostructured poly (1-naphthylamine) (PNA) using cupric chloride as oxidant and methyl alcohol as medium. The polymerization environment was varied by carrying out the synthesis in the presence of nitrogen and oxygen. The morphology of the synthesized nanostructured PNA was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis and FT-IR spectroscopies. PNA nanorods of sizes varying between 50-100 nm were obtained in presence of nitrogen while in presence of oxygen, it formed aggregated globular particles of sizes varying between 80-100 nm. The results provide valuable information on controlling the synthesis of one-dimensional nanostructured conducting polymers that exhibit superior processibility as compared to the conventional conducting polymers.

  14. Sounds in one-dimensional superfluid helium

    International Nuclear Information System (INIS)

    Um, C.I.; Kahng, W.H.; Whang, E.H.; Hong, S.K.; Oh, H.G.; George, T.F.

    1989-01-01

    The temperature variations of first-, second-, and third-sound velocity and attenuation coefficients in one-dimensional superfluid helium are evaluated explicitly for very low temperatures and frequencies (ω/sub s/tau 2 , and the ratio of second sound to first sound becomes unity as the temperature decreases to absolute zero

  15. QUASI-ONE DIMENSIONAL CLASSICAL FLUIDS

    Directory of Open Access Journals (Sweden)

    J.K.Percus

    2003-01-01

    Full Text Available We study the equilibrium statistical mechanics of simple fluids in narrow pores. A systematic expansion is made about a one-dimensional limit of this system. It starts with a density functional, constructed from projected densities, which depends upon projected one and two-body potentials. The nature of higher order corrections is discussed.

  16. Highly conducting one-dimensional solids

    CERN Document Server

    Evrard, Roger; Doren, Victor

    1979-01-01

    Although the problem of a metal in one dimension has long been known to solid-state physicists, it was not until the synthesis of real one-dimensional or quasi-one-dimensional systems that this subject began to attract considerable attention. This has been due in part to the search for high­ temperature superconductivity and the possibility of reaching this goal with quasi-one-dimensional substances. A period of intense activity began in 1973 with the report of a measurement of an apparently divergent conduc­ tivity peak in TfF-TCNQ. Since then a great deal has been learned about quasi-one-dimensional conductors. The emphasis now has shifted from trying to find materials of very high conductivity to the many interesting problems of physics and chemistry involved. But many questions remain open and are still under active investigation. This book gives a review of the experimental as well as theoretical progress made in this field over the last years. All the chapters have been written by scientists who have ...

  17. Remarks for one-dimensional fractional equations

    Directory of Open Access Journals (Sweden)

    Massimiliano Ferrara

    2014-01-01

    Full Text Available In this paper we study a class of one-dimensional Dirichlet boundary value problems involving the Caputo fractional derivatives. The existence of infinitely many solutions for this equations is obtained by exploiting a recent abstract result. Concrete examples of applications are presented.

  18. Controlled size and one-dimensional growth

    Indian Academy of Sciences (India)

    875–881. c Indian Academy of Sciences. Synthesis of azamacrocycle stabilized palladium nanoparticles: Controlled size and one-dimensional growth. JEYARAMAN ATHILAKSHMI and DILLIP KUMAR CHAND. ∗. Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India e-mail: dillip@iitm.ac.

  19. One-dimensional models of excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia Decebal; Duclos, Pierre; Pedersen, Thomas Garm

    2004-01-01

    Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one-dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one-dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....

  20. Nanocoatings size effect in nanostructured films

    CERN Document Server

    Aliofkhazraei, Mahmood

    2014-01-01

    Size effect in structures has been taken into consideration over the last years. In comparison with coatings with micrometer-ranged thickness, nanostructured coatings usually enjoy better and appropriate properties, such as strength and resistance. These coatings enjoy unique magnetic properties and are used with the aim of producing surfaces resistant against erosion, lubricant system, cutting tools, manufacturing hardened sporadic alloys, being resistant against oxidation and corrosion. This book reviews researches on fabrication and classification of nanostructured coatings with focus on size effect in nanometric scale. Size effect on electrochemical, mechanical and physical properties of nanocoatings are presented.

  1. Magnetovolume effects of quasi-one-dimensional itinerant electron magnets (La{sub 1-x}Y{sub x})Mn{sub 4}Al{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Muro, Y. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan)]. E-mail: rk04j052@stkt.u-hyogo.ac.jp; Motoyama, G. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Nakamura, H. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Kohara, T. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan)

    2006-05-01

    Magnetovolume effects of 3d heavy-electron compounds with linear spin chains, (La{sub 1-x}Y{sub x})Mn{sub 4}Al{sub 8} with x=<0.15 and =1, have been investigated to get information on the ground state of LaMn{sub 4}Al{sub 8} and the nature of spin fluctuations in this system. The negative thermal expansion observed for LaMn{sub 4}Al{sub 8} is suppressed by the substitution of a small amount of Y for La. Together with the field-cooled effect in the susceptibility, the magnetovolume effect suggests the development of short-range magnetic correlation in LaMn{sub 4}Al{sub 8} at low temperatures.

  2. Realization of Configurable One-Dimensional Reflectarray

    Science.gov (United States)

    2017-08-31

    experiments show strong signatures of beam steering that are dependent upon graphene doping. This seed grant has allowed our team to establish the essential...based, one-dimensional reflectarrays. Several immediate improvements to the device design and process flow are essential to suppress specular...beam steering that are dependent upon graphene doping. This seed grant has allowed our team to establish the essential operating procedures (i.e

  3. Self-consistent field theory of tethered polymers: one dimensional, three dimensional, strong stretching theories and the effects of excluded-volume-only interactions.

    Science.gov (United States)

    Suo, Tongchuan; Whitmore, Mark D

    2014-11-28

    We examine end-tethered polymers in good solvents, using one- and three-dimensional self-consistent field theory, and strong stretching theories. We also discuss different tethering scenarios, namely, mobile tethers, fixed but random ones, and fixed but ordered ones, and the effects and important limitations of including only binary interactions (excluded volume terms). We find that there is a "mushroom" regime in which the layer thickness is independent of the tethering density, σ, for systems with ordered tethers, but we argue that there is no such plateau for mobile or disordered anchors, nor is there one in the 1D theory. In the other limit of brushes, all approaches predict that the layer thickness scales linearly with N. However, the σ(1/3) scaling is a result of keeping only excluded volume interactions: when the full potential is included, the dependence is faster and more complicated than σ(1/3). In fact, there does not appear to be any regime in which the layer thickness scales in the combination Nσ(1/3). We also compare the results for two different solvents with each other, and with earlier Θ solvent results.

  4. Self-consistent field theory of tethered polymers: One dimensional, three dimensional, strong stretching theories and the effects of excluded-volume-only interactions

    International Nuclear Information System (INIS)

    Suo, Tongchuan; Whitmore, Mark D.

    2014-01-01

    We examine end-tethered polymers in good solvents, using one- and three-dimensional self-consistent field theory, and strong stretching theories. We also discuss different tethering scenarios, namely, mobile tethers, fixed but random ones, and fixed but ordered ones, and the effects and important limitations of including only binary interactions (excluded volume terms). We find that there is a “mushroom” regime in which the layer thickness is independent of the tethering density, σ, for systems with ordered tethers, but we argue that there is no such plateau for mobile or disordered anchors, nor is there one in the 1D theory. In the other limit of brushes, all approaches predict that the layer thickness scales linearly with N. However, the σ 1/3 scaling is a result of keeping only excluded volume interactions: when the full potential is included, the dependence is faster and more complicated than σ 1/3 . In fact, there does not appear to be any regime in which the layer thickness scales in the combination Nσ 1/3 . We also compare the results for two different solvents with each other, and with earlier Θ solvent results

  5. Magnetic field effect on the laser-driven density of states for electrons in a cylindrical quantum wire: transition from one-dimensional to zero-dimensional behavior

    International Nuclear Information System (INIS)

    Lima, C P; Lima, F M S; Fonseca, A L A; Nunes, O A C

    2011-01-01

    The influence of a uniform magnetic field on the density of states (DoS) for carriers confined in a cylindrical semiconductor quantum wire irradiated by a monochromatic, linearly polarized, intense laser field is computed here non-perturbatively, following the Green's function scheme introduced by some of the authors in a recent work (Lima et al 2009 Solid State Commun. 149 678). Besides the known changes in the DoS provoked by an intense terahertz laser field-namely, a significant reduction and the appearance of Franz-Keldysh-like oscillations-our model reveals that the inclusion of a longitudinal magnetic field induces additional blueshifts on the energy levels of the allowed states. Our results show that the increase of the blueshifts with the magnitude of the magnetic field depends only on the azimuthal quantum number m (m=0, 1, 2, ...), being more pronounced for states with higher values of m, which leads to some energy crossovers. For all states, we have obtained, even in the absence of a magnetic field, a localization effect that leads to a transition in the DoS from the usual profile of quasi-1D systems to a peaked profile typical of quasi-0D systems, as e.g. those found for electrons confined in a quantum dot.

  6. Three isostructural one-dimensional Ln(III) chains with distorted cubane motifs showing dual fluorescence and slow magnetic relaxation/magnetocaloric effect.

    Science.gov (United States)

    Li, Yan; Yu, Jia-Wen; Liu, Zhong-Yi; Yang, En-Cui; Zhao, Xiao-Jun

    2015-01-05

    Three new homometallic lanthanide complexes with mixed carboxylate-modified rigid ligands, [Ln(μ3-OH)(na)(pyzc)]n (na(-) = 1-naphtholate, pyzc(-) = 2-pyrazinecarboxylate, Ln = Dy (1), Yb (2), and Gd (3)), were solvothermally synthesized, and their structures and magnetic as well as photophysical properties were completely investigated. Complexes 1-3 are crystallographically isostructural, exhibiting linear chains with four bidentate bridging μ-COO(-) moieties encapsulated cubic {Ln4(μ3-OH)4}(8+) clusters repeatedly extended by 4-fold chelating-bridging-pyzc(-) connectors. Magnetically, the former two complexes with highly anisotropic Dy(III) and weak anisotropic Yb(III) ions in the distorted NO7 triangular dodecahedron coordination environment display field-induced slow relaxation of magnetization. Fitting the dynamic magnetic data to the Arrhenius law gives energy barrier ΔE/kB = 39.6 K and pre-exponential factor τo = 1.52 × 10(-8) s for 1 and ΔE/kB = 14.1 K and τo = 2.13 × 10(-7) s for 2. By contrast, complex 3 with isotropic Gd(III) ion and weak intracluster antiferromagnetic coupling shows a significant cryogenic magnetocaloric effect, with a maximum -ΔSm value of 30.0 J kg(-1) K(-1) at 2.5 K and 70 kOe. Additionally, the chromophoric na(-) and pyzc(-) ligands can serve as antenna groups, selectively sensitizing the Dy(III)- and Yb(III)-based luminescence of 1 and 2 in the UV-visible region by an intramolecular energy transfer process. Thus, complexes 1-3, incorporating field-induced slow magnetic magnetization and interesting luminescence together, can be used as composite magneto-optical materials. More importantly, these interesting results further demonstrate that the mixed-ligand system with rigid carboxylate-functionalized chromophores can be excellent candidates for the preparations of new bifunctional magneto-optical materials.

  7. Investigating Recombination and Charge Carrier Dynamics in a One-Dimensional Nanopillared Perovskite Absorber.

    Science.gov (United States)

    Kwon, Hyeok-Chan; Yang, Wooseok; Lee, Daehee; Ahn, Jihoon; Lee, Eunsong; Ma, Sunihl; Kim, Kyungmi; Yun, Seong-Cheol; Moon, Jooho

    2018-05-22

    Organometal halide perovskite materials have become an exciting research topic as manifested by intense development of thin film solar cells. Although high-performance solar-cell-based planar and mesoscopic configurations have been reported, one-dimensional (1-D) nanostructured perovskite solar cells are rarely investigated despite their expected promising optoelectrical properties, such as enhanced charge transport/extraction. Herein, we have analyzed the 1-D nanostructure effects of organometal halide perovskite (CH 3 NH 3 PbI 3- x Cl x ) on recombination and charge carrier dynamics by utilizing a nanoporous anodized alumina oxide scaffold to fabricate a vertically aligned 1-D nanopillared array with controllable diameters. It was observed that the 1-D perovskite exhibits faster charge transport/extraction characteristics, lower defect density, and lower bulk resistance than the planar counterpart. As the aspect ratio increases in the 1-D structures, in addition, the charge transport/extraction rate is enhanced and the resistance further decreases. However, when the aspect ratio reaches 6.67 (diameter ∼30 nm), the recombination rate is aggravated due to high interface-to-volume ratio-induced defect generation. To obtain the full benefits of 1-D perovskite nanostructuring, our study provides a design rule to choose the appropriate aspect ratio of 1-D perovskite structures for improved photovoltaic and other optoelectrical applications.

  8. Correlation Functions of the One-Dimensional Attractive Bose Gas

    International Nuclear Information System (INIS)

    Calabrese, Pasquale; Caux, Jean-Sebastien

    2007-01-01

    The zero-temperature correlation functions of the one-dimensional attractive Bose gas with a delta-function interaction are calculated analytically for any value of the interaction parameter and number of particles, directly from the integrability of the model. We point out a number of interesting features, including zero recoil energy for a large number of particles, analogous to the Moessbauer effect

  9. Backward scattering in the one-dimensional Fermi gas

    International Nuclear Information System (INIS)

    Apostol, M.

    1980-05-01

    The Ward identity is derived for non-relativistic fermions with two-body spin-independent interaction. Using this identity for the one-dimensional Fermi gas with backward scattering the equations of the perturbation theory are solved for the effective interaction and the collective excitations of the particle density fluctuations are obtained. (author)

  10. Simulation of the diffraction pattern of one dimensional quasicrystal ...

    African Journals Online (AJOL)

    The effects of the variation of atomic spacing ratio of a one dimensional quasicrystal material are investigated. The work involves the use of the solid state simulation code, Laue written by Silsbee and Drager. We are able to observe the general features of the diffraction pattern by a quasicrystal. In addition, it has been found ...

  11. Light propagation in one-dimensional porous silicon complex systems

    NARCIS (Netherlands)

    Oton, C.J.; Dal Negro, L.; Gaburro, Z.; Pavesi, L.; Johnson, P.J.; Lagendijk, Aart; Wiersma, D.S.

    2003-01-01

    We discuss the optical properties of one-dimensional complex dielectric systems, in particular the time-resolved transmission through thick porous silicon quasiperiodic multi-layers. Both in numerical calculations and experiments we find dramatic distortion effects, i.e. pulse stretching and

  12. Toward precise solution of one-dimensional velocity inverse problems

    International Nuclear Information System (INIS)

    Gray, S.; Hagin, F.

    1980-01-01

    A family of one-dimensional inverse problems are considered with the goal of reconstructing velocity profiles to reasonably high accuracy. The travel-time variable change is used together with an iteration scheme to produce an effective algorithm for computation. Under modest assumptions the scheme is shown to be convergent

  13. One-dimensional plasma simulation studies

    International Nuclear Information System (INIS)

    Friberg, Ari; Virtamo, Jorma

    1976-01-01

    Some basic plasma phenomena are studied by a one-dimensional electrostatic simulation code. A brief description of the code and its application to a test problem is given. The experiments carried out include Landau damping of an excited wave, particle retardation by smoothed field and beam-plasma instability. In each case, the set-up of the experiment is described and the results are compared with theoretical predictions. In the theoretical discussions, the oscillatory behaviour found in the Landau damping experiment is explained, an explicit formula for the particle retardation rate is derived and a rudimentary picture of the beam-plasma instability in terms of quasilinear theory is given. (author)

  14. Solitons in one-dimensional antiferromagnetic chains

    International Nuclear Information System (INIS)

    Pires, A.S.T.; Talim, S.L.; Costa, B.V.

    1989-01-01

    We study the quantum-statistical mechanics, at low temperatures, of a one-dimensional antiferromagnetic Heisenberg model with two anisotropies. In the weak-coupling limit we determine the temperature dependences of the soliton energy and the soliton density. We have found that the leading correction to the sine-Gordon (SG) expression for the soliton density and the quantum soliton energy comes from the out-of-plane magnon mode, not present in the pure SG model. We also show that when an external magnetic field is applied, the chain supports a new type of kink, where the sublattices rotate in opposite directions

  15. Specificities of one-dimensional dissipative magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Popov, P. V., E-mail: popov.pv@mipt.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-11-15

    One-dimensional dynamics of a plane slab of cold (β ≪ 1) isothermal plasma accelerated by a magnetic field is studied in terms of the MHD equations with a finite constant conductivity. The passage to the limit β → 0 is analyzed in detail. It is shown that, at β = 0, the character of the solution depends substantially on the boundary condition for the electric field at the inner plasma boundary. The relationship between the boundary condition for the pressure at β > 0 and the conditions for the electric field at β = 0 is found. The stability of the solution against one-dimensional longitudinal perturbations is analyzed. It is shown that, in the limit β → 0, the stationary solution is unstable if the time during which the acoustic wave propagates across the slab is longer than the time of magnetic field diffusion. The growth rate and threshold of instability are determined, and results of numerical simulation of its nonlinear stage are presented.

  16. One-dimensional nanomaterials for energy storage

    Science.gov (United States)

    Chen, Cheng; Fan, Yuqi; Gu, Jianhang; Wu, Liming; Passerini, Stefano; Mai, Liqiang

    2018-03-01

    The search for higher energy density, safer, and longer cycling-life energy storage systems is progressing quickly. One-dimensional (1D) nanomaterials have a large length-to-diameter ratio, resulting in their unique electrical, mechanical, magnetic and chemical properties, and have wide applications as electrode materials in different systems. This article reviews the latest hot topics in applying 1D nanomaterials, covering both their synthesis and their applications. 1D nanomaterials can be grouped into the categories: carbon, silicon, metal oxides, and conducting polymers, and we structure our discussion accordingly. Then, we survey the unique properties and application of 1D nanomaterials in batteries and supercapacitors, and provide comments on the progress and advantages of those systems, paving the way for a better understanding of employing 1D nanomaterials for energy storage.

  17. One-Dimensional Modelling of Internal Ballistics

    Science.gov (United States)

    Monreal-González, G.; Otón-Martínez, R. A.; Velasco, F. J. S.; García-Cascáles, J. R.; Ramírez-Fernández, F. J.

    2017-10-01

    A one-dimensional model is introduced in this paper for problems of internal ballistics involving solid propellant combustion. First, the work presents the physical approach and equations adopted. Closure relationships accounting for the physical phenomena taking place during combustion (interfacial friction, interfacial heat transfer, combustion) are deeply discussed. Secondly, the numerical method proposed is presented. Finally, numerical results provided by this code (UXGun) are compared with results of experimental tests and with the outcome from a well-known zero-dimensional code. The model provides successful results in firing tests of artillery guns, predicting with good accuracy the maximum pressure in the chamber and muzzle velocity what highlights its capabilities as prediction/design tool for internal ballistics.

  18. Stability model for one-dimensional FRCs

    International Nuclear Information System (INIS)

    Schwarzmeier, J.L.; Hewitt, T.G.; Lewis, H.R.; Seyler, C.E.; Symon, K.R.

    1982-01-01

    The subject of transport near the separatrix in FRC devices is important for determining the performance to be expected from an FRC reactor or from FRC experiments. A computer code was constructed for studying the micro-stability properties of FRCs near the separatrix as a first step in obtaining quasilinear transport coefficients that can be used in a transport code. We consider collisionless ions and electrons, without an expansion in powers of a parameter, like the electron or ion gyroradius, and we approximate the equilibrium with an infinitely long axially and translationally symmetric equilibrium. Thus, in our equilibria, there are only an axial magnetic field and a radial electric field. Our equilibria are collisionless, two-species, diffuse-profile, one-dimensional, theta-pinch equilibria. We allow the possibility that there be a magnetic field null in order to be able to model FRC devices more realistically

  19. One dimensional systems with singular perturbations

    International Nuclear Information System (INIS)

    Alvarez, J J; Gadella, M; Nieto, L M; Glasser, L M; Lara, L P

    2011-01-01

    This paper discusses some one dimensional quantum models with singular perturbations. Eventually, a mass discontinuity is added at the points that support the singular perturbations. The simplest model includes an attractive singular potential with a mass jump both located at the origin. We study the form of the only bound state. Another model exhibits a hard core at the origin plus one or more repulsive deltas with mass jumps at the points supporting these deltas. We study the location and the multiplicity of these resonances for the case of one or two deltas and settle the basis for a generalization. Finally, we consider the harmonic oscillator and the infinite square well plus a singular potential at the origin. We see how the energy of bound states is affected by the singular perturbation.

  20. Efficient spin-filtering, magnetoresistance and negative differential resistance effects of a one-dimensional single-molecule magnet Mn(dmit2-based device with graphene nanoribbon electrodes

    Directory of Open Access Journals (Sweden)

    N. Liu

    2017-12-01

    Full Text Available We present first-principle spin-dependent quantum transport calculations in a molecular device constructed by one single-molecule magnet Mn(dmit2 and two graphene nanoribbon electrodes. Our results show that the device could generate perfect spin-filtering performance in a certain bias range both in the parallel configuration (PC and the antiparallel configuration (APC. At the same time, a magnetoresistance effect, up to a high value of 103%, can be realized. Moreover, visible negative differential resistance phenomenon is obtained for the spin-up current of the PC. These results suggest that our one-dimensional molecular device is a promising candidate for multi-functional spintronics devices.

  1. Heat transfer in a one-dimensional mixed convection loop

    International Nuclear Information System (INIS)

    Kim, Min Joon; Lee, Yong Bum; Kim, Yong Kyun; Kim, Jong Man; Nam, Ho Yun

    1999-01-01

    Effects of non-uniform heating in the core and additional forced circulation during decay heat removal operation are studied with a simplified mixed convection loop. The heat transfer coefficient is calculated analytically and measured experimentally. The analytic solution obtained from a one-dimensional heat equation is found to agree well with the experimental results. The effects of the non-uniform heating and the forced circulation are discussed

  2. UNICIN - an one-dimensional computer code for reactor kinetics

    International Nuclear Information System (INIS)

    Rosa, M.A.P.; Alcantara, H.G. de; Nair, R.P.K.

    1984-01-01

    A program for the solution of the time- and space-dependent multigroup diffusion equations and the delayed-neutron precursors concentration equations in one dimensional geometries by the weighted residual method is described. The discretized equations are solved through an iterative procedure with convergence accelerated by the over-relaxation method. The system is perturbed through the variation of the nuclide concentrations in specified regions. Two feedback effects are included, namely, the temperature and the burnup. (Author) [pt

  3. One dimensional benchmark calculations using diffusion theory

    International Nuclear Information System (INIS)

    Ustun, G.; Turgut, M.H.

    1986-01-01

    This is a comparative study by using different one dimensional diffusion codes which are available at our Nuclear Engineering Department. Some modifications have been made in the used codes to fit the problems. One of the codes, DIFFUSE, solves the neutron diffusion equation in slab, cylindrical and spherical geometries by using 'Forward elimination- Backward substitution' technique. DIFFUSE code calculates criticality, critical dimensions and critical material concentrations and adjoint fluxes as well. It is used for the space and energy dependent neutron flux distribution. The whole scattering matrix can be used if desired. Normalisation of the relative flux distributions to the reactor power, plotting of the flux distributions and leakage terms for the other two dimensions have been added. Some modifications also have been made for the code output. Two Benchmark problems have been calculated with the modified version and the results are compared with BBD code which is available at our department and uses same techniques of calculation. Agreements are quite good in results such as k-eff and the flux distributions for the two cases studies. (author)

  4. Diffusiophoresis in one-dimensional solute gradients

    Energy Technology Data Exchange (ETDEWEB)

    Ault, Jesse T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warren, Patrick B. [Unilever R& D Port Sunlight, Bebington (United Kingdom); Shin, Sangwoo [Univ. of Hawaii at Manoa, Honolulu, HI (United States); Stone, Howard A. [Princeton Univ., Princeton, NJ (United States)

    2017-11-06

    Here, the diffusiophoretic motion of suspended colloidal particles under one-dimensional solute gradients is solved using numerical and analytical techniques. Similarity solutions are developed for the injection and withdrawal dynamics of particles into semi-infinite pores. Furthermore, a method of characteristics formulation of the diffusion-free particle transport model is presented and integrated to realize particle trajectories. Analytical solutions are presented for the limit of small particle diffusiophoretic mobility Γp relative to the solute diffusivity Ds for particle motions in both semi-infinite and finite domains. Results confirm the build up of local maxima and minima in the propagating particle front dynamics. The method of characteristics is shown to successfully predict particle motions and the position of the particle front, although it fails to accurately predict suspended particle concentrations in the vicinity of sharp gradients, such as at the particle front peak seen in some injection cases, where particle diffusion inevitably plays an important role. Results inform the design of applications in which the use of applied solute gradients can greatly enhance particle injection into and withdrawal from pores.

  5. Diffusiophoresis in one-dimensional solute gradients

    International Nuclear Information System (INIS)

    Ault, Jesse T.; Warren, Patrick B.; Shin, Sangwoo; Stone, Howard A.

    2017-01-01

    Here, the diffusiophoretic motion of suspended colloidal particles under one-dimensional solute gradients is solved using numerical and analytical techniques. Similarity solutions are developed for the injection and withdrawal dynamics of particles into semi-infinite pores. Furthermore, a method of characteristics formulation of the diffusion-free particle transport model is presented and integrated to realize particle trajectories. Analytical solutions are presented for the limit of small particle diffusiophoretic mobility Γ p relative to the solute diffusivity D s for particle motions in both semi-infinite and finite domains. Results confirm the build up of local maxima and minima in the propagating particle front dynamics. The method of characteristics is shown to successfully predict particle motions and the position of the particle front, although it fails to accurately predict suspended particle concentrations in the vicinity of sharp gradients, such as at the particle front peak seen in some injection cases, where particle diffusion inevitably plays an important role. Results inform the design of applications in which the use of applied solute gradients can greatly enhance particle injection into and withdrawal from pores.

  6. Bound states of Dipolar Bosons in One-dimensional Systems

    DEFF Research Database (Denmark)

    G. Volosniev, A.; R. Armstrong, J.; V. Fedorov, D.

    2013-01-01

    that in the weakly-coupled limit the inter-tube interaction is similar to a zero-range term with a suitable rescaled strength. This allows us to address the corresponding many-body physics of the system by constructing a model where bound chains with one molecule in each tube are the effective degrees of freedom......We consider one-dimensional tubes containing bosonic polar molecules. The long-range dipole-dipole interactions act both within a single tube and between different tubes. We consider arbitrary values of the externally aligned dipole moments with respect to the symmetry axis of the tubes. The few....... This model can be mapped onto one-dimensional Hamiltonians for which exact solutions are known....

  7. One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials

    KAUST Repository

    Choi, Nam-Soon

    2011-01-01

    There has been tremendous interest in using nanomaterials for advanced Li-ion battery electrodes, particularly to increase the energy density by using high specific capacity materials. Recently, it was demonstrated that one dimensional (1D) Si/Sn nanowires (NWs) and nanotubes (NTs) have great potential to achieve high energy density as well as long cycle life for the next generation of advanced energy storage applications. In this feature article, we review recent progress on Si-based NWs and NTs as high capacity anode materials. Fundamental understanding and future challenges on one dimensional nanostructured anode are also discussed. © 2010 The Royal Society of Chemistry.

  8. Excitations in the quantum paramagnetic phase of the quasi-one-dimensional Ising magnet CoNb2O6 in a transverse field: Geometric frustration and quantum renormalization effects

    Science.gov (United States)

    Cabrera, I.; Thompson, J. D.; Coldea, R.; Prabhakaran, D.; Bewley, R. I.; Guidi, T.; Rodriguez-Rivera, J. A.; Stock, C.

    2014-07-01

    The quasi-one-dimensional (1D) Ising ferromagnet CoNb2O6 has recently been driven via applied transverse magnetic fields through a continuous quantum phase transition from spontaneous magnetic order to a quantum paramagnet, and dramatic changes were observed in the spin dynamics, characteristic of weakly perturbed 1D Ising quantum criticality. We report here extensive single-crystal inelastic neutron scattering measurements of the magnetic excitations throughout the three-dimensional (3D) Brillouin zone in the quantum paramagnetic phase just above the critical field to characterize the effects of the finite interchain couplings. In this phase, we observe that excitations have a sharp, resolution-limited line shape at low energies and over most of the dispersion bandwidth, as expected for spin-flip quasiparticles. We map the full bandwidth along the strongly dispersive chain direction and resolve clear modulations of the dispersions in the plane normal to the chains, characteristic of frustrated interchain couplings in an antiferromagnetic isosceles triangular lattice. The dispersions can be well parametrized using a linear spin-wave model that includes interchain couplings and further neighbor exchanges. The observed dispersion bandwidth along the chain direction is smaller than that predicted by a linear spin-wave model using exchange values determined at zero field, and this effect is attributed to quantum renormalization of the dispersion beyond the spin-wave approximation in fields slightly above the critical field, where quantum fluctuations are still significant.

  9. Quantum interference effects in nanostructured Au

    CERN Document Server

    Pratumpong, P; Evans, S D; Johnson, S; Howson, M A

    2002-01-01

    We present results on the magnetoresistance and temperature dependence of the resistivity for nanostructured Au produced by chemical means. The magnetoresistance was typical of highly disordered metals exhibiting quantum interference effects. We fitted the data and were able to determine the spin-orbit scattering relaxation time to be 10 sup - sup 1 sup 2 s and we found the inelastic scattering time at 10 K to be 10 sup - sup 1 sup 1 s. The inelastic scattering rate varied as T sup 3 between 4 and 20 K, which is typical for electron-phonon scattering in disordered metals.

  10. Quantum quench in an atomic one-dimensional Ising chain.

    Science.gov (United States)

    Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Daley, A J; Nägerl, H-C

    2013-08-02

    We study nonequilibrium dynamics for an ensemble of tilted one-dimensional atomic Bose-Hubbard chains after a sudden quench to the vicinity of the transition point of the Ising paramagnetic to antiferromagnetic quantum phase transition. The quench results in coherent oscillations for the orientation of effective Ising spins, detected via oscillations in the number of doubly occupied lattice sites. We characterize the quench by varying the system parameters. We report significant modification of the tunneling rate induced by interactions and show clear evidence for collective effects in the oscillatory response.

  11. One-dimensional treatment of polyatomic crystals by the Laplace transform method

    International Nuclear Information System (INIS)

    Rosato, A.; Santana, P.H.A.

    1976-01-01

    The one dimensional periodic potential problem is solved using the Laplace transform method and a condensed expression for the relation E x k and effective mass for one electron in a polyatomic structure is determined. Applications related to the effect of the asymmetry of the potential upon the one dimensional band structure are discussed [pt

  12. Hydrogen peroxide stabilization in one-dimensional flow columns

    Science.gov (United States)

    Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.

    2011-09-01

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.

  13. Lateral shift in one-dimensional quasiperiodic chiral photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Da, Jian, E-mail: dajian521@sina.com [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Mo, Qi, E-mail: moqiyueyang@163.com [School of Software, Yunnan University, Cuihu Bai Road, Kunming City, Yunnan Province 650091 (China); Cheng, Yaokun [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Liu, Taixiang [Taishan Vocational College of Nursing, Shandong Province 271000 (China)

    2015-02-01

    We investigate the lateral shift of a one-dimensional quasiperiodic photonic crystal consisting of chiral and conventional dielectric materials. The effect of structural irregularity on lateral shift is evaluated by stationary-phase approach. Our results show that the lateral shift can be modulated by varying the structural irregularity in quasiperiodic structure. Besides, the position of peak in lateral shift spectrum stays sensitive to the chiral factor of chiral materials. In comparison with that of periodic structure, quasiperiodic structure provides an extra degree of freedom to manipulate the lateral shift.

  14. One-dimensional nonlinear inverse heat conduction technique

    International Nuclear Information System (INIS)

    Hills, R.G.; Hensel, E.C. Jr.

    1986-01-01

    The one-dimensional nonlinear problem of heat conduction is considered. A noniterative space-marching finite-difference algorithm is developed to estimate the surface temperature and heat flux from temperature measurements at subsurface locations. The trade-off between resolution and variance of the estimates of the surface conditions is discussed quantitatively. The inverse algorithm is stabilized through the use of digital filters applied recursively. The effect of the filters on the resolution and variance of the surface estimates is quantified. Results are presented which indicate that the technique is capable of handling noisy measurement data

  15. Evaluation of one dimensional analytical models for vegetation canopies

    Science.gov (United States)

    Goel, Narendra S.; Kuusk, Andres

    1992-01-01

    The SAIL model for one-dimensional homogeneous vegetation canopies has been modified to include the specular reflectance and hot spot effects. This modified model and the Nilson-Kuusk model are evaluated by comparing the reflectances given by them against those given by a radiosity-based computer model, Diana, for a set of canopies, characterized by different leaf area index (LAI) and leaf angle distribution (LAD). It is shown that for homogeneous canopies, the analytical models are generally quite accurate in the visible region, but not in the infrared region. For architecturally realistic heterogeneous canopies of the type found in nature, these models fall short. These shortcomings are quantified.

  16. One-dimensional computational modeling on nuclear reactor problems

    International Nuclear Information System (INIS)

    Alves Filho, Hermes; Baptista, Josue Costa; Trindade, Luiz Fernando Santos; Heringer, Juan Diego dos Santos

    2013-01-01

    In this article, we present a computational modeling, which gives us a dynamic view of some applications of Nuclear Engineering, specifically in the power distribution and the effective multiplication factor (keff) calculations. We work with one-dimensional problems of deterministic neutron transport theory, with the linearized Boltzmann equation in the discrete ordinates (SN) formulation, independent of time, with isotropic scattering and then built a software (Simulator) for modeling computational problems used in a typical calculations. The program used in the implementation of the simulator was Matlab, version 7.0. (author)

  17. One-Dimensional Rydberg Gas in a Magnetoelectric Trap

    International Nuclear Information System (INIS)

    Mayle, Michael; Hezel, Bernd; Lesanovsky, Igor; Schmelcher, Peter

    2007-01-01

    We study the quantum properties of Rydberg atoms in a magnetic Ioffe-Pritchard trap which is superimposed by a homogeneous electric field. Trapped Rydberg atoms can be created in long-lived electronic states exhibiting a permanent electric dipole moment of several hundred Debye. The resulting dipole-dipole interaction in conjunction with the radial confinement is demonstrated to give rise to an effectively one-dimensional ultracold Rydberg gas with a macroscopic interparticle distance. We derive analytical expressions for the electric dipole moment and the required linear density of Rydberg atoms

  18. MARCUSE’S ONE-DIMENSIONAL SOCIETY IN ONE-DIMENSIONAL MAN

    Directory of Open Access Journals (Sweden)

    MILOS RASTOVIC

    2013-05-01

    Full Text Available Nowadays, Marcuse’s main book One-Dimensional Man is almost obsolete, or rather passé. However, there are reasons to renew the reading of his book because of “the crisis of capitalism,” and the prevailing framework of technological domination in “advanced industrial society” in which we live today. “The new forms of control” in “advanced industrial societies” have replaced traditional methods of political and economic administration. The dominant structural element of “advanced industrial society” has become a technical and scientific apparatus of production and distribution of technology and administrative practice based on application of impersonal rules by a hierarchy of associating authorities. Technology has been liberated from the control of particular interests, and it has become the factor of domination in itself. Technological domination stems from the technical development of the productive apparatus that reproduces its ability into all spheres of social life (cultural, political, and economic. Based upon this consideration, in this paper, I will examine Marcuse’s ideas of “the new forms of control,” which creates a one–dimensional society. Marcuse’s fundamental thesis in One-Dimensional Man is that technological rationality is the most dominant factor in an “advanced industrial society,” which unites two earlier opposing forces of dissent: the bourgeoisie and the proletariat.

  19. Radiation effects in bulk and nanostructured silicon

    Energy Technology Data Exchange (ETDEWEB)

    Holmstrom, E.

    2012-07-01

    Understanding radiation effects in silicon (Si) is of great technological importance. The material, being the basis of modern semiconductor electronics and photonics, is subjected to radiation already at the processing stage, and in many applications throughout the lifetime of the manufactured component. Despite decades of research, many fundamental questions on the subject are still not satisfactorily answered, and new ones arise constantly as device fabrication shifts towards the nanoscale. In this study, methods of computational physics are harnessed to tackle basic questions on the radiation response of bulk and nanostructured Si systems, as well as to explain atomic-scale phenomena underlying existing experimental results. Empirical potentials and quantum mechanical models are coupled with molecular dynamics simulations to model the response of Si to irradiation and to characterize the created crystal damage. The threshold displacement energy, i.e., the smallest recoil energy required to create a lattice defect, is determined in Si bulk and nanowires, in the latter system also as a function of mechanical strain. It is found that commonly used values for this quantity are drastically underestimated. Strain on the nanowire causes the threshold energy to drop, with an effect on defect production that is significantly higher than in an another nanostructure with similar dimensions, the carbon nanotube. Simulating ion irradiation of Si nanowires reveals that the large surface area to volume ratio of the nanostructure causes up to a three-fold enhancement in defect production as compared to bulk Si. Amorphous defect clusters created by energetic neutron bombardment are predicted, on the basis of their electronic structure and abundance, to cause a deleterious phenomenon called type inversion in Si strip detectors in high-energy physics experiments. The thinning of Si lamellae using a focused ion beam is studied in conjunction with experiment to unravel the cause for

  20. One-dimensional rigid film acoustic metamaterials

    Science.gov (United States)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng

    2015-11-01

    We have designed a 1D film-type acoustic metamaterial structure consisting of several polymer films directly stacked on each other. It is experimentally revealed that the mass density law can be broken by such structures in the low frequency range. By comparing the sound transmission loss (STL) curves of structures with different numbers of cycles, materials and incident sound directions, several physical properties of the 1D film-type acoustic metamaterial are revealed, which consist of cyclical effects, surface effects and orientation effects. It is suggested that the excellent low frequency sound insulation capacity is influenced by both the cycle number and the stiffness of the film surface. Meanwhile, the surface effect plays a dominant role among these physical properties. Due to the surface acoustic property, for structures with a particular combination form, the STL dominated by the cyclical effects may reach saturation with increasing number of construction periods. Moreover, in some cases, the sound insulation ability is diverse for different sound incidence directions. This kind of 1D film-type periodic structure with these special physical properties provides a new concept for the regulation of sound waves.

  1. One-dimensional rigid film acoustic metamaterials

    International Nuclear Information System (INIS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng

    2015-01-01

    We have designed a 1D film-type acoustic metamaterial structure consisting of several polymer films directly stacked on each other. It is experimentally revealed that the mass density law can be broken by such structures in the low frequency range. By comparing the sound transmission loss (STL) curves of structures with different numbers of cycles, materials and incident sound directions, several physical properties of the 1D film-type acoustic metamaterial are revealed, which consist of cyclical effects, surface effects and orientation effects. It is suggested that the excellent low frequency sound insulation capacity is influenced by both the cycle number and the stiffness of the film surface. Meanwhile, the surface effect plays a dominant role among these physical properties. Due to the surface acoustic property, for structures with a particular combination form, the STL dominated by the cyclical effects may reach saturation with increasing number of construction periods. Moreover, in some cases, the sound insulation ability is diverse for different sound incidence directions. This kind of 1D film-type periodic structure with these special physical properties provides a new concept for the regulation of sound waves. (paper)

  2. One-dimensional coaxial Sb and carbon fibers with enhanced electrochemical performance for sodium-ion batteries

    Science.gov (United States)

    Zhu, Mengnan; Kong, Xiangzhong; Yang, Hulin; Zhu, Ting; Liang, Shuquan; Pan, Anqiang

    2018-01-01

    Antimony (Sb) has been intensively investigated as a promising anode material for sodium ion batteries (SIBs) in recent years. However, bulk Sb particles usually suffer from excessive volume expansion thus leading to dramatic capacity decay after cycling. To address this issue, Sb has been uniformly decorated on Polyacrylonitrile (PAN) derived carbon nanofibers (PCFs) via a simple chemical deposition strategy to form a one-dimensional (1D) core-shell nanostructure of Sb@PCFs. PCFs were first derived from electrospun PAN fibers and treated with subsequent calcination. The PCFs constructed an interwoven carbon network were later employed for Sb deposition, which can effectively alleviate aggregation or further cracking of Sb nanoparticles occurred in electrochemical kinetic process. The as-obtained Sb@PCFs nanocomposites demonstrated excellent cycling stability with good rate performances. This carefully designed core-shell nanostructure of antimony nanoparticles wrapped PCFs are responsible for good electrochemical Na-ion storage. Moreover, the 1D nanostructure manage to pave pathways for fast ions transfer during charge-discharge, which could extra contribute to the enhanced SIBs performances.

  3. Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization

    Science.gov (United States)

    Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.

    2016-04-01

    We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χmlaw ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.

  4. One-dimensional low spatial frequency LIPSS with rotating orientation on fused silica

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Simon, E-mail: simon.schwarz@h-ab.de; Rung, Stefan; Hellmann, Ralf

    2017-07-31

    Highlights: • Generation of one-dimensional low spatial frequency LIPSS on transparent material. • Varying the angle of incidence results in a rotation of the one-dimensional LSFL. • Rotation angle of LSFL decreases with increasing the applied fluence. • Orientation of the LSFL is mirror-inverted when reversing the scanning direction. - Abstract: We report on the generation of one-dimensional low spatial frequency LIPSS on transparent material. The influence of the applied laser fluence and angle of incidence on the periodicity, orientation and quality of the one-dimensional low spatial frequency LIPSS is investigated, facilitating the generation of highly uniform LIPSS alongside a line. Most strikingly, however, we observe a previously unreported effect of a pronounced rotation of the one-dimensional low spatial frequency LIPSS for varying angle of incidence upon inclined laser irradiation.

  5. Analytical models of optical response in one-dimensional semiconductors

    International Nuclear Information System (INIS)

    Pedersen, Thomas Garm

    2015-01-01

    The quantum mechanical description of the optical properties of crystalline materials typically requires extensive numerical computation. Including excitonic and non-perturbative field effects adds to the complexity. In one dimension, however, the analysis simplifies and optical spectra can be computed exactly. In this paper, we apply the Wannier exciton formalism to derive analytical expressions for the optical response in four cases of increasing complexity. Thus, we start from free carriers and, in turn, switch on electrostatic fields and electron–hole attraction and, finally, analyze the combined influence of these effects. In addition, the optical response of impurity-localized excitons is discussed. - Highlights: • Optical response of one-dimensional semiconductors including excitons. • Analytical model of excitonic Franz–Keldysh effect. • Computation of optical response of impurity-localized excitons

  6. Interacting Fermi gases in disordered one-dimensional lattices

    International Nuclear Information System (INIS)

    Xianlong, Gao; Polini, M.; Tosi, M. P.; Tanatar, B.

    2006-01-01

    Interacting two-component Fermi gases loaded in a one-dimensional (1D) lattice and subject to harmonic trapping exhibit intriguing compound phases in which fluid regions coexist with local Mott-insulator and/or band-insulator regions. Motivated by experiments on cold atoms inside disordered optical lattices, we present a theoretical study of the effects of a random potential on these ground-state phases. Within a density-functional scheme we show that disorder has two main effects: (i) it destroys the local insulating regions if it is sufficiently strong compared with the on-site atom-atom repulsion, and (ii) it induces an anomaly in the compressibility at low density from quenching of percolation

  7. Resonant scattering induced thermopower in one-dimensional disordered systems

    Science.gov (United States)

    Müller, Daniel; Smit, Wilbert J.; Sigrist, Manfred

    2015-05-01

    This study analyzes thermoelectric properties of a one-dimensional random conductor which shows localization effects and simultaneously includes resonant scatterers yielding sharp conductance resonances. These sharp features give rise to a distinct behavior of the Seebeck coefficient in finite systems and incorporate the degree of localization as a means to enhance thermoelectric performance, in principle. The model for noninteracting electrons is discussed within the Landauer-Büttiker formalism such that analytical treatment is possible for a wide range of properties, if a special averaging scheme is applied. The approximations in the averaging procedure are tested with numerical evaluations showing good qualitative agreement, with some limited quantitative disagreement. The validity of low-temperature Mott's formula is determined and a good approximation is developed for the intermediate temperature range. In both regimes the intricate interplay between Anderson localization due to disorder and conductance resonances of the disorder potential is analyzed.

  8. One-dimensional reactor kinetics model for RETRAN

    International Nuclear Information System (INIS)

    Gose, G.C.; Peterson, C.E.; Ellis, N.L.; McClure, J.A.

    1981-01-01

    Previous versions of RETRAN have had only a point kinetics model to describe the reactor core behavior during thermal-hydraulic transients. The principal assumption in deriving the point kinetics model is that the neutron flux may be separated into a time-dependent amplitude funtion and a time-independent shape function. Certain types of transients cannot be correctly analyzed under this assumption, since proper definitions for core average quantities such as reactivity or lifetime include the inner product of the adjoint flux with the perturbed flux. A one-dimensional neutronics model has been included in a preliminary version of RETRAN-02. The ability to account for flux shape changes will permit an improved representation of the thermal and hydraulic feedback effects. This paper describes the neutronics model and discusses some of the analyses

  9. One-dimensional thermodynamical model for poling of ferroelectric ceramics

    International Nuclear Information System (INIS)

    Bassiouny, E.

    1990-11-01

    In this work, we use a model developed to deduce a one-dimensional model for the description of the poling of ferroelectric ceramics. This is built within the scheme of the thermodynamical theory of internal variables. The model produces both plastic and electric hysteresis effects in the form of ''plasticity'', i.e., rate-independent evolution equations for the plastic strain, and the residual electric polarization and both mechanical and electric hardenings. The influence of stresses on ferroelectric hysteresis loops through piezoelectricity and electrostriction is a natural outcome of this model. Some simple experimental methods for the determination of the material coefficients of the considered ceramics are suggested. (author). 21 refs, 3 figs

  10. One-dimensional reduction of viscous jets. II. Applications

    Science.gov (United States)

    Pitrou, Cyril

    2018-04-01

    In a companion paper [Phys. Rev. E 97, 043115 (2018), 10.1103/PhysRevE.97.043115], a formalism allowing to describe viscous fibers as one-dimensional objects was developed. We apply it to the special case of a viscous fluid torus. This allows to highlight the differences with the basic viscous string model and with its viscous rod model extension. In particular, an elliptic deformation of the torus section appears because of surface tension effects, and this cannot be described by viscous string nor viscous rod models. Furthermore, we study the Rayleigh-Plateau instability for periodic deformations around the perfect torus, and we show that the instability is not sufficient to lead to the torus breakup in several droplets before it collapses to a single spherical drop. Conversely, a rotating torus is dynamically attracted toward a stationary solution, around which the instability can develop freely and split the torus in multiple droplets.

  11. The transmission probability method in one-dimensional cylindrical geometry

    International Nuclear Information System (INIS)

    Rubin, I.E.

    1983-01-01

    The collision probability method widely used in solving the problems of neutron transpopt in a reactor cell is reliable for simple cells with small number of zones. The increase of the number of zones and also taking into account the anisotropy of scattering greatly increase the scope of calculations. In order to reduce the time of calculation the transmission probability method is suggested to be used for flux calculation in one-dimensional cylindrical geometry taking into account the scattering anisotropy. The efficiency of the suggested method is verified using the one-group calculations for cylindrical cells. The use of the transmission probability method allows to present completely angular and spatial dependences is neutrons distributions without the increase in the scope of calculations. The method is especially effective in solving the multi-group problems

  12. A Reduced Order, One Dimensional Model of Joint Response

    Energy Technology Data Exchange (ETDEWEB)

    DOHNER,JEFFREY L.

    2000-11-06

    As a joint is loaded, the tangent stiffness of the joint reduces due to slip at interfaces. This stiffness reduction continues until the direction of the applied load is reversed or the total interface slips. Total interface slippage in joints is called macro-slip. For joints not undergoing macro-slip, when load reversal occurs the tangent stiffness immediately rebounds to its maximum value. This occurs due to stiction effects at the interface. Thus, for periodic loads, a softening and rebound hardening cycle is produced which defines a hysteretic, energy absorbing trajectory. For many jointed sub-structures, this hysteretic trajectory can be approximated using simple polynomial representations. This allows for complex joint substructures to be represented using simple non-linear models. In this paper a simple one dimensional model is discussed.

  13. Relativistic collective diffusion in one-dimensional systems

    Science.gov (United States)

    Lin, Gui-Wu; Lam, Yu-Yiu; Zheng, Dong-Qin; Zhong, Wei-Rong

    2018-05-01

    The relativistic collective diffusion in one-dimensional molecular system is investigated through nonequilibrium molecular dynamics with Monte Carlo methods. We have proposed the relationship among the speed, the temperature, the density distribution and the collective diffusion coefficient of particles in a relativistic moving system. It is found that the relativistic speed of the system has no effect on the temperature, but the collective diffusion coefficient decreases to zero as the velocity of the system approaches to the speed of light. The collective diffusion coefficient is modified as D‧ = D(1 ‑w2 c2 )3 2 for satisfying the relativistic circumstances. The present results may contribute to the understanding of the behavior of the particles transport diffusion in a high speed system, as well as enlighten the study of biological metabolism at relativistic high speed situation.

  14. Charge and spin separation in one-dimensional systems

    International Nuclear Information System (INIS)

    Balseiro, C.A.; Jagla, E.A.; Hallberg, K.

    1995-01-01

    In this article we discuss charge and spin separation and quantum interference in one-dimensional models. After a short introduction we briefly present the Hubbard and Luttinger models and discuss some of the known exact results. We study numerically the charge and spin separation in the Hubbard model. The time evolution of a wave packet is obtained and the charge and spin densities are evaluated for different times. The charge and spin wave packets propagate with different velocities. The results are interpreted in terms of the Bethe-ansatz solution. In section IV we study the effect of charge and spin separation on the quantum interference in a Aharonov-Bohm experiment. By calculating the one-particle propagators of the Luttinger model for a mesoscopic ring with a magnetic field we calculate the Aharonov-Bohm conductance. The conductance oscillates with the magnetic field with a characteristic frequency that depends on the charge and spin velocities. (author)

  15. One-dimensional reduction of viscous jets. I. Theory

    Science.gov (United States)

    Pitrou, Cyril

    2018-04-01

    We build a general formalism to describe thin viscous jets as one-dimensional objects with an internal structure. We present in full generality the steps needed to describe the viscous jets around their central line, and we argue that the Taylor expansion of all fields around that line is conveniently expressed in terms of symmetric trace-free tensors living in the two dimensions of the fiber sections. We recover the standard results of axisymmetric jets and we report the first and second corrections to the lowest order description, also allowing for a rotational component around the axis of symmetry. When applied to generally curved fibers, the lowest order description corresponds to a viscous string model whose sections are circular. However, when including the first corrections, we find that curved jets generically develop elliptic sections. Several subtle effects imply that the first corrections cannot be described by a rod model since it amounts to selectively discard some corrections. However, in a fast rotating frame, we find that the dominant effects induced by inertial and Coriolis forces should be correctly described by rod models. For completeness, we also recover the constitutive relations for forces and torques in rod models and exhibit a missing term in the lowest order expression of viscous torque. Given that our method is based on tensors, the complexity of all computations has been beaten down by using an appropriate tensor algebra package such as xAct, allowing us to obtain a one-dimensional description of curved viscous jets with all the first order corrections consistently included. Finally, we find a description for straight fibers with elliptic sections as a special case of these results, and recover that ellipticity is dynamically damped by surface tension. An application to toroidal viscous fibers is presented in the companion paper [Pitrou, Phys. Rev. E 97, 043116 (2018), 10.1103/PhysRevE.97.043116].

  16. Bioinspired one-dimensional materials for directional liquid transport.

    Science.gov (United States)

    Ju, Jie; Zheng, Yongmei; Jiang, Lei

    2014-08-19

    One-dimensional materials (1D) capable of transporting liquid droplets directionally, such as spider silks and cactus spines, have recently been gathering scientists' attention due to their potential applications in microfluidics, textile dyeing, filtration, and smog removal. This remarkable property comes from the arrangement of the micro- and nanostructures on these organisms' surfaces, which have inspired chemists to develop methods to prepare surfaces with similar directional liquid transport ability. In this Account, we report our recent progress in understanding how this directional transport works, as well our advances in the design and fabrication of bioinspired 1D materials capable of transporting liquid droplets directionally. To begin, we first discuss some basic theories on droplet directional movement. Then, we discuss the mechanism of directional transport of water droplets on natural spider silks. Upon contact with water droplets, the spider silk undergoes what is known as a wet-rebuilt, which forms periodic spindle-knots and joints. We found that the resulting gradient of Laplace pressure and surface free energy between the spindle-knots and joints account for the cooperative driving forces to transport water droplets directionally. Next, we discuss the directional transport of water droplets on desert cactus. The integration of multilevel structures of the cactus and the resulting integration of multiple functions together allow the cactus spine to transport water droplets continuously from tip to base. Based on our studies of natural spider silks and cactus spines, we have prepared a series of artificial spider silks (A-SSs) and artificial cactus spines (A-CSs) with various methods. By changing the surface roughness and chemical compositions of the artificial spider silks' spindle-knots, or by introducing stimulus-responsive molecules, such as thermal-responsive and photoresponsive molecules, onto the spindle-knots, we can reversibly manipulate

  17. Interface phonon effect on optical spectra of quantum nanostructures

    International Nuclear Information System (INIS)

    Maslov, Alexander Yu.; Proshina, Olga V.; Rusina, Anastasia N.

    2009-01-01

    This paper deals with theory of large radius polaron effect in quantum wells, wires and dots. The interaction of charge particles and excitons with both bulk and interface optical phonons is taken into consideration. The analytical expression for polaron binding energy is obtained for different types of nanostructures. It is shown that the contribution of interface phonons to the polaron binding energy may exceed the bulk phonon part. The manifestation of polaron effects in optical spectra of quantum nanostructures is discussed.

  18. One-dimensional versus two-dimensional electronic states in vicinal surfaces

    International Nuclear Information System (INIS)

    Ortega, J E; Ruiz-Oses, M; Cordon, J; Mugarza, A; Kuntze, J; Schiller, F

    2005-01-01

    Vicinal surfaces with periodic arrays of steps are among the simplest lateral nanostructures. In particular, noble metal surfaces vicinal to the (1 1 1) plane are excellent test systems to explore the basic electronic properties in one-dimensional superlattices by means of angular photoemission. These surfaces are characterized by strong emissions from free-electron-like surface states that scatter at step edges. Thereby, the two-dimensional surface state displays superlattice band folding and, depending on the step lattice constant d, it splits into one-dimensional quantum well levels. Here we use high-resolution, angle-resolved photoemission to analyse surface states in a variety of samples, in trying to illustrate the changes in surface state bands as a function of d

  19. Plasma properties of quasi-one-dimensional ring

    CERN Document Server

    Shmelev, G M

    2001-01-01

    The plasma properties of the quasi-one-dimensional ring in the threshold cases of low and high frequencies, corresponding to the plasma oscillations and dielectric relaxation are studied within the frames of the classical approach. The plasma oscillations spectrum and the electron dielectric relaxation frequency in the quasi-one-dimensional ring are calculated. The plasmons spectrum equidistance is identified. It is shown , that in contrast to the three-dimensional case there takes place the dielectric relaxation dispersion, wherefrom there follows the possibility of studying the carriers distribution in the quasi-one-dimensional rings through the method of the dielectric relaxation spectroscopy

  20. Debye screening length effects of nanostructured materials

    CERN Document Server

    Ghatak, Kamakhya Prasad

    2014-01-01

    This monograph solely investigates the Debye Screening Length (DSL) in semiconductors and their nano-structures. The materials considered are quantized structures of non-linear optical, III-V, II-VI, Ge, Te, Platinum Antimonide, stressed materials, Bismuth, GaP, Gallium Antimonide, II-V and Bismuth Telluride respectively. The DSL in opto-electronic materials and their quantum confined counterparts is studied in the presence of strong light waves and intense electric fields on the basis of newly formulated electron dispersion laws that control the studies of such quantum effect devices. The suggestions for the experimental determination of 2D and 3D DSL and the importance of measurement of band gap in optoelectronic materials under intense built-in electric field in nano devices and strong external photo excitation (for measuring photon induced physical properties) have also been discussed in this context. The influence of crossed electric and quantizing magnetic fields on the DSL and the DSL in heavily doped ...

  1. Explicit Solutions for One-Dimensional Mean-Field Games

    KAUST Repository

    Prazeres, Mariana

    2017-01-01

    In this thesis, we consider stationary one-dimensional mean-field games (MFGs) with or without congestion. Our aim is to understand the qualitative features of these games through the analysis of explicit solutions. We are particularly interested

  2. Negative differential resistance in a one-dimensional molecular wire ...

    Indian Academy of Sciences (India)

    voltage characteristics of a one-dimensional molecular wire with odd number of ... lem, although interesting both from a fundamental point of view and in terms of ..... SKP acknowledges the DST, Government of India, for financial support.

  3. The one-dimensional extended Bose–Hubbard model

    Indian Academy of Sciences (India)

    Unknown

    method to obtain the zero-temperature phase diagram of the one-dimensional, extended ... Progress in this field has been driven by an interplay between ... superconductor-insulator transition in thin films of superconducting materials like bis-.

  4. Tunneling and resonant conductance in one-dimensional molecular structures

    International Nuclear Information System (INIS)

    Kozhushner, M.A.; Posvyanskii, V.S.; Oleynik, I.I.

    2005-01-01

    We present a theory of tunneling and resonant transitions in one-dimensional molecular systems which is based on Green's function theory of electron sub-barrier scattering off the structural units (or functional groups) of a molecular chain. We show that the many-electron effects are of paramount importance in electron transport and they are effectively treated using a formalism of sub-barrier scattering operators. The method which calculates the total scattering amplitude of the bridge molecule not only predicts the enhancement of the amplitude of tunneling transitions in course of tunneling electron transfer through onedimensional molecular structures but also allows us to interpret conductance mechanisms by calculating the bound energy spectrum of the tunneling electron, the energies being obtained as poles of the total scattering amplitude of the bridge molecule. We found that the resonant tunneling via bound states of the tunneling electron is the major mechanism of electron conductivity in relatively long organic molecules. The sub-barrier scattering technique naturally includes a description of tunneling in applied electric fields which allows us to calculate I-V curves at finite bias. The developed theory is applied to explain experimental findings such as bridge effect due to tunneling through organic molecules, and threshold versus Ohmic behavior of the conductance due to resonant electron transfer

  5. Effects of gradient disorder on electronic transport in quasi-one-dimensional nanowires%准一维纳米线电子输运的梯度无序效应

    Institute of Scientific and Technical Information of China (English)

    段玲; 胡飞; 丁建文

    2011-01-01

    考虑实际体系的梯度无序和结散射,发展格林函数矩阵分解消元方法,研究了准一维纳米线的电子输运性质.结果表明,由于结散射,电导随能量呈现振荡行为,无序的引入破坏了电子相干性,在低无序度区平均电导呈现异常增加,呈现一个新的电导峰.当表面存在无序但无梯度衰减时,体系的平均电导随无序度增强先减后增,出现类局域—退局域性转变.当表面无序线性衰减时,平均电导在强无序区稍有增加,而当表面无序高斯型衰减时,平均电导指数衰减,类局域—退局域性转变消失,不同于以前的理论预言.研究结果对准一维纳米线电子器件的结构设计和应用有指导作用.%Considering both the gradient decay of the real disorder and the contact scattering,we investigate the electronic transport in quasi-one-dimensional nanowires by developing a decomposition elimination method for Green's function matrix.In the presence the contact scattering,the conductance oscillates with energy.For some energies of incident electrons,an abnormal enhancement is obtained in the average conductance due to the destroyed coherence by the introduction of much low disorder,showing that there appears a new conductance peak.In the absence of disorder gradient,the average conductance firstly decreases then increases with disorder strength,indicating that there exists a localization-delocalization transition.In the presence of linearly decaying disorder,the average conductance increases slightly in a strong disorder region.In the case of the Gaussian-type decaying disorder,the average conductance decreases exponentially and the localization-delocalization transition disappears,which is different from previous thereotical result.The results are helpful for the design and the application of quasi-one-dimensional nanowires device.

  6. Spin glasses and algorithm benchmarks: A one-dimensional view

    International Nuclear Information System (INIS)

    Katzgraber, H G

    2008-01-01

    Spin glasses are paradigmatic models that deliver concepts relevant for a variety of systems. However, rigorous analytical results are difficult to obtain for spin-glass models, in particular for realistic short-range models. Therefore large-scale numerical simulations are the tool of choice. Concepts and algorithms derived from the study of spin glasses have been applied to diverse fields in computer science and physics. In this work a one-dimensional long-range spin-glass model with power-law interactions is discussed. The model has the advantage over conventional systems in that by tuning the power-law exponent of the interactions the effective space dimension can be changed thus effectively allowing the study of large high-dimensional spin-glass systems to address questions as diverse as the existence of an Almeida-Thouless line, ultrametricity and chaos in short range spin glasses. Furthermore, because the range of interactions can be changed, the model is a formidable test-bed for optimization algorithms

  7. Negative refraction angular characterization in one-dimensional photonic crystals.

    Directory of Open Access Journals (Sweden)

    Jesus Eduardo Lugo

    2011-04-01

    Full Text Available Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs.By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone.Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.

  8. Negative refraction angular characterization in one-dimensional photonic crystals.

    Science.gov (United States)

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-04-06

    Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.

  9. One-dimensional transient radiative transfer by lattice Boltzmann method.

    Science.gov (United States)

    Zhang, Yong; Yi, Hongliang; Tan, Heping

    2013-10-21

    The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed.

  10. Localization properties of one-dimensional electrified chains

    International Nuclear Information System (INIS)

    Ouasti, R.; Brezini, A.; Zekri, N.

    1993-08-01

    A Kronig-Penney model with a constant electric filed for a non-interacting electron is used to study the transmission properties of Anderson transition in one-dimensional (1-D) systems with disordered strengths of δ-function potentials. we examined the cases where the potential varies uniformly from O to W (barriers) or from -W to O (wells) for a given disorder W. Mainly, we observe unexpected abrupt transition at the points E + Fx = n 2 π 2 . However, these transitions are related to the small oscillations observed by Soukoulis et al. in the mixed case (wells and barriers). An interesting feature in the wells is that in the presence of a small field the states become more localized and the localization length decrease up to a minimum for a critical value F m . In the end, we have studied the effect of the disorder on the Anderson transition by the mean of the participation ratio and the localization length. (author). 27 refs, 6 figs

  11. Quantum one dimensional spin systems. Disorder and impurities

    International Nuclear Information System (INIS)

    Brunel, V.

    1999-01-01

    This thesis presents three studies that are respectively the spin-1 disordered chain, the non magnetic impurities in the spin-1/2 chain and the reaction-diffusion process. The spin-1 chain of weak disorder is performed by the Abelian bosonization and the renormalization group. This allows to take into account the competition between the disorder and the interactions and predicts the effects of various spin-1 anisotropy chain phases under many different disorders. A second work uses the non magnetic impurities as local probes of the correlations in the spin-1/2 chain. When the impurities are connected to the chain boundary, the author predicts a temperature dependence of the relaxation rate (1/T) of the nuclear spin impurities, different from the case of these impurities connected to the whole chain. The last work deals with one dimensional reaction-diffusion problem. The Jordan-Wigner transformation allows to consider a fermionic field theory that critical exponents follow from the renormalization group. (A.L.B.)

  12. One-dimensional long-range percolation: A numerical study

    Science.gov (United States)

    Gori, G.; Michelangeli, M.; Defenu, N.; Trombettoni, A.

    2017-07-01

    In this paper we study bond percolation on a one-dimensional chain with power-law bond probability C /rd +σ , where r is the distance length between distinct sites and d =1 . We introduce and test an order-N Monte Carlo algorithm and we determine as a function of σ the critical value Cc at which percolation occurs. The critical exponents in the range 0 values for Cc are compared with a known exact bound, while the critical exponent ν is compared with results from mean-field theory, from an expansion around the point σ =1 and from the ɛ -expansion used with the introduction of a suitably defined effective dimension deff relating the long-range model with a short-range one in dimension deff. We finally present a formulation of our algorithm for bond percolation on general graphs, with order N efficiency on a large class of graphs including short-range percolation and translationally invariant long-range models in any spatial dimension d with σ >0 .

  13. Electroconvection in one-dimensional liquid crystal cells

    Science.gov (United States)

    Huh, Jong-Hoon

    2018-04-01

    We investigate the alternating current (ac) -driven electroconvection (EC) in one-dimensional cells (1DCs) under the in-plane switching mode. In 1DCs, defect-free EC can be realized. In the presence and absence of external multiplicative noise, the features of traveling waves (TWs), such as their Hopf frequency fH and velocity, are examined in comparison with those of conventional two-dimensional cells (2DCs) accompanying defects of EC rolls. In particular, we show that the defects significantly contribute to the features of the TWs. Additionally, owing to the defect-free EC in the 1DCs, the effects of the ac and noise fields on the TW are clarified. The ac field linearly increases fH, independent of the ac frequency f . The noise increases fH monotonically, but fH does not vary below a characteristic noise intensity VN*. In addition, soliton-like waves and unfamiliar oscillation of EC vortices in 1DCs are observed, in contrast to the localized EC (called worms) and the oscillation of EC rolls in 2DCs.

  14. Strong chaos in one-dimensional quantum system

    International Nuclear Information System (INIS)

    Yang, C.-D.; Wei, C.-H.

    2008-01-01

    According to the Poincare-Bendixson theorem, a minimum of three autonomous equations is required to exhibit deterministic chaos. Because a one-dimensional quantum system is described by only two autonomous equations using de Broglie-Bohm's trajectory interpretation, chaos in one-dimensional quantum systems has long been considered impossible. We will prove in this paper that chaos phenomenon does exist in one-dimensional quantum systems, if the domain of quantum motions is extended to complex space by noting that the quantum world is actually characterized by a four-dimensional complex spacetime according to the E (∞) theory. Furthermore, we point out that the interaction between the real and imaginary parts of complex trajectories produces a new chaos phenomenon unique to quantum systems, called strong chaos, which describes the situation that quantum trajectories may emerge and diverge spontaneously without any perturbation in the initial position

  15. Absorption in one-dimensional metallic-dielectric photonic crystals

    International Nuclear Information System (INIS)

    Yu Junfei; Shen Yifeng; Liu Xiaohan; Fu Rongtang; Zi Jian; Zhu Zhiqiang

    2004-01-01

    We show theoretically that the absorption of one-dimensional metallic-dielectric photonic crystals can be enhanced considerably over the corresponding constituent metal. By properly choosing the structural and material parameters, the absorption of one-dimensional metallic-dielectric photonic crystals can be enhanced by one order of magnitude in the visible and in the near infrared regions. It is found that the absorptance of such photonic crystals increases with increasing number of periods. Rules on how to obtain a absorption enhancement in a certain frequency range are discussed. (letter to the editor)

  16. Optical enhancement effects of plasmonic nanostructures on organic photovoltaic cells

    KAUST Repository

    Park, Hui Joon

    2015-04-01

    © 2015 Hui Joon Park and L. Jay Guo. Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. All rights reserved. In this article, the optical enhancement effects of plasmonic nanostructures on OPV cells were reviewed as an effective way to resolve the mismatch problems between the short exciton diffusion length in organic semiconductors (around 10 nm) and the large thickness required to fully absorb sunlight (e.g. hundreds of nanometers). Especially, the performances of OPVs with plasmonic nanoparticles in photoactive and buffer layers and with periodic nanostructures were investigated. Furthermore, nanoimprint lithography-based nanofabrication processes that can easily control the dimension and uniformity of structures for large-area and uniform plasmonic nanostructures were demonstrated.

  17. Interfacial Thermal Transport via One-Dimensional Atomic Junction Model

    Directory of Open Access Journals (Sweden)

    Guohuan Xiong

    2018-03-01

    Full Text Available In modern information technology, as integration density increases rapidly and the dimension of materials reduces to nanoscale, interfacial thermal transport (ITT has attracted widespread attention of scientists. This review introduces the latest theoretical development in ITT through one-dimensional (1D atomic junction model to address the thermal transport across an interface. With full consideration of the atomic structures in interfaces, people can apply the 1D atomic junction model to investigate many properties of ITT, such as interfacial (Kapitza resistance, nonlinear interface, interfacial rectification, and phonon interference, and so on. For the ballistic ITT, both the scattering boundary method (SBM and the non-equilibrium Green’s function (NEGF method can be applied, which are exact since atomic details of actual interfaces are considered. For interfacial coupling case, explicit analytical expression of transmission coefficient can be obtained and it is found that the thermal conductance maximizes at certain interfacial coupling (harmonic mean of the spring constants of the two leads and the transmission coefficient is not a monotonic decreasing function of phonon frequency. With nonlinear interaction—phonon–phonon interaction or electron–phonon interaction at interface, the NEGF method provides an efficient way to study the ITT. It is found that at weak linear interfacial coupling, the nonlinearity can improve the ITT, but it depresses the ITT in the case of strong-linear coupling. In addition, the nonlinear interfacial coupling can induce thermal rectification effect. For interfacial materials case which can be simulated by a two-junction atomic chain, phonons show interference effect, and an optimized thermal coupler can be obtained by tuning its spring constant and atomic mass.

  18. Approximate characteristics for one-dimensional two-phase flows

    International Nuclear Information System (INIS)

    Sarayloo, A.; Peddleson, J.

    1985-01-01

    An approximate method for determining the characteristics associated with one-dimensional particulate two-phase flow models is presented. The method is based on iteration and is valid for small particulate volume fractions. The method is applied to several special cases involving incompressible particles suspended in a gas. The influences of certain changes in the physical model are investigated

  19. Analytical solutions of one-dimensional advection–diffusion

    Indian Academy of Sciences (India)

    Analytical solutions are obtained for one-dimensional advection –diffusion equation with variable coefficients in a longitudinal finite initially solute free domain,for two dispersion problems.In the first one,temporally dependent solute dispersion along uniform flow in homogeneous domain is studied.In the second problem the ...

  20. Underwater striling engine design with modified one-dimensional model

    Directory of Open Access Journals (Sweden)

    Daijin Li

    2015-05-01

    Full Text Available Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA. The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

  1. Quantitative hyperbolicity estimates in one-dimensional dynamics

    International Nuclear Information System (INIS)

    Day, S; Kokubu, H; Pilarczyk, P; Luzzatto, S; Mischaikow, K; Oka, H

    2008-01-01

    We develop a rigorous computational method for estimating the Lyapunov exponents in uniformly expanding regions of the phase space for one-dimensional maps. Our method uses rigorous numerics and graph algorithms to provide results that are mathematically meaningful and can be achieved in an efficient way

  2. Quasi-one-dimensional scattering in a discrete model

    DEFF Research Database (Denmark)

    Valiente, Manuel; Mølmer, Klaus

    2011-01-01

    We study quasi-one-dimensional scattering of one and two particles with short-range interactions on a discrete lattice model in two dimensions. One of the directions is tightly confined by an arbitrary trapping potential. We obtain the collisional properties of these systems both at finite and zero...

  3. Structure Variation from One-Dimensional Chain to Three ...

    Indian Academy of Sciences (India)

    WEN-XUAN LI, XIAO-MIN GU, WEN-LI ZHANG and LIANG NI. School of Chemistry ... Compound 1 possesses one-dimensional chain structure, and expands into ..... sis of fine chemicals and pharmaceuticals.30 The results were summarized ...

  4. Current-Voltage Characteristics of Quasi-One-Dimensional Superconductors

    DEFF Research Database (Denmark)

    Vodolazov, D.Y.; Peeters, F.M.; Piraux, L.

    2003-01-01

    The current-voltage (I-V) characteristics of quasi-one-dimensional superconductors were discussed. The I-V characteristics exhibited an unusual S behavior. The dynamics of superconducting condensate and the existence of two different critical currents resulted in such an unusual behavior....

  5. Diffusive transport in a one dimensional disordered potential involving correlations

    International Nuclear Information System (INIS)

    Monthus, C.; Paris-6 Univ., 75

    1995-03-01

    Transport properties of one dimensional Brownian diffusion under the influence of a quenched random force, distributed as a two-level Poisson process is discussed. Large time scaling laws of the position of the Brownian particle, and the probability distribution of the stationary flux going through a sample between two prescribed concentrations are studied. (author) 14 refs.; 3 figs

  6. Appropriateness of one-dimensional calculations for repository analysis

    International Nuclear Information System (INIS)

    Eaton, R.R.

    1994-01-01

    This paper brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. It is shown that in many cases, one-dimensional modeling is more rigorous than previously assumed

  7. One-dimensional position readout from microchannel plates

    International Nuclear Information System (INIS)

    Connell, K.A.; Przybylski, M.M.

    1982-01-01

    The development of a one-dimensional position readout system with microchannel plates, is described, for heavy ion detectors for use in a particle time-of-flight telescope and as a position sensitive device in front of an ionisation counter at the Nuclear Structure Facility. (U.K.)

  8. Lekhnitskii's formalism of one-dimensional quasicrystals and its ...

    Indian Academy of Sciences (India)

    To illustrate its utility, the generalized Lekhnitskii's formal- ism is used to analyse the coupled phonon and phason fields in an infinite quasicrystal medium con- taining an elliptic rigid inclusion. Keywords. Generalized Lekhnitskii's formalism; one-dimensional quasicrystals; plane problems; elliptic inclusion. PACS Nos 61.44.

  9. Monte Carlo investigation of the one-dimensional Potts model

    International Nuclear Information System (INIS)

    Karma, A.S.; Nolan, M.J.

    1983-01-01

    Monte Carlo results are presented for a variety of one-dimensional dynamical q-state Potts models. Our calculations confirm the expected universal value z = 2 for the dynamic scaling exponent. Our results also indicate that an increase in q at fixed correlation length drives the dynamics into the scaling regime

  10. State reconstruction of one-dimensional wave packets

    Science.gov (United States)

    Krähmer, D. S.; Leonhardt, U.

    1997-12-01

    We review and analyze the method [U. Leonhardt, M.G. Raymer: Phys. Rev. Lett. 76, 1985 (1996)] for quantum-state reconstruction of one-dimensional non-relativistic wave packets from position observations. We illuminate the theoretical background of the technique and show how to extend the procedure to the continuous part of the spectrum.

  11. One-dimensional autonomous systems and dissipative systems

    International Nuclear Information System (INIS)

    Lopez, G.

    1996-01-01

    The Lagrangian and the Generalized Linear Momentum are given in terms of a constant of motion for a one-dimensional autonomous system. The possibility of having an explicit Hamiltonian expression is also analyzed. The approach is applied to some dissipative systems. Copyright copyright 1996 Academic Press, Inc

  12. Statistics of resonances in one-dimensional continuous systems

    Indian Academy of Sciences (India)

    Vol. 73, No. 3. — journal of. September 2009 physics pp. 565–572. Statistics of resonances in one-dimensional continuous systems. JOSHUA FEINBERG. Physics Department, University of Haifa at Oranim, Tivon 36006, Israel ..... relativistic quantum mechanics (Israel Program for Scientific Translations, Jerusalem,. 1969).

  13. Statistical mechanics of quantum one-dimensional damped harmonic oscillator

    International Nuclear Information System (INIS)

    Borges, E.N.M.; Borges, O.N.; Ribeiro, L.A.A.

    1985-01-01

    We calculate the thermal correlation functions of the one-dimensional damped harmonic oscillator in contact with a reservoir, in an exact form by applying Green's function method. In this way the thermal fluctuations are incorporated in the Caldirola-Kanai Hamiltonian

  14. Anomalous heat conduction in a one-dimensional ideal gas.

    Science.gov (United States)

    Casati, Giulio; Prosen, Tomaz

    2003-01-01

    We provide firm convincing evidence that the energy transport in a one-dimensional gas of elastically colliding free particles of unequal masses is anomalous, i.e., the Fourier law does not hold. Our conclusions are confirmed by a theoretical and numerical analysis based on a Green-Kubo-type approach specialized to momentum-conserving lattices.

  15. Relativistic band gaps in one-dimensional disordered systems

    International Nuclear Information System (INIS)

    Clerk, G.J.; McKellar, B.H.J.

    1992-01-01

    Conditions for the existence of band gaps in a one-dimensional disordered array of δ-function potentials possessing short range order are developed in a relativistic framework. Both Lorentz vector and scalar type potentials are treated. The relationship between the energy gaps and the transmission properties of the array are also discussed. 20 refs., 2 figs

  16. The electromagnetic Brillouin precursor in one-dimensional photonic crystals

    NARCIS (Netherlands)

    Uitham, R.; Hoenders, B. J.

    2008-01-01

    We have calculated the electromagnetic Brillouin precursor that arises in a one-dimensional photonic crystal that consists of two homogeneous slabs which each have a single electron resonance. This forerunner is compared with the Brillouin precursor that arises in a homogeneous double-electron

  17. On the quantisation of one-dimensional bags

    International Nuclear Information System (INIS)

    Fairley, G.T.; Squires, E.J.

    1976-01-01

    The quantisation of one-dimensional MIT bags by expanding the fields as a sum of classical modes and truncating the series after the first term is discussed. The lowest states of a bag in a world containing two scalar quark fields are obtained. Problems associated with the zero-point oscillations of the field are discussed. (Auth.)

  18. The appropriateness of one-dimensional Yucca Mountain hydrologic calculations

    International Nuclear Information System (INIS)

    Eaton, R.R.

    1993-07-01

    This report brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. it is shown that, in many cases, one-dimensional modeling is more rigorous than previously assumed

  19. Analytical approach for collective diffusion: one-dimensional heterogeneous lattice

    Czech Academy of Sciences Publication Activity Database

    Tarasenko, Alexander

    2016-01-01

    Roč. 144, č. 14 (2016), 1-11, č. článku 144105. ISSN 0021-9606 Institutional support: RVO:68378271 Keywords : diffusion * Monte Carlo simulations * one-dimensional heterogeneous lattice Subject RIV: BE - Theoretical Physics Impact factor: 2.965, year: 2016

  20. Approximate Approaches to the One-Dimensional Finite Potential Well

    Science.gov (United States)

    Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.

    2011-01-01

    The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m[subscript i]) is taken to be distinct from mass outside (m[subscript o]). A relevant parameter is the mass…

  1. Inverse design of nanostructured surfaces for color effects

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Johansen, Villads Egede; Friis, Kasper Storgaard

    2014-01-01

    We propose an inverse design methodology for systematic design of nanostructured surfaces for color effects. The methodology is based on a 2D topology optimization formulation based on frequency-domain finite element simulations for E and/or H polarized waves. The goal of the optimization...... is to maximize color intensity in prescribed direction(s) for a prescribed color (RGB) vector. Results indicate that nanostructured surfaces with any desirable color vector can be generated; that complex structures can generate more intense colors than simple layerings; that angle independent colorings can...

  2. Nanostructured thin film coatings with different strengthening effects

    Directory of Open Access Journals (Sweden)

    Panfilov Yury

    2017-01-01

    Full Text Available A number of articles on strengthening thin film coatings were analyzed and a lot of unusual strengthening effects, such as super high hardness and plasticity simultaneously, ultra low friction coefficient, high wear-resistance, curve rigidity increasing of drills with small diameter, associated with process formation of nanostructured coatings by the different thin film deposition methods were detected. Vacuum coater with RF magnetron sputtering system and ion-beam source and arc evaporator for nanostructured thin film coating manufacture are represented. Diamond Like Carbon and MoS2 thin film coatings, Ti, Al, Nb, Cr, nitride, carbide, and carbo-nitride thin film materials are described as strengthening coatings.

  3. Visualizing One-Dimensional Electronic States and their Scattering in Semi-conducting Nanowires

    Science.gov (United States)

    Beidenkopf, Haim; Reiner, Jonathan; Norris, Andrew; Nayak, Abhay Kumar; Avraham, Nurit; Shtrikman, Hadas

    One-dimensional electronic systems constitute a fascinating playground for the emergence of exotic electronic effects and phases, within and beyond the Tomonaga-Luttinger liquid paradigm. More recently topological superconductivity and Majorana modes were added to that long list of phenomena. We report scanning tunneling microscopy and spectroscopy measurements conducted on pristine, epitaxialy grown InAs nanowires. We resolve the 1D electronic band structure manifested both via Van-Hove singularities in the local density-of-states, as well as by the quasi-particle interference patterns, induced by scattering from surface impurities. By studying the scattering of the one-dimensional electronic states off various scatterers, including crystallographic defects and the nanowire end, we identify new one-dimensional relaxation regimes and yet unexplored effects of interactions. Some of these may bear implications on the topological superconducting state and Majorana modes therein. The authors acknowledge support from the Israeli Science Foundation (ISF).

  4. Quasi-One-Dimensional Intermittent Flux Behavior in Superconducting Films

    Directory of Open Access Journals (Sweden)

    A. J. Qviller

    2012-01-01

    Full Text Available Intermittent filamentary dynamics of the vortex matter in superconductors is found in films of YBa_{2}Cu_{3}O_{7-δ} deposited on tilted substrates. Deposition of this material on such substrates creates parallel channels of easy flux penetration when a magnetic field is applied perpendicular to the film. As the applied field is gradually increased, magneto-optical imaging reveals that flux penetrates via numerous quasi-one-dimensional jumps. The distribution of flux avalanche sizes follows a power law, and data collapse is obtained by finite-size scaling, with the depth of the flux front used as crossover length. The intermittent behavior shows no threshold value in the applied field, in contrast to conventional flux jumping. The results strongly suggest that the quasi-one-dimensional flux jumps are of a different nature than the thermomagnetic dendritic (branching avalanches that are commonly found in superconducting films.

  5. Versatile hydrothermal synthesis of one-dimensional composite structures

    Science.gov (United States)

    Luo, Yonglan

    2008-12-01

    In this paper we report on a versatile hydrothermal approach developed to fabricate one-dimensional (1D) composite structures. Sulfur and selenium formed liquid and adsorbed onto microrods as droplets and subsequently reacted with metallic ion in solution to produce nanoparticles-decorated composite microrods. 1D composites including ZnO/CdS, ZnO/MnS, ZnO/CuS, ZnO/CdSe, and FeOOH/CdS were successfully made using this hydrothermal strategy and the growth mechanism was also discussed. This hydrothermal strategy is simple and green, and can be extended to the synthesis of various 1D composite structures. Moreover, the interaction between the shell nanoparticles and the one-dimensional nanomaterials were confirmed by photoluminescence investigation of ZnO/CdS.

  6. Solitons in one-dimensional charge density wave systems

    International Nuclear Information System (INIS)

    Su, W.P.

    1981-01-01

    Theoretical research on one dimensional charge density wave systems is outlined. A simple coupled electron-photon Hamiltonian is studied including a Green's function approach, molecular dynamics, and Monte Carlo path integral method. As in superconductivity, the nonperturbative nature of the system makes the physical ground states and low energy excitations drastically different from the bare electrons and phonons. Solitons carry quantum numbers which are entirely different from those of the bare electrons and holes. The fractional charge character of the solitons is an example of this fact. Solitons are conveniently generated by doping material with donors or acceptors or by photon absorption. Most predictions of the theory are in qualitative agreement with experiments. The one dimensional charge density wave system has potential technological importance and a possible role in uncovering phenomena which might have implications in relativistic field theory and elementary particle physics

  7. Applications of one-dimensional models in simplified inelastic analyses

    International Nuclear Information System (INIS)

    Kamal, S.A.; Chern, J.M.; Pai, D.H.

    1980-01-01

    This paper presents an approximate inelastic analysis based on geometric simplification with emphasis on its applicability, modeling, and the method of defining the loading conditions. Two problems are investigated: a one-dimensional axisymmetric model of generalized plane strain thick-walled cylinder is applied to the primary sodium inlet nozzle of the Clinch River Breeder Reactor Intermediate Heat Exchanger (CRBRP-IHX), and a finite cylindrical shell is used to simulate the branch shell forging (Y) junction. The results are then compared with the available detailed inelastic analyses under cyclic loading conditions in terms of creep and fatigue damages and inelastic ratchetting strains per the ASME Code Case N-47 requirements. In both problems, the one-dimensional simulation is able to trace the detailed stress-strain response. The quantitative comparison is good for the nozzle, but less satisfactory for the Y junction. Refinements are suggested to further improve the simulation

  8. Thermal conductivity in one-dimensional nonlinear systems

    Science.gov (United States)

    Politi, Antonio; Giardinà, Cristian; Livi, Roberto; Vassalli, Massimo

    2000-03-01

    Thermal conducitivity of one-dimensional nonlinear systems typically diverges in the thermodynamic limit, whenever the momentum is conserved (i.e. in the absence of interactions with an external substrate). Evidence comes from detailed studies of Fermi-Pasta-Ulam and diatomic Toda chains. Here, we discuss the first example of a one-dimensional system obeying Fourier law : a chain of coupled rotators. Numerical estimates of the thermal conductivity obtained by simulating a chain in contact with two thermal baths at different temperatures are found to be consistent with those ones based on linear response theory. The dynamics of the Fourier modes provides direct evidence of energy diffusion. The finiteness of the conductivity is traced back to the occurrence of phase-jumps. Our conclusions are confirmed by the analysis of two variants of the rotator model.

  9. Thermoelectric properties of one-dimensional graphene antidot arrays

    International Nuclear Information System (INIS)

    Yan, Yonghong; Liang, Qi-Feng; Zhao, Hui; Wu, Chang-Qin; Li, Baowen

    2012-01-01

    We investigate the thermoelectric properties of one-dimensional (1D) graphene antidot arrays by nonequilibrium Green's function method. We show that by introducing antidots to the pristine graphene nanoribbon the thermal conductance can be reduced greatly while keeping the power factor still high, thus leading to an enhanced thermoelectric figure of merit (ZT). Our numerical results indicate that ZT values of 1D antidot graphene arrays can be up to unity, which means the 1D graphene antidot arrays may be promising for thermoelectric applications. -- Highlights: ► We study thermoelectric properties of one-dimensional (1D) graphene antidot arrays. ► Thermoelectric figure of merit (ZT) of 1D antidot arrays can exceed unity. ► ZT of 1D antidot arrays is larger than that of two-dimensional arrays.

  10. Scattering theory for one-dimensional step potentials

    International Nuclear Information System (INIS)

    Ruijsenaars, S.N.M.; Bongaarts, P.J.M.

    1977-01-01

    The scattering theory is treated for the one-dimensional Dirac equation with potentials that are bounded, measurable, real-valued functions on the real line, having constant values, not necessarily the same, on the left and on the right side of a compact interval. Such potentials appear in the Klein paradox. It is shown that appropriately modified wave operators exist and that the corresponding S-operator is unitary. The connection between time-dependent scattering theory and time-independent scattering theory in terms of incoming and outgoing plane wave solutions is established and some further properties are proved. All results and their proofs have a straightforward translation to the one-dimensional Schroedinger equation with the same class of step potentials

  11. Resonance Raman spectroscopy in one-dimensional carbon materials

    Directory of Open Access Journals (Sweden)

    Dresselhaus Mildred S.

    2006-01-01

    Full Text Available Brazil has played an important role in the development and use of resonance Raman spectroscopy as a powerful characterization tool for materials science. Here we present a short history of Raman scattering research in Brazil, highlighting the important contributions to the field coming from Brazilian researchers in the past. Next we discuss recent and important contributions where Brazil has become a worldwide leader, that is on the physics of quasi-one dimensional carbon nanotubes. We conclude this article by presenting results from a very recent resonance Raman study of exciting new materials, that are strictly one-dimensional carbon chains formed by the heat treatment of very pure double-wall carbon nanotube samples.

  12. Impurity modes in the one-dimensional XXZ Heisenberg model

    International Nuclear Information System (INIS)

    Sousa, J.M.; Leite, R.V.; Landim, R.R.; Costa Filho, R.N.

    2014-01-01

    A Green's function formalism is used to calculate the energy of impurity modes associated with one and/or two magnetic impurities in the one-dimensional Heisenberg XXZ magnetic chain. The system can be tuned from the Heisenberg to the Ising model varying a parameter λ. A numerical study is performed showing two types of localized modes (s and p). The modes depend on λ and the degeneracy of the acoustic modes is broken.

  13. Nonlinear acoustic wave propagating in one-dimensional layered system

    International Nuclear Information System (INIS)

    Yun, Y.; Miao, G.Q.; Zhang, P.; Huang, K.; Wei, R.J.

    2005-01-01

    The propagation of finite-amplitude plane sound in one-dimensional layered media is studied by the extended method of transfer matrix formalism. For the periodic layered system consisting of two alternate types of liquid, the energy distribution and the phase vectors of the interface vibration are computed and analyzed. It is found that in the pass-band, the second harmonic of sound wave can propagate with the characteristic modulation

  14. The analysis of one-dimensional reactor kinetics benchmark computations

    International Nuclear Information System (INIS)

    Sidell, J.

    1975-11-01

    During March 1973 the European American Committee on Reactor Physics proposed a series of simple one-dimensional reactor kinetics problems, with the intention of comparing the relative efficiencies of the numerical methods employed in various codes, which are currently in use in many national laboratories. This report reviews the contributions submitted to this benchmark exercise and attempts to assess the relative merits and drawbacks of the various theoretical and computer methods. (author)

  15. Energy in one-dimensional linear waves in a string

    International Nuclear Information System (INIS)

    Burko, Lior M

    2010-01-01

    We consider the energy density and energy transfer in small amplitude, one-dimensional waves on a string and find that the common expressions used in textbooks for the introductory physics with calculus course give wrong results for some cases, including standing waves. We discuss the origin of the problem, and how it can be corrected in a way appropriate for the introductory calculus-based physics course. (letters and comments)

  16. Quasi-one-dimensional intermittent flux behavior in superconducting films

    OpenAIRE

    Qviller, A. J.; Yurchenko, V. V.; Galperin, Y. M.; Vestgården, J. I.; Mozhaev, Peter; Hansen, Jørn Bindslev; Johansen, T. H.

    2012-01-01

    Intermittent filamentary dynamics of the vortex matter in superconductors is found in films of YBa_{2}Cu_{3}O_{7-δ} deposited on tilted substrates. Deposition of this material on such substrates creates parallel channels of easy flux penetration when a magnetic field is applied perpendicular to the film. As the applied field is gradually increased, magneto-optical imaging reveals that flux penetrates via numerous quasi-one-dimensional jumps. The distribution of flux avalanche sizes follows a ...

  17. Variational iteration method for one dimensional nonlinear thermoelasticity

    International Nuclear Information System (INIS)

    Sweilam, N.H.; Khader, M.M.

    2007-01-01

    This paper applies the variational iteration method to solve the Cauchy problem arising in one dimensional nonlinear thermoelasticity. The advantage of this method is to overcome the difficulty of calculation of Adomian's polynomials in the Adomian's decomposition method. The numerical results of this method are compared with the exact solution of an artificial model to show the efficiency of the method. The approximate solutions show that the variational iteration method is a powerful mathematical tool for solving nonlinear problems

  18. Localization in a one-dimensional spatially correlated random potential

    International Nuclear Information System (INIS)

    Kasner, M.; Weller, W.

    1986-01-01

    The motion of an electron in a random one-dimensional spatially correlated potential is investigated. The spatial correlation is generated by a Markov chain. It is shown that the influence of the spatial correlation can be described by means of oscillating vertices usually neglected in the Berezinskii diagram technique. Correlation mainly leads to an increase of the localization length in comparison with an uncorrelated potential. However, there is a region of the parameter, where the localization decreases. (author)

  19. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    OpenAIRE

    Nikola Stefanović

    2007-01-01

    In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic ...

  20. Correlation functions of one-dimensional bosons at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maillet, J.M. [CNRS, ENS Lyon (France). Lab. de Physique; Slavnov, N.A. [Steklov Mathematical Institute, Moscow (Russian Federation)

    2010-12-15

    We consider the low-temperature limit of the long-distance asymptotic behavior of the finite temperature density-density correlation function in the one-dimensional Bose gas derived recently in the algebraic Bethe Ansatz framework. Our results confirm the predictions based on the Luttinger liquid and conformal field theory approaches. We also demonstrate that the amplitudes arising in this asymptotic expansion at low-temperature coincide with the amplitudes associated with the so-called critical form factors. (orig.)

  1. Graphene-based one-dimensional photonic crystal

    OpenAIRE

    Berman, Oleg L.; Kezerashvili, Roman Ya.

    2011-01-01

    A novel type of one-dimensional (1D) photonic crystal formed by the array of periodically located stacks of alternating graphene and dielectric stripes embedded into a background dielectric medium is proposed. The wave equation for the electromagnetic wave propagating in such structure solved in the framework of the Kronig-Penney model. The frequency band structure of 1D graphene-based photonic crystal is obtained analytically as a function of the filling factor and the thickness of the diele...

  2. Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals

    OpenAIRE

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-01-01

    Background Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity de...

  3. Majorana fermion exchange in strictly one dimensional structures

    OpenAIRE

    Chiu, Ching-Kai; Vazifeh, M. M.; Franz, M.

    2014-01-01

    It is generally thought that adiabatic exchange of two identical particles is impossible in one spatial dimension. Here we describe a simple protocol that permits adiabatic exchange of two Majorana fermions in a one-dimensional topological superconductor wire. The exchange relies on the concept of "Majorana shuttle" whereby a $\\pi$ domain wall in the superconducting order parameter which hosts a pair of ancillary Majoranas delivers one zero mode across the wire while the other one tunnels in ...

  4. On a class of one-dimensional random walks

    NARCIS (Netherlands)

    O.J. Boxma (Onno); V.I. Lotov

    1995-01-01

    textabstractnoindent This paper studies a one-dimensional Markov chain ${X_n,n=0,1,dots$ that satisfies the recurrence relation $X_n = max(0, X_{n-1 + eta_n^{(m) )$ if $X_{n-1 =m leq a$; for $X_{n-1 > a$ it satisfies the same relation with $eta_n^{(m)$ replaced by $xi_n$. Here ${ eta_n^{(m) $ and ${

  5. Theory of the one-dimensional forest-fire model

    International Nuclear Information System (INIS)

    Paczuski, M.; Bak, P.

    1993-01-01

    Turbulent cascade processes are studied in terms of a one-dimensional forest-fire model. A hier- archy of steady-state equations for the forests and the holes between them is constructed and solved within a mean-field closure scheme. The exact hole distribution function is found to be N H (s)=4N/[s(s+1)(s+2)], where N is the number of forests

  6. Quantum logic using correlated one-dimensional quantum walks

    Science.gov (United States)

    Lahini, Yoav; Steinbrecher, Gregory R.; Bookatz, Adam D.; Englund, Dirk

    2018-01-01

    Quantum Walks are unitary processes describing the evolution of an initially localized wavefunction on a lattice potential. The complexity of the dynamics increases significantly when several indistinguishable quantum walkers propagate on the same lattice simultaneously, as these develop non-trivial spatial correlations that depend on the particle's quantum statistics, mutual interactions, initial positions, and the lattice potential. We show that even in the simplest case of a quantum walk on a one dimensional graph, these correlations can be shaped to yield a complete set of compact quantum logic operations. We provide detailed recipes for implementing quantum logic on one-dimensional quantum walks in two general cases. For non-interacting bosons—such as photons in waveguide lattices—we find high-fidelity probabilistic quantum gates that could be integrated into linear optics quantum computation schemes. For interacting quantum-walkers on a one-dimensional lattice—a situation that has recently been demonstrated using ultra-cold atoms—we find deterministic logic operations that are universal for quantum information processing. The suggested implementation requires minimal resources and a level of control that is within reach using recently demonstrated techniques. Further work is required to address error-correction.

  7. Quasi-one-dimensional metals on semiconductor surfaces with defects

    International Nuclear Information System (INIS)

    Hasegawa, Shuji

    2010-01-01

    Several examples are known in which massive arrays of metal atomic chains are formed on semiconductor surfaces that show quasi-one-dimensional metallic electronic structures. In this review, Au chains on Si(557) and Si(553) surfaces, and In chains on Si(111) surfaces, are introduced and discussed with regard to the physical properties determined by experimental data from scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES) and electrical conductivity measurements. They show quasi-one-dimensional Fermi surfaces and parabolic band dispersion along the chains. All of them are known from STM and ARPES to exhibit metal-insulator transitions by cooling and charge-density-wave formation due to Peierls instability of the metallic chains. The electrical conductivity, however, reveals the metal-insulator transition only on the less-defective surfaces (Si(553)-Au and Si(111)-In), but not on a more-defective surface (Si(557)-Au). The latter shows an insulating character over the whole temperature range. Compared with the electronic structure (Fermi surfaces and band dispersions), the transport property is more sensitive to the defects. With an increase in defect density, the conductivity only along the metal atomic chains was significantly reduced, showing that atomic-scale point defects decisively interrupt the electrical transport along the atomic chains and hide the intrinsic property of transport in quasi-one-dimensional systems.

  8. Gravitational anomalies and one-dimensional behavior of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Bibhas Ranjan [Indian Institute of Technology Guwahati, Department of Physics, Guwahati, Assam (India)

    2015-12-15

    It has been pointed out by Bekenstein and Mayo that the behavior of the black hole's entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S on the power is S ∝ P{sup 1/2}, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry's formula, while in the latter situation its value decreases. (orig.)

  9. One-dimensional crystal with a complex periodic potential

    International Nuclear Information System (INIS)

    Boyd, John K.

    2001-01-01

    A one-dimensional crystal model is constructed with a complex periodic potential. A wave function solution for the crystal model is derived without relying on Bloch functions. The new wave function solution of this model is shown to correspond to the solution for the probability amplitude of a two-level system. The energy discriminant is evaluated using an analytic formula derived from the probability amplitude solution, and based on an expansion parameter related to the energy and potential amplitude. From the wave function energy discriminant the crystal band structure is derived and related to standard energy bands and gaps. It is also shown that several of the properties of the two-level system apply to the one-dimensional crystal model. The two-level system solution which evolves in time is shown to manifest as a spatial configuration of the one-dimensional crystal model. The sensitivity of the wave function probability density is interpreted in the context of the new solution. The spatial configuration of the wave function, and the appearance of a long wavelength in the wave function probability density is explained in terms of the properties of Bessel functions

  10. Metal-insulator transition in one-dimensional lattices with chaotic energy sequences

    International Nuclear Information System (INIS)

    Pinto, R.A.; Rodriguez, M.; Gonzalez, J.A.; Medina, E.

    2005-01-01

    We study electronic transport through a one-dimensional array of sites by using a tight binding Hamiltonian, whose site-energies are drawn from a chaotic sequence. The correlation degree between these energies is controlled by a parameter regulating the dynamic Lyapunov exponent measuring the degree of chaos. We observe the effect of chaotic sequences on the localization length, conductance, conductance distribution and wave function, finding evidence of a metal-insulator transition (MIT) at a critical degree of chaos. The one-dimensional metallic phase is characterized by a Gaussian conductance distribution and exhibits a peculiar non-selfaveraging

  11. Metal-insulator transition in one-dimensional lattices with chaotic energy sequences

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, R.A. [Laboratorio de Fisica Estadistica, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A (Venezuela)]. E-mail: ripinto@ivic.ve; Rodriguez, M. [Laboratorio de Fisica Estadistica, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A (Venezuela); Gonzalez, J.A. [Laboratorio de Fisica Computacional, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A (Venezuela); Medina, E. [Laboratorio de Fisica Estadistica, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A (Venezuela)

    2005-06-20

    We study electronic transport through a one-dimensional array of sites by using a tight binding Hamiltonian, whose site-energies are drawn from a chaotic sequence. The correlation degree between these energies is controlled by a parameter regulating the dynamic Lyapunov exponent measuring the degree of chaos. We observe the effect of chaotic sequences on the localization length, conductance, conductance distribution and wave function, finding evidence of a metal-insulator transition (MIT) at a critical degree of chaos. The one-dimensional metallic phase is characterized by a Gaussian conductance distribution and exhibits a peculiar non-selfaveraging.

  12. Accurate correlation energies in one-dimensional systems from small system-adapted basis functions

    Science.gov (United States)

    Baker, Thomas E.; Burke, Kieron; White, Steven R.

    2018-02-01

    We propose a general method for constructing system-dependent basis functions for correlated quantum calculations. Our construction combines features from several traditional approaches: plane waves, localized basis functions, and wavelets. In a one-dimensional mimic of Coulomb systems, it requires only 2-3 basis functions per electron to achieve high accuracy, and reproduces the natural orbitals. We illustrate its effectiveness for molecular energy curves and chains of many one-dimensional atoms. We discuss the promise and challenges for realistic quantum chemical calculations.

  13. Well-posedness for one-dimensional anisotropic Cahn-Hilliard and Allen-Cahn systems

    Directory of Open Access Journals (Sweden)

    Ahmad Makki

    2015-01-01

    Full Text Available Our aim is to prove the existence and uniqueness of solutions for one-dimensional Cahn-Hilliard and Allen-Cahn type equations based on a modification of the Ginzburg-Landau free energy proposed in [8]. In particular, the free energy contains an additional term called Willmore regularization and takes into account strong anisotropy effects.

  14. Peierls instability and superconductivity in substitutionally disordered pseudo one-dimensional conductors

    International Nuclear Information System (INIS)

    Zhang, L.

    1981-08-01

    With coherent potential approximation method the effect of the substitutional disorder in the pseudo one-dimensional conductors on the Peierls transition temperature (Tsub(p)) and superconductive transition temperature (Tsub(c)) has been calculated. The favourable condition for searching for somewhat high Tsub(c) superconductors in these systems has been discussed. (author)

  15. Quasi-one-dimensional density of states in a single quantum ring.

    Science.gov (United States)

    Kim, Heedae; Lee, Woojin; Park, Seongho; Kyhm, Kwangseuk; Je, Koochul; Taylor, Robert A; Nogues, Gilles; Dang, Le Si; Song, Jin Dong

    2017-01-05

    Generally confinement size is considered to determine the dimensionality of nanostructures. While the exciton Bohr radius is used as a criterion to define either weak or strong confinement in optical experiments, the binding energy of confined excitons is difficult to measure experimentally. One alternative is to use the temperature dependence of the radiative recombination time, which has been employed previously in quantum wells and quantum wires. A one-dimensional loop structure is often assumed to model quantum rings, but this approximation ceases to be valid when the rim width becomes comparable to the ring radius. We have evaluated the density of states in a single quantum ring by measuring the temperature dependence of the radiative recombination of excitons, where the photoluminescence decay time as a function of temperature was calibrated by using the low temperature integrated intensity and linewidth. We conclude that the quasi-continuous finely-spaced levels arising from the rotation energy give rise to a quasi-one-dimensional density of states, as long as the confined exciton is allowed to rotate around the opening of the anisotropic ring structure, which has a finite rim width.

  16. Integrability of the one dimensional Schrödinger equation

    Science.gov (United States)

    Combot, Thierry

    2018-02-01

    We present a definition of integrability for the one-dimensional Schrödinger equation, which encompasses all known integrable systems, i.e., systems for which the spectrum can be explicitly computed. For this, we introduce the class of rigid functions, built as Liouvillian functions, but containing all solutions of rigid differential operators in the sense of Katz, and a notion of natural of boundary conditions. We then make a complete classification of rational integrable potentials. Many new integrable cases are found, some of them physically interesting.

  17. Inversion of reflection for the one-dimensional Dirac equation

    International Nuclear Information System (INIS)

    Clerk, G.L.; Davies, A.J.

    1991-01-01

    It is a general result of one-dimensional non-relativistic quantum mechanics that the coefficient of reflection (reflected flux) is the same irrespective of the direction of traversing a potential barrier, a result that is independent of the barrier shape. In this note, the authors consider the transmission coefficient instead, and derive a strong result, namely that the transmission amplitude is independent of the direction of barrier traversal. That is, the transmission amplitude has the same complex phase as well as being unchanged in magnitude by changing the barrier around. This process was called inversion of reflection. 2 refs

  18. Two-dimensional beam profiles and one-dimensional projections

    Science.gov (United States)

    Findlay, D. J. S.; Jones, B.; Adams, D. J.

    2018-05-01

    One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.

  19. Optical Tamm states in one-dimensional magnetophotonic structures.

    Science.gov (United States)

    Goto, T; Dorofeenko, A V; Merzlikin, A M; Baryshev, A V; Vinogradov, A P; Inoue, M; Lisyansky, A A; Granovsky, A B

    2008-09-12

    We demonstrate the existence of a spectrally narrow localized surface state, the so-called optical Tamm state, at the interface between one-dimensional magnetophotonic and nonmagnetic photonic crystals. The state is spectrally located inside the photonic band gaps of each of the photonic crystals comprising this magnetophotonic structure. This state is associated with a sharp transmission peak through the sample and is responsible for the substantial enhancement of the Faraday rotation for the corresponding wavelength. The experimental results are in excellent agreement with the theoretical predictions.

  20. Exactly integrable analogue of a one-dimensional gravitating system

    International Nuclear Information System (INIS)

    Miller, Bruce N.; Yawn, Kenneth R.; Maier, Bill

    2005-01-01

    Exchange symmetry in acceleration partitions the configuration space of an N particle one-dimensional gravitational system (OGS) into N! equivalent cells. We take advantage of the resulting small angular separation between the forces in neighboring cells to construct a related integrable version of the system that takes the form of a central force problem in N-1 dimensions. The properties of the latter, including the construction of trajectories and possible continuum limits, are developed. Dynamical simulation is employed to compare the two models. For some initial conditions, excellent agreement is observed

  1. Acoustic and electronic properties of one-dimensional quasicrystals

    International Nuclear Information System (INIS)

    Nori, F.; Rodriguez, J.P.

    1986-01-01

    We study the acoustic and electronic properties of one-dimensional quasicrystals. Both numerical (nonperturbative) and analytical (perturbative) results are shown. The phonon and electronic spectra exhibit a self-similar hierarchy of gaps and many localized states in the gaps. We study quasiperiodic structures with any number of layers and several types of boundary conditions. We discuss the connection between our phonon model and recent experiments on quasiperiodic GaAs-AlAs superlattices. We predict the existence of many gap states localized at the surfaces

  2. Hidden symmetries in one-dimensional quantum Hamiltonians

    International Nuclear Information System (INIS)

    Curado, E.M.F.; Rego-Monteiro, M.A.; Nazareno, H.N.

    2000-11-01

    We construct a Heisenberg-like algebra for the one dimensional infinite square-well potential in quantum mechanics. The number-type and ladder operators are realized in terms of physical operators of the system as in the harmonic oscillator algebra. These physical operators are obtained with the help of variables used in a recently developed non commutative differential calculus. This square-well algebra is an example of an algebra in large class of generalized Heisenberg algebras recently constructed. This class of algebras also contains q-oscillators as a particular case. We also show here how this general algebra can address hidden symmetries present in several quantum systems. (author)

  3. Chemical potential of one-dimensional simple harmonic oscillators

    International Nuclear Information System (INIS)

    Mungan, Carl E

    2009-01-01

    Expressions for the chemical potential of an Einstein solid, and of ideal Fermi and Bose gases in an external one-dimensional oscillatory trap, are calculated by two different methods and are all found to share the same functional form. These derivations are easier than traditional textbook calculations for an ideal gas in an infinite three-dimensional square well. Furthermore, the results indicate some important features of chemical potential that could promote student learning in an introductory course in statistical mechanics at the undergraduate level.

  4. Peierls' instability in a one-dimensional potentially metallic solid

    International Nuclear Information System (INIS)

    Valladares, A.A.; Cetina, E.A.; Sansores, L.E.

    1980-01-01

    The Peierls instability of one-dimensional potentially metallic lithium solid is investigated in the Hueckel and SCF approximations. In the Hueckel approximation Esub(F) is a monotonic increasing function of the displacement of every other atom of the lattice, whereas in the SCF approximation, where the filling of the bands is considered, Esub(F) shows the minimum predicted by Peierls. The energy gap (for the arrangement that minimizes Esub(F)) is 4.5 eV, indicating that this solid is an insulator. (author)

  5. One-dimensional radionuclide transport under time-varying conditions

    International Nuclear Information System (INIS)

    Gelbard, F.; Olague, N.E.; Longsine, D.E.

    1990-01-01

    This paper discusses new analytical and numerical solutions presented for one-dimensional radionuclide transport under time-varying fluid-flow conditions including radioactive decay. The analytical solution assumes that all radionuclides have identical retardation factors, and is limited to instantaneous releases. The numerical solution does not have these limitations, but is tested against the limiting case given for the analytical solution. Reasonable agreement between the two solutions was found. Examples are given for the transport of a three-member radionuclide chain transported over distances and flow rates comparable to those reported for Yucca Mountain, the proposed disposal site for high-level nuclear waste

  6. The quantum flux in quasis one-dimensional conductors

    International Nuclear Information System (INIS)

    Ventura, J.

    1989-01-01

    A method is presented which quantizes electromagnetic fluxes directly in flux space. It is based on the commutation law [φ B , φ E ] = i, where φ B is the magnetic flux, and φ E the longitudinal electric flux of a quasi one-dimensional conductor. The relevance of such a method for the description of the quantized Hall plateaus is discussed. In a second step, the polarization electric flux is introduced, together with a method for quantization of hybrid variables formed with pure electromagnetic fluxes plus electronic variables. (author) [pt

  7. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  8. Generalized entropy decay rates of one-dimensional maps

    International Nuclear Information System (INIS)

    Csordas, A.; Szepfalusy, P.

    1988-01-01

    A series of entropies, approaching the order-q Renyi's entropies when the length of orbits tends to infinity, is considered. Their scaling form is determined for chaotic one-dimensional maps. For the characteristic relaxation time a general expression is derived, and it is shown to be closely related to the eigenvalues of a generalized Frobenius-Perron operator. The case of intermittent maps is also considered, and the spectrum of relaxation time is found to reflect the phase transition at q = 1. Results of numerical experiments are also presented

  9. Entanglement entropy and complexity for one-dimensional holographic superconductors

    Science.gov (United States)

    Kord Zangeneh, Mahdi; Ong, Yen Chin; Wang, Bin

    2017-08-01

    Holographic superconductor is an important arena for holography, as it allows concrete calculations to further understand the dictionary between bulk physics and boundary physics. An important quantity of recent interest is the holographic complexity. Conflicting claims had been made in the literature concerning the behavior of holographic complexity during phase transition. We clarify this issue by performing a numerical study on one-dimensional holographic superconductor. Our investigation shows that holographic complexity does not behave in the same way as holographic entanglement entropy. Nevertheless, the universal terms of both quantities are finite and reflect the phase transition at the same critical temperature.

  10. Fragmented one dimensional man / El hombre unidimensional fragmentado

    Directory of Open Access Journals (Sweden)

    Juan Antonio Rodríguez del Pino

    2013-10-01

    Full Text Available Paraphrase the title of the famous essay by Herbert Marcuse, since the image has traditionally been generated of man, masculinity, has been one-dimensional. I mean, the man was characterized by traits and behaviors established and entrenched since ancient time, considering all other distinguishing signs as mere deviations from the normative improper. But observe that this undeniable reality, as analyzed various researchers through what has come to be called Men's studies, has proven to be a fallacy difficult to maintain throughout history and today turns into fallacious and ineffective against changes in our current existing corporate models.

  11. One-dimensional neutron imager for the Sandia Z facility.

    Science.gov (United States)

    Fittinghoff, David N; Bower, Dan E; Hollaway, James R; Jacoby, Barry A; Weiss, Paul B; Buckles, Robert A; Sammons, Timothy J; McPherson, Leroy A; Ruiz, Carlos L; Chandler, Gordon A; Torres, José A; Leeper, Ramon J; Cooper, Gary W; Nelson, Alan J

    2008-10-01

    A multiinstitution collaboration is developing a neutron imaging system for the Sandia Z facility. The initial system design is for slit aperture imaging system capable of obtaining a one-dimensional image of a 2.45 MeV source producing 5x10(12) neutrons with a resolution of 320 microm along the axial dimension of the plasma, but the design being developed can be modified for two-dimensional imaging and imaging of DT neutrons with other resolutions. This system will allow us to understand the spatial production of neutrons in the plasmas produced at the Z facility.

  12. Ordering phase transition in the one-dimensional Axelrod model

    Science.gov (United States)

    Vilone, D.; Vespignani, A.; Castellano, C.

    2002-12-01

    We study the one-dimensional behavior of a cellular automaton aimed at the description of the formation and evolution of cultural domains. The model exhibits a non-equilibrium transition between a phase with all the system sharing the same culture and a disordered phase of coexisting regions with different cultural features. Depending on the initial distribution of the disorder the transition occurs at different values of the model parameters. This phenomenology is qualitatively captured by a mean-field approach, which maps the dynamics into a multi-species reaction-diffusion problem.

  13. One-dimensional inverse problems of mathematical physics

    CERN Document Server

    Lavrent'ev, M M; Yakhno, V G; Schulenberger, J R

    1986-01-01

    This monograph deals with the inverse problems of determining a variable coefficient and right side for hyperbolic and parabolic equations on the basis of known solutions at fixed points of space for all times. The problems are one-dimensional in nature since the desired coefficient of the equation is a function of only one coordinate, while the desired right side is a function only of time. The authors use methods based on the spectral theory of ordinary differential operators of second order and also methods which make it possible to reduce the investigation of the inverse problems to the in

  14. One-dimensional energy flow model for poroelastic material

    International Nuclear Information System (INIS)

    Kim, Jung Soo; Kang, Yeon June

    2009-01-01

    This paper presents a one-dimensional energy flow model to investigate the energy behavior for poroelastic media coupled with acoustical media. The proposed energy flow model is expressed by an independent energy governing equation that is classified into each wave component propagating in poroelastic media. The energy governing equation is derived using the General Energetic Method (GEM). To facilitate a comparison with the classical solution based on the conventional displacement-base formulation, approximate solutions of energy density and intensity are obtained. Furthermore, the limitations and usability of the proposed energy flow model for poroelastic media are described.

  15. Stopping time of a one-dimensional bounded quantum walk

    International Nuclear Information System (INIS)

    Luo Hao; Zhang Peng; Zhan Xiang; Xue Peng

    2016-01-01

    The stopping time of a one-dimensional bounded classical random walk (RW) is defined as the number of steps taken by a random walker to arrive at a fixed boundary for the first time. A quantum walk (QW) is a non-trivial generalization of RW, and has attracted a great deal of interest from researchers working in quantum physics and quantum information. In this paper, we develop a method to calculate the stopping time for a one-dimensional QW. Using our method, we further compare the properties of stopping time for QW and RW. We find that the mean value of the stopping time is the same for both of these problems. However, for short times, the probability for a walker performing a QW to arrive at the boundary is larger than that for a RW. This means that, although the mean stopping time of a quantum and classical walker are the same, the quantum walker has a greater probability of arriving at the boundary earlier than the classical walker. (paper)

  16. One-Dimensional Forward–Forward Mean-Field Games

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Diogo A., E-mail: diogo.gomes@kaust.edu.sa; Nurbekyan, Levon; Sedjro, Marc [King Abdullah University of Science and Technology (KAUST), CEMSE Division (Saudi Arabia)

    2016-12-15

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  17. One-Dimensional Forward–Forward Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.; Nurbekyan, Levon; Sedjro, Marc

    2016-01-01

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  18. One-Dimensional Forward–Forward Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.

    2016-11-01

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  19. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors.

    Science.gov (United States)

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-07-07

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.

  20. Non-equilibrium dynamics of one-dimensional Bose gases

    International Nuclear Information System (INIS)

    Langen, T.

    2013-01-01

    Understanding the non-equilibrium dynamics of isolated quantum many-body systems is an open problem on vastly different energy, length, and time scales. Examples range from the dynamics of the early universe and heavy-ion collisions to the subtle coherence and transport properties in condensed matter physics. However, realizations of such quantum many-body systems, which are both well isolated from the environment and accessible to experimental study are scarce. This thesis presents a series of experiments with ultracold one-dimensional Bose gases. These gases combine a nearly perfect isolation from the environment with many well-established methods to manipulate and probe their quantum states. This makes them an ideal model system to explore the physics of quantum many body systems out of equilibrium. In the experiments, a well-defined non-equilibrium state is created by splitting a single one-dimensional gas coherently into two parts. The relaxation of this state is probed using matter-wave interferometry. The Observations reveal the emergence of a prethermalized steady state which differs strongly from thermal equilibrium. Such thermal-like states had previously been predicted for a large variety of systems, but never been observed directly. Studying the relaxation process in further detail shows that the thermal correlations of the prethermalized state emerge locally in their final form and propagate through the system in a light-cone-like evolution. This provides first experimental evidence for the local relaxation conjecture, which links relaxation processes in quantum many-body systems to the propagation of correlations. Furthermore, engineering the initial state of the evolution demonstrates that the prethermalized state is described by a generalized Gibbs ensemble, an observation which substantiates the importance of this ensemble as an extension of standard statistical mechanics. Finally, an experiment is presented, where pairs of gases with an atom

  1. The effect of temperature on one-dimensional nanometallic photonic ...

    Indian Academy of Sciences (India)

    ... 2016; revised 26 October 2016; accepted 16 December 2016; published online 7 April 2017 ... complex refractive index of silver is dependent on temperature and wavelength. ..... crystals: Physics and technology (Springer, Italia, 2008) p. 7.

  2. Nanostructured magnesium has fewer detrimental effects on osteoblast function

    Directory of Open Access Journals (Sweden)

    Weng L

    2013-05-01

    Full Text Available Lucy Weng, Thomas J Webster School of Engineering and Department of Orthopedics, Brown University, Providence, RI, USA Abstract: Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells. Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications. Keywords: nanostructured magnesium, degradation, detrimental effects, osteoblasts

  3. Testing of a one dimensional model for Field II calibration

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2008-01-01

    Field II is a program for simulating ultrasound transducer fields. It is capable of calculating the emitted and pulse-echoed fields for both pulsed and continuous wave transducers. To make it fully calibrated a model of the transducer’s electro-mechanical impulse response must be included. We...... examine an adapted one dimensional transducer model originally proposed by Willatzen [9] to calibrate Field II. This model is modified to calculate the required impulse responses needed by Field II for a calibrated field pressure and external circuit current calculation. The testing has been performed...... to the calibrated Field II program for 1, 4, and 10 cycle excitations. Two parameter sets were applied for modeling, one real valued Pz27 parameter set, manufacturer supplied, and one complex valued parameter set found in literature, Alguer´o et al. [11]. The latter implicitly accounts for attenuation. Results show...

  4. Lateral shifting in one dimensional chiral photonic crystal

    International Nuclear Information System (INIS)

    You Yuan; Chen Changyuan

    2012-01-01

    We report the lateral shifts of the transmitted waves in a one dimensional chiral photonic crystal by using the stationary-phase approach. It is revealed that two kinds of lateral shifts are observed due to the existence of cross coupling in chiral materials, which is different from what has been observed in previous non-chiral photonic crystals. Unlike the chiral slab, the positions of lateral shift peaks are closely related to the band edges of band gap characteristics of periodic structure and lateral shifts can be positive as well as negative. Besides, the lateral shifts show a strong dependence on the chiral factor, which varies the lateral shift peaks in both magnitudes and positions. These features are desirable for future device applications.

  5. Magnons in one-dimensional k-component Fibonacci structures

    Energy Technology Data Exchange (ETDEWEB)

    Costa, C. H., E-mail: carloshocosta@hotmail.com [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Vasconcelos, M. S. [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil)

    2014-05-07

    We have studied the magnon transmission through of one-dimensional magnonic k-component Fibonacci structures, where k different materials are arranged in accordance with the following substitution rule: S{sub n}{sup (k)}=S{sub n−1}{sup (k)}S{sub n−k}{sup (k)} (n≥k=0,1,2,…), where S{sub n}{sup (k)} is the nth stage of the sequence. The calculations were carried out in exchange dominated regime within the framework of the Heisenberg model and taking into account the RPA approximation. We have considered multilayers composed of simple cubic spin-S Heisenberg ferromagnets, and, by using the powerful transfer-matrix method, the spin wave transmission is obtained. It is demonstrated that the transmission coefficient has a rich and interesting magnonic pass- and stop-bands structures, which depends on the frequency of magnons and the k values.

  6. One-dimensional Ising model with multispin interactions

    Science.gov (United States)

    Turban, Loïc

    2016-09-01

    We study the spin-1/2 Ising chain with multispin interactions K involving the product of m successive spins, for general values of m. Using a change of spin variables the zero-field partition function of a finite chain is obtained for free and periodic boundary conditions and we calculate the two-spin correlation function. When placed in an external field H the system is shown to be self-dual. Using another change of spin variables the one-dimensional Ising model with multispin interactions in a field is mapped onto a zero-field rectangular Ising model with first-neighbour interactions K and H. The 2D system, with size m × N/m, has the topology of a cylinder with helical BC. In the thermodynamic limit N/m\\to ∞ , m\\to ∞ , a 2D critical singularity develops on the self-duality line, \\sinh 2K\\sinh 2H=1.

  7. NMR relaxation rate in quasi one-dimensional antiferromagnets

    Science.gov (United States)

    Capponi, Sylvain; Dupont, Maxime; Laflorencie, Nicolas; Sengupta, Pinaki; Shao, Hui; Sandvik, Anders W.

    We compare results of different numerical approaches to compute the NMR relaxation rate 1 /T1 in quasi one-dimensional (1d) antiferromagnets. In the purely 1d regime, recent numerical simulations using DMRG have provided the full crossover behavior from classical regime at high temperature to universal Tomonaga-Luttinger liquid at low-energy (in the gapless case) or activated behavior (in the gapped case). For quasi 1d models, we can use mean-field approaches to reduce the problem to a 1d one that can be studied using DMRG. But in some cases, we can also simulate the full microscopic model using quantum Monte-Carlo techniques. This allows to compute dynamical correlations in imaginary time and we will discuss recent advances to perform stochastic analytic continuation to get real frequency spectra. Finally, we connect our results to experiments on various quasi 1d materials.

  8. Quasi one dimensional transport in individual electrospun composite nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Avnon, A., E-mail: avnon@phys.fu-berlin.de; Datsyuk, V.; Trotsenko, S. [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Wang, B.; Zhou, S. [Research Center of Microperipheric Technologies, Technische Universität Berlin, TiB4/2-1, Gustav-Meyer-Allee 25, 13355 Berlin (Germany); Grabbert, N.; Ngo, H.-D. [Microsystem Engineering (FB I), University of Applied Sciences, Wilhelminenhofstr. 74 (C 525), 12459 Berlin (Germany)

    2014-01-15

    We present results of transport measurements of individual suspended electrospun nanofibers Poly(methyl methacrylate)-multiwalled carbon nanotubes. The nanofiber is comprised of highly aligned consecutive multiwalled carbon nanotubes. We have confirmed that at the range temperature from room temperature down to ∼60 K, the conductance behaves as power-law of temperature with an exponent of α ∼ 2.9−10.2. The current also behaves as power law of voltage with an exponent of β ∼ 2.3−8.6. The power-law behavior is a footprint for one dimensional transport. The possible models of this confined system are discussed. Using the model of Luttinger liquid states in series, we calculated the exponent for tunneling into the bulk of a single multiwalled carbon nanotube α{sub bulk} ∼ 0.06 which agrees with theoretical predictions.

  9. One-dimensional disk model simulation for klystron design

    International Nuclear Information System (INIS)

    Yonezawa, H.; Okazaki, Y.

    1984-05-01

    In 1982, one of the authors (Okazaki), of Toshiba Corporation, wrote a one-dimensional, rigid-disk model computer program to serve as a reliable design tool for the 150 MW klystron development project. This is an introductory note for the users of this program. While reviewing the so-called disk programs presently available, hypotheses such as gridded interaction gaps, a linear relation between phase and position, and so on, were found. These hypotheses bring serious limitations and uncertainties into the computational results. JPNDISK was developed to eliminate these defects, to follow the equations of motion as rigorously as possible, and to obtain self-consistent solutions for the gap voltages and the electron motion. Although some inaccuracy may be present in the relativistic region, JPNDISK, in its present form, seems a most suitable tool for klystron design; it is both easy and inexpensive to use

  10. Probing the exchange statistics of one-dimensional anyon models

    Science.gov (United States)

    Greschner, Sebastian; Cardarelli, Lorenzo; Santos, Luis

    2018-05-01

    We propose feasible scenarios for revealing the modified exchange statistics in one-dimensional anyon models in optical lattices based on an extension of the multicolor lattice-depth modulation scheme introduced in [Phys. Rev. A 94, 023615 (2016), 10.1103/PhysRevA.94.023615]. We show that the fast modulation of a two-component fermionic lattice gas in the presence a magnetic field gradient, in combination with additional resonant microwave fields, allows for the quantum simulation of hardcore anyon models with periodic boundary conditions. Such a semisynthetic ring setup allows for realizing an interferometric arrangement sensitive to the anyonic statistics. Moreover, we show as well that simple expansion experiments may reveal the formation of anomalously bound pairs resulting from the anyonic exchange.

  11. Lateral shifting in one dimensional chiral photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    You Yuan, E-mail: yctcyouyuan@163.com [School of Physics and Electronics, Yancheng Teachers University, Yancheng, 224002 Jiangsu (China); Chen Changyuan [School of Physics and Electronics, Yancheng Teachers University, Yancheng, 224002 Jiangsu (China)

    2012-07-01

    We report the lateral shifts of the transmitted waves in a one dimensional chiral photonic crystal by using the stationary-phase approach. It is revealed that two kinds of lateral shifts are observed due to the existence of cross coupling in chiral materials, which is different from what has been observed in previous non-chiral photonic crystals. Unlike the chiral slab, the positions of lateral shift peaks are closely related to the band edges of band gap characteristics of periodic structure and lateral shifts can be positive as well as negative. Besides, the lateral shifts show a strong dependence on the chiral factor, which varies the lateral shift peaks in both magnitudes and positions. These features are desirable for future device applications.

  12. One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hust, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McClelland, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gresshoff, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-12

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).

  13. Dynamics of an impurity in a one-dimensional lattice

    International Nuclear Information System (INIS)

    Massel, F; Kantian, A; Giamarchi, T; Daley, A J; Törmä, P

    2013-01-01

    We study the non-equilibrium dynamics of an impurity in a harmonic trap that is kicked with a well-defined quasi-momentum, and interacts with a bath of free fermions or interacting bosons in a one-dimensional lattice configuration. Using numerical and analytical techniques we investigate the full dynamics beyond linear response, which allows us to quantitatively characterize states of the impurity in the bath for different parameter regimes. These vary from a tightly bound molecular state in a strongly interacting limit to a polaron (dressed impurity) and a free particle for weak interactions, with composite behaviour in the intermediate regime. These dynamics and different parameter regimes should be readily realizable in systems of cold atoms in optical lattices. (paper)

  14. Piezoelectric transducer vibrations in a one-dimensional approximation

    CERN Document Server

    Hilke, H J

    1973-01-01

    The theory of piezoelectric transducer vibrations, which may be treated as one-dimensional, is developed in detail for thin discs vibrating in a pure thickness extensional mode. An effort has been made to obtain relations of general validity, which include losses, and which are in a simple explicit form convenient for practical calculations. The behaviour of transducers is discussed with special attention to their characteristics at the two fundamental frequencies, the so-called parallel and series resonances. Several peculiarities occur when transducers are coupled to media with considerably different acoustic impedances. These peculiarities are discussed and illustrated by numerical results for quartz and PZT 4 piezoelectric discs radiating into water, air and liquid hydrogen. The application of the theory to different types of vibrations is briefly illustrated for thin bars vibrating longitudinally. Short discussions are included on compound transducer systems, and on the properties of thin discs as receiv...

  15. Experiment and simulation on one-dimensional plasma photonic crystals

    International Nuclear Information System (INIS)

    Zhang, Lin; Ouyang, Ji-Ting

    2014-01-01

    The transmission characteristics of microwaves passing through one-dimensional plasma photonic crystals (PPCs) have been investigated by experiment and simulation. The PPCs were formed by a series of discharge tubes filled with argon at 5 Torr that the plasma density in tubes can be varied by adjusting the discharge current. The transmittance of X-band microwaves through the crystal structure was measured under different discharge currents and geometrical parameters. The finite-different time-domain method was employed to analyze the detailed properties of the microwaves propagation. The results show that there exist bandgaps when the plasma is turned on. The properties of bandgaps depend on the plasma density and the geometrical parameters of the PPCs structure. The PPCs can perform as dynamical band-stop filter to control the transmission of microwaves within a wide frequency range

  16. SUSY-hierarchy of one-dimensional reflectionless potentials

    CERN Document Server

    Maydanyuk, Sergei P

    2004-01-01

    A class of one-dimensional reflectionless potentials, an absolute transparency of which is concerned with their belonging to one SUSY-hierarchy with a constant potential, is studied. An approach for determination of a general form of the reflectionless potential on the basis of construction of such a hierarchy by the recurrent method is proposed. A general form of interdependence between superpotentials with neighboring numbers of this hierarchy, opening a possibility to find new reflectionless potentials, have a simple analytical view and are expressed through finite number of elementary functions (unlike some reflectionless potentials, which are constructed on the basis of soliton solutions or are shape invariant in one or many steps with involving scaling of parameters, and are expressed through series), is obtained. An analysis of absolute transparency existence for the potential which has the inverse power dependence on space coordinate (and here tunneling is possible), i.e. which has the form $V(x) = \\p...

  17. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    Science.gov (United States)

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  18. Well-posedness of one-dimensional Korteweg models

    Directory of Open Access Journals (Sweden)

    Sylvie Benzoni-Gavage

    2006-05-01

    Full Text Available We investigate the initial-value problem for one-dimensional compressible fluids endowed with internal capillarity. We focus on the isothermal inviscid case with variable capillarity. The resulting equations for the density and the velocity, consisting of the mass conservation law and the momentum conservation with Korteweg stress, are a system of third order nonlinear dispersive partial differential equations. Additionally, this system is Hamiltonian and admits travelling solutions, representing propagating phase boundaries with internal structure. By change of unknown, it roughly reduces to a quasilinear Schrodinger equation. This new formulation enables us to prove local well-posedness for smooth perturbations of travelling profiles and almost-global existence for small enough perturbations. A blow-up criterion is also derived.

  19. Capillary condensation in one-dimensional irregular confinement.

    Science.gov (United States)

    Handford, Thomas P; Pérez-Reche, Francisco J; Taraskin, Sergei N

    2013-07-01

    A lattice-gas model with heterogeneity is developed for the description of fluid condensation in finite sized one-dimensional pores of arbitrary shape. Mapping to the random-field Ising model allows an exact solution of the model to be obtained at zero-temperature, reproducing the experimentally observed dependence of the amount of fluid adsorbed in the pore on external pressure. It is demonstrated that the disorder controls the sorption for long pores and can result in H2-type hysteresis. Finite-temperature Metropolis dynamics simulations support analytical findings in the limit of low temperatures. The proposed framework is viewed as a fundamental building block of the theory of capillary condensation necessary for reliable structural analysis of complex porous media from adsorption-desorption data.

  20. Topologically protected states in one-dimensional systems

    CERN Document Server

    Fefferman, C L; Weinstein, M I

    2017-01-01

    The authors study a class of periodic Schrödinger operators, which in distinguished cases can be proved to have linear band-crossings or "Dirac points". They then show that the introduction of an "edge", via adiabatic modulation of these periodic potentials by a domain wall, results in the bifurcation of spatially localized "edge states". These bound states are associated with the topologically protected zero-energy mode of an asymptotic one-dimensional Dirac operator. The authors' model captures many aspects of the phenomenon of topologically protected edge states for two-dimensional bulk structures such as the honeycomb structure of graphene. The states the authors construct can be realized as highly robust TM-electromagnetic modes for a class of photonic waveguides with a phase-defect.

  1. A one-dimensional ice structure built from pentagons

    Science.gov (United States)

    Carrasco, Javier; Michaelides, Angelos

    2010-03-01

    Heterogeneous nucleation of water plays a key role in fields as diverse as atmospheric chemistry, astrophysics, and biology. Ice nucleation on metal surfaces offers an opportunity to watch this process unfold, providing a molecular-scale description at a well-defined, planar interface. We discuss a density-functional theory study on a metal surface specifically designed to understand such phenomena. Together with our colleges at the University of Liverpool, we found that the nanometer wide water-ice chains experimentally observed to nucleate and grow on Cu(110) are built from a face sharing arrangement of water pentagons [1]. The novel one-dimensional pentagon structure maximizes the water-metal bonding whilst simultaneously maintaining a strong hydrogen bonding network. These results reveal an unanticipated structural adaptability of water-ice films, demonstrating that the presence of the substrate can be sufficient to favor non-conventional structural units. [4pt] [1] J. Carrasco et al., Nature Mater. 8, 427 (2009).

  2. One-dimensional plasma photonic crystals with sinusoidal densities

    International Nuclear Information System (INIS)

    Qi, L.; Shang, L.; Zhang, S.

    2014-01-01

    Properties of electromagnetic waves with normal and oblique incidence have been studied for one-dimensional plasma layers with sinusoidal densities. Wave transmittance as a function of wave frequency exhibits photonic band gaps characteristic of photonic crystals. For periodic structures, increasing collision frequency is demonstrated to lead to greater absorption, increasing the modulation factor enlarges the gap width, and increasing incidence angle can change the gap locations of the two polarizations. If a defect layer is introduced by inserting a new plasma layer in the center, a defect mode may appear within the gap. Periodic number, collision frequency, and modulation factor can affect magnitude of the defect mode. The incidence angle enables the frequency to be tuned. Defect layer thickness affects both frequency and number of defect modes. These results may provide theoretical guidance in designing tunable narrow-band filters

  3. Hidden magnetism in periodically modulated one dimensional dipolar fermions

    Science.gov (United States)

    Fazzini, S.; Montorsi, A.; Roncaglia, M.; Barbiero, L.

    2017-12-01

    The experimental realization of time-dependent ultracold lattice systems has paved the way towards the implementation of new Hubbard-like Hamiltonians. We show that in a one-dimensional two-components lattice dipolar Fermi gas the competition between long range repulsion and correlated hopping induced by periodically modulated on-site interaction allows for the formation of hidden magnetic phases, with degenerate protected edge modes. The magnetism, characterized solely by string-like nonlocal order parameters, manifests in the charge and/or in the spin degrees of freedom. Such behavior is enlighten by employing Luttinger liquid theory and numerical methods. The range of parameters for which hidden magnetism is present can be reached by means of the currently available experimental setups and probes.

  4. Asymmetrically doped one-dimensional trans-polymers

    International Nuclear Information System (INIS)

    Caldas, Heron

    2009-01-01

    More than 30 years ago [H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, J. Chem. Soc. Chem. Comm. 578 (1977); S. Etemad, A.J. Heeger, Ann. Rev. Phys. Chem. 33 (1982) 443] it was discovered that doped trans-polyacetylene (CH) x , a one-dimensional (1D) conjugated polymer, exhibits electrical conductivity. In this work we show that an asymmetrically doped 1D trans-polymer has non-conventional properties, as compared to symmetrically doped systems. Depending on the level of asymmetry between the chemical potentials of the two involved fermionic species, the polymer can be in a partially or fully spin polarized state. Some possible experimental consequences of doped 1D trans-polymers used as 1D organic polarized conductors are discussed.

  5. Explicit Solutions for One-Dimensional Mean-Field Games

    KAUST Repository

    Prazeres, Mariana

    2017-04-05

    In this thesis, we consider stationary one-dimensional mean-field games (MFGs) with or without congestion. Our aim is to understand the qualitative features of these games through the analysis of explicit solutions. We are particularly interested in MFGs with a nonmonotonic behavior, which corresponds to situations where agents tend to aggregate. First, we derive the MFG equations from control theory. Then, we compute explicit solutions using the current formulation and examine their behavior. Finally, we represent the solutions and analyze the results. This thesis main contributions are the following: First, we develop the current method to solve MFG explicitly. Second, we analyze in detail non-monotonic MFGs and discover new phenomena: non-uniqueness, discontinuous solutions, empty regions and unhappiness traps. Finally, we address several regularization procedures and examine the stability of MFGs.

  6. One-dimensional central-force problem, including radiation reaction

    International Nuclear Information System (INIS)

    Kasher, J.C.

    1976-01-01

    Two equal masses of equal charge magnitude (either attractive or repulsive) are held a certain distance apart for their entire past history. AT t = 0 one of them is either started from rest or given an initial velocity toward or away from the other charge. When the Dirac radiation-reaction force is included in the force equation, our Taylor-series numerical calculations lead to two types of nonphysical results for both the attractive and repulsive cases. In the attractive case, the moving charge either stops and moves back out to infinity, or violates energy conservation as it nears collision with the fixed charge. For the repulsive charges, the moving particle either eventually approaches and collides with the fixed one, or violates energy conservation as it goes out to infinity. These results lead us to conclude that the Lorentz-Dirac equation is not valid for the one-dimensional central-force problem

  7. Periodic transmission peak splitting in one dimensional disordered photonic structures

    Science.gov (United States)

    Kriegel, Ilka; Scotognella, Francesco

    2016-08-01

    In the present paper we present ways to modulate the periodic transmission peaks arising in disordered one dimensional photonic structures with hundreds of layers. Disordered structures in which the optical length nd (n is the refractive index and d the layer thickness) is the same for each layer show regular peaks in their transmission spectra. A proper variation of the optical length of the layers leads to a splitting of the transmission peaks. Notably, the variation of the occurrence of high and low refractive index layers, gives a tool to tune also the width of the peaks. These results are of highest interest for optical application, such as light filtering, where the manifold of parameters allows a precise design of the spectral transmission ranges.

  8. REVIEW One-Dimensional Dynamical Modeling of Earthquakes: A Review

    Directory of Open Access Journals (Sweden)

    Jeen-Hwa Wang

    2008-01-01

    Full Text Available Studies of the power-law relations of seismicity and earthquake source parameters based on the one-dimensional (1-D Burridge-Knopoff¡¦s (BK dynamical lattice model, especially those studies conducted by Taiwan¡¦s scientists, are reviewed in this article. In general, velocity- and/or state-dependent friction is considered to control faulting. A uniform distribution of breaking strengths (i.e., the static friction strength is taken into account in some studies, and inhomogeneous distributions in others. The scaling relations in these studies include: Omori¡¦s law, the magnitude-frequency or energy-frequency relation, the relation between source duration time and seismic moment, the relation between rupture length and seismic moment, the frequency-length relation, and the source power spectra. The main parameters of the one-dimensional (1-D Burridge-Knopoff¡¦s (BK dynamical lattice model include: the decreasing rate (r of dynamic friction strength with sliding velocity; the type and degree of heterogeneous distribution of the breaking strengths, the stiffness ratio (i.e., the ratio between the stiffness of the coil spring connecting two mass elements and that of the leaf spring linking a mass element and the moving plate; the frictional drop ratio of the minimum dynamic friction strength to the breaking strength; and the maximum breaking strength. For some authors, the distribution of the breaking strengths was considered to be a fractal function. Hence, the fractal dimension of such a distribution is also a significant parameter. Comparison between observed scaling laws and simulation results shows that the 1-D BK dynamical lattice model acceptably approaches fault dynamics.

  9. A classical-quantum coupling strategy for a hierarchy of one dimensional models for semiconductors

    OpenAIRE

    Jourdana, Clément; Pietra, Paola; Vauchelet, Nicolas

    2014-01-01

    We consider one dimensional coupled classical-quantum models for quantum semiconductor device simulations. The coupling occurs in the space variable : the domain of the device is divided into a region with strong quantum effects (quantum zone) and a region where quantum effects are negligible (classical zone). In the classical zone, transport in diffusive approximation is modeled through diffusive limits of the Boltzmann transport equation. This leads to a hierarchy of classical model. The qu...

  10. Infrared spectroscopy of one-dimensional metallic nanostructures on silicon vicinal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Chung Vu

    2010-06-23

    Vicinal silicon(111) surfaces are used as templates for the growth of lead nanowires as well as gold and indium atom chains. The morphology of the Au atom chains was studied by use of Scanning Tunneling Microscopy (STM) and Reflection High Energy Electron Diffraction (RHEED). The In chains were investigated by infrared spectroscopy with the electrical field component of the IR light polarized either parallel or perpendicular to the wires. It is shown that at room temperature, In atom-chains display a plasmonic absorption feature along the chain but not in the perpendicular direction. Furthermore, upon cooling down to liquid nitrogen temperature, a metal to insulator transition is observed. A structural distortion is also confirmed by RHEED. As for the result of Pb nanowires, by means of infrared spectroscopy, it is now possible to control the average length of parallel nanowire arrays by monitoring four experimental parameters that influence on the nucleation density; namely: Pb coverage, evaporation rate, substrate temperature and the surface itself. The system shows an enhancement of the absorption at the antenna frequency in the low temperature regime. This scenario is assigned to the reduction of electron-phonon scattering due to low temperature. (orig.)

  11. Infrared spectroscopy of one-dimensional metallic nanostructures on silicon vicinal surfaces

    International Nuclear Information System (INIS)

    Hoang, Chung Vu

    2010-01-01

    Vicinal silicon(111) surfaces are used as templates for the growth of lead nanowires as well as gold and indium atom chains. The morphology of the Au atom chains was studied by use of Scanning Tunneling Microscopy (STM) and Reflection High Energy Electron Diffraction (RHEED). The In chains were investigated by infrared spectroscopy with the electrical field component of the IR light polarized either parallel or perpendicular to the wires. It is shown that at room temperature, In atom-chains display a plasmonic absorption feature along the chain but not in the perpendicular direction. Furthermore, upon cooling down to liquid nitrogen temperature, a metal to insulator transition is observed. A structural distortion is also confirmed by RHEED. As for the result of Pb nanowires, by means of infrared spectroscopy, it is now possible to control the average length of parallel nanowire arrays by monitoring four experimental parameters that influence on the nucleation density; namely: Pb coverage, evaporation rate, substrate temperature and the surface itself. The system shows an enhancement of the absorption at the antenna frequency in the low temperature regime. This scenario is assigned to the reduction of electron-phonon scattering due to low temperature. (orig.)

  12. Electrostatic actuation and electromechanical switching behavior of one-dimensional nanostructures.

    Science.gov (United States)

    Subramanian, Arunkumar; Alt, Andreas R; Dong, Lixin; Kratochvil, Bradley E; Bolognesi, Colombo R; Nelson, Bradley J

    2009-10-27

    We report on the electromechanical actuation and switching performance of nanoconstructs involving doubly clamped, individual multiwalled carbon nanotubes. Batch-fabricated, three-state switches with low ON-state voltages (6.7 V average) are demonstrated. A nanoassembly architecture that permits individual probing of one device at a time without crosstalk from other nanotubes, which are originally assembled in parallel, is presented. Experimental investigations into device performance metrics such as hysteresis, repeatability and failure modes are presented. Furthermore, current-driven shell etching is demonstrated as a tool to tune the nanomechanical clamping configuration, stiffness, and actuation voltage of fabricated devices. Computational models, which take into account the nonlinearities induced by stress-stiffening of 1-D nanowires at large deformations, are presented. Apart from providing accurate estimates of device performance, these models provide new insights into the extension of stable travel range in electrostatically actuated nanowire-based constructs as compared to their microscale counterparts.

  13. Nitridation of one-dimensional tungsten oxide nanostructures: Changes in structure and photoactivity

    KAUST Repository

    Varga, Tamá s; Haspel, Henrik; Kormá nyos, Attila; Janá ky, Csaba; Kukovecz, Á kos; Kó nya, Zoltá n

    2017-01-01

    nitrogen atmosphere. Morphological changes and structural transitions were followed by transmission and scanning electron microscopy and X-ray diffraction. Bandgap energies were determined from the UV–vis spectra of the materials, while photoelectrochemical

  14. Nitridation of one-dimensional tungsten oxide nanostructures: Changes in structure and photoactivity

    KAUST Repository

    Varga, Tamás

    2017-10-12

    In the search for stable, visible light active photoelectrodes, hydrothermally synthesized tungsten oxide nanowires were modified via nitrogen incorporation into their structure. To this end, nanowires were heat-treated in ammonia/nitrogen atmosphere at different temperatures. This procedure caused transitions in their structure that were investigated along with the photoelectrochemical properties of the samples. Results were subsequently compared to the reference samples treated in inert nitrogen atmosphere. Morphological changes and structural transitions were followed by transmission and scanning electron microscopy and X-ray diffraction. Bandgap energies were determined from the UV–vis spectra of the materials, while photoelectrochemical properties were tested by linear sweep photovoltammetry and electrochemical impedance spectroscopy. Pristine tungsten oxide nanowires were first transformed into tungsten oxynitride and then tungsten nitride during high-temperature calcination in ammonia atmosphere. Electron microscopic investigation revealed that, along with phase transition, the initial fibrous morphology gradually converted into nanosheets. Simultaneously, bandgap energies significantly decreased in the calcination process, too. Photoelectrochemical measurements demonstrated that photoactivity in the treated samples was not improved by the decrease of the bandgap. This behavior might be explained with the deterioration of charge carrier transport properties of the materials due to the increased number of structural defects (acting as trap states), and current ongoing work aims to verify this notion.

  15. Exploring arrays of vertical one-dimensional nanostructures for cellular investigations

    DEFF Research Database (Denmark)

    Bonde, Sara; Buch-Månson, Nina; Rostgaard, Katrine Rønne

    2014-01-01

    of research. Encouragingly, despite the diversity of NS platforms and experimental conditions used thus far, general trends and conclusions from combining cells with NSs are beginning to crystallize. This review covers the broad spectrum of NS materials and dimensions used; the observed cellular responses...

  16. Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams

    International Nuclear Information System (INIS)

    Chen Zhongsheng; Yang Yongmin; Lu Zhimiao; Luo Yanting

    2013-01-01

    Nowadays broadband vibration energy harvesting using piezoelectric effect has become a research hotspot. The innovation in this paper is the widening of the resonant bandwidth of a piezoelectric harvester based on phononic band gaps, which is called one-dimensional phononic piezoelectric cantilever beams (PPCBs). Broadband characteristics of one-dimensional PPCBs are analyzed deeply and the vibration band gap can be calculated. The effects of different parameters on the vibration band gap are presented by both numerical and finite element simulations. Finally experimental tests are conducted to validate the proposed method. It can be concluded that it is feasible to use the PPCB for broadband vibration energy harvesting and there should be a compromise among related parameters for low-frequency vibrations.

  17. Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhongsheng, E-mail: czs_study@sina.com [Key Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China); Yang Yongmin; Lu Zhimiao; Luo Yanting [Key Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China)

    2013-02-01

    Nowadays broadband vibration energy harvesting using piezoelectric effect has become a research hotspot. The innovation in this paper is the widening of the resonant bandwidth of a piezoelectric harvester based on phononic band gaps, which is called one-dimensional phononic piezoelectric cantilever beams (PPCBs). Broadband characteristics of one-dimensional PPCBs are analyzed deeply and the vibration band gap can be calculated. The effects of different parameters on the vibration band gap are presented by both numerical and finite element simulations. Finally experimental tests are conducted to validate the proposed method. It can be concluded that it is feasible to use the PPCB for broadband vibration energy harvesting and there should be a compromise among related parameters for low-frequency vibrations.

  18. Electronic correlations and disorder in transport through one-dimensional nanoparticle arrays

    OpenAIRE

    Bascones, E.; Estevez, V.; Trinidad, J. A.; MacDonald, A. H.

    2007-01-01

    We analyze and clarify the transport properties of a one-dimensional metallic nanoparticle array with interaction between charges restricted to charges placed in the same conductor. We study the threshold voltage, the I-V curves and the potential drop through the array and their dependence on the array parameters including the effect of charge and resistance disorder. We show that very close to threshold the current depends linearly on voltage with a slope independent on the array size. At in...

  19. Electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.

    2003-01-01

    We study the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ by means of density-functional band theory, Hubbard model calculations, and angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant quantitative and qualitative......-dimensional Hubbard model for the low-energy spectral behavior is attributed to interchain coupling and the additional effect of electron-phonon interaction....

  20. Study on the Reflection Spectra of One Dimensional Plasma Photonic Crystals Having Exponentially Graded Materials

    International Nuclear Information System (INIS)

    Prasad, S.; Singh, Vivek; Singh, A. K.

    2013-01-01

    The transfer matrix method is used to study the effect of the permittivity profile on the reflectivity of a one dimensional plasma photonic crystal having exponentially graded material. The analysis shows that the proposed structure works as a perfect mirror within a certain frequency range. These frequency ranges can be completely controlled by the permittivity profile of a graded dielectric layer. As expected we observed that these frequency ranges are also controlled by plasma parameters. (plasma technology)

  1. Sufficient condition for generation of multiple solidification front in one-dimensional solidification of binary alloys

    International Nuclear Information System (INIS)

    Bobula, E.; Kalicka, Z.

    1981-10-01

    In the paper we consider the one-dimensional solidification of binary alloys in the finite system. The authors present the sufficient condition for solidification in the liquid in front of the moving solid-liquid interface. The effect may produce a fluctuating concentration distributin in the solid. The convection in the liquid and supercooling required for homogeneous nucleation are omitted. A local-equilibrium approximation at the liquid-solid interface is supposed. (author)

  2. One-dimensional adiabatic model of waterhammer; Endodimenzionalni adiabatni model vodnega udara

    Energy Technology Data Exchange (ETDEWEB)

    Bizjak, S [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1984-07-01

    Program WH was developed to calculate transient pressure and velocities in hydraulic networks. It is based on one-dimensional approximation of conservation laws of mass and momentum. the energy equation is ignored which means that heat transfer effects are no included. When calculating the velocity of pressure wave, compressibility of liquid, elasticity of pipe and possible minimal presence of gas in bubble or dissolved form are included. (author)

  3. Molecule formation and the Farey tree in the one-dimensional Falicov-Kimball model

    International Nuclear Information System (INIS)

    Gruber, C.; Ueltschi, D.; Jedrzejewski, J.

    1994-01-01

    The ground-state configurations of the one-dimensional Falicov-Kimball model are studied exactly with numerical calculations revealing unexpected effects for small interaction strength. In neutral systems we observe molecular formation, phase separation, and changes in the conducting properties; while in nonneutral systems the phase diagram exhibits Farey tree order (Aubry sequence) and a devil's staircase structure. Conjectures are presented for the boundary of the segregated domain and the general structure of the ground states

  4. BERMUDA-1DG: a one-dimensional photon transport code

    International Nuclear Information System (INIS)

    Suzuki, Tomoo; Hasegawa, Akira; Nakashima, Hiroshi; Kaneko, Kunio.

    1984-10-01

    A one-dimensional photon transport code BERMUDA-1DG has been developed for spherical and infinite slab geometries. The purpose of development is to equip the function of gamma rays calculation for the BERMUDA code system, which was developed by 1983 only for neutron transport calculation as a preliminary version. A group constants library has been prepared for 30 nuclides, and it now consists of the 36-group total cross sections and secondary gamma ray yields by the 120-group neutron flux. For the Compton scattering, group-angle transfer matrices are accurately obtained by integrating the Klein-Nishina formula taking into account the energy and scattering angle correlation. The pair production cross sections are now calculated in the code from atomic number and midenergy of each group. To obtain angular flux distribution, the transport equation is solved in the same way as in case of neutron, using the direct integration method in a multigroup model. Both of an independent gamma ray source problem and a neutron-gamma source problem are possible to be solved. This report is written as a user's manual with a brief description of the calculational method. (author)

  5. One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties

    Science.gov (United States)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur

    2016-11-01

    Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.

  6. New Poisson–Boltzmann type equations: one-dimensional solutions

    International Nuclear Information System (INIS)

    Lee, Chiun-Chang; Lee, Hijin; Hyon, YunKyong; Lin, Tai-Chia; Liu, Chun

    2011-01-01

    The Poisson–Boltzmann (PB) equation is conventionally used to model the equilibrium of bulk ionic species in different media and solvents. In this paper we study a new Poisson–Boltzmann type (PB n ) equation with a small dielectric parameter ε 2 and non-local nonlinearity which takes into consideration the preservation of the total amount of each individual ion. This equation can be derived from the original Poisson–Nernst–Planck system. Under Robin-type boundary conditions with various coefficient scales, we demonstrate the asymptotic behaviours of one-dimensional solutions of PB n equations as the parameter ε approaches zero. In particular, we show that in case of electroneutrality, i.e. α = β, solutions of 1D PB n equations have a similar asymptotic behaviour as those of 1D PB equations. However, as α ≠ β (non-electroneutrality), solutions of 1D PB n equations may have blow-up behaviour which cannot be found in 1D PB equations. Such a difference between 1D PB and PB n equations can also be verified by numerical simulations

  7. SUSY-hierarchy of one-dimensional reflectionless potentials

    International Nuclear Information System (INIS)

    Maydanyuk, Sergei P.

    2005-01-01

    A class of one-dimensional reflectionless potentials is studied. It is found that all possible types of the reflectionless potentials can be combined into one SUSY-hierarchy with a constant potential. An approach for determination of a general form of the reflectionless potential on the basis of construction of such a hierarchy by the recurrent method is proposed. A general integral form of interdependence between superpotentials with neighboring numbers of this hierarchy, opening a possibility to find new reflectionless potentials, is found and has a simple analytical view. It is supposed that any possible type of the reflectionless potential can be expressed through finite number of elementary functions (unlike some presentations of the reflectionless potentials, which are constructed on the basis of soliton solutions or are shape invariant in one or many steps with involving scaling of parameters, and are expressed through series). An analysis of absolute transparency existence for the potential which has the inverse power dependence on space coordinate (and here tunneling is possible), i.e., which has the form V (x) = ± α/ vertical bar x-x 0 vertical bar n (where α and x 0 are constants, n is natural number), is fulfilled. It is shown that such a potential can be reflectionless at n = 2 only. A SUSY-hierarchy of the inverse power reflectionless potentials is constructed. Isospectral expansions of this hierarchy are analyzed

  8. One-Dimensional Electron Transport Layers for Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Ujwal K. Thakur

    2017-04-01

    Full Text Available The electron diffusion length (Ln is smaller than the hole diffusion length (Lp in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D structures such as nanowires (NWs and nanotubes (NTs as electron transport layers (ETLs is a promising method of achieving high performance halide perovskite solar cells (HPSCs. ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs. This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells.

  9. Periodic solutions for one dimensional wave equation with bounded nonlinearity

    Science.gov (United States)

    Ji, Shuguan

    2018-05-01

    This paper is concerned with the periodic solutions for the one dimensional nonlinear wave equation with either constant or variable coefficients. The constant coefficient model corresponds to the classical wave equation, while the variable coefficient model arises from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. For finding the periodic solutions of variable coefficient wave equation, it is usually required that the coefficient u (x) satisfies ess infηu (x) > 0 with ηu (x) = 1/2 u″/u - 1/4 (u‧/u)2, which actually excludes the classical constant coefficient model. For the case ηu (x) = 0, it is indicated to remain an open problem by Barbu and Pavel (1997) [6]. In this work, for the periods having the form T = 2p-1/q (p , q are positive integers) and some types of boundary value conditions, we find some fundamental properties for the wave operator with either constant or variable coefficients. Based on these properties, we obtain the existence of periodic solutions when the nonlinearity is monotone and bounded. Such nonlinearity may cross multiple eigenvalues of the corresponding wave operator. In particular, we do not require the condition ess infηu (x) > 0.

  10. Integral Transport Theory in One-dimensional Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Carlvik, I

    1966-06-15

    A method called DIT (Discrete Integral Transport) has been developed for the numerical solution of the transport equation in one-dimensional systems. The characteristic features of the method are Gaussian integration over the coordinate as described by Kobayashi and Nishihara, and a particular scheme for the calculation of matrix elements in annular and spherical geometry that has been used for collision probabilities in earlier Flurig programmes. The paper gives a general theory including such things as anisotropic scattering and multi-pole fluxes, and it gives a brief description of the Flurig scheme. Annular geometry is treated in some detail, and corresponding formulae are given for spherical and plane geometry. There are many similarities between DIT and the method of collision probabilities. DIT is in many cases faster, because for a certain accuracy in the fluxes DIT often needs fewer space points than the method of collision probabilities needs regions. Several computer codes using DIT, both one-group and multigroup, have been written. It is anticipated that experience gained in calculations with these codes will be reported in another paper.

  11. One-dimensional two-phase thermal hydraulics (ENSTA course)

    International Nuclear Information System (INIS)

    Olive, J.

    1995-11-01

    This course is part of the ENSTA 3rd year thermal hydraulics program (nuclear power option). Its purpose is to provide the theoretical basis and main physical notions pertaining to two-phase flow, mainly focussed on water-steam flows. The introduction describes the physical specificities of these flows, emphasizing their complexity. The mathematical bases are then presented (partial derivative equations), leading to a one-dimensional type, simplified description. Balances drawn up for a pipe length volume are used to introduce the mass conservation. motion and energy equations for each phase. Various postulates used to simplify two-phase models are presented, culminating in homogeneous model definitions and equations, several common examples of which are given. The model is then applied to the calculation of pressure drops in two-phase flows. This involves presenting the models most frequently used to represent pressure drops by friction or due to pipe irregularities, without giving details (numerical values of parameters). This chapter terminates with a brief description of static and dynamic instabilities in two-phase flows. Finally, heat transfer conditions frequently encountered in liquid-steam flows are described, still in the context of a 1D model. This chapter notably includes reference to under-saturated boiling conditions and the various forms of DNB. The empirical heat transfer laws are not discussed in detail. Additional material is appended, some of which is in the form of corrected exercises. (author). 6 appends

  12. Magnetic ordering in arrays of one-dimensional nanoparticle chains

    International Nuclear Information System (INIS)

    Serantes, D; Baldomir, D; Pereiro, M; Hernando, B; Prida, V M; Sanchez Llamazares, J L; Zhukov, A; Ilyn, M; Gonzalez, J

    2009-01-01

    The magnetic order in parallel-aligned one-dimensional (1D) chains of magnetic nanoparticles is studied using a Monte Carlo technique. If the easy anisotropy axes are collinear along the chains a macroscopic mean-field approach indicates antiferromagnetic (AFM) order even when no interparticle interactions are taken into account, which evidences that a mean-field treatment is inadequate for the study of the magnetic order in these highly anisotropic systems. From the direct microscopic analysis of the evolution of the magnetic moments, we observe spontaneous intra-chain ferromagnetic (FM)-type and inter-chain AFM-type ordering at low temperatures (although not completely regular) for the easy-axes collinear case, whereas a random distribution of the anisotropy axes leads to a sort of intra-chain AFM arrangement with no inter-chain regular order. When the magnetic anisotropy is neglected a perfectly regular intra-chain FM-like order is attained. Therefore it is shown that the magnetic anisotropy, and particularly the spatial distribution of the easy axes, is a key parameter governing the magnetic ordering type of 1D-nanoparticle chains.

  13. Validation and Comparison of One-Dimensional Ground Motion Methodologies

    International Nuclear Information System (INIS)

    B. Darragh; W. Silva; N. Gregor

    2006-01-01

    Both point- and finite-source stochastic one-dimensional ground motion models, coupled to vertically propagating equivalent-linear shear-wave site response models are validated using an extensive set of strong motion data as part of the Yucca Mountain Project. The validation and comparison exercises are presented entirely in terms of 5% damped pseudo absolute response spectra. The study consists of a quantitative analyses involving modeling nineteen well-recorded earthquakes, M 5.6 to 7.4 at over 600 sites. The sites range in distance from about 1 to about 200 km in the western US (460 km for central-eastern US). In general, this validation demonstrates that the stochastic point- and finite-source models produce accurate predictions of strong ground motions over the range of 0 to 100 km and for magnitudes M 5.0 to 7.4. The stochastic finite-source model appears to be broadband, producing near zero bias from about 0.3 Hz (low frequency limit of the analyses) to the high frequency limit of the data (100 and 25 Hz for response and Fourier amplitude spectra, respectively)

  14. Transmission properties of one-dimensional ternary plasma photonic crystals

    International Nuclear Information System (INIS)

    Shiveshwari, Laxmi; Awasthi, S. K.

    2015-01-01

    Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter

  15. Energy Current Cumulants in One-Dimensional Systems in Equilibrium

    Science.gov (United States)

    Dhar, Abhishek; Saito, Keiji; Roy, Anjan

    2018-06-01

    A recent theory based on fluctuating hydrodynamics predicts that one-dimensional interacting systems with particle, momentum, and energy conservation exhibit anomalous transport that falls into two main universality classes. The classification is based on behavior of equilibrium dynamical correlations of the conserved quantities. One class is characterized by sound modes with Kardar-Parisi-Zhang scaling, while the second class has diffusive sound modes. The heat mode follows Lévy statistics, with different exponents for the two classes. Here we consider heat current fluctuations in two specific systems, which are expected to be in the above two universality classes, namely, a hard particle gas with Hamiltonian dynamics and a harmonic chain with momentum conserving stochastic dynamics. Numerical simulations show completely different system-size dependence of current cumulants in these two systems. We explain this numerical observation using a phenomenological model of Lévy walkers with inputs from fluctuating hydrodynamics. This consistently explains the system-size dependence of heat current fluctuations. For the latter system, we derive the cumulant-generating function from a more microscopic theory, which also gives the same system-size dependence of cumulants.

  16. 17th century treatments of one-dimensional collisions

    International Nuclear Information System (INIS)

    Goehring, G.D.

    1975-01-01

    The issue of conservation in the collisions of bodies aroused considerable interest in the period of its initial investigation. Descartes asserted that the quantity of motion, the scalar product of the mass and speed, was the quantity that was conserved. Huygens, with the aid of his relativity of motion principle, recognized that it was not Descartes' scalar quantity that was conserved, but instead another scalar quality, the product of the mass and the square of the speed, whose total remained constant. Newton discovered that Descartes' quantity was conserved if considered a vector quantity, and thereby announced the principle of conservation of momentum. Leibniz recognized the conservation of Newton's momentum, and also the conservation of vis viva, the same scalar quantity that Huygens has earlier proposed. Although recognition of the immense importance of these principles had to await further developments in physics, the original formulation of these conservation principles, resulting from the analysis of one-dimensional collisions, was completed by the end of the 17th century. (U.K.)

  17. One-dimensional quantum walk with a moving boundary

    International Nuclear Information System (INIS)

    Kwek, Leong Chuan; Setiawan

    2011-01-01

    Quantum walks are interesting models with potential applications to quantum algorithms and physical processes such as photosynthesis. In this paper, we study two models of one-dimensional quantum walks, namely, quantum walks with a moving absorbing wall and quantum walks with one stationary and one moving absorbing wall. For the former, we calculate numerically the survival probability, the rate of change of average position, and the rate of change of standard deviation of the particle's position in the long time limit for different wall velocities. Moreover, we also study the asymptotic behavior and the dependence of the survival probability on the initial particle's state. While for the latter, we compute the absorption probability of the right stationary wall for different velocities and initial positions of the left wall boundary. The results for these two models are compared with those obtained for the classical model. The difference between the results obtained for the quantum and classical models can be attributed to the difference in the probability distributions.

  18. Numerical modelling of random walk one-dimensional diffusion

    International Nuclear Information System (INIS)

    Vamos, C.; Suciu, N.; Peculea, M.

    1996-01-01

    The evolution of a particle which moves on a discrete one-dimensional lattice, according to a random walk low, approximates better the diffusion process smaller the steps of the spatial lattice and time are. For a sufficiently large assembly of particles one can assume that their relative frequency at lattice knots approximates the distribution function of the diffusion process. This assumption has been tested by simulating on computer two analytical solutions of the diffusion equation: the Brownian motion and the steady state linear distribution. To evaluate quantitatively the similarity between the numerical and analytical solutions we have used a norm given by the absolute value of the difference of the two solutions. Also, a diffusion coefficient at any lattice knots and moment of time has been calculated, by using the numerical solution both from the diffusion equation and the particle flux given by Fick's low. The difference between diffusion coefficient of analytical solution and the spatial lattice mean coefficient of numerical solution constitutes another quantitative indication of the similarity of the two solutions. The results obtained show that the approximation depends first on the number of particles at each knot of the spatial lattice. In conclusion, the random walk is a microscopic process of the molecular dynamics type which permits simulations precision of the diffusion processes with given precision. The numerical method presented in this work may be useful both in the analysis of real experiments and for theoretical studies

  19. Fractal geometry in an expanding, one-dimensional, Newtonian universe.

    Science.gov (United States)

    Miller, Bruce N; Rouet, Jean-Louis; Le Guirriec, Emmanuel

    2007-09-01

    Observations of galaxies over large distances reveal the possibility of a fractal distribution of their positions. The source of fractal behavior is the lack of a length scale in the two body gravitational interaction. However, even with new, larger, sample sizes from recent surveys, it is difficult to extract information concerning fractal properties with confidence. Similarly, three-dimensional N-body simulations with a billion particles only provide a thousand particles per dimension, far too small for accurate conclusions. With one-dimensional models these limitations can be overcome by carrying out simulations with on the order of a quarter of a million particles without compromising the computation of the gravitational force. Here the multifractal properties of two of these models that incorporate different features of the dynamical equations governing the evolution of a matter dominated universe are compared. For each model at least two scaling regions are identified. By employing criteria from dynamical systems theory it is shown that only one of them can be geometrically significant. The results share important similarities with galaxy observations, such as hierarchical clustering and apparent bifractal geometry. They also provide insights concerning possible constraints on length and time scales for fractal structure. They clearly demonstrate that fractal geometry evolves in the mu (position, velocity) space. The observed patterns are simply a shadow (projection) of higher-dimensional structure.

  20. MARG1D: One dimensional outer region matching data code

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Watanabe, Tomoko.

    1995-08-01

    A code MARG1D has been developed which computes outer region matching data of the one dimensional Newcomb equation. Matching data play an important role in the resistive (and non ideal) Magneto-hydrodynamic (MHD) stability analysis in a tokamak plasma. The MARG1D code computes matching data by using the boundary value method or by the eigenvalue method. Variational principles are derived for the problems to be solved and a finite element method is applied. Except for the case of marginal stability, the eigenvalue method is equivalent to the boundary value method. However, the eigenvalue method has the several advantages: it is a new method of ideal MHD stability analysis for which the marginally stable state can be identified, and it guarantees numerical stability in computing matching data close to marginal stability. We perform detailed numerical experiments for a model equation with analytical solutions and for the Newcomb equation in the m=1 mode theory. Numerical experiments show that MARG1D code gives the matching data with numerical stability and high accuracy. (author)

  1. Transmission properties of one-dimensional ternary plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shiveshwari, Laxmi [Department of Physics, K. B. Womens' s College, Hazaribagh 825 301 (India); Awasthi, S. K. [Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, Noida 201 304 (India)

    2015-09-15

    Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter.

  2. One-dimensional magnetophotonic crystals with magnetooptical double layers

    International Nuclear Information System (INIS)

    Berzhansky, V. N.; Shaposhnikov, A. N.; Prokopov, A. R.; Karavainikov, A. V.; Mikhailova, T. V.; Lukienko, I. N.; Kharchenko, Yu. N.; Golub, V. O.; Salyuk, O. Yu.; Belotelov, V. I.

    2016-01-01

    One-dimensional magnetophotonic microcavity crystals with nongarnet dielectric mirrors are created and investigated. The defect layers in the magnetophotonic crystals are represented by two bismuth-substituted yttrium iron garnet Bi:YIG layers with various bismuth contents in order to achieve a high magnetooptical response of the crystals. The parameters of the magnetophotonic crystal layers are optimized by numerical solution of the Maxwell equations by the transfer matrix method to achieve high values of Faraday rotation angle Θ F and magnetooptical Q factor. The calculated and experimental data agree well with each other. The maximum values of Θ F =–20.6°, Q = 8.1° at a gain t = 16 are obtained for magnetophotonic crystals with m = 7 pairs of layers in Bragg mirrors, and the parameters obtained for crystals with m = 4 and t = 8.5 are Θ F =–12.5° and Q = 14.3°. It is shown that, together with all-garnet and multimicrocavities magnetophotonic crystals, such structures have high magnetooptical characteristics.

  3. One-dimensional magnetophotonic crystals with magnetooptical double layers

    Energy Technology Data Exchange (ETDEWEB)

    Berzhansky, V. N., E-mail: v.n.berzhansky@gmail.com; Shaposhnikov, A. N.; Prokopov, A. R.; Karavainikov, A. V.; Mikhailova, T. V. [V.I. Vernadsky Crimean Federal University (Russian Federation); Lukienko, I. N.; Kharchenko, Yu. N., E-mail: kharcenko@ilt.kharkov.ua [National Academy of Sciences of Ukraine, Verkin Institute for Low Temperature Physics and Engineering (Ukraine); Golub, V. O., E-mail: v-o-golub@yahoo.com; Salyuk, O. Yu. [National Academy of Sciences of Ukraine, Institute of Magnetism (Ukraine); Belotelov, V. I., E-mail: belotelov@physics.msu.ru [Russian Quantum Center (Russian Federation)

    2016-11-15

    One-dimensional magnetophotonic microcavity crystals with nongarnet dielectric mirrors are created and investigated. The defect layers in the magnetophotonic crystals are represented by two bismuth-substituted yttrium iron garnet Bi:YIG layers with various bismuth contents in order to achieve a high magnetooptical response of the crystals. The parameters of the magnetophotonic crystal layers are optimized by numerical solution of the Maxwell equations by the transfer matrix method to achieve high values of Faraday rotation angle Θ{sub F} and magnetooptical Q factor. The calculated and experimental data agree well with each other. The maximum values of Θ{sub F} =–20.6°, Q = 8.1° at a gain t = 16 are obtained for magnetophotonic crystals with m = 7 pairs of layers in Bragg mirrors, and the parameters obtained for crystals with m = 4 and t = 8.5 are Θ{sub F} =–12.5° and Q = 14.3°. It is shown that, together with all-garnet and multimicrocavities magnetophotonic crystals, such structures have high magnetooptical characteristics.

  4. Approximate approaches to the one-dimensional finite potential well

    International Nuclear Information System (INIS)

    Singh, Shilpi; Pathak, Praveen; Singh, Vijay A

    2011-01-01

    The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m i ) is taken to be distinct from mass outside (m o ). A relevant parameter is the mass discontinuity ratio β = m i /m o . To correctly account for the mass discontinuity, we apply the BenDaniel-Duke boundary condition. We obtain approximate solutions for two cases: when the well is shallow and when the well is deep. We compare the approximate results with the exact results and find that higher-order approximations are quite robust. For the shallow case, the approximate solution can be expressed in terms of a dimensionless parameter σ l = 2m o V 0 L 2 /ℎ 2 (or σ = β 2 σ l for the deep case). We show that the lowest-order results are related by a duality transform. We also discuss how the energy upscales with L (E∼1/L γ ) and obtain the exponent γ. Exponent γ → 2 when the well is sufficiently deep and β → 1. The ratio of the masses dictates the physics. Our presentation is pedagogical and should be useful to students on a first course on elementary quantum mechanics or low-dimensional semiconductors.

  5. One-Dimensional Electron Transport Layers for Perovskite Solar Cells

    Science.gov (United States)

    Thakur, Ujwal K.; Kisslinger, Ryan; Shankar, Karthik

    2017-01-01

    The electron diffusion length (Ln) is smaller than the hole diffusion length (Lp) in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D) structures such as nanowires (NWs) and nanotubes (NTs) as electron transport layers (ETLs) is a promising method of achieving high performance halide perovskite solar cells (HPSCs). ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs) as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs). This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells. PMID:28468280

  6. Validation and Comparison of One-Dimensional Graound Motion Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    B. Darragh; W. Silva; N. Gregor

    2006-06-28

    Both point- and finite-source stochastic one-dimensional ground motion models, coupled to vertically propagating equivalent-linear shear-wave site response models are validated using an extensive set of strong motion data as part of the Yucca Mountain Project. The validation and comparison exercises are presented entirely in terms of 5% damped pseudo absolute response spectra. The study consists of a quantitative analyses involving modeling nineteen well-recorded earthquakes, M 5.6 to 7.4 at over 600 sites. The sites range in distance from about 1 to about 200 km in the western US (460 km for central-eastern US). In general, this validation demonstrates that the stochastic point- and finite-source models produce accurate predictions of strong ground motions over the range of 0 to 100 km and for magnitudes M 5.0 to 7.4. The stochastic finite-source model appears to be broadband, producing near zero bias from about 0.3 Hz (low frequency limit of the analyses) to the high frequency limit of the data (100 and 25 Hz for response and Fourier amplitude spectra, respectively).

  7. Large-scale synthesis of Tellurium nanostructures via galvanic displacement of metals

    Science.gov (United States)

    Kok, Kuan-Ying; Choo, Thye-Foo; Ubaidah Saidin, Nur; Rahman, Che Zuraini Che Ab

    2018-01-01

    Tellurium (Te) is an attractive semiconductor material for a wide range of applications in various functional devices including, radiation dosimeters, optical storage materials, thermoelectric or piezoelectric generators. In this work, large scale synthesis of tellurium (Te) nanostructures have been successfully carried out in different concentrations of aqueous solutions containing TeO2 and NaOH, by galvanic displacements of Zn and Al which served as the sacrificial materials. Galvanic displacement process is cost-effective and it requires no template or surfactant for the synthesis of nanostructures. By varying the concentrations of TeO2 and NaOH, etching temperatures and etching times, Te nanostructures of various forms of nanostructures were successfully obtained, ranging from one-dimensional needles and rod-like structures to more complex hierarchical structures. Microscopy examinations on the nanostructures obtained have shown that both the diameters and lengths of the Te nanostructures increased with increasing etching temperature and etching time.

  8. Mesoscopic spin Hall effect in semiconductor nanostructures

    Science.gov (United States)

    Zarbo, Liviu

    The spin Hall effect (SHE) is a name given to a collection of diverse phenomena which share two principal features: (i) longitudinal electric current flowing through a paramagnetic semiconductor or metallic sample leads to transverse spin current and spin accumulation of opposite sign at opposing lateral edges; (ii) SHE does not require externally applied magnetic field or magnetic ordering in the equilibrium state of the sample, instead it relies on the presence of spin-orbit (SO) couplings within the sample. This thesis elaborates on a new type of phenomenon within the SHE family, predicted in our recent studies [Phys. Rev. B 72, 075361 (2005); Phys. Rev. Lett. 95, 046601 (2005); Phys. Rev. B 72, 075335 (2005); Phys. Rev. B 73 , 075303 (2006); and Europhys. Lett. 77, 47004 (2007)], where pure spin current flows through the transverse electrodes attached to a clean finitesize two-dimensional electron gas (2DEG) due to unpolarized charge current injected through its longitudinal leads. If transverse leads are removed, the effect manifests as nonequilibrium spin Hall accumulation at the lateral edges of 2DEG wires. The SO coupling driving this SHE effect is of the Rashba type, which arises due to structural inversion asymmetry of semiconductor heterostructure hosting the 2DEG. We term the effect "mesoscopic" because the spin Hall currents and accumulations reach optimal value in samples of the size of the spin precession length---the distance over which the spin of an electron precesses by an angle pi. In strongly SO-coupled structures this scale is of the order of ˜100 nm, and, therefore, mesoscopic in the sense of being much larger than the characteristic microscopic scales (such as the Fermi wavelength, screening length, or the mean free path in disordered systems), but still much smaller than the macroscopic ones. Although the first theoretical proposal for SHE, driven by asymmetry in SO-dependent scattering of spin-up and spin-down electrons off impurities

  9. Suppressing Klein tunneling in graphene using a one-dimensional array of localized scatterers.

    Science.gov (United States)

    Walls, Jamie D; Hadad, Daniel

    2015-02-13

    Graphene's unique physical and chemical properties make it an attractive platform for use in micro- and nanoelectronic devices. However, electrostatically controlling the flow of electrons in graphene can be challenging as a result of Klein tunneling, where electrons normally incident to a one-dimensional potential barrier of height V are perfectly transmitted even as V → ∞. In this study, theoretical and numerical calculations predict that the transmission probability for an electron wave normally incident to a one-dimensional array of localized scatterers can be significantly less than unity when the electron wavelength is smaller than the spacing between scatterers. In effect, placing periodic openings throughout a potential barrier can, somewhat counterintuitively, decrease transmission in graphene. Our results suggest that electrostatic potentials with spatial variations on the order of the electron wavelength can suppress Klein tunneling and could find applications in developing graphene electronic devices.

  10. Broadband slow light in one-dimensional logically combined photonic crystals.

    Science.gov (United States)

    Alagappan, G; Png, C E

    2015-01-28

    Here, we demonstrate the broadband slow light effects in a new family of one dimensional photonic crystals, which are obtained by logically combining two photonic crystals of slightly different periods. The logical combination slowly destroys the original translational symmetries of the individual photonic crystals. Consequently, the Bloch modes of the individual photonic crystals with different wavevectors couple with each other, creating a vast number of slow modes. Specifically, we describe a photonic crystal architecture that results from a logical "OR" mixture of two one dimensional photonic crystals with a periods ratio of r = R/(R - 1), where R > 2 is an integer. Such a logically combined architecture, exhibits a broad region of frequencies in which a dense number of slow modes with varnishing group velocities, appear naturally as Bloch modes.

  11. Shell-crossing in quasi-one-dimensional flow

    Science.gov (United States)

    Rampf, Cornelius; Frisch, Uriel

    2017-10-01

    Blow-up of solutions for the cosmological fluid equations, often dubbed shell-crossing or orbit crossing, denotes the breakdown of the single-stream regime of the cold-dark-matter fluid. At this instant, the velocity becomes multi-valued and the density singular. Shell-crossing is well understood in one dimension (1D), but not in higher dimensions. This paper is about quasi-one-dimensional (Q1D) flow that depends on all three coordinates but differs only slightly from a strictly 1D flow, thereby allowing a perturbative treatment of shell-crossing using the Euler-Poisson equations written in Lagrangian coordinates. The signature of shell-crossing is then just the vanishing of the Jacobian of the Lagrangian map, a regular perturbation problem. In essence, the problem of the first shell-crossing, which is highly singular in Eulerian coordinates, has been desingularized by switching to Lagrangian coordinates, and can then be handled by perturbation theory. Here, all-order recursion relations are obtained for the time-Taylor coefficients of the displacement field, and it is shown that the Taylor series has an infinite radius of convergence. This allows the determination of the time and location of the first shell-crossing, which is generically shown to be taking place earlier than for the unperturbed 1D flow. The time variable used for these statements is not the cosmic time t but the linear growth time τ ˜ t2/3. For simplicity, calculations are restricted to an Einstein-de Sitter universe in the Newtonian approximation, and tailored initial data are used. However it is straightforward to relax these limitations, if needed.

  12. Research on one-dimensional two-phase flow

    International Nuclear Information System (INIS)

    Adachi, Hiromichi

    1988-10-01

    In Part I the fundamental form of the hydrodynamic basic equations for a one-dimensional two-phase flow (two-fluid model) is described. Discussions are concentrated on the treatment of phase change inertial force terms in the equations of motion and the author's equations of motion which have a remarkable uniqueness on the following three points. (1) To express force balance of unit mass two-phase fluid instead of that of unit volume two-phase fluid. (2) To pick up the unit existing mass and the unit flowing mass as the unit mass of two-phase fluid. (3) To apply the kinetic energy principle instead of the momentum low in the evaluation of steady inertial force term. In these three, the item (1) is for excluding a part of momentum change or kinetic energy change due to mass change of the examined part of fluid, which is independent of force. The item (2) is not to introduce a phenomenological physical model into the evaluation of phase change inertial force term. And the item (3) is for correctly applying the momentum law taking into account the difference of representative velocities between the main flow fluid (vapor phase or liquid phase) and the phase change part of fluid. In Part II, characteristics of various kinds of high speed two-phase flow are clarified theoretically by the basic equations derived. It is demonstrated that the steam-water two-phase critical flow with violent flashing and the airwater two-phase critical flow without phase change can be described with fundamentally the same basic equations. Furthermore, by comparing the experimental data from the two-phase critical discharge test and the theoretical prediction, the two-phase discharge coefficient, C D , for large sharp-edged orifice is determined as the value which is not affected by the experimental facility characteristics, etc. (author)

  13. Fractal spectra in generalized Fibonacci one-dimensional magnonic quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Costa, C.H.O. [Departamento de Fisica Teorica e Experimental, Universidade Federal do Rio grande do Norte, 59072-970 Natal-RN (Brazil); Vasconcelos, M.S., E-mail: manoelvasconcelos@yahoo.com.br [Escola de Ciencias e Tecnologia, Universidade Federal do Rio grande do Norte, 59072-970 Natal-RN (Brazil); Barbosa, P.H.R.; Barbosa Filho, F.F. [Departamento de Fisica, Universidade Federal do Piaui, 64049-550 Teresina-Pi (Brazil)

    2012-07-15

    In this work we carry out a theoretical analysis of the spectra of magnons in quasiperiodic magnonic crystals arranged in accordance with generalized Fibonacci sequences in the exchange regime, by using a model based on a transfer-matrix method together random-phase approximation (RPA). The generalized Fibonacci sequences are characterized by an irrational parameter {sigma}(p,q), which rules the physical properties of the system. We discussed the magnonic fractal spectra for first three generalizations, i.e., silver, bronze and nickel mean. By varying the generation number, we have found that the fragmentation process of allowed bands makes possible the emergence of new allowed magnonic bulk bands in spectra regions that were magnonic band gaps before, such as which occurs in doped semiconductor devices. This interesting property arises in one-dimensional magnonic quasicrystals fabricated in accordance to quasiperiodic sequences, without the need to introduce some deferent atomic layer or defect in the system. We also make a qualitative and quantitative investigations on these magnonic spectra by analyzing the distribution and magnitude of allowed bulk bands in function of the generalized Fibonacci number F{sub n} and as well as how they scale as a function of the number of generations of the sequences, respectively. - Highlights: Black-Right-Pointing-Pointer Quasiperiodic magnonic crystals are arranged in accordance with the generalized Fibonacci sequence. Black-Right-Pointing-Pointer Heisenberg model in exchange regime is applied. Black-Right-Pointing-Pointer We use a theoretical model based on a transfer-matrix method together random-phase approximation. Black-Right-Pointing-Pointer Fractal spectra are characterized. Black-Right-Pointing-Pointer We analyze the distribution of allowed bulk bands in function of the generalized Fibonacci number.

  14. Effects of tissue fixation and dehydration on tendon collagen nanostructure.

    Science.gov (United States)

    Turunen, Mikael J; Khayyeri, Hanifeh; Guizar-Sicairos, Manuel; Isaksson, Hanna

    2017-09-01

    Collagen is the most prominent protein in biological tissues. Tissue fixation is often required for preservation or sectioning of the tissue. This may affect collagen nanostructure and potentially provide incorrect information when analyzed after fixation. We aimed to unravel the effect of 1) ethanol and formalin fixation and 2) 24h air-dehydration on the organization and structure of collagen fibers at the nano-scale using small and wide angle X-ray scattering. Samples were divided into 4 groups: ethanol fixed, formalin fixed, and two untreated sample groups. Samples were allowed to air-dehydrate in handmade Kapton pockets during the measurements (24h) except for one untreated group. Ethanol fixation affected the collagen organization and nanostructure substantially and during 24h of dehydration dramatic changes were evident. Formalin fixation had minor effects on the collagen organization but after 12h of air-dehydration the spatial variation increased substantially, not evident in the untreated samples. Generally, collagen shrinkage and loss of alignment was evident in all samples during 24h of dehydration but the changes were subtle in all groups except the ethanol fixed samples. This study shows that tissue fixation needs to be chosen carefully in order to preserve the features of interest in the tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Nanostructured magnesium has fewer detrimental effects on osteoblast function.

    Science.gov (United States)

    Weng, Lucy; Webster, Thomas J

    2013-01-01

    Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications.

  16. Nanostructured magnesium has fewer detrimental effects on osteoblast function

    Science.gov (United States)

    Weng, Lucy; Webster, Thomas J

    2013-01-01

    Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications. PMID:23674891

  17. Study of quantum confinement effects in ZnO nanostructures

    Science.gov (United States)

    Movlarooy, Tayebeh

    2018-03-01

    Motivation to fact that zinc oxide nanowires and nanotubes with successful synthesis and the mechanism of formation, stability and electronic properties have been investigated; in this study the structural, electronic properties and quantum confinement effects of zinc oxide nanotubes and nanowires with different diameters are discussed. The calculations within density functional theory and the pseudo potential approximation are done. The electronic structure and energy gap for Armchair and zigzag ZnO nanotubes with a diameter of about 4 to 55 Angstrom and ZnO nanowires with a diameter range of 4 to 23 Å is calculated. The results revealed that due to the quantum confinement effects, by reducing the diameter of nanowires and nanotubes, the energy gap increases. Zinc oxide semiconductor nanostructures since having direct band gap with size-dependent and quantum confinement effect are recommended as an appropriate candidate for making nanoscale optoelectronic devices.

  18. Effect of dielectric confinement on optical properties of colloidal nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Rodina, A. V., E-mail: anna.rodina@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Efros, Al. L., E-mail: efros@nrl.navy.mil [Naval Research Laboratory (United States)

    2016-03-15

    We review the effects caused by a large difference in the dielectric constants of a semiconductor and its surrounding in colloidal semiconductor nanostructures (NSs) with various shapes, e.g., nanocrystals, nanorods, and nanoplatelets. The difference increases the electron–hole interaction and consequently the exciton binding energy and its oscillator transition strength. On the other hand, this difference reduces the electric field of a photon penetrating the NS (the phenomenon is called the local field effect) and reduces the photon coupling to an exciton. We show that the polarization properties of the individual colloidal NSs as well as of their randomly oriented ensemble are determined both by the anisotropy of the local field effect and by the symmetry of the exciton states participating in optical transitions. The calculations explain the temperature and time dependences of the degree of linear polarization measured in an ensemble of CdSe nanocrystals.

  19. Numerical solution of multigroup diffuse equations of one-dimensional geometry

    International Nuclear Information System (INIS)

    Pavelesku, M.; Adam, S.

    1975-01-01

    The one-dimensional diffuse theory is used for reactor physics calculations of fast reactors. Computer program based on the one-dimensional diffuse theory is speedy and not memory consuming. The algorithm is described for the three-zone fast reactor criticality computation in one-dimensional diffusion approximation. This algorithm is realised on IBM 370/135 computer. (I.T.)

  20. Time-dependent Bragg diffraction and short-pulse reflection by one-dimensional photonic crystals

    International Nuclear Information System (INIS)

    André, Jean-Michel; Jonnard, Philippe

    2015-01-01

    The time-dependence of the Bragg diffraction by one-dimensional photonic crystals and its influence on the short pulse reflection are studied in the framework of the coupled-wave theory. The indicial response of the photonic crystal is calculated and it appears that it presents a time-delay effect with a transient time conditioned by the extinction length. A numerical simulation is presented for a Bragg mirror in the x-ray domain and a pulse envelope modelled by a sine-squared shape. The potential consequences of the time-delay effect in time-dependent optics of short-pulses are emphasized. (paper)

  1. Quasi-One-Dimensional Particle-in-Cell Simulation of Magnetic Nozzles

    Science.gov (United States)

    Ebersohn, Frans H.; Sheehan, J. P.; Gallimore, Alec D.; Shebalin, John V.

    2015-01-01

    A method for the quasi-one-dimensional simulation of magnetic nozzles is presented and simulations of a magnetic nozzle are performed. The effects of the density variation due to plasma expansion and the magnetic field forces on ion acceleration are investigated. Magnetic field forces acting on the electrons are found to be responsible for the formation of potential structures which accelerate ions. The effects of the plasma density variation alone are found to only weakly affect ion acceleration. Strongly diverging magnetic fields drive more rapid potential drops.

  2. Controlling the light propagation in one-dimensional photonic crystal via incoherent pump and interdot tunneling

    Science.gov (United States)

    Abbasabadi, Majid; Sahrai, Mostafa

    2018-01-01

    We investigated the propagation of an electromagnetic pulse through a one-dimensional photonic crystal doped with quantum-dot (QD) molecules in a defect layer. The QD molecules behave as a three-level quantum system and are driven by a coherent probe laser field and an incoherent pump field. No coherent coupling laser fields were introduced, and the coherence was created by the interdot tunnel effect. Further studied was the effect of tunneling and incoherent pumping on the group velocity of the transmitted and reflected probe pulse.

  3. A mean field study of the quasi-one-dimensional antiferromagnetic anisotropic Heisenberg model

    International Nuclear Information System (INIS)

    Benyoussef, A.

    1996-10-01

    The effect of the chain and the dimer anisotropies on the ground state energy and the energy gap of the spin-1/2 quasi-one-dimensional antiferromagnetic Heisenberg model is investigated using a mean field theory. The dependence of the magnetization and the effective hopping parameters on the anisotropy α xy (=J xy perpendicular /J xy parallel ) are presented for several values of the chain anisotropy. However, such a system exhibits a transition from antiferromagnetic ordered to disordered phases for arbitrary chain anisotropy and dimer anisotropy. (author). 22 refs, 11 figs

  4. Wave propagation inside one-dimensional photonic crystals with single-negative materials

    International Nuclear Information System (INIS)

    Wang Ligang; Chen Hong; Zhu Shiyao

    2006-01-01

    The propagation of light waves in one-dimensional photonic crystals (1DPCs) composed of alternating layers of two kinds of single-negative materials is investigated theoretically. The phase velocity is negative when the frequency of the light wave is smaller than the certain critical frequency ω cr , while the Poynting vector is always positive. At normal incidence, such 1DPCs may act as equivalent left-handed materials. At the inclined incidence, the effective wave vectors inside such 1DPCs do refract negatively, while the effective energy flows do not refract negatively. Therefore, at the inclined incidence, the 1DPCs are not equivalent to the left-handed materials

  5. Effect of Second Phase Particles on the Tensile Instability of a Nanostructured Al-1%Si Alloy

    DEFF Research Database (Denmark)

    Huang, Tian Lin; Wu, Gui Lin; Liu, Qing

    2014-01-01

    A nanostructured Al-1%Si alloy containing dispersed Si particles was produced by heavily cold-rolling to study the effect of second phase particles on the tensile instability of nanostructured metals. Tensile tests were conducted on the as-deformed sample and the samples after recovery annealing ...

  6. Lime Kiln Modeling. CFD and One-dimensional simulations

    Energy Technology Data Exchange (ETDEWEB)

    Svedin, Kristoffer; Ivarsson, Christofer; Lundborg, Rickard

    2009-03-15

    The incentives for burning alternative fuels in lime kilns are growing. An increasing demand on thorough investigations of alternative fuel impact on lime kiln performance have been recognized, and the purpose of this project has been to develop a lime kiln CFD model with the possibility to fire fuel oil and lignin. The second part of the project consists of three technical studies. Simulated data from a one-dimensional steady state program has been used to support theories on the impact of biofuels and lime mud dryness. The CFD simulations was carried out in the commercial code FLUENT. Due to difficulties with the convergence of the model the calcination reaction is not included. The model shows essential differences between the two fuels. Lignin gives a different flame shape and a longer flame length compared to fuel oil. Mainly this depends on how the fuel is fed into the combustion chamber and how much combustion air that is added as primary and secondary air. In the case of lignin combustion the required amount of air is more than in the fuel oil case. This generates more combustion gas and a different flow pattern is created. Based on the values from turbulent reaction rate for the different fuels an estimated flame length can be obtained. For fuel oil the combustion is very intense with a sharp peak in the beginning and a rapid decrease. For lignin the combustion starts not as intense as for the fuel oil case and has a smoother shape. The flame length appears to be approximately 2-3 meter longer for lignin than for fuel oil based on turbulent reaction rate in the computational simulations. The first technical study showed that there are many benefits of increasing dry solids content in the lime mud going into a kiln such as increased energy efficiency, reduced TRS, and reduced sodium in the kiln. However, data from operating kilns indicates that these benefits can be offset by increasing exit gas temperature that can limit kiln production capacity. Simulated

  7. Surface morphology effects on the light-controlled wettability of ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Khranovskyy, V., E-mail: volkh@ifm.liu.se [Department of Physics, Chemistry and Biology (IFM), Linkoping University (Sweden); Ekblad, T.; Yakimova, R.; Hultman, L. [Department of Physics, Chemistry and Biology (IFM), Linkoping University (Sweden)

    2012-08-01

    ZnO nanostructures of diverse morphology with shapes of corrals and cabbages as well as open and filled hexagons and sheaves prepared by APMOCVD technique, are investigated with water contact angle (CA) analysis. The as-grown ZnO nanostructures exhibit pure hydrophobic behavior, which is enhanced with the increase of the nanostructure's surface area. The most hydrophobic structures (CA = 124 Degree-Sign ) were found to be the complex nanosheaf, containing both the macro-and nanoscale features. It is concluded that the nanoscale roughness contributes significantly to the hydrophobicity increase. The character of wettability was possible to switch from hydrophobic-to-superhydrophilic state upon ultra violet irradiation. Both the rate and amplitude of the contact angle depend on the characteristic size of nanostructure. The observed effect is explained due to the semiconductor properties of zinc oxide enhanced by increased surface chemistry effect in nanostructures.

  8. Spinon confinement in a quasi-one-dimensional XXZ Heisenberg antiferromagnet

    Science.gov (United States)

    Lake, Bella; Bera, Anup K.; Essler, Fabian H. L.; Vanderstraeten, Laurens; Hubig, Claudius; Schollwock, Ulrich; Islam, A. T. M. Nazmul; Schneidewind, Astrid; Quintero-Castro, Diana L.

    Half-integer spin Heisenberg chains constitute a key paradigm for quantum number fractionalization: flipping a spin creates a minimum of two elementary spinon excitations. These have been observed in numerous experiments. We report on inelastic neutron scattering experiments on the quasi-one-dimensional anisotropic spin-1/2 Heisenberg antiferromagnet SrCo2V2O8. These reveal a mechanism for temperature-induced spinon confinement, manifesting itself in the formation of sequences of spinon bound states. A theoretical description of this effect is achieved by a combination of analytical and numerical methods.

  9. Self-consistent one-dimensional modelling of x-ray laser plasmas

    International Nuclear Information System (INIS)

    Wan, A.S.; Walling, R.S.; Scott, H.A.; Mayle, R.W.; Osterheld, A.L.

    1992-01-01

    This paper presents the simulation of a planar, one-dimensional expanding Ge x-ray laser plasma using a new code which combines hydrodynamics, laser absorption, and detailed level population calculations within the same simulation. Previously, these simulations were performed in separate steps. We will present the effect of line transfer on gains and excited level populations and compare the line transfer result with simulations using escape probabilities. We will also discuss the impact of different atomic models on the accuracy of our simulation

  10. One dimensional analysis model for condensation heat transfer in feed water heater

    International Nuclear Information System (INIS)

    Murase, Michio; Takamori, Kazuhide; Aihara, Tsuyoshi

    1998-01-01

    In order to simplify condensation heat transfer calculations for feed water heaters, one dimensional (1D) analyses were compared with three dimensional (3D) analyses. The results showed that average condensation heat transfer coefficients by 1D analyses with 1/2 rows of heat transfer tubes agreed with those by 3D analyses within 7%. Using the 1D analysis model, effects of the pitch of heat transfer tubes were evaluated. The results showed that the pitch did not affect much on heat transfer rates and that the size of heat transfer tube bundle could be decreased by a small pitch. (author)

  11. Semi-analytical model for a slab one-dimensional photonic crystal

    Science.gov (United States)

    Libman, M.; Kondratyev, N. M.; Gorodetsky, M. L.

    2018-02-01

    In our work we justify the applicability of a dielectric mirror model to the description of a real photonic crystal. We demonstrate that a simple one-dimensional model of a multilayer mirror can be employed for modeling of a slab waveguide with periodically changing width. It is shown that this width change can be recalculated to the effective refraction index modulation. The applicability of transfer matrix method of reflection properties calculation was demonstrated. Finally, our 1-D model was employed to analyze reflection properties of a 2-D structure - a slab photonic crystal with a number of elliptic holes.

  12. Extension of One-Dimensional Models for Hyperelastic String Structures under Coulomb Friction with Adhesion

    Directory of Open Access Journals (Sweden)

    Vladimir Shiryaev

    2018-04-01

    Full Text Available A stretching behavior of knitted and woven textiles is modeled. In our work, the yarns are modeled as one-dimensional hyperelastic strings with frictional contact. Capstan law known for Coulomb’s friction of yarns is extended to an additional adhesion due to gluing of filaments on the yarn surface or some chemical reaction. Two-step Newton’s method is applied for the solution of the large stretching with sliding evolution in the contact nodes. The approach is illustrated on a hysteresis of knitted textile and on the force-strain curve for a woven pattern and both compared with experimental effective curves.

  13. Magnetic susceptibility of one-dimensional ferromagnetic CsFeCl3 crystals

    International Nuclear Information System (INIS)

    Tsuboi, T.; Chiba, M.

    1989-01-01

    The parallel and perpendicular magnetic susceptibilities of one-dimensional ferromagnetic CsFeCl 3 crystals have been calculated from magnetization measured as a function of temperature in the range 0 to 70 K by means of a superconducting quantum interference device (SQUID). The experimental results have been compared with data from the literature for other Cs-and Rb-containing crystals with ferromagnetic or antiferromagnetic linear chains. Reliable values of the exchange and anisotropy energies can be estimated from experimental susceptibility data using theoretical g-values and the dynamical correlated-effective field approximation

  14. Transmission and Andreev reflection in one-dimensional chain with randomly doped superconducting grains

    International Nuclear Information System (INIS)

    Hu Dongsheng; Xiong Shijie

    2002-01-01

    We investigate the transport properties and Andreev reflection in one-dimensional (1D) systems with randomly doped superconducting grains. The superconducting grains are described by the Bogoliubov-de Gene Hamiltonian and the conductance is calculated by using the transfer matrix method and Landauer-Buettiker formula. It is found that although the quasiparticle states are localized due to the randomness and the low dimensionality, the conductance is still kept finite in the thermodynamical limit due to the Andreev reflection. We also investigate the effect of correlation of disorder in such systems and the results show the delocalization of quasiparticle states and suppression of Andreev reflection in a wide energy window

  15. Photonic band structures in one-dimensional photonic crystals containing Dirac materials

    International Nuclear Information System (INIS)

    Wang, Lin; Wang, Li-Gang

    2015-01-01

    We have investigated the band structures of one-dimensional photonic crystals (1DPCs) composed of Dirac materials and ordinary dielectric media. It is found that there exist an omnidirectional passing band and a kind of special band, which result from the interaction of the evanescent and propagating waves. Due to the interface effect and strong dispersion, the electromagnetic fields inside the special bands are strongly enhanced. It is also shown that the properties of these bands are invariant upon the lattice constant but sensitive to the resonant conditions

  16. Coulomb blockade threshold in finite one-dimensional arrays of small tunnel junctions

    International Nuclear Information System (INIS)

    Lien, Nguyen V.; Dat, Nguyen T.; Nam, Nguyen H.

    2001-11-01

    The current-voltage characteristics of one-dimensional tunnel junction arrays are simulated using the semiclassical and full capacitance matrix description. The threshold voltage V th of the Coulomb blockade (CB) is evaluated and analyzed in detail as a function of the gate capacitance C 0 , the array length N, the temperature, and the degree of disorder. The disordered effect is found to be essential, while the long range interaction included in the full capacitance matrix calculations, when decreasing V th , weakly affects the qualitative behaviour of the CB for the V th (C 0 ) - and the V th (N)-dependences. (author)

  17. Phase slip process and charge density wave dynamics in a one dimensional conductor

    Science.gov (United States)

    Habiballah, N.; Zouadi, M.; Arbaoui, A.; Qjani, M.; Dumas, J.

    In this paper, we study the phase slip effect on the charge density wave (CDW) dynamics in a one-dimensional conductor in the weak pinning limit. A considerable enhancement of JCDW is observed in the presence of phase slips. In addition, a spatial dependence of the CDW current density JCDW is also studied showing that a decrease of JCDW with distance from the current contact occurs. The results are discussed in terms the relationship between additional phase slips and the mobility of phase dislocations nucleated at electrical contacts.

  18. A one-dimensional model of resonances with a delta barrier and mass jump

    International Nuclear Information System (INIS)

    Alvarez, J.J.; Gadella, M.; Heras, F.J.H.; Nieto, L.M.

    2009-01-01

    In this Letter, we present a one-dimensional model that includes a hard core at the origin, a Dirac delta barrier at a point in the positive semiaxis and a mass jump at the same point. We study the effect of this mass jump in the behavior of the resonances of the model. We obtain an infinite number of resonances for this situation, showing that for the case of a mass jump the imaginary part of the resonance poles tend to a fixed value depending on the quotient of masses, and demonstrate that none of these resonances is degenerated.

  19. Classical Lie Point Symmetry Analysis of a Steady Nonlinear One-Dimensional Fin Problem

    Directory of Open Access Journals (Sweden)

    R. J. Moitsheki

    2012-01-01

    Full Text Available We consider the one-dimensional steady fin problem with the Dirichlet boundary condition at one end and the Neumann boundary condition at the other. Both the thermal conductivity and the heat transfer coefficient are given as arbitrary functions of temperature. We perform preliminary group classification to determine forms of the arbitrary functions appearing in the considered equation for which the principal Lie algebra is extended. Some invariant solutions are constructed. The effects of thermogeometric fin parameter and the exponent on temperature are studied. Also, the fin efficiency is analyzed.

  20. Relativistic bound-state problem of a one-dimensional system

    International Nuclear Information System (INIS)

    Sato, T.; Niwa, T.; Ohtsubo, H.; Tamura, K.

    1991-01-01

    A Poincare-covariant description of the two-body bound-state problem in one-dimensional space is studied by using the relativistic Schrodinger equation. We derive the many-body Hamiltonian, electromagnetic current and generators of the Poincare group in the framework of one-boson exchange. Our theory satisfies Poincare algebra within the one-boson-exchange approximation. We numerically study the relativistic effects on the bound-state wavefunction and the elastic electromagnetic form factor. The Lorentz boost of the bound-state wavefunction and the two-body exchange current are shown to play an important role in guaranteeing the Lorentz invariance of the form factor. (author)

  1. A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence

    Science.gov (United States)

    Kibbey, Timothy P.

    2014-01-01

    A derivation of turbulent flow parameters, combined with data from erosive burning test motors and blowing wall tests results in erosive burning model candidates useful in one-dimensional internal ballistics analysis capable of scaling across wide ranges of motor size. The real-time burn rate data comes from three test campaigns of subscale segmented solid rocket motors tested at two facilities. The flow theory admits the important effect of the blowing wall on the turbulent friction coefficient by using blowing wall data to determine the blowing wall friction coefficient. The erosive burning behavior of full-scale motors is now predicted more closely than with other recent models.

  2. Some optical properties of one dimensional annular photonic crystal with plasma frequency

    Science.gov (United States)

    Pandeya, G. N.; Thapa, Khem B.

    2018-05-01

    This paper presents the reflection bands, photonic band gaps, of the one-dimensional annul photonic crystal (APC) containing double negative (DNG) metamaterials and air. The proposed annular structure consists of the alternate layers of dispersive DNG material and air immersed in free space. The reflectance properties of the APC by employing the transfer matrix method (TMM) in the cylindrical waves for TE polarization is studied theoretically. In addition of this, we have also studied the effect of plasma frequency on the reflection behavior of the considered annular structure.

  3. Interference electron microscopy of one-dimensional electron-optical phase objects

    International Nuclear Information System (INIS)

    Fazzini, P.F.; Ortolani, L.; Pozzi, G.; Ubaldi, F.

    2006-01-01

    The application of interference electron microscopy to the investigation of electron optical one-dimensional phase objects like reverse biased p-n junctions and ferromagnetic domain walls is considered. In particular the influence of diffraction from the biprism edges on the interference images is analyzed and the range of applicability of the geometric optical equation for the interpretation of the interference fringe shifts assessed by comparing geometric optical images with full wave-optical simulations. Finally, the inclusion of partial spatial coherence effects are discussed

  4. SSS: A code for computing one dimensional shock and detonation wave propagation

    International Nuclear Information System (INIS)

    Sun Chengwei

    1986-01-01

    The one-dimensional hydrodynamic code SSS for shock and detonation wave propagation in inert and reactive media is described. The elastic-plastic-hydrodynamic model and four burn techniques (the Arrhenius law, C-J volume, sharp shock and Forest Fire) are used. There are HOM and JWL options for the state equation of detonation products. Comparing with the SIN code published by LANL, the SSS code has several new options: laser effects, blast waves, diverging and instantaneous detonation waves with arbitrary initiation positions. Two examples are given to compare the SSS and SIN calculations with the experimental data

  5. One-dimensional acoustic standing waves in rectangular channels for flow cytometry.

    Science.gov (United States)

    Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A; Naivar, Mark A; Lόpez, Gabriel P; Graves, Steven W

    2012-07-01

    Flow cytometry has become a powerful analytical tool for applications ranging from blood diagnostics to high throughput screening of molecular assemblies on microsphere arrays. However, instrument size, expense, throughput, and consumable use limit its use in resource poor areas of the world, as a component in environmental monitoring, and for detection of very rare cell populations. For these reasons, new technologies to improve the size and cost-to-performance ratio of flow cytometry are required. One such technology is the use of acoustic standing waves that efficiently concentrate cells and particles to the center of flow channels for analysis. The simplest form of this method uses one-dimensional acoustic standing waves to focus particles in rectangular channels. We have developed one-dimensional acoustic focusing flow channels that can be fabricated in simple capillary devices or easily microfabricated using photolithography and deep reactive ion etching. Image and video analysis demonstrates that these channels precisely focus single flowing streams of particles and cells for traditional flow cytometry analysis. Additionally, use of standing waves with increasing harmonics and in parallel microfabricated channels is shown to effectively create many parallel focused streams. Furthermore, we present the fabrication of an inexpensive optical platform for flow cytometry in rectangular channels and use of the system to provide precise analysis. The simplicity and low-cost of the acoustic focusing devices developed here promise to be effective for flow cytometers that have reduced size, cost, and consumable use. Finally, the straightforward path to parallel flow streams using one-dimensional multinode acoustic focusing, indicates that simple acoustic focusing in rectangular channels may also have a prominent role in high-throughput flow cytometry. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Exactly solvable irreversible processes on one-dimensional lattices

    International Nuclear Information System (INIS)

    Wolf, N.O.; Evans, J.W.; Hoffman, D.K.

    1984-01-01

    We consider the kinetics of a process where the sites of an infinite 1-D lattice are filled irreversibly and, in general, cooperatively by N-mers (taking N consecutive sites at a time). We extend the previously available exact solution for nearest neighbor cooperative effects to range N cooperative effects. Connection with the continuous ''cooperative car parking problem'' is indicated. Both uniform and periodic lattices, and empty and certain partially filled lattice initial conditions are considered. We also treat monomer ''filling in stages'' for certain highly autoinhibitory cooperative effects of arbitrary range

  7. Analytical Modeling of Transient Process In Terms of One-Dimensional Problem of Dynamics With Kinematic Action

    Directory of Open Access Journals (Sweden)

    Kravets Victor V.

    2016-05-01

    Full Text Available One-dimensional dynamic design of a component characterized by inertia coefficient, elastic coefficient, and coefficient of energy dispersion. The component is affected by external action in the form of time-independent initial kinematic disturbances and varying ones. Mathematical model of component dynamics as well as a new form of analytical representation of transient in terms of one-dimensional problem of kinematic effect is provided. Dynamic design of a component is being carried out according to a theory of modal control.

  8. Three species one-dimensional kinetic model for weakly ionized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J., E-mail: jorge.gonzalez@upm.es; Donoso, J. M.; Tierno, S. P. [Department of Applied Physics, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2016-06-15

    A three species one-dimensional kinetic model is presented for a spatially homogeneous weakly ionized plasma subjected to the action of a time varying electric field. Planar geometry is assumed, which means that the plasma evolves in the privileged direction of the field. The energy transmitted to the electric charges is channelized to the neutrals thanks to collisions, a mechanism that influences the plasma dynamics. Charge-charge interactions have been designed as a one-dimensional collision term equivalent to the Landau operator used for fully ionized plasmas. Charge-neutral collisions are modelled by a conservative drift-diffusion operator in the Dougherty's form. The resulting set of coupled integro-differential equations is solved with the stable and robust propagator integral method. This semi–analytical method feasibility accounts for non–linear effects without appealing to linearisation or simplifications, providing conservative physically meaningful solutions even for initial or emerging sharp velocity distribution function profiles. It is found that charge-neutral collisions exert a significant effect since a quite different plasma evolution arises if compared to the collisionless limit. In addition, substantial differences in the system motion are found for constant and temperature dependent collision frequencies cases.

  9. One dimensionalization in the spin-1 Heisenberg model on the anisotropic triangular lattice

    Science.gov (United States)

    Gonzalez, M. G.; Ghioldi, E. A.; Gazza, C. J.; Manuel, L. O.; Trumper, A. E.

    2017-11-01

    We investigate the effect of dimensional crossover in the ground state of the antiferromagnetic spin-1 Heisenberg model on the anisotropic triangular lattice that interpolates between the regime of weakly coupled Haldane chains (J'≪J ) and the isotropic triangular lattice (J'=J ). We use the density-matrix renormalization group (DMRG) and Schwinger boson theory performed at the Gaussian correction level above the saddle-point solution. Our DMRG results show an abrupt transition between decoupled spin chains and the spirally ordered regime at (J'/J) c˜0.42 , signaled by the sudden closing of the spin gap. Coming from the magnetically ordered side, the computation of the spin stiffness within Schwinger boson theory predicts the instability of the spiral magnetic order toward a magnetically disordered phase with one-dimensional features at (J'/J) c˜0.43 . The agreement of these complementary methods, along with the strong difference found between the intra- and the interchain DMRG short spin-spin correlations for sufficiently large values of the interchain coupling, suggests that the interplay between the quantum fluctuations and the dimensional crossover effects gives rise to the one-dimensionalization phenomenon in this frustrated spin-1 Hamiltonian.

  10. One-dimensional cuts through multidimensional potential-energy surfaces by tunable x rays

    Science.gov (United States)

    Eckert, Sebastian; da Cruz, Vinícius Vaz; Gel'mukhanov, Faris; Ertan, Emelie; Ignatova, Nina; Polyutov, Sergey; Couto, Rafael C.; Fondell, Mattis; Dantz, Marcus; Kennedy, Brian; Schmitt, Thorsten; Pietzsch, Annette; Odelius, Michael; Föhlisch, Alexander

    2018-05-01

    The concept of the potential-energy surface (PES) and directional reaction coordinates is the backbone of our description of chemical reaction mechanisms. Although the eigenenergies of the nuclear Hamiltonian uniquely link a PES to its spectrum, this information is in general experimentally inaccessible in large polyatomic systems. This is due to (near) degenerate rovibrational levels across the parameter space of all degrees of freedom, which effectively forms a pseudospectrum given by the centers of gravity of groups of close-lying vibrational levels. We show here that resonant inelastic x-ray scattering (RIXS) constitutes an ideal probe for revealing one-dimensional cuts through the ground-state PES of molecular systems, even far away from the equilibrium geometry, where the independent-mode picture is broken. We strictly link the center of gravity of close-lying vibrational peaks in RIXS to a pseudospectrum which is shown to coincide with the eigenvalues of an effective one-dimensional Hamiltonian along the propagation coordinate of the core-excited wave packet. This concept, combined with directional and site selectivity of the core-excited states, allows us to experimentally extract cuts through the ground-state PES along three complementary directions for the showcase H2O molecule.

  11. Optical enhancement effects of plasmonic nanostructures on organic photovoltaic cells

    KAUST Repository

    Park, Hui Joon; Guo, L. Jay

    2015-01-01

    .g. hundreds of nanometers). Especially, the performances of OPVs with plasmonic nanoparticles in photoactive and buffer layers and with periodic nanostructures were investigated. Furthermore, nanoimprint lithography-based nanofabrication processes that can

  12. Polynuclear and one-dimensional cyanide-bridged heterobimetallic ...

    Indian Academy of Sciences (India)

    JINGWEN SHI

    2018-02-07

    Feb 7, 2018 ... complexes: synthesis, crystal structures and magnetic properties. JINGWEN ... Introduction. In the recent past decades, many effective strategies have ..... organization of single molecule magnets on surfaces. Chem. Soc. Rev. ... Spin Crossover Coordination Polymer Cryst. Growth. Des. 17 2736. 17. Kaneko ...

  13. Study of morphology effects on magnetic interactions and band gap variations for 3d late transition metal bi-doped ZnO nanostructures by hybrid DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Soumendu, E-mail: soumendu@bose.res.in; Baral, Sayan; Mookerjee, Abhijit [Department of Condensed Matter Physics and Material Sciences, S.N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata 700 098 (India); Kaphle, Gopi Chandra [Central Department of Physics, Tribhuvan University, Kathmandu (Nepal)

    2015-08-28

    Using density functional theory (DFT) based electronic structure calculations, the effects of morphology of semiconducting nanostructures on the magnetic interaction between two magnetic dopant atoms as well as a possibility of tuning band gaps have been studied in the case of the bi-doped (ZnO){sub 24} nanostructures with the impurity dopant atoms of the 3d late transition metals—Mn, Fe, Co, Ni, and Cu. To explore the morphology effect, three different structures of the host (ZnO){sub 24} nano-system, having different degrees of spatial confinement, have been considered: a two dimensional nanosheet, a one dimensional nanotube, and a finite cage-shaped nanocluster. The present study employs hybrid density functional theory to accurately describe the electronic structure of all the systems. It is shown here that the magnetic coupling between the two dopant atoms remains mostly anti-ferromagnetic in the course of changing the morphology from the sheet geometry to the cage-shaped geometry of the host systems, except for the case of energetically most stable bi-Mn doping, which shows a transition from ferromagnetic to anti-ferromagnetic coupling with decreasing aspect ratio of the host system. The effect of the shape change, however, has a significant effect on the overall band gap variations of both the pristine as well as all the bi-doped systems, irrespective of the nature of the dopant atoms and provides a means for easy tunability of their optoelectronic properties.

  14. Single-photon switch: Controllable scattering of photons inside a one-dimensional resonator waveguide

    Science.gov (United States)

    Zhou, L.; Gong, Z. R.; Liu, Y. X.; Sun, C. P.; Nori, F.

    2010-03-01

    We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits. References: L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of photons inside a one-dimensional resonator waveguide, Phys. Rev. Lett. 101, 100501 (2008). L. Zhou, H. Dong, Y.X. Liu, C.P. Sun, F. Nori, Quantum super-cavity with atomic mirrors, Phys. Rev. A 78, 063827 (2008).

  15. Expectation-based approach for one-dimensional randomly disordered phononic crystals

    International Nuclear Information System (INIS)

    Wu, Feng; Gao, Qiang; Xu, Xiaoming; Zhong, Wanxie

    2014-01-01

    An expectation-based approach to the statistical theorem is proposed for the one-dimensional randomly disordered phononic crystal. In the proposed approach, the expectations of the random eigenstates of randomly disordered phononic crystals are investigated. In terms of the expectations of the random eigenstates, the wave propagation and localization phenomenon in the random phononic crystal could be understood in a statistical perspective. Using the proposed approach, it is proved that for a randomly disordered phononic crystal, the Bloch theorem holds in the perspective of expectation. A one-dimensional randomly disordered binary phononic crystal consisting of two materials with the random geometry size or random physical parameter is addressed by using the proposed approach. From the result, it can be observed that with the increase of the disorder degree, the localization of the expectations of the eigenstates is strengthened. The effect of the random disorder on the eigenstates at higher frequencies is more significant than that at lower frequencies. Furthermore, after introducing the random disorder into phononic crystals, some random divergent eigenstates are changed to localized eigenstates in expectation sense.

  16. A quasi-one-dimensional theory of sound propagation in lined ducts with mean flow

    Science.gov (United States)

    Dokumaci, Erkan

    2018-04-01

    Sound propagation in ducts with locally-reacting liners has received the attention of many authors proposing two- and three-dimensional solutions of the convected wave equation and of the Pridmore-Brown equation. One-dimensional lined duct models appear to have received less attention. The present paper proposes a quasi-one-dimensional theory for lined uniform ducts with parallel sheared mean flow. The basic assumption of the theory is that the effects of refraction and wall compliance on the fundamental mode remain within ranges in which the acoustic fluctuations are essentially uniform over a duct section. This restricts the model to subsonic low Mach numbers and Helmholtz numbers of less than about unity. The axial propagation constants and the wave transfer matrix of the duct are given by simple explicit expressions and can be applied with no-slip, full-slip or partial slip boundary conditions. The limitations of the theory are discussed and its predictions are compared with the fundamental mode solutions of the convected wave equation, the Pridmore-Brown equation and measurements where available.

  17. Topological phases of interacting fermions in one-dimensional superconductor - normal metal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Meidan, Dganit [Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universitaet Berlin, 14195 Berlin (Germany); Romito, Alessandro; Brouwer, Piet W. [Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-07-01

    One-dimensional superconductors can be in non-trivial topological phases harboring Majorana end-states, which possess non-abelian statistics. It has been recently established that in the presence of interactions the classification of topological superconducting phases can be significantly altered. Specifically, for one-dimensional superconductors possessing a time reversal symmetry (BDI class), interactions reduce the infinitely many non-interacting phases (Z topological index) to eight distinct ones (Z{sub 8} topological index). In this talk I will consider multi-mode superconducting wires in such BDI class when probed by an external contact, and discuss their low temperature and voltage bias transport properties. I will first show that the Andreev reflection component of the scattering matrix of the probing lead provides a topological index, r=-4,.., 4, which distinguish the eight topological phases. The two topologically equivalent phases with r= 4,-4 support emergent many-body end states, which are identified to be a topologically protected Kondo-like resonance. The path in phase space that connects these equivalent phases crosses a non-fermi liquid fixed point where a multiple channel Kondo effect develops.

  18. EXPANDA-75: one-dimensional diffusion code for multi-region plate lattice heterogeneous system

    International Nuclear Information System (INIS)

    Kikuchi, Yasuyuki; Katsuragi, Satoru; Suzuki, Tomoo; Ogitsu, Makoto.

    1975-08-01

    An advanced treatment has been developed for analyzing a multi-region plate lattice heterogeneous system using the coarse group constants set provided for a homogeneous system. The essential points of this treatment are modification of effective admixture cross sections and improvement of effective elastic removal cross sections. By this treatment the heterogeneity effects for flux distributions and effective cross sections in the unit cell can be reproduced accurately in comparison with the ultra fine group treatment which consumes huge amounts of computing time. Based on the present treatment and using the JAERI-Fast set, a one-dimensional diffusion code, EXPANDA-75, was developed for extensive use for analyses of fast critical experiments. The user's guide is also presented in this report. (auth.)

  19. GITTAM program for numerical simulation of one-dimensional targets TIS. Part 2

    International Nuclear Information System (INIS)

    Arpishkin, Yu.P.; Basko, M.M.; Sokolovskij, M.V.

    1989-01-01

    A finite-difference algorithm for numeric solution of a system of one-dimensional hydrodynamics equation with heat conductivity, radiation diffusion and thermonuclear combustion is considered. The algorithm presented allows one to simulate one-dimensional thermonuclear targets for heavy-ion synthesis (HIS), irradiated with heavy ion beams. A brief description of a complex of GITTAM programs in which finite-difference algorithm for one-dimensional thermonuclear HIS target simulation is used, is given. 5 refs.; 3 figs

  20. One-dimensional map lattices: Synchronization, bifurcations, and chaotic structures

    DEFF Research Database (Denmark)

    Belykh, Vladimir N.; Mosekilde, Erik

    1996-01-01

    The paper presents a qualitative analysis of coupled map lattices (CMLs) for the case of arbitrary nonlinearity of the local map and with space-shift as well as diffusion coupling. The effect of synchronization where, independently of the initial conditions, all elements of a CML acquire uniform...... dynamics is investigated and stable chaotic time behaviors, steady structures, and traveling waves are described. Finally, the bifurcations occurring under the transition from spatiotemporal chaos to chaotic synchronization and the peculiarities of CMLs with specific symmetries are discussed....

  1. Resonant Tunneling in Gated Vertical One- dimensional Structures

    Science.gov (United States)

    Kolagunta, V. R.; Janes, D. B.; Melloch, M. R.; Webb, K. J.

    1997-03-01

    Vertical sub-micron transistors incorporating resonant tunneling multiple quantum well heterostructures are interesting in applications for both multi-valued logic devices and the study of quantization effects in vertical quasi- one-, zero- dimensional structures. Earlier we have demonstrated room temperature pinch-off of the resonant peak in sub-micron vertical resonant tunneling transistors structures using a self-aligned sidewall gating technique ( V.R. Kolagunta et. al., Applied Physics Lett., 69), 374(1996). In this paper we present the study of gating effects in vertical multiple quantum well resonant tunneling transistors. Multiple well quasi-1-D sidewall gated transistors with mesa dimensions of L_x=0.5-0.9μm and L_y=10-40μm were fabricated. The quantum heterostructure in these devices consists of two non-symmetric (180 ÅÅi-GaAs wells separated from each other and from the top and bottom n^+ GaAs/contacts region using Al_0.3Ga_0.7As tunneling barriers. Room temperature pinch-off of the multiple resonant peaks similar to that reported in the case of single well devices is observed in these devices^1. Current-voltage characteristics at liquid nitrogen temperatures show splitting of the resonant peaks into sub-bands with increasing negative gate bias indicative of quasi- 1-D confinement. Room-temperature and low-temperature current-voltage measurements shall be presented and discussed.

  2. Effective low-energy Hamiltonians for interacting nanostructures

    Science.gov (United States)

    Kinza, Michael; Ortloff, Jutta; Honerkamp, Carsten

    2010-10-01

    We present a functional renormalization group (fRG) treatment of trigonal graphene nanodisks and composites thereof, modeled by finite-size Hubbard-like Hamiltonians with honeycomb lattice structure. At half filling, the noninteracting spectrum of these structures contains a certain number of half-filled states at the Fermi level. For the case of trigonal nanodisks, including interactions between these degenerate states was argued to lead to a large ground state spin with potential spintronics applications [M. Ezawa, Eur. Phys. J. B 67, 543 (2009)10.1140/epjb/e2009-00041-7]. Here we perform a systematic fRG flow where the excited single-particle states are integrated out with a decreasing energy cutoff, yielding a renormalized low-energy Hamiltonian for the zero-energy states that includes effects of the excited levels. The numerical implementation corroborates the results obtained with a simpler Hartree-Fock treatment of the interaction effects within the zero-energy states only. In particular, for trigonal nanodisks the degeneracy of the one-particle-states with zero energy turns out to be protected against influences of the higher levels. As an explanation, we give a general argument that within this fRG scheme the zero-energy degeneracy remains unsplit under quite general conditions and for any size of the trigonal nanodisk. We also discuss a second class of nanostructures, bow-tie-shaped systems, where the zero-energy states are not protected.

  3. OSCIL: one-dimensional spring-mass system simulator for seismic analysis of high temperature gas cooled reactor core

    International Nuclear Information System (INIS)

    Lasker, L.

    1976-01-01

    OSCIL is a program to predict the effects of seismic input on a HTGR core. The present model is a one-dimensional array of blocks with appropriate spring constants, inter-elemental and ground damping, and clearances. It can be used more generally for systems of moving masses separated by nonlinear springs and dampers

  4. OSCIL: one-dimensional spring-mass system simulator for seismic analysis of high temperature gas cooled reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Lasker, L. (ed.)

    1976-01-01

    OSCIL is a program to predict the effects of seismic input on a HTGR core. The present model is a one-dimensional array of blocks with appropriate spring constants, inter-elemental and ground damping, and clearances. It can be used more generally for systems of moving masses separated by nonlinear springs and dampers.

  5. Physics of zero- and one-dimensional nanoscopic systems

    CERN Document Server

    Maiti, Santanu; Chowdhury, Jayeeta

    2007-01-01

    In recent years submicron and nanoscale systems have featured strongly on the research agenda due to the technological progress and new physics that have emerged from studies of ultra-small systems. A fundamental understanding of basic physical phenomena on the mesoscopic and nanoscopic scales is required to exploit the technological potential offered by these exotic materials. The present book contains review-like chapters by some of the leading experts in the field, covering topics such as the Kondo effect, electron transport, disorder and quantum coherence with electron-electron interaction, persistent current, thermoelectric phenomena, etc. in quantum dots, quantum wires, carbon nanotubes and more. This book will be valuable to researchers and students in condensed matter physics.

  6. One-dimensional position sensitive detector based on photonic crystals

    International Nuclear Information System (INIS)

    Xi Feng; Qin Lan; Xue Lian; Duan Ying

    2013-01-01

    Position sensitive detectors (PSDs) are an important class of optical sensors which utilizes the lateral photovoltaic effect (LPVE). According to the operation principle of PSD, we demonstrate that LPVE can be enhanced by lengthening the lifetime of photo-generated carriers. A PSD based on photonic crystals (PCs) composed of MgF 2 and InP is proposed and designed. The transmittances of the defect PC and the reflectance of the perfect PC in the PSD are obtained with transfer matrix method. The theoretical research on the designed device shows that LPVE is enhanced by improving the transmittance of the defect PC and the reflectance of the perfect PC to lengthen the lifetime of photo-generated carriers. (authors)

  7. Spinons, Solitons, and Breathers in Quasi-One-Dimensional Magnets

    Science.gov (United States)

    Broholm, Collin

    2006-03-01

    By scattering neutrons from coordination polymer magnets, we contrast the effects of a uniform and a staggered magnetic field on the quantum critical state of a spin-1/2 chain. In a partially magnetized state of copper pyrazine dinitrate (CuPzN) we find bounded spectral continua indicating that neutrons scatter from spin-1/2 quasi-particle pairs [1]. The complex boundaries including an incommensurate soft spot result from a field induced shift in the Fermi points for these quasi-particles. The measurements indicate that the magnetized state of CuPzN remains quantum critical. Copper benzoate [2] and CuCl2^.2(dimethylsulfoxide) (CDC) [3] differ from CuPzN in that there are two spins per unit cell along the spin chain. Rather than continuous spectra, we find resolution limited gapped excitations when these materials are subject to high fields. So with two spins per unit cell, an applied field can drive the spin-1/2 chain away from criticality. The explanation for this effect was provided by Affleck and Oshikawa. The alternating coordination environment induces a transverse staggered field and spinon binding. The quantum sine-Gordon model is the relevant low energy field theory and it predicts soliton and breather excitations at specific energies and wave vectors that we compare to the experiments. We shall also compare a complete measurement of the dynamic spin correlation function for CDC in a field to exact diagonalization results for a spin-1/2 chain with a staggered and uniform magnetic field [4]. [1] M. B. Stone, D. H. Reich, C. Broholm, K. Lefmann, C. Rischel, C. P. Landee, and M. M. Turnbull, Phys. Rev. Lett. 91, 037205 (2003). [2] M. Kenzelmann, Y. Chien, C. Broholm, D. H. Reich, and Y. Qiu, Phys. Rev. Lett. 93, 017204 (2004). [3] D. C. Dender, P. R. Hammar, Daniel H. Reich, C. Broholm, and G. Aeppli, Phys. Rev. Lett. 79, 1750 (1997). [4] M. Kenzelmann, C. D. Batista, Y. Chen, C. Broholm, D. H. Reich, S. Park, and Y. Qiu, Phys. Rev. B 71, 094411 (2005).

  8. Properties of one-dimensional anharmonic lattice solitons

    Science.gov (United States)

    Szeftel, Jacob; Laurent-Gengoux, Pascal; Ilisca, Ernest; Hebbache, Mohamed

    2000-12-01

    The existence of bell- and kink-shaped solitons moving at constant velocity while keeping a permanent profile is studied in infinite periodic monoatomic chains of arbitrary anharmonicity by taking advantage of the equation of motion being integrable with respect to solitons. A second-order, non-linear differential equation involving advanced and retarded terms must be solved, which is done by implementing a scheme based on the finite element and Newton's methods. If the potential has a harmonic limit, the asymptotic time-decay behaves exponentially and there is a dispersion relation between propagation velocity and decay time. Inversely if the potential has no harmonic limit, the asymptotic regime shows up either as a power-law or faster than exponential. Excellent agreement is achieved with Toda's model. Illustrative examples are also given for the Fermi-Pasta-Ulam and sine-Gordon potentials. Owing to integrability an effective one-body potential is worked out in each case. Lattice and continuum solitons differ markedly from one another as regards the amplitude versus propagation velocity relationship and the asymptotic time behavior. The relevance of the linear stability analysis when applied to solitons propagating in an infinite crystal is questioned. The reasons preventing solitons from arising in a diatomic lattice are discussed.

  9. Bipolarons in one-dimensional extended Peierls-Hubbard models

    Science.gov (United States)

    Sous, John; Chakraborty, Monodeep; Krems, Roman; Berciu, Mona

    2017-04-01

    We study two particles in an infinite chain and coupled to phonons by interactions that modulate their hopping as described by the Peierls/Su-Schrieffer-Heeger (SSH) model. In the case of hard-core bare particles, we show that exchange of phonons generates effective nearest-neighbor repulsion between particles and also gives rise to interactions that move the pair as a whole. The two-polaron phase diagram exhibits two sharp transitions, leading to light dimers at strong coupling and the flattening of the dimer dispersion at some critical values of the parameters. This dimer (quasi)self-trapping occurs at coupling strengths where single polarons are mobile. On the other hand, in the case of soft-core particles/ spinfull fermions, we show that phonon-mediated interactions are attractive and result in strongly bound and mobile bipolarons in a wide region of parameter space. This illustrates that, depending on the strength of the phonon-mediated interactions and statistics of bare particles, the coupling to phonons may completely suppress or strongly enhance quantum transport of correlated particles. This work was supported by NSERC of Canada and the Stewart Blusson Quantum Matter Institute.

  10. A computational study of the electronic properties of one-dimensional armchair phosphorene nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sheng; Zhu, Hao; Eshun, Kwesi; Arab, Abbas; Badwan, Ahmad; Li, Qiliang [Department of Electrical and Computer Engineering, George Mason University, Fairfax, Virginia 22033 (United States)

    2015-10-28

    We have performed a comprehensive first-principle computational study of the electronic properties of one-dimensional phosphorene nanotubes (PNTs), and the strain effect on the mechanical and electrical properties of PNTs, including the elastic modulus, energy bandstructure, and carrier effective mass. The study has demonstrated that the armchair PNTs have semiconducting properties along the axial direction and the carrier mobility can be significantly improved by compressive strain. The hole mobility increases from 40.7 cm{sup 2}/V s to 197.0 cm{sup 2}/V s as the compressive strain increases to −5% at room temperature. The investigations of size effect on armchair PNTs indicated that the conductance increases significantly as the increasing diameter. Overall, this study indicated that the PNTs have very attractive electronic properties for future application in nanomaterials and devices.

  11. Localization and delocalization of a one-dimensional system coupled with the environment

    Science.gov (United States)

    Zhu, Hong-Jun; Xiong, Shi-Jie

    2010-03-01

    We investigate several models of a one-dimensional chain coupling with surrounding atoms to elucidate disorder-induced delocalization in quantum wires, a peculiar behaviour against common wisdom. We show that the localization length is enhanced by disorder of side sites in the case of strong disorder, but in the case of weak disorder there is a plateau in this dependence. The above behaviour is the conjunct influence of the coupling to the surrounding atoms and the antiresonant effect. We also discuss different effects and their physical origin of different types of disorder in such systems. The numerical results show that coupling with the surrounding atoms can induce either the localization or delocalization effect depending on the values of parameters.

  12. One dimensional CuO nanocrystals synthesis by electrical explosion: A study on structural, optical and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Shutesh, E-mail: shutesh.k@onsemi.com [Department of Mechanical Engineering University of Malaya, 50603 Kuala Lumpur (Malaysia); ON Semiconductor Package Innovation and Development Center, 70450 Seremban (Malaysia); Haseeb, A.S.M.A.; Johan, Mohd Rafie [Department of Mechanical Engineering University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-02-15

    Highlights: • One-dimensional CuO nanoflakes were synthesized by novel wire explosion technique. • A physical synthesis method capable of producing high aspect ratio (1:16) nanocrystals. • Most energy efficient and eco-friendly synthesis of low-dimensional transition metal oxide nanocrystals. -- Abstract: One-dimensional (1D) copper oxide (CuO) nanocrystals were synthesized using a novel wire explosion in de-ionized (DI) water without any chemical additives. Highly crystalline 1D CuO nanocrystals with 1:16 aspect ratio were successfully synthesized using this technique. The chemical nature and physical structure of the nanocrystals were controlled by simply modulating the exploding medium temperature. The results showed that nanocrystals produced at explosion temperatures 65 °C and 95 °C are pure CuO with optical band-gap energy of 2.38 eV. High Resolution Transmission Electron Microscope analysis (HRTEM) indicates that the CuO nanocrystals are with growth in [1{sup ¯}11] and [1 1 1] directions. The epitaxial crystal growth kinetics of the 1D nanostructure by aggregation was discussed. The incorporation of microstructural features like edge dislocations and porosity in the growth mechanism was examined. X-ray photoelectron spectroscopy (XPS) characterization indicates the formation of high purity CuO nanocrystals with valence state +2. This study provides an energy efficient and eco-friendly synthesis method of 1D transition metal oxide nanocrystals for electronic applications.

  13. One dimensional CuO nanocrystals synthesis by electrical explosion: A study on structural, optical and electronic properties

    International Nuclear Information System (INIS)

    Krishnan, Shutesh; Haseeb, A.S.M.A.; Johan, Mohd Rafie

    2014-01-01

    Highlights: • One-dimensional CuO nanoflakes were synthesized by novel wire explosion technique. • A physical synthesis method capable of producing high aspect ratio (1:16) nanocrystals. • Most energy efficient and eco-friendly synthesis of low-dimensional transition metal oxide nanocrystals. -- Abstract: One-dimensional (1D) copper oxide (CuO) nanocrystals were synthesized using a novel wire explosion in de-ionized (DI) water without any chemical additives. Highly crystalline 1D CuO nanocrystals with 1:16 aspect ratio were successfully synthesized using this technique. The chemical nature and physical structure of the nanocrystals were controlled by simply modulating the exploding medium temperature. The results showed that nanocrystals produced at explosion temperatures 65 °C and 95 °C are pure CuO with optical band-gap energy of 2.38 eV. High Resolution Transmission Electron Microscope analysis (HRTEM) indicates that the CuO nanocrystals are with growth in [1 ¯ 11] and [1 1 1] directions. The epitaxial crystal growth kinetics of the 1D nanostructure by aggregation was discussed. The incorporation of microstructural features like edge dislocations and porosity in the growth mechanism was examined. X-ray photoelectron spectroscopy (XPS) characterization indicates the formation of high purity CuO nanocrystals with valence state +2. This study provides an energy efficient and eco-friendly synthesis method of 1D transition metal oxide nanocrystals for electronic applications

  14. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    Science.gov (United States)

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    2018-04-01

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three-dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb2 Pt2 Pb , a metal where itinerant electrons coexist with localized moments of Yb ions which can be described in terms of effective S =1 /2 spins with a dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasilinear temperature dependence.

  15. Strongly correlated quasi-one-dimensional bands: Ground states, optical absorption, and phonons

    International Nuclear Information System (INIS)

    Campbell, D.K.; Gammel, J.T.; Loh, E.Y. Jr.

    1989-01-01

    Using the Lanczos method for exact diagonalization on systems up to 14 sites, combined with a novel ''phase randomization'' technique for extracting more information from these small systems, we investigate several aspects of the one-dimensional Peierls-Hubbard Hamiltonian, in the context of trans-polyacetylene: the dependence of the ground state dimerization on the strength of the electron-electron interactions, including the effects of ''off-diagonal'' Coulomb terms generally ignored in the Hubbard model; the phonon vibrational frequencies and dispersion relations, and the optical absorption properties, including the spectrum of absorptions as a function of photon energy. These three different observables provide considerable insight into the effects of electron-electron interactions on the properties of real materials and thus into the nature of strongly correlated electron systems. 29 refs., 11 figs

  16. An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach

    KAUST Repository

    Asiri, Sharefa M.

    2013-05-25

    Observers are well known in the theory of dynamical systems. They are used to estimate the states of a system from some measurements. However, recently observers have also been developed to estimate some unknowns for systems governed by Partial differential equations. Our aim is to design an observer to solve inverse source problem for a one dimensional wave equation. Firstly, the problem is discretized in both space and time and then an adaptive observer based on partial field measurements (i.e measurements taken form the solution of the wave equation) is applied to estimate both the states and the source. We see the effectiveness of this observer in both noise-free and noisy cases. In each case, numerical simulations are provided to illustrate the effectiveness of this approach. Finally, we compare the performance of the observer approach with Tikhonov regularization approach.

  17. One-dimensional modulation instability in biased two-photon photorefractive-photovoltaic crystals

    International Nuclear Information System (INIS)

    Zhan Kaiyun; Hou Chunfeng; Li Xin

    2010-01-01

    The one-dimensional modulation instability of broad optical beams in biased two-photon photorefractive-photovoltaic crystals is investigated under steady-state conditions. Our analysis indicates that the modulation instability growth rate depends on the external bias field, the bulk photovoltaic effect and the ratio of the intensity of the incident beam to that of the dark irradiance. Moreover, our results show that this modulation instability growth rate is the same as that in two-photon photorefractive-photovoltaic crystals under open circuit conditions in the absence of an external bias field, and the modulation instability growth rate in two-photon biased photorefractive-nonphotovoltaic crystals can be predicted when the bulk photovoltaic effect is neglected.

  18. One-Dimensional Mass-Spring Chains Supporting Elastic Waves with Non-Conventional Topology

    Directory of Open Access Journals (Sweden)

    2016-04-01

    Full Text Available There are two classes of phononic structures that can support elastic waves with non-conventional topology, namely intrinsic and extrinsic systems. The non-conventional topology of elastic wave results from breaking time reversal symmetry (T-symmetry of wave propagation. In extrinsic systems, energy is injected into the phononic structure to break T-symmetry. In intrinsic systems symmetry is broken through the medium microstructure that may lead to internal resonances. Mass-spring composite structures are introduced as metaphors for more complex phononic crystals with non-conventional topology. The elastic wave equation of motion of an intrinsic phononic structure composed of two coupled one-dimensional (1D harmonic chains can be factored into a Dirac-like equation, leading to antisymmetric modes that have spinor character and therefore non-conventional topology in wave number space. The topology of the elastic waves can be further modified by subjecting phononic structures to externally-induced spatio-temporal modulation of their elastic properties. Such modulations can be actuated through photo-elastic effects, magneto-elastic effects, piezo-electric effects or external mechanical effects. We also uncover an analogy between a combined intrinsic-extrinsic systems composed of a simple one-dimensional harmonic chain coupled to a rigid substrate subjected to a spatio-temporal modulation of the side spring stiffness and the Dirac equation in the presence of an electromagnetic field. The modulation is shown to be able to tune the spinor part of the elastic wave function and therefore its topology. This analogy between classical mechanics and quantum phenomena offers new modalities for developing more complex functions of phononic crystals and acoustic metamaterials.

  19. One-dimensional calculation of flow branching using the method of characteristics

    International Nuclear Information System (INIS)

    Meier, R.W.; Gido, R.G.

    1978-05-01

    In one-dimensional flow systems, the flow often branches, such as at a tee or manifold. The study develops a formulation for calculating the flow through branch points with one-dimensional method of characteristics equations. The resultant equations were verified by comparison with experimental measurements

  20. One-dimensional Co(II)/Ni(II) complexes of 2-hydroxyisophthalate: Structures and magnetic properties

    International Nuclear Information System (INIS)

    Wang, Kai; Zou, Hua-Hong; Chen, Zi-Lu; Zhang, Zhong; Sun, Wei-Yin; Liang, Fu-Pei

    2015-01-01

    The solvothermal reactions of 2-hydroxyisophthalic acid (H 3 ipO) with M(NO 3 ) 2 ∙6H 2 O (M=Co, Ni) afforded two complexes [Co 2 (HipO) 2 (Py) 2 (H 2 O) 2 ] (1) and [Ni(HipO)(Py)H 2 O] (2) (Py=pyridine). They exhibit similar zig-zag chain structures with the adjacent two metal centers connected by a anti-syn bridging carboxylate group from the HipO 2− ligand. The magnetic measurements reveal the dominant antiferromagnetic interactions and spin-canting in 1 while ferromagnetic interactions in 2. Both of them exhibit magnetocaloric effect (MCE) with the resulting entropy changes (−ΔS m ) of 12.51 J kg −1 K −1 when ΔH=50 kOe at 3 K for 1 and 11.01 J kg −1 K −1 when ΔH=50 kOe at 3 K for 2, representing the rare examples of one-dimensional complexes with MCE. - Graphical abstract: Synopsis: Two Co(II)/Ni(II) complexes with zig-zag chain structures have been reported. 1-Co shows cant-antiferromagnetism while 2-Ni shows ferromagnetism. Magnetocaloric effect is also found in both of them. - Highlights: • Two one-dimensional Co(II)/Ni(II) complexes were solvothermally synthesized. • The Co-complex exhibits canted antiferromagnetism. • The Ni-complex exhibits ferromagnetism. • Both of the complexes display magnetocaloric effect

  1. Effect of cationic/anionic organic surfactants on evaporation induced self assembled tin oxide nanostructured films

    International Nuclear Information System (INIS)

    Khun Khun, Kamalpreet; Mahajan, Aman; Bedi, R.K.

    2011-01-01

    Tin oxide nanostructures with well defined morphologies have been obtained through an evaporation induced self assembly process. The technique has been employed using an ultrasonic nebulizer for production of aersol and its subsequent deposition onto a heated glass substrate. The precursor used for aersol production was modified by introducing cationic and anionic surfactants namely cetyl trimethyl ammonium bromide and sodium dodecyl sulphate respectively. The effect of surfactants on the structural, electrical and optical properties of self assembled tin oxide nanostructures were investigated by using X-ray diffraction, field emission scanning electroscope microscopy, two probe technique and photoluminiscence studies. The results reveal that high concentration of surfactants in the precursor solution leads to reduction in crystallite size with significant changes in the morphology of tin oxide nanostructures. Photoluminiscence studies of the nanostructures show emissions in the visible region which exhibit marked changes in the intensities upon variation of surfactants in the precursor solutions.

  2. Effect of cationic/anionic organic surfactants on evaporation induced self assembled tin oxide nanostructured films

    Energy Technology Data Exchange (ETDEWEB)

    Khun Khun, Kamalpreet [Material Science Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Mahajan, Aman, E-mail: dramanmahajan@yahoo.co.in [Material Science Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Bedi, R.K. [Material Science Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)

    2011-01-15

    Tin oxide nanostructures with well defined morphologies have been obtained through an evaporation induced self assembly process. The technique has been employed using an ultrasonic nebulizer for production of aersol and its subsequent deposition onto a heated glass substrate. The precursor used for aersol production was modified by introducing cationic and anionic surfactants namely cetyl trimethyl ammonium bromide and sodium dodecyl sulphate respectively. The effect of surfactants on the structural, electrical and optical properties of self assembled tin oxide nanostructures were investigated by using X-ray diffraction, field emission scanning electroscope microscopy, two probe technique and photoluminiscence studies. The results reveal that high concentration of surfactants in the precursor solution leads to reduction in crystallite size with significant changes in the morphology of tin oxide nanostructures. Photoluminiscence studies of the nanostructures show emissions in the visible region which exhibit marked changes in the intensities upon variation of surfactants in the precursor solutions.

  3. Facile Hydrothermal Preparation of ZNO/CO3O4 Heterogeneous Nanostructures and its Photovoltaic Effect

    Science.gov (United States)

    Wei, Fanan; Jiang, Minlin; Liu, Lianqing

    2015-07-01

    Photovoltaic technology offers great potential in the replacement of fossil fuel resources, but still suffers from high device fabrication cost. Herein, we attempted to provide a solution to these issues with heterogeneous nanostructures. Firstly, Zinc oxide (ZnO)/cobalt oxide (Co3O4) heterojunction nanowires are prepared through facile fabrication methods. By assembling Co(OH)2 nanoplates on ZnO nanowire arrays, the ZnO/Co3O4 heterogeneous nanostructures are uniformly synthesized on ITO coated glass and wafer. Current (I)-voltage (V) measurement through conductive atomic force microscope shows excellent photovoltaic effect. And, the heterojunction nanostructures shows unprecedented high open circuit voltage. Therefore, the potential application of the heterogeneous nanostructures in solar cells is demonstrated.

  4. Charge solitons and their dynamical mass in one-dimensional arrays of Josephson junctions

    International Nuclear Information System (INIS)

    Homfeld, Jens; Protopopov, Ivan; Rachel, Stephan; Shnirman, Alexander

    2011-01-01

    We investigate charge transport in one-dimensional arrays of Josephson junctions. In the interesting regime of ''small charge solitons'' (polarons), ΛE J >E C >E J , where Λ is the (electrostatic) screening length, the charge dynamics are strongly influenced by the polaronic effects (i.e., by dressing of a Cooper pair by charge dipoles). In particular, the soliton's mass in this regime scales approximately as E J -2 . We employ two theoretical techniques: the many-body tight-binding approach and the mean-field approach, and the results of the two approaches agree in the regime of ''small charge solitons.'' Renormalization of the soliton's mass could be observed; for example, as enhancement of the persistent current in a ring-shaped array.

  5. Defects in quasi-one dimensional oxide conductors: K0.3MoO3

    International Nuclear Information System (INIS)

    Smith, K.E.; Breuer, K.; Goldberg, D.; Greenblatt, M.; McCarroll, W.; Hulbert, S.L.

    1995-01-01

    The electronic structure of the prototypical quasi-one dimensional (ID) conductor K 0.3 MoO 3 has been studied using high resolution photoemission spectroscopy. In particular, the electronic structure of defects was investigated in order to understand the mechanism for charge density wave pinning and destruction of the Peierls transition. Defects were found to radically alter the electronic structure close to the Fermi level (E F ), thus strongly modifying the structure of the Fermi surface. While a low emission intensity at E F has been interpreted as evidence for a Luttinger liquid ground state in a 1D metal, the authors show that non-stoichiometric surfaces lead to similar effects. The nature of the ground state is discussed in the context of these results

  6. Assessment of one dimensional reflood model in REFLA/TRAC code

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Ohnuki, Akira; Murao, Yoshio

    1993-12-01

    Post-test calculations for twelve selected SSRTF, SCTF and CCTF tests were performed to assess the predictive capability of the one-dimensional reflood model in the REFLA/TRAC code for core thermal behavior during the reflood in a PWR LOCA. Both core void fraction profile and clad temperature transients were predicted excellently by the REFLA/TRAC code including parameter effect of core inlet subcooling, core flooding rate, core configuration, core power, system pressure, initial clad temperature and so on. The peak clad temperature was predicted within an error of 50 K. Based on these assessment results, it is verified that the core thermal hydraulic behaviors during the reflood can be predicted excellently with the REFLA/TRAC code under various conditions where the reflood may occur in a PWR LOCA. (author)

  7. Electronic Transport Properties of One Dimensional Zno Nanowires Studied Using Maximally-Localized Wannier Functions

    Science.gov (United States)

    Sun, Xu; Gu, Yousong; Wang, Xueqiang

    2012-08-01

    One dimensional ZnO NWs with different diameters and lengths have been investigated using density functional theory (DFT) and Maximally Localized Wannier Functions (MLWFs). It is found that ZnO NWs are direct band gap semiconductors and there exist a turn on voltage for observable current. ZnO nanowires with different diameters and lengths show distinctive turn-on voltage thresholds in I-V characteristics curves. The diameters of ZnO NWs are greatly influent the transport properties of ZnO NWs. For the ZnO NW with large diameter that has more states and higher transmission coefficients leads to narrow band gap and low turn on voltage. In the case of thinner diameters, the length of ZnO NW can effects the electron tunneling and longer supercell lead to higher turn on voltage.

  8. Study on sensing property of one-dimensional ring mirror-defect photonic crystal

    Science.gov (United States)

    Chen, Ying; Luo, Pei; Cao, Huiying; Zhao, Zhiyong; Zhu, Qiguang

    2018-02-01

    Based on the photon localization and the photonic bandgap characteristics of photonic crystals (PCs), one-dimensional (1D) ring mirror-defect photonic crystal structure is proposed. Due to the introduction of mirror structure, a defect cavity is formed in the center of the photonic crystal, and then the resonant transmission peak can be obtained in the bandgap of transmission spectrum. The transfer matrix method is used to establish the relationship model between the resonant transmission peak and the structure parameters of the photonic crystals. Using the rectangular air gate photonic crystal structure, the dynamic monitoring of the detected gas sample parameters can be achieved from the shift of the resonant transmission peak. The simulation results show that the Q-value can attain to 1739.48 and the sensitivity can attain to 1642 nm ṡ RIU-1, which demonstrates the effectiveness of the sensing structure. The structure can provide certain theoretical reference for air pollution monitoring and gas component analysis.

  9. Lattice relaxation theory of localized excitations in quasi-one-dimensional systems

    International Nuclear Information System (INIS)

    Wang Chuilin; Su Zhaobin; Yu Lu.

    1993-04-01

    The lattice relaxation theory developed earlier by Su and Yu for solitons and polarons in conducting polymers is applied to systems with both electron-phonon and electron-electron interactions, described by a single band Peierls-Hubbard model. The localized excitations in the competing bond-order-wave (BOW), charge-density-wave (CDW) and spin-density-wave (SDW) systems show interesting new features in their dynamics. In particular, a non-monotonic dependence of the relaxation rate on the coupling strength is predicted from the theory. The possible connection of this effect with photo-luminescence experiments is discussed. Similar phenomena may occur in other quasi-one-dimensional systems as well. (author). 21 refs, 4 figs

  10. Single-file water as a one-dimensional Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Koefinger, Juergen [Laboratory of Chemical Physics, Bldg 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Dellago, Christoph, E-mail: koefingerj@mail.nih.go [Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria)

    2010-09-15

    We show that single-file water in nanopores can be viewed as a one-dimensional (1D) Ising model, and we investigate, on the basis of this, the static dielectric response of a chain of hydrogen-bonded water molecules to an external field. To achieve this, we use a recently developed dipole lattice model that accurately captures the free energetics of nanopore water. In this model, the total energy of the system can be expressed as the sum of the effective interactions of chain ends and orientational defects. Neglecting these interactions, we essentially obtain the 1D Ising model, which allows us to derive analytical expressions for the free energy as a function of the total dipole moment and for the dielectric susceptibility. Our expressions, which agree very well with simulation results, provide the basis for the interpretation of future dielectric spectroscopy experiments on water-filled nanopore membranes.

  11. Application of nonlinear models to estimate the gain of one-dimensional free-electron lasers

    Science.gov (United States)

    Peter, E.; Rizzato, F. B.; Endler, A.

    2017-06-01

    In the present work, we make use of simplified nonlinear models based on the compressibility factor (Peter et al., Phys. Plasmas, vol. 20 (12), 2013, 123104) to predict the gain of one-dimensional (1-D) free-electron lasers (FELs), considering space-charge and thermal effects. These models proved to be reasonable to estimate some aspects of 1-D FEL theory, such as the position of the onset of mixing, in the case of a initially cold electron beam, and the position of the breakdown of the laminar regime, in the case of an initially warm beam (Peter et al., Phys. Plasmas, vol. 21 (11), 2014, 113104). The results given by the models are compared to wave-particle simulations showing a reasonable agreement.

  12. Controllable scattering of photons in a one-dimensional resonator waveguide

    Science.gov (United States)

    Sun, C. P.; Zhou, L.; Gong, Z. R.; Liu, Y. X.; Nori, F.

    2009-03-01

    We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits. [4pt] L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of photons in a 1D resonator waveguide, Phys. Rev. Lett. 101, 100501 (2008). URL: http://link.aps.org/abstract/PRL/v101/e100501

  13. Corrections to the Eckhaus' stability criterion for one-dimensional stationary structures

    Science.gov (United States)

    Malomed, B. A.; Staroselsky, I. E.; Konstantinov, A. B.

    1989-01-01

    Two amendments to the well-known Eckhaus' stability criterion for small-amplitude non-linear structures generated by weak instability of a spatially uniform state of a non-equilibrium one-dimensional system against small perturbations with finite wavelengths are obtained. Firstly, we evaluate small corrections to the main Eckhaus' term which, on the contrary so that term, do not have a universal form. Comparison of those non-universal corrections with experimental or numerical results gives a possibility to select a more relevant form of an effective nonlinear evolution equation. In particular, the comparison with such results for convective rolls and Taylor vortices gives arguments in favor of the Swift-Hohenberg equation. Secondly, we derive an analog of the Eckhaus criterion for systems degenerate in the sense that in an expansion of their non-linear parts in powers of dynamical variables, the second and third degree terms are absent.

  14. Slow quench dynamics of a one-dimensional Bose gas confined to an optical lattice.

    Science.gov (United States)

    Bernier, Jean-Sébastien; Roux, Guillaume; Kollath, Corinna

    2011-05-20

    We analyze the effect of a linear time variation of the interaction strength on a trapped one-dimensional Bose gas confined to an optical lattice. The evolution of different observables such as the experimentally accessible on site particle distribution are studied as a function of the ramp time by using time-dependent numerical techniques. We find that the dynamics of a trapped system typically displays two regimes: For long ramp times, the dynamics is governed by density redistribution, while at short ramp times, local dynamics dominates as the evolution is identical to that of an homogeneous system. In the homogeneous limit, we also discuss the nontrivial scaling of the energy absorbed with the ramp time.

  15. Like-charge attraction in a one-dimensional setting: the importance of being odd

    Science.gov (United States)

    Trizac, Emmanuel; Téllez, Gabriel

    2018-03-01

    From cement cohesion to DNA condensation, a proper statistical physics treatment of systems with long-range forces is important for a number of applications in physics, chemistry, and biology. We compute here the effective force between fixed charged macromolecules, screened by oppositely charged mobile ions (counterions). We treat the problem in a one-dimensional configuration that allows for interesting discussion and derivation of exact results, remaining at a level of mathematical difficulty compatible with an undergraduate course. Emphasis is put on the counterintuitive but fundamental phenomenon of like-charge attraction, which our treatment brings for the first time to the level of undergraduate teaching. The parity of the number of counterions is shown to play a prominent role, which sheds light on the binding mechanism at work when like-charge macromolecules do attract.

  16. One-dimensional free-electron laser equations without the slowly varying envelope approximation

    Directory of Open Access Journals (Sweden)

    C. Maroli

    2011-07-01

    Full Text Available A set of one-dimensional equations has been deduced in the time domain from the Maxwell-Lorentz system with the aim of describing the free-electron laser radiation without using the slowly varying envelope approximation (SVEA. These equations are valid even in the case of arbitrarily short electron bunches and of current distributions with ripples on the scale of or shorter than the wavelength. Numerical examples are presented, showing that for long homogeneous bunches the new set of equations gives results in agreement with the SVEA free-electron laser theory and that the use of short or prebunched electron beams leads to a decrease of the emission lethargy. Furthermore, we demonstrate that in all cases in which the backward low frequency wave has negligible effects, these equations can be reduced to a form similar to the usual 1D SVEA equations but with a different definition of the bunching term.

  17. Creating cat states in one-dimensional quantum walks using delocalized initial states

    International Nuclear Information System (INIS)

    Zhang, Wei-Wei; Gao, Fei; Goyal, Sandeep K; Sanders, Barry C; Simon, Christoph

    2016-01-01

    Cat states are coherent quantum superpositions of macroscopically distinct states and are useful for understanding the boundary between the classical and the quantum world. Due to their macroscopic nature, cat states are difficult to prepare in physical systems. We propose a method to create cat states in one-dimensional quantum walks using delocalized initial states of the walker. Since the quantum walks can be performed on any quantum system, our proposal enables a platform-independent realization of the cat states. We further show that the linear dispersion relation of the effective quantum walk Hamiltonian, which governs the dynamics of the delocalized states, is responsible for the formation of the cat states. We analyze the robustness of these states against environmental interactions and present methods to control and manipulate the cat states in the photonic implementation of quantum walks. (paper)

  18. Shear Stress in Nickel and Ni-60Co under One-Dimensional Shock Loading

    International Nuclear Information System (INIS)

    Workman, A.; Wallwork, A.; Meziere, Y. J. E.; Millett, J. C. F.; Bourne, N. K.

    2006-01-01

    The dynamic response of pure nickel (Ni), and its alloy, Ni-60Co (by weight %), has been investigated during one-dimensional shock loading. Few materials' properties are different and the only significantly altered feature is the reduced stacking fault energy (SFE) for the Ni-60Co. This paper considers the effect of this reduced SFE on the shear strength. Data (in terms of shock stress, particle velocity and shock velocity) are also presented. The influence on the shear stress, τ of cobalt additions in nickel are then investigated and presented. Results indicate that the lateral stress is increasing in both materials with the increasing impact stress. The shear stress was found to be higher in the nickel than in the Ni-60Co. The progressive decrease of the lateral stress noted during loading indicates a complex mechanism of deformation behind the shock front

  19. Spallation in NiTi under One-Dimensional Shock Loading

    International Nuclear Information System (INIS)

    Wallwork, A.; Workman, A.; Meziere, Y. J. E.; Millett, J. C. F.; Bourne, N. K.

    2006-01-01

    The dynamic response of the shape memory alloy NiTi has been of interest to a number of investigators because it displays a shape memory effect. The dynamic tensile (spall) strength of this material is measured under one-dimensional shock loading. The loading stress pulse length and impact stress were varied to a peak stress of 15 GPa. The pull back stress (σpbs) was found to increase with the applied pulse length. This suggests that the dynamic tensile strength is dependent upon the generation of a deformation micro structure that evolves behind the shock front. In contrast, increasing stress levels result in a near-constant pull back stress, although at the lowest applied stress, spallation did not occur

  20. Longitudinal and Lateral Stress Measurements in NiTi under One-Dimensional Shock Loading

    International Nuclear Information System (INIS)

    Meziere, Y. J. E.; Millett, J. C. F.; Bourne, N. K.; Wallwork, A.; Workman, A.

    2006-01-01

    This paper investigates the influence of the impact stress on the magnitude of the shear stress under one-dimensional shock loading. The shear stress is calculated from the measured longitudinal and the lateral stresses. New data in terms of shock stress, particle velocity and shock velocity has been gathered. Results indicate that the lateral stress has a positive dependence on the impact stress. A general decrease of the lateral stress was also observed immediately after the impact, while the longitudinal stress remains constant for the duration of the pulse length. This suggests that the shear strength increases behind the shock front. This decrease had been found to reach a constant value for the specimens impacted at lower stress. A complex mechanism of deformation behind the shock front during loading was thus reveals. This limit, related to the inflexion point noted on the Hugoniot (Us-up), seems to be an effect of the martensitic phase transformation undergoes by the material

  1. Matter waves of Bose-Fermi mixtures in one-dimensional optical lattices

    International Nuclear Information System (INIS)

    Bludov, Yu. V.; Santhanam, J.; Kenkre, V. M.; Konotop, V. V.

    2006-01-01

    We describe solitary wave excitations in a Bose-Fermi mixture loaded in a one-dimensional and strongly elongated lattice. We focus on the mean-field theory under the condition that the fermion number significantly exceeds the boson number, and limit our consideration to lattice amplitudes corresponding to the order of a few recoil energies or less. In such a case, the fermionic atoms display 'metallic' behavior and are well-described by the effective mass approximation. After classifying the relevant cases, we concentrate on gap solitons and coupled gap solitons in the two limiting cases of large and small fermion density, respectively. In the former, the fermionic atoms are distributed almost homogeneously and thus can move freely along the lattice. In the latter, the fermionic density becomes negligible in the potential maxima, and this leads to negligible fermionic current in the linear regime

  2. Wave propagation in one-dimensional solid-fluid quasi-periodic and aperiodic phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ali, E-mail: alchen@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Wang Yuesheng [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57068 Siegen (Germany)

    2012-02-01

    The propagation of the elastic waves in one-dimensional (1D) solid-fluid quasi-periodic phononic crystals is studied by employing the concept of the localization factor, which is calculated by the transfer matrix method. The solid-fluid interaction effect at the interfaces between the solid and the fluid components is considered. For comparison, the periodic systems and aperiodic Thue-Morse sequence are also analyzed in this paper. The splitting phenomenon of the pass bands and bandgaps are discussed for these 1D solid-fluid systems. At last the influences of the material impedance ratios on the band structures of the 1D solid-fluid quasi-periodic phononic crystals arranged as Fibonacci sequence are discussed.

  3. Global Pressure of One-Dimensional Polydisperse Granular Gases Driven by Gaussian White Noise

    International Nuclear Information System (INIS)

    Chen Zhiyuan; Zhang Duanming; Yang Fengxia; Huang Mingtao; Li Rui; Zhang Ling; Zhu Hongying

    2007-01-01

    We study the global pressure of a one-dimensional polydisperse granular gases system for the first time, in which the size distribution of particles has the fractal characteristic and the inhomogeneity is described by a fractal dimension D. The particles are driven by Gaussian white noise and subject to inelastic mutual collisions. We define the global pressure P of the system as the impulse transferred across a surface in a unit of time, which has two contributions, one from the translational motion of particles and the other from the collisions. Explicit expression for the global pressure in the steady state is derived. By molecular dynamics simulations, we investigate how the inelasticity of collisions and the inhomogeneity of the particles influence the global pressure. The simulation results indicate that the restitution coefficient e and the fractal dimension D have significant effect on the pressure.

  4. Binder-free cobalt phosphate one-dimensional nanograsses as ultrahigh-performance cathode material for hybrid supercapacitor applications

    Science.gov (United States)

    Sankar, K. Vijaya; Lee, S. C.; Seo, Y.; Ray, C.; Liu, S.; Kundu, A.; Jun, S. C.

    2018-01-01

    One-dimensional (1D) nanostructure exhibits excellent electrochemical performance because of their unique physico-chemical properties like fast electron transfer, good rate capability, and cyclic stability. In the present study, Co3(PO4)2 1D nanograsses are grown on Ni foam using a simple and eco-friendly hydrothermal technique with different reaction times. The open space with uniform nanograsses displays a high areal capacitance, rate capability, energy density, and cyclic stability due to the nanostructure enhancing fast ion and material interactions. Ex-situ microscope images confirm the dependence of structural stability on the reaction time, and the nanograsses promoted ion interaction through material. Further, the reproducibility of the electrochemical performance confirms the binder-free Co3(PO4)2 1D nanograsses to be a suitable high-performance cathode material for application to hybrid supercapacitor. Finally, the assembled hybrid supercapacitor exhibits a high energy density (26.66 Wh kg-1 at 750 W kg-1) and longer lifetimes (80% retained capacitance after 6000 cycles). Our results suggests that the Co3(PO4)2 1D nanograss design have a great promise for application to hybrid supercapacitor.

  5. Theoretical description of excited state dynamics in nanostructures

    Science.gov (United States)

    Rubio, Angel

    2009-03-01

    There has been much progress in the synthesis and characterization of nanostructures however, there remain immense challenges in understanding their properties and interactions with external probes in order to realize their tremendous potential for applications (molecular electronics, nanoscale opto-electronic devices, light harvesting and emitting nanostructures). We will review the recent implementations of TDDFT to study the optical absorption of biological chromophores, one-dimensional polymers and layered materials. In particular we will show the effect of electron-hole attraction in those systems. Applications to the optical properties of solvated nanostructures as well as excited state dynamics in some organic molecules will be used as text cases to illustrate the performance of the approach. Work done in collaboration with A. Castro, M. Marques, X. Andrade, J.L Alonso, Pablo Echenique, L. Wirtz, A. Marini, M. Gruning, C. Rozzi, D. Varsano and E.K.U. Gross.

  6. Comment on "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit".

    Science.gov (United States)

    Carrillo-Bernal, M A; Núñez-Yépez, H N; Salas-Brito, A L; Solis, Didier A

    2015-02-01

    In the referred paper, the authors use a numerical method for solving ordinary differential equations and a softened Coulomb potential -1/√[x(2)+β(2)] to study the one-dimensional Coulomb problem by approaching the parameter β to zero. We note that even though their numerical findings in the soft potential scenario are correct, their conclusions do not extend to the one-dimensional Coulomb problem (β=0). Their claims regarding the possible existence of an even ground state with energy -∞ with a Dirac-δ eigenfunction and of well-defined parity eigenfunctions in the one-dimensional hydrogen atom are questioned.

  7. Investigating size effects of complex nanostructures through Young-Laplace equation and finite element analysis

    International Nuclear Information System (INIS)

    Lu, Dingjie; Xie, Yi Min; Huang, Xiaodong; Zhou, Shiwei; Li, Qing

    2015-01-01

    Analytical studies on the size effects of a simply-shaped beam fixed at both ends have successfully explained the sudden changes of effective Young's modulus as its diameter decreases below 100 nm. Yet they are invalid for complex nanostructures ubiquitously existing in nature. In accordance with a generalized Young-Laplace equation, one of the representative size effects is transferred to non-uniformly distributed pressure against an external surface due to the imbalance of inward and outward loads. Because the magnitude of pressure depends on the principal curvatures, iterative steps have to be adopted to gradually stabilize the structure in finite element analysis. Computational results are in good agreement with both experiment data and theoretical prediction. Furthermore, the investigation on strengthened and softened Young's modulus for two complex nanostructures demonstrates that the proposed computational method provides a general and effective approach to analyze the size effects for nanostructures in arbitrary shape

  8. Prediction of inorganic superconductors with quasi-one-dimensional crystal structure

    International Nuclear Information System (INIS)

    Volkova, L M; Marinin, D V

    2013-01-01

    Models of superconductors having a quasi-one-dimensional crystal structure based on the convoluted into a tube Ginzburg sandwich, which comprises a layered dielectric–metal–dielectric structure, have been suggested. The critical crystal chemistry parameters of the Ginzburg sandwich determining the possibility of the emergence of superconductivity and the T c value in layered high-T c cuprates, which could have the same functions in quasi-one-dimensional fragments (sandwich-type tubes), have been examined. The crystal structures of known low-temperature superconductors, in which one can mark out similar quasi-one-dimensional fragments, have been analyzed. Five compounds with quasi-one-dimensional structures, which can be considered as potential parents of new superconductor families, possibly with high transition temperatures, have been suggested. The methods of doping and modification of these compounds are provided. (paper)

  9. Critical exponents in the transition to chaos in one-dimensional ...

    Indian Academy of Sciences (India)

    The transition from periodic to chaotic behavior in one-dimensional discrete dynamical systems .... consider the reverse sequence from µb to µ∞, a ... at which the change from one scaling region to another takes place, with the higher order. 12.

  10. Neutron and photon (light) scattering on solitons in the quasi-one-dimensional magnetics

    CERN Document Server

    Abdulloev, K O

    1999-01-01

    The general expression we have found earlier for the dynamics form-factor is used to analyse experiments on the neutron and photon (light) scattering by the gas of solitons in quasi-one-dimensional magnetics (Authors)

  11. Explicit solutions of one-dimensional, first-order, stationary mean-field games with congestion

    KAUST Repository

    Gomes, Diogo A.; Nurbekyan, Levon; Prazeres, Mariana

    2017-01-01

    Here, we consider one-dimensional first-order stationary mean-field games with congestion. These games arise when crowds face difficulty moving in high-density regions. We look at both monotone decreasing and increasing interactions and construct

  12. Solutions stability of one-dimensional parametric superconducting magnetic levitation model analysis by the first approximation

    International Nuclear Information System (INIS)

    Shvets', D.V.

    2009-01-01

    By the first approximation analyzing stability conditions of unperturbed solution of one-dimensional dynamic model with magnetic interaction between two superconducting rings obtained. The stability region in the frozen magnetic flux parameters space was constructed.

  13. Wave Transformation Over Reefs: Evaluation of One-Dimensional Numerical Models

    National Research Council Canada - National Science Library

    Demirbilek, Zeki; Nwogu, Okey G; Ward, Donald L; Sanchez, Alejandro

    2009-01-01

    Three one-dimensional (1D) numerical wave models are evaluated for wave transformation over reefs and estimates of wave setup, runup, and ponding levels in an island setting where the beach is fronted by fringing reef and lagoons...

  14. On symmetry reduction and exact solutions of the linear one-dimensional Schroedinger equation

    International Nuclear Information System (INIS)

    Barannik, L.L.

    1996-01-01

    Symmetry reduction of the Schroedinger equation with potential is carried out on subalgebras of the Lie algebra which is the direct sum of the special Galilei algebra and one-dimensional algebra. Some new exact solutions are obtained

  15. Ultra-refractive and extended-range one-dimensional photonic crystal superprisms

    Science.gov (United States)

    Ting, D. Z. Y.

    2003-01-01

    We describe theoretical analysis and design of one-dimensional photonic crystal prisms. We found that inside the photonic crystal, for frequencies near the band edges, light propagation direction is extremely sensitive to the variations in wavelength and incident angle.

  16. One-Dimensional Tunable Photonic-Crystal IR Filter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  17. One-Dimensional Tunable Photonic-Crystal IR Filter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  18. A Large Class of Exact Solutions to the One-Dimensional Schrodinger Equation

    Science.gov (United States)

    Karaoglu, Bekir

    2007-01-01

    A remarkable property of a large class of functions is exploited to generate exact solutions to the one-dimensional Schrodinger equation. The method is simple and easy to implement. (Contains 1 table and 1 figure.)

  19. One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials

    KAUST Repository

    Choi, Nam-Soon; Yao, Yan; Cui, Yi; Cho, Jaephil

    2011-01-01

    There has been tremendous interest in using nanomaterials for advanced Li-ion battery electrodes, particularly to increase the energy density by using high specific capacity materials. Recently, it was demonstrated that one dimensional (1D) Si

  20. One- and Two- Magnon Excitations in a One-Dimensional Antiferromagnet in a Magnetic Field

    DEFF Research Database (Denmark)

    Heilmann, I.U.; Kjems, Jørgen; Endoh, Y.

    1981-01-01

    We have carried out a comprehensive experimental and theoretical study of the inelastic scattering in the one-dimensional near-Heisenberg antiferromagnet (CD3)4NMnCl3 (TMMC) at low temperatures, 0.3...