WorldWideScience

Sample records for one-dimensional dielectric-semiconductor photonic

  1. One-dimensional photonic crystal design

    International Nuclear Information System (INIS)

    Mee, Cornelis van der; Contu, Pietro; Pintus, Paolo

    2010-01-01

    In this article we present a method to determine the band spectrum, band gaps, and discrete energy levels, of a one-dimensional photonic crystal with localized impurities. For one-dimensional crystals with piecewise constant refractive indices we develop an algorithm to recover the refractive index distribution from the period map. Finally, we derive the relationship between the period map and the scattering matrix containing the information on the localized modes.

  2. One-Dimensional Photonic Crystal Superprisms

    Science.gov (United States)

    Ting, David

    2005-01-01

    Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.

  3. Absorption in one-dimensional metallic-dielectric photonic crystals

    International Nuclear Information System (INIS)

    Yu Junfei; Shen Yifeng; Liu Xiaohan; Fu Rongtang; Zi Jian; Zhu Zhiqiang

    2004-01-01

    We show theoretically that the absorption of one-dimensional metallic-dielectric photonic crystals can be enhanced considerably over the corresponding constituent metal. By properly choosing the structural and material parameters, the absorption of one-dimensional metallic-dielectric photonic crystals can be enhanced by one order of magnitude in the visible and in the near infrared regions. It is found that the absorptance of such photonic crystals increases with increasing number of periods. Rules on how to obtain a absorption enhancement in a certain frequency range are discussed. (letter to the editor)

  4. Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals

    OpenAIRE

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-01-01

    Background Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity de...

  5. Graphene-based one-dimensional photonic crystal

    OpenAIRE

    Berman, Oleg L.; Kezerashvili, Roman Ya.

    2011-01-01

    A novel type of one-dimensional (1D) photonic crystal formed by the array of periodically located stacks of alternating graphene and dielectric stripes embedded into a background dielectric medium is proposed. The wave equation for the electromagnetic wave propagating in such structure solved in the framework of the Kronig-Penney model. The frequency band structure of 1D graphene-based photonic crystal is obtained analytically as a function of the filling factor and the thickness of the diele...

  6. The electromagnetic Brillouin precursor in one-dimensional photonic crystals

    NARCIS (Netherlands)

    Uitham, R.; Hoenders, B. J.

    2008-01-01

    We have calculated the electromagnetic Brillouin precursor that arises in a one-dimensional photonic crystal that consists of two homogeneous slabs which each have a single electron resonance. This forerunner is compared with the Brillouin precursor that arises in a homogeneous double-electron

  7. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    Science.gov (United States)

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  8. Lateral shift in one-dimensional quasiperiodic chiral photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Da, Jian, E-mail: dajian521@sina.com [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Mo, Qi, E-mail: moqiyueyang@163.com [School of Software, Yunnan University, Cuihu Bai Road, Kunming City, Yunnan Province 650091 (China); Cheng, Yaokun [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Liu, Taixiang [Taishan Vocational College of Nursing, Shandong Province 271000 (China)

    2015-02-01

    We investigate the lateral shift of a one-dimensional quasiperiodic photonic crystal consisting of chiral and conventional dielectric materials. The effect of structural irregularity on lateral shift is evaluated by stationary-phase approach. Our results show that the lateral shift can be modulated by varying the structural irregularity in quasiperiodic structure. Besides, the position of peak in lateral shift spectrum stays sensitive to the chiral factor of chiral materials. In comparison with that of periodic structure, quasiperiodic structure provides an extra degree of freedom to manipulate the lateral shift.

  9. Negative refraction angular characterization in one-dimensional photonic crystals.

    Directory of Open Access Journals (Sweden)

    Jesus Eduardo Lugo

    2011-04-01

    Full Text Available Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs.By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone.Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.

  10. Negative refraction angular characterization in one-dimensional photonic crystals.

    Science.gov (United States)

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-04-06

    Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.

  11. Lateral shifting in one dimensional chiral photonic crystal

    International Nuclear Information System (INIS)

    You Yuan; Chen Changyuan

    2012-01-01

    We report the lateral shifts of the transmitted waves in a one dimensional chiral photonic crystal by using the stationary-phase approach. It is revealed that two kinds of lateral shifts are observed due to the existence of cross coupling in chiral materials, which is different from what has been observed in previous non-chiral photonic crystals. Unlike the chiral slab, the positions of lateral shift peaks are closely related to the band edges of band gap characteristics of periodic structure and lateral shifts can be positive as well as negative. Besides, the lateral shifts show a strong dependence on the chiral factor, which varies the lateral shift peaks in both magnitudes and positions. These features are desirable for future device applications.

  12. Lateral shifting in one dimensional chiral photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    You Yuan, E-mail: yctcyouyuan@163.com [School of Physics and Electronics, Yancheng Teachers University, Yancheng, 224002 Jiangsu (China); Chen Changyuan [School of Physics and Electronics, Yancheng Teachers University, Yancheng, 224002 Jiangsu (China)

    2012-07-01

    We report the lateral shifts of the transmitted waves in a one dimensional chiral photonic crystal by using the stationary-phase approach. It is revealed that two kinds of lateral shifts are observed due to the existence of cross coupling in chiral materials, which is different from what has been observed in previous non-chiral photonic crystals. Unlike the chiral slab, the positions of lateral shift peaks are closely related to the band edges of band gap characteristics of periodic structure and lateral shifts can be positive as well as negative. Besides, the lateral shifts show a strong dependence on the chiral factor, which varies the lateral shift peaks in both magnitudes and positions. These features are desirable for future device applications.

  13. One-dimensional plasma photonic crystals with sinusoidal densities

    International Nuclear Information System (INIS)

    Qi, L.; Shang, L.; Zhang, S.

    2014-01-01

    Properties of electromagnetic waves with normal and oblique incidence have been studied for one-dimensional plasma layers with sinusoidal densities. Wave transmittance as a function of wave frequency exhibits photonic band gaps characteristic of photonic crystals. For periodic structures, increasing collision frequency is demonstrated to lead to greater absorption, increasing the modulation factor enlarges the gap width, and increasing incidence angle can change the gap locations of the two polarizations. If a defect layer is introduced by inserting a new plasma layer in the center, a defect mode may appear within the gap. Periodic number, collision frequency, and modulation factor can affect magnitude of the defect mode. The incidence angle enables the frequency to be tuned. Defect layer thickness affects both frequency and number of defect modes. These results may provide theoretical guidance in designing tunable narrow-band filters

  14. Experiment and simulation on one-dimensional plasma photonic crystals

    International Nuclear Information System (INIS)

    Zhang, Lin; Ouyang, Ji-Ting

    2014-01-01

    The transmission characteristics of microwaves passing through one-dimensional plasma photonic crystals (PPCs) have been investigated by experiment and simulation. The PPCs were formed by a series of discharge tubes filled with argon at 5 Torr that the plasma density in tubes can be varied by adjusting the discharge current. The transmittance of X-band microwaves through the crystal structure was measured under different discharge currents and geometrical parameters. The finite-different time-domain method was employed to analyze the detailed properties of the microwaves propagation. The results show that there exist bandgaps when the plasma is turned on. The properties of bandgaps depend on the plasma density and the geometrical parameters of the PPCs structure. The PPCs can perform as dynamical band-stop filter to control the transmission of microwaves within a wide frequency range

  15. Periodic transmission peak splitting in one dimensional disordered photonic structures

    Science.gov (United States)

    Kriegel, Ilka; Scotognella, Francesco

    2016-08-01

    In the present paper we present ways to modulate the periodic transmission peaks arising in disordered one dimensional photonic structures with hundreds of layers. Disordered structures in which the optical length nd (n is the refractive index and d the layer thickness) is the same for each layer show regular peaks in their transmission spectra. A proper variation of the optical length of the layers leads to a splitting of the transmission peaks. Notably, the variation of the occurrence of high and low refractive index layers, gives a tool to tune also the width of the peaks. These results are of highest interest for optical application, such as light filtering, where the manifold of parameters allows a precise design of the spectral transmission ranges.

  16. Transmission properties of one-dimensional ternary plasma photonic crystals

    International Nuclear Information System (INIS)

    Shiveshwari, Laxmi; Awasthi, S. K.

    2015-01-01

    Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter

  17. Transmission properties of one-dimensional ternary plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shiveshwari, Laxmi [Department of Physics, K. B. Womens' s College, Hazaribagh 825 301 (India); Awasthi, S. K. [Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, Noida 201 304 (India)

    2015-09-15

    Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter.

  18. BERMUDA-1DG: a one-dimensional photon transport code

    International Nuclear Information System (INIS)

    Suzuki, Tomoo; Hasegawa, Akira; Nakashima, Hiroshi; Kaneko, Kunio.

    1984-10-01

    A one-dimensional photon transport code BERMUDA-1DG has been developed for spherical and infinite slab geometries. The purpose of development is to equip the function of gamma rays calculation for the BERMUDA code system, which was developed by 1983 only for neutron transport calculation as a preliminary version. A group constants library has been prepared for 30 nuclides, and it now consists of the 36-group total cross sections and secondary gamma ray yields by the 120-group neutron flux. For the Compton scattering, group-angle transfer matrices are accurately obtained by integrating the Klein-Nishina formula taking into account the energy and scattering angle correlation. The pair production cross sections are now calculated in the code from atomic number and midenergy of each group. To obtain angular flux distribution, the transport equation is solved in the same way as in case of neutron, using the direct integration method in a multigroup model. Both of an independent gamma ray source problem and a neutron-gamma source problem are possible to be solved. This report is written as a user's manual with a brief description of the calculational method. (author)

  19. Spectroscopy of photonic band gaps in mesoporous one-dimensional photonic crystals based on aluminum oxide

    International Nuclear Information System (INIS)

    Gorelik, V.S.; Voinov, Yu.P.; Shchavlev, V.V.; Bi, Dongxue; Shang, Guo Liang; Fei, Guang Tao

    2017-01-01

    Mesoporous one-dimensional photonic crystals based on aluminum oxide have been synthesized by electrochemical etching method. Reflection spectra of the obtained mesoporous samples in a wide spectral range that covers several band gaps are presented. Microscopic parameters of photonic crystals are calculated and corresponding reflection spectra for the first six band gaps are presented.

  20. Photon-pair generation in nonlinear metal-dielectric one-dimensional photonic structures

    Czech Academy of Sciences Publication Activity Database

    Javůrek, D.; Svozilík, J.; Peřina ml., Jan

    2014-01-01

    Roč. 90, č. 5 (2014), "053813-1"-"053813-14" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : photon pairs * nonlinear metal-dielectric * one-dimensional photonic structures Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.808, year: 2014

  1. Ultra-refractive and extended-range one-dimensional photonic crystal superprisms

    Science.gov (United States)

    Ting, D. Z. Y.

    2003-01-01

    We describe theoretical analysis and design of one-dimensional photonic crystal prisms. We found that inside the photonic crystal, for frequencies near the band edges, light propagation direction is extremely sensitive to the variations in wavelength and incident angle.

  2. Trapped Atoms in One-Dimensional Photonic Crystals

    Science.gov (United States)

    2013-08-09

    2002 J. Opt. Soc. Am. B 19 2052 [39] Koenderink A F, Kafesaki M, Soukoulis C M and Sandoghdar V 2006 J. Opt. Soc. Am. B 23 1196 [40] Manga Rao V S C...032509 [55] Hwang J K, Ryu H Y and Lee Y H 1999 Phys. Rev. B 60 4688–95 [56] Yao P, Manga Rao V S C and Hughes S 2010 Laser Photon. Rev. 4 499–516 New Journal of Physics 15 (2013) 083026 (http://www.njp.org/)

  3. Single-photon switch: Controllable scattering of photons inside a one-dimensional resonator waveguide

    Science.gov (United States)

    Zhou, L.; Gong, Z. R.; Liu, Y. X.; Sun, C. P.; Nori, F.

    2010-03-01

    We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits. References: L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of photons inside a one-dimensional resonator waveguide, Phys. Rev. Lett. 101, 100501 (2008). L. Zhou, H. Dong, Y.X. Liu, C.P. Sun, F. Nori, Quantum super-cavity with atomic mirrors, Phys. Rev. A 78, 063827 (2008).

  4. Optical Tamm states in one-dimensional superconducting photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    El Abouti, O. [LPMR, Département de Physique, Faculté des Sciences, Université Mohammed 1, 60000 Oujda (Morocco); El Boudouti, E. H. [LPMR, Département de Physique, Faculté des Sciences, Université Mohammed 1, 60000 Oujda (Morocco); IEMN, UMR-CNRS 8520, UFR de Physique, Université de Lille 1, 59655 Villeneuve d' Ascq (France); El Hassouani, Y. [ESIM, Département de Physique, Faculté des Sciences et Techniques, Université Moulay Ismail, Boutalamine BP 509, 52000 Errachidia (Morocco); Noual, A. [LPMR, Département de Physique, Faculté des Sciences, Université Mohammed 1, 60000 Oujda (Morocco); Ecole Normale Supérieur de Tétouan, Université Abdelmalek Essaadi, Tétouan (Morocco); Djafari-Rouhani, B. [IEMN, UMR-CNRS 8520, UFR de Physique, Université de Lille 1, 59655 Villeneuve d' Ascq (France)

    2016-08-15

    In this study, we investigate localized and resonant optical waves associated with a semi-infinite superlattice made out of superconductor-dielectric bilayers and terminated with a cap layer. Both transverse electric and transverse magnetic waves are considered. These surface modes are analogous to the so-called Tamm states associated with electronic states found at the surface of materials. The surface guided modes induced by the cap layer strongly depend on whether the superlattice ends with a superconductor or a dielectric layer, the thickness of the surface layer, the temperature of the superconductor layer as well as on the polarization of the waves. Different kinds of surface modes are found and their properties examined. These structures can be used to realize the highly sensitive photonic crystal sensors.

  5. One-dimensional position sensitive detector based on photonic crystals

    International Nuclear Information System (INIS)

    Xi Feng; Qin Lan; Xue Lian; Duan Ying

    2013-01-01

    Position sensitive detectors (PSDs) are an important class of optical sensors which utilizes the lateral photovoltaic effect (LPVE). According to the operation principle of PSD, we demonstrate that LPVE can be enhanced by lengthening the lifetime of photo-generated carriers. A PSD based on photonic crystals (PCs) composed of MgF 2 and InP is proposed and designed. The transmittances of the defect PC and the reflectance of the perfect PC in the PSD are obtained with transfer matrix method. The theoretical research on the designed device shows that LPVE is enhanced by improving the transmittance of the defect PC and the reflectance of the perfect PC to lengthen the lifetime of photo-generated carriers. (authors)

  6. Neutron and photon (light) scattering on solitons in the quasi-one-dimensional magnetics

    CERN Document Server

    Abdulloev, K O

    1999-01-01

    The general expression we have found earlier for the dynamics form-factor is used to analyse experiments on the neutron and photon (light) scattering by the gas of solitons in quasi-one-dimensional magnetics (Authors)

  7. One-Dimensional Tunable Photonic-Crystal IR Filter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  8. One-Dimensional Tunable Photonic-Crystal IR Filter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  9. Switchable Photonic Crystals Using One-Dimensional Confined Liquid Crystals for Photonic Device Application.

    Science.gov (United States)

    Ryu, Seong Ho; Gim, Min-Jun; Lee, Wonsuk; Choi, Suk-Won; Yoon, Dong Ki

    2017-01-25

    Photonic crystals (PCs) have recently attracted considerable attention, with much effort devoted to photonic bandgap (PBG) control for varying the reflected color. Here, fabrication of a modulated one-dimensional (1D) anodic aluminum oxide (AAO) PC with a periodic porous structure is reported. The PBG of the fabricated PC can be reversibly changed by switching the ultraviolet (UV) light on/off. The AAO nanopores contain a mixture of photoresponsive liquid crystals (LCs) with irradiation-activated cis/trans photoisomerizable azobenzene. The resultant mixture of LCs in the porous AAO film exhibits a reversible PBG, depending on the cis/trans configuration of azobenzene molecules. The PBG switching is reliable over many cycles, suggesting that the fabricated device can be used in optical and photonic applications such as light modulators, smart windows, and sensors.

  10. Photonic band gap properties of one-dimensional Thue-Morse all-dielectric photonic quasicrystal

    Science.gov (United States)

    Yue, Chenxi; Tan, Wei; Liu, Jianjun

    2018-05-01

    In this paper, the photonic band gap (PBG) properties of one-dimensional (1D) Thue-Morse photonic quasicrystal (PQC) S4 structure are theoretically investigated by using transfer matrix method in Bragg condition. The effects of the center wavelength, relative permittivity and incident angle on PBG properties are elaborately analyzed. Numerical results reveal that, in the case of normal incidence, the symmetry and periodicity properties of the photonic band structure are presented. As the center wavelength increases, the PBG center frequency and PBG width decrease while the photonic band structure is always symmetrical about the central frequency and the photonic band structure repeats periodically in the expanding observation frequency range. With the decrease of relative permittivity contrast, the PBG width and the relative PBG width gradually decreases until PBG disappears while the symmetry of the photonic band structure always exists. In the case of oblique incidence, as the incident angle increases, multiple narrow PBGs gradually merge into a wide PBG for the TE mode while for the TM mode, the number of PBG continuously decreases and eventually disappears, i.e., multiple narrow PBGs become a wide passband for the TM mode. The research results will provide a reference for the choice of the material, the incident angle for the PBG properties and its applications of 1D Thue-Morse PQC.

  11. Photonic band structures in one-dimensional photonic crystals containing Dirac materials

    International Nuclear Information System (INIS)

    Wang, Lin; Wang, Li-Gang

    2015-01-01

    We have investigated the band structures of one-dimensional photonic crystals (1DPCs) composed of Dirac materials and ordinary dielectric media. It is found that there exist an omnidirectional passing band and a kind of special band, which result from the interaction of the evanescent and propagating waves. Due to the interface effect and strong dispersion, the electromagnetic fields inside the special bands are strongly enhanced. It is also shown that the properties of these bands are invariant upon the lattice constant but sensitive to the resonant conditions

  12. Broadband slow light in one-dimensional logically combined photonic crystals.

    Science.gov (United States)

    Alagappan, G; Png, C E

    2015-01-28

    Here, we demonstrate the broadband slow light effects in a new family of one dimensional photonic crystals, which are obtained by logically combining two photonic crystals of slightly different periods. The logical combination slowly destroys the original translational symmetries of the individual photonic crystals. Consequently, the Bloch modes of the individual photonic crystals with different wavevectors couple with each other, creating a vast number of slow modes. Specifically, we describe a photonic crystal architecture that results from a logical "OR" mixture of two one dimensional photonic crystals with a periods ratio of r = R/(R - 1), where R > 2 is an integer. Such a logically combined architecture, exhibits a broad region of frequencies in which a dense number of slow modes with varnishing group velocities, appear naturally as Bloch modes.

  13. Experimental investigation of photonic band gap in one-dimensional photonic crystals with metamaterials

    International Nuclear Information System (INIS)

    Chen, Yihang; Wang, Xinggang; Yong, Zehui; Zhang, Yunjuan; Chen, Zefeng; He, Lianxing; Lee, P.F.; Chan, Helen L.W.; Leung, Chi Wah; Wang, Yu

    2012-01-01

    Composite right/left-handed transmission lines with lumped element series capacitors and shunt inductors are used to experimentally realize the one-dimensional photonic crystals composed of single-negative metamaterials. The simulated and experimental results show that a special photonic band gap corresponding to zero-effective-phase (zero-φ eff ) may appear in the microwave regime. In contrast to the Bragg gap, by changing the length ratio of the two component materials, the width and depth of the zero-φ eff gap can be conveniently adjusted while keeping the center frequency constant. Furthermore, the zero-φ eff gap vanishes when both the phase-matching and impedance-matching conditions are satisfied simultaneously. These transmission line structures provide a good way for realizing microwave devices based on the zero-φ eff gap. -- Highlights: ► 1D photonic crystals with metamaterials were investigated experimentally. ► Both Bragg gap and zero-φ eff gap were observed in the microwave regime. ► The width and depth of the zero-φ eff gap were experimentally adjusted. ► Zero-φ eff gap was observed to be close when two match conditions were satisfied.

  14. Experimental investigation of photonic band gap in one-dimensional photonic crystals with metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yihang, E-mail: eon.chen@yahoo.com.cn [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); Wang, Xinggang [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); Yong, Zehui; Zhang, Yunjuan [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Chen, Zefeng [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); He, Lianxing; Lee, P.F.; Chan, Helen L.W.; Leung, Chi Wah [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Wang, Yu, E-mail: apywang@inet.polyu.edu.hk [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China)

    2012-03-19

    Composite right/left-handed transmission lines with lumped element series capacitors and shunt inductors are used to experimentally realize the one-dimensional photonic crystals composed of single-negative metamaterials. The simulated and experimental results show that a special photonic band gap corresponding to zero-effective-phase (zero-φ{sub eff}) may appear in the microwave regime. In contrast to the Bragg gap, by changing the length ratio of the two component materials, the width and depth of the zero-φ{sub eff} gap can be conveniently adjusted while keeping the center frequency constant. Furthermore, the zero-φ{sub eff} gap vanishes when both the phase-matching and impedance-matching conditions are satisfied simultaneously. These transmission line structures provide a good way for realizing microwave devices based on the zero-φ{sub eff} gap. -- Highlights: ► 1D photonic crystals with metamaterials were investigated experimentally. ► Both Bragg gap and zero-φ{sub eff} gap were observed in the microwave regime. ► The width and depth of the zero-φ{sub eff} gap were experimentally adjusted. ► Zero-φ{sub eff} gap was observed to be close when two match conditions were satisfied.

  15. Black phosphorus-based one-dimensional photonic crystals and microcavities.

    Science.gov (United States)

    Kriegel, Ilka; Toffanin, Stefano; Scotognella, Francesco

    2016-11-10

    The latest achievements in the fabrication of thin layers of black phosphorus (BP), toward the technological breakthrough of a phosphorene atomically thin layer, are paving the way for their use in electronics, optics, and optoelectronics. In this work, we have simulated the optical properties of one-dimensional photonic structures, i.e., photonic crystals and microcavities, in which few-layer BP is one of the components. The insertion of the 5-nm black phosphorous layers leads to a photonic band gap in the photonic crystals and a cavity mode in the microcavity that is interesting for light manipulation and emission enhancement.

  16. Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors

    NARCIS (Netherlands)

    Mulder, D.J.; Schenning, A.P.H.J.; Bastiaansen, C.W.M.

    2014-01-01

    Current developments in the field of thermotropic chiral-nematic liquid crystals as sensors are discussed. These one dimensional photonic materials are based on low molecular weight liquid crystals and chiral-nematic polymeric networks. For both low molecular weight LCs and polymer networks,

  17. Study on sensing property of one-dimensional ring mirror-defect photonic crystal

    Science.gov (United States)

    Chen, Ying; Luo, Pei; Cao, Huiying; Zhao, Zhiyong; Zhu, Qiguang

    2018-02-01

    Based on the photon localization and the photonic bandgap characteristics of photonic crystals (PCs), one-dimensional (1D) ring mirror-defect photonic crystal structure is proposed. Due to the introduction of mirror structure, a defect cavity is formed in the center of the photonic crystal, and then the resonant transmission peak can be obtained in the bandgap of transmission spectrum. The transfer matrix method is used to establish the relationship model between the resonant transmission peak and the structure parameters of the photonic crystals. Using the rectangular air gate photonic crystal structure, the dynamic monitoring of the detected gas sample parameters can be achieved from the shift of the resonant transmission peak. The simulation results show that the Q-value can attain to 1739.48 and the sensitivity can attain to 1642 nm ṡ RIU-1, which demonstrates the effectiveness of the sensing structure. The structure can provide certain theoretical reference for air pollution monitoring and gas component analysis.

  18. Illusion optics via one-dimensional ultratransparent photonic crystals with shifted spatial dispersions.

    Science.gov (United States)

    Yao, Zhongqi; Luo, Jie; Lai, Yun

    2017-12-11

    In this work, we propose that one-dimensional ultratransparent dielectric photonic crystals with wide-angle impedance matching and shifted elliptical equal frequency contours are promising candidate materials for illusion optics. The shift of the equal frequency contour does not affect the refractive behaviors, but enables a new degree of freedom in phase modulation. With such ultratransparent photonic crystals, we demonstrate some applications in illusion optics, including creating illusions of a different-sized scatterer and a shifted source with opposite phase. Such ultratransparent dielectric photonic crystals may establish a feasible platform for illusion optics devices at optical frequencies.

  19. Controllable scattering of photons in a one-dimensional resonator waveguide

    Science.gov (United States)

    Sun, C. P.; Zhou, L.; Gong, Z. R.; Liu, Y. X.; Nori, F.

    2009-03-01

    We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits. [4pt] L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of photons in a 1D resonator waveguide, Phys. Rev. Lett. 101, 100501 (2008). URL: http://link.aps.org/abstract/PRL/v101/e100501

  20. Stopping single photons in one-dimensional circuit quantum electrodynamics systems

    International Nuclear Information System (INIS)

    Shen, J.-T.; Povinelli, M. L.; Sandhu, Sunil; Fan Shanhui

    2007-01-01

    We propose a mechanism to stop and time reverse single photons in one-dimensional circuit quantum electrodynamics systems. As a concrete example, we exploit the large tunability of the superconducting charge quantum bit (charge qubit) to predict one-photon transport properties in multiple-qubit systems with dynamically controlled transition frequencies. In particular, two qubits coupled to a waveguide give rise to a single-photon transmission line shape that is analogous to electromagnetically induced transparency in atomic systems. Furthermore, by cascading double-qubit structures to form an array and dynamically controlling the qubit transition frequencies, a single photon can be stopped, stored, and time reversed. With a properly designed array, two photons can be stopped and stored in the system at the same time. Moreover, the unit cell of the array can be designed to be of deep subwavelength scale, miniaturizing the circuit

  1. Rainbow trapping in one-dimensional chirped photonic crystals composed of alternating dielectric slabs

    International Nuclear Information System (INIS)

    Shen, Yun; Fu, Jiwu; Yu, Guoping

    2011-01-01

    Highlights: → A simple one-dimensional chirped photonic crystal is proposed to realize rainbow trapping. → The results show different wavelengths can be trapped at different spatial positions. → The structure can be used for optical buffer, memories and filter, sorter, etc. -- Abstract: One-dimensional chirped photonic crystals composed of alternating dielectric slabs are proposed to realize rainbow trapping. We theoretically and numerically demonstrate that not only significantly reduced group velocity can be achieved in the proposed chirped structures, but different wavelengths can be localized in different spatial positions, indicating trapped rainbow. Our results imply a feasible way to slow or even trap light in simple systems, which can be used for optical buffer, memory, data processor and filter, sorter, etc.

  2. Study on the Reflection Spectra of One Dimensional Plasma Photonic Crystals Having Exponentially Graded Materials

    International Nuclear Information System (INIS)

    Prasad, S.; Singh, Vivek; Singh, A. K.

    2013-01-01

    The transfer matrix method is used to study the effect of the permittivity profile on the reflectivity of a one dimensional plasma photonic crystal having exponentially graded material. The analysis shows that the proposed structure works as a perfect mirror within a certain frequency range. These frequency ranges can be completely controlled by the permittivity profile of a graded dielectric layer. As expected we observed that these frequency ranges are also controlled by plasma parameters. (plasma technology)

  3. Water-equivalent one-dimensional scintillating fiber-optic dosimeter for measuring therapeutic photon beam

    International Nuclear Information System (INIS)

    Moon, Jinsoo; Won Jang, Kyoung; Jae Yoo, Wook; Han, Ki-Tek; Park, Jang-Yeon; Lee, Bongsoo

    2012-01-01

    In this study, we fabricated a one-dimensional scintillating fiber-optic dosimeter, which consists of 9 scintillating fiber-optic dosimeters, septa, and PMMA blocks for measuring surface and percentage depth doses of a therapeutic photon beam. Each dosimeter embedded in the 1-D scintillating fiber-optic dosimeter is composed of square type organic scintillators and plastic optical fibers. Also black PVC films are used as septa to minimize cross-talk between the scintillating fiber-optic dosimeters. To construct a dosimeter system, a 1-D scintillating fiber-optic dosimeter and a CMOS image sensor were combined with 20 m-length plastic optical fibers. Using the dosimeter system, we measured surface and percentage depth doses of 6 and 15 MV photon beams and compared the results with those of EBT films and an ionization chamber. - Highlights: ► Fabrication of a one-dimensional scintillating fiber-optic dosimeter. ► The one-dimensional scintillating fiber-optic dosimeter has 9 scintillating fiber-optic dosimeters. ► Measurements of surface and percentage depth doses of a therapeutic photon beam. ► The results were compared with those of EBT films and an ionization chamber.

  4. Semi-analytical model for a slab one-dimensional photonic crystal

    Science.gov (United States)

    Libman, M.; Kondratyev, N. M.; Gorodetsky, M. L.

    2018-02-01

    In our work we justify the applicability of a dielectric mirror model to the description of a real photonic crystal. We demonstrate that a simple one-dimensional model of a multilayer mirror can be employed for modeling of a slab waveguide with periodically changing width. It is shown that this width change can be recalculated to the effective refraction index modulation. The applicability of transfer matrix method of reflection properties calculation was demonstrated. Finally, our 1-D model was employed to analyze reflection properties of a 2-D structure - a slab photonic crystal with a number of elliptic holes.

  5. Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals.

    Science.gov (United States)

    Johnson, Craig M; Reece, Peter J; Conibeer, Gavin J

    2011-10-15

    We present an approach to realizing enhanced upconversion efficiency in erbium (Er)-doped photonic crystals. Slow-light-mode pumping of the first Er excited state transition can result in enhanced emission from higher-energy levels that may lead to finite subbandgap external quantum efficiency in crystalline silicon solar cells. Using a straightforward electromagnetic model, we calculate potential field enhancements of more than 18× within he slow-light mode of a one-dimensional photonic crystal and discuss design trade-offs and considerations for photovoltaics.

  6. Time-dependent Bragg diffraction and short-pulse reflection by one-dimensional photonic crystals

    International Nuclear Information System (INIS)

    André, Jean-Michel; Jonnard, Philippe

    2015-01-01

    The time-dependence of the Bragg diffraction by one-dimensional photonic crystals and its influence on the short pulse reflection are studied in the framework of the coupled-wave theory. The indicial response of the photonic crystal is calculated and it appears that it presents a time-delay effect with a transient time conditioned by the extinction length. A numerical simulation is presented for a Bragg mirror in the x-ray domain and a pulse envelope modelled by a sine-squared shape. The potential consequences of the time-delay effect in time-dependent optics of short-pulses are emphasized. (paper)

  7. Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals

    International Nuclear Information System (INIS)

    Hojo, Hitoshi; Mase, Atsushi

    2004-01-01

    The dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals is studied. The plasma photonic crystal is a periodic array composed of alternating thin plasma and dielectric material. The dispersion relation is obtained by solving a Maxwell wave equation using a method analogous to Kronig-Penny's problem in quantum mechanics, and it is found that the frequency gap and cut-off appear in the dispersion relation. The frequency gap is shown to become larger with the increase of the plasma density as well as plasma width. (author)

  8. Some optical properties of one dimensional annular photonic crystal with plasma frequency

    Science.gov (United States)

    Pandeya, G. N.; Thapa, Khem B.

    2018-05-01

    This paper presents the reflection bands, photonic band gaps, of the one-dimensional annul photonic crystal (APC) containing double negative (DNG) metamaterials and air. The proposed annular structure consists of the alternate layers of dispersive DNG material and air immersed in free space. The reflectance properties of the APC by employing the transfer matrix method (TMM) in the cylindrical waves for TE polarization is studied theoretically. In addition of this, we have also studied the effect of plasma frequency on the reflection behavior of the considered annular structure.

  9. Femtosecond Pulse Characterization as Applied to One-Dimensional Photonic Band Edge Structures

    Science.gov (United States)

    Fork, Richard L.; Gamble, Lisa J.; Diffey, William M.

    1999-01-01

    The ability to control the group velocity and phase of an optical pulse is important to many current active areas of research. Electronically addressable one-dimensional photonic crystals are an attractive candidate to achieve this control. This report details work done toward the characterization of photonic crystals and improvement of the characterization technique. As part of the work, the spectral dependence of the group delay imparted by a GaAs/AlAs photonic crystal was characterized. Also, a first generation an electrically addressable photonic crystal was tested for the ability to electronically control the group delay. The measurement technique, using 100 femtosecond continuum pulses was improved to yield high spectral resolution (1.7 nanometers) and concurrently with high temporal resolution (tens of femtoseconds). Conclusions and recommendations based upon the work done are also presented.

  10. Coherent single-photon absorption by single emitters coupled to one-dimensional nanophotonic waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yuntian; Wubs, Martijn; Moerk, Jesper [DTU Fotonik, Department of Photonics Engineering, Oersteds Plads, DK-2800 Kgs Lyngby (Denmark); Koenderink, A Femius, E-mail: yche@fotonik.dtu.dk [Center for Nanophotonics, FOM Institute for Atomic and Molecular Physics (AMOLF), Science Park 104, 1098 XG Amsterdam (Netherlands)

    2011-10-15

    We study the dynamics of single-photon absorption by a single emitter coupled to a one-dimensional waveguide that simultaneously provides channels for spontaneous emission (SE) decay and a channel for the input photon. We have developed a time-dependent theory that allows us to specify any input single-photon wavepacket guided by the waveguide as the initial condition, and calculate the excitation probability of the emitter, as well as the time evolution of the transmitted and reflected fields. For single-photon wavepackets with a Gaussian spectrum and temporal shape, we obtain analytical solutions for the dynamics of absorption, with maximum atomic excitation {approx}40%. We furthermore propose a terminated waveguide to aid the single-photon absorption. We found that for an emitter placed at an optimal distance from the termination, the maximum atomic excitation due to an incident single-photon wavepacket can exceed 70%. This high value is a direct consequence of the high SE {beta}-factor for emission into the waveguide. Finally, we have also explored whether waveguide dispersion could aid single-photon absorption by pulse shaping. For a Gaussian input wavepacket, we found that the absorption efficiency can be improved by a further 4% by engineering the dispersion. Efficient single-photon absorption by a single emitter has potential applications in quantum communication and quantum computation. (paper)

  11. Localized electromagnetic modes and transmission spectrum of one-dimensional photon crystal with lattice defects

    CERN Document Server

    Vetrov, S Y

    2001-01-01

    The properties of the localized electromagnetic modes in the one-dimensional photon crystal with a structural defective layer are studied. The anisotropic layer of the nematic liquid layer is considered as the defect. It is shown that the frequency and coefficient of the defective modes attenuation essentially depend on the defective layer thickness and nematic optical axis orientation. The spectrum of the photon crystal transmittance with one or two defects in the lattice is studied. The possibility of controlling the the photon crystal transmittance spectrum on the count of changing the orientation of the nematic optical axis, for example, through the external electric field is shown with an account of strong anisotropy of the dielectric permittivity

  12. Tamm-plasmon polaritons in one-dimensional photonic quasi-crystals.

    Science.gov (United States)

    Shukla, Mukesh Kumar; Das, Ritwick

    2018-02-01

    We present an investigation to ascertain the existence of Tamm-plasmon-polariton-like modes in one-dimensional (1D) quasi-periodic photonic systems. Photonic bandgap formation in quasi-crystals is essentially a consequence of long-range periodicity exhibited by multilayers and, thus, it can be explained using the dispersion relation in the Brillouin zone. Defining a "Zak"-like topological phase in 1D quasi-crystals, we propose a recipe to ascertain the existence of Tamm-like photonic surface modes in a metal-terminated quasi-crystal lattice. Additionally, we also explore the conditions of efficient excitation of such surface modes along with their dispersion characteristics.

  13. Broadband one-dimensional photonic crystal wave plate containing single-negative materials.

    Science.gov (United States)

    Chen, Yihang

    2010-09-13

    The properties of the phase shift of wave reflected from one-dimensional photonic crystals consisting of periodic layers of single-negative (permittivity- or permeability-negative) materials are demonstrated. As the incident angle increases, the reflection phase shift of TE wave decreases, while that of TM wave increases. The phase shifts of both polarized waves vary smoothly as the frequency changes across the photonic crystal stop band. Consequently, the difference between the phase shift of TE and that of TM wave could remain constant in a rather wide frequency range inside the stop band. These properties are useful to design wave plate or retarder which can be used in wide spectral band. In addition, a broadband photonic crystal quarter-wave plate is proposed.

  14. One-dimensional modulation instability in biased two-photon photorefractive-photovoltaic crystals

    International Nuclear Information System (INIS)

    Zhan Kaiyun; Hou Chunfeng; Li Xin

    2010-01-01

    The one-dimensional modulation instability of broad optical beams in biased two-photon photorefractive-photovoltaic crystals is investigated under steady-state conditions. Our analysis indicates that the modulation instability growth rate depends on the external bias field, the bulk photovoltaic effect and the ratio of the intensity of the incident beam to that of the dark irradiance. Moreover, our results show that this modulation instability growth rate is the same as that in two-photon photorefractive-photovoltaic crystals under open circuit conditions in the absence of an external bias field, and the modulation instability growth rate in two-photon biased photorefractive-nonphotovoltaic crystals can be predicted when the bulk photovoltaic effect is neglected.

  15. Electrically Rotatable Polarizer Using One-Dimensional Photonic Crystal with a Nematic Liquid Crystal Defect Layer

    Directory of Open Access Journals (Sweden)

    Ryotaro Ozaki

    2015-09-01

    Full Text Available Polarization characteristics of defect mode peaks in a one-dimensional (1D photonic crystal (PC with a nematic liquid crystal (NLC defect layer have been investigated. Two different polarized defect modes are observed in a stop band. One group of defect modes is polarized along the long molecular axis of the NLC, whereas another group is polarized along its short axis. Polarizations of the defect modes can be tuned by field-induced in-plane reorientation of the NLC in the defect layer. The polarization properties of the 1D PC with the NLC defect layer is also investigated by the finite difference time domain (FDTD simulation.

  16. Controlling the light propagation in one-dimensional photonic crystal via incoherent pump and interdot tunneling

    Science.gov (United States)

    Abbasabadi, Majid; Sahrai, Mostafa

    2018-01-01

    We investigated the propagation of an electromagnetic pulse through a one-dimensional photonic crystal doped with quantum-dot (QD) molecules in a defect layer. The QD molecules behave as a three-level quantum system and are driven by a coherent probe laser field and an incoherent pump field. No coherent coupling laser fields were introduced, and the coherence was created by the interdot tunnel effect. Further studied was the effect of tunneling and incoherent pumping on the group velocity of the transmitted and reflected probe pulse.

  17. Observation of large photonic band gaps and defect modes in one-dimensional networked waveguides

    CERN Document Server

    Mir, A; Vasseur, J O; Djafari-Rouhani, B; Fettouhi, N; Boudouti, E H E; Dobrzynski, L; Zemmouri, J

    2003-01-01

    The photonic band structures and transmission spectra of serial loop structures (SLSs), made of loops pasted together with segments of finite length, are investigated experimentally and theoretically. These monomode structures, composed of one-dimensional dielectric materials, may exhibit large stop bands where the propagation of electromagnetic waves is forbidden. The width of these band gaps depends on the geometrical and compositional parameters of the structure and may be drastically increased in a tandem geometry made up of several successive SLSs which differ in their physical characteristics. These SLSs may have potential applications as ultrawide-band filters.

  18. Wave propagation inside one-dimensional photonic crystals with single-negative materials

    International Nuclear Information System (INIS)

    Wang Ligang; Chen Hong; Zhu Shiyao

    2006-01-01

    The propagation of light waves in one-dimensional photonic crystals (1DPCs) composed of alternating layers of two kinds of single-negative materials is investigated theoretically. The phase velocity is negative when the frequency of the light wave is smaller than the certain critical frequency ω cr , while the Poynting vector is always positive. At normal incidence, such 1DPCs may act as equivalent left-handed materials. At the inclined incidence, the effective wave vectors inside such 1DPCs do refract negatively, while the effective energy flows do not refract negatively. Therefore, at the inclined incidence, the 1DPCs are not equivalent to the left-handed materials

  19. Wideband absorption in one dimensional photonic crystal with graphene-based hyperbolic metamaterials

    Science.gov (United States)

    Kang, Yongqiang; Liu, Hongmei

    2018-02-01

    A broadband absorber which was proposed by one dimensional photonic crystal (1DPC) containing graphene-based hyperbolic metamaterials (GHMM) is theoretically investigated. For TM mode, it was demonstrated to absorb roughly 90% of all available electromagnetic waves at a 14 THz absorption bandwidth at normal incidence. The absorption bandwidth was affected by Fermi energy and thickness of dielectric layer. When the incident angle was increased, the absorption value decreased, and the absorption band had a gradual blue shift. These findings have potential applications for designing broadband optoelectronic devices at mid-infrared and THz frequency range.

  20. Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials.

    Science.gov (United States)

    Tomita, Satoshi; Yokoyama, Takashi; Yanagi, Hisao; Wood, Ben; Pendry, John B; Fujii, Minoru; Hayashi, Shinji

    2008-06-23

    We report resonant photon tunneling (RPT) through one-dimensional metamaterials consisting of alternating layers of metal and dielectric. RPT via a surface plasmon polariton state permits evanescent light waves with large wavenumbers to be conveyed through the metamaterial. This is the mechanism for sub-wavelength imaging recently demonstrated with a super-lens. Furthermore, we find that the RPT peak is shifted from the reflectance dip with increasing the number of Al layers, indicating that the shift is caused by the losses in the RPT.

  1. Geometrically distributed one-dimensional photonic crystals for light-reflection in all angles.

    Science.gov (United States)

    Alagappan, G; Wu, P

    2009-07-06

    We demonstrate that a series of one-dimensional photonic crystals made of any dielectric materials, with the periods are distributed in a geometrical progression of a common ratio, r rc (theta,P), where rc is a structural parameter that depends on the angle of incidence, theta, and polarization, P, is capable of blocking light of any spectral range. If an omni-directional reflection is desired for all polarizations and for all incident angles smaller than thetao, then r rc (theta(o),p), where p is the polarization with the electric field parallel to the plane of incidence. We present simple and formula like expressions for rc, width of the bandgap, and minimum number of photonic crystals to achieve a perfect light reflection.

  2. Properties of entangled photon pairs generated in one-dimensional nonlinear photonic-band-gap structures

    International Nuclear Information System (INIS)

    Perina, Jan Jr.; Centini, Marco; Sibilia, Concita; Bertolotti, Mario; Scalora, Michael

    2006-01-01

    We have developed a rigorous quantum model of spontaneous parametric down-conversion in a nonlinear 1D photonic-band-gap structure based upon expansion of the field into monochromatic plane waves. The model provides a two-photon amplitude of a created photon pair. The spectra of the signal and idler fields, their intensity profiles in the time domain, as well as the coincidence-count interference pattern in a Hong-Ou-Mandel interferometer are determined both for cw and pulsed pumping regimes in terms of the two-photon amplitude. A broad range of parameters characterizing the emitted down-converted fields can be used. As an example, a structure composed of 49 layers of GaN/AlN is analyzed as a suitable source of photon pairs having high efficiency

  3. Omnidirectional reflection in one-dimensional ternary photonic crystals and photonic heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shiqi [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); Yang, Xiangbo, E-mail: 20001038@m.scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006 (China); Liu, Chengyi Timon [School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006 (China)

    2014-03-01

    Designing dielectric systems to create omnidirectional band gaps (OBGs) is an attractive topic in the field of photonic band gap (PBG) structures. In this Letter, we propose a new approach to create OBGs by ternary photonic heterostructures (TPHs) composed of three kinds of materials with different refractive indices and obtain the formulae of the structures of TPHs, i.e., those of the thicknesses of materials and the number of sub-ternary photonic crystals. It may provide a powerful technique for designing the structures being able to produce OBGs by use of usual materials, lowcost materials, and materials with low refractive indices, etc.

  4. Omnidirectional reflection in one-dimensional ternary photonic crystals and photonic heterostructures

    International Nuclear Information System (INIS)

    Wang, Shiqi; Yang, Xiangbo; Liu, Chengyi Timon

    2014-01-01

    Designing dielectric systems to create omnidirectional band gaps (OBGs) is an attractive topic in the field of photonic band gap (PBG) structures. In this Letter, we propose a new approach to create OBGs by ternary photonic heterostructures (TPHs) composed of three kinds of materials with different refractive indices and obtain the formulae of the structures of TPHs, i.e., those of the thicknesses of materials and the number of sub-ternary photonic crystals. It may provide a powerful technique for designing the structures being able to produce OBGs by use of usual materials, lowcost materials, and materials with low refractive indices, etc.

  5. Quasiperiodic one-dimensional photonic crystals with adjustable multiple photonic bandgaps.

    Science.gov (United States)

    Vyunishev, Andrey M; Pankin, Pavel S; Svyakhovskiy, Sergey E; Timofeev, Ivan V; Vetrov, Stepan Ya

    2017-09-15

    We propose an elegant approach to produce photonic bandgap (PBG) structures with multiple photonic bandgaps by constructing quasiperiodic photonic crystals (QPPCs) composed of a superposition of photonic lattices with different periods. Generally, QPPC structures exhibit both aperiodicity and multiple PBGs due to their long-range order. They are described by a simple analytical expression, instead of quasiperiodic tiling approaches based on substitution rules. Here we describe the optical properties of QPPCs exhibiting two PBGs that can be tuned independently. PBG interband spacing and its depth can be varied by choosing appropriate reciprocal lattice vectors and their amplitudes. These effects are confirmed by the proof-of-concept measurements made for the porous silicon-based QPPC of the appropriate design.

  6. Entangled photon pair generation by spontaneous parametric down-conversion in finite-length one-dimensional photonic crystals

    International Nuclear Information System (INIS)

    Centini, M.; Sciscione, L.; Sibilia, C.; Bertolotti, M.; Perina, J. Jr.; Scalora, M.; Bloemer, M.J.

    2005-01-01

    A description of spontaneous parametric down-conversion in finite-length one-dimensional nonlinear photonic crystals is developed using semiclassical and quantum approaches. It is shown that if a suitable averaging is added to the semiclassical model, its results are in very good agreement with the quantum approach. We propose two structures made with GaN/AlN that generate both degenerate and nondegenerate entangled photon pairs. Both structures are designed so as to achieve a high efficiency of the nonlinear process

  7. Optical transmission properties of an anisotropic defect cavity in one-dimensional photonic crystal

    Science.gov (United States)

    Ouchani, Noama; El Moussaouy, Abdelaziz; Aynaou, Hassan; El Hassouani, Youssef; El Boudouti, El Houssaine; Djafari-Rouhani, Bahram

    2018-01-01

    We investigate theoretically the possibility to control the optical transmission in the visible and infrared regions by a defective one dimensional photonic crystal formed by a combination of a finite isotropic superlattice and an anisotropic defect layer. The Green's function approach has been used to derive the reflection and the transmission coefficients, as well as the densities of states of the optical modes. We evaluate the delay times of the localized modes and we compare their behavior with the total densities of states. We show that the birefringence of an anisotropic defect layer has a significant impact on the behavior of the optical modes in the electromagnetic forbidden bands of the structure. The amplitudes of the defect modes in the transmission and the delay time spectrum, depend strongly on the position of the cavity layer within the photonic crystal. The anisotropic defect layer induces transmission zeros in one of the two components of the transmission as a consequence of a destructive interference of the two polarized waves within this layer, giving rise to negative delay times for some wavelengths in the visible and infrared light ranges. This property is a typical characteristic of the anisotropic photonic layer and is without analogue in their counterpart isotropic defect layers. This structure offers several possibilities for controlling the frequencies, transmitted intensities and the delay times of the optical modes in the visible and infrared regions. It can be a good candidate for realizing high-precision optical filters.

  8. Analysis and synthesis of one-dimensional magneto-photonic crystals using coupled mode theory

    Energy Technology Data Exchange (ETDEWEB)

    Saghirzadeh Darki, Behnam, E-mail: b.saghirzadeh@ec.iut.ac.ir; Nezhad, Abolghasem Zeidaabadi; Firouzeh, Zaker Hossein

    2017-03-15

    We utilize our previously developed temporal coupled mode approach to investigate the performance of one-dimensional magneto-photonic crystals (MPCs). We analytically demonstrate that a double-defect MPC provides adequate degrees of freedom to design a structure for arbitrary transmittance and Faraday rotation. By using our developed analytic approach along with the numerical transfer matrix method, we present a procedure for the synthesis of an MPC to generate any desired transmittance and Faraday rotation in possible ranges. However it is seen that only discrete values of transmittance and Faraday rotation are practically obtainable. To remedy this problem along with having short structures, we introduce a class of MPC heterostructures which are combinations of stacks with high and low optical contrast ratios.

  9. Bulk-like-phonon polaritons in one-dimensional photonic superlattices

    Science.gov (United States)

    Gómez-Urrea, H. A.; Duque, C. A.; Mora-Ramos, M. E.

    2017-05-01

    We investigate the properties of a one-dimensional photonic superlattice made of alternating layers of air and wurtzite aluminum nitride. The Maxwell equations are solved for any admissible values of the angle of incidence by means of the transfer matrix formalism. The band structure of the frequency spectrum is obtained, as well as the density of states and transmittance associated to both the TM and TE modes. The dispersion relations indicate that for oblique incidence and TM modes there is a component of the electric field oriented along the growth direction of the structure that couples with the longitudinal optical phonon oscillations of the aluminum nitride thus leading to the appearance of longitudinal phonon polaritons in the system.

  10. Temporal coupled mode analysis of one-dimensional magneto-photonic crystals with cavity structures

    Energy Technology Data Exchange (ETDEWEB)

    Saghirzadeh Darki, Behnam, E-mail: b.saghirzadeh@ec.iut.ac.ir; Zeidaabadi Nezhad, Abolghasem; Firouzeh, Zaker Hossein

    2016-12-01

    In this paper, we propose the time-dependent coupled mode analysis of one-dimensional magneto-photonic crystals including one, two or multiple defect layers. The performance of the structures, namely the total transmission, Faraday rotation and ellipticity, is obtained using the proposed method. The results of the developed analytic approach are verified by comparing them to the results of the exact numerical transfer matrix method. Unlike the widely used numerical method, our proposed analytic method seems promising for the synthesis as well as the analysis purposes. Moreover, the proposed method has not the restrictions of the previously examined analytic methods. - Highlights: • A time-dependent coupled mode analysis is proposed for the cavity-type 1D MPCs. • Analytical formalism is presented for the single, double and multiple-defect MPCs. • Transmission, Faraday rotation and ellipticity are gained using the proposed method. • The proposed analytic method has advantages over the previously examined methods.

  11. The gaseous plasmonic response of a one-dimensional photonic crystal composed of striated plasma layers

    Science.gov (United States)

    Wang, B.; Righetti, F.; Cappelli, M. A.

    2018-03-01

    We present simulations of the response of a one-dimensional striated plasma slab to incident electromagnetic waves that span regions both above and below the plasma frequency, ωp. Photonic bandgap modes are present throughout these regions, and volume and surface plasmon modes facilitate the response below ωp, where the dielectric constant, ɛp frequency, there is a feature for transverse magnetic (TM) polarization that is associated with the emergence of new dispersion branches. Also for TM polarization, a very low frequency mode emerges outside of the light line. Both these features are plasmonic and are attributed to the excitation of symmetric and asymmetric surface plasmon polaritons (SPPs) at the plasma-dielectric interface of the multi-layer plasma slabs. The features seen in the bandgap maps near ωp reveal the possible presence of Fano resonances between the symmetric branch of the SPP and the Bragg resonance as a narrow stop band (anti-node) is superimposed on the otherwise broad transmission band seen for transverse-electric polarization. We provide renderings that allow the visualization of where the transmission bands are and compute the transmittance and reflectance to facilitate the design and interpretation of experiments. The transmission bands associated with photonic bandgap modes above the plasma frequency are rather broad. The plasmonic modes, i.e., those associated with ɛp ≤ 0, can be quite narrow and are tuned by varying the plasma density, affording an opportunity for the application of these structures as ultra-narrow tunable microwave transmission filters.

  12. New generation of one-dimensional photonic crystal cavities as robust high-efficient frequency converter

    Science.gov (United States)

    Parvini, T. S.; Tehranchi, M. M.; Hamidi, S. M.

    2017-07-01

    An effective method is proposed to design finite one-dimensional photonic crystal cavities (PhCCs) as robust high-efficient frequency converter. For this purpose, we consider two groups of PhCCs which are constructed by stacking m nonlinear (LiNbO3) and n linear (air) layers with variable thicknesses. In the first group, the number of linear layers is less than the nonlinear layers by one and in the second group by two. The conversion efficiency is calculated as a function of the arrangement and thicknesses of the linear and nonlinear layers by benefiting from nonlinear transfer matrix method. Our numerical simulations show that for each group of PhCCs, there is a structural formula by which the configurations with the highest efficiency can be constructed for any values of m and n (i.e. any number of layers). The efficient configurations are equivalent to Fabry-Pérot cavities that depend on the relationship between m and n and the mirrors in two sides of these cavities can be periodic or nonperiodic. The conversion efficiencies of these designed PhCCs are more than 5 orders of magnitude higher than the perfect ones which satisfy photonic bandgap edge and quasi-phase matching. Moreover, the results reveal that conversion efficiencies of Fabry-Pérot cavities with non-periodic mirrors are one order of magnitude higher than those with periodic mirrors. The major physical mechanisms of the enhancement are quasi-phase matching effect, cavity effect induced by dispersive mirrors, and double resonance for the pump and the harmonic fields in defect state. We believe that this method is very beneficial to the design of high-efficient compact optical frequency converters.

  13. Electromagnetic-field amplification in finite one-dimensional photonic crystals

    International Nuclear Information System (INIS)

    Gorelik, V. S.; Kapaev, V. V.

    2016-01-01

    The electromagnetic-field distribution in a finite one-dimensional photonic crystal is studied using the numerical solution of Maxwell’s equations by the transfer-matrix method. The dependence of the transmission coefficient T on the period d (or the wavelength λ) has the characteristic form with M–1 (M is the number of periods in the structure) maxima with T = 1 in the allowed band of an infinite crystal and zero values in the forbidden band. The field-modulus distribution E(x) in the structure for parameters that correspond to the transmission maxima closest to the boundaries of forbidden bands has maxima at the center of the structure; the value at the maximum considerably exceeds the incident-field strength. For the number of periods M ~ 50, more than an order of magnitude increase in the field amplification is observed. The numerical results are interpreted with an analytic theory constructed by representing the solution in the form of a linear combination of counterpropagating Floquet modes in a periodic structure.

  14. Analysis of cutoff frequency in a one-dimensional superconductor-metamaterial photonic crystal

    International Nuclear Information System (INIS)

    Aly, Arafa H; Aghajamali, Alireza; Elsayed, Hussein A.; Mobarak, Mohamed

    2016-01-01

    Highlights: • Our results show that the appearance of the cutoff frequency, below which the incident electromagnetic waves cannot propagate in the structure. We demonstrate that the cutoff frequency shows an upward trend as the thickness of the superconductor layer as well as the thickness of the metamaterial increase. • The cutoff frequency can be tuned by the operating temperature. Our structures are good candidates for many optical devices such as optical filters, switches, temperature controlled optical shutter, and among photoelectronic applications in gigahertz. - Abstract: In this paper, using the two-fluid model and the characteristic matrix method, we investigate the transmission characteristics of the one-dimensional photonic crystal. Our structure composed of the layers of low-temperature superconductor material (NbN) and double-negative metamaterial. We target studying the effect of many parameters such as the thickness of the superconductor material, the thickness of the metamaterial layer, and the operating temperature. We show that the cut-off frequency can be tuned efficiently by the operating temperature as well as the thicknesses of the constituent materials.

  15. Investigating Optical Properties of One-Dimensional Photonic Crystals Containing Semiconductor Quantum Wells

    Directory of Open Access Journals (Sweden)

    Mahshid Mokhtarnejad

    2017-01-01

    Full Text Available This study examined MQWs made of InGaAs/GaAs, InAlAs/InP, and InGaAs/InP in terms of their band structure and reflectivity. We also demonstrated that the reflectivity of MQWs under normal incident was at maximum, while both using a strong pump and changing incident angle reduced it. Reflectivity of the structure for a weak probe pulse depends on polarization, intensity of the pump pulse, and delay between the probe pulse and the pump pulse. So this system can be used as an ultrafast all-optical switch which is inspected by the transfer matrix method. After studying the band structure of the one-dimensional photonic crystal, the optical stark effect (OSE was considered on it. Due to the OSE on virtual exciton levels, the switching time can be in the order of picoseconds. Moreover, it is demonstrated that, by introducing errors in width of barrier and well as well as by inserting defect, the reflectivity is reduced. Thus, by employing the mechanism of stark effect MQWs band-gaps can be easily controlled which is useful in designing MWQ based optical switches and filters. By comparing the results, we observe that the reflectivity of MWQ containing 200 periods of InAlAs/InP quantum wells shows the maximum reflectivity of 96%.

  16. Optical properties of a defective one-dimensional photonic crystal containing graphene nanaolayers

    International Nuclear Information System (INIS)

    Entezar, S. Roshan; Saleki, Z.; Madani, A.

    2015-01-01

    The transmission properties of a defective one-dimensional photonic crystal containing graphene nanolayers have been investigated using the transfer matrix method. It is shown that two kinds of the defect modes can be found in the band gaps of the structure. One kind is the traditional defect mode which is created in the Bragg gaps of the structure and is due to the breaking of the periodicity of the dielectric lattice. The other one is created in the graphene induced band gap. Such a defect mode which we call it the graphene induced defect mode is due to the breaking of the periodicity of the graphene lattice. However, our investigations reveal that only in the case of wide defect layers one can obtain the graphene induced defect modes. The effects of many parameters such as the incident angle, the state of polarization and the chemical potential of the graphene nanolayers on the properties of the graphene induced defect modes are discussed. Moreover, the possibility of external control of the graphene induced defect modes using a gate voltage is shown.

  17. Electromagnetically induced reflectance and Fano resonance in one dimensional superconducting photonic crystal

    Science.gov (United States)

    Athe, Pratik; Srivastava, Sanjay; Thapa, Khem B.

    2018-04-01

    In the present work, we demonstrate the generation of optical Fano resonance and electromagnetically induced reflectance (EIR) in one-dimensional superconducting photonic crystal (1D SPC) by numerical simulation using transfer matrix method as analysis tool. We investigated the optical response of 1D SPC structure consisting of alternate layer of two different superconductors and observed that the optical spectra of this structure exhibit two narrow reflectance peaks with zero reflectivity of sidebands. Further, we added a dielectric cap layer to this 1D SPC structure and found that addition of dielectric cap layer transforms the line shape of sidebands around the narrow reflectance peaks which leads to the formation of Fano resonance and EIR line shape in reflectance spectra. We also studied the effects of the number of periods, refractive index and thickness of dielectric cap layer on the lineshape of EIR and Fano resonances. It was observed that the amplitude of peak reflectance of EIR achieves 100% reflectance by increasing the number of periods.

  18. VO{sub 2}-like thermo-optical switching effect in one-dimensional nonlinear defective photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Juan, E-mail: juanzhang@staff.shu.edu.cn, E-mail: ywang@siom.ac.cn; Zhang, Rongjun [Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai 200072 (China); Wang, Yang, E-mail: juanzhang@staff.shu.edu.cn, E-mail: ywang@siom.ac.cn [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-06-07

    A new approach to achieve VO{sub 2}-like thermo-optical switching in a one-dimensional photonic crystal by the combination of thermo-optical and optical Kerr effects was proposed and numerically demonstrated in this study. The switching temperature and the hysteresis width can be tuned in a wide temperature range. Steep transition, high optical contrast, and low pumping power can be achieved at the same time. This kind of one-dimensional photonic crystal-based bistable switch will be low-cost, easy-to-fabricate, and versatile in practical applications compared with traditional VO{sub 2}-type one.

  19. Second quantization and atomic spontaneous emission inside one-dimensional photonic crystals via a quasinormal-modes approach

    International Nuclear Information System (INIS)

    Severini, S.; Settimi, A.; Sibilia, C.; Bertolotti, M.; Napoli, A.; Messina, A.

    2004-01-01

    An extension of the second quantization scheme based on the quasinormal-modes theory to one-dimensional photonic band gap (PBG) structures is discussed. Such structures, treated as double open optical cavities, are studied as part of a compound closed system including the electromagnetic radiative external bath. The electromagnetic field inside the photonic crystal is successfully represented by a new class of modes called quasinormal modes. Starting from this representation we introduce the Feynman's propagator to calculate the decay rate of a dipole inside a PBG structure, related to the density of modes, in the presence of the vacuum fluctuations outside the one-dimensional cavity

  20. Coherent single-photon absorption by single emitters coupled to one-dimensional nanophotonic waveguides

    DEFF Research Database (Denmark)

    Chen, Yuntian; Wubs, Martijn; Mørk, Jesper

    2011-01-01

    -photon wavepacket can exceed 70%. This high value is a direct consequence of the high SE β-factor for emission into the waveguide. Finally, we have also explored whether waveguide dispersion could aid single-photon absorption by pulse shaping. For a Gaussian input wavepacket, we found that the absorption efficiency...

  1. Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, G. N., E-mail: gnpandey2009@gmail.com [Department of Physics, Amity Institute of Applied Sciences, AmityUniversity, Noida (U.P.) (India); Kumar, Narendra [Department of Physics (CASH), Modi University of Science and Technology, Lakshmangarh, Sikar, Rajsthan (India); Thapa, Khem B. [Department of Physics, U I E T, ChhatrapatiShahu Ji Maharaj University, Kanpur- (UP) (India); Ojha, S. P. [Department of Physics IIT, Banaras Hindu University (India)

    2016-05-06

    Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractive index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.

  2. Periodically modulated single-photon transport in one-dimensional waveguide

    Science.gov (United States)

    Li, Xingmin; Wei, L. F.

    2018-03-01

    Single-photon transport along a one-dimension waveguide interacting with a quantum system (e.g., two-level atom) is a very useful and meaningful simplified model of the waveguide-based optical quantum devices. Thus, how to modulate the transport of the photons in the waveguide structures by adjusting certain external parameters should be particularly important. In this paper, we discuss how such a modulation could be implemented by periodically driving the energy splitting of the interacting atom and the atom-photon coupling strength. By generalizing the well developed time-independent full quantum mechanical theory in real space to the time-dependent one, we show that various sideband-transmission phenomena could be observed. This means that, with these modulations the photon has certain probabilities to transmit through the scattering atom in the other energy sidebands. Inversely, by controlling the sideband transmission the periodic modulations of the single photon waveguide devices could be designed for the future optical quantum information processing applications.

  3. Heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Song, Guo-Zhu; Zhang, Mei; Ai, Qing; Yang, Guo-Jian [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China); Alsaedi, Ahmed; Hobiny, Aatef [NAAM-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Deng, Fu-Guo, E-mail: fgdeng@bnu.edu.cn [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China); NAAM-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2017-03-15

    We propose a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We show the details by implementing nonlocal entanglement generation, entanglement swapping, and entanglement purification modules with atoms in waveguides, and discuss the feasibility of the repeater with currently achievable technology. In our scheme, the faulty events can be discarded by detecting the polarization of the photons. That is, our protocols are accomplished with a fidelity of 100% in principle, which is advantageous for implementing realistic long-distance quantum communication. Moreover, additional atomic qubits are not required, but only a single-photon medium. Our scheme is scalable and attractive since it can be realized in solid-state quantum systems. With the great progress on controlling atom-waveguide systems, the repeater may be very useful in quantum information processing in the future.

  4. Time-domain terahertz study of defect formation in one-dimensional photonic crystals

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Kužel, Petr; Garet, F.; Duvillaret, L.

    2004-01-01

    Roč. 43, č. 9 (2004), s. 1965-1970 ISSN 0003-6935 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z1010914 Keywords : terhertz spectroscopy * photonic structure * reflectance phase * twinning defect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.799, year: 2004

  5. Defect modes caused by twinning in one-dimensional photonic crystals

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Duvillaret, L.; Quemeneur, F.; Kužel, Petr

    2004-01-01

    Roč. 21, č. 3 (2004), s. 548-553 ISSN 0740-3224 Institutional research plan: CEZ:AV0Z1010914 Keywords : photonic structures * twin-defect * defect levels * tuning Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.649, year: 2004

  6. Superluminal and negative delay times in isotropic-anisotropic one-dimensional photonic crystal

    Science.gov (United States)

    Ouchani, N.; El Moussaouy, A.; Aynaou, H.; El Hassouani, Y.; El Boudouti, E. H.; Djafari-Rouhani, B.

    2017-11-01

    In this work, we investigate the possibility of superluminal and negative delay times for electromagnetic wave propagation in a linear and passive periodic structure consisting of alternating isotropic and anisotropic media. This phenomenon is due to the birefringence of the anisotropic layers of the structure. By adjusting the orientations of these layers, the delay times of transmitted waves can be controlled from subluminality to superluminality and vice versa. Numerical results indicate that the apparent superluminal propagation of light occurs inside the photonic band-gaps when the principal axes of the anisotropic layers are parallel or perpendicular to the fixed axes. For other orientations of these layers, tunneling and superluminal regimes appear inside the photonic bandgaps and in the allowed bands for frequencies close to the transmission minima. The effect of the number of unit cells of the photonic crystal structure on the propagation of light with superluminal and negative delay times is also investigated. We show that the structure exhibits the Hartman effect in which the tunneling delay time of the electromagnetic wave through the photonic band-gap of the structure converges asymptotically to a finite value with increasing the number of layers. The Green's function approach has been used to derive the transmission and reflection coefficients, the density of states, and the delay times of electromagnetic waves propagating through the structure. The control of the magnitude and the sign of the delay time of light propagation represent a key point in slow and fast light technologies. The proposed structure in this study represents a new system for controlling the delay times of wave propagation without a need of active or non-linear media as well as lossy or asymmetric periodic structures.

  7. Fast one-dimensional photonic crystal modulators for the terahertz range

    Czech Academy of Sciences Publication Activity Database

    Fekete, Ladislav; Kadlec, Filip; Němec, Hynek; Kužel, Petr

    2007-01-01

    Roč. 15, č. 14 (2007), s. 8898-8912 ISSN 1094-4087 R&D Projects: GA AV ČR KJB100100512; GA MŠk LC512 Institutional research plan: CEZ:AV0Z10100520 Keywords : optical control * terahertz * modulator * GaAs * photonic crystal * photoconductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.709, year: 2007

  8. Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Irina V. Soboleva

    2018-01-01

    Full Text Available The review considers the influence of Bloch surface waves on the optical and magneto-optical effects observed in photonic crystals; for example, the Goos–Hänchen effect, the Faraday effect, optical trapping and so on. Prospects for using Bloch surface waves for spatial light modulation, for controlling the polarization of light, for optical trapping and control of micro-objects are discussed.

  9. Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials

    OpenAIRE

    Tomita, Satoshi; Yokoyama, Takashi; Yanagi, Hisao; Wood, Ben; Pendry, John B.; Fujii, Minoru; Hayashi, Shinji

    2008-01-01

    We report resonant photon tunneling (RPT) through onedimensional metamaterials consisting of alternating layers of metal and dielectric. RPT via a surface plasmon polariton state permits evanescent light waves with large wavenumbers to be conveyed through the metamaterial. This is the mechanism for sub-wavelength imaging recently demonstrated with a super-lens. Furthermore, we find that the RPT peak is shifted from the reflectance dip with increasing the number of Al layers, indicating that t...

  10. Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haifeng [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu Shaobin [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); State Key Laboratory of Millimeter Waves of Southeast University, Nanjing Jiangsu 210096 (China); Kong Xiangkun; Bian Borui; Dai Yi [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2012-11-15

    In this paper, an omnidirectional photonic band gap realized by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure, which is composed of homogeneous unmagnetized plasma and two kinds of isotropic dielectric, is theoretically studied by the transfer matrix method. It has been shown that such an omnidirectional photonic band gap originates from Bragg gap in contrast to zero-n gap or single negative (negative permittivity or negative permeability) gap, and it is insensitive to the incidence angle and the polarization of electromagnetic wave. From the numerical results, the frequency range and central frequency of omnidirectional photonic band gap can be tuned by the thickness and density of the plasma but cease to change with increasing Fibonacci order. The bandwidth of omnidirectional photonic band gap can be notably enlarged. Moreover, the plasma collision frequency has no effect on the bandwidth of omnidirectional photonic band gap. It is shown that such new structure Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals have a superior feature in the enhancement of frequency range of omnidirectional photonic band gap compared with the conventional ternary and conventional Fibonacci quasiperiodic ternary plasma photonic crystals.

  11. Observation of quasiperiodic dynamics in a one-dimensional quantum walk of single photons in space

    Science.gov (United States)

    Xue, Peng; Qin, Hao; Tang, Bao; Sanders, Barry C.

    2014-05-01

    We realize the quasi-periodic dynamics of a quantum walker over 2.5 quasi-periods by realizing the walker as a single photon passing through a quantum-walk optical-interferometer network. We introduce fully controllable polarization-independent phase shifters in each optical path to realize arbitrary site-dependent phase shifts, and employ large clear-aperture beam displacers, while maintaining high-visibility interference, to enable 10 quantum-walk steps to be reached. By varying the half-wave-plate setting, we control the quantum-coin bias thereby observing a transition from quasi-periodic dynamics to ballistic diffusion.

  12. Self-Detection of Leaking Pipes by One-Dimensional Photonic Crystals

    International Nuclear Information System (INIS)

    Zhou Yan; Yin Li-Qun

    2012-01-01

    We report a new self-detection control system for leaking pipes by making use of the surface defects of 1D photonic crystals, where the key concept is analog to the Bragg fiber structure. The current low costs and coating techniques of SiO 2 are beneficial to the applications, and its error is below the standard requirement. The problem of leaking pipes can be resolved by devising a remote pipeline control system which combines a long-distance pipeline and a signal transmission system. (fundamental areas of phenomenology(including applications))

  13. Vapor Responsive One-Dimensional Photonic Crystals from Zeolite Nanoparticles and Metal Oxide Films for Optical Sensing

    Science.gov (United States)

    Lazarova, Katerina; Awala, Hussein; Thomas, Sebastien; Vasileva, Marina; Mintova, Svetlana; Babeva, Tsvetanka

    2014-01-01

    The preparation of responsive multilayered structures with quarter-wave design based on layer-by-layer deposition of sol-gel derived Nb2O5 films and spin-coated MEL type zeolite is demonstrated. The refractive indices (n) and thicknesses (d) of the layers are determined using non-linear curve fitting of the measured reflectance spectra. Besides, the surface and cross-sectional features of the multilayered structures are characterized by scanning electron microscopy (SEM). The quasi-omnidirectional photonic band for the multilayered structures is predicted theoretically, and confirmed experimentally by reflectance measurements at oblique incidence with polarized light. The sensing properties of the multilayered structures toward acetone are studied by measuring transmittance spectra prior and after vapor exposure. Furthermore, the potential of the one-dimensional photonic crystals based on the multilayered structure consisting of Nb2O5 and MEL type zeolite as a chemical sensor with optical read-out is discussed. PMID:25010695

  14. Study on the properties of tunable prohibited band gaps for one-dimensional ternary magnetized plasma photonic crystals

    International Nuclear Information System (INIS)

    Zhang Haifeng; Zheng Jianping; Zhu Rongjun

    2012-01-01

    The transfer matrix method was applied to study on the properties of tunable prohibited band gaps for one-dimensional ternary magnetized plasma photonic crystals with TE wave arbitrary incident under ideal conditions. TE wave would be divided into left-handed circularly polarized wave and right-handed circularly polarized wave after propagation through one-dimensional ternary magnetized plasma photonic crystals. The calculated transmission coefficients were used to analyze the effects of parameter of plasma, plasma filling factor, incident angle and relative dielectric constant for dielectric layer on the properties of tunable prohibited band gap. The results illustrate that the width of band gaps can not be broadened by increasing plasma collision frequency, the numbers and width of band gaps can be tuned by changing plasma frequency, plasma filling factor and relative dielectric constant for dielectric layer. The band gaps for right-handed circularly polarized wave can be tuned by the plasma gyro frequency, but band gaps for the left-handed circularly polarized wave can't influenced. Low-frequency region of band gaps will be broadened, while high-frequency region of band gaps will be firstly narrow and then broaden with increasing incident angle. (authors)

  15. CEPXS/ONELD: A one-dimensional coupled electron-photon discrete ordinates code package

    International Nuclear Information System (INIS)

    Lorence, L.J. Jr.; Morel, J.E.

    1992-01-01

    CEPXS/ONELD is a discrete ordinates transport code package that can model the electron-photon cascade from 100 MeV to 1 keV. The CEPXS code generates fully-coupled multigroup-Legendre cross section data. This data is used by the general-purpose discrete ordinates code, ONELD, which is derived from the Los Alamos ONEDANT and ONBTRAN codes. Version 1.0 of CEPXS/ONELD was released in 1989 and has been primarily used to analyze the effect of radiation environments on electronics. Version 2.0 is under development and will include user-friendly features such as the automatic selection of group structure, spatial mesh structure, and S N order

  16. Double symmetry breaking of solitons in one-dimensional virtual photonic crystals

    International Nuclear Information System (INIS)

    Li Yongyao; Malomed, Boris A.; Feng Mingneng; Zhou Jianying

    2011-01-01

    We demonstrate that spatial solitons undergo two consecutive spontaneous symmetry breakings (SSBs), with the increase of the total power, in nonlinear photonic crystals (PhCs) built as arrays of alternating linear and nonlinear stripes, in the case when the maxima of the effective refractive index coincide with the minima of the self-focusing coefficient and vice versa (i.e., the corresponding linear and nonlinear periodic potentials are in competition). This setting may be induced, as a virtual PhC, by means of the electromagnetically induced-transparency (EIT) technique, in a uniform optical medium. It may also be realized as a Bose-Einstein condensate (BEC) subject to the action of the combined periodic optical potential and periodically modulated Feshbach resonance. The first SSB happens at the center of a linear stripe, pushing a broad low-power soliton into an adjacent nonlinear stripe and gradually suppressing side peaks in the soliton's shape. Then the soliton restores its symmetry, being pinned to the midpoint of the nonlinear stripe. The second SSB occurs at higher powers, pushing the narrow soliton off the center of the nonlinear channel, while the soliton keeps its internal symmetry. The results are obtained by means of numerical and analytical methods. They may be employed to control switching of light beams by means of the varying power.

  17. Recent advances in organic one-dimensional composite materials: design, construction, and photonic elements for information processing.

    Science.gov (United States)

    Yan, Yongli; Zhang, Chuang; Yao, Jiannian; Zhao, Yong Sheng

    2013-07-19

    Many recent activities in the use of one-dimensional nanostructures as photonic elements for optical information processing are explained by huge advantages that photonic circuits possess over traditional silicon-based electronic ones in bandwidth, heat dissipation, and resistance to electromagnetic wave interference. Organic materials are a promising candidate to support these optical-related applications, as they combine the properties of plastics with broad spectral tunability, high optical cross-section, easy fabrication, as well as low cost. Their outstanding compatibility allows organic composite structures which are made of two or more kinds of materials combined together, showing great superiority to single-component materials due to the introduced interactions among multiple constituents, such as energy transfer, electron transfer, exciton coupling, etc. The easy processability of organic 1D crystalline heterostructures enables a fine topological control of both composition and geometry, which offsets the intrinsic deficiencies of individual material. At the same time, the strong exciton-photon coupling and exciton-exciton interaction impart the excellent confinement of photons in organic microstructures, thus light can be manipulated according to our intention to realize specific functions. These collective properties indicate a potential utility of organic heterogeneous material for miniaturized photonic circuitry. Herein, focus is given on recent advances of 1D organic crystalline heterostructures, with special emphasis on the novel design, controllable construction, diverse performance, as well as wide applications in isolated photonic elements for integration. It is proposed that the highly coupled, hybrid optical networks would be an important material basis towards the creation of on-chip optical information processing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Entangled photon pair generation by spontaneous parametric down-conversion in finite-length one-dimensional photonic crystals

    Czech Academy of Sciences Publication Activity Database

    Centini, M.; Peřina ml., Jan; Sciscione, L.; Sibilia, C.; Scalora, M.; Bloemer, M.J.; Bertolotti, M.

    2005-01-01

    Roč. 72, 03 (2005), 033806/1-033806/11 ISSN 1050-2947 R&D Projects: GA MŠk(CZ) OC P11.003 Institutional research plan: CEZ:AV0Z10100522 Keywords : photon pair * photonic crystals * spontaneous parametric down-conversion Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.997, year: 2005

  19. Dynamical theory of single-photon transport in a one-dimensional waveguide coupled to identical and nonidentical emitters

    Science.gov (United States)

    Liao, Zeyang; Nha, Hyunchul; Zubairy, M. Suhail

    2016-11-01

    We develop a general dynamical theory for studying a single-photon transport in a one-dimensional (1D) waveguide coupled to multiple emitters which can be either identical or nonidentical. In this theory, both the effects of the waveguide and non-waveguide vacuum modes are included. This theory enables us to investigate the propagation of an emitter excitation or an arbitrary single-photon pulse along an array of emitters coupled to a 1D waveguide. The dipole-dipole interaction induced by the non-waveguide modes, which is usually neglected in the literature, can significantly modify the dynamics of the emitter system as well as the characteristics of the output field if the emitter separation is much smaller than the resonance wavelength. Nonidentical emitters can also strongly couple to each other if their energy difference is less than or of the order of the dipole-dipole energy shift. Interestingly, if their energy difference is close but nonzero, a very narrow transparency window around the resonance frequency can appear which does not occur for identical emitters. This phenomenon may find important applications in quantum waveguide devices such as optical switches and ultranarrow single-photon frequency comb generator.

  20. Impact of one-dimensional photonic crystal back reflector in thin-film c-Si solar cells on efficiency

    Science.gov (United States)

    Jalali, Tahmineh

    2018-05-01

    In this work, the effect of one-dimensional photonic crystal on optical absorption, which is implemented at the back side of thin-film crystalline silicon (c-Si) solar cells, is extensively discussed. The proposed structure acts as a Bragg reflector which reflects back light to the active layer as well as nanograting which couples the incident light to enhance optical absorption. To understand the optical mechanisms responsible for the enhancement of optical absorption, quantum efficiency and current density for all structures are calculated and the effect of influential parameters, such as grating period is investigated. The results confirm that our proposed structure have a great deal for substantial efficiency enhancement in a broad range from 400 to 1100 nm.

  1. One-dimensional photonic crystals with highly Bi-substituted iron garnet defect in reflection polar geometry

    International Nuclear Information System (INIS)

    Mikhailova, T V; Berzhansky, V N; Karavainikov, A V; Shaposhnikov, A N; Prokopov, A R; Lyashko, S D

    2016-01-01

    It is represented the results of modelling of magnetooptical properties in reflection polar geometry of one-dimensional photonic crystal, in which highly Bi-substituted iron garnet defect of composition Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 A l0.8 O 12 / Bi 2.8 Y 0.2 Fe 5 Oi 2 is located between the dielectric Bragg mirrors (SiO 2 / TiO 2 ) m (were m is number of layer pairs) and buffer SiO 2 and gold top layers of different thicknesses is placed on structure. The modification of spectral line- shapes of microcavity and Tamm plasmon-polariton modes depending on m is found. (paper)

  2. Band structure of one-dimensional doped photonic crystal with three level atoms using the Fresnel coefficients method

    Science.gov (United States)

    Jafari, A.; Rahmat, A.; Bakkeshizadeh, S.

    2018-01-01

    We consider a one-dimensional photonic crystal (1DPC) composed of double-layered dielectrics. Electric permittivity and magnetic permeability of this crystal depends on the incident electromagnetic wave frequency. We suppose that three level atoms have been added to the second layer of each dielectric and this photonic crystal (PC) has been doped. These atoms can be added to the layer with different rates. In this paper, we have calculated and compared the band structure of the mentioned PC considering the effect of added atoms to the second layer with different rates through the Fresnel coefficients method. We find out that according to the effective medium theory, the electric permittivity of the second layer changes. Also the band structure of PC for both TE and TM polarizations changes, too. The width of bandgaps related to “zero averaged refractive index” and “Bragg” increases. Moreover, new gap branches appear in new frequencies at both TE and TM polarizations. In specific state, two branches of “zero permittivity” gap appear in the PC band structure related to TM polarization. With increasing the amount of the filling rate of total volume with three level atoms, we observe a lot of changes in the PC band structure.

  3. Amplifying and compressing optical filter based on one-dimensional ternary photonic crystal structure containing gain medium

    Energy Technology Data Exchange (ETDEWEB)

    Jamshidi-Ghaleh, Kazem, E-mail: k-jamshidi@azaruinv.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of); Ebrahimpour, Zeinab [Department of Physics, Shahid Beheshti University, Evin 19839 Tehran (Iran, Islamic Republic of); Moslemi, Fatemeh [Department of Physics, Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of)

    2015-07-15

    The transmission spectrum properties of the one-dimensional ternary photonic crystal (1DTPC) structure, composed of dielectric (D), metal (M) and gain (G) materials, with three different arrangements of (DGM){sup N}, (GDM){sup N} and (DMG){sup N}, where N is the number of periodicity, were investigated. Two full photonic band gaps and N−1 resonant peaks, localized between them, were observed on transmittance spectra on near-UV spectrum region. When the gained layer was placed in front of the metal, the peaks appeared with higher resolution. There is a peak, localized on the higher band-edge of the first gap, which shows very interesting property than the other peaks. Thus, it amplifies and compresses faster with increase in the N and strength of the gain coefficient. The effects of the gain coefficient and periodicity number are graphically illustrated. This communication presents a PC structure that can be a good candidate to design an amplifying and compressing single or multi-channel optical filter in the UV region.

  4. Amplifying and compressing optical filter based on one-dimensional ternary photonic crystal structure containing gain medium

    Science.gov (United States)

    Jamshidi-Ghaleh, Kazem; Ebrahimpour, Zeinab; Moslemi, Fatemeh

    2015-07-01

    The transmission spectrum properties of the one-dimensional ternary photonic crystal (1DTPC) structure, composed of dielectric (D), metal (M) and gain (G) materials, with three different arrangements of (DGM)N, (GDM)N and (DMG)N, where N is the number of periodicity, were investigated. Two full photonic band gaps and N-1 resonant peaks, localized between them, were observed on transmittance spectra on near-UV spectrum region. When the gained layer was placed in front of the metal, the peaks appeared with higher resolution. There is a peak, localized on the higher band-edge of the first gap, which shows very interesting property than the other peaks. Thus, it amplifies and compresses faster with increase in the N and strength of the gain coefficient. The effects of the gain coefficient and periodicity number are graphically illustrated. This communication presents a PC structure that can be a good candidate to design an amplifying and compressing single or multi-channel optical filter in the UV region.

  5. Effect of temperature on terahertz photonic and omnidirectional band gaps in one-dimensional quasi-periodic photonic crystals composed of semiconductor InSb.

    Science.gov (United States)

    Singh, Bipin K; Pandey, Praveen C

    2016-07-20

    Engineering of thermally tunable terahertz photonic and omnidirectional bandgaps has been demonstrated theoretically in one-dimensional quasi-periodic photonic crystals (PCs) containing semiconductor and dielectric materials. The considered quasi-periodic structures are taken in the form of Fibonacci, Thue-Morse, and double periodic sequences. We have shown that the photonic and omnidirectional bandgaps in the quasi-periodic structures with semiconductor constituents are strongly depend on the temperature, thickness of the constituted semiconductor and dielectric material layers, and generations of the quasi-periodic sequences. It has been found that the number of photonic bandgaps increases with layer thickness and generation of the quasi-periodic sequences. Omnidirectional bandgaps in the structures have also been obtained. Results show that the bandwidths of photonic and omnidirectional bandgaps are tunable by changing the temperature and lattice parameters of the structures. The generation of quasi-periodic sequences can also change the properties of photonic and omnidirectional bandgaps remarkably. The frequency range of the photonic and omnidirectional bandgaps can be tuned by the change of temperature and layer thickness of the considered quasi-periodic structures. This work will be useful to design tunable terahertz PC devices.

  6. Omnidirectional photonic band gap in magnetron sputtered TiO{sub 2}/SiO{sub 2} one dimensional photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jena, S., E-mail: shuvendujena9@gmail.com [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Tokas, R.B.; Sarkar, P. [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Misal, J.S.; Maidul Haque, S.; Rao, K.D. [Photonics & Nanotechnology Section, BARC-Vizag, Autonagar, Atomic & Molecular Physics Division, Bhabha Atomic Research Centre facility, Visakhapatnam 530 012 (India); Thakur, S.; Sahoo, N.K. [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-01-29

    One dimensional photonic crystal (1DPC) of TiO{sub 2}/SiO{sub 2} multilayer has been fabricated by sequential asymmetric bipolar pulsed dc magnetron sputtering of TiO{sub 2} and radio frequency magnetron sputtering of SiO{sub 2} to achieve wide omnidirectional photonic band in the visible region. The microstructure and optical response of the TiO{sub 2}/SiO{sub 2} photonic crystal have been characterized by atomic force microscopy, scanning electron microscopy and spectrophotometry respectively. The surface of the photonic crystal is very smooth having surface roughness of 2.6 nm. Reflection and transmission spectra have been measured in the wavelength range 300 to 1000 nm for both transverse electric and transverse magnetic waves. Wide high reflection photonic band gap (∆ λ = 245 nm) in the visible and near infrared regions (592–837 nm) at normal incidence has been achieved. The measured photonic band gap (PBG) is found well matching with the calculated photonic band gap of an infinite 1DPC. The experimentally observed omnidirectional photonic band 592–668 nm (∆ λ = 76 nm) in the visible region with band to mid-band ratio ∆ λ/λ = 12% for reflectivity R > 99% over the incident angle range of 0°–70° is found almost matching with the calculated omnidirectional PBG. The omnidirectional reflection band is found much wider as compared to the values reported in literature so far in the visible region for TiO{sub 2}/SiO{sub 2} periodic photonic crystal. - Highlights: • TiO{sub 2}/SiO{sub 2} 1DPC has been fabricated using magnetron sputtering technique. • Experimental optical response is found good agreement with simulation results. • Wide omnidirectional photonic band in the visible spectrum has been achieved.

  7. Ultra-wide tuning single channel filter based on one-dimensional photonic crystal with an air cavity

    Science.gov (United States)

    Zhao, Xiaodan; Yang, Yibiao; Chen, Zhihui; Wang, Yuncai; Fei, Hongming; Deng, Xiao

    2017-02-01

    By inserting an air cavity into a one-dimensional photonic crystal of LiF/GaSb, a tunable filter covering the whole visible range is proposed. Following consideration of the dispersion of the materials, through modulating the thickness of the air cavity, we demonstrate that a single resonant peak can shift from 416.1 to 667.3 nm in the band gap at normal incidence by means of the transfer matrix method. The research also shows that the transmittance of the channel can be maximized when the number of periodic LiF/GaSb layers on one side of the air defect layer is equal to that of the other side. When adding a period to both sides respectively, the full width at half maximum of the defect mode is reduced by one order of magnitude. This structure will provide a promising approach to fabricate practical tunable filters in the visible region with ultra-wide tuning range. Project supported by the National Natural Science Foundation of China (Nos. 61575138, 61307069, 51205273), and the Top Young Academic Leaders and the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi.

  8. Analysis of light propagation in quasiregular and hybrid Rudin-Shapiro one-dimensional photonic crystals with superconducting layers

    Science.gov (United States)

    Gómez-Urrea, H. A.; Escorcia-García, J.; Duque, C. A.; Mora-Ramos, M. E.

    2017-11-01

    The transmittance spectrum of a one-dimensional hybrid photonic crystal built from the suitable arrangement of periodic and quasiregular Rudin-Shapiro heterolayers that include superconducting slabs is investigated. The four-layer Rudin-Shapiro structure is designed with three lossless dielectric layers and a low-temperature superconductor one. The dielectric function of the superconducting layer is modeled by the two-fluid Gorter-Casimir theory, and the transmittance is calculated with the use of the transfer matrix method. The obtained results reveal the presence of a cut-off frequency fc - a forbidden frequency band for propagation - that can be manipulated by changing the width of the superconducting layer, the temperature and the order of the Rudin-Shapiro sequence. In addition, the spatial distribution of the electric field amplitude for the propagating TM modes is also discussed. It is found that the maximum of localized electric field relative intensity - which reaches a value of several tens - corresponds to the frequency values above to the cut-off frequency, at which, the effective dielectric function of the hybrid unit cell becomes zero. The proposed structure could be another possible system for optical device design for temperature-dependent optical devices such as stop-band filters, or as bolometers.

  9. Phase time delay and Hartman effect in a one-dimensional photonic crystal with four-level atomic defect layer

    Science.gov (United States)

    Jamil, Rabia; Ali, Abu Bakar; Abbas, Muqaddar; Badshah, Fazal; Qamar, Sajid

    2017-08-01

    The Hartman effect is revisited using a Gaussian beam incident on a one-dimensional photonic crystal (1DPC) having a defect layer doped with four-level atoms. It is considered that each atom of the defect layer interacts with three driving fields, whereas a Gaussian beam of width w is used as a probe light to study Hartman effect. The atom-field interaction inside the defect layer exhibits electromagnetically induced transparency (EIT). The 1DPC acts as positive index material (PIM) and negative index material (NIM) corresponding to the normal and anomalous dispersion of the defect layer, respectively, via control of the phase associated with the driving fields and probe detuning. The positive and negative Hartman effects are noticed for PIM and NIM, respectively, via control of the relative phase corresponding to the driving fields and probe detuning. The advantage of using four-level EIT system is that a much smaller absorption of the transmitted beam occurs as compared to three-level EIT system corresponding to the anomalous dispersion, leading to negative Hartman effect.

  10. Bi-substituted iron garnet films for one-dimensional magneto-photonic crystals: Synthesis and properties

    International Nuclear Information System (INIS)

    Shaposhnikov, A.N.; Karavainikov, A.V.; Prokopov, A.R.; Berzhansky, V.N.; Salyuk, O.Y.

    2012-01-01

    Graphical abstract: Faraday hysteresis loops for Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 Al 0.8 O 12 film on glass-ceramic substrate (a), Bi 2.8 Y 0.2 Fe 5 O 12 film on gallium–gadolinium garnet (b) and for glass-ceramic/SiO 2 /Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 Al 0.8 O 12 /Bi 2.8 Y 0.2 Fe 5 O 12 structure (c). Highlights: ► Bismuth-substituted iron garnet films as magneto-optical layers in magneto-photonic crystals. ► It is impossible to crystallize the films with high Bi content on amorphous substrates. ► The crystallization of the films can be achieved by their deposition on buffer layer with low bismuth content. -- Abstract: The crystallization processes in Bi 2.8 Y 0.2 Fe 5 O 12 , Bi 2.5 Gd 0.5 Fe 3.8 Al 1.2 O 12 , Bi 1.5 Gd 1.5 Fe 4.5 Al 0.5 O 12 and Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 Al 0.8 O 12 garnet films deposited by reactive ion beam sputtering on (1 1 1) gadolinium–gallium garnet substrates, optical glass-ceramic and SiO 2 films have been studied. Films were annealed at low pressure in oxygen atmosphere and in the air. The possibility of preparation of crystalline garnet films with high concentration of bismuth on the SiO 2 films using a buffer layer with low concentration of Bi has been shown. This allows to produce one-dimensional magneto-photonic crystals with high effective Faraday rotation (several tens of°/μm for the visible optical spectrum).

  11. Bi-substituted iron garnet films for one-dimensional magneto-photonic crystals: Synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Shaposhnikov, A.N.; Karavainikov, A.V.; Prokopov, A.R.; Berzhansky, V.N. [Taurida National V.I. Vernadsky University, Vernadsky Av., 4, 95007 Simferopol (Ukraine); Salyuk, O.Y., E-mail: olga-saliuk@yandex.ru [Institute of Magnetizm NASU and MESU, 36-B Vernadsky Blvd., 03142 Kiev (Ukraine)

    2012-06-15

    Graphical abstract: Faraday hysteresis loops for Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12} film on glass-ceramic substrate (a), Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} film on gallium–gadolinium garnet (b) and for glass-ceramic/SiO{sub 2}/Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12}/Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} structure (c). Highlights: ► Bismuth-substituted iron garnet films as magneto-optical layers in magneto-photonic crystals. ► It is impossible to crystallize the films with high Bi content on amorphous substrates. ► The crystallization of the films can be achieved by their deposition on buffer layer with low bismuth content. -- Abstract: The crystallization processes in Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12}, Bi{sub 2.5}Gd{sub 0.5}Fe{sub 3.8}Al{sub 1.2}O{sub 12}, Bi{sub 1.5}Gd{sub 1.5}Fe{sub 4.5}Al{sub 0.5}O{sub 12} and Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12} garnet films deposited by reactive ion beam sputtering on (1 1 1) gadolinium–gallium garnet substrates, optical glass-ceramic and SiO{sub 2} films have been studied. Films were annealed at low pressure in oxygen atmosphere and in the air. The possibility of preparation of crystalline garnet films with high concentration of bismuth on the SiO{sub 2} films using a buffer layer with low concentration of Bi has been shown. This allows to produce one-dimensional magneto-photonic crystals with high effective Faraday rotation (several tens of°/μm for the visible optical spectrum).

  12. Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters

    Science.gov (United States)

    Roy, Dibyendu

    2013-01-01

    We propose and theoretically investigate a model to realize cascaded optical nonlinearity with few atoms and photons in one-dimension (1D). The optical nonlinearity in our system is mediated by resonant interactions of photons with two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide. Multi-photon transmission in the waveguide is nonreciprocal when the emitters have different transition energies. Our theory provides a clear physical understanding of the origin of nonreciprocity in the presence of cascaded nonlinearity. We show how various two-photon nonlinear effects including spatial attraction and repulsion between photons, background fluorescence can be tuned by changing the number of emitters and the coupling between emitters (controlled by the separation). PMID:23948782

  13. On interaction of P-waves with one-dimensional photonic crystal consisting of weak conducting matter and transparent dielectric layers

    Science.gov (United States)

    Yushkanov, A. A.; Zverev, N. V.

    2018-03-01

    An influence of quantum and spatial dispersion properties of the non-degenerate electron plasma on the interaction of electromagnetic P-waves with one-dimensional photonic crystal consisting of conductor with low carrier electron density and transparent dielectric matter, is studied numerically. It is shown that at the frequencies of order of the plasma frequency and at small widths of the conducting and dielectric layers of the photonic crystal, optical coefficients in the quantum non-degenerate plasma approach differ from the coefficients in the classical electron gas approach. And also, at these frequencies one observes a temperature dependence of the optical coefficients.

  14. Influence of filling fraction on the defect mode and gap closing of a one-dimensional photonic crystal: An analytical approach

    International Nuclear Information System (INIS)

    Ansari, N.; Tehranchi, M.M.

    2010-01-01

    Study of the optical properties of the one-dimensional defective photonic crystals using the gap map is improving through the emergence of new analytical methods, which are easy and without any physical restrictions. Gap map is able to monitor the changes in the defect mode frequencies and photonic band gap regions as a function of filling fractions, and all visible spectra in a single graphic presentation. In this paper, by utilizing a novel technique based on Green's function method for analyzing the defect modes, the gap map and gap closing point of a one-dimensional defective photonic crystal have been demonstrated. This method enables study of the defect modes inside the omnidirectional band gap, which is an important object in the designing of the optical filters. Moreover, as a designing criterion, obtaining the gap closing points inside the gap map enables finding of some filling fraction intervals that each one contains several distinct omnidirectional band gaps simultaneously, using a single photonic crystal. This method has been employed for the design of an optical filter at 1.3 and 1.55 μm, which is applicable for telecommunication.

  15. Dynamics of single photon transport in a one-dimensional waveguide two-point coupled with a Jaynes-Cummings system

    KAUST Repository

    Wang, Yuwen

    2016-09-22

    We study the dynamics of an ultrafast single photon pulse in a one-dimensional waveguide two-point coupled with a Jaynes-Cummings system. We find that for any single photon input the transmissivity depends periodically on the separation between the two coupling points. For a pulse containing many plane wave components it is almost impossible to suppress transmission, especially when the width of the pulse is less than 20 times the period. In contrast to plane wave input, the waveform of the pulse can be modified by controlling the coupling between the waveguide and Jaynes-Cummings system. Tailoring of the waveform is important for single photon manipulation in quantum informatics. © The Author(s) 2016.

  16. Enhanced Cerenkov second-harmonic generation in a planar nonlinear waveguide that reproduces a one-dimensional photonic bandgap structure

    International Nuclear Information System (INIS)

    Pezzetta, D.; Sibilia, C.; Bertolotti, M.; Ramponi, R.; Osellame, R.; Marangoni, M.; Haus, J. W.; Scalora, M.; Bloemer, M. J.; Bowden, C. M.

    2002-01-01

    Second-harmonic generation in the Cerenkov configuration is investigated under conditions for which the use of a linear grating fabricated on top of the waveguide reproduces a photonic bandgap structure. The fundamental mode of the guide at the fundamental frequency is tuned at the photonic band-edge resonance, thus producing great confinement and enhancement of the electromagnetic field inside the structure. The conversion efficiency achieved in both the forward and the backward directions is at least 1 order of magnitude greater than that of a conventional Cerenkov emission in a waveguide of the same length. An analysis of the tolerances of the grating period on the conversion efficiency is presented

  17. Local density of optical states in the band gap of a finite one-dimensional photonic crystal

    NARCIS (Netherlands)

    Yeganegi Dastgerdi, Elahe; Lagendijk, Aart; Mosk, Allard; Vos, Willem L.

    2014-01-01

    We study the local density of states (LDOS) in a finite photonic crystal, in particular in the frequency range of the band gap. We propose an original point of view on the band gap, which we consider to be the result of vacuum fluctuations in free space that tunnel in the forbidden range in the

  18. Electric-field-tunable defect mode in one-dimensional photonic crystal operating in the terahertz range

    Czech Academy of Sciences Publication Activity Database

    Skoromets, Volodymyr; Němec, Hynek; Kadlec, Christelle; Fattakhova-Rohlfing, D.; Kužel, Petr

    2013-01-01

    Roč. 102, č. 24 (2013), "241106-1"-"241106-5" ISSN 0003-6951 R&D Projects: GA ČR GA13-12386S Grant - others:AVČR(CZ) M100101218 Institutional support: RVO:68378271 Keywords : terahertz spectroscopy * strontium titanate * dielectric properties * photonic crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.515, year: 2013

  19. The phonon-polariton spectrum of one-dimensional Rudin-Shapiro photonic superlattices with uniaxial polar materials

    Science.gov (United States)

    Gómez-Urrea, H. A.; Duque, C. A.; Mora-Ramos, M. E.

    2015-11-01

    The properties of the optical-phonon-associated polaritonic modes that appear under oblique light incidence in 1D superlattices made of photonic materials are studied. The investigated systems result from the periodic repetition of quasiregular Rudin-Shapiro (RS) multilayer units. It is assume that the structure consists of both passive non-dispersive layers of constant refraction index and active layers of uniaxial polar materials. In particular, we consider III-V wurtzite nitrides. The optical axis of these polaritonic materials is taken along the growth direction. Maxwell equations are solved using the transfer matrix technique for all admissible values of the incidence angle.

  20. Terahertz gas sensing based on a simple one-dimensional photonic crystal cavity with high-quality factors

    DEFF Research Database (Denmark)

    Chen, T.; Han, Z. H.; Liu, J. J.

    2014-01-01

    We report in this paper terahertz gas sensing using a simple 1D photonic crystal cavity. The resonant frequencies of the cavity depend linearly on the refractive index of the ambient gas, which can then be measured by monitoring the resonance shift. Although quite easy to manufacture, this cavity...... exhibits high-quality factors, facilitating the realization of high sensitivity in the gas refractive index sensing. In our experiment, 6% of the change of hydrogen concentration in air, which corresponds to a refractive index change of 1.4 x 10(-5), can be steadily detected, and different gas samples can...

  1. Broadband IR polarizing beam splitter using a subwavelength-structured one-dimensional photonic-crystal layer embedded in a high-index prism.

    Science.gov (United States)

    Khanfar, H K; Azzam, R M A

    2009-09-20

    An iterative procedure for the design of a polarizing beam splitter (PBS) that uses a form-birefringent, subwavelength-structured, one-dimensional photonic-crystal layer (SWS 1-D PCL) embedded in a high-index cubical prism is presented. The PBS is based on index matching and total transmission for the p polarization and total internal reflection for the s polarization at the prism-PCL interface at 45 degrees angle of incidence. A high extinction ratio in reflection (>50 dB) over the 4-12 microm IR spectral range is achieved using a SWS 1-D PCL of ZnTe embedded in a ZnS cube within an external field of view of +/-6.6 degrees and in the presence of grating filling factor errors of up to +/-10%. Comparable results, but with wider field of view, are also obtained with a Ge PCL embedded in a Si prism.

  2. Multiple resonant absorber with prism-incorporated graphene and one-dimensional photonic crystals in the visible and near-infrared spectral range

    Science.gov (United States)

    Zou, X. J.; Zheng, G. G.; Chen, Y. Y.; Xu, L. H.; Lai, M.

    2018-04-01

    A multi-band absorber constructed from prism-incorporated one-dimensional photonic crystal (1D-PhC) containing graphene defects is achieved theoretically in the visible and near-infrared (vis-NIR) spectral range. By means of the transfer matrix method (TMM), the effect of structural parameters on the optical response of the structure has been investigated. It is possible to achieve multi-peak and complete optical absorption. The simulations reveal that the light intensity is enhanced at the graphene plane, and the resonant wavelength and the absorption intensity can also be tuned by tilting the incidence angle of the impinging light. In particular, multiple graphene sheets are embedded in the arrays, without any demand of manufacture process to cut them into periodic patterns. The proposed concept can be extended to other two-dimensional (2D) materials and engineered for promising applications, including selective or multiplex filters, multiple channel sensors, and photodetectors.

  3. One-dimensional photonic crystals with a planar oriented nematic layer: Temperature and angular dependence of the spectra of defect modes

    International Nuclear Information System (INIS)

    Arkhipkin, V. G.; Gunyakov, V. A.; Myslivets, S. A.; Gerasimov, V. P.; Zyryanov, V. Ya.; Vetrov, S. Ya.; Shabanov, V. F.

    2008-01-01

    Transmission spectra of a one-dimensional photonic crystal (PC) formed by two multilayer dielectric mirrors and a planar oriented layer of 5CB nematic liquid crystal (LC) that is sandwiched between these mirrors and serves as a structure defect are investigated experimentally. Specific features of the behavior of the spectrum of defect modes as a function of the angle of incidence of light on the crystal are studied for two polarizations: parallel and perpendicular to the director of the LC; the director either lies in the plane of incidence or is perpendicular to it. It is shown that, for the configurations considered, the maxima of the defect modes shift toward the short-wavelength region as the tilt angle of incidence radiation increases; this tendency is more manifest for the parallel-polarized component, when the director lies in the plane of incidence. In the latter case, the width of the photonic band gap (PBG) appreciably decreases. The temperature dependence of the polarization components of the transmission spectra of a PC is investigated in the case of normal incidence of light. The spectral shift of defect modes due to the variation of the refractive index of the LC at the nematic-isotropic liquid phase transition point is measured. It is shown that, in real PCs, the amplitude of defect modes decreases when approaching the center of the band gap, as well as when the number of layers in the dielectric mirrors increases. Theoretical transmission spectra of the PCs calculated by the method of recurrence relations with regard to the decay of defect modes are in good agreement with experimental data.

  4. Enhancement of Faraday effect in one-dimensional magneto-optical photonic crystal including a magnetic layer with wavelength dependent off-diagonal elements of dielectric constant tensor

    International Nuclear Information System (INIS)

    Inui, Chie; Ozaki, Shinsuke; Kura, Hiroaki; Sato, Tetsuya

    2011-01-01

    Optical and magneto-optical properties of one-dimensional magneto-optical photonic crystal (1-D MPC) prepared by the sol-gel dip-coating method, including a magnetic defect layer composed of mixture of CoFe 2 O 4 and SiO 2 , are investigated from both the experimental and theoretical standpoints. The resonant transmission of light was observed around 570 nm in the photonic band gap. The Faraday rotation angle θ F showed two maxima at 490 and 640 nm, and the wavelength dependence of θ F above 760 nm was similar to that of the CoFe 2 O 4 +SiO 2 single-layer film. The two maxima of θ F are attributed to the enhanced Faraday rotation of nonmagnetic TiO 2 layers in the cavity structure and that in magnetic CoFe 2 O 4 +SiO 2 layer through the light localization in MPC. The maximum value of θ F due to the magnetic CoFe 2 O 4 +SiO 2 layer in the MPC was 22-times larger than that in the single-layer film. The simulation study of MPC with CoFe 2 O 4 +SiO 2 magnetic defect layer, based on the matrix approach method, showed that the resonant light transmission was accompanied by the localization of electric field, and large enhancement of θ F appeared at different wavelengths so as to agree with the experimental features. This can be explained in terms of the wavelength dependent off-diagonal components of the dielectric constant tensor in addition to the large extinction coefficient in the CoFe 2 O 4 +SiO 2 magnetic defect layer. - Highlights: → 1-D magnetic photonic crystal (MPC) prepared by sol-gel method. → Enhancement of Faraday rotation due to the magnetic defect layer of CoFe 2 O 4 . → Shift of wavelength of Faraday rotation maximum from resonant light transmission.

  5. Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications

    International Nuclear Information System (INIS)

    Wang, Zhixun; Cheng, Yongzhi; Nie, Yan; Wang, Xian; Gong, Rongzhou

    2014-01-01

    In this paper, a new type one-dimensional (1D) double hetero-structure composite photonic crystal (CPC) for infrared-radar stealth-compatible materials applications was proposed and studied numerically and experimentally. First, based on transfer matrix method of thin-film optical theory, the propagation characteristics of the proposed structure comprising a stack of different alternating micrometer-thick layers of germanium and zinc sulfide were investigated numerically. Calculation results exhibit that this 1D single hetero-structure PC could achieve a flat high reflectivity gradually with increasing the number of the alternating media layers in a single broadband range. Then, based on principles of distributed Bragg reflector micro-cavity, a 1D double hetero-structure CPC comprising four PCs with thickness of 0.797 μm, 0.592 μm, 1.480 μm, and 2.114 μm, respectively, was proposed. Calculation results exhibit that this CPC could achieve a high reflectance of greater than 0.99 in the wavelength ranges of 3–5 μm and 8–14 μm and agreed well with experiment. Further experiments exhibit that the infrared emissivity of the proposed CPC is as low as 0.073 and 0.042 in the wavelength ranges of 3–5 μm and 8–12 μm, respectively. In addition, the proposed CPC can be used to construct infrared-radar stealth-compatible materials due to its high transmittance in radar wave band

  6. Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhixun; Cheng, Yongzhi, E-mail: cyz0715@126.com; Nie, Yan; Wang, Xian; Gong, Rongzhou, E-mail: rzhgong@mail.hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-07

    In this paper, a new type one-dimensional (1D) double hetero-structure composite photonic crystal (CPC) for infrared-radar stealth-compatible materials applications was proposed and studied numerically and experimentally. First, based on transfer matrix method of thin-film optical theory, the propagation characteristics of the proposed structure comprising a stack of different alternating micrometer-thick layers of germanium and zinc sulfide were investigated numerically. Calculation results exhibit that this 1D single hetero-structure PC could achieve a flat high reflectivity gradually with increasing the number of the alternating media layers in a single broadband range. Then, based on principles of distributed Bragg reflector micro-cavity, a 1D double hetero-structure CPC comprising four PCs with thickness of 0.797 μm, 0.592 μm, 1.480 μm, and 2.114 μm, respectively, was proposed. Calculation results exhibit that this CPC could achieve a high reflectance of greater than 0.99 in the wavelength ranges of 3–5 μm and 8–14 μm and agreed well with experiment. Further experiments exhibit that the infrared emissivity of the proposed CPC is as low as 0.073 and 0.042 in the wavelength ranges of 3–5 μm and 8–12 μm, respectively. In addition, the proposed CPC can be used to construct infrared-radar stealth-compatible materials due to its high transmittance in radar wave band.

  7. Comparative study of optical properties of the one-dimensional multilayer Period-Doubling and Thue-Morse quasi-periodic photonic crystals

    Directory of Open Access Journals (Sweden)

    Y. Bouazzi

    2012-10-01

    Full Text Available The last decades have witnessed the growing interest in the use of photonic crystal as a new material that can be used to control electromagnetic wave. Actually, not only the periodic structures but also the quasi-periodic systems have become significant structures of photonic crystals. This work deals with optical properties of dielectric Thue-Morse multilayer and Period-Doubling multilayer. We use the so-called Transfer Matrix Method (TMM to determine the transmission spectra of the structures. Based on the representation of the transmittance spectra in the visible range a comparative analysis depending on the iteration number, number of layers and incidence angle is presented.

  8. One-Dimensionality and Whiteness

    Science.gov (United States)

    Calderon, Dolores

    2006-01-01

    This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…

  9. One-dimensional hypersonic phononic crystals.

    Science.gov (United States)

    Gomopoulos, N; Maschke, D; Koh, C Y; Thomas, E L; Tremel, W; Butt, H-J; Fytas, G

    2010-03-10

    We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons.

  10. Myth and One-Dimensionality

    Directory of Open Access Journals (Sweden)

    William Hansen

    2017-12-01

    Full Text Available A striking difference between the folk-narrative genres of legend and folktale is how the human characters respond to supernatural, otherworldly, or uncanny beings such as ghosts, gods, dwarves, giants, trolls, talking animals, witches, and fairies. In legend the human actors respond with fear and awe, whereas in folktale they treat such beings as if they were ordinary and unremarkable. Since folktale humans treat all characters as belonging to a single realm, folklorists have described the world of the folktale as one-dimensional, in contrast to the two-dimensionality of the legend. The present investigation examines dimensionality in the third major genre of folk narrative: myth. Using the Greek and Hebrew myths of primordial paradise as sample narratives, the present essay finds—surprisingly—that the humans in these stories respond to the otherworldly one-dimensionally, as folktale characters do, and suggests an explanation for their behavior that is peculiar to the world of myth.

  11. One dimensional reactor core model

    International Nuclear Information System (INIS)

    Kostadinov, V.; Stritar, A.; Radovo, M.; Mavko, B.

    1984-01-01

    The one dimensional model of neutron dynamic in reactor core was developed. The core was divided in several axial nodes. The one group neutron diffusion equation for each node is solved. Feedback affects of fuel and water temperatures is calculated. The influence of xenon, boron and control rods is included in cross section calculations for each node. The system of equations is solved implicitly. The model is used in basic principle Training Simulator of NPP Krsko. (author)

  12. Relaxation to quantum-statistical equilibrium of the Wigner-Weisskopf atom in a one-dimensional radiation field. VIII. Emission in an infinite system in the presence of an extra photon

    International Nuclear Information System (INIS)

    Davidson, R.; Kozak, J.J.

    1978-01-01

    In this paper we study the emission of a two-level atom in a radiation field in the case where one mode of the field is assumed to be excited initially, and where the system is assumed to be of infinite extent. (The restriction to a one-dimensional field, which has been made throughout this series, is not essential: It is made chiefly for ease of presentation of the mathematical methods.) An exact expression is obtained for the probability rho (t) that the two-level quantum system is in the excited state at time t. This problem, previously unsolved in radiation theory, is tackled by reformulating the expression found in VII [J. Math. Phys. 16, 1013 (1975)] of this series for the time evolution of rho (t) in a finite system in the presence of an extra photon, and then constructing the infinite-system limit. A quantitative assessment of the role of the extra photon and of the coupling constant in influencing the dynamics is obtained by studying numerically the expression derived for rho (t) for a particular choice of initial condition. The study presented here casts light on the problem of time-reversal invariance and clarifies the sense in which exponential decay is universal; in particular, we find that: (1) It is the infinite-system limit which converts the time-reversible solutions of VII into the irreversible solution obtained here, and (2) it is the weak-coupling limit that imposes exponential form on the time dependence of the evolution of the system. The anticipated generalization of our methods to more complicated radiation-matter problems is discussed, and finally, several problems in radiation chemistry and physics, already accessible to exact analysis given the approach introduced here, are cited

  13. One dimensional model for polytypes

    International Nuclear Information System (INIS)

    Rosato, A.

    1979-01-01

    The general expression for the dispersion relation for a polyatomic one dimensional crystal obtained by the Laplace Transform Method is applied to materials with the fcc and hcp structures, both consisting of close-packed planes of atoms with the stacking sequence of plane ABC/ABC... and AB/AB... respectively. The expression is also applied to polytypes, that is materials caracterized by a stacking sequence with longer repeat unit. The effective mass is cast in a condensed form useful for further calculations. The results from this simple model are only qualitative. (Author) [pt

  14. Optical Tamm states in one-dimensional magnetophotonic structures.

    Science.gov (United States)

    Goto, T; Dorofeenko, A V; Merzlikin, A M; Baryshev, A V; Vinogradov, A P; Inoue, M; Lisyansky, A A; Granovsky, A B

    2008-09-12

    We demonstrate the existence of a spectrally narrow localized surface state, the so-called optical Tamm state, at the interface between one-dimensional magnetophotonic and nonmagnetic photonic crystals. The state is spectrally located inside the photonic band gaps of each of the photonic crystals comprising this magnetophotonic structure. This state is associated with a sharp transmission peak through the sample and is responsible for the substantial enhancement of the Faraday rotation for the corresponding wavelength. The experimental results are in excellent agreement with the theoretical predictions.

  15. Basic physics of one-dimensional metals

    International Nuclear Information System (INIS)

    Emery, V.J.

    1976-01-01

    Largely nonmathematical qualitative lectures are given on the basic physics of nearly one-dimensional conductors. The main emphasis is placed on the properties of a purely one-dimensional electron gas. The effects of a real system having interchain coupling, impurities, a compressible lattice, lattice distortions and phonon anomalies are discussed

  16. Solitons in one-dimensional charge density wave systems

    International Nuclear Information System (INIS)

    Su, W.P.

    1981-01-01

    Theoretical research on one dimensional charge density wave systems is outlined. A simple coupled electron-photon Hamiltonian is studied including a Green's function approach, molecular dynamics, and Monte Carlo path integral method. As in superconductivity, the nonperturbative nature of the system makes the physical ground states and low energy excitations drastically different from the bare electrons and phonons. Solitons carry quantum numbers which are entirely different from those of the bare electrons and holes. The fractional charge character of the solitons is an example of this fact. Solitons are conveniently generated by doping material with donors or acceptors or by photon absorption. Most predictions of the theory are in qualitative agreement with experiments. The one dimensional charge density wave system has potential technological importance and a possible role in uncovering phenomena which might have implications in relativistic field theory and elementary particle physics

  17. One-Dimensional Czedli-Type Islands

    Science.gov (United States)

    Horvath, Eszter K.; Mader, Attila; Tepavcevic, Andreja

    2011-01-01

    The notion of an island has surfaced in recent algebra and coding theory research. Discrete versions provide interesting combinatorial problems. This paper presents the one-dimensional case with finitely many heights, a topic convenient for student research.

  18. Analytical solution of one dimensional temporally dependent ...

    African Journals Online (AJOL)

    user

    transfer of heat in fluids, flow through porous media, and the spread of ... In present paper, advection-dispersion equation is considered one dimensional longitudinal initially solute free semi- .... free. Thus initial and boundary conditions for eq.

  19. Factorizations of one-dimensional classical systems

    International Nuclear Information System (INIS)

    Kuru, Senguel; Negro, Javier

    2008-01-01

    A class of one-dimensional classical systems is characterized from an algebraic point of view. The Hamiltonians of these systems are factorized in terms of two functions that together with the Hamiltonian itself close a Poisson algebra. These two functions lead directly to two time-dependent integrals of motion from which the phase motions are derived algebraically. The systems so obtained constitute the classical analogues of the well known factorizable one-dimensional quantum mechanical systems

  20. One-dimensional Gromov minimal filling problem

    International Nuclear Information System (INIS)

    Ivanov, Alexandr O; Tuzhilin, Alexey A

    2012-01-01

    The paper is devoted to a new branch in the theory of one-dimensional variational problems with branching extremals, the investigation of one-dimensional minimal fillings introduced by the authors. On the one hand, this problem is a one-dimensional version of a generalization of Gromov's minimal fillings problem to the case of stratified manifolds. On the other hand, this problem is interesting in itself and also can be considered as a generalization of another classical problem, the Steiner problem on the construction of a shortest network connecting a given set of terminals. Besides the statement of the problem, we discuss several properties of the minimal fillings and state several conjectures. Bibliography: 38 titles.

  1. Sounds in one-dimensional superfluid helium

    International Nuclear Information System (INIS)

    Um, C.I.; Kahng, W.H.; Whang, E.H.; Hong, S.K.; Oh, H.G.; George, T.F.

    1989-01-01

    The temperature variations of first-, second-, and third-sound velocity and attenuation coefficients in one-dimensional superfluid helium are evaluated explicitly for very low temperatures and frequencies (ω/sub s/tau 2 , and the ratio of second sound to first sound becomes unity as the temperature decreases to absolute zero

  2. QUASI-ONE DIMENSIONAL CLASSICAL FLUIDS

    Directory of Open Access Journals (Sweden)

    J.K.Percus

    2003-01-01

    Full Text Available We study the equilibrium statistical mechanics of simple fluids in narrow pores. A systematic expansion is made about a one-dimensional limit of this system. It starts with a density functional, constructed from projected densities, which depends upon projected one and two-body potentials. The nature of higher order corrections is discussed.

  3. Highly conducting one-dimensional solids

    CERN Document Server

    Evrard, Roger; Doren, Victor

    1979-01-01

    Although the problem of a metal in one dimension has long been known to solid-state physicists, it was not until the synthesis of real one-dimensional or quasi-one-dimensional systems that this subject began to attract considerable attention. This has been due in part to the search for high­ temperature superconductivity and the possibility of reaching this goal with quasi-one-dimensional substances. A period of intense activity began in 1973 with the report of a measurement of an apparently divergent conduc­ tivity peak in TfF-TCNQ. Since then a great deal has been learned about quasi-one-dimensional conductors. The emphasis now has shifted from trying to find materials of very high conductivity to the many interesting problems of physics and chemistry involved. But many questions remain open and are still under active investigation. This book gives a review of the experimental as well as theoretical progress made in this field over the last years. All the chapters have been written by scientists who have ...

  4. Remarks for one-dimensional fractional equations

    Directory of Open Access Journals (Sweden)

    Massimiliano Ferrara

    2014-01-01

    Full Text Available In this paper we study a class of one-dimensional Dirichlet boundary value problems involving the Caputo fractional derivatives. The existence of infinitely many solutions for this equations is obtained by exploiting a recent abstract result. Concrete examples of applications are presented.

  5. Controlled size and one-dimensional growth

    Indian Academy of Sciences (India)

    875–881. c Indian Academy of Sciences. Synthesis of azamacrocycle stabilized palladium nanoparticles: Controlled size and one-dimensional growth. JEYARAMAN ATHILAKSHMI and DILLIP KUMAR CHAND. ∗. Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India e-mail: dillip@iitm.ac.

  6. Realization of Configurable One-Dimensional Reflectarray

    Science.gov (United States)

    2017-08-31

    experiments show strong signatures of beam steering that are dependent upon graphene doping. This seed grant has allowed our team to establish the essential...based, one-dimensional reflectarrays. Several immediate improvements to the device design and process flow are essential to suppress specular...beam steering that are dependent upon graphene doping. This seed grant has allowed our team to establish the essential operating procedures (i.e

  7. Quantum logic using correlated one-dimensional quantum walks

    Science.gov (United States)

    Lahini, Yoav; Steinbrecher, Gregory R.; Bookatz, Adam D.; Englund, Dirk

    2018-01-01

    Quantum Walks are unitary processes describing the evolution of an initially localized wavefunction on a lattice potential. The complexity of the dynamics increases significantly when several indistinguishable quantum walkers propagate on the same lattice simultaneously, as these develop non-trivial spatial correlations that depend on the particle's quantum statistics, mutual interactions, initial positions, and the lattice potential. We show that even in the simplest case of a quantum walk on a one dimensional graph, these correlations can be shaped to yield a complete set of compact quantum logic operations. We provide detailed recipes for implementing quantum logic on one-dimensional quantum walks in two general cases. For non-interacting bosons—such as photons in waveguide lattices—we find high-fidelity probabilistic quantum gates that could be integrated into linear optics quantum computation schemes. For interacting quantum-walkers on a one-dimensional lattice—a situation that has recently been demonstrated using ultra-cold atoms—we find deterministic logic operations that are universal for quantum information processing. The suggested implementation requires minimal resources and a level of control that is within reach using recently demonstrated techniques. Further work is required to address error-correction.

  8. One-dimensional plasma simulation studies

    International Nuclear Information System (INIS)

    Friberg, Ari; Virtamo, Jorma

    1976-01-01

    Some basic plasma phenomena are studied by a one-dimensional electrostatic simulation code. A brief description of the code and its application to a test problem is given. The experiments carried out include Landau damping of an excited wave, particle retardation by smoothed field and beam-plasma instability. In each case, the set-up of the experiment is described and the results are compared with theoretical predictions. In the theoretical discussions, the oscillatory behaviour found in the Landau damping experiment is explained, an explicit formula for the particle retardation rate is derived and a rudimentary picture of the beam-plasma instability in terms of quasilinear theory is given. (author)

  9. Solitons in one-dimensional antiferromagnetic chains

    International Nuclear Information System (INIS)

    Pires, A.S.T.; Talim, S.L.; Costa, B.V.

    1989-01-01

    We study the quantum-statistical mechanics, at low temperatures, of a one-dimensional antiferromagnetic Heisenberg model with two anisotropies. In the weak-coupling limit we determine the temperature dependences of the soliton energy and the soliton density. We have found that the leading correction to the sine-Gordon (SG) expression for the soliton density and the quantum soliton energy comes from the out-of-plane magnon mode, not present in the pure SG model. We also show that when an external magnetic field is applied, the chain supports a new type of kink, where the sublattices rotate in opposite directions

  10. Polaritonic normal-mode splitting and light localization in a one-dimensional nanoguide

    NARCIS (Netherlands)

    Haakh, Harald R.; Faez, Sanli; Sandoghdar, Vahid

    2016-01-01

    We theoretically investigate the interaction of light and a collection of emitters in a subwavelength one-dimensional medium (nanoguide), where enhanced emitter-photon coupling leads to efficient multiple scattering of photons. We show that the spectrum of the transmitted light undergoes normal-mode

  11. The effect of temperature on one-dimensional nanometallic photonic ...

    Indian Academy of Sciences (India)

    ... 2016; revised 26 October 2016; accepted 16 December 2016; published online 7 April 2017 ... complex refractive index of silver is dependent on temperature and wavelength. ..... crystals: Physics and technology (Springer, Italia, 2008) p. 7.

  12. Specificities of one-dimensional dissipative magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Popov, P. V., E-mail: popov.pv@mipt.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-11-15

    One-dimensional dynamics of a plane slab of cold (β ≪ 1) isothermal plasma accelerated by a magnetic field is studied in terms of the MHD equations with a finite constant conductivity. The passage to the limit β → 0 is analyzed in detail. It is shown that, at β = 0, the character of the solution depends substantially on the boundary condition for the electric field at the inner plasma boundary. The relationship between the boundary condition for the pressure at β > 0 and the conditions for the electric field at β = 0 is found. The stability of the solution against one-dimensional longitudinal perturbations is analyzed. It is shown that, in the limit β → 0, the stationary solution is unstable if the time during which the acoustic wave propagates across the slab is longer than the time of magnetic field diffusion. The growth rate and threshold of instability are determined, and results of numerical simulation of its nonlinear stage are presented.

  13. One-dimensional nanomaterials for energy storage

    Science.gov (United States)

    Chen, Cheng; Fan, Yuqi; Gu, Jianhang; Wu, Liming; Passerini, Stefano; Mai, Liqiang

    2018-03-01

    The search for higher energy density, safer, and longer cycling-life energy storage systems is progressing quickly. One-dimensional (1D) nanomaterials have a large length-to-diameter ratio, resulting in their unique electrical, mechanical, magnetic and chemical properties, and have wide applications as electrode materials in different systems. This article reviews the latest hot topics in applying 1D nanomaterials, covering both their synthesis and their applications. 1D nanomaterials can be grouped into the categories: carbon, silicon, metal oxides, and conducting polymers, and we structure our discussion accordingly. Then, we survey the unique properties and application of 1D nanomaterials in batteries and supercapacitors, and provide comments on the progress and advantages of those systems, paving the way for a better understanding of employing 1D nanomaterials for energy storage.

  14. One-Dimensional Modelling of Internal Ballistics

    Science.gov (United States)

    Monreal-González, G.; Otón-Martínez, R. A.; Velasco, F. J. S.; García-Cascáles, J. R.; Ramírez-Fernández, F. J.

    2017-10-01

    A one-dimensional model is introduced in this paper for problems of internal ballistics involving solid propellant combustion. First, the work presents the physical approach and equations adopted. Closure relationships accounting for the physical phenomena taking place during combustion (interfacial friction, interfacial heat transfer, combustion) are deeply discussed. Secondly, the numerical method proposed is presented. Finally, numerical results provided by this code (UXGun) are compared with results of experimental tests and with the outcome from a well-known zero-dimensional code. The model provides successful results in firing tests of artillery guns, predicting with good accuracy the maximum pressure in the chamber and muzzle velocity what highlights its capabilities as prediction/design tool for internal ballistics.

  15. Stability model for one-dimensional FRCs

    International Nuclear Information System (INIS)

    Schwarzmeier, J.L.; Hewitt, T.G.; Lewis, H.R.; Seyler, C.E.; Symon, K.R.

    1982-01-01

    The subject of transport near the separatrix in FRC devices is important for determining the performance to be expected from an FRC reactor or from FRC experiments. A computer code was constructed for studying the micro-stability properties of FRCs near the separatrix as a first step in obtaining quasilinear transport coefficients that can be used in a transport code. We consider collisionless ions and electrons, without an expansion in powers of a parameter, like the electron or ion gyroradius, and we approximate the equilibrium with an infinitely long axially and translationally symmetric equilibrium. Thus, in our equilibria, there are only an axial magnetic field and a radial electric field. Our equilibria are collisionless, two-species, diffuse-profile, one-dimensional, theta-pinch equilibria. We allow the possibility that there be a magnetic field null in order to be able to model FRC devices more realistically

  16. One dimensional systems with singular perturbations

    International Nuclear Information System (INIS)

    Alvarez, J J; Gadella, M; Nieto, L M; Glasser, L M; Lara, L P

    2011-01-01

    This paper discusses some one dimensional quantum models with singular perturbations. Eventually, a mass discontinuity is added at the points that support the singular perturbations. The simplest model includes an attractive singular potential with a mass jump both located at the origin. We study the form of the only bound state. Another model exhibits a hard core at the origin plus one or more repulsive deltas with mass jumps at the points supporting these deltas. We study the location and the multiplicity of these resonances for the case of one or two deltas and settle the basis for a generalization. Finally, we consider the harmonic oscillator and the infinite square well plus a singular potential at the origin. We see how the energy of bound states is affected by the singular perturbation.

  17. Cohesive motion in one-dimensional flocking

    International Nuclear Information System (INIS)

    Dossetti, V

    2012-01-01

    A one-dimensional rule-based model for flocking, which combines velocity alignment and long-range centering interactions, is presented and studied. The induced cohesion in the collective motion of the self-propelled agents leads to unique group behavior that contrasts with previous studies. Our results show that the largest cluster of particles, in the condensed states, develops a mean velocity slower than the preferred one in the absence of noise. For strong noise, the system also develops a non-vanishing mean velocity, alternating its direction of motion stochastically. This allows us to address the directional switching phenomenon. The effects of different sources of stochasticity on the system are also discussed. (paper)

  18. Few quantum particles on one dimensional lattices

    International Nuclear Information System (INIS)

    Valiente Cifuentes, Manuel

    2010-01-01

    There is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The lattice spacing is fixed by the wavelength of the laser field employed and the angle betwen the pair of laser beams; the lattice depth, defining the magnitude of the different band gaps, is tunable within a large interval of values. This flexibility permits the exploration of different regimes, ranging from the ''free-electron'' picture, modified by the effective mass for shallow optical lattices, to the tight-binding regime of a very deep periodic potential. In the latter case, effective single-band theories, widely used in condensed matter physics, can be implemented with unprecedent accuracy. The tunability of the lattice depth is nowadays complemented by the use of magnetic Feshbach resonances which, at very low temperatures, can vary the relevant atom-atom scattering properties at will. Moreover, optical lattices loaded with gases of effectively reduced dimensionality are experimentally accessible. This is especially important for one spatial dimension, since most of the exactly solvable models in many-body quantum mechanics deal with particles on a line; therefore, experiments with one-dimensional gases serve as a testing ground for many old and new theories which were regarded as purely academic not so long ago. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed. These are used to obtain, in closed form, the two-particle solutions of both the Hubbard and extended Hubbard models

  19. Few quantum particles on one dimensional lattices

    Energy Technology Data Exchange (ETDEWEB)

    Valiente Cifuentes, Manuel

    2010-06-18

    There is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The lattice spacing is fixed by the wavelength of the laser field employed and the angle betwen the pair of laser beams; the lattice depth, defining the magnitude of the different band gaps, is tunable within a large interval of values. This flexibility permits the exploration of different regimes, ranging from the ''free-electron'' picture, modified by the effective mass for shallow optical lattices, to the tight-binding regime of a very deep periodic potential. In the latter case, effective single-band theories, widely used in condensed matter physics, can be implemented with unprecedent accuracy. The tunability of the lattice depth is nowadays complemented by the use of magnetic Feshbach resonances which, at very low temperatures, can vary the relevant atom-atom scattering properties at will. Moreover, optical lattices loaded with gases of effectively reduced dimensionality are experimentally accessible. This is especially important for one spatial dimension, since most of the exactly solvable models in many-body quantum mechanics deal with particles on a line; therefore, experiments with one-dimensional gases serve as a testing ground for many old and new theories which were regarded as purely academic not so long ago. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed. These are used to obtain, in closed form, the two-particle solutions of both the Hubbard and

  20. Topologically protected states in one-dimensional systems

    CERN Document Server

    Fefferman, C L; Weinstein, M I

    2017-01-01

    The authors study a class of periodic Schrödinger operators, which in distinguished cases can be proved to have linear band-crossings or "Dirac points". They then show that the introduction of an "edge", via adiabatic modulation of these periodic potentials by a domain wall, results in the bifurcation of spatially localized "edge states". These bound states are associated with the topologically protected zero-energy mode of an asymptotic one-dimensional Dirac operator. The authors' model captures many aspects of the phenomenon of topologically protected edge states for two-dimensional bulk structures such as the honeycomb structure of graphene. The states the authors construct can be realized as highly robust TM-electromagnetic modes for a class of photonic waveguides with a phase-defect.

  1. One dimensional benchmark calculations using diffusion theory

    International Nuclear Information System (INIS)

    Ustun, G.; Turgut, M.H.

    1986-01-01

    This is a comparative study by using different one dimensional diffusion codes which are available at our Nuclear Engineering Department. Some modifications have been made in the used codes to fit the problems. One of the codes, DIFFUSE, solves the neutron diffusion equation in slab, cylindrical and spherical geometries by using 'Forward elimination- Backward substitution' technique. DIFFUSE code calculates criticality, critical dimensions and critical material concentrations and adjoint fluxes as well. It is used for the space and energy dependent neutron flux distribution. The whole scattering matrix can be used if desired. Normalisation of the relative flux distributions to the reactor power, plotting of the flux distributions and leakage terms for the other two dimensions have been added. Some modifications also have been made for the code output. Two Benchmark problems have been calculated with the modified version and the results are compared with BBD code which is available at our department and uses same techniques of calculation. Agreements are quite good in results such as k-eff and the flux distributions for the two cases studies. (author)

  2. One-dimensional model of inertial pumping

    Science.gov (United States)

    Kornilovitch, Pavel E.; Govyadinov, Alexander N.; Markel, David P.; Torniainen, Erik D.

    2013-02-01

    A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.

  3. Diffusiophoresis in one-dimensional solute gradients

    Energy Technology Data Exchange (ETDEWEB)

    Ault, Jesse T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warren, Patrick B. [Unilever R& D Port Sunlight, Bebington (United Kingdom); Shin, Sangwoo [Univ. of Hawaii at Manoa, Honolulu, HI (United States); Stone, Howard A. [Princeton Univ., Princeton, NJ (United States)

    2017-11-06

    Here, the diffusiophoretic motion of suspended colloidal particles under one-dimensional solute gradients is solved using numerical and analytical techniques. Similarity solutions are developed for the injection and withdrawal dynamics of particles into semi-infinite pores. Furthermore, a method of characteristics formulation of the diffusion-free particle transport model is presented and integrated to realize particle trajectories. Analytical solutions are presented for the limit of small particle diffusiophoretic mobility Γp relative to the solute diffusivity Ds for particle motions in both semi-infinite and finite domains. Results confirm the build up of local maxima and minima in the propagating particle front dynamics. The method of characteristics is shown to successfully predict particle motions and the position of the particle front, although it fails to accurately predict suspended particle concentrations in the vicinity of sharp gradients, such as at the particle front peak seen in some injection cases, where particle diffusion inevitably plays an important role. Results inform the design of applications in which the use of applied solute gradients can greatly enhance particle injection into and withdrawal from pores.

  4. Diffusiophoresis in one-dimensional solute gradients

    International Nuclear Information System (INIS)

    Ault, Jesse T.; Warren, Patrick B.; Shin, Sangwoo; Stone, Howard A.

    2017-01-01

    Here, the diffusiophoretic motion of suspended colloidal particles under one-dimensional solute gradients is solved using numerical and analytical techniques. Similarity solutions are developed for the injection and withdrawal dynamics of particles into semi-infinite pores. Furthermore, a method of characteristics formulation of the diffusion-free particle transport model is presented and integrated to realize particle trajectories. Analytical solutions are presented for the limit of small particle diffusiophoretic mobility Γ p relative to the solute diffusivity D s for particle motions in both semi-infinite and finite domains. Results confirm the build up of local maxima and minima in the propagating particle front dynamics. The method of characteristics is shown to successfully predict particle motions and the position of the particle front, although it fails to accurately predict suspended particle concentrations in the vicinity of sharp gradients, such as at the particle front peak seen in some injection cases, where particle diffusion inevitably plays an important role. Results inform the design of applications in which the use of applied solute gradients can greatly enhance particle injection into and withdrawal from pores.

  5. MARCUSE’S ONE-DIMENSIONAL SOCIETY IN ONE-DIMENSIONAL MAN

    Directory of Open Access Journals (Sweden)

    MILOS RASTOVIC

    2013-05-01

    Full Text Available Nowadays, Marcuse’s main book One-Dimensional Man is almost obsolete, or rather passé. However, there are reasons to renew the reading of his book because of “the crisis of capitalism,” and the prevailing framework of technological domination in “advanced industrial society” in which we live today. “The new forms of control” in “advanced industrial societies” have replaced traditional methods of political and economic administration. The dominant structural element of “advanced industrial society” has become a technical and scientific apparatus of production and distribution of technology and administrative practice based on application of impersonal rules by a hierarchy of associating authorities. Technology has been liberated from the control of particular interests, and it has become the factor of domination in itself. Technological domination stems from the technical development of the productive apparatus that reproduces its ability into all spheres of social life (cultural, political, and economic. Based upon this consideration, in this paper, I will examine Marcuse’s ideas of “the new forms of control,” which creates a one–dimensional society. Marcuse’s fundamental thesis in One-Dimensional Man is that technological rationality is the most dominant factor in an “advanced industrial society,” which unites two earlier opposing forces of dissent: the bourgeoisie and the proletariat.

  6. Qualities of Wigner function and its applications to one-dimensional infinite potential and one-dimensional harmonic oscillator

    International Nuclear Information System (INIS)

    Xu Hao; Shi Tianjun

    2011-01-01

    In this article,the qualities of Wigner function and the corresponding stationary perturbation theory are introduced and applied to one-dimensional infinite potential well and one-dimensional harmonic oscillator, and then the particular Wigner function of one-dimensional infinite potential well is specified and a special constriction effect in its pure state Wigner function is discovered, to which,simultaneously, a detailed and reasonable explanation is elaborated from the perspective of uncertainty principle. Ultimately, the amendment of Wigner function and energy of one-dimensional infinite potential well and one-dimensional harmonic oscillator under perturbation are calculated according to stationary phase space perturbation theory. (authors)

  7. Study of one dimensional magnetic system via field theory

    International Nuclear Information System (INIS)

    Talim, S.L.

    1988-04-01

    We present a study of one-dimensional magnetic system using field theory methods. We studied the discreteness effects in a classical anisotropic one dimensional antiferromagnet in an external magnetic field. It is shown that for TMMC, at the temperatures and magnetic fields where most experiments have been done, the corrections are small and can be neglected. (author)

  8. RETRAN-02 one-dimensional kinetics model: a review

    International Nuclear Information System (INIS)

    Gose, G.C.; McClure, J.A.

    1986-01-01

    RETRAN-02 is a modular code system that has been designed for one-dimensional, transient thermal-hydraulics analysis. In RETRAN-02, core power behavior may be treated using a one-dimensional reactor kinetics model. This model allows the user to investigate the interaction of time- and space-dependent effects in the reactor core on overall system behavior for specific LWR operational transients. The purpose of this paper is to review the recent analysis and development activities related to the one dimensional kinetics model in RETRAN-02

  9. Plasma properties of quasi-one-dimensional ring

    CERN Document Server

    Shmelev, G M

    2001-01-01

    The plasma properties of the quasi-one-dimensional ring in the threshold cases of low and high frequencies, corresponding to the plasma oscillations and dielectric relaxation are studied within the frames of the classical approach. The plasma oscillations spectrum and the electron dielectric relaxation frequency in the quasi-one-dimensional ring are calculated. The plasmons spectrum equidistance is identified. It is shown , that in contrast to the three-dimensional case there takes place the dielectric relaxation dispersion, wherefrom there follows the possibility of studying the carriers distribution in the quasi-one-dimensional rings through the method of the dielectric relaxation spectroscopy

  10. Explicit Solutions for One-Dimensional Mean-Field Games

    KAUST Repository

    Prazeres, Mariana

    2017-01-01

    In this thesis, we consider stationary one-dimensional mean-field games (MFGs) with or without congestion. Our aim is to understand the qualitative features of these games through the analysis of explicit solutions. We are particularly interested

  11. Negative differential resistance in a one-dimensional molecular wire ...

    Indian Academy of Sciences (India)

    voltage characteristics of a one-dimensional molecular wire with odd number of ... lem, although interesting both from a fundamental point of view and in terms of ..... SKP acknowledges the DST, Government of India, for financial support.

  12. The one-dimensional extended Bose–Hubbard model

    Indian Academy of Sciences (India)

    Unknown

    method to obtain the zero-temperature phase diagram of the one-dimensional, extended ... Progress in this field has been driven by an interplay between ... superconductor-insulator transition in thin films of superconducting materials like bis-.

  13. One-dimensional reactor kinetics model for RETRAN

    International Nuclear Information System (INIS)

    Gose, G.C.; Peterson, C.E.; Ellis, N.L.; McClure, J.A.

    1981-01-01

    This paper describes a one-dimensional spatial neutron kinetics model that was developed for the RETRAN code. The RETRAN -01 code has a point kinetics model to describe the reactor core behavior during thermal-hydraulic transients. A one-dimensional neutronics model has been developed for RETRAN-02. The ability to account for flux shape changes will permit an improved representation of the thermal and hydraulic feedback effects for many operational transients. 19 refs

  14. One dimensional Bosons: From Condensed Matter Systems to Ultracold Gases

    OpenAIRE

    Cazalilla, M. A.; Citro, R.; Giamarchi, T.; Orignac, E.; Rigol, M.

    2011-01-01

    The physics of one-dimensional interacting bosonic systems is reviewed. Beginning with results from exactly solvable models and computational approaches, the concept of bosonic Tomonaga-Luttinger liquids relevant for one-dimensional Bose fluids is introduced, and compared with Bose-Einstein condensates existing in dimensions higher than one. The effects of various perturbations on the Tomonaga-Luttinger liquid state are discussed as well as extensions to multicomponent and out of equilibrium ...

  15. One dimensional models of excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia Decebal; Duclos, P.; Pedersen, Thomas Garm

    Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....

  16. A review on one dimensional perovskite nanocrystals for piezoelectric applications

    Directory of Open Access Journals (Sweden)

    Li-Qian Cheng

    2016-03-01

    Full Text Available In recent years, one-dimensional piezoelectric nanomaterials have become a research topic of interest because of their special morphology and excellent piezoelectric properties. This article presents a short review on one dimensional perovskite piezoelectric materials in different systems including Pb(Zr,TiO3, BaTiO3 and (K,NaNbO3 (KNN. We emphasize KNN as a promising lead-free piezoelectric compound with a high Curie temperature and high piezoelectric properties and describe its synthesis and characterization. In particular, details are presented for nanoscale piezoelectricity characterization of a single KNN nanocrystal by piezoresponse force microscopy. Finally, this review describes recent progress in applications based on one dimensional piezoelectric nanostructures with a focus on energy harvesting composite materials.

  17. Strong chaos in one-dimensional quantum system

    International Nuclear Information System (INIS)

    Yang, C.-D.; Wei, C.-H.

    2008-01-01

    According to the Poincare-Bendixson theorem, a minimum of three autonomous equations is required to exhibit deterministic chaos. Because a one-dimensional quantum system is described by only two autonomous equations using de Broglie-Bohm's trajectory interpretation, chaos in one-dimensional quantum systems has long been considered impossible. We will prove in this paper that chaos phenomenon does exist in one-dimensional quantum systems, if the domain of quantum motions is extended to complex space by noting that the quantum world is actually characterized by a four-dimensional complex spacetime according to the E (∞) theory. Furthermore, we point out that the interaction between the real and imaginary parts of complex trajectories produces a new chaos phenomenon unique to quantum systems, called strong chaos, which describes the situation that quantum trajectories may emerge and diverge spontaneously without any perturbation in the initial position

  18. One-dimensional models of excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia Decebal; Duclos, Pierre; Pedersen, Thomas Garm

    2004-01-01

    Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one-dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one-dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....

  19. Approximate characteristics for one-dimensional two-phase flows

    International Nuclear Information System (INIS)

    Sarayloo, A.; Peddleson, J.

    1985-01-01

    An approximate method for determining the characteristics associated with one-dimensional particulate two-phase flow models is presented. The method is based on iteration and is valid for small particulate volume fractions. The method is applied to several special cases involving incompressible particles suspended in a gas. The influences of certain changes in the physical model are investigated

  20. Correlation Functions of the One-Dimensional Attractive Bose Gas

    International Nuclear Information System (INIS)

    Calabrese, Pasquale; Caux, Jean-Sebastien

    2007-01-01

    The zero-temperature correlation functions of the one-dimensional attractive Bose gas with a delta-function interaction are calculated analytically for any value of the interaction parameter and number of particles, directly from the integrability of the model. We point out a number of interesting features, including zero recoil energy for a large number of particles, analogous to the Moessbauer effect

  1. Analytical solutions of one-dimensional advection–diffusion

    Indian Academy of Sciences (India)

    Analytical solutions are obtained for one-dimensional advection –diffusion equation with variable coefficients in a longitudinal finite initially solute free domain,for two dispersion problems.In the first one,temporally dependent solute dispersion along uniform flow in homogeneous domain is studied.In the second problem the ...

  2. Underwater striling engine design with modified one-dimensional model

    Directory of Open Access Journals (Sweden)

    Daijin Li

    2015-05-01

    Full Text Available Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA. The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

  3. Quantitative hyperbolicity estimates in one-dimensional dynamics

    International Nuclear Information System (INIS)

    Day, S; Kokubu, H; Pilarczyk, P; Luzzatto, S; Mischaikow, K; Oka, H

    2008-01-01

    We develop a rigorous computational method for estimating the Lyapunov exponents in uniformly expanding regions of the phase space for one-dimensional maps. Our method uses rigorous numerics and graph algorithms to provide results that are mathematically meaningful and can be achieved in an efficient way

  4. Quasi-one-dimensional scattering in a discrete model

    DEFF Research Database (Denmark)

    Valiente, Manuel; Mølmer, Klaus

    2011-01-01

    We study quasi-one-dimensional scattering of one and two particles with short-range interactions on a discrete lattice model in two dimensions. One of the directions is tightly confined by an arbitrary trapping potential. We obtain the collisional properties of these systems both at finite and zero...

  5. Structure Variation from One-Dimensional Chain to Three ...

    Indian Academy of Sciences (India)

    WEN-XUAN LI, XIAO-MIN GU, WEN-LI ZHANG and LIANG NI. School of Chemistry ... Compound 1 possesses one-dimensional chain structure, and expands into ..... sis of fine chemicals and pharmaceuticals.30 The results were summarized ...

  6. Current-Voltage Characteristics of Quasi-One-Dimensional Superconductors

    DEFF Research Database (Denmark)

    Vodolazov, D.Y.; Peeters, F.M.; Piraux, L.

    2003-01-01

    The current-voltage (I-V) characteristics of quasi-one-dimensional superconductors were discussed. The I-V characteristics exhibited an unusual S behavior. The dynamics of superconducting condensate and the existence of two different critical currents resulted in such an unusual behavior....

  7. Diffusive transport in a one dimensional disordered potential involving correlations

    International Nuclear Information System (INIS)

    Monthus, C.; Paris-6 Univ., 75

    1995-03-01

    Transport properties of one dimensional Brownian diffusion under the influence of a quenched random force, distributed as a two-level Poisson process is discussed. Large time scaling laws of the position of the Brownian particle, and the probability distribution of the stationary flux going through a sample between two prescribed concentrations are studied. (author) 14 refs.; 3 figs

  8. Appropriateness of one-dimensional calculations for repository analysis

    International Nuclear Information System (INIS)

    Eaton, R.R.

    1994-01-01

    This paper brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. It is shown that in many cases, one-dimensional modeling is more rigorous than previously assumed

  9. One-dimensional position readout from microchannel plates

    International Nuclear Information System (INIS)

    Connell, K.A.; Przybylski, M.M.

    1982-01-01

    The development of a one-dimensional position readout system with microchannel plates, is described, for heavy ion detectors for use in a particle time-of-flight telescope and as a position sensitive device in front of an ionisation counter at the Nuclear Structure Facility. (U.K.)

  10. Lekhnitskii's formalism of one-dimensional quasicrystals and its ...

    Indian Academy of Sciences (India)

    To illustrate its utility, the generalized Lekhnitskii's formal- ism is used to analyse the coupled phonon and phason fields in an infinite quasicrystal medium con- taining an elliptic rigid inclusion. Keywords. Generalized Lekhnitskii's formalism; one-dimensional quasicrystals; plane problems; elliptic inclusion. PACS Nos 61.44.

  11. Backward scattering in the one-dimensional Fermi gas

    International Nuclear Information System (INIS)

    Apostol, M.

    1980-05-01

    The Ward identity is derived for non-relativistic fermions with two-body spin-independent interaction. Using this identity for the one-dimensional Fermi gas with backward scattering the equations of the perturbation theory are solved for the effective interaction and the collective excitations of the particle density fluctuations are obtained. (author)

  12. Simulation of the diffraction pattern of one dimensional quasicrystal ...

    African Journals Online (AJOL)

    The effects of the variation of atomic spacing ratio of a one dimensional quasicrystal material are investigated. The work involves the use of the solid state simulation code, Laue written by Silsbee and Drager. We are able to observe the general features of the diffraction pattern by a quasicrystal. In addition, it has been found ...

  13. Monte Carlo investigation of the one-dimensional Potts model

    International Nuclear Information System (INIS)

    Karma, A.S.; Nolan, M.J.

    1983-01-01

    Monte Carlo results are presented for a variety of one-dimensional dynamical q-state Potts models. Our calculations confirm the expected universal value z = 2 for the dynamic scaling exponent. Our results also indicate that an increase in q at fixed correlation length drives the dynamics into the scaling regime

  14. State reconstruction of one-dimensional wave packets

    Science.gov (United States)

    Krähmer, D. S.; Leonhardt, U.

    1997-12-01

    We review and analyze the method [U. Leonhardt, M.G. Raymer: Phys. Rev. Lett. 76, 1985 (1996)] for quantum-state reconstruction of one-dimensional non-relativistic wave packets from position observations. We illuminate the theoretical background of the technique and show how to extend the procedure to the continuous part of the spectrum.

  15. One-dimensional autonomous systems and dissipative systems

    International Nuclear Information System (INIS)

    Lopez, G.

    1996-01-01

    The Lagrangian and the Generalized Linear Momentum are given in terms of a constant of motion for a one-dimensional autonomous system. The possibility of having an explicit Hamiltonian expression is also analyzed. The approach is applied to some dissipative systems. Copyright copyright 1996 Academic Press, Inc

  16. Quantum transport in strongly interacting one-dimensional nanostructures

    NARCIS (Netherlands)

    Agundez, R.R.

    2015-01-01

    In this thesis we study quantum transport in several one-dimensional systems with strong electronic interactions. The first chapter contains an introduction to the concepts treated throughout this thesis, such as the Aharonov-Bohm effect, the Kondo effect, the Fano effect and quantum state transfer.

  17. Statistics of resonances in one-dimensional continuous systems

    Indian Academy of Sciences (India)

    Vol. 73, No. 3. — journal of. September 2009 physics pp. 565–572. Statistics of resonances in one-dimensional continuous systems. JOSHUA FEINBERG. Physics Department, University of Haifa at Oranim, Tivon 36006, Israel ..... relativistic quantum mechanics (Israel Program for Scientific Translations, Jerusalem,. 1969).

  18. Statistical mechanics of quantum one-dimensional damped harmonic oscillator

    International Nuclear Information System (INIS)

    Borges, E.N.M.; Borges, O.N.; Ribeiro, L.A.A.

    1985-01-01

    We calculate the thermal correlation functions of the one-dimensional damped harmonic oscillator in contact with a reservoir, in an exact form by applying Green's function method. In this way the thermal fluctuations are incorporated in the Caldirola-Kanai Hamiltonian

  19. Anomalous heat conduction in a one-dimensional ideal gas.

    Science.gov (United States)

    Casati, Giulio; Prosen, Tomaz

    2003-01-01

    We provide firm convincing evidence that the energy transport in a one-dimensional gas of elastically colliding free particles of unequal masses is anomalous, i.e., the Fourier law does not hold. Our conclusions are confirmed by a theoretical and numerical analysis based on a Green-Kubo-type approach specialized to momentum-conserving lattices.

  20. Relativistic band gaps in one-dimensional disordered systems

    International Nuclear Information System (INIS)

    Clerk, G.J.; McKellar, B.H.J.

    1992-01-01

    Conditions for the existence of band gaps in a one-dimensional disordered array of δ-function potentials possessing short range order are developed in a relativistic framework. Both Lorentz vector and scalar type potentials are treated. The relationship between the energy gaps and the transmission properties of the array are also discussed. 20 refs., 2 figs

  1. On the quantisation of one-dimensional bags

    International Nuclear Information System (INIS)

    Fairley, G.T.; Squires, E.J.

    1976-01-01

    The quantisation of one-dimensional MIT bags by expanding the fields as a sum of classical modes and truncating the series after the first term is discussed. The lowest states of a bag in a world containing two scalar quark fields are obtained. Problems associated with the zero-point oscillations of the field are discussed. (Auth.)

  2. The appropriateness of one-dimensional Yucca Mountain hydrologic calculations

    International Nuclear Information System (INIS)

    Eaton, R.R.

    1993-07-01

    This report brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. it is shown that, in many cases, one-dimensional modeling is more rigorous than previously assumed

  3. Light propagation in one-dimensional porous silicon complex systems

    NARCIS (Netherlands)

    Oton, C.J.; Dal Negro, L.; Gaburro, Z.; Pavesi, L.; Johnson, P.J.; Lagendijk, Aart; Wiersma, D.S.

    2003-01-01

    We discuss the optical properties of one-dimensional complex dielectric systems, in particular the time-resolved transmission through thick porous silicon quasiperiodic multi-layers. Both in numerical calculations and experiments we find dramatic distortion effects, i.e. pulse stretching and

  4. Analytical approach for collective diffusion: one-dimensional heterogeneous lattice

    Czech Academy of Sciences Publication Activity Database

    Tarasenko, Alexander

    2016-01-01

    Roč. 144, č. 14 (2016), 1-11, č. článku 144105. ISSN 0021-9606 Institutional support: RVO:68378271 Keywords : diffusion * Monte Carlo simulations * one-dimensional heterogeneous lattice Subject RIV: BE - Theoretical Physics Impact factor: 2.965, year: 2016

  5. Approximate Approaches to the One-Dimensional Finite Potential Well

    Science.gov (United States)

    Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.

    2011-01-01

    The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m[subscript i]) is taken to be distinct from mass outside (m[subscript o]). A relevant parameter is the mass…

  6. Toward precise solution of one-dimensional velocity inverse problems

    International Nuclear Information System (INIS)

    Gray, S.; Hagin, F.

    1980-01-01

    A family of one-dimensional inverse problems are considered with the goal of reconstructing velocity profiles to reasonably high accuracy. The travel-time variable change is used together with an iteration scheme to produce an effective algorithm for computation. Under modest assumptions the scheme is shown to be convergent

  7. Bound states of Dipolar Bosons in One-dimensional Systems

    DEFF Research Database (Denmark)

    G. Volosniev, A.; R. Armstrong, J.; V. Fedorov, D.

    2013-01-01

    that in the weakly-coupled limit the inter-tube interaction is similar to a zero-range term with a suitable rescaled strength. This allows us to address the corresponding many-body physics of the system by constructing a model where bound chains with one molecule in each tube are the effective degrees of freedom......We consider one-dimensional tubes containing bosonic polar molecules. The long-range dipole-dipole interactions act both within a single tube and between different tubes. We consider arbitrary values of the externally aligned dipole moments with respect to the symmetry axis of the tubes. The few....... This model can be mapped onto one-dimensional Hamiltonians for which exact solutions are known....

  8. Quasi-One-Dimensional Intermittent Flux Behavior in Superconducting Films

    Directory of Open Access Journals (Sweden)

    A. J. Qviller

    2012-01-01

    Full Text Available Intermittent filamentary dynamics of the vortex matter in superconductors is found in films of YBa_{2}Cu_{3}O_{7-δ} deposited on tilted substrates. Deposition of this material on such substrates creates parallel channels of easy flux penetration when a magnetic field is applied perpendicular to the film. As the applied field is gradually increased, magneto-optical imaging reveals that flux penetrates via numerous quasi-one-dimensional jumps. The distribution of flux avalanche sizes follows a power law, and data collapse is obtained by finite-size scaling, with the depth of the flux front used as crossover length. The intermittent behavior shows no threshold value in the applied field, in contrast to conventional flux jumping. The results strongly suggest that the quasi-one-dimensional flux jumps are of a different nature than the thermomagnetic dendritic (branching avalanches that are commonly found in superconducting films.

  9. Versatile hydrothermal synthesis of one-dimensional composite structures

    Science.gov (United States)

    Luo, Yonglan

    2008-12-01

    In this paper we report on a versatile hydrothermal approach developed to fabricate one-dimensional (1D) composite structures. Sulfur and selenium formed liquid and adsorbed onto microrods as droplets and subsequently reacted with metallic ion in solution to produce nanoparticles-decorated composite microrods. 1D composites including ZnO/CdS, ZnO/MnS, ZnO/CuS, ZnO/CdSe, and FeOOH/CdS were successfully made using this hydrothermal strategy and the growth mechanism was also discussed. This hydrothermal strategy is simple and green, and can be extended to the synthesis of various 1D composite structures. Moreover, the interaction between the shell nanoparticles and the one-dimensional nanomaterials were confirmed by photoluminescence investigation of ZnO/CdS.

  10. Applications of one-dimensional models in simplified inelastic analyses

    International Nuclear Information System (INIS)

    Kamal, S.A.; Chern, J.M.; Pai, D.H.

    1980-01-01

    This paper presents an approximate inelastic analysis based on geometric simplification with emphasis on its applicability, modeling, and the method of defining the loading conditions. Two problems are investigated: a one-dimensional axisymmetric model of generalized plane strain thick-walled cylinder is applied to the primary sodium inlet nozzle of the Clinch River Breeder Reactor Intermediate Heat Exchanger (CRBRP-IHX), and a finite cylindrical shell is used to simulate the branch shell forging (Y) junction. The results are then compared with the available detailed inelastic analyses under cyclic loading conditions in terms of creep and fatigue damages and inelastic ratchetting strains per the ASME Code Case N-47 requirements. In both problems, the one-dimensional simulation is able to trace the detailed stress-strain response. The quantitative comparison is good for the nozzle, but less satisfactory for the Y junction. Refinements are suggested to further improve the simulation

  11. Thermal conductivity in one-dimensional nonlinear systems

    Science.gov (United States)

    Politi, Antonio; Giardinà, Cristian; Livi, Roberto; Vassalli, Massimo

    2000-03-01

    Thermal conducitivity of one-dimensional nonlinear systems typically diverges in the thermodynamic limit, whenever the momentum is conserved (i.e. in the absence of interactions with an external substrate). Evidence comes from detailed studies of Fermi-Pasta-Ulam and diatomic Toda chains. Here, we discuss the first example of a one-dimensional system obeying Fourier law : a chain of coupled rotators. Numerical estimates of the thermal conductivity obtained by simulating a chain in contact with two thermal baths at different temperatures are found to be consistent with those ones based on linear response theory. The dynamics of the Fourier modes provides direct evidence of energy diffusion. The finiteness of the conductivity is traced back to the occurrence of phase-jumps. Our conclusions are confirmed by the analysis of two variants of the rotator model.

  12. Thermoelectric properties of one-dimensional graphene antidot arrays

    International Nuclear Information System (INIS)

    Yan, Yonghong; Liang, Qi-Feng; Zhao, Hui; Wu, Chang-Qin; Li, Baowen

    2012-01-01

    We investigate the thermoelectric properties of one-dimensional (1D) graphene antidot arrays by nonequilibrium Green's function method. We show that by introducing antidots to the pristine graphene nanoribbon the thermal conductance can be reduced greatly while keeping the power factor still high, thus leading to an enhanced thermoelectric figure of merit (ZT). Our numerical results indicate that ZT values of 1D antidot graphene arrays can be up to unity, which means the 1D graphene antidot arrays may be promising for thermoelectric applications. -- Highlights: ► We study thermoelectric properties of one-dimensional (1D) graphene antidot arrays. ► Thermoelectric figure of merit (ZT) of 1D antidot arrays can exceed unity. ► ZT of 1D antidot arrays is larger than that of two-dimensional arrays.

  13. Scattering theory for one-dimensional step potentials

    International Nuclear Information System (INIS)

    Ruijsenaars, S.N.M.; Bongaarts, P.J.M.

    1977-01-01

    The scattering theory is treated for the one-dimensional Dirac equation with potentials that are bounded, measurable, real-valued functions on the real line, having constant values, not necessarily the same, on the left and on the right side of a compact interval. Such potentials appear in the Klein paradox. It is shown that appropriately modified wave operators exist and that the corresponding S-operator is unitary. The connection between time-dependent scattering theory and time-independent scattering theory in terms of incoming and outgoing plane wave solutions is established and some further properties are proved. All results and their proofs have a straightforward translation to the one-dimensional Schroedinger equation with the same class of step potentials

  14. Resonance Raman spectroscopy in one-dimensional carbon materials

    Directory of Open Access Journals (Sweden)

    Dresselhaus Mildred S.

    2006-01-01

    Full Text Available Brazil has played an important role in the development and use of resonance Raman spectroscopy as a powerful characterization tool for materials science. Here we present a short history of Raman scattering research in Brazil, highlighting the important contributions to the field coming from Brazilian researchers in the past. Next we discuss recent and important contributions where Brazil has become a worldwide leader, that is on the physics of quasi-one dimensional carbon nanotubes. We conclude this article by presenting results from a very recent resonance Raman study of exciting new materials, that are strictly one-dimensional carbon chains formed by the heat treatment of very pure double-wall carbon nanotube samples.

  15. Impurity modes in the one-dimensional XXZ Heisenberg model

    International Nuclear Information System (INIS)

    Sousa, J.M.; Leite, R.V.; Landim, R.R.; Costa Filho, R.N.

    2014-01-01

    A Green's function formalism is used to calculate the energy of impurity modes associated with one and/or two magnetic impurities in the one-dimensional Heisenberg XXZ magnetic chain. The system can be tuned from the Heisenberg to the Ising model varying a parameter λ. A numerical study is performed showing two types of localized modes (s and p). The modes depend on λ and the degeneracy of the acoustic modes is broken.

  16. UNICIN - an one-dimensional computer code for reactor kinetics

    International Nuclear Information System (INIS)

    Rosa, M.A.P.; Alcantara, H.G. de; Nair, R.P.K.

    1984-01-01

    A program for the solution of the time- and space-dependent multigroup diffusion equations and the delayed-neutron precursors concentration equations in one dimensional geometries by the weighted residual method is described. The discretized equations are solved through an iterative procedure with convergence accelerated by the over-relaxation method. The system is perturbed through the variation of the nuclide concentrations in specified regions. Two feedback effects are included, namely, the temperature and the burnup. (Author) [pt

  17. Nonlinear acoustic wave propagating in one-dimensional layered system

    International Nuclear Information System (INIS)

    Yun, Y.; Miao, G.Q.; Zhang, P.; Huang, K.; Wei, R.J.

    2005-01-01

    The propagation of finite-amplitude plane sound in one-dimensional layered media is studied by the extended method of transfer matrix formalism. For the periodic layered system consisting of two alternate types of liquid, the energy distribution and the phase vectors of the interface vibration are computed and analyzed. It is found that in the pass-band, the second harmonic of sound wave can propagate with the characteristic modulation

  18. The analysis of one-dimensional reactor kinetics benchmark computations

    International Nuclear Information System (INIS)

    Sidell, J.

    1975-11-01

    During March 1973 the European American Committee on Reactor Physics proposed a series of simple one-dimensional reactor kinetics problems, with the intention of comparing the relative efficiencies of the numerical methods employed in various codes, which are currently in use in many national laboratories. This report reviews the contributions submitted to this benchmark exercise and attempts to assess the relative merits and drawbacks of the various theoretical and computer methods. (author)

  19. Heat transfer in a one-dimensional mixed convection loop

    International Nuclear Information System (INIS)

    Kim, Min Joon; Lee, Yong Bum; Kim, Yong Kyun; Kim, Jong Man; Nam, Ho Yun

    1999-01-01

    Effects of non-uniform heating in the core and additional forced circulation during decay heat removal operation are studied with a simplified mixed convection loop. The heat transfer coefficient is calculated analytically and measured experimentally. The analytic solution obtained from a one-dimensional heat equation is found to agree well with the experimental results. The effects of the non-uniform heating and the forced circulation are discussed

  20. Energy in one-dimensional linear waves in a string

    International Nuclear Information System (INIS)

    Burko, Lior M

    2010-01-01

    We consider the energy density and energy transfer in small amplitude, one-dimensional waves on a string and find that the common expressions used in textbooks for the introductory physics with calculus course give wrong results for some cases, including standing waves. We discuss the origin of the problem, and how it can be corrected in a way appropriate for the introductory calculus-based physics course. (letters and comments)

  1. Quasi-one-dimensional intermittent flux behavior in superconducting films

    OpenAIRE

    Qviller, A. J.; Yurchenko, V. V.; Galperin, Y. M.; Vestgården, J. I.; Mozhaev, Peter; Hansen, Jørn Bindslev; Johansen, T. H.

    2012-01-01

    Intermittent filamentary dynamics of the vortex matter in superconductors is found in films of YBa_{2}Cu_{3}O_{7-δ} deposited on tilted substrates. Deposition of this material on such substrates creates parallel channels of easy flux penetration when a magnetic field is applied perpendicular to the film. As the applied field is gradually increased, magneto-optical imaging reveals that flux penetrates via numerous quasi-one-dimensional jumps. The distribution of flux avalanche sizes follows a ...

  2. Variational iteration method for one dimensional nonlinear thermoelasticity

    International Nuclear Information System (INIS)

    Sweilam, N.H.; Khader, M.M.

    2007-01-01

    This paper applies the variational iteration method to solve the Cauchy problem arising in one dimensional nonlinear thermoelasticity. The advantage of this method is to overcome the difficulty of calculation of Adomian's polynomials in the Adomian's decomposition method. The numerical results of this method are compared with the exact solution of an artificial model to show the efficiency of the method. The approximate solutions show that the variational iteration method is a powerful mathematical tool for solving nonlinear problems

  3. Localization in a one-dimensional spatially correlated random potential

    International Nuclear Information System (INIS)

    Kasner, M.; Weller, W.

    1986-01-01

    The motion of an electron in a random one-dimensional spatially correlated potential is investigated. The spatial correlation is generated by a Markov chain. It is shown that the influence of the spatial correlation can be described by means of oscillating vertices usually neglected in the Berezinskii diagram technique. Correlation mainly leads to an increase of the localization length in comparison with an uncorrelated potential. However, there is a region of the parameter, where the localization decreases. (author)

  4. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    OpenAIRE

    Nikola Stefanović

    2007-01-01

    In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic ...

  5. Correlation functions of one-dimensional bosons at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maillet, J.M. [CNRS, ENS Lyon (France). Lab. de Physique; Slavnov, N.A. [Steklov Mathematical Institute, Moscow (Russian Federation)

    2010-12-15

    We consider the low-temperature limit of the long-distance asymptotic behavior of the finite temperature density-density correlation function in the one-dimensional Bose gas derived recently in the algebraic Bethe Ansatz framework. Our results confirm the predictions based on the Luttinger liquid and conformal field theory approaches. We also demonstrate that the amplitudes arising in this asymptotic expansion at low-temperature coincide with the amplitudes associated with the so-called critical form factors. (orig.)

  6. Majorana fermion exchange in strictly one dimensional structures

    OpenAIRE

    Chiu, Ching-Kai; Vazifeh, M. M.; Franz, M.

    2014-01-01

    It is generally thought that adiabatic exchange of two identical particles is impossible in one spatial dimension. Here we describe a simple protocol that permits adiabatic exchange of two Majorana fermions in a one-dimensional topological superconductor wire. The exchange relies on the concept of "Majorana shuttle" whereby a $\\pi$ domain wall in the superconducting order parameter which hosts a pair of ancillary Majoranas delivers one zero mode across the wire while the other one tunnels in ...

  7. On a class of one-dimensional random walks

    NARCIS (Netherlands)

    O.J. Boxma (Onno); V.I. Lotov

    1995-01-01

    textabstractnoindent This paper studies a one-dimensional Markov chain ${X_n,n=0,1,dots$ that satisfies the recurrence relation $X_n = max(0, X_{n-1 + eta_n^{(m) )$ if $X_{n-1 =m leq a$; for $X_{n-1 > a$ it satisfies the same relation with $eta_n^{(m)$ replaced by $xi_n$. Here ${ eta_n^{(m) $ and ${

  8. Theory of the one-dimensional forest-fire model

    International Nuclear Information System (INIS)

    Paczuski, M.; Bak, P.

    1993-01-01

    Turbulent cascade processes are studied in terms of a one-dimensional forest-fire model. A hier- archy of steady-state equations for the forests and the holes between them is constructed and solved within a mean-field closure scheme. The exact hole distribution function is found to be N H (s)=4N/[s(s+1)(s+2)], where N is the number of forests

  9. Quasi-one-dimensional metals on semiconductor surfaces with defects

    International Nuclear Information System (INIS)

    Hasegawa, Shuji

    2010-01-01

    Several examples are known in which massive arrays of metal atomic chains are formed on semiconductor surfaces that show quasi-one-dimensional metallic electronic structures. In this review, Au chains on Si(557) and Si(553) surfaces, and In chains on Si(111) surfaces, are introduced and discussed with regard to the physical properties determined by experimental data from scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES) and electrical conductivity measurements. They show quasi-one-dimensional Fermi surfaces and parabolic band dispersion along the chains. All of them are known from STM and ARPES to exhibit metal-insulator transitions by cooling and charge-density-wave formation due to Peierls instability of the metallic chains. The electrical conductivity, however, reveals the metal-insulator transition only on the less-defective surfaces (Si(553)-Au and Si(111)-In), but not on a more-defective surface (Si(557)-Au). The latter shows an insulating character over the whole temperature range. Compared with the electronic structure (Fermi surfaces and band dispersions), the transport property is more sensitive to the defects. With an increase in defect density, the conductivity only along the metal atomic chains was significantly reduced, showing that atomic-scale point defects decisively interrupt the electrical transport along the atomic chains and hide the intrinsic property of transport in quasi-one-dimensional systems.

  10. Gravitational anomalies and one-dimensional behavior of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Bibhas Ranjan [Indian Institute of Technology Guwahati, Department of Physics, Guwahati, Assam (India)

    2015-12-15

    It has been pointed out by Bekenstein and Mayo that the behavior of the black hole's entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S on the power is S ∝ P{sup 1/2}, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry's formula, while in the latter situation its value decreases. (orig.)

  11. One-dimensional crystal with a complex periodic potential

    International Nuclear Information System (INIS)

    Boyd, John K.

    2001-01-01

    A one-dimensional crystal model is constructed with a complex periodic potential. A wave function solution for the crystal model is derived without relying on Bloch functions. The new wave function solution of this model is shown to correspond to the solution for the probability amplitude of a two-level system. The energy discriminant is evaluated using an analytic formula derived from the probability amplitude solution, and based on an expansion parameter related to the energy and potential amplitude. From the wave function energy discriminant the crystal band structure is derived and related to standard energy bands and gaps. It is also shown that several of the properties of the two-level system apply to the one-dimensional crystal model. The two-level system solution which evolves in time is shown to manifest as a spatial configuration of the one-dimensional crystal model. The sensitivity of the wave function probability density is interpreted in the context of the new solution. The spatial configuration of the wave function, and the appearance of a long wavelength in the wave function probability density is explained in terms of the properties of Bessel functions

  12. Gain assisted coherent control of microwave pulse in a one dimensional array of artificial atoms

    Science.gov (United States)

    Waqas, Mohsin; Ayaz, M. Q.; Waseem, M.; Qamar, Sajid; Qamar, Shahid

    2018-06-01

    We study the coherent propagation of a microwave pulse through a one-dimensional array of artificial atoms. The scheme is based upon gain assisted propagation of the pulse using two-photon Raman transition in a three-level superconducting artificial atoms (SAAs) coupled to a microwave transmission line. Our results show that the group velocity can be significantly reduced by increasing the Rabi frequency of the pump fields which in turn can lead to an efficient storage of the pulse inside a 1D array of SAAs. Further, the intensity of the transmitted pulse increases with the number of artificial atoms owing to the gain associated with the two-photon Raman transition. Our results also show that the window width decreases for both scattering and negligible scattering cases with the increase in the number of SAAs. The fidelity of the system also remains high even after the passage of the pulse through a large number of SAAs.

  13. Integrability of the one dimensional Schrödinger equation

    Science.gov (United States)

    Combot, Thierry

    2018-02-01

    We present a definition of integrability for the one-dimensional Schrödinger equation, which encompasses all known integrable systems, i.e., systems for which the spectrum can be explicitly computed. For this, we introduce the class of rigid functions, built as Liouvillian functions, but containing all solutions of rigid differential operators in the sense of Katz, and a notion of natural of boundary conditions. We then make a complete classification of rational integrable potentials. Many new integrable cases are found, some of them physically interesting.

  14. Inversion of reflection for the one-dimensional Dirac equation

    International Nuclear Information System (INIS)

    Clerk, G.L.; Davies, A.J.

    1991-01-01

    It is a general result of one-dimensional non-relativistic quantum mechanics that the coefficient of reflection (reflected flux) is the same irrespective of the direction of traversing a potential barrier, a result that is independent of the barrier shape. In this note, the authors consider the transmission coefficient instead, and derive a strong result, namely that the transmission amplitude is independent of the direction of barrier traversal. That is, the transmission amplitude has the same complex phase as well as being unchanged in magnitude by changing the barrier around. This process was called inversion of reflection. 2 refs

  15. Two-dimensional beam profiles and one-dimensional projections

    Science.gov (United States)

    Findlay, D. J. S.; Jones, B.; Adams, D. J.

    2018-05-01

    One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.

  16. Exactly integrable analogue of a one-dimensional gravitating system

    International Nuclear Information System (INIS)

    Miller, Bruce N.; Yawn, Kenneth R.; Maier, Bill

    2005-01-01

    Exchange symmetry in acceleration partitions the configuration space of an N particle one-dimensional gravitational system (OGS) into N! equivalent cells. We take advantage of the resulting small angular separation between the forces in neighboring cells to construct a related integrable version of the system that takes the form of a central force problem in N-1 dimensions. The properties of the latter, including the construction of trajectories and possible continuum limits, are developed. Dynamical simulation is employed to compare the two models. For some initial conditions, excellent agreement is observed

  17. Acoustic and electronic properties of one-dimensional quasicrystals

    International Nuclear Information System (INIS)

    Nori, F.; Rodriguez, J.P.

    1986-01-01

    We study the acoustic and electronic properties of one-dimensional quasicrystals. Both numerical (nonperturbative) and analytical (perturbative) results are shown. The phonon and electronic spectra exhibit a self-similar hierarchy of gaps and many localized states in the gaps. We study quasiperiodic structures with any number of layers and several types of boundary conditions. We discuss the connection between our phonon model and recent experiments on quasiperiodic GaAs-AlAs superlattices. We predict the existence of many gap states localized at the surfaces

  18. Hidden symmetries in one-dimensional quantum Hamiltonians

    International Nuclear Information System (INIS)

    Curado, E.M.F.; Rego-Monteiro, M.A.; Nazareno, H.N.

    2000-11-01

    We construct a Heisenberg-like algebra for the one dimensional infinite square-well potential in quantum mechanics. The number-type and ladder operators are realized in terms of physical operators of the system as in the harmonic oscillator algebra. These physical operators are obtained with the help of variables used in a recently developed non commutative differential calculus. This square-well algebra is an example of an algebra in large class of generalized Heisenberg algebras recently constructed. This class of algebras also contains q-oscillators as a particular case. We also show here how this general algebra can address hidden symmetries present in several quantum systems. (author)

  19. Quantum quench in an atomic one-dimensional Ising chain.

    Science.gov (United States)

    Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Daley, A J; Nägerl, H-C

    2013-08-02

    We study nonequilibrium dynamics for an ensemble of tilted one-dimensional atomic Bose-Hubbard chains after a sudden quench to the vicinity of the transition point of the Ising paramagnetic to antiferromagnetic quantum phase transition. The quench results in coherent oscillations for the orientation of effective Ising spins, detected via oscillations in the number of doubly occupied lattice sites. We characterize the quench by varying the system parameters. We report significant modification of the tunneling rate induced by interactions and show clear evidence for collective effects in the oscillatory response.

  20. Chemical potential of one-dimensional simple harmonic oscillators

    International Nuclear Information System (INIS)

    Mungan, Carl E

    2009-01-01

    Expressions for the chemical potential of an Einstein solid, and of ideal Fermi and Bose gases in an external one-dimensional oscillatory trap, are calculated by two different methods and are all found to share the same functional form. These derivations are easier than traditional textbook calculations for an ideal gas in an infinite three-dimensional square well. Furthermore, the results indicate some important features of chemical potential that could promote student learning in an introductory course in statistical mechanics at the undergraduate level.

  1. Peierls' instability in a one-dimensional potentially metallic solid

    International Nuclear Information System (INIS)

    Valladares, A.A.; Cetina, E.A.; Sansores, L.E.

    1980-01-01

    The Peierls instability of one-dimensional potentially metallic lithium solid is investigated in the Hueckel and SCF approximations. In the Hueckel approximation Esub(F) is a monotonic increasing function of the displacement of every other atom of the lattice, whereas in the SCF approximation, where the filling of the bands is considered, Esub(F) shows the minimum predicted by Peierls. The energy gap (for the arrangement that minimizes Esub(F)) is 4.5 eV, indicating that this solid is an insulator. (author)

  2. One-dimensional radionuclide transport under time-varying conditions

    International Nuclear Information System (INIS)

    Gelbard, F.; Olague, N.E.; Longsine, D.E.

    1990-01-01

    This paper discusses new analytical and numerical solutions presented for one-dimensional radionuclide transport under time-varying fluid-flow conditions including radioactive decay. The analytical solution assumes that all radionuclides have identical retardation factors, and is limited to instantaneous releases. The numerical solution does not have these limitations, but is tested against the limiting case given for the analytical solution. Reasonable agreement between the two solutions was found. Examples are given for the transport of a three-member radionuclide chain transported over distances and flow rates comparable to those reported for Yucca Mountain, the proposed disposal site for high-level nuclear waste

  3. One-dimensional nonlinear inverse heat conduction technique

    International Nuclear Information System (INIS)

    Hills, R.G.; Hensel, E.C. Jr.

    1986-01-01

    The one-dimensional nonlinear problem of heat conduction is considered. A noniterative space-marching finite-difference algorithm is developed to estimate the surface temperature and heat flux from temperature measurements at subsurface locations. The trade-off between resolution and variance of the estimates of the surface conditions is discussed quantitatively. The inverse algorithm is stabilized through the use of digital filters applied recursively. The effect of the filters on the resolution and variance of the surface estimates is quantified. Results are presented which indicate that the technique is capable of handling noisy measurement data

  4. The quantum flux in quasis one-dimensional conductors

    International Nuclear Information System (INIS)

    Ventura, J.

    1989-01-01

    A method is presented which quantizes electromagnetic fluxes directly in flux space. It is based on the commutation law [φ B , φ E ] = i, where φ B is the magnetic flux, and φ E the longitudinal electric flux of a quasi one-dimensional conductor. The relevance of such a method for the description of the quantized Hall plateaus is discussed. In a second step, the polarization electric flux is introduced, together with a method for quantization of hybrid variables formed with pure electromagnetic fluxes plus electronic variables. (author) [pt

  5. Evaluation of one dimensional analytical models for vegetation canopies

    Science.gov (United States)

    Goel, Narendra S.; Kuusk, Andres

    1992-01-01

    The SAIL model for one-dimensional homogeneous vegetation canopies has been modified to include the specular reflectance and hot spot effects. This modified model and the Nilson-Kuusk model are evaluated by comparing the reflectances given by them against those given by a radiosity-based computer model, Diana, for a set of canopies, characterized by different leaf area index (LAI) and leaf angle distribution (LAD). It is shown that for homogeneous canopies, the analytical models are generally quite accurate in the visible region, but not in the infrared region. For architecturally realistic heterogeneous canopies of the type found in nature, these models fall short. These shortcomings are quantified.

  6. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  7. Generalized entropy decay rates of one-dimensional maps

    International Nuclear Information System (INIS)

    Csordas, A.; Szepfalusy, P.

    1988-01-01

    A series of entropies, approaching the order-q Renyi's entropies when the length of orbits tends to infinity, is considered. Their scaling form is determined for chaotic one-dimensional maps. For the characteristic relaxation time a general expression is derived, and it is shown to be closely related to the eigenvalues of a generalized Frobenius-Perron operator. The case of intermittent maps is also considered, and the spectrum of relaxation time is found to reflect the phase transition at q = 1. Results of numerical experiments are also presented

  8. Entanglement entropy and complexity for one-dimensional holographic superconductors

    Science.gov (United States)

    Kord Zangeneh, Mahdi; Ong, Yen Chin; Wang, Bin

    2017-08-01

    Holographic superconductor is an important arena for holography, as it allows concrete calculations to further understand the dictionary between bulk physics and boundary physics. An important quantity of recent interest is the holographic complexity. Conflicting claims had been made in the literature concerning the behavior of holographic complexity during phase transition. We clarify this issue by performing a numerical study on one-dimensional holographic superconductor. Our investigation shows that holographic complexity does not behave in the same way as holographic entanglement entropy. Nevertheless, the universal terms of both quantities are finite and reflect the phase transition at the same critical temperature.

  9. Fragmented one dimensional man / El hombre unidimensional fragmentado

    Directory of Open Access Journals (Sweden)

    Juan Antonio Rodríguez del Pino

    2013-10-01

    Full Text Available Paraphrase the title of the famous essay by Herbert Marcuse, since the image has traditionally been generated of man, masculinity, has been one-dimensional. I mean, the man was characterized by traits and behaviors established and entrenched since ancient time, considering all other distinguishing signs as mere deviations from the normative improper. But observe that this undeniable reality, as analyzed various researchers through what has come to be called Men's studies, has proven to be a fallacy difficult to maintain throughout history and today turns into fallacious and ineffective against changes in our current existing corporate models.

  10. One-dimensional neutron imager for the Sandia Z facility.

    Science.gov (United States)

    Fittinghoff, David N; Bower, Dan E; Hollaway, James R; Jacoby, Barry A; Weiss, Paul B; Buckles, Robert A; Sammons, Timothy J; McPherson, Leroy A; Ruiz, Carlos L; Chandler, Gordon A; Torres, José A; Leeper, Ramon J; Cooper, Gary W; Nelson, Alan J

    2008-10-01

    A multiinstitution collaboration is developing a neutron imaging system for the Sandia Z facility. The initial system design is for slit aperture imaging system capable of obtaining a one-dimensional image of a 2.45 MeV source producing 5x10(12) neutrons with a resolution of 320 microm along the axial dimension of the plasma, but the design being developed can be modified for two-dimensional imaging and imaging of DT neutrons with other resolutions. This system will allow us to understand the spatial production of neutrons in the plasmas produced at the Z facility.

  11. One-dimensional computational modeling on nuclear reactor problems

    International Nuclear Information System (INIS)

    Alves Filho, Hermes; Baptista, Josue Costa; Trindade, Luiz Fernando Santos; Heringer, Juan Diego dos Santos

    2013-01-01

    In this article, we present a computational modeling, which gives us a dynamic view of some applications of Nuclear Engineering, specifically in the power distribution and the effective multiplication factor (keff) calculations. We work with one-dimensional problems of deterministic neutron transport theory, with the linearized Boltzmann equation in the discrete ordinates (SN) formulation, independent of time, with isotropic scattering and then built a software (Simulator) for modeling computational problems used in a typical calculations. The program used in the implementation of the simulator was Matlab, version 7.0. (author)

  12. Ordering phase transition in the one-dimensional Axelrod model

    Science.gov (United States)

    Vilone, D.; Vespignani, A.; Castellano, C.

    2002-12-01

    We study the one-dimensional behavior of a cellular automaton aimed at the description of the formation and evolution of cultural domains. The model exhibits a non-equilibrium transition between a phase with all the system sharing the same culture and a disordered phase of coexisting regions with different cultural features. Depending on the initial distribution of the disorder the transition occurs at different values of the model parameters. This phenomenology is qualitatively captured by a mean-field approach, which maps the dynamics into a multi-species reaction-diffusion problem.

  13. One-Dimensional Rydberg Gas in a Magnetoelectric Trap

    International Nuclear Information System (INIS)

    Mayle, Michael; Hezel, Bernd; Lesanovsky, Igor; Schmelcher, Peter

    2007-01-01

    We study the quantum properties of Rydberg atoms in a magnetic Ioffe-Pritchard trap which is superimposed by a homogeneous electric field. Trapped Rydberg atoms can be created in long-lived electronic states exhibiting a permanent electric dipole moment of several hundred Debye. The resulting dipole-dipole interaction in conjunction with the radial confinement is demonstrated to give rise to an effectively one-dimensional ultracold Rydberg gas with a macroscopic interparticle distance. We derive analytical expressions for the electric dipole moment and the required linear density of Rydberg atoms

  14. One-dimensional inverse problems of mathematical physics

    CERN Document Server

    Lavrent'ev, M M; Yakhno, V G; Schulenberger, J R

    1986-01-01

    This monograph deals with the inverse problems of determining a variable coefficient and right side for hyperbolic and parabolic equations on the basis of known solutions at fixed points of space for all times. The problems are one-dimensional in nature since the desired coefficient of the equation is a function of only one coordinate, while the desired right side is a function only of time. The authors use methods based on the spectral theory of ordinary differential operators of second order and also methods which make it possible to reduce the investigation of the inverse problems to the in

  15. One-dimensional energy flow model for poroelastic material

    International Nuclear Information System (INIS)

    Kim, Jung Soo; Kang, Yeon June

    2009-01-01

    This paper presents a one-dimensional energy flow model to investigate the energy behavior for poroelastic media coupled with acoustical media. The proposed energy flow model is expressed by an independent energy governing equation that is classified into each wave component propagating in poroelastic media. The energy governing equation is derived using the General Energetic Method (GEM). To facilitate a comparison with the classical solution based on the conventional displacement-base formulation, approximate solutions of energy density and intensity are obtained. Furthermore, the limitations and usability of the proposed energy flow model for poroelastic media are described.

  16. Hydrogen peroxide stabilization in one-dimensional flow columns

    Science.gov (United States)

    Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.

    2011-09-01

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.

  17. Stopping time of a one-dimensional bounded quantum walk

    International Nuclear Information System (INIS)

    Luo Hao; Zhang Peng; Zhan Xiang; Xue Peng

    2016-01-01

    The stopping time of a one-dimensional bounded classical random walk (RW) is defined as the number of steps taken by a random walker to arrive at a fixed boundary for the first time. A quantum walk (QW) is a non-trivial generalization of RW, and has attracted a great deal of interest from researchers working in quantum physics and quantum information. In this paper, we develop a method to calculate the stopping time for a one-dimensional QW. Using our method, we further compare the properties of stopping time for QW and RW. We find that the mean value of the stopping time is the same for both of these problems. However, for short times, the probability for a walker performing a QW to arrive at the boundary is larger than that for a RW. This means that, although the mean stopping time of a quantum and classical walker are the same, the quantum walker has a greater probability of arriving at the boundary earlier than the classical walker. (paper)

  18. One-Dimensional Forward–Forward Mean-Field Games

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Diogo A., E-mail: diogo.gomes@kaust.edu.sa; Nurbekyan, Levon; Sedjro, Marc [King Abdullah University of Science and Technology (KAUST), CEMSE Division (Saudi Arabia)

    2016-12-15

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  19. Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization

    Science.gov (United States)

    Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.

    2016-04-01

    We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χmlaw ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.

  20. One-Dimensional Forward–Forward Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.; Nurbekyan, Levon; Sedjro, Marc

    2016-01-01

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  1. One-Dimensional Forward–Forward Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.

    2016-11-01

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  2. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov

  3. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas

  4. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying thescience and technology of nanophotonics, its materials andstructures This volume presents nanophotonic structures and Materials.Nanophotonics is photonic science and technology that utilizeslight/matter interactions on the nanoscale where researchers arediscovering new phenomena and developing techniques that go wellbeyond what is possible with conventional photonics andelectronics.The topics discussed in this volume are: CavityPhotonics; Cold Atoms and Bose-Einstein Condensates; Displays;E-paper; Graphene; Integrated Photonics; Liquid Cry

  5. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol

  6. Non-equilibrium dynamics of one-dimensional Bose gases

    International Nuclear Information System (INIS)

    Langen, T.

    2013-01-01

    Understanding the non-equilibrium dynamics of isolated quantum many-body systems is an open problem on vastly different energy, length, and time scales. Examples range from the dynamics of the early universe and heavy-ion collisions to the subtle coherence and transport properties in condensed matter physics. However, realizations of such quantum many-body systems, which are both well isolated from the environment and accessible to experimental study are scarce. This thesis presents a series of experiments with ultracold one-dimensional Bose gases. These gases combine a nearly perfect isolation from the environment with many well-established methods to manipulate and probe their quantum states. This makes them an ideal model system to explore the physics of quantum many body systems out of equilibrium. In the experiments, a well-defined non-equilibrium state is created by splitting a single one-dimensional gas coherently into two parts. The relaxation of this state is probed using matter-wave interferometry. The Observations reveal the emergence of a prethermalized steady state which differs strongly from thermal equilibrium. Such thermal-like states had previously been predicted for a large variety of systems, but never been observed directly. Studying the relaxation process in further detail shows that the thermal correlations of the prethermalized state emerge locally in their final form and propagate through the system in a light-cone-like evolution. This provides first experimental evidence for the local relaxation conjecture, which links relaxation processes in quantum many-body systems to the propagation of correlations. Furthermore, engineering the initial state of the evolution demonstrates that the prethermalized state is described by a generalized Gibbs ensemble, an observation which substantiates the importance of this ensemble as an extension of standard statistical mechanics. Finally, an experiment is presented, where pairs of gases with an atom

  7. Resonant scattering induced thermopower in one-dimensional disordered systems

    Science.gov (United States)

    Müller, Daniel; Smit, Wilbert J.; Sigrist, Manfred

    2015-05-01

    This study analyzes thermoelectric properties of a one-dimensional random conductor which shows localization effects and simultaneously includes resonant scatterers yielding sharp conductance resonances. These sharp features give rise to a distinct behavior of the Seebeck coefficient in finite systems and incorporate the degree of localization as a means to enhance thermoelectric performance, in principle. The model for noninteracting electrons is discussed within the Landauer-Büttiker formalism such that analytical treatment is possible for a wide range of properties, if a special averaging scheme is applied. The approximations in the averaging procedure are tested with numerical evaluations showing good qualitative agreement, with some limited quantitative disagreement. The validity of low-temperature Mott's formula is determined and a good approximation is developed for the intermediate temperature range. In both regimes the intricate interplay between Anderson localization due to disorder and conductance resonances of the disorder potential is analyzed.

  8. Testing of a one dimensional model for Field II calibration

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2008-01-01

    Field II is a program for simulating ultrasound transducer fields. It is capable of calculating the emitted and pulse-echoed fields for both pulsed and continuous wave transducers. To make it fully calibrated a model of the transducer’s electro-mechanical impulse response must be included. We...... examine an adapted one dimensional transducer model originally proposed by Willatzen [9] to calibrate Field II. This model is modified to calculate the required impulse responses needed by Field II for a calibrated field pressure and external circuit current calculation. The testing has been performed...... to the calibrated Field II program for 1, 4, and 10 cycle excitations. Two parameter sets were applied for modeling, one real valued Pz27 parameter set, manufacturer supplied, and one complex valued parameter set found in literature, Alguer´o et al. [11]. The latter implicitly accounts for attenuation. Results show...

  9. One-dimensional reactor kinetics model for RETRAN

    International Nuclear Information System (INIS)

    Gose, G.C.; Peterson, C.E.; Ellis, N.L.; McClure, J.A.

    1981-01-01

    Previous versions of RETRAN have had only a point kinetics model to describe the reactor core behavior during thermal-hydraulic transients. The principal assumption in deriving the point kinetics model is that the neutron flux may be separated into a time-dependent amplitude funtion and a time-independent shape function. Certain types of transients cannot be correctly analyzed under this assumption, since proper definitions for core average quantities such as reactivity or lifetime include the inner product of the adjoint flux with the perturbed flux. A one-dimensional neutronics model has been included in a preliminary version of RETRAN-02. The ability to account for flux shape changes will permit an improved representation of the thermal and hydraulic feedback effects. This paper describes the neutronics model and discusses some of the analyses

  10. Magnons in one-dimensional k-component Fibonacci structures

    Energy Technology Data Exchange (ETDEWEB)

    Costa, C. H., E-mail: carloshocosta@hotmail.com [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Vasconcelos, M. S. [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil)

    2014-05-07

    We have studied the magnon transmission through of one-dimensional magnonic k-component Fibonacci structures, where k different materials are arranged in accordance with the following substitution rule: S{sub n}{sup (k)}=S{sub n−1}{sup (k)}S{sub n−k}{sup (k)} (n≥k=0,1,2,…), where S{sub n}{sup (k)} is the nth stage of the sequence. The calculations were carried out in exchange dominated regime within the framework of the Heisenberg model and taking into account the RPA approximation. We have considered multilayers composed of simple cubic spin-S Heisenberg ferromagnets, and, by using the powerful transfer-matrix method, the spin wave transmission is obtained. It is demonstrated that the transmission coefficient has a rich and interesting magnonic pass- and stop-bands structures, which depends on the frequency of magnons and the k values.

  11. One-dimensional Ising model with multispin interactions

    Science.gov (United States)

    Turban, Loïc

    2016-09-01

    We study the spin-1/2 Ising chain with multispin interactions K involving the product of m successive spins, for general values of m. Using a change of spin variables the zero-field partition function of a finite chain is obtained for free and periodic boundary conditions and we calculate the two-spin correlation function. When placed in an external field H the system is shown to be self-dual. Using another change of spin variables the one-dimensional Ising model with multispin interactions in a field is mapped onto a zero-field rectangular Ising model with first-neighbour interactions K and H. The 2D system, with size m × N/m, has the topology of a cylinder with helical BC. In the thermodynamic limit N/m\\to ∞ , m\\to ∞ , a 2D critical singularity develops on the self-duality line, \\sinh 2K\\sinh 2H=1.

  12. One-dimensional thermodynamical model for poling of ferroelectric ceramics

    International Nuclear Information System (INIS)

    Bassiouny, E.

    1990-11-01

    In this work, we use a model developed to deduce a one-dimensional model for the description of the poling of ferroelectric ceramics. This is built within the scheme of the thermodynamical theory of internal variables. The model produces both plastic and electric hysteresis effects in the form of ''plasticity'', i.e., rate-independent evolution equations for the plastic strain, and the residual electric polarization and both mechanical and electric hardenings. The influence of stresses on ferroelectric hysteresis loops through piezoelectricity and electrostriction is a natural outcome of this model. Some simple experimental methods for the determination of the material coefficients of the considered ceramics are suggested. (author). 21 refs, 3 figs

  13. NMR relaxation rate in quasi one-dimensional antiferromagnets

    Science.gov (United States)

    Capponi, Sylvain; Dupont, Maxime; Laflorencie, Nicolas; Sengupta, Pinaki; Shao, Hui; Sandvik, Anders W.

    We compare results of different numerical approaches to compute the NMR relaxation rate 1 /T1 in quasi one-dimensional (1d) antiferromagnets. In the purely 1d regime, recent numerical simulations using DMRG have provided the full crossover behavior from classical regime at high temperature to universal Tomonaga-Luttinger liquid at low-energy (in the gapless case) or activated behavior (in the gapped case). For quasi 1d models, we can use mean-field approaches to reduce the problem to a 1d one that can be studied using DMRG. But in some cases, we can also simulate the full microscopic model using quantum Monte-Carlo techniques. This allows to compute dynamical correlations in imaginary time and we will discuss recent advances to perform stochastic analytic continuation to get real frequency spectra. Finally, we connect our results to experiments on various quasi 1d materials.

  14. Quasi one dimensional transport in individual electrospun composite nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Avnon, A., E-mail: avnon@phys.fu-berlin.de; Datsyuk, V.; Trotsenko, S. [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Wang, B.; Zhou, S. [Research Center of Microperipheric Technologies, Technische Universität Berlin, TiB4/2-1, Gustav-Meyer-Allee 25, 13355 Berlin (Germany); Grabbert, N.; Ngo, H.-D. [Microsystem Engineering (FB I), University of Applied Sciences, Wilhelminenhofstr. 74 (C 525), 12459 Berlin (Germany)

    2014-01-15

    We present results of transport measurements of individual suspended electrospun nanofibers Poly(methyl methacrylate)-multiwalled carbon nanotubes. The nanofiber is comprised of highly aligned consecutive multiwalled carbon nanotubes. We have confirmed that at the range temperature from room temperature down to ∼60 K, the conductance behaves as power-law of temperature with an exponent of α ∼ 2.9−10.2. The current also behaves as power law of voltage with an exponent of β ∼ 2.3−8.6. The power-law behavior is a footprint for one dimensional transport. The possible models of this confined system are discussed. Using the model of Luttinger liquid states in series, we calculated the exponent for tunneling into the bulk of a single multiwalled carbon nanotube α{sub bulk} ∼ 0.06 which agrees with theoretical predictions.

  15. One-dimensional disk model simulation for klystron design

    International Nuclear Information System (INIS)

    Yonezawa, H.; Okazaki, Y.

    1984-05-01

    In 1982, one of the authors (Okazaki), of Toshiba Corporation, wrote a one-dimensional, rigid-disk model computer program to serve as a reliable design tool for the 150 MW klystron development project. This is an introductory note for the users of this program. While reviewing the so-called disk programs presently available, hypotheses such as gridded interaction gaps, a linear relation between phase and position, and so on, were found. These hypotheses bring serious limitations and uncertainties into the computational results. JPNDISK was developed to eliminate these defects, to follow the equations of motion as rigorously as possible, and to obtain self-consistent solutions for the gap voltages and the electron motion. Although some inaccuracy may be present in the relativistic region, JPNDISK, in its present form, seems a most suitable tool for klystron design; it is both easy and inexpensive to use

  16. Probing the exchange statistics of one-dimensional anyon models

    Science.gov (United States)

    Greschner, Sebastian; Cardarelli, Lorenzo; Santos, Luis

    2018-05-01

    We propose feasible scenarios for revealing the modified exchange statistics in one-dimensional anyon models in optical lattices based on an extension of the multicolor lattice-depth modulation scheme introduced in [Phys. Rev. A 94, 023615 (2016), 10.1103/PhysRevA.94.023615]. We show that the fast modulation of a two-component fermionic lattice gas in the presence a magnetic field gradient, in combination with additional resonant microwave fields, allows for the quantum simulation of hardcore anyon models with periodic boundary conditions. Such a semisynthetic ring setup allows for realizing an interferometric arrangement sensitive to the anyonic statistics. Moreover, we show as well that simple expansion experiments may reveal the formation of anomalously bound pairs resulting from the anyonic exchange.

  17. One-dimensional reduction of viscous jets. II. Applications

    Science.gov (United States)

    Pitrou, Cyril

    2018-04-01

    In a companion paper [Phys. Rev. E 97, 043115 (2018), 10.1103/PhysRevE.97.043115], a formalism allowing to describe viscous fibers as one-dimensional objects was developed. We apply it to the special case of a viscous fluid torus. This allows to highlight the differences with the basic viscous string model and with its viscous rod model extension. In particular, an elliptic deformation of the torus section appears because of surface tension effects, and this cannot be described by viscous string nor viscous rod models. Furthermore, we study the Rayleigh-Plateau instability for periodic deformations around the perfect torus, and we show that the instability is not sufficient to lead to the torus breakup in several droplets before it collapses to a single spherical drop. Conversely, a rotating torus is dynamically attracted toward a stationary solution, around which the instability can develop freely and split the torus in multiple droplets.

  18. One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hust, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McClelland, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gresshoff, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-12

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).

  19. Dynamics of an impurity in a one-dimensional lattice

    International Nuclear Information System (INIS)

    Massel, F; Kantian, A; Giamarchi, T; Daley, A J; Törmä, P

    2013-01-01

    We study the non-equilibrium dynamics of an impurity in a harmonic trap that is kicked with a well-defined quasi-momentum, and interacts with a bath of free fermions or interacting bosons in a one-dimensional lattice configuration. Using numerical and analytical techniques we investigate the full dynamics beyond linear response, which allows us to quantitatively characterize states of the impurity in the bath for different parameter regimes. These vary from a tightly bound molecular state in a strongly interacting limit to a polaron (dressed impurity) and a free particle for weak interactions, with composite behaviour in the intermediate regime. These dynamics and different parameter regimes should be readily realizable in systems of cold atoms in optical lattices. (paper)

  20. The transmission probability method in one-dimensional cylindrical geometry

    International Nuclear Information System (INIS)

    Rubin, I.E.

    1983-01-01

    The collision probability method widely used in solving the problems of neutron transpopt in a reactor cell is reliable for simple cells with small number of zones. The increase of the number of zones and also taking into account the anisotropy of scattering greatly increase the scope of calculations. In order to reduce the time of calculation the transmission probability method is suggested to be used for flux calculation in one-dimensional cylindrical geometry taking into account the scattering anisotropy. The efficiency of the suggested method is verified using the one-group calculations for cylindrical cells. The use of the transmission probability method allows to present completely angular and spatial dependences is neutrons distributions without the increase in the scope of calculations. The method is especially effective in solving the multi-group problems

  1. Piezoelectric transducer vibrations in a one-dimensional approximation

    CERN Document Server

    Hilke, H J

    1973-01-01

    The theory of piezoelectric transducer vibrations, which may be treated as one-dimensional, is developed in detail for thin discs vibrating in a pure thickness extensional mode. An effort has been made to obtain relations of general validity, which include losses, and which are in a simple explicit form convenient for practical calculations. The behaviour of transducers is discussed with special attention to their characteristics at the two fundamental frequencies, the so-called parallel and series resonances. Several peculiarities occur when transducers are coupled to media with considerably different acoustic impedances. These peculiarities are discussed and illustrated by numerical results for quartz and PZT 4 piezoelectric discs radiating into water, air and liquid hydrogen. The application of the theory to different types of vibrations is briefly illustrated for thin bars vibrating longitudinally. Short discussions are included on compound transducer systems, and on the properties of thin discs as receiv...

  2. Analytical models of optical response in one-dimensional semiconductors

    International Nuclear Information System (INIS)

    Pedersen, Thomas Garm

    2015-01-01

    The quantum mechanical description of the optical properties of crystalline materials typically requires extensive numerical computation. Including excitonic and non-perturbative field effects adds to the complexity. In one dimension, however, the analysis simplifies and optical spectra can be computed exactly. In this paper, we apply the Wannier exciton formalism to derive analytical expressions for the optical response in four cases of increasing complexity. Thus, we start from free carriers and, in turn, switch on electrostatic fields and electron–hole attraction and, finally, analyze the combined influence of these effects. In addition, the optical response of impurity-localized excitons is discussed. - Highlights: • Optical response of one-dimensional semiconductors including excitons. • Analytical model of excitonic Franz–Keldysh effect. • Computation of optical response of impurity-localized excitons

  3. SUSY-hierarchy of one-dimensional reflectionless potentials

    CERN Document Server

    Maydanyuk, Sergei P

    2004-01-01

    A class of one-dimensional reflectionless potentials, an absolute transparency of which is concerned with their belonging to one SUSY-hierarchy with a constant potential, is studied. An approach for determination of a general form of the reflectionless potential on the basis of construction of such a hierarchy by the recurrent method is proposed. A general form of interdependence between superpotentials with neighboring numbers of this hierarchy, opening a possibility to find new reflectionless potentials, have a simple analytical view and are expressed through finite number of elementary functions (unlike some reflectionless potentials, which are constructed on the basis of soliton solutions or are shape invariant in one or many steps with involving scaling of parameters, and are expressed through series), is obtained. An analysis of absolute transparency existence for the potential which has the inverse power dependence on space coordinate (and here tunneling is possible), i.e. which has the form $V(x) = \\p...

  4. Well-posedness of one-dimensional Korteweg models

    Directory of Open Access Journals (Sweden)

    Sylvie Benzoni-Gavage

    2006-05-01

    Full Text Available We investigate the initial-value problem for one-dimensional compressible fluids endowed with internal capillarity. We focus on the isothermal inviscid case with variable capillarity. The resulting equations for the density and the velocity, consisting of the mass conservation law and the momentum conservation with Korteweg stress, are a system of third order nonlinear dispersive partial differential equations. Additionally, this system is Hamiltonian and admits travelling solutions, representing propagating phase boundaries with internal structure. By change of unknown, it roughly reduces to a quasilinear Schrodinger equation. This new formulation enables us to prove local well-posedness for smooth perturbations of travelling profiles and almost-global existence for small enough perturbations. A blow-up criterion is also derived.

  5. A Reduced Order, One Dimensional Model of Joint Response

    Energy Technology Data Exchange (ETDEWEB)

    DOHNER,JEFFREY L.

    2000-11-06

    As a joint is loaded, the tangent stiffness of the joint reduces due to slip at interfaces. This stiffness reduction continues until the direction of the applied load is reversed or the total interface slips. Total interface slippage in joints is called macro-slip. For joints not undergoing macro-slip, when load reversal occurs the tangent stiffness immediately rebounds to its maximum value. This occurs due to stiction effects at the interface. Thus, for periodic loads, a softening and rebound hardening cycle is produced which defines a hysteretic, energy absorbing trajectory. For many jointed sub-structures, this hysteretic trajectory can be approximated using simple polynomial representations. This allows for complex joint substructures to be represented using simple non-linear models. In this paper a simple one dimensional model is discussed.

  6. Capillary condensation in one-dimensional irregular confinement.

    Science.gov (United States)

    Handford, Thomas P; Pérez-Reche, Francisco J; Taraskin, Sergei N

    2013-07-01

    A lattice-gas model with heterogeneity is developed for the description of fluid condensation in finite sized one-dimensional pores of arbitrary shape. Mapping to the random-field Ising model allows an exact solution of the model to be obtained at zero-temperature, reproducing the experimentally observed dependence of the amount of fluid adsorbed in the pore on external pressure. It is demonstrated that the disorder controls the sorption for long pores and can result in H2-type hysteresis. Finite-temperature Metropolis dynamics simulations support analytical findings in the limit of low temperatures. The proposed framework is viewed as a fundamental building block of the theory of capillary condensation necessary for reliable structural analysis of complex porous media from adsorption-desorption data.

  7. Interacting Fermi gases in disordered one-dimensional lattices

    International Nuclear Information System (INIS)

    Xianlong, Gao; Polini, M.; Tosi, M. P.; Tanatar, B.

    2006-01-01

    Interacting two-component Fermi gases loaded in a one-dimensional (1D) lattice and subject to harmonic trapping exhibit intriguing compound phases in which fluid regions coexist with local Mott-insulator and/or band-insulator regions. Motivated by experiments on cold atoms inside disordered optical lattices, we present a theoretical study of the effects of a random potential on these ground-state phases. Within a density-functional scheme we show that disorder has two main effects: (i) it destroys the local insulating regions if it is sufficiently strong compared with the on-site atom-atom repulsion, and (ii) it induces an anomaly in the compressibility at low density from quenching of percolation

  8. A one-dimensional ice structure built from pentagons

    Science.gov (United States)

    Carrasco, Javier; Michaelides, Angelos

    2010-03-01

    Heterogeneous nucleation of water plays a key role in fields as diverse as atmospheric chemistry, astrophysics, and biology. Ice nucleation on metal surfaces offers an opportunity to watch this process unfold, providing a molecular-scale description at a well-defined, planar interface. We discuss a density-functional theory study on a metal surface specifically designed to understand such phenomena. Together with our colleges at the University of Liverpool, we found that the nanometer wide water-ice chains experimentally observed to nucleate and grow on Cu(110) are built from a face sharing arrangement of water pentagons [1]. The novel one-dimensional pentagon structure maximizes the water-metal bonding whilst simultaneously maintaining a strong hydrogen bonding network. These results reveal an unanticipated structural adaptability of water-ice films, demonstrating that the presence of the substrate can be sufficient to favor non-conventional structural units. [4pt] [1] J. Carrasco et al., Nature Mater. 8, 427 (2009).

  9. Hidden magnetism in periodically modulated one dimensional dipolar fermions

    Science.gov (United States)

    Fazzini, S.; Montorsi, A.; Roncaglia, M.; Barbiero, L.

    2017-12-01

    The experimental realization of time-dependent ultracold lattice systems has paved the way towards the implementation of new Hubbard-like Hamiltonians. We show that in a one-dimensional two-components lattice dipolar Fermi gas the competition between long range repulsion and correlated hopping induced by periodically modulated on-site interaction allows for the formation of hidden magnetic phases, with degenerate protected edge modes. The magnetism, characterized solely by string-like nonlocal order parameters, manifests in the charge and/or in the spin degrees of freedom. Such behavior is enlighten by employing Luttinger liquid theory and numerical methods. The range of parameters for which hidden magnetism is present can be reached by means of the currently available experimental setups and probes.

  10. Relativistic collective diffusion in one-dimensional systems

    Science.gov (United States)

    Lin, Gui-Wu; Lam, Yu-Yiu; Zheng, Dong-Qin; Zhong, Wei-Rong

    2018-05-01

    The relativistic collective diffusion in one-dimensional molecular system is investigated through nonequilibrium molecular dynamics with Monte Carlo methods. We have proposed the relationship among the speed, the temperature, the density distribution and the collective diffusion coefficient of particles in a relativistic moving system. It is found that the relativistic speed of the system has no effect on the temperature, but the collective diffusion coefficient decreases to zero as the velocity of the system approaches to the speed of light. The collective diffusion coefficient is modified as D‧ = D(1 ‑w2 c2 )3 2 for satisfying the relativistic circumstances. The present results may contribute to the understanding of the behavior of the particles transport diffusion in a high speed system, as well as enlighten the study of biological metabolism at relativistic high speed situation.

  11. Asymmetrically doped one-dimensional trans-polymers

    International Nuclear Information System (INIS)

    Caldas, Heron

    2009-01-01

    More than 30 years ago [H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, J. Chem. Soc. Chem. Comm. 578 (1977); S. Etemad, A.J. Heeger, Ann. Rev. Phys. Chem. 33 (1982) 443] it was discovered that doped trans-polyacetylene (CH) x , a one-dimensional (1D) conjugated polymer, exhibits electrical conductivity. In this work we show that an asymmetrically doped 1D trans-polymer has non-conventional properties, as compared to symmetrically doped systems. Depending on the level of asymmetry between the chemical potentials of the two involved fermionic species, the polymer can be in a partially or fully spin polarized state. Some possible experimental consequences of doped 1D trans-polymers used as 1D organic polarized conductors are discussed.

  12. Explicit Solutions for One-Dimensional Mean-Field Games

    KAUST Repository

    Prazeres, Mariana

    2017-04-05

    In this thesis, we consider stationary one-dimensional mean-field games (MFGs) with or without congestion. Our aim is to understand the qualitative features of these games through the analysis of explicit solutions. We are particularly interested in MFGs with a nonmonotonic behavior, which corresponds to situations where agents tend to aggregate. First, we derive the MFG equations from control theory. Then, we compute explicit solutions using the current formulation and examine their behavior. Finally, we represent the solutions and analyze the results. This thesis main contributions are the following: First, we develop the current method to solve MFG explicitly. Second, we analyze in detail non-monotonic MFGs and discover new phenomena: non-uniqueness, discontinuous solutions, empty regions and unhappiness traps. Finally, we address several regularization procedures and examine the stability of MFGs.

  13. Charge and spin separation in one-dimensional systems

    International Nuclear Information System (INIS)

    Balseiro, C.A.; Jagla, E.A.; Hallberg, K.

    1995-01-01

    In this article we discuss charge and spin separation and quantum interference in one-dimensional models. After a short introduction we briefly present the Hubbard and Luttinger models and discuss some of the known exact results. We study numerically the charge and spin separation in the Hubbard model. The time evolution of a wave packet is obtained and the charge and spin densities are evaluated for different times. The charge and spin wave packets propagate with different velocities. The results are interpreted in terms of the Bethe-ansatz solution. In section IV we study the effect of charge and spin separation on the quantum interference in a Aharonov-Bohm experiment. By calculating the one-particle propagators of the Luttinger model for a mesoscopic ring with a magnetic field we calculate the Aharonov-Bohm conductance. The conductance oscillates with the magnetic field with a characteristic frequency that depends on the charge and spin velocities. (author)

  14. One-dimensional central-force problem, including radiation reaction

    International Nuclear Information System (INIS)

    Kasher, J.C.

    1976-01-01

    Two equal masses of equal charge magnitude (either attractive or repulsive) are held a certain distance apart for their entire past history. AT t = 0 one of them is either started from rest or given an initial velocity toward or away from the other charge. When the Dirac radiation-reaction force is included in the force equation, our Taylor-series numerical calculations lead to two types of nonphysical results for both the attractive and repulsive cases. In the attractive case, the moving charge either stops and moves back out to infinity, or violates energy conservation as it nears collision with the fixed charge. For the repulsive charges, the moving particle either eventually approaches and collides with the fixed one, or violates energy conservation as it goes out to infinity. These results lead us to conclude that the Lorentz-Dirac equation is not valid for the one-dimensional central-force problem

  15. REVIEW One-Dimensional Dynamical Modeling of Earthquakes: A Review

    Directory of Open Access Journals (Sweden)

    Jeen-Hwa Wang

    2008-01-01

    Full Text Available Studies of the power-law relations of seismicity and earthquake source parameters based on the one-dimensional (1-D Burridge-Knopoff¡¦s (BK dynamical lattice model, especially those studies conducted by Taiwan¡¦s scientists, are reviewed in this article. In general, velocity- and/or state-dependent friction is considered to control faulting. A uniform distribution of breaking strengths (i.e., the static friction strength is taken into account in some studies, and inhomogeneous distributions in others. The scaling relations in these studies include: Omori¡¦s law, the magnitude-frequency or energy-frequency relation, the relation between source duration time and seismic moment, the relation between rupture length and seismic moment, the frequency-length relation, and the source power spectra. The main parameters of the one-dimensional (1-D Burridge-Knopoff¡¦s (BK dynamical lattice model include: the decreasing rate (r of dynamic friction strength with sliding velocity; the type and degree of heterogeneous distribution of the breaking strengths, the stiffness ratio (i.e., the ratio between the stiffness of the coil spring connecting two mass elements and that of the leaf spring linking a mass element and the moving plate; the frictional drop ratio of the minimum dynamic friction strength to the breaking strength; and the maximum breaking strength. For some authors, the distribution of the breaking strengths was considered to be a fractal function. Hence, the fractal dimension of such a distribution is also a significant parameter. Comparison between observed scaling laws and simulation results shows that the 1-D BK dynamical lattice model acceptably approaches fault dynamics.

  16. One-dimensional reduction of viscous jets. I. Theory

    Science.gov (United States)

    Pitrou, Cyril

    2018-04-01

    We build a general formalism to describe thin viscous jets as one-dimensional objects with an internal structure. We present in full generality the steps needed to describe the viscous jets around their central line, and we argue that the Taylor expansion of all fields around that line is conveniently expressed in terms of symmetric trace-free tensors living in the two dimensions of the fiber sections. We recover the standard results of axisymmetric jets and we report the first and second corrections to the lowest order description, also allowing for a rotational component around the axis of symmetry. When applied to generally curved fibers, the lowest order description corresponds to a viscous string model whose sections are circular. However, when including the first corrections, we find that curved jets generically develop elliptic sections. Several subtle effects imply that the first corrections cannot be described by a rod model since it amounts to selectively discard some corrections. However, in a fast rotating frame, we find that the dominant effects induced by inertial and Coriolis forces should be correctly described by rod models. For completeness, we also recover the constitutive relations for forces and torques in rod models and exhibit a missing term in the lowest order expression of viscous torque. Given that our method is based on tensors, the complexity of all computations has been beaten down by using an appropriate tensor algebra package such as xAct, allowing us to obtain a one-dimensional description of curved viscous jets with all the first order corrections consistently included. Finally, we find a description for straight fibers with elliptic sections as a special case of these results, and recover that ellipticity is dynamically damped by surface tension. An application to toroidal viscous fibers is presented in the companion paper [Pitrou, Phys. Rev. E 97, 043116 (2018), 10.1103/PhysRevE.97.043116].

  17. Quantized impedance dealing with the damping behavior of the one-dimensional oscillator

    Directory of Open Access Journals (Sweden)

    Jinghao Zhu

    2015-11-01

    Full Text Available A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is the mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.

  18. Novel Method of Detecting Movement of the Interference Fringes Using One-Dimensional PSD

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2015-06-01

    Full Text Available In this paper, a method of using a one-dimensional position-sensitive detector (PSD by replacing charge-coupled device (CCD to measure the movement of the interference fringes is presented first, and its feasibility is demonstrated through an experimental setup based on the principle of centroid detection. Firstly, the centroid position of the interference fringes in a fiber Mach-Zehnder (M-Z interferometer is solved in theory, showing it has a higher resolution and sensitivity. According to the physical characteristics and principles of PSD, a simulation of the interference fringe’s phase difference in fiber M-Z interferometers and PSD output is carried out. Comparing the simulation results with the relationship between phase differences and centroid positions in fiber M-Z interferometers, the conclusion that the output of interference fringes by PSD is still the centroid position is obtained. Based on massive measurements, the best resolution of the system is achieved with 5.15, 625 μm. Finally, the detection system is evaluated through setup error analysis and an ultra-narrow-band filter structure. The filter structure is configured with a one-dimensional photonic crystal containing positive and negative refraction material, which can eliminate background light in the PSD detection experiment. This detection system has a simple structure, good stability, high precision and easily performs remote measurements, which makes it potentially useful in material small deformation tests, refractivity measurements of optical media and optical wave front detection.

  19. Quantized impedance dealing with the damping behavior of the one-dimensional oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jinghao; Zhang, Jing; Li, Yuan; Zhang, Yong; Fang, Zhengji; Zhao, Peide, E-mail: pdzhao@eyou.com, E-mail: pdzhao@hebut.edu.cn [School of Science, Hebei University of Technology, Beichen Campus, Tianjin 300401 (China); Li, Erping, E-mail: liep@zju.edu.cn [Institute of High Performance Computing, Fusionopolis, 1 Fusionopolis Way, No. 16-16 Connexis, Singapore 138632 (Singapore)

    2015-11-15

    A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is the mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.

  20. Strongly correlated quasi-one-dimensional bands: Ground states, optical absorption, and phonons

    International Nuclear Information System (INIS)

    Campbell, D.K.; Gammel, J.T.; Loh, E.Y. Jr.

    1989-01-01

    Using the Lanczos method for exact diagonalization on systems up to 14 sites, combined with a novel ''phase randomization'' technique for extracting more information from these small systems, we investigate several aspects of the one-dimensional Peierls-Hubbard Hamiltonian, in the context of trans-polyacetylene: the dependence of the ground state dimerization on the strength of the electron-electron interactions, including the effects of ''off-diagonal'' Coulomb terms generally ignored in the Hubbard model; the phonon vibrational frequencies and dispersion relations, and the optical absorption properties, including the spectrum of absorptions as a function of photon energy. These three different observables provide considerable insight into the effects of electron-electron interactions on the properties of real materials and thus into the nature of strongly correlated electron systems. 29 refs., 11 figs

  1. Creating cat states in one-dimensional quantum walks using delocalized initial states

    International Nuclear Information System (INIS)

    Zhang, Wei-Wei; Gao, Fei; Goyal, Sandeep K; Sanders, Barry C; Simon, Christoph

    2016-01-01

    Cat states are coherent quantum superpositions of macroscopically distinct states and are useful for understanding the boundary between the classical and the quantum world. Due to their macroscopic nature, cat states are difficult to prepare in physical systems. We propose a method to create cat states in one-dimensional quantum walks using delocalized initial states of the walker. Since the quantum walks can be performed on any quantum system, our proposal enables a platform-independent realization of the cat states. We further show that the linear dispersion relation of the effective quantum walk Hamiltonian, which governs the dynamics of the delocalized states, is responsible for the formation of the cat states. We analyze the robustness of these states against environmental interactions and present methods to control and manipulate the cat states in the photonic implementation of quantum walks. (paper)

  2. Exponential and nonexponential localization of the one-dimensional periodically kicked Rydberg atom

    International Nuclear Information System (INIS)

    Yoshida, S.; Reinhold, C. O.; Kristoefel, P.; Burgdoerfer, J.

    2000-01-01

    We investigate the quantum localization of the one-dimensional Rydberg atom subject to a unidirectional periodic train of impulses. For high frequencies of the train the classical system becomes chaotic and leads to fast ionization. By contrast, the quantum system is found to be remarkably stable. We identify for this system the coexistence of different localization mechanisms associated with resonant and nonresonant diffusion. We find for the suppression of nonresonant diffusion an exponential localization whose localization length can be related to the classical dynamics in terms of the ''scars'' of the unstable periodic orbits. We show that the localization length is determined by the energy excursion along the periodic orbits. The suppression of resonant diffusion along the sequence of photonic peaks is found to be nonexponential due to the presence of high harmonics in the driving force. (c) 2000 The American Physical Society

  3. Spin glasses and algorithm benchmarks: A one-dimensional view

    International Nuclear Information System (INIS)

    Katzgraber, H G

    2008-01-01

    Spin glasses are paradigmatic models that deliver concepts relevant for a variety of systems. However, rigorous analytical results are difficult to obtain for spin-glass models, in particular for realistic short-range models. Therefore large-scale numerical simulations are the tool of choice. Concepts and algorithms derived from the study of spin glasses have been applied to diverse fields in computer science and physics. In this work a one-dimensional long-range spin-glass model with power-law interactions is discussed. The model has the advantage over conventional systems in that by tuning the power-law exponent of the interactions the effective space dimension can be changed thus effectively allowing the study of large high-dimensional spin-glass systems to address questions as diverse as the existence of an Almeida-Thouless line, ultrametricity and chaos in short range spin glasses. Furthermore, because the range of interactions can be changed, the model is a formidable test-bed for optimization algorithms

  4. One-dimensional transient radiative transfer by lattice Boltzmann method.

    Science.gov (United States)

    Zhang, Yong; Yi, Hongliang; Tan, Heping

    2013-10-21

    The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed.

  5. One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties

    Science.gov (United States)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur

    2016-11-01

    Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.

  6. Tunneling and resonant conductance in one-dimensional molecular structures

    International Nuclear Information System (INIS)

    Kozhushner, M.A.; Posvyanskii, V.S.; Oleynik, I.I.

    2005-01-01

    We present a theory of tunneling and resonant transitions in one-dimensional molecular systems which is based on Green's function theory of electron sub-barrier scattering off the structural units (or functional groups) of a molecular chain. We show that the many-electron effects are of paramount importance in electron transport and they are effectively treated using a formalism of sub-barrier scattering operators. The method which calculates the total scattering amplitude of the bridge molecule not only predicts the enhancement of the amplitude of tunneling transitions in course of tunneling electron transfer through onedimensional molecular structures but also allows us to interpret conductance mechanisms by calculating the bound energy spectrum of the tunneling electron, the energies being obtained as poles of the total scattering amplitude of the bridge molecule. We found that the resonant tunneling via bound states of the tunneling electron is the major mechanism of electron conductivity in relatively long organic molecules. The sub-barrier scattering technique naturally includes a description of tunneling in applied electric fields which allows us to calculate I-V curves at finite bias. The developed theory is applied to explain experimental findings such as bridge effect due to tunneling through organic molecules, and threshold versus Ohmic behavior of the conductance due to resonant electron transfer

  7. New Poisson–Boltzmann type equations: one-dimensional solutions

    International Nuclear Information System (INIS)

    Lee, Chiun-Chang; Lee, Hijin; Hyon, YunKyong; Lin, Tai-Chia; Liu, Chun

    2011-01-01

    The Poisson–Boltzmann (PB) equation is conventionally used to model the equilibrium of bulk ionic species in different media and solvents. In this paper we study a new Poisson–Boltzmann type (PB n ) equation with a small dielectric parameter ε 2 and non-local nonlinearity which takes into consideration the preservation of the total amount of each individual ion. This equation can be derived from the original Poisson–Nernst–Planck system. Under Robin-type boundary conditions with various coefficient scales, we demonstrate the asymptotic behaviours of one-dimensional solutions of PB n equations as the parameter ε approaches zero. In particular, we show that in case of electroneutrality, i.e. α = β, solutions of 1D PB n equations have a similar asymptotic behaviour as those of 1D PB equations. However, as α ≠ β (non-electroneutrality), solutions of 1D PB n equations may have blow-up behaviour which cannot be found in 1D PB equations. Such a difference between 1D PB and PB n equations can also be verified by numerical simulations

  8. Localization properties of one-dimensional electrified chains

    International Nuclear Information System (INIS)

    Ouasti, R.; Brezini, A.; Zekri, N.

    1993-08-01

    A Kronig-Penney model with a constant electric filed for a non-interacting electron is used to study the transmission properties of Anderson transition in one-dimensional (1-D) systems with disordered strengths of δ-function potentials. we examined the cases where the potential varies uniformly from O to W (barriers) or from -W to O (wells) for a given disorder W. Mainly, we observe unexpected abrupt transition at the points E + Fx = n 2 π 2 . However, these transitions are related to the small oscillations observed by Soukoulis et al. in the mixed case (wells and barriers). An interesting feature in the wells is that in the presence of a small field the states become more localized and the localization length decrease up to a minimum for a critical value F m . In the end, we have studied the effect of the disorder on the Anderson transition by the mean of the participation ratio and the localization length. (author). 27 refs, 6 figs

  9. SUSY-hierarchy of one-dimensional reflectionless potentials

    International Nuclear Information System (INIS)

    Maydanyuk, Sergei P.

    2005-01-01

    A class of one-dimensional reflectionless potentials is studied. It is found that all possible types of the reflectionless potentials can be combined into one SUSY-hierarchy with a constant potential. An approach for determination of a general form of the reflectionless potential on the basis of construction of such a hierarchy by the recurrent method is proposed. A general integral form of interdependence between superpotentials with neighboring numbers of this hierarchy, opening a possibility to find new reflectionless potentials, is found and has a simple analytical view. It is supposed that any possible type of the reflectionless potential can be expressed through finite number of elementary functions (unlike some presentations of the reflectionless potentials, which are constructed on the basis of soliton solutions or are shape invariant in one or many steps with involving scaling of parameters, and are expressed through series). An analysis of absolute transparency existence for the potential which has the inverse power dependence on space coordinate (and here tunneling is possible), i.e., which has the form V (x) = ± α/ vertical bar x-x 0 vertical bar n (where α and x 0 are constants, n is natural number), is fulfilled. It is shown that such a potential can be reflectionless at n = 2 only. A SUSY-hierarchy of the inverse power reflectionless potentials is constructed. Isospectral expansions of this hierarchy are analyzed

  10. One-Dimensional Electron Transport Layers for Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Ujwal K. Thakur

    2017-04-01

    Full Text Available The electron diffusion length (Ln is smaller than the hole diffusion length (Lp in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D structures such as nanowires (NWs and nanotubes (NTs as electron transport layers (ETLs is a promising method of achieving high performance halide perovskite solar cells (HPSCs. ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs. This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells.

  11. Periodic solutions for one dimensional wave equation with bounded nonlinearity

    Science.gov (United States)

    Ji, Shuguan

    2018-05-01

    This paper is concerned with the periodic solutions for the one dimensional nonlinear wave equation with either constant or variable coefficients. The constant coefficient model corresponds to the classical wave equation, while the variable coefficient model arises from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. For finding the periodic solutions of variable coefficient wave equation, it is usually required that the coefficient u (x) satisfies ess infηu (x) > 0 with ηu (x) = 1/2 u″/u - 1/4 (u‧/u)2, which actually excludes the classical constant coefficient model. For the case ηu (x) = 0, it is indicated to remain an open problem by Barbu and Pavel (1997) [6]. In this work, for the periods having the form T = 2p-1/q (p , q are positive integers) and some types of boundary value conditions, we find some fundamental properties for the wave operator with either constant or variable coefficients. Based on these properties, we obtain the existence of periodic solutions when the nonlinearity is monotone and bounded. Such nonlinearity may cross multiple eigenvalues of the corresponding wave operator. In particular, we do not require the condition ess infηu (x) > 0.

  12. Integral Transport Theory in One-dimensional Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Carlvik, I

    1966-06-15

    A method called DIT (Discrete Integral Transport) has been developed for the numerical solution of the transport equation in one-dimensional systems. The characteristic features of the method are Gaussian integration over the coordinate as described by Kobayashi and Nishihara, and a particular scheme for the calculation of matrix elements in annular and spherical geometry that has been used for collision probabilities in earlier Flurig programmes. The paper gives a general theory including such things as anisotropic scattering and multi-pole fluxes, and it gives a brief description of the Flurig scheme. Annular geometry is treated in some detail, and corresponding formulae are given for spherical and plane geometry. There are many similarities between DIT and the method of collision probabilities. DIT is in many cases faster, because for a certain accuracy in the fluxes DIT often needs fewer space points than the method of collision probabilities needs regions. Several computer codes using DIT, both one-group and multigroup, have been written. It is anticipated that experience gained in calculations with these codes will be reported in another paper.

  13. Quantum one dimensional spin systems. Disorder and impurities

    International Nuclear Information System (INIS)

    Brunel, V.

    1999-01-01

    This thesis presents three studies that are respectively the spin-1 disordered chain, the non magnetic impurities in the spin-1/2 chain and the reaction-diffusion process. The spin-1 chain of weak disorder is performed by the Abelian bosonization and the renormalization group. This allows to take into account the competition between the disorder and the interactions and predicts the effects of various spin-1 anisotropy chain phases under many different disorders. A second work uses the non magnetic impurities as local probes of the correlations in the spin-1/2 chain. When the impurities are connected to the chain boundary, the author predicts a temperature dependence of the relaxation rate (1/T) of the nuclear spin impurities, different from the case of these impurities connected to the whole chain. The last work deals with one dimensional reaction-diffusion problem. The Jordan-Wigner transformation allows to consider a fermionic field theory that critical exponents follow from the renormalization group. (A.L.B.)

  14. One-dimensional two-phase thermal hydraulics (ENSTA course)

    International Nuclear Information System (INIS)

    Olive, J.

    1995-11-01

    This course is part of the ENSTA 3rd year thermal hydraulics program (nuclear power option). Its purpose is to provide the theoretical basis and main physical notions pertaining to two-phase flow, mainly focussed on water-steam flows. The introduction describes the physical specificities of these flows, emphasizing their complexity. The mathematical bases are then presented (partial derivative equations), leading to a one-dimensional type, simplified description. Balances drawn up for a pipe length volume are used to introduce the mass conservation. motion and energy equations for each phase. Various postulates used to simplify two-phase models are presented, culminating in homogeneous model definitions and equations, several common examples of which are given. The model is then applied to the calculation of pressure drops in two-phase flows. This involves presenting the models most frequently used to represent pressure drops by friction or due to pipe irregularities, without giving details (numerical values of parameters). This chapter terminates with a brief description of static and dynamic instabilities in two-phase flows. Finally, heat transfer conditions frequently encountered in liquid-steam flows are described, still in the context of a 1D model. This chapter notably includes reference to under-saturated boiling conditions and the various forms of DNB. The empirical heat transfer laws are not discussed in detail. Additional material is appended, some of which is in the form of corrected exercises. (author). 6 appends

  15. One-dimensional long-range percolation: A numerical study

    Science.gov (United States)

    Gori, G.; Michelangeli, M.; Defenu, N.; Trombettoni, A.

    2017-07-01

    In this paper we study bond percolation on a one-dimensional chain with power-law bond probability C /rd +σ , where r is the distance length between distinct sites and d =1 . We introduce and test an order-N Monte Carlo algorithm and we determine as a function of σ the critical value Cc at which percolation occurs. The critical exponents in the range 0 values for Cc are compared with a known exact bound, while the critical exponent ν is compared with results from mean-field theory, from an expansion around the point σ =1 and from the ɛ -expansion used with the introduction of a suitably defined effective dimension deff relating the long-range model with a short-range one in dimension deff. We finally present a formulation of our algorithm for bond percolation on general graphs, with order N efficiency on a large class of graphs including short-range percolation and translationally invariant long-range models in any spatial dimension d with σ >0 .

  16. Magnetic ordering in arrays of one-dimensional nanoparticle chains

    International Nuclear Information System (INIS)

    Serantes, D; Baldomir, D; Pereiro, M; Hernando, B; Prida, V M; Sanchez Llamazares, J L; Zhukov, A; Ilyn, M; Gonzalez, J

    2009-01-01

    The magnetic order in parallel-aligned one-dimensional (1D) chains of magnetic nanoparticles is studied using a Monte Carlo technique. If the easy anisotropy axes are collinear along the chains a macroscopic mean-field approach indicates antiferromagnetic (AFM) order even when no interparticle interactions are taken into account, which evidences that a mean-field treatment is inadequate for the study of the magnetic order in these highly anisotropic systems. From the direct microscopic analysis of the evolution of the magnetic moments, we observe spontaneous intra-chain ferromagnetic (FM)-type and inter-chain AFM-type ordering at low temperatures (although not completely regular) for the easy-axes collinear case, whereas a random distribution of the anisotropy axes leads to a sort of intra-chain AFM arrangement with no inter-chain regular order. When the magnetic anisotropy is neglected a perfectly regular intra-chain FM-like order is attained. Therefore it is shown that the magnetic anisotropy, and particularly the spatial distribution of the easy axes, is a key parameter governing the magnetic ordering type of 1D-nanoparticle chains.

  17. Validation and Comparison of One-Dimensional Ground Motion Methodologies

    International Nuclear Information System (INIS)

    B. Darragh; W. Silva; N. Gregor

    2006-01-01

    Both point- and finite-source stochastic one-dimensional ground motion models, coupled to vertically propagating equivalent-linear shear-wave site response models are validated using an extensive set of strong motion data as part of the Yucca Mountain Project. The validation and comparison exercises are presented entirely in terms of 5% damped pseudo absolute response spectra. The study consists of a quantitative analyses involving modeling nineteen well-recorded earthquakes, M 5.6 to 7.4 at over 600 sites. The sites range in distance from about 1 to about 200 km in the western US (460 km for central-eastern US). In general, this validation demonstrates that the stochastic point- and finite-source models produce accurate predictions of strong ground motions over the range of 0 to 100 km and for magnitudes M 5.0 to 7.4. The stochastic finite-source model appears to be broadband, producing near zero bias from about 0.3 Hz (low frequency limit of the analyses) to the high frequency limit of the data (100 and 25 Hz for response and Fourier amplitude spectra, respectively)

  18. Energy Current Cumulants in One-Dimensional Systems in Equilibrium

    Science.gov (United States)

    Dhar, Abhishek; Saito, Keiji; Roy, Anjan

    2018-06-01

    A recent theory based on fluctuating hydrodynamics predicts that one-dimensional interacting systems with particle, momentum, and energy conservation exhibit anomalous transport that falls into two main universality classes. The classification is based on behavior of equilibrium dynamical correlations of the conserved quantities. One class is characterized by sound modes with Kardar-Parisi-Zhang scaling, while the second class has diffusive sound modes. The heat mode follows Lévy statistics, with different exponents for the two classes. Here we consider heat current fluctuations in two specific systems, which are expected to be in the above two universality classes, namely, a hard particle gas with Hamiltonian dynamics and a harmonic chain with momentum conserving stochastic dynamics. Numerical simulations show completely different system-size dependence of current cumulants in these two systems. We explain this numerical observation using a phenomenological model of Lévy walkers with inputs from fluctuating hydrodynamics. This consistently explains the system-size dependence of heat current fluctuations. For the latter system, we derive the cumulant-generating function from a more microscopic theory, which also gives the same system-size dependence of cumulants.

  19. Electroconvection in one-dimensional liquid crystal cells

    Science.gov (United States)

    Huh, Jong-Hoon

    2018-04-01

    We investigate the alternating current (ac) -driven electroconvection (EC) in one-dimensional cells (1DCs) under the in-plane switching mode. In 1DCs, defect-free EC can be realized. In the presence and absence of external multiplicative noise, the features of traveling waves (TWs), such as their Hopf frequency fH and velocity, are examined in comparison with those of conventional two-dimensional cells (2DCs) accompanying defects of EC rolls. In particular, we show that the defects significantly contribute to the features of the TWs. Additionally, owing to the defect-free EC in the 1DCs, the effects of the ac and noise fields on the TW are clarified. The ac field linearly increases fH, independent of the ac frequency f . The noise increases fH monotonically, but fH does not vary below a characteristic noise intensity VN*. In addition, soliton-like waves and unfamiliar oscillation of EC vortices in 1DCs are observed, in contrast to the localized EC (called worms) and the oscillation of EC rolls in 2DCs.

  20. 17th century treatments of one-dimensional collisions

    International Nuclear Information System (INIS)

    Goehring, G.D.

    1975-01-01

    The issue of conservation in the collisions of bodies aroused considerable interest in the period of its initial investigation. Descartes asserted that the quantity of motion, the scalar product of the mass and speed, was the quantity that was conserved. Huygens, with the aid of his relativity of motion principle, recognized that it was not Descartes' scalar quantity that was conserved, but instead another scalar quality, the product of the mass and the square of the speed, whose total remained constant. Newton discovered that Descartes' quantity was conserved if considered a vector quantity, and thereby announced the principle of conservation of momentum. Leibniz recognized the conservation of Newton's momentum, and also the conservation of vis viva, the same scalar quantity that Huygens has earlier proposed. Although recognition of the immense importance of these principles had to await further developments in physics, the original formulation of these conservation principles, resulting from the analysis of one-dimensional collisions, was completed by the end of the 17th century. (U.K.)

  1. One-dimensional quantum walk with a moving boundary

    International Nuclear Information System (INIS)

    Kwek, Leong Chuan; Setiawan

    2011-01-01

    Quantum walks are interesting models with potential applications to quantum algorithms and physical processes such as photosynthesis. In this paper, we study two models of one-dimensional quantum walks, namely, quantum walks with a moving absorbing wall and quantum walks with one stationary and one moving absorbing wall. For the former, we calculate numerically the survival probability, the rate of change of average position, and the rate of change of standard deviation of the particle's position in the long time limit for different wall velocities. Moreover, we also study the asymptotic behavior and the dependence of the survival probability on the initial particle's state. While for the latter, we compute the absorption probability of the right stationary wall for different velocities and initial positions of the left wall boundary. The results for these two models are compared with those obtained for the classical model. The difference between the results obtained for the quantum and classical models can be attributed to the difference in the probability distributions.

  2. Numerical modelling of random walk one-dimensional diffusion

    International Nuclear Information System (INIS)

    Vamos, C.; Suciu, N.; Peculea, M.

    1996-01-01

    The evolution of a particle which moves on a discrete one-dimensional lattice, according to a random walk low, approximates better the diffusion process smaller the steps of the spatial lattice and time are. For a sufficiently large assembly of particles one can assume that their relative frequency at lattice knots approximates the distribution function of the diffusion process. This assumption has been tested by simulating on computer two analytical solutions of the diffusion equation: the Brownian motion and the steady state linear distribution. To evaluate quantitatively the similarity between the numerical and analytical solutions we have used a norm given by the absolute value of the difference of the two solutions. Also, a diffusion coefficient at any lattice knots and moment of time has been calculated, by using the numerical solution both from the diffusion equation and the particle flux given by Fick's low. The difference between diffusion coefficient of analytical solution and the spatial lattice mean coefficient of numerical solution constitutes another quantitative indication of the similarity of the two solutions. The results obtained show that the approximation depends first on the number of particles at each knot of the spatial lattice. In conclusion, the random walk is a microscopic process of the molecular dynamics type which permits simulations precision of the diffusion processes with given precision. The numerical method presented in this work may be useful both in the analysis of real experiments and for theoretical studies

  3. Fractal geometry in an expanding, one-dimensional, Newtonian universe.

    Science.gov (United States)

    Miller, Bruce N; Rouet, Jean-Louis; Le Guirriec, Emmanuel

    2007-09-01

    Observations of galaxies over large distances reveal the possibility of a fractal distribution of their positions. The source of fractal behavior is the lack of a length scale in the two body gravitational interaction. However, even with new, larger, sample sizes from recent surveys, it is difficult to extract information concerning fractal properties with confidence. Similarly, three-dimensional N-body simulations with a billion particles only provide a thousand particles per dimension, far too small for accurate conclusions. With one-dimensional models these limitations can be overcome by carrying out simulations with on the order of a quarter of a million particles without compromising the computation of the gravitational force. Here the multifractal properties of two of these models that incorporate different features of the dynamical equations governing the evolution of a matter dominated universe are compared. For each model at least two scaling regions are identified. By employing criteria from dynamical systems theory it is shown that only one of them can be geometrically significant. The results share important similarities with galaxy observations, such as hierarchical clustering and apparent bifractal geometry. They also provide insights concerning possible constraints on length and time scales for fractal structure. They clearly demonstrate that fractal geometry evolves in the mu (position, velocity) space. The observed patterns are simply a shadow (projection) of higher-dimensional structure.

  4. MARG1D: One dimensional outer region matching data code

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Watanabe, Tomoko.

    1995-08-01

    A code MARG1D has been developed which computes outer region matching data of the one dimensional Newcomb equation. Matching data play an important role in the resistive (and non ideal) Magneto-hydrodynamic (MHD) stability analysis in a tokamak plasma. The MARG1D code computes matching data by using the boundary value method or by the eigenvalue method. Variational principles are derived for the problems to be solved and a finite element method is applied. Except for the case of marginal stability, the eigenvalue method is equivalent to the boundary value method. However, the eigenvalue method has the several advantages: it is a new method of ideal MHD stability analysis for which the marginally stable state can be identified, and it guarantees numerical stability in computing matching data close to marginal stability. We perform detailed numerical experiments for a model equation with analytical solutions and for the Newcomb equation in the m=1 mode theory. Numerical experiments show that MARG1D code gives the matching data with numerical stability and high accuracy. (author)

  5. One-dimensional magnetophotonic crystals with magnetooptical double layers

    International Nuclear Information System (INIS)

    Berzhansky, V. N.; Shaposhnikov, A. N.; Prokopov, A. R.; Karavainikov, A. V.; Mikhailova, T. V.; Lukienko, I. N.; Kharchenko, Yu. N.; Golub, V. O.; Salyuk, O. Yu.; Belotelov, V. I.

    2016-01-01

    One-dimensional magnetophotonic microcavity crystals with nongarnet dielectric mirrors are created and investigated. The defect layers in the magnetophotonic crystals are represented by two bismuth-substituted yttrium iron garnet Bi:YIG layers with various bismuth contents in order to achieve a high magnetooptical response of the crystals. The parameters of the magnetophotonic crystal layers are optimized by numerical solution of the Maxwell equations by the transfer matrix method to achieve high values of Faraday rotation angle Θ F and magnetooptical Q factor. The calculated and experimental data agree well with each other. The maximum values of Θ F =–20.6°, Q = 8.1° at a gain t = 16 are obtained for magnetophotonic crystals with m = 7 pairs of layers in Bragg mirrors, and the parameters obtained for crystals with m = 4 and t = 8.5 are Θ F =–12.5° and Q = 14.3°. It is shown that, together with all-garnet and multimicrocavities magnetophotonic crystals, such structures have high magnetooptical characteristics.

  6. One-dimensional magnetophotonic crystals with magnetooptical double layers

    Energy Technology Data Exchange (ETDEWEB)

    Berzhansky, V. N., E-mail: v.n.berzhansky@gmail.com; Shaposhnikov, A. N.; Prokopov, A. R.; Karavainikov, A. V.; Mikhailova, T. V. [V.I. Vernadsky Crimean Federal University (Russian Federation); Lukienko, I. N.; Kharchenko, Yu. N., E-mail: kharcenko@ilt.kharkov.ua [National Academy of Sciences of Ukraine, Verkin Institute for Low Temperature Physics and Engineering (Ukraine); Golub, V. O., E-mail: v-o-golub@yahoo.com; Salyuk, O. Yu. [National Academy of Sciences of Ukraine, Institute of Magnetism (Ukraine); Belotelov, V. I., E-mail: belotelov@physics.msu.ru [Russian Quantum Center (Russian Federation)

    2016-11-15

    One-dimensional magnetophotonic microcavity crystals with nongarnet dielectric mirrors are created and investigated. The defect layers in the magnetophotonic crystals are represented by two bismuth-substituted yttrium iron garnet Bi:YIG layers with various bismuth contents in order to achieve a high magnetooptical response of the crystals. The parameters of the magnetophotonic crystal layers are optimized by numerical solution of the Maxwell equations by the transfer matrix method to achieve high values of Faraday rotation angle Θ{sub F} and magnetooptical Q factor. The calculated and experimental data agree well with each other. The maximum values of Θ{sub F} =–20.6°, Q = 8.1° at a gain t = 16 are obtained for magnetophotonic crystals with m = 7 pairs of layers in Bragg mirrors, and the parameters obtained for crystals with m = 4 and t = 8.5 are Θ{sub F} =–12.5° and Q = 14.3°. It is shown that, together with all-garnet and multimicrocavities magnetophotonic crystals, such structures have high magnetooptical characteristics.

  7. Approximate approaches to the one-dimensional finite potential well

    International Nuclear Information System (INIS)

    Singh, Shilpi; Pathak, Praveen; Singh, Vijay A

    2011-01-01

    The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m i ) is taken to be distinct from mass outside (m o ). A relevant parameter is the mass discontinuity ratio β = m i /m o . To correctly account for the mass discontinuity, we apply the BenDaniel-Duke boundary condition. We obtain approximate solutions for two cases: when the well is shallow and when the well is deep. We compare the approximate results with the exact results and find that higher-order approximations are quite robust. For the shallow case, the approximate solution can be expressed in terms of a dimensionless parameter σ l = 2m o V 0 L 2 /ℎ 2 (or σ = β 2 σ l for the deep case). We show that the lowest-order results are related by a duality transform. We also discuss how the energy upscales with L (E∼1/L γ ) and obtain the exponent γ. Exponent γ → 2 when the well is sufficiently deep and β → 1. The ratio of the masses dictates the physics. Our presentation is pedagogical and should be useful to students on a first course on elementary quantum mechanics or low-dimensional semiconductors.

  8. One-Dimensional Electron Transport Layers for Perovskite Solar Cells

    Science.gov (United States)

    Thakur, Ujwal K.; Kisslinger, Ryan; Shankar, Karthik

    2017-01-01

    The electron diffusion length (Ln) is smaller than the hole diffusion length (Lp) in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D) structures such as nanowires (NWs) and nanotubes (NTs) as electron transport layers (ETLs) is a promising method of achieving high performance halide perovskite solar cells (HPSCs). ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs) as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs). This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells. PMID:28468280

  9. Stepwise Nanopore Evolution in One-Dimensional Nanostructures

    KAUST Repository

    Choi, Jang Wook

    2010-04-14

    We report that established simple lithium (Li) ion battery cycles can be used to produce nanopores inside various useful one-dimensional (1D) nanostructures such as zinc oxide, silicon, and silver nanowires. Moreover, porosities of these 1D nanomaterials can be controlled in a stepwise manner by the number of Li-battery cycles. Subsequent pore characterization at the end of each cycle allows us to obtain detailed snapshots of the distinct pore evolution properties in each material due to their different atomic diffusion rates and types of chemical bonds. Also, this stepwise characterization led us to the first observation of pore size increases during cycling, which can be interpreted as a similar phenomenon to Ostwald ripening in analogous nanoparticle cases. Finally, we take advantage of the unique combination of nanoporosity and 1D materials and demonstrate nanoporous silicon nanowires (poSiNWs) as excellent supercapacitor (SC) electrodes in high power operations compared to existing devices with activated carbon. © 2010 American Chemical Society.

  10. Validation and Comparison of One-Dimensional Graound Motion Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    B. Darragh; W. Silva; N. Gregor

    2006-06-28

    Both point- and finite-source stochastic one-dimensional ground motion models, coupled to vertically propagating equivalent-linear shear-wave site response models are validated using an extensive set of strong motion data as part of the Yucca Mountain Project. The validation and comparison exercises are presented entirely in terms of 5% damped pseudo absolute response spectra. The study consists of a quantitative analyses involving modeling nineteen well-recorded earthquakes, M 5.6 to 7.4 at over 600 sites. The sites range in distance from about 1 to about 200 km in the western US (460 km for central-eastern US). In general, this validation demonstrates that the stochastic point- and finite-source models produce accurate predictions of strong ground motions over the range of 0 to 100 km and for magnitudes M 5.0 to 7.4. The stochastic finite-source model appears to be broadband, producing near zero bias from about 0.3 Hz (low frequency limit of the analyses) to the high frequency limit of the data (100 and 25 Hz for response and Fourier amplitude spectra, respectively).

  11. Synthesis and integration of one-dimensional nanostructures for chemical gas sensing applications

    Science.gov (United States)

    Parthangal, Prahalad Madhavan

    The need for improved measurement technology for the detection and monitoring of gases has increased tremendously for maintenance of domestic and industrial health and safety, environmental surveys, national security, food-processing, medical diagnostics and various other industrial applications. Among the several varieties of gas sensors available in the market, solid-state sensors are the most popular owing to their excellent sensitivity, ruggedness, versatility and low cost. Semiconducting metal oxides such as tin oxide (SnO2), zinc oxide (ZnO), and tungsten oxide (WO3) are routinely employed as active materials in these sensors. Since their performance is directly linked to the exposed surface area of the sensing material, one-dimensional nanostructures possessing very high surface to volume ratios are attractive candidates for designing the next generation of sensors. Such nano-sensors also enable miniaturization thereby reducing power consumption. The key to achieve success in one-dimensional nanotechnologies lies in assembly. While synthesis techniques and capabilities continue to expand rapidly, progress in controlled assembly has been sluggish due to numerous technical challenges. In this doctoral thesis work, synthesis and characterization of various one-dimensional nanostructures including nanotubes of SnO2, and nanowires of WO3 and ZnO, as well as their direct integration into miniature sensor platforms called microhotplates have been demonstrated. The key highlights of this research include devising elegant strategies for growing metal oxide nanotubes using carbon nanotubes as templates, substantially reducing process temperatures to enable growth of WO3 nanowires on microhotplates, and successfully fabricating a ZnO nanowire array based sensor using a hybrid nanowire-nanoparticle assembly approach. In every process, the gas-sensing properties of one-dimensional nanostructures were observed to be far superior in comparison with thin films of the same

  12. Interfacial Thermal Transport via One-Dimensional Atomic Junction Model

    Directory of Open Access Journals (Sweden)

    Guohuan Xiong

    2018-03-01

    Full Text Available In modern information technology, as integration density increases rapidly and the dimension of materials reduces to nanoscale, interfacial thermal transport (ITT has attracted widespread attention of scientists. This review introduces the latest theoretical development in ITT through one-dimensional (1D atomic junction model to address the thermal transport across an interface. With full consideration of the atomic structures in interfaces, people can apply the 1D atomic junction model to investigate many properties of ITT, such as interfacial (Kapitza resistance, nonlinear interface, interfacial rectification, and phonon interference, and so on. For the ballistic ITT, both the scattering boundary method (SBM and the non-equilibrium Green’s function (NEGF method can be applied, which are exact since atomic details of actual interfaces are considered. For interfacial coupling case, explicit analytical expression of transmission coefficient can be obtained and it is found that the thermal conductance maximizes at certain interfacial coupling (harmonic mean of the spring constants of the two leads and the transmission coefficient is not a monotonic decreasing function of phonon frequency. With nonlinear interaction—phonon–phonon interaction or electron–phonon interaction at interface, the NEGF method provides an efficient way to study the ITT. It is found that at weak linear interfacial coupling, the nonlinearity can improve the ITT, but it depresses the ITT in the case of strong-linear coupling. In addition, the nonlinear interfacial coupling can induce thermal rectification effect. For interfacial materials case which can be simulated by a two-junction atomic chain, phonons show interference effect, and an optimized thermal coupler can be obtained by tuning its spring constant and atomic mass.

  13. Shell-crossing in quasi-one-dimensional flow

    Science.gov (United States)

    Rampf, Cornelius; Frisch, Uriel

    2017-10-01

    Blow-up of solutions for the cosmological fluid equations, often dubbed shell-crossing or orbit crossing, denotes the breakdown of the single-stream regime of the cold-dark-matter fluid. At this instant, the velocity becomes multi-valued and the density singular. Shell-crossing is well understood in one dimension (1D), but not in higher dimensions. This paper is about quasi-one-dimensional (Q1D) flow that depends on all three coordinates but differs only slightly from a strictly 1D flow, thereby allowing a perturbative treatment of shell-crossing using the Euler-Poisson equations written in Lagrangian coordinates. The signature of shell-crossing is then just the vanishing of the Jacobian of the Lagrangian map, a regular perturbation problem. In essence, the problem of the first shell-crossing, which is highly singular in Eulerian coordinates, has been desingularized by switching to Lagrangian coordinates, and can then be handled by perturbation theory. Here, all-order recursion relations are obtained for the time-Taylor coefficients of the displacement field, and it is shown that the Taylor series has an infinite radius of convergence. This allows the determination of the time and location of the first shell-crossing, which is generically shown to be taking place earlier than for the unperturbed 1D flow. The time variable used for these statements is not the cosmic time t but the linear growth time τ ˜ t2/3. For simplicity, calculations are restricted to an Einstein-de Sitter universe in the Newtonian approximation, and tailored initial data are used. However it is straightforward to relax these limitations, if needed.

  14. Research on one-dimensional two-phase flow

    International Nuclear Information System (INIS)

    Adachi, Hiromichi

    1988-10-01

    In Part I the fundamental form of the hydrodynamic basic equations for a one-dimensional two-phase flow (two-fluid model) is described. Discussions are concentrated on the treatment of phase change inertial force terms in the equations of motion and the author's equations of motion which have a remarkable uniqueness on the following three points. (1) To express force balance of unit mass two-phase fluid instead of that of unit volume two-phase fluid. (2) To pick up the unit existing mass and the unit flowing mass as the unit mass of two-phase fluid. (3) To apply the kinetic energy principle instead of the momentum low in the evaluation of steady inertial force term. In these three, the item (1) is for excluding a part of momentum change or kinetic energy change due to mass change of the examined part of fluid, which is independent of force. The item (2) is not to introduce a phenomenological physical model into the evaluation of phase change inertial force term. And the item (3) is for correctly applying the momentum law taking into account the difference of representative velocities between the main flow fluid (vapor phase or liquid phase) and the phase change part of fluid. In Part II, characteristics of various kinds of high speed two-phase flow are clarified theoretically by the basic equations derived. It is demonstrated that the steam-water two-phase critical flow with violent flashing and the airwater two-phase critical flow without phase change can be described with fundamentally the same basic equations. Furthermore, by comparing the experimental data from the two-phase critical discharge test and the theoretical prediction, the two-phase discharge coefficient, C D , for large sharp-edged orifice is determined as the value which is not affected by the experimental facility characteristics, etc. (author)

  15. Fractal spectra in generalized Fibonacci one-dimensional magnonic quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Costa, C.H.O. [Departamento de Fisica Teorica e Experimental, Universidade Federal do Rio grande do Norte, 59072-970 Natal-RN (Brazil); Vasconcelos, M.S., E-mail: manoelvasconcelos@yahoo.com.br [Escola de Ciencias e Tecnologia, Universidade Federal do Rio grande do Norte, 59072-970 Natal-RN (Brazil); Barbosa, P.H.R.; Barbosa Filho, F.F. [Departamento de Fisica, Universidade Federal do Piaui, 64049-550 Teresina-Pi (Brazil)

    2012-07-15

    In this work we carry out a theoretical analysis of the spectra of magnons in quasiperiodic magnonic crystals arranged in accordance with generalized Fibonacci sequences in the exchange regime, by using a model based on a transfer-matrix method together random-phase approximation (RPA). The generalized Fibonacci sequences are characterized by an irrational parameter {sigma}(p,q), which rules the physical properties of the system. We discussed the magnonic fractal spectra for first three generalizations, i.e., silver, bronze and nickel mean. By varying the generation number, we have found that the fragmentation process of allowed bands makes possible the emergence of new allowed magnonic bulk bands in spectra regions that were magnonic band gaps before, such as which occurs in doped semiconductor devices. This interesting property arises in one-dimensional magnonic quasicrystals fabricated in accordance to quasiperiodic sequences, without the need to introduce some deferent atomic layer or defect in the system. We also make a qualitative and quantitative investigations on these magnonic spectra by analyzing the distribution and magnitude of allowed bulk bands in function of the generalized Fibonacci number F{sub n} and as well as how they scale as a function of the number of generations of the sequences, respectively. - Highlights: Black-Right-Pointing-Pointer Quasiperiodic magnonic crystals are arranged in accordance with the generalized Fibonacci sequence. Black-Right-Pointing-Pointer Heisenberg model in exchange regime is applied. Black-Right-Pointing-Pointer We use a theoretical model based on a transfer-matrix method together random-phase approximation. Black-Right-Pointing-Pointer Fractal spectra are characterized. Black-Right-Pointing-Pointer We analyze the distribution of allowed bulk bands in function of the generalized Fibonacci number.

  16. One-Dimensional Hetero-Nanostructures for Rechargeable Batteries.

    Science.gov (United States)

    Mai, Liqiang; Sheng, Jinzhi; Xu, Lin; Tan, Shuangshuang; Meng, Jiashen

    2018-04-17

    Rechargeable batteries are regarded as one of the most practical electrochemical energy storage devices that are able to convert and store the electrical energy generated from renewable resources, and they function as the key power sources for electric vehicles and portable electronics. The ultimate goals for electrochemical energy storage devices are high power and energy density, long lifetime, and high safety. To achieve the above goals, researchers have tried to apply various morphologies of nanomaterials as the electrodes to enhance the electrochemical performance. Among them, one-dimensional (1D) materials show unique superiorities, such as cross-linked structures for external stress buffering and large draw ratios for internal stress dispersion. However, a homogeneous single-component electrode material can hardly have the characteristics of high electronic/ionic conductivity and high stability in the electrochemical environment simultaneously. Therefore, designing well-defined functional 1D hetero-nanostructures that combine the advantages and overcome the limitations of different electrochemically active materials is of great significance. This Account summarizes fabrication strategies for 1D hetero-nanostructures, including nucleation and growth, deposition, and melt-casting and electrospinning. Besides, the chemical principles for each strategy are discussed. The nucleation and growth strategy is suitable for growing and constructing 1D hetero-nanostructures of partial transition metal compounds, and the experimental conditions for this strategy are relatively accessible. Deposition is a reliable strategy to synthesize 1D hetero-nanostructures by decorating functional layers on 1D substrate materials, on the condition that the preobtained substrate materials must be stable in the following deposition process. The melt-casting strategy, in which 1D hetero-nanostructures are synthesizes via a melting and molding process, is also widely used. Additionally

  17. Bioinspired one-dimensional materials for directional liquid transport.

    Science.gov (United States)

    Ju, Jie; Zheng, Yongmei; Jiang, Lei

    2014-08-19

    One-dimensional materials (1D) capable of transporting liquid droplets directionally, such as spider silks and cactus spines, have recently been gathering scientists' attention due to their potential applications in microfluidics, textile dyeing, filtration, and smog removal. This remarkable property comes from the arrangement of the micro- and nanostructures on these organisms' surfaces, which have inspired chemists to develop methods to prepare surfaces with similar directional liquid transport ability. In this Account, we report our recent progress in understanding how this directional transport works, as well our advances in the design and fabrication of bioinspired 1D materials capable of transporting liquid droplets directionally. To begin, we first discuss some basic theories on droplet directional movement. Then, we discuss the mechanism of directional transport of water droplets on natural spider silks. Upon contact with water droplets, the spider silk undergoes what is known as a wet-rebuilt, which forms periodic spindle-knots and joints. We found that the resulting gradient of Laplace pressure and surface free energy between the spindle-knots and joints account for the cooperative driving forces to transport water droplets directionally. Next, we discuss the directional transport of water droplets on desert cactus. The integration of multilevel structures of the cactus and the resulting integration of multiple functions together allow the cactus spine to transport water droplets continuously from tip to base. Based on our studies of natural spider silks and cactus spines, we have prepared a series of artificial spider silks (A-SSs) and artificial cactus spines (A-CSs) with various methods. By changing the surface roughness and chemical compositions of the artificial spider silks' spindle-knots, or by introducing stimulus-responsive molecules, such as thermal-responsive and photoresponsive molecules, onto the spindle-knots, we can reversibly manipulate

  18. Numerical solution of multigroup diffuse equations of one-dimensional geometry

    International Nuclear Information System (INIS)

    Pavelesku, M.; Adam, S.

    1975-01-01

    The one-dimensional diffuse theory is used for reactor physics calculations of fast reactors. Computer program based on the one-dimensional diffuse theory is speedy and not memory consuming. The algorithm is described for the three-zone fast reactor criticality computation in one-dimensional diffusion approximation. This algorithm is realised on IBM 370/135 computer. (I.T.)

  19. One-dimensional tunable photonic crystals with spin crossover material for the terahertz range

    Czech Academy of Sciences Publication Activity Database

    Mounaix, P.; Freysz, E.; Degert, J.; Daro, N.; Létard, J.-F.; Kužel, Petr; Vigneras, V.; Oyenhart, L.

    2006-01-01

    Roč. 89, č. 17 (2006), 174105/1-174105/3 ISSN 0003-6951 R&D Projects: GA MŠk LC512 Institutional research plan: CEZ:AV0Z10100520 Keywords : terahertz * spin crossover * Bragg filter Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.977, year: 2006

  20. Lime Kiln Modeling. CFD and One-dimensional simulations

    Energy Technology Data Exchange (ETDEWEB)

    Svedin, Kristoffer; Ivarsson, Christofer; Lundborg, Rickard

    2009-03-15

    The incentives for burning alternative fuels in lime kilns are growing. An increasing demand on thorough investigations of alternative fuel impact on lime kiln performance have been recognized, and the purpose of this project has been to develop a lime kiln CFD model with the possibility to fire fuel oil and lignin. The second part of the project consists of three technical studies. Simulated data from a one-dimensional steady state program has been used to support theories on the impact of biofuels and lime mud dryness. The CFD simulations was carried out in the commercial code FLUENT. Due to difficulties with the convergence of the model the calcination reaction is not included. The model shows essential differences between the two fuels. Lignin gives a different flame shape and a longer flame length compared to fuel oil. Mainly this depends on how the fuel is fed into the combustion chamber and how much combustion air that is added as primary and secondary air. In the case of lignin combustion the required amount of air is more than in the fuel oil case. This generates more combustion gas and a different flow pattern is created. Based on the values from turbulent reaction rate for the different fuels an estimated flame length can be obtained. For fuel oil the combustion is very intense with a sharp peak in the beginning and a rapid decrease. For lignin the combustion starts not as intense as for the fuel oil case and has a smoother shape. The flame length appears to be approximately 2-3 meter longer for lignin than for fuel oil based on turbulent reaction rate in the computational simulations. The first technical study showed that there are many benefits of increasing dry solids content in the lime mud going into a kiln such as increased energy efficiency, reduced TRS, and reduced sodium in the kiln. However, data from operating kilns indicates that these benefits can be offset by increasing exit gas temperature that can limit kiln production capacity. Simulated

  1. One-Dimensional SnO2 Nano structures: Synthesis and Applications

    International Nuclear Information System (INIS)

    Pan, J.; Shen, H.; Mathur, S.; Pan, J.

    2012-01-01

    Nano scale semiconducting materials such as quantum dots (0-dimensional) and one-dimensional (1D) structures, like nano wires, nano belts, and nano tubes, have gained tremendous attention within the past decade. Among the variety of 1D nano structures, tin oxide (SnO 2 ) semiconducting nano structures are particularly interesting because of their promising applications in optoelectronic and electronic devices due to both good conductivity and transparence in the visible region. This article provides a comprehensive review of the recent research activities that focus on the rational synthesis and unique applications of 1D SnO 2 nano structures and their optical and electrical properties. We begin with the rational design and synthesis of 1D SnO 2 nano structures, such as nano tubes, nano wires, nano belts, and some heterogeneous nano structures, and then highlight a range of applications (e.g., gas sensor, lithium-ion batteries, and nano photonics) associated with them. Finally, the review is concluded with some perspectives with respect to future research on 1D SnO 2 nano structures

  2. Excitation of atomic nuclei and atoms by relativistic charge particles bound in a one-dimensional potential

    International Nuclear Information System (INIS)

    Almaliev, A.N.; Batkin, I.S.; Kopytin, I.V.

    1987-01-01

    The process of exciting atoms and atomic nuclei by relativistic electrons and positrons bound in a one-dimensional potential is investigated theoretically. It is shown that a pole corresponding to the emergence of a virtual photon on a bulk surface occurs in the matrix interaction element under definite kinematic relationships. It is obtained that the probability of the excitation process depends on the lifetime of the level being excited, the virtual photon, and the charged particle in a definite energetic state. An estimate of the magnitude of the excitation section of low-lying nuclear states yields a value exceeding by several orders the section obtained for charged particles in the absence of a binding potential

  3. GITTAM program for numerical simulation of one-dimensional targets TIS. Part 2

    International Nuclear Information System (INIS)

    Arpishkin, Yu.P.; Basko, M.M.; Sokolovskij, M.V.

    1989-01-01

    A finite-difference algorithm for numeric solution of a system of one-dimensional hydrodynamics equation with heat conductivity, radiation diffusion and thermonuclear combustion is considered. The algorithm presented allows one to simulate one-dimensional thermonuclear targets for heavy-ion synthesis (HIS), irradiated with heavy ion beams. A brief description of a complex of GITTAM programs in which finite-difference algorithm for one-dimensional thermonuclear HIS target simulation is used, is given. 5 refs.; 3 figs

  4. Computational Modeling of Bloch Surface Waves in One-Dimensional Periodic and Aperiodic Multilayer Structures

    Science.gov (United States)

    Koju, Vijay

    Photonic crystals and their use in exciting Bloch surface waves have received immense attention over the past few decades. This interest is mainly due to their applications in bio-sensing, wave-guiding, and other optical phenomena such as surface field enhanced Raman spectroscopy. Improvement in numerical modeling techniques, state of the art computing resources, and advances in fabrication techniques have also assisted in growing interest in this field. The ability to model photonic crystals computationally has benefited both the theoretical as well as experimental communities. It helps the theoretical physicists in solving complex problems which cannot be solved analytically and helps to acquire useful insights that cannot be obtained otherwise. Experimentalists, on the other hand, can test different variants of their devices by changing device parameters to optimize performance before fabrication. In this dissertation, we develop two commonly used numerical techniques, namely transfer matrix method, and rigorous coupled wave analysis, in C++ and MATLAB, and use two additional software packages, one open-source and another commercial, to model one-dimensional photonic crystals. Different variants of one-dimensional multilayered structures such as perfectly periodic dielectric multilayers, quasicrystals, aperiodic multilayer are modeled, along with one-dimensional photonic crystals with gratings on the top layer. Applications of Bloch surface waves, along with new and novel aperiodic dielectric multilayer structures that support Bloch surface waves are explored in this dissertation. We demonstrate a slow light configuration that makes use of Bloch Surface Waves as an intermediate excitation in a double-prism tunneling configuration. This method is simple compared to the more usual techniques for slowing light using the phenomenon of electromagnetically induced transparency in atomic gases or doped ionic crystals operated at temperatures below 4K. Using a semi

  5. One-dimensional calculation of flow branching using the method of characteristics

    International Nuclear Information System (INIS)

    Meier, R.W.; Gido, R.G.

    1978-05-01

    In one-dimensional flow systems, the flow often branches, such as at a tee or manifold. The study develops a formulation for calculating the flow through branch points with one-dimensional method of characteristics equations. The resultant equations were verified by comparison with experimental measurements

  6. One-dimensional treatment of polyatomic crystals by the Laplace transform method

    International Nuclear Information System (INIS)

    Rosato, A.; Santana, P.H.A.

    1976-01-01

    The one dimensional periodic potential problem is solved using the Laplace transform method and a condensed expression for the relation E x k and effective mass for one electron in a polyatomic structure is determined. Applications related to the effect of the asymmetry of the potential upon the one dimensional band structure are discussed [pt

  7. One-dimensional low spatial frequency LIPSS with rotating orientation on fused silica

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Simon, E-mail: simon.schwarz@h-ab.de; Rung, Stefan; Hellmann, Ralf

    2017-07-31

    Highlights: • Generation of one-dimensional low spatial frequency LIPSS on transparent material. • Varying the angle of incidence results in a rotation of the one-dimensional LSFL. • Rotation angle of LSFL decreases with increasing the applied fluence. • Orientation of the LSFL is mirror-inverted when reversing the scanning direction. - Abstract: We report on the generation of one-dimensional low spatial frequency LIPSS on transparent material. The influence of the applied laser fluence and angle of incidence on the periodicity, orientation and quality of the one-dimensional low spatial frequency LIPSS is investigated, facilitating the generation of highly uniform LIPSS alongside a line. Most strikingly, however, we observe a previously unreported effect of a pronounced rotation of the one-dimensional low spatial frequency LIPSS for varying angle of incidence upon inclined laser irradiation.

  8. Comment on "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit".

    Science.gov (United States)

    Carrillo-Bernal, M A; Núñez-Yépez, H N; Salas-Brito, A L; Solis, Didier A

    2015-02-01

    In the referred paper, the authors use a numerical method for solving ordinary differential equations and a softened Coulomb potential -1/√[x(2)+β(2)] to study the one-dimensional Coulomb problem by approaching the parameter β to zero. We note that even though their numerical findings in the soft potential scenario are correct, their conclusions do not extend to the one-dimensional Coulomb problem (β=0). Their claims regarding the possible existence of an even ground state with energy -∞ with a Dirac-δ eigenfunction and of well-defined parity eigenfunctions in the one-dimensional hydrogen atom are questioned.

  9. Prediction of inorganic superconductors with quasi-one-dimensional crystal structure

    International Nuclear Information System (INIS)

    Volkova, L M; Marinin, D V

    2013-01-01

    Models of superconductors having a quasi-one-dimensional crystal structure based on the convoluted into a tube Ginzburg sandwich, which comprises a layered dielectric–metal–dielectric structure, have been suggested. The critical crystal chemistry parameters of the Ginzburg sandwich determining the possibility of the emergence of superconductivity and the T c value in layered high-T c cuprates, which could have the same functions in quasi-one-dimensional fragments (sandwich-type tubes), have been examined. The crystal structures of known low-temperature superconductors, in which one can mark out similar quasi-one-dimensional fragments, have been analyzed. Five compounds with quasi-one-dimensional structures, which can be considered as potential parents of new superconductor families, possibly with high transition temperatures, have been suggested. The methods of doping and modification of these compounds are provided. (paper)

  10. Critical exponents in the transition to chaos in one-dimensional ...

    Indian Academy of Sciences (India)

    The transition from periodic to chaotic behavior in one-dimensional discrete dynamical systems .... consider the reverse sequence from µb to µ∞, a ... at which the change from one scaling region to another takes place, with the higher order. 12.

  11. Explicit solutions of one-dimensional, first-order, stationary mean-field games with congestion

    KAUST Repository

    Gomes, Diogo A.; Nurbekyan, Levon; Prazeres, Mariana

    2017-01-01

    Here, we consider one-dimensional first-order stationary mean-field games with congestion. These games arise when crowds face difficulty moving in high-density regions. We look at both monotone decreasing and increasing interactions and construct

  12. Solutions stability of one-dimensional parametric superconducting magnetic levitation model analysis by the first approximation

    International Nuclear Information System (INIS)

    Shvets', D.V.

    2009-01-01

    By the first approximation analyzing stability conditions of unperturbed solution of one-dimensional dynamic model with magnetic interaction between two superconducting rings obtained. The stability region in the frozen magnetic flux parameters space was constructed.

  13. Wave Transformation Over Reefs: Evaluation of One-Dimensional Numerical Models

    National Research Council Canada - National Science Library

    Demirbilek, Zeki; Nwogu, Okey G; Ward, Donald L; Sanchez, Alejandro

    2009-01-01

    Three one-dimensional (1D) numerical wave models are evaluated for wave transformation over reefs and estimates of wave setup, runup, and ponding levels in an island setting where the beach is fronted by fringing reef and lagoons...

  14. On symmetry reduction and exact solutions of the linear one-dimensional Schroedinger equation

    International Nuclear Information System (INIS)

    Barannik, L.L.

    1996-01-01

    Symmetry reduction of the Schroedinger equation with potential is carried out on subalgebras of the Lie algebra which is the direct sum of the special Galilei algebra and one-dimensional algebra. Some new exact solutions are obtained

  15. A Large Class of Exact Solutions to the One-Dimensional Schrodinger Equation

    Science.gov (United States)

    Karaoglu, Bekir

    2007-01-01

    A remarkable property of a large class of functions is exploited to generate exact solutions to the one-dimensional Schrodinger equation. The method is simple and easy to implement. (Contains 1 table and 1 figure.)

  16. One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials

    KAUST Repository

    Choi, Nam-Soon; Yao, Yan; Cui, Yi; Cho, Jaephil

    2011-01-01

    There has been tremendous interest in using nanomaterials for advanced Li-ion battery electrodes, particularly to increase the energy density by using high specific capacity materials. Recently, it was demonstrated that one dimensional (1D) Si

  17. One- and Two- Magnon Excitations in a One-Dimensional Antiferromagnet in a Magnetic Field

    DEFF Research Database (Denmark)

    Heilmann, I.U.; Kjems, Jørgen; Endoh, Y.

    1981-01-01

    We have carried out a comprehensive experimental and theoretical study of the inelastic scattering in the one-dimensional near-Heisenberg antiferromagnet (CD3)4NMnCl3 (TMMC) at low temperatures, 0.3...

  18. An Angular Leakage Correction for Modeling a Hemisphere, Using One-Dimensional Spherical Coordinates

    International Nuclear Information System (INIS)

    Schwinkendorf, K.N.; Eberle, C.S.

    2003-01-01

    A radially dependent, angular leakage correction was applied to a one-dimensional, multigroup neutron diffusion theory computer code to accurately model hemispherical geometry. This method allows the analyst to model hemispherical geometry, important in nuclear criticality safety analyses, with one-dimensional computer codes, which execute very quickly. Rapid turnaround times for scoping studies thus may be realized. This method uses an approach analogous to an axial leakage correction in a one-dimensional cylinder calculation. The two-dimensional Laplace operator was preserved in spherical geometry using a leakage correction proportional to 1/r 2 , which was folded into the one-dimensional spherical calculation on a mesh-by-mesh basis. Hemispherical geometry is of interest to criticality safety because of its similarity to piles of spilled fissile material and accumulations of fissile material in process containers. A hemisphere also provides a more realistic calculational model for spilled fissile material than does a sphere

  19. Solute transport with periodic input point source in one-dimensional ...

    African Journals Online (AJOL)

    JOY

    groundwater flow velocity is considered proportional to multiple of temporal function and ζ th ... One-dimensional solute transport through porous media with or without .... solute free. ... the periodic concentration at source of the boundary i.e.,. 0.

  20. Spin-zero sound in one- and quasi-one-dimensional 3He

    International Nuclear Information System (INIS)

    Hernandez, E.S.

    2002-01-01

    The zero sound spectrum of fluid 3 He confined to a cylindrical shell is examined for configurations characterizing strictly one-dimensional and quasi-one-dimensional regimes. It is shown that the restricted dimensionality makes room to the possibility of spin-zero sound for the attractive particle-hole interaction of liquid helium. This fact can be related to the suppression of phase instabilities and thermodynamic phase transitions in one dimension

  1. One-Dimensional Creativity: A Marcusean Critique of Work and Play in the Video Game Industry

    Directory of Open Access Journals (Sweden)

    Ergin Bulut

    2018-06-01

    Full Text Available Creativity is at the heart of the video game industry. Industry professionals, especially those producing blockbuster games for the triple-A market, speak fondly of their creative labour practices, flexible work schedules, and playful workplaces. However, a cursory glance at major triple-A franchises reveals the persistence of sequel game production and a homogeneity in genres and narratives. Herbert Marcuse’s critique of one-dimensionality may help to account for this discrepancy between the workers’ creative aspirations and the dominant homogeneity in game aesthetics. What I call ‘one-dimensional creativity’ defines the essence of triple-A game production. In the name of extolling the pleasure principle at work, one-dimensional creativity eliminates the reality principle, but only superficially. One-dimensional creativity gives game developers the opportunity to express themselves, but it is still framed by a particular technological rationality that prioritises profits over experimental art. One-dimensional creativity negates potential forms of creativity that might emerge outside the industry’s hit-driven logics. Conceptually, ‘one-dimensional creativity’ renders visible the instrumentalisation of play and the conservative design principles of triple-A game production – a production that is heavily structured with technological performance, better graphics, interactivity, and speed. Multi-dimensional video game production and aesthetics, the opposite of one-dimensional creativity, is emerging from the DIY game production scene, which is more invested in game narratives and aesthetics outside the dominant logics of one-dimensionality in triple-A game production.

  2. Effective one-dimensionality of universal ac hopping conduction in the extreme disorder limit

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Schrøder, Thomas

    1996-01-01

    A phenomenological picture of ac hopping in the symmetric hopping model (regular lattice, equal site energies, random energy barriers) is proposed according to which conduction in the extreme disorder limit is dominated by essentially one-dimensional "percolation paths." Modeling a percolation path...... as strictly one dimensional with a sharp jump rate cutoff leads to an expression for the universal ac conductivity that fits computer simulations in two and three dimensions better than the effective medium approximation....

  3. Simulation and detection of massive Dirac fermions with cold atoms in one-dimensional optical lattice

    Energy Technology Data Exchange (ETDEWEB)

    Yu Yafei, E-mail: yfyuks@hotmail.com [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China); Shan Chuanjia [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China); College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002 (China); Mei Feng; Zhang Zhiming [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China)

    2012-09-15

    We propose a simple but feasible experimental scheme to simulate and detect Dirac fermions with cold atoms trapped in one-dimensional optical lattice. In our scheme, through tuning the laser intensity, the one-dimensional optical lattice can have two sites in each unit cell and the atoms around the low energy behave as massive Dirac fermions. Furthermore, we show that these relativistic quasiparticles can be detected experimentally by using atomic density profile measurements and Bragg scattering.

  4. Visualizing One-Dimensional Electronic States and their Scattering in Semi-conducting Nanowires

    Science.gov (United States)

    Beidenkopf, Haim; Reiner, Jonathan; Norris, Andrew; Nayak, Abhay Kumar; Avraham, Nurit; Shtrikman, Hadas

    One-dimensional electronic systems constitute a fascinating playground for the emergence of exotic electronic effects and phases, within and beyond the Tomonaga-Luttinger liquid paradigm. More recently topological superconductivity and Majorana modes were added to that long list of phenomena. We report scanning tunneling microscopy and spectroscopy measurements conducted on pristine, epitaxialy grown InAs nanowires. We resolve the 1D electronic band structure manifested both via Van-Hove singularities in the local density-of-states, as well as by the quasi-particle interference patterns, induced by scattering from surface impurities. By studying the scattering of the one-dimensional electronic states off various scatterers, including crystallographic defects and the nanowire end, we identify new one-dimensional relaxation regimes and yet unexplored effects of interactions. Some of these may bear implications on the topological superconducting state and Majorana modes therein. The authors acknowledge support from the Israeli Science Foundation (ISF).

  5. One-Dimensional Finite Elements An Introduction to the FE Method

    CERN Document Server

    Öchsner, Andreas

    2013-01-01

     This textbook presents finite element methods using exclusively  one-dimensional elements. The aim is to present the complex methodology in  an easily understandable but mathematically correct fashion. The approach of  one-dimensional elements enables the reader to focus on the understanding of  the principles of basic and advanced mechanical problems. The reader easily  understands the assumptions and limitations of mechanical modeling as well  as the underlying physics without struggling with complex mathematics. But  although the description is easy it remains scientifically correct.   The approach using only one-dimensional elements covers not only standard  problems but allows also for advanced topics like plasticity or the  mechanics of composite materials. Many examples illustrate the concepts and  problems at the end of every chapter help to familiarize with the topics.

  6. Method and apparatus for the electro-optic convolution of a one-dimensional signal

    International Nuclear Information System (INIS)

    1979-01-01

    Procedure for the electro-optic convolution of a signal and a filter function, whereby the one dimensional electro-optical signal would be portrayed as a line along which the clarity varies and whereby filter function is determined by one or more masks, whilst after each mask is placed a light detector, with which the light passing through the masks may be detected, whilst a one-dimensional portrayal of the signal along the masks will be developed, characterised in that a one dimensional portrayal of the signal, with the aid of an optical system in a direction across the line, will be enlarged, and that this enlarged signal in the direction of the line along the masks will be affected which the masks closing fields will contain, which are either fully transparent or are fully non-transparent. (Auth.)

  7. Synthesis and applications of one-dimensional nano-structured polyaniline: An overview

    International Nuclear Information System (INIS)

    Zhang Donghua; Wang Yangyong

    2006-01-01

    This paper summarizes and reviews the various synthesizing approaches of one-dimensional nano-structured polyaniline (PANI) and several potential applications of the nanomaterial. The synthesizing approaches can be generally categorized into template synthesis and non-template synthesis according to whether template(s), hard (physical template) or soft (chemical template), is (are) used or not. However, though the various approaches established, preparation of one-dimensional nano-structured PANI with controllable morphologies and sizes, especially well oriented arrays on a large scale is still a major challenge. Furthermore, the formation mechanisms of the nanostructures are still unclear. On the other hand, one-dimensional nano-structured PANI exhibits high surface area, high conductivity, as well as controllable chemical/physical properties and good environmental stability, rendering the nanomaterial promising candidate for application ranging from sensors, energy storage and flash welding to digital nonvolatile memory

  8. Quantum phase transitions in matrix product states of one-dimensional spin-1 chains

    International Nuclear Information System (INIS)

    Zhu Jingmin

    2014-01-01

    We present a new model of quantum phase transitions in matrix product systems of one-dimensional spin-1 chains and study the phases coexistence phenomenon. We find that in the thermodynamic limit the proposed system has three different quantum phases and by adjusting the control parameters we are able to realize any phase, any two phases equal coexistence and the three phases equal coexistence. At every critical point the physical quantities including the entanglement are not discontinuous and the matrix product system has long-range correlation and N-spin maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of certain directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-spin maximal entanglement. (author)

  9. Quantum interference of ballistic carriers in one-dimensional semiconductor rings

    International Nuclear Information System (INIS)

    Bagraev, N.T.; Buravlev, A.D.; Klyachkin, L.E.; Malyarenko, A.M.; Ivanov, V.K.; Rykov, S.A.; Shelykh, I.A.

    2000-01-01

    Quantum interference of ballistic carriers has been studied for the first time, using one-dimensional rings formed by quantum wire pairs in self-assembled silicon quantum wells. Energy dependencies of the transmission coefficient is calculated as a function of the length and modulation of the quantum wire pairs separated by a unified drain-source system or the quantum point contacts. The quantum conductance is predicted to be increased by a factor of four using the unified drain-source system as a result of the quantum interference. Theoretical dependencies are revealed by the quantum conductance oscillations created by the deviations of both the drain-source voltage and external magnetic field inside the silicon one-dimensional rings. The results obtained put forward a basis to create the Aharonov-Bohm interferometer using the silicon one-dimensional ring [ru

  10. One dimensional neutron kinetics in the TRAC-BF1 code

    International Nuclear Information System (INIS)

    Weaver, W.L. III; Wagner, K.C.

    1987-01-01

    The TRAC-BWR code development program at the Idaho National Engineering Laboratory is developing a version of the TRAC code for the U.S. Nuclear Regulatory Commission (USNRC) to provide a best-estimate analysis capability for the simulation of postulated accidents in boiling water reactor (BWR) power systems and related experimental facilities. Recent development efforts in the TRAC-BWR program have focused on improving the computational efficiency through the incorporation of a hybrid Courant- limit-violating numerical solution scheme in the one-dimensional component models and on improving code accuracy through the development of a one-dimensional neutron kinetics model. Many other improvements have been incorporated into TRAC-BWR to improve code portability, accuracy, efficiency, and maintainability. This paper will describe the one- dimensional neutron kinetics model, the generation of the required input data for this model, and present results of the first calculations using the model

  11. Quantum Solitons and Localized Modes in a One-Dimensional Lattice Chain with Nonlinear Substrate Potential

    International Nuclear Information System (INIS)

    Li Dejun; Mi Xianwu; Deng Ke; Tang Yi

    2006-01-01

    In the classical lattice theory, solitons and localized modes can exist in many one-dimensional nonlinear lattice chains, however, in the quantum lattice theory, whether quantum solitons and localized modes can exist or not in the one-dimensional lattice chains is an interesting problem. By using the number state method and the Hartree approximation combined with the method of multiple scales, we investigate quantum solitons and localized modes in a one-dimensional lattice chain with the nonlinear substrate potential. It is shown that quantum solitons do exist in this nonlinear lattice chain, and at the boundary of the phonon Brillouin zone, quantum solitons become quantum localized modes, phonons are pinned to the lattice of the vicinity at the central position j = j 0 .

  12. A one-dimensional plasma and impurity transport model for reversed field pinches

    International Nuclear Information System (INIS)

    Veerasingam, R.

    1991-11-01

    In this thesis a one-dimensional (1-D) plasma and impurity transport model is developed to address issues related to impurity behavior in Reversed Field Pinch (RFP) fusion plasmas. A coronal non-equilibrium model is used for impurities. The impurity model is incorporated into an existing one dimensional plasma transport model creating a multi-species plasma transport model which treats the plasma and impurity evolution self-consistently. Neutral deuterium particles are treated using a one-dimensional (slab) model of neutral transport. The resulting mode, RFPBI, is then applied to existing RFP devices such as ZT-40M and MST, and also to examine steady state behavior of ZTH based on the design parameters. A parallel algorithm for the impurity transport equations is implemented and tested to determine speedup and efficiency

  13. The one-dimensional Gross-Pitaevskii equation and its some excitation states

    Energy Technology Data Exchange (ETDEWEB)

    Prayitno, T. B., E-mail: trunk-002@yahoo.com [Physics Department, Faculty of Mathematics and Natural Science, Universitas Negeri Jakarta, Jl. Pemuda Rawamangun no. 10, Jakarta, 13220 (Indonesia)

    2015-04-16

    We have derived some excitation states of the one-dimensional Gross-Pitaevskii equation coupled by the gravitational potential. The methods that we have used here are taken by pursuing the recent work of Kivshar et. al. by considering the equation as a macroscopic quantum oscillator. To obtain the states, we have made the appropriate transformation to reduce the three-dimensional Gross-Pitaevskii equation into the one-dimensional Gross-Pitaevskii equation and applying the time-independent perturbation theory in the general solution of the one-dimensional Gross-Pitaevskii equation as a linear superposition of the normalized eigenfunctions of the Schrödinger equation for the harmonic oscillator potential. Moreover, we also impose the condition by assuming that some terms in the equation should be so small in order to preserve the use of the perturbation method.

  14. Apparent destruction of superconductivity in the disordered one-dimensional limit

    International Nuclear Information System (INIS)

    Graybeal, J.M.; Mankiewich, P.M.; Dynes, R.C.; Beasley, M.R.

    1987-01-01

    We present the results of a model-system study of the competition between superconductivity and disorder in narrow superconducting wires. As one moves from the two-dimensional regime toward the one-dimensional limit, large and systematic reductions in the superconducting transition temperature are obtained. The observed behavior extrapolates to the total destruction of superconductivity in the disordered one-dimensional limit. Our findings are in clear disagreement with a recent theoretical treatment. In addition, the superconducting fluctuations appear to be modified by disorder for the narrowest samples

  15. Optimally localized Wannier functions for quasi one-dimensional nonperiodic insulators

    DEFF Research Database (Denmark)

    Cornean, Horia; Nenciu, A.; Nenciu, Gheorghe

    2008-01-01

    It is proved that for general, not necessarily periodic, quasi one-dimensional systems the band position operator corresponding to an isolated part of the energy spectrum has discrete spectrum and its eigenfunctions have the same spatial localization as the corresponding spectral projection....... As a consequence, an eigenbasis of the band position operator provides a basis of optimally localized (generalized) Wannier functions for quasi one-dimensional systems, and this proves the strong Marzari-Vanderbilt conjecture. If the system has some translation symmetries (e.g. usual translations, screw...

  16. Optimally localized Wannier functions for quasi one-dimensional nonperiodic insulators

    DEFF Research Database (Denmark)

    Cornean, Horia; Nenciu, A.; Nenciu, Gheorghe

    It is proved that for general, not necessarily periodic quasi one dimensional systems, the band position operator corresponding to an isolated part of the energy spectrum has discrete spectrum and its eigenfunctions have the same spatial localization as the corresponding spectral projection....... As a consequence, an eigenbasis of the band position operator provides a basis of optimally localized (generalized) Wannier functions for quasi one dimensional systems. If the system has some translation symmetries (e.g. usual translations, screw transformations), they are "inherited" bythe Wannier basis....

  17. Von Neumann Entropy of an Electron in One-Dimensional Determined Potentials

    Institute of Scientific and Technical Information of China (English)

    GONG Long-Yan; TONG Pei-Qing

    2005-01-01

    @@ By using the measure of von Neumann entropy, we numerically investigate quantum entanglement of an electronmoving in the one-dimensional Harper model and in the one-dimensional slowly varying potential model. Thedelocalized and localized eigenstates can be distinguished by von Neumann entropy of the individual eigenstates.There are drastic decreases in yon Neumann entropy of the individual eigenstates at mobility edges. In the curveof the spectrum averaged yon Neumann entropy as a function of potential parameter λ, a sharp transition existsat the metal-insulator transition point λc = 2. It is found that the yon Neumann entropy is a good quantity toreflect localization and metal-insulator transition.

  18. Longitudinal and spin Hall conductance of a one-dimensional Aharonov-Bohm ring

    International Nuclear Information System (INIS)

    Moca, Catalin Pascu; Marinescu, D C

    2006-01-01

    The longitudinal and spin Hall conductances of an electron gas with Rashba-Dresselhaus spin-orbit interaction, confined to a quasi-one-dimensional Aharonov-Bohm ring, are studied as functions of disorder and magnetic flux. The system is mapped onto a one-dimensional virtual lattice and is described, in a tight binding approximation, by a Hamiltonian that depends parametrically on the nearest neighbour hopping integral t, the Rashba spin-orbit coupling V R , the Dresselhaus spin-orbit coupling V D and an Anderson-like, on-site disorder energy strength W. Numerical results are obtained within a spin dependent Landauer-Buettiker formalism

  19. On the conductivity of a one-dimensional system of interacting fermions in a random potential

    International Nuclear Information System (INIS)

    Apel, W.

    1981-01-01

    A one-dimensional system of interacting fermions in an external potential is studied. The problem was for this purpose transformed to two classical models of statistical mechanics in two dimensions in which occasionally results were found in complementary ranges of the interaction constants of the fermion system. The conductivity appeared as a simple correlation function in both classical models. It was shown that the interaction in a one-dimensional polluted fermion system can cause an isolator-metal transition. (orig./HSI) [de

  20. Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map

    Science.gov (United States)

    Wang, Xing-Yuan; Qin, Xue; Xie, Yi-Xin

    2011-08-01

    We extend a class of a one-dimensional smooth map. We make sure that for each desired interval of the parameter the map's Lyapunov exponent is positive. Then we propose a novel parameter perturbation method based on the good property of the extended one-dimensional smooth map. We perturb the parameter r in each iteration by the real number xi generated by the iteration. The auto-correlation function and NIST statistical test suite are taken to illustrate the method's randomness finally. We provide an application of this method in image encryption. Experiments show that the pseudo-random sequences are suitable for this application.

  1. Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Qin Xue; Xie Yi-Xin

    2011-01-01

    We extend a class of a one-dimensional smooth map. We make sure that for each desired interval of the parameter the map's Lyapunov exponent is positive. Then we propose a novel parameter perturbation method based on the good property of the extended one-dimensional smooth map. We perturb the parameter r in each iteration by the real number x i generated by the iteration. The auto-correlation function and NIST statistical test suite are taken to illustrate the method's randomness finally. We provide an application of this method in image encryption. Experiments show that the pseudo-random sequences are suitable for this application. (general)

  2. Generalized space-charge limited current and virtual cathode behaviors in one-dimensional drift space

    International Nuclear Information System (INIS)

    Yang, Zhanfeng; Liu, Guozhi; Shao, Hao; Chen, Changhua; Sun, Jun

    2013-01-01

    This paper reports the space-charge limited current (SLC) and virtual cathode behaviors in one-dimensional grounded drift space. A simple general analytical solution and an approximate solution for the planar diode are given. Through a semi-analytical method, a general solution for SLC in one-dimensional drift space is obtained. The behaviors of virtual cathode in the drift space, including dominant frequency, electron transit time, position, and transmitted current, are yielded analytically. The relationship between the frequency of the virtual cathode oscillation and the injected current presented may explain previously reported numerical works. Results are significant in facilitating estimations and further analytical studies

  3. Metal-insulator transition in one-dimensional lattices with chaotic energy sequences

    International Nuclear Information System (INIS)

    Pinto, R.A.; Rodriguez, M.; Gonzalez, J.A.; Medina, E.

    2005-01-01

    We study electronic transport through a one-dimensional array of sites by using a tight binding Hamiltonian, whose site-energies are drawn from a chaotic sequence. The correlation degree between these energies is controlled by a parameter regulating the dynamic Lyapunov exponent measuring the degree of chaos. We observe the effect of chaotic sequences on the localization length, conductance, conductance distribution and wave function, finding evidence of a metal-insulator transition (MIT) at a critical degree of chaos. The one-dimensional metallic phase is characterized by a Gaussian conductance distribution and exhibits a peculiar non-selfaveraging

  4. On the effect of memory in one-dimensional K=4 automata on networks

    Science.gov (United States)

    Alonso-Sanz, Ramón; Cárdenas, Juan Pablo

    2008-12-01

    The effect of implementing memory in cells of one-dimensional CA, and on nodes of various types of automata on networks with increasing degrees of random rewiring is studied in this article, paying particular attention to the case of four inputs. As a rule, memory induces a moderation in the rate of changing nodes and in the damage spreading, albeit in the latter case memory turns out to be ineffective in the control of the damage as the wiring network moves away from the ordered structure that features proper one-dimensional CA. This article complements the previous work done in the two-dimensional context.

  5. Hopping transport and electrical conductivity in one-dimensional systems with off-diagonal disorder

    International Nuclear Information System (INIS)

    Ma Songshan; Xu Hui; Li Yanfeng; Song Zhaoquan

    2007-01-01

    In this paper, we present a model to describe hopping transport and electrical conductivity of one-dimensional systems with off-diagonal disorder, in which electrons are transported via hopping between localized states. We find that off-diagonal disorder leads to delocalization and drastically enhances the electrical conductivity of systems. The model also quantitatively explains the temperature and electrical field dependence of the conductivity in one-dimensional systems with off-diagonal disorder. In addition, we also show the dependence of the conductivity on the strength of off-diagonal disorder

  6. Metal-insulator transition in one-dimensional lattices with chaotic energy sequences

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, R.A. [Laboratorio de Fisica Estadistica, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A (Venezuela)]. E-mail: ripinto@ivic.ve; Rodriguez, M. [Laboratorio de Fisica Estadistica, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A (Venezuela); Gonzalez, J.A. [Laboratorio de Fisica Computacional, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A (Venezuela); Medina, E. [Laboratorio de Fisica Estadistica, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A (Venezuela)

    2005-06-20

    We study electronic transport through a one-dimensional array of sites by using a tight binding Hamiltonian, whose site-energies are drawn from a chaotic sequence. The correlation degree between these energies is controlled by a parameter regulating the dynamic Lyapunov exponent measuring the degree of chaos. We observe the effect of chaotic sequences on the localization length, conductance, conductance distribution and wave function, finding evidence of a metal-insulator transition (MIT) at a critical degree of chaos. The one-dimensional metallic phase is characterized by a Gaussian conductance distribution and exhibits a peculiar non-selfaveraging.

  7. An Auxiliary Equation for the Bellman Equation in a One-Dimensional Ergodic Control

    International Nuclear Information System (INIS)

    Fujita, Y.

    2001-01-01

    In this paper we consider the Bellman equation in a one-dimensional ergodic control. Our aim is to show the existence and the uniqueness of its solution under general assumptions. For this purpose we introduce an auxiliary equation whose solution gives the invariant measure of the diffusion corresponding to an optimal control. Using this solution, we construct a solution to the Bellman equation. Our method of using this auxiliary equation has two advantages in the one-dimensional case. First, we can solve the Bellman equation under general assumptions. Second, this auxiliary equation gives an optimal Markov control explicitly in many examples

  8. GITTAM program for numerical simulation of one-dimensional targets TIS. Part 3

    International Nuclear Information System (INIS)

    Basko, M.M.; Sokolovskij, M.V.

    1989-01-01

    Results of testing calculations according to GITTAM program, developed for numeric simulation of one-dimensional thermonuclear targets of heavy-ion synthesis are presented. Finite-difference method for solving a system of one-dimensional hydrodynamics equations with heat conductivity, radiation diffusion and thermonuclear combustion is used in the GITTAM program. In the tests presented, based on simple automodel solutions, adiabatic motion as well as distribution of shock, thermal and radial waves in gas with simple polytron state equation is investigated. 3 refs.; 6 figs

  9. Strictly local one-dimensional topological quantum error correction with symmetry-constrained cellular automata

    Directory of Open Access Journals (Sweden)

    Nicolai Lang, Hans Peter Büchler

    2018-01-01

    Full Text Available Active quantum error correction on topological codes is one of the most promising routes to long-term qubit storage. In view of future applications, the scalability of the used decoding algorithms in physical implementations is crucial. In this work, we focus on the one-dimensional Majorana chain and construct a strictly local decoder based on a self-dual cellular automaton. We study numerically and analytically its performance and exploit these results to contrive a scalable decoder with exponentially growing decoherence times in the presence of noise. Our results pave the way for scalable and modular designs of actively corrected one-dimensional topological quantum memories.

  10. Quasi-exact solvability of the one-dimensional Holstein model

    International Nuclear Information System (INIS)

    Pan Feng; Dai Lianrong; Draayer, J P

    2006-01-01

    The one-dimensional Holstein model of spinless fermions interacting with dispersionless phonons is solved by using a Bethe ansatz in analogue to that for the one-dimensional spinless Fermi-Hubbard model. Excitation energies and the corresponding wavefunctions of the model are determined by a set of partial differential equations. It is shown that the model is, at least, quasi-exactly solvable for the two-site case, when the phonon frequency, the electron-phonon coupling strength and the hopping integral satisfy certain relations. As examples, some quasi-exact solutions of the model for the two-site case are derived. (letter to the editor)

  11. Wave packet fractional revivals in a one-dimensional Rydberg atom

    International Nuclear Information System (INIS)

    Veilande, Rita; Bersons, Imants

    2007-01-01

    We investigate many characteristic features of revival and fractional revival phenomena via derived analytic expressions for an autocorrelation function of a one-dimensional Rydberg atom with weighting probabilities modelled by a Gaussian or a Lorentzian distribution. The fractional revival phenomenon in the ionization probabilities of a one-dimensional Rydberg atom irradiated by two short half-cycle pulses is also studied. When many states are involved in the formation of the wave packet, the revival is lower and broader than the initial wave packet and the fractional revivals overlap and disappear with time

  12. One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials

    KAUST Repository

    Choi, Nam-Soon

    2011-01-01

    There has been tremendous interest in using nanomaterials for advanced Li-ion battery electrodes, particularly to increase the energy density by using high specific capacity materials. Recently, it was demonstrated that one dimensional (1D) Si/Sn nanowires (NWs) and nanotubes (NTs) have great potential to achieve high energy density as well as long cycle life for the next generation of advanced energy storage applications. In this feature article, we review recent progress on Si-based NWs and NTs as high capacity anode materials. Fundamental understanding and future challenges on one dimensional nanostructured anode are also discussed. © 2010 The Royal Society of Chemistry.

  13. Accurate correlation energies in one-dimensional systems from small system-adapted basis functions

    Science.gov (United States)

    Baker, Thomas E.; Burke, Kieron; White, Steven R.

    2018-02-01

    We propose a general method for constructing system-dependent basis functions for correlated quantum calculations. Our construction combines features from several traditional approaches: plane waves, localized basis functions, and wavelets. In a one-dimensional mimic of Coulomb systems, it requires only 2-3 basis functions per electron to achieve high accuracy, and reproduces the natural orbitals. We illustrate its effectiveness for molecular energy curves and chains of many one-dimensional atoms. We discuss the promise and challenges for realistic quantum chemical calculations.

  14. Quantum quenches to the attractive one-dimensional Bose gas: exact results

    Directory of Open Access Journals (Sweden)

    Lorenzo Piroli, Pasquale Calabrese, Fabian H. L. Essler

    2016-09-01

    Full Text Available We study quantum quenches to the one-dimensional Bose gas with attractive interactions in the case when the initial state is an ideal one-dimensional Bose condensate. We focus on properties of the stationary state reached at late times after the quench. This displays a finite density of multi-particle bound states, whose rapidity distribution is determined exactly by means of the quench action method. We discuss the relevance of the multi-particle bound states for the physical properties of the system, computing in particular the stationary value of the local pair correlation function $g_2$.

  15. Quantum photonics

    CERN Document Server

    Pearsall, Thomas P

    2017-01-01

    This textbook employs a pedagogical approach that facilitates access to the fundamentals of Quantum Photonics. It contains an introductory description of the quantum properties of photons through the second quantization of the electromagnetic field, introducing stimulated and spontaneous emission of photons at the quantum level. Schrödinger’s equation is used to describe the behavior of electrons in a one-dimensional potential. Tunneling through a barrier is used to introduce the concept of non­locality of an electron at the quantum level, which is closely-related to quantum confinement tunneling, resonant tunneling, and the origin of energy bands in both periodic (crystalline) and aperiodic (non-crystalline) materials. Introducing the concepts of reciprocal space, Brillouin zones, and Bloch’s theorem, the determination of electronic band structure using the pseudopotential method is presented, allowing direct computation of the band structures of most group IV, group III-V, and group II-VI semiconducto...

  16. An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems

    DEFF Research Database (Denmark)

    Andersen, Molte Emil Strange; Salami Dehkharghani, Amin; Volosniev, A. G.

    2016-01-01

    beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly...

  17. Semi-analytical Study of a One-dimensional Contaminant Flow in a ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The Bubnov-Galerkin weighted residual method was used to solve a one- dimensional contaminant flow problem in this paper. The governing equation of the contaminant flow, which is characterized by advection, dispersion and adsorption was discretized and solved to obtain the semi-analytical solution.

  18. Simple One-Dimensional Quantum-Mechanical Model for a Particle Attached to a Surface

    Science.gov (United States)

    Fernandez, Francisco M.

    2010-01-01

    We present a simple one-dimensional quantum-mechanical model for a particle attached to a surface. It leads to the Schrodinger equation for a harmonic oscillator bounded on one side that we solve in terms of Weber functions and discuss the behaviour of the eigenvalues and eigenfunctions. We derive the virial theorem and other exact relationships…

  19. One-dimensional metallic edge states in MoS2

    DEFF Research Database (Denmark)

    Bollinger, Mikkel; Lauritsen, J.V.; Jacobsen, Karsten Wedel

    2001-01-01

    By the use of density functional calculations it is shown that the edges of a two-dimensional slab of insulating MoS2 exhibit several metallic states. These edge states can be viewed as one-dimensional conducting wires, and we show that they can be observed directly using scanning tunneling...

  20. A computationally exact method of Dawson's model for hole dynamics of one-dimensional plasma

    International Nuclear Information System (INIS)

    Kitahara, Kazuo; Tanno, Kohki; Takada, Toshio; Hatori, Tadatsugu; Urata, Kazuhiro; Irie, Haruyuki; Nambu, Mitsuhiro; Saeki, Kohichi.

    1990-01-01

    We show a simple but computationally exact solution of the one-dimensional plasma model, so-called 'Dawson's model'. Using this solution, we can describe the evolution of the plasma and find the relative stabilization of a big hole after the instability of two streams. (author)

  1. Well-posedness for one-dimensional anisotropic Cahn-Hilliard and Allen-Cahn systems

    Directory of Open Access Journals (Sweden)

    Ahmad Makki

    2015-01-01

    Full Text Available Our aim is to prove the existence and uniqueness of solutions for one-dimensional Cahn-Hilliard and Allen-Cahn type equations based on a modification of the Ginzburg-Landau free energy proposed in [8]. In particular, the free energy contains an additional term called Willmore regularization and takes into account strong anisotropy effects.

  2. The exact solution to the one-dimensional Poisson–Boltzmann equation with asymmetric boundary conditions

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2014-01-01

    The exact solution to the one-dimensional Poisson–Boltzmann equation with asymmetric boundary conditions can be expressed in terms of the Jacobi elliptic functions. The boundary conditions determine the modulus of the Jacobi elliptic functions. The boundary conditions can not be solved analytically...

  3. PAD: a one-dimensional, coupled neutronic-thermodynamic-hydrodynamic computer code

    International Nuclear Information System (INIS)

    Peterson, D.M.; Stratton, W.R.; McLaughlin, T.P.

    1976-12-01

    Theoretical and numerical foundations, utilization guide, sample problems, and program listing and glossary are given for the PAD computer code which describes dynamic systems with interactive neutronics, thermodynamics, and hydrodynamics in one-dimensional spherical, cylindrical, and planar geometries. The code has been applied to prompt critical excursions in various fissioning systems (solution, metal, LMFBR, etc.) as well as to nonfissioning systems

  4. Critical exponents in the transition to chaos in one-dimensional

    Indian Academy of Sciences (India)

    We report the numerically evaluated critical exponents associated with the scaling of generalized fractal dimensions during the transition from order to chaos. The analysis is carried out in detail in the context of unimodal and bimodal maps representing typical one-dimensional discrete dynamical systems. The behavior of ...

  5. A Simple Proof of the Theorem Concerning Optimality in a One-Dimensional Ergodic Control Problem

    International Nuclear Information System (INIS)

    Fujita, Y.

    2000-01-01

    We give a simple proof of the theorem concerning optimality in a one-dimensional ergodic control problem. We characterize the optimal control in the class of all Markov controls. Our proof is probabilistic and does not need to solve the corresponding Bellman equation. This simplifies the proof

  6. Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.

    2003-01-01

    We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)(2)PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray-induced photoemission spectroscopy turns out to be a valuable nondestructive...

  7. Theory of coherent time-dependent transport in one-dimensional multiband semiconductor super-lattices

    DEFF Research Database (Denmark)

    Rotvig, J.; Smith, H.; Jauho, Antti-Pekka

    1996-01-01

    We present an analytical study of one-dimensional semiconductor superlattices in external electric fields, which may be time dependent. A number of general results for the (quasi)energies and eigenstates are derived. An equation of motion for the density matrix is obtained for a two-band model...

  8. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers

    NARCIS (Netherlands)

    de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries

    2014-01-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic

  9. One-dimensional magnetohydrodynamic calculations of a hydrogen-gas puff

    International Nuclear Information System (INIS)

    Maxon, S.; Nielsen, P.D.

    1981-01-01

    A one-dimensional Lagrangian calculation of the implosion of a hydrogen gas puff is presented. At maximum compression, 60% of the mass is located in a density spike .5 mm off the axis with a half width of 40 μm. The temperature on axis reaches 200 eV

  10. Peierls instability and superconductivity in substitutionally disordered pseudo one-dimensional conductors

    International Nuclear Information System (INIS)

    Zhang, L.

    1981-08-01

    With coherent potential approximation method the effect of the substitutional disorder in the pseudo one-dimensional conductors on the Peierls transition temperature (Tsub(p)) and superconductive transition temperature (Tsub(c)) has been calculated. The favourable condition for searching for somewhat high Tsub(c) superconductors in these systems has been discussed. (author)

  11. Theory of superfluidity and drag force in the one-dimensional Bose gas

    NARCIS (Netherlands)

    Cherny, A.Y.; Caux, J.-S.; Brand, J.

    2012-01-01

    The one-dimensional Bose gas is an unusual superfluid. In contrast to higher spatial dimensions, the existence of non-classical rotational inertia is not directly linked to the dissipationless motion of infinitesimal impurities. Recently, experimental tests with ultracold atoms have begun and

  12. A novel one-dimensional chain built of vanadyl ions and pyrazine-2,5-dicarboxylate

    NARCIS (Netherlands)

    Lankelma, M.; de Boer, J.; Ferbinteanu, M.; Dantas Ramos, A.L.; Tanasa, R.; Rothenberg, G.; Tanase, S.

    2015-01-01

    We present a new coordination polymer, {[VO(pzdc)(H2O)(2)] H2O}(n), built from vanadyl and pyrazine-2,5-dicarboxylate (pzdc) ions. It consists of a one-dimensional chain of vanadyl ions linked by pzdc ions. The carboxylate groups show monodentate coordination, while the pyrazine ring is present both

  13. Derivation of Ginzburg-Landau theory for a one-dimensional system with contact interaction

    DEFF Research Database (Denmark)

    Frank, Rupert; Hanizl, Christian; Seiringer, Robert

    2013-01-01

    In a recent paper we give the first rigorous derivation of the celebrated Ginzburg-Landau (GL) theory, starting from the microscopic Bardeen-Cooper-Schrieffer (BCS) model. Here we present our results in the simplified case of a one-dimensional system of particles interacting via a delta-potential....

  14. An inverse problem for a one-dimensional time-fractional diffusion problem

    KAUST Repository

    Jin, Bangti; Rundell, William

    2012-01-01

    We study an inverse problem of recovering a spatially varying potential term in a one-dimensional time-fractional diffusion equation from the flux measurements taken at a single fixed time corresponding to a given set of input sources. The unique

  15. Stimulated wave of polarization in a one-dimensional Ising chain

    International Nuclear Information System (INIS)

    Lee, Jae-Seung; Khitrin, A.K.

    2005-01-01

    It is demonstrated that in a one-dimensional Ising chain with nearest-neighbor interactions, irradiated by a weak resonant transverse field, a stimulated wave of flipped spins can be triggered by a flip of a single spin. This analytically solvable model illustrates mechanisms of quantum amplification and quantum measurement

  16. ANAUSN - a one-dimensional multigroup SN transport theory module for the AUS reactor neutronics system

    International Nuclear Information System (INIS)

    Clancy, B.E.

    1982-05-01

    ANAUSN is a general purpose, one-dimensional discrete ordinate transport theory program which has access to AUS datapools. Fixed source, reactivity and a variety of criticality search calculations can be performed. The program can be operated as a module in the AUS scheme or as a stand-alone program

  17. Regularized integrable version of the one-dimensional quantum sine-Gordon model

    International Nuclear Information System (INIS)

    Japaridze, G.I.; Nersesyan, A.A.; Wiegmann, P.B.

    1983-01-01

    The authors derive a regularized exactly solvable version of the one-dimensional quantum sine-Gordon model proceeding from the exact solution of the U(1)-symmetric Thirring model. The ground state and the excitation spectrum are obtained in the region ν 2 < 8π. (Auth.)

  18. Observation of Zero-Dimensional States in a One-Dimensional Electron Interferometer

    NARCIS (Netherlands)

    Wees, B.J. van; Kouwenhoven, L.P.; Harmans, C.J.P.M.; Williamson, J.G.; Timmering, C.E.; Broekaart, M.E.I.; Foxon, C.T.; Harris, J.J.

    1989-01-01

    We have studied the electron transport in a one-dimensional electron interferometer. It consists of a disk-shaped two-dimensional electron gas, to which quantum point contacts are attached. Discrete zero-dimensional states are formed due to constructive interference of electron waves traveling along

  19. One-dimensional organic lead halide perovskites with efficient bluish white-light emission

    Science.gov (United States)

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-01

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2-]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.

  20. Effects of interaction imbalance in a strongly repulsive one-dimensional Bose gas

    DEFF Research Database (Denmark)

    Barfknecht, Rafael Emilio; Zinner, Nikolaj Thomas; Foerster, Angela

    2018-01-01

    We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate...

  1. Suggested Courseware for the Non-Calculus Physics Student: Measurement, Vectors, and One-Dimensional Motion.

    Science.gov (United States)

    Mahoney, Joyce; And Others

    1988-01-01

    Evaluates 16 commercially available courseware packages covering topics for introductory physics. Discusses the price, sub-topics, program type, interaction, time, calculus required, graphics, and comments of each program. Recommends two packages in measurement and vectors, and one-dimensional motion respectively. (YP)

  2. Friedel oscillations in one-dimensional metals: From Luttinger's theorem to the Luttinger liquid

    International Nuclear Information System (INIS)

    Vieira, Daniel; Freire, Henrique J.P.; Campo, V.L.; Capelle, K.

    2008-01-01

    Charge density and magnetization density profiles of one-dimensional metals are investigated by two complementary many-body methods: numerically exact (Lanczos) diagonalization, and the Bethe-Ansatz local-density approximation with and without a simple self-interaction correction. Depending on the magnetization of the system, local approximations reproduce different Fourier components of the exact Friedel oscillations

  3. One-dimensional simulation of a stirling three-stage pulse-tube refrigerator

    NARCIS (Netherlands)

    Etaati, M.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.

    2009-01-01

    A one-dimensional mathematical model is derived for a three-stage pulse-tube refrigerator (PTR) that is based on the conservation laws and the ideal gas law. The three-stage PTR is regarded as three separate single-stage PTRs that are coupled via proper junction conditions. At the junctions there

  4. One-dimensional simulation of a Stirling three-stage pulse-tube refrigerator

    NARCIS (Netherlands)

    Etaati, M.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.

    2009-01-01

    A one-dimensional mathematical model is derived for a three-stage pulse-tube refrigerator (PTR) that is based on the conservation laws and the ideal gas law. The three-stage PTR is regarded as three separate single-stage PTRs that are coupled via proper junction conditions. At the junctions there

  5. Flow Patterns and Thermal Drag in a One-Dimensional Inviscid Channel with Heating or Cooling

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    In this paper investigations on the flow patterns and the thermal drag phenomenon in one -dimensional inviscid channel flow with heating or cooling are described and discussed:expressions of flow rate ratio and thermal drag coefficient for different flow patterns and its physical mechanism are presented.

  6. Asymptotic behavior of a diffusive scheme solving the inviscid one-dimensional pressureless gases system

    OpenAIRE

    Boudin , Laurent; Mathiaud , Julien

    2012-01-01

    In this work, we discuss some numerical properties of the viscous numerical scheme introduced in [Boudin, Mathiaud, NMPDE 2012] to solve the one-dimensional pressureless gases system, and study in particular, from a computational viewpoint, its asymptotic behavior when the viscosity parameter used in the scheme becomes smaller.

  7. Organometallic benzene-vanadium wire: A one-dimensional half-metallic ferromagnet

    DEFF Research Database (Denmark)

    Maslyuk, V.; Bagrets, A.; Meded, V.

    2006-01-01

    Using density functional theory we perform theoretical investigations of the electronic properties of a freestanding one-dimensional organometallic vanadium-benzene wire. This system represents the limiting case of multidecker V-n(C6H6)(n+1) clusters which can be synthesized with established meth...

  8. High-intensity ionization approximations: test of convergence in a one-dimensional model

    International Nuclear Information System (INIS)

    Antunes Neto, H.S.; Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro); Davidovich, L.; Marchesin, D.

    1983-06-01

    By solving numerically a one-dimensional model, the range of validity of some non-perturbative treatments proposed for the problem of atomic ionization by strong laser fields is examined. Some scalling properties of the ionization probability are stablished and a new approximation, which converges to the exact results in the limit of very strong fields is proposed. (Author) [pt

  9. One-dimensional random walk of nanosized liquid Pb inclusions on dislocations in Al

    DEFF Research Database (Denmark)

    Johnson, E.; Levinsen, M.T.; Steenstrup, S.

    2004-01-01

    to and perpendicular to the dislocations respectively. Movements parallel to the dislocation lines display properties of partially confined one-dimensional random walks where smaller inclusions can be seen to move over distances that are many times their own sizes. In contrast, the trajectories perpendicular...

  10. One-dimensional numerical simulation of the Stirling-type pulse-tube refrigerator

    NARCIS (Netherlands)

    Etaati, M.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.

    2007-01-01

    Change of title: One-dimensional numerical simulation of the Stirling-type pulse-tube cooler. Pulse-tube refrigeration (PTR) is a new technology for cooling down to extremely low temperatures. In this paper a particular type, the so-called Stirling single-stage refrigerator, is considered. A

  11. Explicit solutions of one-dimensional, first-order, stationary mean-field games with congestion

    KAUST Repository

    Gomes, Diogo A.

    2017-01-05

    Here, we consider one-dimensional first-order stationary mean-field games with congestion. These games arise when crowds face difficulty moving in high-density regions. We look at both monotone decreasing and increasing interactions and construct explicit solutions using the current formulation. We observe new phenomena such as discontinuities, unhappiness traps and the non-existence of solutions.

  12. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors.

    Science.gov (United States)

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-07-07

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.

  13. Nonlinear behavior of a monochromatic wave in a one-dimensional Vlasov plasma

    International Nuclear Information System (INIS)

    Shoucri, M.M.; Gagne, R.R.J.

    1978-01-01

    The nonlinear evolution of a monochromatic wave in a one-dimensional Vlasov plasma is studied numerically. The numerical results are carried out far enough in time for phase mixing to dominate the asymptotic state of the system. A qualitative comparison with previously reported simulations is given

  14. One-dimensional modelling of limit-cycle oscillation and H-mode power scaling

    DEFF Research Database (Denmark)

    Wu, Xingquan; Xu, Guosheng; Wan, Baonian

    2015-01-01

    To understand the connection between the dynamics of microscopic turbulence and the macroscale power scaling in the L-I-H transition in magnetically confined plasmas, a new time-dependent, one-dimensional (in radius) model has been developed. The model investigates the radial force balance equati...

  15. Rational solutions to two- and one-dimensional multicomponent Yajima–Oikawa systems

    International Nuclear Information System (INIS)

    Chen, Junchao; Chen, Yong; Feng, Bao-Feng; Maruno, Ken-ichi

    2015-01-01

    Exact explicit rational solutions of two- and one-dimensional multicomponent Yajima–Oikawa (YO) systems, which contain multi-short-wave components and single long-wave one, are presented by using the bilinear method. For two-dimensional system, the fundamental rational solution first describes the localized lumps, which have three different patterns: bright, intermediate and dark states. Then, rogue waves can be obtained under certain parameter conditions and their behaviors are also classified to above three patterns with different definition. It is shown that the simplest (fundamental) rogue waves are line localized waves which arise from the constant background with a line profile and then disappear into the constant background again. In particular, two-dimensional intermediate and dark counterparts of rogue wave are found with the different parameter requirements. We demonstrate that multirogue waves describe the interaction of several fundamental rogue waves, in which interesting curvy wave patterns appear in the intermediate times. Different curvy wave patterns form in the interaction of different types fundamental rogue waves. Higher-order rogue waves exhibit the dynamic behaviors that the wave structures start from lump and then retreat back to it, and this transient wave possesses the patterns such as parabolas. Furthermore, different states of higher-order rogue wave result in completely distinguishing lumps and parabolas. Moreover, one-dimensional rogue wave solutions with three states are constructed through the further reduction. Specifically, higher-order rogue wave in one-dimensional case is derived under the parameter constraints. - Highlights: • Exact explicit rational solutions of two-and one-dimensional multicomponent Yajima–Oikawa systems. • Two-dimensional rogue wave contains three different patterns: bright, intermediate and dark states. • Multi- and higher-order rogue waves exhibit distinct dynamic behaviors in two-dimensional case

  16. Investigations on Substrate Temperature-Induced Growth Modes of Organic Semiconductors at Dielectric/semiconductor Interface and Their Correlation with Threshold Voltage Stability in Organic Field-Effect Transistors.

    Science.gov (United States)

    Padma, Narayanan; Maheshwari, Priya; Bhattacharya, Debarati; Tokas, Raj B; Sen, Shashwati; Honda, Yoshihide; Basu, Saibal; Pujari, Pradeep Kumar; Rao, T V Chandrasekhar

    2016-02-10

    Influence of substrate temperature on growth modes of copper phthalocyanine (CuPc) thin films at the dielectric/semiconductor interface in organic field effect transistors (OFETs) is investigated. Atomic force microscopy (AFM) imaging at the interface reveals a change from 'layer+island' to "island" growth mode with increasing substrate temperatures, further confirmed by probing the buried interfaces using X-ray reflectivity (XRR) and positron annihilation spectroscopic (PAS) techniques. PAS depth profiling provides insight into the details of molecular ordering while positron lifetime measurements reveal the difference in packing modes of CuPc molecules at the interface. XRR measurements show systematic increase in interface width and electron density correlating well with the change from layer + island to coalesced huge 3D islands at higher substrate temperatures. Study demonstrates the usefulness of XRR and PAS techniques to study growth modes at buried interfaces and reveals the influence of growth modes of semiconductor at the interface on hole and electron trap concentrations individually, thereby affecting hysteresis and threshold voltage stability. Minimum hole trapping is correlated to near layer by layer formation close to the interface at 100 °C and maximum to the island formation with large voids between the grains at 225 °C.

  17. Comparison of one-dimensional and point kinetics for various light water reactor transients

    International Nuclear Information System (INIS)

    Naser, J.A.; Lin, C.; Gose, G.C.; McClure, J.A.; Matsui, Y.

    1985-01-01

    The object of this paper is to compare the results from the three kinetics options: 1) point kinetics; 2) point kinetics by not changing the shape function; and 3) one-dimensional kinetics for various transients on both BWRs and PWRs. A systematic evaluation of the one-dimensional kinetics calculation and its alternatives is performed to determine the status of these models and to identify additional development work. In addition, for PWRs, the NODEP-2 - NODETRAN and SIMULATE - SIMTRAN paths for calculating kinetics parameters are compared. This type of comparison has not been performed before and is needed to properly evaluate the RASP methodology of which these codes are a part. It should be noted that RASP is in its early pre-release stage and this is the first serious attempt to examine the consistency between these two similar but different methods of generating physics parameters for the RETRAN computer code

  18. Suppressing Klein tunneling in graphene using a one-dimensional array of localized scatterers.

    Science.gov (United States)

    Walls, Jamie D; Hadad, Daniel

    2015-02-13

    Graphene's unique physical and chemical properties make it an attractive platform for use in micro- and nanoelectronic devices. However, electrostatically controlling the flow of electrons in graphene can be challenging as a result of Klein tunneling, where electrons normally incident to a one-dimensional potential barrier of height V are perfectly transmitted even as V → ∞. In this study, theoretical and numerical calculations predict that the transmission probability for an electron wave normally incident to a one-dimensional array of localized scatterers can be significantly less than unity when the electron wavelength is smaller than the spacing between scatterers. In effect, placing periodic openings throughout a potential barrier can, somewhat counterintuitively, decrease transmission in graphene. Our results suggest that electrostatic potentials with spatial variations on the order of the electron wavelength can suppress Klein tunneling and could find applications in developing graphene electronic devices.

  19. One-dimensional versus two-dimensional electronic states in vicinal surfaces

    International Nuclear Information System (INIS)

    Ortega, J E; Ruiz-Oses, M; Cordon, J; Mugarza, A; Kuntze, J; Schiller, F

    2005-01-01

    Vicinal surfaces with periodic arrays of steps are among the simplest lateral nanostructures. In particular, noble metal surfaces vicinal to the (1 1 1) plane are excellent test systems to explore the basic electronic properties in one-dimensional superlattices by means of angular photoemission. These surfaces are characterized by strong emissions from free-electron-like surface states that scatter at step edges. Thereby, the two-dimensional surface state displays superlattice band folding and, depending on the step lattice constant d, it splits into one-dimensional quantum well levels. Here we use high-resolution, angle-resolved photoemission to analyse surface states in a variety of samples, in trying to illustrate the changes in surface state bands as a function of d

  20. Heuristic geometric ''eigenvalue universality'' in a one-dimensional neutron transport problem with anisotropic scattering

    International Nuclear Information System (INIS)

    Goncalves, G.A.; Vilhena, M.T. de; Bodmann, B.E.J.

    2010-01-01

    In the present work we propose a heuristic construction of a transport equation for neutrons with anisotropic scattering considering only the radial cylinder dimension. The eigenvalues of the solutions of the equation correspond to the positive values for the one dimensional case. The central idea of the procedure is the application of the S N method for the discretisation of the angular variable followed by the application of the zero order Hankel transformation. The basis the construction of the scattering terms in form of an integro-differential equation for stationary transport resides in the hypothesis that the eigenvalues that compose the elementary solutions are independent of geometry for a homogeneous medium. We compare the solutions for the cartesian one dimensional problem for an infinite cylinder with azimuthal symmetry and linear anisotropic scattering for two cases. (orig.)

  1. Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams

    International Nuclear Information System (INIS)

    Chen Zhongsheng; Yang Yongmin; Lu Zhimiao; Luo Yanting

    2013-01-01

    Nowadays broadband vibration energy harvesting using piezoelectric effect has become a research hotspot. The innovation in this paper is the widening of the resonant bandwidth of a piezoelectric harvester based on phononic band gaps, which is called one-dimensional phononic piezoelectric cantilever beams (PPCBs). Broadband characteristics of one-dimensional PPCBs are analyzed deeply and the vibration band gap can be calculated. The effects of different parameters on the vibration band gap are presented by both numerical and finite element simulations. Finally experimental tests are conducted to validate the proposed method. It can be concluded that it is feasible to use the PPCB for broadband vibration energy harvesting and there should be a compromise among related parameters for low-frequency vibrations.

  2. Magnetic Properties of One-Dimensional Ferromagnetic Mixed-Spin Model within Tyablikov Decoupling Approximation

    International Nuclear Information System (INIS)

    Chen Yuan; Song Chuangchuang; Xiang Ying

    2010-01-01

    In this paper, we apply the two-time Green's function method, and provide a simple way to study the magnetic properties of one-dimensional spin-(S,s) Heisenberg ferromagnets. The magnetic susceptibility and correlation functions are obtained by using the Tyablikov decoupling approximation. Our results show that the magnetic susceptibility and correlation length are a monotonically decreasing function of temperature regardless of the mixed spins. It is found that in the case of S=s, our results of one-dimensional mixed-spin model is reduced to be those of the isotropic ferromagnetic Heisenberg chain in the whole temperature region. Our results for the susceptibility are in agreement with those obtained by other theoretical approaches. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Observation of magnetoelastic effects in a quasi-one-dimensional spiral magnet

    Science.gov (United States)

    Wang, Chong; Yu, Daiwei; Liu, Xiaoqiang; Chen, Rongyan; Du, Xinyu; Hu, Biaoyan; Wang, Lichen; Iida, Kazuki; Kamazawa, Kazuya; Wakimoto, Shuichi; Feng, Ji; Wang, Nanlin; Li, Yuan

    2017-08-01

    We present a systematic study of spin and lattice dynamics in the quasi-one-dimensional spiral magnet CuBr2, using Raman scattering in conjunction with infrared and neutron spectroscopy. Along with the development of spin correlations upon cooling, we observe a rich set of broad Raman bands at energies that correspond to phonon-dispersion energies near the one-dimensional magnetic wave vector. The low-energy bands further exhibit a distinct intensity maximum at the spiral magnetic ordering temperature. We attribute these unusual observations to two possible underlying mechanisms: (1) formation of hybrid spin-lattice excitations and/or (2) "quadrumerization" of the lattice caused by spin-singlet entanglement in competition with the spiral magnetism.

  4. X-ray imaging device for one-dimensional and two-dimensional radioscopy

    International Nuclear Information System (INIS)

    1978-01-01

    The X-ray imaging device for the selectable one-dimensional or two-dimensional pictures of objects illuminated by X-rays, comprising an X-ray source, an X-ray screen, and an opto-electrical picture development device placed behind the screen, is characterized by an anamorphotic optical system, which is positioned with a one-dimensional illumination between the X-ray screen and the opto-electrical device and that a two-dimensional illumination will be developed, and that in view of the lens system which forms part of the opto-electrical device, there is placed an X-ray screen in a specified beam direction so that a magnified image may be formed by equalisation of the distance between the X-ray screen and the lens system. (G.C.)

  5. Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhongsheng, E-mail: czs_study@sina.com [Key Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China); Yang Yongmin; Lu Zhimiao; Luo Yanting [Key Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China)

    2013-02-01

    Nowadays broadband vibration energy harvesting using piezoelectric effect has become a research hotspot. The innovation in this paper is the widening of the resonant bandwidth of a piezoelectric harvester based on phononic band gaps, which is called one-dimensional phononic piezoelectric cantilever beams (PPCBs). Broadband characteristics of one-dimensional PPCBs are analyzed deeply and the vibration band gap can be calculated. The effects of different parameters on the vibration band gap are presented by both numerical and finite element simulations. Finally experimental tests are conducted to validate the proposed method. It can be concluded that it is feasible to use the PPCB for broadband vibration energy harvesting and there should be a compromise among related parameters for low-frequency vibrations.

  6. Use of one-dimensional Cosserat theory to study instability in a viscous liquid jet

    International Nuclear Information System (INIS)

    Bogy, D.B.

    1978-01-01

    The problem of the instability of an incompressible viscous liquid jet is considered within the context of one-dimensional Cosserat equations. Linear stability analyses are performed for both the infinite and semi-infinite jets. The results obtained for the inviscid case are compared with the corresponding results derived from ideal fluid equations. They are also compared with recent results by other authors obtained from a different set of one-dimensional jet equations. Solutions are also obtained, within the framework of the linearized theory, to the jet break-up problems formulated as an initial-value problem for the infinite jet and as a boundary-value problem for the semi-infinite jet

  7. Quantum magnetism in strongly interacting one-dimensional spinor Bose systems

    DEFF Research Database (Denmark)

    Salami Dehkharghani, Amin; Volosniev, A. G.; Lindgren, E. J.

    2015-01-01

    -range inter-species interactions much larger than their intra-species interactions and show that they have novel energetic and magnetic properties. In the strongly interacting regime, these systems have energies that are fractions of the basic harmonic oscillator trap quantum and have spatially separated......Strongly interacting one-dimensional quantum systems often behave in a manner that is distinctly different from their higher-dimensional counterparts. When a particle attempts to move in a one-dimensional environment it will unavoidably have to interact and 'push' other particles in order...... ground states with manifestly ferromagnetic wave functions. Furthermore, we predict excited states that have perfect antiferromagnetic ordering. This holds for both balanced and imbalanced systems, and we show that it is a generic feature as one crosses from few- to many-body systems....

  8. The fast algorithm solving the one-dimensional time-dependent Schroedinger equation for teaching purposes

    International Nuclear Information System (INIS)

    Skoczen, A.; Machowski, W.; Kaprzyk, S.

    1990-07-01

    Computer program aiming at application in quantum mechanics didactics has been proposed. This program can generate the moving pictures of one-dimensional quantum mechanics scattering phenomena. Constructions of this program provide two options. In the first option the wave packet is generated in infinite one-dimensional well which has walls on the borders of graphic window. In the second option the square potential barrier is located in this well and transmission and reflection of wave packet are shown. We have selected a Gaussian wave packet to represent the initial state of the particle. The wave equation is solved numerically by a method discussed in detail. Solutions for the succesive time moments are graphically presented on the monitor screen. In this way observer can watch whole time-development of physical system. Graphically presented results are physically realistic when program parameters satisfy conditions discussed in this paper. (author)

  9. Theory of finite-entanglement scaling at one-dimensional quantum critical points.

    Science.gov (United States)

    Pollmann, Frank; Mukerjee, Subroto; Turner, Ari M; Moore, Joel E

    2009-06-26

    Studies of entanglement in many-particle systems suggest that most quantum critical ground states have infinitely more entanglement than noncritical states. Standard algorithms for one-dimensional systems construct model states with limited entanglement, which are a worse approximation to quantum critical states than to others. We give a quantitative theory of previously observed scaling behavior resulting from finite entanglement at quantum criticality. Finite-entanglement scaling in one-dimensional systems is governed not by the scaling dimension of an operator but by the "central charge" of the critical point. An important ingredient is the universal distribution of density-matrix eigenvalues at a critical point [P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008)10.1103/PhysRevA.78.032329]. The parameter-free theory is checked against numerical scaling at several quantum critical points.

  10. Advances in one-dimensional wave mechanics towards a unified classical view

    CERN Document Server

    Cao, Zhuangqi

    2014-01-01

    Advances in One-Dimensional Wave Mechanics provides a comprehensive description of the motion of microscopic particles in one-dimensional, arbitrary-shaped potentials based on the analogy between Quantum Mechanics and Electromagnetism. Utilizing a deeper understanding of the wave nature of matter, this book introduces the concept of the scattered sub-waves and a series of new analytical results using the Analytical Transfer Matrix (ATM) method. This work will be useful for graduate students majoring in physics, mainly in basic quantum theory, as well as for academic researchers exploring electromagnetism, particle physics, and wave mechanics and for experts in the field of optical waveguide and integrated optics. Prof. Zhuangqi Cao is a Professor of Physics at Shanghai Jiao Tong University, China. Dr. Cheng Yin is a teacher at Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, China.

  11. Development of One Dimensional Hyperbolic Coupled Solver for Two-Phase Flows

    International Nuclear Information System (INIS)

    Kim, Eoi Jin; Kim, Jong Tae; Jeong, Jae June

    2008-08-01

    The purpose of this study is a code development for one dimensional two-phase two-fluid flows. In this study, the computations of two-phase flow were performed by using the Roe scheme which is one of the upwind schemes. The upwind scheme is widely used in the computational fluid dynamics because it can capture discontinuities clearly such as a shock. And this scheme is applicable to multi-phase flows by the extension methods which were developed by Toumi, Stadtke, etc. In this study, the extended Roe upwind scheme by Toumi for two-phase flow was implemented in the one-dimensional code. The scheme was applied to a shock tube problem and a water faucet problem. This numerical method seems efficient for non oscillating solutions of two phase flow problems, and also capable for capturing discontinuities

  12. Development of One Dimensional Hyperbolic Coupled Solver for Two-Phase Flows

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eoi Jin; Kim, Jong Tae; Jeong, Jae June

    2008-08-15

    The purpose of this study is a code development for one dimensional two-phase two-fluid flows. In this study, the computations of two-phase flow were performed by using the Roe scheme which is one of the upwind schemes. The upwind scheme is widely used in the computational fluid dynamics because it can capture discontinuities clearly such as a shock. And this scheme is applicable to multi-phase flows by the extension methods which were developed by Toumi, Stadtke, etc. In this study, the extended Roe upwind scheme by Toumi for two-phase flow was implemented in the one-dimensional code. The scheme was applied to a shock tube problem and a water faucet problem. This numerical method seems efficient for non oscillating solutions of two phase flow problems, and also capable for capturing discontinuities.

  13. Enhancement of conductivity due to local disorder in a one-dimensional conductor

    International Nuclear Information System (INIS)

    Morifuji, Masato; Maeda, Yusuke

    2011-01-01

    We theoretically investigate electron transport in a one-dimensional conductor with a locally disordered potential by using the non-equilibrium Green’s function theory. It is found that, by changing the energy of a site in a one-dimensional atomic chain, the electron conductivity can be larger when the modulated site energy is smaller than that of the other sites. This contradicts the conventional picture that an electron is scattered by the disorder of the potential, because such a scattering process usually causes resistivity. We show that the enhancement of conductivity that seems contradictory to the conventional picture of electron motion is explained by the change of energy of quasi bound states in the conductor. (paper)

  14. Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional maps

    International Nuclear Information System (INIS)

    Avrutin, V; Granados, A; Schanz, M

    2011-01-01

    Typically, big bang bifurcation occurs for one (or higher)-dimensional piecewise-defined discontinuous systems whenever two border collision bifurcation curves collide transversely in the parameter space. At that point, two (feasible) fixed points collide with one boundary in state space and become virtual, and, in the one-dimensional case, the map becomes continuous. Depending on the properties of the map near the codimension-two bifurcation point, there exist different scenarios regarding how the infinite number of periodic orbits are born, mainly the so-called period adding and period incrementing. In our work we prove that, in order to undergo a big bang bifurcation of the period incrementing type, it is sufficient for a piecewise-defined one-dimensional map that the colliding fixed points are attractive and with associated eigenvalues of different signs

  15. One-dimensional flame instability and control of burning in fire-chamber

    Directory of Open Access Journals (Sweden)

    Victor E. Volkov

    2015-03-01

    Full Text Available The flame stability with regard to one-dimensional exponential perturbations both for the combustion in the fire-chamber and the flame propagating in closed tubes or chambers is investigated. It is proved that both stability and instability are possible for the combustion process. At the same time the one-dimensional flame instability is guaranteed near the front wall of the fire-chamber where the fuel supply is realized. Therefore the control of combustion in the fire-chamber leads to support of the flame at the maximum possible distance from the front wall of the fire-chamber to prevent the vibratory combustion or to diminish intensity of pulsations if these pulsations are inevitable.

  16. A general one-dimensional model for conduction-controlled rewetting of a surface

    International Nuclear Information System (INIS)

    Elias, E.; Yadigaroglu, G.

    1977-01-01

    A computer-oriented analytical method for predicting the rewetting rate of a hot dry wall is proposed. The wall, which is modeled as a thin flat plate with internal heat generation, receives a variable heat flux from one side while it is cooled from the other side. The model accounts for the large variations of the heat transfer coefficient near the wet front and for the temperature dependence of the thermal and physical properties of the wall. The one-dimensional heat-conduction equation is solved by dividing the quenching zone into small segments of arbitrary temperature increment and constant properties and heat transfer coefficient. A trial-and-error method is developed to predict the velocity of the wet front, the length of the quenching zone and the temperature profile. The one-dimensional models of other authors can be obtained as particular cases of the present model. (Auth.)

  17. One-dimensional silicon nanolines in the Si(001):H surface

    International Nuclear Information System (INIS)

    Bianco, F.; Köster, S. A.; Longobardi, M.; Owen, J. H.G.; Renner, Ch.; Bowler, D. R.

    2013-01-01

    We present a detailed study of the structural and electronic properties of a self-assembled silicon nanoline embedded in the monohydride Si(001):H surface, known as the Haiku stripe. The nanoline is a perfectly straight and defect free endotaxial structure of huge aspect ratio; it can grow micrometer long at a constant width of exactly four Si dimers (1.54 nm). Another remarkable property is its capacity to be exposed to air without suffering any degradation. The nanoline grows independently of any step edges at tunable densities, from isolated nanolines to a dense array of nanolines. In addition to these unique structural characteristics, scanning tunnelling microscopy and density functional theory reveal a one-dimensional state confined along the Haiku core. This nanoline is a promising candidate for the long sought after electronic solid-state one-dimensional model system to explore the fascinating quantum properties emerging in such reduced dimensionality

  18. Ultracold atoms in one-dimensional optical lattices approaching the Tonks-Girardeau regime

    International Nuclear Information System (INIS)

    Pollet, L.; Rombouts, S.M.A.; Denteneer, P.J. H.

    2004-01-01

    Recent experiments on ultracold atomic alkali gases in a one-dimensional optical lattice have demonstrated the transition from a gas of soft-core bosons to a Tonks-Girardeau gas in the hard-core limit, where one-dimensional bosons behave like fermions in many respects. We have studied the underlying many-body physics through numerical simulations which accommodate both the soft-core and hard-core limits in one single framework. We find that the Tonks-Girardeau gas is reached only at the strongest optical lattice potentials. Results for slightly higher densities, where the gas develops a Mott-like phase already at weaker optical lattice potentials, show that these Mott-like short-range correlations do not enhance the convergence to the hard-core limit

  19. Advanced One-Dimensional Entrained-Flow Gasifier Model Considering Melting Phenomenon of Ash

    Directory of Open Access Journals (Sweden)

    Jinsu Kim

    2018-04-01

    Full Text Available A one-dimensional model is developed to represent the ash-melting phenomenon, which was not considered in the previous one-dimensional (1-D entrained-flow gasifier model. We include sensible heat of slag and the fusion heat of ash in the heat balance equation. To consider the melting of ash, we propose an algorithm that calculates the energy balance for three scenarios based on temperature. We also use the composition and the thermal properties of anorthite mineral to express ash. gPROMS for differential equations is used to solve this algorithm in a simulation; the results include coal conversion, gas composition, and temperature profile. Based on the Texaco pilot plant gasifier, we validate our model. Our results show good agreement with previous experimental data. We conclude that the sensible heat of slag and the fusion heat of ash must be included in the entrained flow gasifier model.

  20. Double and super-exchange model in one-dimensional systems

    International Nuclear Information System (INIS)

    Vallejo, E.; Navarro, O.; Avignon, M.

    2010-01-01

    We present an analytical and numerical study of the competition between double and super-exchange interactions in a one-dimensional model. For low super-exchange interaction energy we find phase separation between ferromagnetic and anti-ferromagnetic phases. When the super-exchange interaction energy gets larger, the conduction electrons are self-trapped within separate small magnetic polarons. These magnetic polarons contain a single electron inside two or three sites depending on the conduction electron density and form a Wigner crystallization. A new phase separation is found between these small polarons and the anti-ferromagnetic phase. Spin-glass behavior is obtained consistent with experimental results of the nickelate one-dimensional compound Y 2-x Ca x BaNiO 5 .

  1. An algorithm for engineering regime shifts in one-dimensional dynamical systems

    Science.gov (United States)

    Tan, James P. L.

    2018-01-01

    Regime shifts are discontinuous transitions between stable attractors hosting a system. They can occur as a result of a loss of stability in an attractor as a bifurcation is approached. In this work, we consider one-dimensional dynamical systems where attractors are stable equilibrium points. Relying on critical slowing down signals related to the stability of an equilibrium point, we present an algorithm for engineering regime shifts such that a system may escape an undesirable attractor into a desirable one. We test the algorithm on synthetic data from a one-dimensional dynamical system with a multitude of stable equilibrium points and also on a model of the population dynamics of spruce budworms in a forest. The algorithm and other ideas discussed here contribute to an important part of the literature on exercising greater control over the sometimes unpredictable nature of nonlinear systems.

  2. A simple analytical model for electronic conductance in a one dimensional atomic chain across a defect

    International Nuclear Information System (INIS)

    Khater, Antoine; Szczesniak, Dominik

    2011-01-01

    An analytical model is presented for the electronic conductance in a one dimensional atomic chain across an isolated defect. The model system consists of two semi infinite lead atomic chains with the defect atom making the junction between the two leads. The calculation is based on a linear combination of atomic orbitals in the tight-binding approximation, with a single atomic one s-like orbital chosen in the present case. The matching method is used to derive analytical expressions for the scattering cross sections for the reflection and transmission processes across the defect, in the Landauer-Buttiker representation. These analytical results verify the known limits for an infinite atomic chain with no defects. The model can be applied numerically for one dimensional atomic systems supported by appropriate templates. It is also of interest since it would help establish efficient procedures for ensemble averages over a field of impurity configurations in real physical systems.

  3. Unified description of perturbation theory and band center anomaly in one-dimensional Anderson localization

    International Nuclear Information System (INIS)

    Kang, Kai; Qin, Shaojing; Wang, Chuilin

    2011-01-01

    We calculated numerically the localization length of one-dimensional Anderson model with diagonal disorder. For weak disorder, we showed that the localization length changes continuously as the energy changes from the band center to the boundary of the anomalous region near the band edge. We found that all the localization lengths for different disorder strengths and different energies collapse onto a single curve, which can be fitted by a simple equation. Thus the description of the perturbation theory and the band center anomaly were unified into this equation. -- Highlights: → We study the band center anomaly of one-dimensional Anderson localization. → We study numerically the Lyapunov exponent through a parametrization method of the transfer matrix. → We give a unified equation to describe the band center anomaly and perturbation theory.

  4. Distribution and localization of the harmonic magnon modes in a one-dimensional Heisenberg spin glass

    Science.gov (United States)

    Boukahil, A.; Huber, D. L.

    1989-09-01

    The harmonic magnon modes in a one-dimensional Heisenberg spin glass having nearest-neighbor exchange interactions of fixed magnitude and random sign are investigated. The Lyapounov exponent is calculated for chains of 107-108 spins over the interval 0Stinchcombe and Pimentel using transfer-matrix techniques; at higher frequencies, gaps appear in the spectrum. At low frequencies, the localization length diverges as ω-2/3. A formal connection is established between the spin glass and the one-dimensional discretized Schrödinger equation. By making use of the connection, it is shown that the theory of Derrida and Gardner, which was developed for weak potential disorder, can account quantitatively for the distribution and localization of the low-frequency magnon modes in the spin-glass model.

  5. Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional maps

    Science.gov (United States)

    Avrutin, V.; Granados, A.; Schanz, M.

    2011-09-01

    Typically, big bang bifurcation occurs for one (or higher)-dimensional piecewise-defined discontinuous systems whenever two border collision bifurcation curves collide transversely in the parameter space. At that point, two (feasible) fixed points collide with one boundary in state space and become virtual, and, in the one-dimensional case, the map becomes continuous. Depending on the properties of the map near the codimension-two bifurcation point, there exist different scenarios regarding how the infinite number of periodic orbits are born, mainly the so-called period adding and period incrementing. In our work we prove that, in order to undergo a big bang bifurcation of the period incrementing type, it is sufficient for a piecewise-defined one-dimensional map that the colliding fixed points are attractive and with associated eigenvalues of different signs.

  6. Polyacene and a new class of quasi-one-dimensional conductors

    International Nuclear Information System (INIS)

    Kivelson, S.; Chapman, O.L.

    1983-01-01

    Most one-dimensional conductors are quite similar since the Fermi surface is a point and the electron energy dispersion relation near the Fermi surface is linear. It is pointed out that in polyacene the Fermi surface lies at the edge of the Brillouin zone, but that an accidental degeneracy between the valence and conduction bands makes it metallic nonetheless. The dispersion relation is therefore quadratic, and the density of states diverges at the Fermi surface. Thus, polyacene [(C 4 H 2 )/sub n/] and its possible derivatives represent a conceptually new class of quasi-one-dimensional conductors. Moreover, we find that this class of materials has the possibility of possessing interesting condensed phases including high-temperature superconductivity and ferromagnetism

  7. Moving Least Squares Method for a One-Dimensional Parabolic Inverse Problem

    Directory of Open Access Journals (Sweden)

    Baiyu Wang

    2014-01-01

    Full Text Available This paper investigates the numerical solution of a class of one-dimensional inverse parabolic problems using the moving least squares approximation; the inverse problem is the determination of an unknown source term depending on time. The collocation method is used for solving the equation; some numerical experiments are presented and discussed to illustrate the stability and high efficiency of the method.

  8. Analytical Solution and Application for One-Dimensional Consolidation of Tailings Dam

    OpenAIRE

    Liu, Hai-ming; Nan, Gan; Guo, Wei; Yang, Chun-he; Zhang, Chao

    2018-01-01

    The pore water pressure of tailings dam has a very great influence on the stability of tailings dam. Based on the assumption of one-dimensional consolidation and small strain, the partial differential equation of pore water pressure is deduced. The obtained differential equation can be simplified based on the parameters which are constants. According to the characteristics of the tailings dam, the pore water pressure of the tailings dam can be divided into the slope dam segment, dry beach seg...

  9. A one-dimensional gravitationally interacting gas and the convex minorant of Brownian motion

    International Nuclear Information System (INIS)

    Suidan, T M

    2001-01-01

    The surprising connection between a one-dimensional gravitationally interacting gas of sticky particles and the convex minorant process generated by Brownian motion on [0,1] is studied. A study is made of the dynamics of this 1-D gas system by identifying three distinct clustering regimes and the time scales at which they occur. At the critical moment of time the mass distribution of the gas can be computed in terms of functionals of the convex minorant process

  10. Travelling wave solutions of the homogeneous one-dimensional FREFLO model

    Science.gov (United States)

    Huang, B.; Hong, J. Y.; Jing, G. Q.; Niu, W.; Fang, L.

    2018-01-01

    Presently there is quite few analytical studies in traffic flows due to the non-linearity of the governing equations. In the present paper we introduce travelling wave solutions for the homogeneous one-dimensional FREFLO model, which are expressed in the form of series and describe the procedure that vehicles/pedestrians move with a negative velocity and decelerate until rest, then accelerate inversely to positive velocities. This method is expect to be extended to more complex situations in the future.

  11. Two new types of solvability of the one-dimensional anharmonic oscillators

    International Nuclear Information System (INIS)

    Znojil, M.

    1989-01-01

    In the Schroedinger picture, we propose a new modification of the so-called Hill-determinant technique. It is shown to guarantee a proper matching of the two underlying power series Ψ(x) at x=0. In the Heisenberg picture, an evolution of the same one-dimensional polynomially anharmonic oscillator is considered. A modified Peano-Baker method is applied and shown to define the explicit solutions by recurrences. 11 refs

  12. One dimensional Dirac-Moshinsky oscillator-like system and isospectral partners

    International Nuclear Information System (INIS)

    Contreras-Astorga, A

    2015-01-01

    Two different exactly solvable systems are constructed using the supersymmetric quantum mechanics formalism and a pseudoscalar one-dimensional version of the Dirac- Moshinsky oscillator as a departing system. One system is built using a first-order SUSY transformation. The second is obtained through the confluent supersymmetry algorithm. The two of them are explicitly designed to have the same spectrum as the departing system and pseudoscalar potentials. (paper)

  13. Electronic correlations and disorder in transport through one-dimensional nanoparticle arrays

    OpenAIRE

    Bascones, E.; Estevez, V.; Trinidad, J. A.; MacDonald, A. H.

    2007-01-01

    We analyze and clarify the transport properties of a one-dimensional metallic nanoparticle array with interaction between charges restricted to charges placed in the same conductor. We study the threshold voltage, the I-V curves and the potential drop through the array and their dependence on the array parameters including the effect of charge and resistance disorder. We show that very close to threshold the current depends linearly on voltage with a slope independent on the array size. At in...

  14. Transverse Kerr effect in one-dimensional magnetophotonic crystals: Experiment and theory

    International Nuclear Information System (INIS)

    Erokhin, S.; Boriskina, Yu.; Vinogradov, A.; Inoue, M.; Kobayashi, D.; Fedyanin, A.; Gan'shina, E.; Kochneva, M.; Granovsky, A.

    2006-01-01

    Magneto-optical transverse Kerr and Faraday effects are studied experimentally and theoretically in one-dimensional magnetophotonic crystals fabricated from a stack of four repetitions of layers of Bi-substituted yttrium iron garnet and SiO 2 layers. The results of theoretical calculations in the framework of modified matrices approach are consistent with the obtained experimental data with the exception of the one cusp at 480 nm in the transverse Kerr effect spectra. Possible mechanisms of this disagreement are discussed

  15. Electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.

    2003-01-01

    We study the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ by means of density-functional band theory, Hubbard model calculations, and angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant quantitative and qualitative......-dimensional Hubbard model for the low-energy spectral behavior is attributed to interchain coupling and the additional effect of electron-phonon interaction....

  16. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas

    OpenAIRE

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2014-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas in an optical lattice potential with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of t...

  17. Localization of the solution of a one-dimensional one-phase Stefan problem

    OpenAIRE

    Cortazar, C.; Elgueta, M.; Primicerio, M.

    1996-01-01

    Studiamo la localizzazione, l'insieme dei punti di blow up ed alcuni aspetti della velocità di propagazione della frontiera libera di soluzioni di un problema di Stefan unidimensionale ad una fase. We study localization, the set of blow up points and some aspects of the speed of the free boundary of solutions of a one-dimensional, one-phase Stefan problem.

  18. Development of calculation method for one-dimensional kinetic analysis in fission reactors, including feedback effects

    International Nuclear Information System (INIS)

    Paixao, S.B.; Marzo, M.A.S.; Alvim, A.C.M.

    1986-01-01

    The calculation method used in WIGLE code is studied. Because of the non availability of such a praiseworthy solution, expounding the method minutely has been tried. This developed method has been applied for the solution of the one-dimensional, two-group, diffusion equations in slab, axial analysis, including non-boiling heat transfer, accountig for feedback. A steady-state program (CITER-1D), written in FORTRAN 4, has been implemented, providing excellent results, ratifying the developed work quality. (Author) [pt

  19. Anomaly in the band centre of the one-dimensional Anderson model

    Science.gov (United States)

    Kappus, M.; Wegner, F.

    1981-03-01

    We calculate the density of states and various characteristic lengths of the one-dimensional Anderson model in the limit of weak disorder. All these quantities show anomalous fluctuations near the band centre. This has already been observed for the density of states in a different model by Gorkov and Dorokhov, and is in close agreement with a Monte-Carlo calculation for the localization length by Czycholl, Kramer and Mac-Kinnon.

  20. SING-dialoque subsystem for graphical representation of one-dimensional array contents

    International Nuclear Information System (INIS)

    Karlov, A.A.; Kirilov, A.S.

    1979-01-01

    General principles of organization and main features of dialogue subsystem for graphical representation of one-dimensional array contents are considered. The subsystem is developed for remote display station of the JINR BESM-6 computer. Some examples of using the subsystem for drawing curves and histograms are given. The subsystem is developed according to modern dialogue systems requirements. It is ''open'' for extension and could be installed into other computers [ru

  1. One-dimensional structures behind twisted and untwisted superYang-Mills theory

    CERN Document Server

    Baulieu, Laurent

    2011-01-01

    We give a one-dimensional interpretation of the four-dimensional twisted N=1 superYang-Mills theory on a Kaehler manifold by performing an appropriate dimensional reduction. We prove the existence of a 6-generator superalgebra, which does not possess any invariant Lagrangian but contains two different subalgebras that determine the twisted and untwisted formulations of the N=1 superYang-Mills theory.

  2. Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan-Yuan; Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing, 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-02-15

    The one-dimensional Hubbard model with arbitrary boundary magnetic fields is solved exactly via the Bethe ansatz methods. With the coordinate Bethe ansatz in the charge sector, the second eigenvalue problem associated with the spin sector is constructed. It is shown that the second eigenvalue problem can be transformed into that of the inhomogeneous XXX spin chain with arbitrary boundary fields which can be solved via the off-diagonal Bethe ansatz method.

  3. A tetrahedrally coordinated cobalt(II) aminophosphonate containing one-dimensional channels

    International Nuclear Information System (INIS)

    Gemmill, William R.; Smith, Mark D.; Reisner, Barbara A.

    2005-01-01

    A tetrahedrally coordinated cobalt(II) phosphonate, Co(O 3 PCH 2 CH 2 NH 2 ), has been synthesized using hydrothermal techniques. X-ray diffraction indicates that this material is a three-dimensional open framework with rings aligned along a single axis forming infinite one-dimensional channels. The framework decomposes just above 400 deg. C. Magnetic susceptibility data are consistent with weak antiferromagnetic ordering at low temperatures

  4. Entanglement growth and simulation efficiency in one-dimensional quantum lattice systems

    OpenAIRE

    Perales, Alvaro; Vidal, Guifre

    2007-01-01

    We study the evolution of one-dimensional quantum lattice systems when the ground state is perturbed by altering one site in the middle of the chain. For a large class of models, we observe a similar pattern of entanglement growth during the evolution, characterized by a moderate increase of significant Schmidt coefficients in all relevant bipartite decompositions of the state. As a result, the evolution can be accurately described by a matrix product state and efficiently simulated using the...

  5. Complex classical paths and the one-dimensional sine-Gordon system

    International Nuclear Information System (INIS)

    Millard, P.A.

    1985-01-01

    The semiclassical limit of the Green function for a particle in the one-dimensional sine-Gordon potential is obtained by summing over complex classical paths. The results are the same as those obtained in the less physically intuitive WKB approach. In addition to being of practical utility for solving quantum mechanical problems involving tunnelling, the classical path method may show how to deal with dense configuration of instantons. (orig.)

  6. State switching kinetics for quasi-one-dimensional nanosystems: Effects of Finite length and irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Petukhov, B. V., E-mail: petukhov@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation)

    2017-01-15

    The state switching in an extended quasi-one-dimensional material is modeled by the stochastic formation of local new-state nuclei and their subsequent growth along the system axis. An analytical approach is developed to describe the influence of defects, dividing a sample into an ensemble of finite-length segments, on its state switching kinetics. As applied to magnetic systems, the method makes it possible to calculate magnetization curves for different defect concentrations and parameters of material.

  7. One-dimensional fluid model for transport in divertor and limiter tokamak scrape-off layers

    International Nuclear Information System (INIS)

    Lipschultz, B.

    1983-11-01

    Single-fluid transport in the plasma scrape-off layer is modeled for poloidal divertor and mechanically limited discharges. This numerical model is one-dimensional along a field line and time-independent. Conductive and convective transport, as well as impurity and neutral source (sink) terms are included. A simple shooting method technique is used for obtaining solutions. Results are shown for the case of the proposed Alcator DCT tokamak

  8. One-dimensional structures behind twisted and untwisted super Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Baulieu, Laurent [CERN, Geneve (Switzerland). Theoretical Div.; Toppan, Francesco, E-mail: baulieu@lpthe.jussieu.f, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2010-07-01

    We give a one-dimensional interpretation of the four-dimensional twisted N = 1 super Yang-Mills theory on a Kaehler manifold by performing an appropriate dimensional reduction. We prove the existence of a 6-generator superalgebra, which does not possess any invariant Lagrangian but contains two different subalgebras that determine the twisted and untwisted formulations of the N = 1 super Yang-Mills theory. (author)

  9. One-dimensional unstable eigenfunction and manifold computations in delay differential equations

    International Nuclear Information System (INIS)

    Green, Kirk; Krauskopf, Bernd; Engelborghs, Koen

    2004-01-01

    In this paper we present a new numerical technique for computing the unstable eigenfunctions of a saddle periodic orbit in a delay differential equation. This is used to obtain the necessary starting data for an established algorithm for computing one-dimensional (1D) unstable manifolds of an associated saddle fixed point of a suitable Poincare map. To illustrate our method, we investigate an intermittent transition to chaos in a delay system describing a semiconductor laser subject to phase-conjugate feedback

  10. Effects of Interaction Imbalance in a Strongly Repulsive One-Dimensional Bose Gas

    Science.gov (United States)

    Barfknecht, R. E.; Foerster, A.; Zinner, N. T.

    2018-05-01

    We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate the time evolution of the system and show that, for a certain ratio of interactions, the minority population travels through the system as an effective wave packet.

  11. Sufficient condition for generation of multiple solidification front in one-dimensional solidification of binary alloys

    International Nuclear Information System (INIS)

    Bobula, E.; Kalicka, Z.

    1981-10-01

    In the paper we consider the one-dimensional solidification of binary alloys in the finite system. The authors present the sufficient condition for solidification in the liquid in front of the moving solid-liquid interface. The effect may produce a fluctuating concentration distributin in the solid. The convection in the liquid and supercooling required for homogeneous nucleation are omitted. A local-equilibrium approximation at the liquid-solid interface is supposed. (author)

  12. A generalized fluctuation-dissipation theorem for the one-dimensional diffusion process

    International Nuclear Information System (INIS)

    Okabe, Y.

    1985-01-01

    The [α,β,γ]-Langevin equation describes the time evolution of a real stationary process with T-positivity (reflection positivity) originating in the axiomatic quantum field theory. For this [α,β,γ]-Langevin equation a generalized fluctuation-dissipation theorem is proved. We shall obtain, as its application, a generalized fluctuation-dissipation theorem for the one-dimensional non-linear diffusion process, which presents one solution of Ryogo Kubo's problem in physics. (orig.)

  13. Investigation of the diffusion of a massive particle in a one-dimensional ideal gas

    International Nuclear Information System (INIS)

    Khazin, M.L.

    1987-01-01

    Numerical methods have been used to investigate the dependence of the diffusion coefficient of a massive particle in a one-dimensional ideal gas on its mass. It is shown that the lower limit for the diffusion coefficient obtained by Sinai and Soloveichick and Szasz and Toth is a greatest lower bound. In addition, application of Pearson's x 2 test showed that the limit distribution of a massive particle is not Gaussian with a high significance level

  14. LETTERS AND COMMENTS: Energy in one-dimensional linear waves in a string

    Science.gov (United States)

    Burko, Lior M.

    2010-09-01

    We consider the energy density and energy transfer in small amplitude, one-dimensional waves on a string and find that the common expressions used in textbooks for the introductory physics with calculus course give wrong results for some cases, including standing waves. We discuss the origin of the problem, and how it can be corrected in a way appropriate for the introductory calculus-based physics course.

  15. Homotopy decomposition method for solving one-dimensional time-fractional diffusion equation

    Science.gov (United States)

    Abuasad, Salah; Hashim, Ishak

    2018-04-01

    In this paper, we present the homotopy decomposition method with a modified definition of beta fractional derivative for the first time to find exact solution of one-dimensional time-fractional diffusion equation. In this method, the solution takes the form of a convergent series with easily computable terms. The exact solution obtained by the proposed method is compared with the exact solution obtained by using fractional variational homotopy perturbation iteration method via a modified Riemann-Liouville derivative.

  16. One-dimensional adiabatic model of waterhammer; Endodimenzionalni adiabatni model vodnega udara

    Energy Technology Data Exchange (ETDEWEB)

    Bizjak, S [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1984-07-01

    Program WH was developed to calculate transient pressure and velocities in hydraulic networks. It is based on one-dimensional approximation of conservation laws of mass and momentum. the energy equation is ignored which means that heat transfer effects are no included. When calculating the velocity of pressure wave, compressibility of liquid, elasticity of pipe and possible minimal presence of gas in bubble or dissolved form are included. (author)

  17. A study of the one dimensional total generalised variation regularisation problem

    KAUST Repository

    Papafitsoros, Konstantinos

    2015-03-01

    © 2015 American Institute of Mathematical Sciences. In this paper we study the one dimensional second order total generalised variation regularisation (TGV) problem with L2 data fitting term. We examine the properties of this model and we calculate exact solutions using simple piecewise affine functions as data terms. We investigate how these solutions behave with respect to the TGV parameters and we verify our results using numerical experiments.

  18. One-dimensional magnetic nanocomposites with attapulgites as templates: Growth, formation mechanism and magnetic alignment

    Science.gov (United States)

    Fu, Meng; Li, Xiangming; Jiang, Rui; Zhang, Zepeng

    2018-05-01

    Magnetic nanocomposite composed of attapulgite and Fe3O4 was synthesized by a simple and facile co-precipitation method. Its structure and morphology was verified using X-ray diffraction, transmission electron microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Although the difficulty of forming uniform Fe3O4 on the attapulgite surface was discussed in detail in this study, one-dimensional magnetic nanorod with attapulgites as core and Fe3O4 as uniform shell was implemented for the first time using a cationic polymer surfactant, polyethylenimine. Polyethylenimine concentration, Fe3+/Fe2+ concentration and temperature were controlled to investigate the morphological evolutions of this nanocomposite. It was found that a uniform shell could be available with thickness tuning from 10 nm to 40 nm when Fe3+ concentration ranged from 0.01 mol/L to 0.03 mol/L meanwhile the polyethylenimine concentration was kept at 0.2 mg/mL and the temperature was kept at 60-80 °C. Finally, a possible mechanism for the formation of the Fe3O4 shell was suggested. The polyethylenimine on the surface of the attapulgites first adsorbed Fe3+/Fe2+ and then released under the action of alkali. It acted as a linker for the Fe3O4 nanoparticles nucleation in situ. The synthesized one-dimensional nanocomposites exhibit the superparamagnetism and fast response to an external magnetic field. The alignment of attapulgite-Fe3O4 one-dimensional nanocomposite along the external magnetic field was demonstrated. It provides promising candidates for building blocks and functional devices, which are low cost, non-toxic and eco-friendly, and opens the door for the application of attapulgite as one-dimensional nanomaterials.

  19. Yang—Yang thermodynamics of one-dimensional Bose gases with anisotropic transversal confinement

    International Nuclear Information System (INIS)

    Hao Ya-Jiang; Yin Xiang-Guo

    2011-01-01

    By combining the thermodynamic Bethe ansatz and local density approximation, we investigate the Yang—Yang thermodynamics of interacting one-dimensional Bose gases with anisotropic transversal confinement. It is shown that with the increase of anisotropic parameter at low temperature, the Bose atoms are distributed over a wider region, while at high temperature the density distribution is not affected obviously. Both the temperature and transversal confinement can strengthen the local pressure of the Bose gases. (general)

  20. One-dimensional structures behind twisted and untwisted super Yang-Mills theory

    International Nuclear Information System (INIS)

    Baulieu, Laurent

    2010-01-01

    We give a one-dimensional interpretation of the four-dimensional twisted N = 1 super Yang-Mills theory on a Kaehler manifold by performing an appropriate dimensional reduction. We prove the existence of a 6-generator superalgebra, which does not possess any invariant Lagrangian but contains two different subalgebras that determine the twisted and untwisted formulations of the N = 1 super Yang-Mills theory. (author)