WorldWideScience

Sample records for one-dimensional compressible gas

  1. One-dimensional magnetohydrodynamic calculations of a hydrogen-gas puff

    International Nuclear Information System (INIS)

    Maxon, S.; Nielsen, P.D.

    1981-01-01

    A one-dimensional Lagrangian calculation of the implosion of a hydrogen gas puff is presented. At maximum compression, 60% of the mass is located in a density spike .5 mm off the axis with a half width of 40 μm. The temperature on axis reaches 200 eV

  2. Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas

    Energy Technology Data Exchange (ETDEWEB)

    Roy S. Baty, F. Farassat, John A. Hargreaves

    2007-05-25

    Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.

  3. Basic physics of one-dimensional metals

    International Nuclear Information System (INIS)

    Emery, V.J.

    1976-01-01

    Largely nonmathematical qualitative lectures are given on the basic physics of nearly one-dimensional conductors. The main emphasis is placed on the properties of a purely one-dimensional electron gas. The effects of a real system having interchain coupling, impurities, a compressible lattice, lattice distortions and phonon anomalies are discussed

  4. One-dimensional model of steady, compressible channel flow with mass, momentum, and energy addition

    International Nuclear Information System (INIS)

    Johnston, S.C.

    1976-09-01

    A one-dimensional model of steady, compressible channel flow with mass, momentum and energy addition is discussed. An exact solution to the governing equations was found and from it a similarity parameter relating dimensionless mass, momentum and energy addition identified. This similarity parameter is used to make two flows having different dimensionless mass, momentum and energy additions equivalent. Application of the similarity parameter to the LASL Intense Neutron Source experiment and the Sandia simulation of that experiment results in an expression relating the dimensionless mass addition of combustible gas required in the Sandia experiment to dimensionless energy addition in the LASL experiment. Results of the analysis indicate that the Sandia experiment can realistically simulate the energy addition in the LASL Intense Neutron Source experiment

  5. Theory of the one- and two-dimensional electron gas

    International Nuclear Information System (INIS)

    Emery, V.J.

    1987-01-01

    Two topics are discussed: (1) the competition between 2k/sub F/ and 4k/sub F/ charge state waves in a one-dimensional electron gas and (2) a two-dimensional model of high T/sub c/ superconductivity in the oxides

  6. Universality and Quantum Criticality of the One-Dimensional Spinor Bose Gas

    Science.gov (United States)

    PâÅ£u, Ovidiu I.; Klümper, Andreas; Foerster, Angela

    2018-06-01

    We investigate the universal thermodynamics of the two-component one-dimensional Bose gas with contact interactions in the vicinity of the quantum critical point separating the vacuum and the ferromagnetic liquid regime. We find that the quantum critical region belongs to the universality class of the spin-degenerate impenetrable particle gas which, surprisingly, is very different from the single-component case and identify its boundaries with the peaks of the specific heat. In addition, we show that the compressibility Wilson ratio, which quantifies the relative strength of thermal and quantum fluctuations, serves as a good discriminator of the quantum regimes near the quantum critical point. Remarkably, in the Tonks-Girardeau regime, the universal contact develops a pronounced minimum, reflected in a counterintuitive narrowing of the momentum distribution as we increase the temperature. This momentum reconstruction, also present at low and intermediate momenta, signals the transition from the ferromagnetic to the spin-incoherent Luttinger liquid phase and can be detected in current experiments with ultracold atomic gases in optical lattices.

  7. The one-dimensional compression method for extraction of pore water from unsaturated tuff and effects on pore-water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, J.D.; Burger, P.A. [Colorado School of Mines, Golden, CO (United States); Yang, L.C. [Geological Survey, Denver, CO (United States)

    1997-12-31

    Study of the hydrologic system at Yucca Mountain, Nevada, requires extraction of pore-water samples from unsaturated tuff bedrock. Two generations of compression cells have been designed and tested for extracting representative, unaltered pore-water samples from unsaturated tuff cores. The one-dimensional compression cell has a maximum compressive stress rating of 552 MPa. Results from 86 tests show that the minimum degree of saturation for successful extraction of pore water was about 14% for non welded tuff and about 61% for densely welded tuff. The high-pressure, one-dimensional compression cell has a maximum compressive stress rating of 827 MPa. Results from 109 tests show that the minimum degree of saturation for successful extraction of pore water was about 7.5% for non welded tuff and about 34% for densely welded tuff. Geochemical analyses show that, in general, there is a decrease in ion concentration of pore waters as extraction pressures increase. Only small changes in pore-water composition occur during the one-dimensional extraction test.

  8. Analysis of the one-dimensional transient compressible vapor flow in heat pipes

    Science.gov (United States)

    Jang, Jong H.; Faghri, Amir; Chang, Won S.

    1991-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds as well as high mass flow rates are successfully predicted.

  9. Backward scattering in the one-dimensional Fermi gas

    International Nuclear Information System (INIS)

    Apostol, M.

    1980-05-01

    The Ward identity is derived for non-relativistic fermions with two-body spin-independent interaction. Using this identity for the one-dimensional Fermi gas with backward scattering the equations of the perturbation theory are solved for the effective interaction and the collective excitations of the particle density fluctuations are obtained. (author)

  10. Introduction to compressible fluid flow

    CERN Document Server

    Oosthuizen, Patrick H

    2013-01-01

    IntroductionThe Equations of Steady One-Dimensional Compressible FlowSome Fundamental Aspects of Compressible FlowOne-Dimensional Isentropic FlowNormal Shock WavesOblique Shock WavesExpansion Waves - Prandtl-Meyer FlowVariable Area FlowsAdiabatic Flow with FrictionFlow with Heat TransferLinearized Analysis of Two-Dimensional Compressible FlowsHypersonic and High-Temperature FlowsHigh-Temperature Gas EffectsLow-Density FlowsBibliographyAppendices

  11. Compressibility, zero sound, and effective mass of a fermionic dipolar gas at finite temperature

    International Nuclear Information System (INIS)

    Kestner, J. P.; Das Sarma, S.

    2010-01-01

    The compressibility, zero-sound dispersion, and effective mass of a gas of fermionic dipolar molecules is calculated at finite temperature for one-, two-, and three-dimensional uniform systems, and in a multilayer quasi-two-dimensional system. The compressibility is nonmonotonic in the reduced temperature, T/T F , exhibiting a maximum at finite temperature. This effect might be visible in a quasi-low-dimensional experiment, providing a clear signature of the onset of many-body quantum degeneracy effects. The collective mode dispersion and effective mass show similar nontrivial temperature and density dependence. In a quasi-low-dimensional system, the zero-sound mode may propagate at experimentally attainable temperatures.

  12. Anomalous heat conduction in a one-dimensional ideal gas.

    Science.gov (United States)

    Casati, Giulio; Prosen, Tomaz

    2003-01-01

    We provide firm convincing evidence that the energy transport in a one-dimensional gas of elastically colliding free particles of unequal masses is anomalous, i.e., the Fourier law does not hold. Our conclusions are confirmed by a theoretical and numerical analysis based on a Green-Kubo-type approach specialized to momentum-conserving lattices.

  13. Correlation Functions of the One-Dimensional Attractive Bose Gas

    International Nuclear Information System (INIS)

    Calabrese, Pasquale; Caux, Jean-Sebastien

    2007-01-01

    The zero-temperature correlation functions of the one-dimensional attractive Bose gas with a delta-function interaction are calculated analytically for any value of the interaction parameter and number of particles, directly from the integrability of the model. We point out a number of interesting features, including zero recoil energy for a large number of particles, analogous to the Moessbauer effect

  14. One-dimensional gas of bosons with Feshbach-resonant interactions

    International Nuclear Information System (INIS)

    Gurarie, V.

    2006-01-01

    We present a study of a gas of bosons confined in one dimension with Feshbach-resonant interactions, at zero temperature. Unlike the gas of one-dimensional bosons with non resonant interactions, which is known to be equivalent to a system of interacting spinless fermions and can be described using the Luttinger liquid formalism, the resonant gas possesses additional features. Depending on its parameters, the gas can be in one of three possible regimes. In the simplest of those, it can still be described by the Luttinger liquid theory, but its Fermi momentum cannot be larger than a certain cutoff momentum dependent on the details of the interactions. In the other two regimes, it is equivalent to a Luttinger liquid at low density only. At higher densities its excitation spectrum develops a minimum, similar to the roton minimum in helium, at momenta where the excitations are in resonance with the Fermi sea. As the density of the gas is increased further, the minimum dips below the Fermi energy, thus making the ground state unstable. At this point the standard ground state gets replaced by a more complicated one, where not only the states with momentum below the Fermi points, but also the ones with momentum close to that minimum, get filled, and the excitation spectrum develops several branches. We are unable so far to study this regime in detail due to the lack of the appropriate formalism

  15. One-Dimensional Rydberg Gas in a Magnetoelectric Trap

    International Nuclear Information System (INIS)

    Mayle, Michael; Hezel, Bernd; Lesanovsky, Igor; Schmelcher, Peter

    2007-01-01

    We study the quantum properties of Rydberg atoms in a magnetic Ioffe-Pritchard trap which is superimposed by a homogeneous electric field. Trapped Rydberg atoms can be created in long-lived electronic states exhibiting a permanent electric dipole moment of several hundred Debye. The resulting dipole-dipole interaction in conjunction with the radial confinement is demonstrated to give rise to an effectively one-dimensional ultracold Rydberg gas with a macroscopic interparticle distance. We derive analytical expressions for the electric dipole moment and the required linear density of Rydberg atoms

  16. Quantum quenches to the attractive one-dimensional Bose gas: exact results

    Directory of Open Access Journals (Sweden)

    Lorenzo Piroli, Pasquale Calabrese, Fabian H. L. Essler

    2016-09-01

    Full Text Available We study quantum quenches to the one-dimensional Bose gas with attractive interactions in the case when the initial state is an ideal one-dimensional Bose condensate. We focus on properties of the stationary state reached at late times after the quench. This displays a finite density of multi-particle bound states, whose rapidity distribution is determined exactly by means of the quench action method. We discuss the relevance of the multi-particle bound states for the physical properties of the system, computing in particular the stationary value of the local pair correlation function $g_2$.

  17. One-dimensional adiabatic model of waterhammer; Endodimenzionalni adiabatni model vodnega udara

    Energy Technology Data Exchange (ETDEWEB)

    Bizjak, S [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1984-07-01

    Program WH was developed to calculate transient pressure and velocities in hydraulic networks. It is based on one-dimensional approximation of conservation laws of mass and momentum. the energy equation is ignored which means that heat transfer effects are no included. When calculating the velocity of pressure wave, compressibility of liquid, elasticity of pipe and possible minimal presence of gas in bubble or dissolved form are included. (author)

  18. Compression of turbulent magnetized gas in giant molecular clouds

    Science.gov (United States)

    Birnboim, Yuval; Federrath, Christoph; Krumholz, Mark

    2018-01-01

    Interstellar gas clouds are often both highly magnetized and supersonically turbulent, with velocity dispersions set by a competition between driving and dissipation. This balance has been studied extensively in the context of gases with constant mean density. However, many astrophysical systems are contracting under the influence of external pressure or gravity, and the balance between driving and dissipation in a contracting, magnetized medium has yet to be studied. In this paper, we present three-dimensional magnetohydrodynamic simulations of compression in a turbulent, magnetized medium that resembles the physical conditions inside molecular clouds. We find that in some circumstances the combination of compression and magnetic fields leads to a rate of turbulent dissipation far less than that observed in non-magnetized gas, or in non-compressing magnetized gas. As a result, a compressing, magnetized gas reaches an equilibrium velocity dispersion much greater than would be expected for either the hydrodynamic or the non-compressing case. We use the simulation results to construct an analytic model that gives an effective equation of state for a coarse-grained parcel of the gas, in the form of an ideal equation of state with a polytropic index that depends on the dissipation and energy transfer rates between the magnetic and turbulent components. We argue that the reduced dissipation rate and larger equilibrium velocity dispersion has important implications for the driving and maintenance of turbulence in molecular clouds and for the rates of chemical and radiative processes that are sensitive to shocks and dissipation.

  19. Efficient two-dimensional compressive sensing in MIMO radar

    Science.gov (United States)

    Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad

    2017-12-01

    Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.

  20. Synthesis and integration of one-dimensional nanostructures for chemical gas sensing applications

    Science.gov (United States)

    Parthangal, Prahalad Madhavan

    The need for improved measurement technology for the detection and monitoring of gases has increased tremendously for maintenance of domestic and industrial health and safety, environmental surveys, national security, food-processing, medical diagnostics and various other industrial applications. Among the several varieties of gas sensors available in the market, solid-state sensors are the most popular owing to their excellent sensitivity, ruggedness, versatility and low cost. Semiconducting metal oxides such as tin oxide (SnO2), zinc oxide (ZnO), and tungsten oxide (WO3) are routinely employed as active materials in these sensors. Since their performance is directly linked to the exposed surface area of the sensing material, one-dimensional nanostructures possessing very high surface to volume ratios are attractive candidates for designing the next generation of sensors. Such nano-sensors also enable miniaturization thereby reducing power consumption. The key to achieve success in one-dimensional nanotechnologies lies in assembly. While synthesis techniques and capabilities continue to expand rapidly, progress in controlled assembly has been sluggish due to numerous technical challenges. In this doctoral thesis work, synthesis and characterization of various one-dimensional nanostructures including nanotubes of SnO2, and nanowires of WO3 and ZnO, as well as their direct integration into miniature sensor platforms called microhotplates have been demonstrated. The key highlights of this research include devising elegant strategies for growing metal oxide nanotubes using carbon nanotubes as templates, substantially reducing process temperatures to enable growth of WO3 nanowires on microhotplates, and successfully fabricating a ZnO nanowire array based sensor using a hybrid nanowire-nanoparticle assembly approach. In every process, the gas-sensing properties of one-dimensional nanostructures were observed to be far superior in comparison with thin films of the same

  1. Theory of superfluidity and drag force in the one-dimensional Bose gas

    NARCIS (Netherlands)

    Cherny, A.Y.; Caux, J.-S.; Brand, J.

    2012-01-01

    The one-dimensional Bose gas is an unusual superfluid. In contrast to higher spatial dimensions, the existence of non-classical rotational inertia is not directly linked to the dissipationless motion of infinitesimal impurities. Recently, experimental tests with ultracold atoms have begun and

  2. Compressed gas fuel storage system

    Science.gov (United States)

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  3. Effects of interaction imbalance in a strongly repulsive one-dimensional Bose gas

    DEFF Research Database (Denmark)

    Barfknecht, Rafael Emilio; Zinner, Nikolaj Thomas; Foerster, Angela

    2018-01-01

    We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate...

  4. An Exact, Compressible One-Dimensional Riemann Solver for General, Convex Equations of State

    Energy Technology Data Exchange (ETDEWEB)

    Kamm, James Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-05

    This note describes an algorithm with which to compute numerical solutions to the one- dimensional, Cartesian Riemann problem for compressible flow with general, convex equations of state. While high-level descriptions of this approach are to be found in the literature, this note contains most of the necessary details required to write software for this problem. This explanation corresponds to the approach used in the source code that evaluates solutions for the 1D, Cartesian Riemann problem with a JWL equation of state in the ExactPack package [16, 29]. Numerical examples are given with the proposed computational approach for a polytropic equation of state and for the JWL equation of state.

  5. Decay of superfluid currents in the interacting one-dimensional Bose gas

    International Nuclear Information System (INIS)

    Cherny, Alexander Yu.; Caux, Jean-Sebastien; Brand, Joachim

    2009-01-01

    We examine the superfluid properties of a one-dimensional (1D) Bose gas in a ring trap based on the model of Lieb and Liniger. While the 1D Bose gas has nonclassical rotational inertia and exhibits quantization of velocities, the metastability of currents depends sensitively on the strength of interactions in the gas: the stronger the interactions, the faster the current decays. It is shown that the Landau critical velocity is zero in the thermodynamic limit due to the first supercurrent state, which has zero energy and finite probability of excitation. We calculate the energy dissipation rate of ring currents in the presence of weak defects, which should be observable on experimental time scales.

  6. A one-dimensional gravitationally interacting gas and the convex minorant of Brownian motion

    International Nuclear Information System (INIS)

    Suidan, T M

    2001-01-01

    The surprising connection between a one-dimensional gravitationally interacting gas of sticky particles and the convex minorant process generated by Brownian motion on [0,1] is studied. A study is made of the dynamics of this 1-D gas system by identifying three distinct clustering regimes and the time scales at which they occur. At the critical moment of time the mass distribution of the gas can be computed in terms of functionals of the convex minorant process

  7. Quantitative study of quasi-one-dimensional Bose gas experiments via the stochastic Gross-Pitaevskii equation

    International Nuclear Information System (INIS)

    Cockburn, S. P.; Gallucci, D.; Proukakis, N. P.

    2011-01-01

    The stochastic Gross-Pitaevskii equation is shown to be an excellent model for quasi-one-dimensional Bose gas experiments, accurately reproducing the in situ density profiles recently obtained in the experiments of Trebbia et al.[Phys. Rev. Lett. 97, 250403 (2006)] and van Amerongen et al.[Phys. Rev. Lett. 100, 090402 (2008)] and the density fluctuation data reported by Armijo et al.[Phys. Rev. Lett. 105, 230402 (2010)]. To facilitate such agreement, we propose and implement a quasi-one-dimensional extension to the one-dimensional stochastic Gross-Pitaevskii equation for the low-energy, axial modes, while atoms in excited transverse modes are treated as independent ideal Bose gases.

  8. Energy recovery during expansion of compressed gas using power plant low-quality heat sources

    Science.gov (United States)

    Ochs, Thomas L [Albany, OR; O'Connor, William K [Lebanon, OR

    2006-03-07

    A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

  9. Simulations of viscous and compressible gas-gas flows using high-order finite difference schemes

    Science.gov (United States)

    Capuano, M.; Bogey, C.; Spelt, P. D. M.

    2018-05-01

    A computational method for the simulation of viscous and compressible gas-gas flows is presented. It consists in solving the Navier-Stokes equations associated with a convection equation governing the motion of the interface between two gases using high-order finite-difference schemes. A discontinuity-capturing methodology based on sensors and a spatial filter enables capturing shock waves and deformable interfaces. One-dimensional test cases are performed as validation and to justify choices in the numerical method. The results compare well with analytical solutions. Shock waves and interfaces are accurately propagated, and remain sharp. Subsequently, two-dimensional flows are considered including viscosity and thermal conductivity. In Richtmyer-Meshkov instability, generated on an air-SF6 interface, the influence of the mesh refinement on the instability shape is studied, and the temporal variations of the instability amplitude is compared with experimental data. Finally, for a plane shock wave propagating in air and impacting a cylindrical bubble filled with helium or R22, numerical Schlieren pictures obtained using different grid refinements are found to compare well with experimental shadow-photographs. The mass conservation is verified from the temporal variations of the mass of the bubble. The mean velocities of pressure waves and bubble interface are similar to those obtained experimentally.

  10. Amplifying and compressing optical filter based on one-dimensional ternary photonic crystal structure containing gain medium

    Science.gov (United States)

    Jamshidi-Ghaleh, Kazem; Ebrahimpour, Zeinab; Moslemi, Fatemeh

    2015-07-01

    The transmission spectrum properties of the one-dimensional ternary photonic crystal (1DTPC) structure, composed of dielectric (D), metal (M) and gain (G) materials, with three different arrangements of (DGM)N, (GDM)N and (DMG)N, where N is the number of periodicity, were investigated. Two full photonic band gaps and N-1 resonant peaks, localized between them, were observed on transmittance spectra on near-UV spectrum region. When the gained layer was placed in front of the metal, the peaks appeared with higher resolution. There is a peak, localized on the higher band-edge of the first gap, which shows very interesting property than the other peaks. Thus, it amplifies and compresses faster with increase in the N and strength of the gain coefficient. The effects of the gain coefficient and periodicity number are graphically illustrated. This communication presents a PC structure that can be a good candidate to design an amplifying and compressing single or multi-channel optical filter in the UV region.

  11. Effects of Interaction Imbalance in a Strongly Repulsive One-Dimensional Bose Gas

    Science.gov (United States)

    Barfknecht, R. E.; Foerster, A.; Zinner, N. T.

    2018-05-01

    We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate the time evolution of the system and show that, for a certain ratio of interactions, the minority population travels through the system as an effective wave packet.

  12. Multi-dimensional medical images compressed and filtered with wavelets

    International Nuclear Information System (INIS)

    Boyen, H.; Reeth, F. van; Flerackers, E.

    2002-01-01

    Full text: Using the standard wavelet decomposition methods, multi-dimensional medical images can be compressed and filtered by repeating the wavelet-algorithm on 1D-signals in an extra loop per extra dimension. In the non-standard decomposition for multi-dimensional images the areas that must be zero-filled in case of band- or notch-filters are more complex than geometric areas such as rectangles or cubes. Adding an additional dimension in this algorithm until 4D (e.g. a 3D beating heart) increases the geometric complexity of those areas even more. The aim of our study was to calculate the boundaries of the formed complex geometric areas, so we can use the faster non-standard decomposition to compress and filter multi-dimensional medical images. Because a lot of 3D medical images taken by PET- or SPECT-cameras have only a few layers in the Z-dimension and compressing images in a dimension with a few voxels is usually not worthwhile, we provided a solution in which one can choose which dimensions will be compressed or filtered. With the proposal of non-standard decomposition on Daubechies' wavelets D2 to D20 by Steven Gollmer in 1992, 1D data can be compressed and filtered. Each additional level works only on the smoothed data, so the transformation-time halves per extra level. Zero-filling a well-defined area alter the wavelet-transform and then performing the inverse transform will do the filtering. To be capable to compress and filter up to 4D-Images with the faster non-standard wavelet decomposition method, we have investigated a new method for calculating the boundaries of the areas which must be zero-filled in case of filtering. This is especially true for band- and notch filtering. Contrary to the standard decomposition method, the areas are no longer rectangles in 2D or cubes in 3D or a row of cubes in 4D: they are rectangles expanded with a half-sized rectangle in the other direction for 2D, cubes expanded with half cubes in one and quarter cubes in the

  13. Quasiconservation laws for compressible three-dimensional Navier-Stokes flow.

    Science.gov (United States)

    Gibbon, J D; Holm, D D

    2012-10-01

    We formulate the quasi-Lagrangian fluid transport dynamics of mass density ρ and the projection q=ω·∇ρ of the vorticity ω onto the density gradient, as determined by the three-dimensional compressible Navier-Stokes equations for an ideal gas, although the results apply for an arbitrary equation of state. It turns out that the quasi-Lagrangian transport of q cannot cross a level set of ρ. That is, in this formulation, level sets of ρ (isopycnals) are impermeable to the transport of the projection q.

  14. Analogy between soap film and gas dynamics. II. Experiments on one-dimensional motion of shock waves in soap films

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.Y.; Chang-Jian, S.K.; Chuang, M.C. [Department of Mechanical Engineering, Da-Yeh University, Chang-Hwa (Taiwan)

    2003-02-01

    This paper presents an experimental investigation of one-dimensional moving shock waves in vertical soap films. The shock waves were generated by bursting the films with a perforating spark. Images of propagating shock waves and small disturbances were recorded using a fast line scan CCD camera. An aureole and a shock wave preceding the rim of the expanding hole were clearly observed. These images are similar to the x-t diagrams in gas dynamics and give the velocities of shock and sound waves. The moving shock waves cause jumps in thickness. The variations of the induced Mach number, M{sub 2} and the ratio of film thickness across the shock wave, {delta}{sub 2}/{delta}{sub 1}, are plotted versus the shock Mach number, M{sub s}. Both results suggest that soap films are analogous to compressible gases with a specific heat ratio of {gamma}{approx_equal}1.0. (orig.)

  15. Violation of self-similarity in the expansion of a one-dimensional Bose gas

    International Nuclear Information System (INIS)

    Pedri, P.; Santos, L.; Oehberg, P.; Stringari, S.

    2003-01-01

    The expansion of a one-dimensional Bose gas after releasing its initial harmonic confinement is investigated employing the Lieb-Liniger equation of state within the local-density approximation. We show that during the expansion the density profile of the gas does not follow a self-similar solution, as one would expect from a simple scaling ansatz. We carry out a variational calculation, which recovers the numerical results for the expansion, the equilibrium properties of the density profile, and the frequency of the lowest compressional mode. The variational approach allows for the analysis of the expansion in all interaction regimes between the mean-field and the Tonks-Girardeau limits, and in particular shows the range of parameters for which the expansion violates self-similarity

  16. Medical image compression by using three-dimensional wavelet transformation

    International Nuclear Information System (INIS)

    Wang, J.; Huang, H.K.

    1996-01-01

    This paper proposes a three-dimensional (3-D) medical image compression method for computed tomography (CT) and magnetic resonance (MR) that uses a separable nonuniform 3-D wavelet transform. The separable wavelet transform employs one filter bank within two-dimensional (2-D) slices and then a second filter bank on the slice direction. CT and MR image sets normally have different resolutions within a slice and between slices. The pixel distances within a slice are normally less than 1 mm and the distance between slices can vary from 1 mm to 10 mm. To find the best filter bank in the slice direction, the authors use the various filter banks in the slice direction and compare the compression results. The results from the 12 selected MR and CT image sets at various slice thickness show that the Haar transform in the slice direction gives the optimum performance for most image sets, except for a CT image set which has 1 mm slice distance. Compared with 2-D wavelet compression, compression ratios of the 3-D method are about 70% higher for CT and 35% higher for MR image sets at a peak signal to noise ratio (PSNR) of 50 dB. In general, the smaller the slice distance, the better the 3-D compression performance

  17. Observation of Zero-Dimensional States in a One-Dimensional Electron Interferometer

    NARCIS (Netherlands)

    Wees, B.J. van; Kouwenhoven, L.P.; Harmans, C.J.P.M.; Williamson, J.G.; Timmering, C.E.; Broekaart, M.E.I.; Foxon, C.T.; Harris, J.J.

    1989-01-01

    We have studied the electron transport in a one-dimensional electron interferometer. It consists of a disk-shaped two-dimensional electron gas, to which quantum point contacts are attached. Discrete zero-dimensional states are formed due to constructive interference of electron waves traveling along

  18. Amplifying and compressing optical filter based on one-dimensional ternary photonic crystal structure containing gain medium

    Energy Technology Data Exchange (ETDEWEB)

    Jamshidi-Ghaleh, Kazem, E-mail: k-jamshidi@azaruinv.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of); Ebrahimpour, Zeinab [Department of Physics, Shahid Beheshti University, Evin 19839 Tehran (Iran, Islamic Republic of); Moslemi, Fatemeh [Department of Physics, Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of)

    2015-07-15

    The transmission spectrum properties of the one-dimensional ternary photonic crystal (1DTPC) structure, composed of dielectric (D), metal (M) and gain (G) materials, with three different arrangements of (DGM){sup N}, (GDM){sup N} and (DMG){sup N}, where N is the number of periodicity, were investigated. Two full photonic band gaps and N−1 resonant peaks, localized between them, were observed on transmittance spectra on near-UV spectrum region. When the gained layer was placed in front of the metal, the peaks appeared with higher resolution. There is a peak, localized on the higher band-edge of the first gap, which shows very interesting property than the other peaks. Thus, it amplifies and compresses faster with increase in the N and strength of the gain coefficient. The effects of the gain coefficient and periodicity number are graphically illustrated. This communication presents a PC structure that can be a good candidate to design an amplifying and compressing single or multi-channel optical filter in the UV region.

  19. Compressed Gas Safety for Experimental Fusion Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  20. Measurement and calculation of gas compressibility factor for condensate gas and natural gas under pressure up to 116 MPa

    International Nuclear Information System (INIS)

    Yan, Ke-Le; Liu, Huang; Sun, Chang-Yu; Ma, Qing-Lan; Chen, Guang-Jin; Shen, De-Ji; Xiao, Xiang-Jiao; Wang, Hai-Ying

    2013-01-01

    Highlights: • Volumetric properties of two reservoir fluid samples were measured with pressure up to 116 MPa. • Dew point pressures at four temperatures for condensate gas sample are obtained. • Correlations and thermodynamic model for describing gas compressibility factor under high pressure were compared. • The thermodynamic model recommended is most suitable for fluids produced from reservoirs with a wide pressure range. -- Abstract: The volumetric properties of two reservoir fluid samples collected from one condensate gas well and one natural gas well were measured under four groups of temperatures, respectively, with pressure up to 116 MPa. For the two samples examined, the experimental results show that the gas compressibility factor increases with the increase of pressure. But the influence of the temperature is related to the range of the experimental pressure. It approximately decreases with the increase of temperature when the pressure is larger than (45 to 50) MPa, while there is the opposite trend when the pressure is lower than (45 to 50) MPa. The dew point pressure was also determined for the condensate gas sample, which decreases with the increase of temperature. The capabilities of four empirical correlations and a thermodynamic model based on equation of state for describing gas compressibility factor of reservoir fluids under high pressure were investigated. The comparison results show that the thermodynamic model recommended is the most suitable for fluids whatever produced from high-pressure reservoirs or conventional mild-pressure reservoirs

  1. Monopole excitations of a harmonically trapped one-dimensional Bose gas from the ideal gas to the Tonks-Girardeau regime.

    Science.gov (United States)

    Choi, S; Dunjko, V; Zhang, Z D; Olshanii, M

    2015-09-11

    Using a time-dependent modified nonlinear Schrödinger equation (MNLSE)-where the conventional chemical potential proportional to the density is replaced by the one inferred from Lieb-Liniger's exact solution-we study frequencies of the collective monopole excitations of a one-dimensional Bose gas. We find that our method accurately reproduces the results of a recent experimental study [E. Haller et al., Science 325, 1224 (2009)] in the full spectrum of interaction regimes from the ideal gas, through the mean-field regime, through the mean-field Thomas-Fermi regime, all the way to the Tonks-Giradeau gas. While the former two are accessible by the standard time-dependent NLSE and inaccessible by the time-dependent local density approximation, the situation reverses in the latter case. However, the MNLSE is shown to treat all these regimes within a single numerical method.

  2. A Novel Medical Image Watermarking in Three-dimensional Fourier Compressed Domain

    Directory of Open Access Journals (Sweden)

    Baoru Han

    2015-09-01

    Full Text Available Digital watermarking is a research hotspot in the field of image security, which is protected digital image copyright. In order to ensure medical image information security, a novel medical image digital watermarking algorithm in three-dimensional Fourier compressed domain is proposed. The novel medical image digital watermarking algorithm takes advantage of three-dimensional Fourier compressed domain characteristics, Legendre chaotic neural network encryption features and robust characteristics of differences hashing, which is a robust zero-watermarking algorithm. On one hand, the original watermarking image is encrypted in order to enhance security. It makes use of Legendre chaotic neural network implementation. On the other hand, the construction of zero-watermarking adopts differences hashing in three-dimensional Fourier compressed domain. The novel watermarking algorithm does not need to select a region of interest, can solve the problem of medical image content affected. The specific implementation of the algorithm and the experimental results are given in the paper. The simulation results testify that the novel algorithm possesses a desirable robustness to common attack and geometric attack.

  3. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas

    OpenAIRE

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2014-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas in an optical lattice potential with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of t...

  4. A soap film shock tube to study two-dimensional compressible flows

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.Y.; Chen, Y.M.; Chang-Jian, S.K. [Dept. of Mechanical Engineering, Da-Yeh University Chang-Hwa (Taiwan)

    2001-07-01

    A new experimental approach to the study of the two-dimensional compressible flow phenomena is presented. In this technique, a variety of compressible flows were generated by bursting plane vertical soap films. An aureole and a ''shock wave'' preceding the rim of the expanding hole were clearly observed using traditional high-speed flash photography and a fast line-scan charge coupled device (CCD) camera. The moving shock wave images obtained from the line-scan CCD camera were similar to the x-t diagrams in gas dynamics. The moving shock waves cause thickness jumps and induce supersonic flows. Photographs of the supersonic flows over a cylinder and a wedge are presented. The results suggest clearly the feasibility of the ''soap film shock tube''. (orig.)

  5. Technical and economical feasibility of the Rankine compression gas turbine (RCG)

    NARCIS (Netherlands)

    Ouwerkerk, H.; Lange, de H.C.

    2006-01-01

    The Rankine compression gas turbine (RCG) is a new type of combined cycle, i.e. combined steam and gas turbine installation, that returns all shaft power on one free power turbine. The novelty of the RCG is that the steam turbine drives the compressor of the gas turbine cycle. This way, the turbine

  6. Remarks on the global existence in the dynamics of a viscous, heat-conducting, one-dimensional gas

    International Nuclear Information System (INIS)

    Song Jiang

    1994-01-01

    We consider initial boundary value problems for the equations of the motion of a viscous, heat-conducting, one-dimensional gas which is confined to a fixed tube with impermeable ends and whose viscosity varies with density, and prove the global existence of smooth (large) solutions. (author). 17 refs

  7. Compressible Strips, Chiral Luttinger Liquids, and All That Jazz

    Science.gov (United States)

    MacDonald, A. H.

    1996-03-01

    When the quantum Hall effect occurs in a two-dimensional electron gas, all low-energy elementary excitations are localized near the system edge. The edge acts in many ways like a one-dimensional ring of electrons, except that a finite current flows around the ring in equilibrium. This article is a brief and informal review of some of the physics of quantum Hall system edges. We discuss the implications of macroscopic {\\em compressible strip} models for microscopic {chiral Luttinger liquid} models and make an important distinction between the origin of non-Fermi-liquid behavior in fractional quantum Hall edges and in usual one-dimensional electron gas systems.

  8. Quantum quench dynamics of the attractive one-dimensional Bose gas via the coordinate Bethe ansatz

    Directory of Open Access Journals (Sweden)

    Jan C. Zill, Tod M. Wright, Karen V. Kheruntsyan, Thomas Gasenzer, Matthew J. Davis

    2018-02-01

    Full Text Available We use the coordinate Bethe ansatz to study the Lieb-Liniger model of a one-dimensional gas of bosons on a finite-sized ring interacting via an attractive delta-function potential. We calculate zero-temperature correlation functions for seven particles in the vicinity of the crossover to a localized solitonic state and study the dynamics of a system of four particles quenched to attractive interactions from the ideal-gas ground state. We determine the time evolution of correlation functions, as well as their temporal averages, and discuss the role of bound states in shaping the postquench correlations and relaxation dynamics.

  9. Modification Design of Petrol Engine for Alternative Fueling using Compressed Natural Gas

    Directory of Open Access Journals (Sweden)

    Eliezer Uchechukwu Okeke

    2013-04-01

    Full Text Available This paper is on the modification design of petrol engine for alternative fuelling using Compressed Natural Gas (CNG. It provides an analytical background in the modification design process. A petrol engine Honda CR-V 2.0 auto which has a compression ratio of 9.8 was selected as case study. In order for this petrol engine to run on CNG, its compression had to be increased. An optimal compression ratio of 11.97 was computed using the standard temperature-specific volume relationship for an isentropic compression process. This computation of compression ratio is based on an inlet air temperature of 30oC (representative of tropical ambient condition and pre-combustion temperature of 540oC (corresponding to the auto-ignition temperature of CNG. Using this value of compression ratio, a dimensional modification Quantity =1.803mm was obtained using simple geometric relationships. This value of 1.803mm is needed to increase the length of the connecting rod, the compression height of the piston or reducing the sealing plate’s thickness. After the modification process, a CNG engine of air standard efficiency 62.7% (this represents a 4.67% increase over the petrol engine, capable of a maximum power of 83.6kW at 6500rpm, was obtained.

  10. Development of a discrete gas-kinetic scheme for simulation of two-dimensional viscous incompressible and compressible flows.

    Science.gov (United States)

    Yang, L M; Shu, C; Wang, Y

    2016-03-01

    In this work, a discrete gas-kinetic scheme (DGKS) is presented for simulation of two-dimensional viscous incompressible and compressible flows. This scheme is developed from the circular function-based GKS, which was recently proposed by Shu and his co-workers [L. M. Yang, C. Shu, and J. Wu, J. Comput. Phys. 274, 611 (2014)]. For the circular function-based GKS, the integrals for conservation forms of moments in the infinity domain for the Maxwellian function-based GKS are simplified to those integrals along the circle. As a result, the explicit formulations of conservative variables and fluxes are derived. However, these explicit formulations of circular function-based GKS for viscous flows are still complicated, which may not be easy for the application by new users. By using certain discrete points to represent the circle in the phase velocity space, the complicated formulations can be replaced by a simple solution process. The basic requirement is that the conservation forms of moments for the circular function-based GKS can be accurately satisfied by weighted summation of distribution functions at discrete points. In this work, it is shown that integral quadrature by four discrete points on the circle, which forms the D2Q4 discrete velocity model, can exactly match the integrals. Numerical results showed that the present scheme can provide accurate numerical results for incompressible and compressible viscous flows with roughly the same computational cost as that needed by the Roe scheme.

  11. New numerical solutions of three-dimensional compressible hydrodynamic convection. [in stars

    Science.gov (United States)

    Hossain, Murshed; Mullan, D. J.

    1990-01-01

    Numerical solutions of three-dimensional compressible hydrodynamics (including sound waves) in a stratified medium with open boundaries are presented. Convergent/divergent points play a controlling role in the flows, which are dominated by a single frequency related to the mean sound crossing time. Superposed on these rapid compressive flows, slower eddy-like flows eventually create convective transport. The solutions contain small structures stacked on top of larger ones, with vertical scales equal to the local pressure scale heights, H sub p. Although convective transport starts later in the evolution, vertical scales of H sub p are apparently selected at much earlier times by nonlinear compressive effects.

  12. Effect on cavity optomechanics of the interaction between a cavity field and a one-dimensional interacting bosonic gas

    International Nuclear Information System (INIS)

    Sun Qing; Hu Xinghua; Liu, W. M.; Xie, X. C.; Ji Anchun

    2011-01-01

    We investigate optomechanical coupling between one-dimensional interacting bosons and the electromagnetic field in a high-finesse optical cavity. We show that by tuning interatomic interactions, one can realize effective optomechanics with mechanical resonators ranging from side-mode excitations of a Bose-Einstein condensate (BEC) to particle-hole excitations of a Tonks-Girardeau (TG) gas. We propose that this unique feature can be formulated to detect the BEC-TG gas crossover and measure the sine-Gordon transition continuously and nondestructively.

  13. Investigation of the diffusion of a massive particle in a one-dimensional ideal gas

    International Nuclear Information System (INIS)

    Khazin, M.L.

    1987-01-01

    Numerical methods have been used to investigate the dependence of the diffusion coefficient of a massive particle in a one-dimensional ideal gas on its mass. It is shown that the lower limit for the diffusion coefficient obtained by Sinai and Soloveichick and Szasz and Toth is a greatest lower bound. In addition, application of Pearson's x 2 test showed that the limit distribution of a massive particle is not Gaussian with a high significance level

  14. 26 CFR 48.4041-21 - Compressed natural gas (CNG).

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Compressed natural gas (CNG). 48.4041-21 Section... natural gas (CNG). (a) Delivery of CNG into the fuel supply tank of a motor vehicle or motorboat—(1) Imposition of tax. Tax is imposed on the delivery of compressed natural gas (CNG) into the fuel supply tank...

  15. GPA/GPSA/OSU-Okmulgee natural gas compression technician training program

    Energy Technology Data Exchange (ETDEWEB)

    Doede, S.

    1999-07-01

    Approximately one year ago, OSU-Okmulgee and the Gas Processors Association began discussions about the possibility of developing a natural Gas Technician Training Program for GPA members. Following a presentation to the Membership and Services Committee, Chairman John Ehlers solicited and obtained the approval of the GPA Executive Committee to sponsor the program. Participation in the program was also made available to GPSA members. The purpose of the program is to upgrade the technical competency and professional level of incoming natural gas compression technicians. It educates students to analytically diagnose, service and maintain gas compression equipment and systems using industry recommended procedures, special tools and service information. It also provides course content, which will enable successful graduates to advance in position after additional experience, and to understand new systems, technologies and components as they are introduced. The two-year Associate-In-Applied Science Degree program includes six successive college semesters. Nearly one-half of the time is designated for technical/academic education at Oklahoma State University-Okmulgee with the balance of time allocated for on-the-job internship experiences at sponsoring GPA/GPSA members. Each block of technical education and general education course work is followed by an immediate work experience time period designated to reinforce the technical and general education. These time periods are approximately seven and one-half weeks in length each. It is essential for the success of the students and the program that the students' education at OSU-Okmulgee and work experiences at GPA/GPSA member facilities be closely aligned for maximum student learning and retention. In addition to technical classes on gas compression equipment and components, the courses offered in math, speech, technical writing, psychology and ethics for example, prepare students to be able to communicate well, get

  16. Compressible strips, chiral Luttinger liquids, and all that jazz

    International Nuclear Information System (INIS)

    MacDonald, A.H.

    1996-01-01

    When the quantum Hall effect occurs in a two-dimensional electron gas, all low-energy elementary excitations are localized near the system edge. The edge acts in many ways like a one-dimensional ring of electrons, except that a finite current flows around the ring in equilibrium. This article is a brief and informal review of some of the physics of quantum Hall system edges. We discuss the implications of macroscopic compressible and incompressible strip models for microscopic chiral Luttinger liquid models and make an important distinction between the origin of non-Fermi-liquid behavior in fractional quantum Hall edges and in usual one-dimensional electron gas systems. (author). 33 refs., 2 figs

  17. Compressible strips, chiral Luttinger liquids, and all that jazz

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, A.H. [Indiana Univ., Bloomington, IN (United States). Dept. of Physics

    1996-03-01

    When the quantum Hall effect occurs in a two-dimensional electron gas, all low-energy elementary excitations are localized near the system edge. The edge acts in many ways like a one-dimensional ring of electrons, except that a finite current flows around the ring in equilibrium. This article is a brief and informal review of some of the physics of quantum Hall system edges. We discuss the implications of macroscopic compressible and incompressible strip models for microscopic chiral Luttinger liquid models and make an important distinction between the origin of non-Fermi-liquid behavior in fractional quantum Hall edges and in usual one-dimensional electron gas systems. (author). 33 refs., 2 figs.

  18. Dual-fuelling of a direct-injection automotive diesel engine by diesel and compressed natural gas

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Mohammadi Kosha, A.; Mosseibi, A.; Moshirabadi, J.; Gangi, A.; Moghadaspour, M.

    2000-01-01

    Application of Compressed Natural Gas in diesel engines has always been important, especially in the field of automotive engineering. This is due to easy accessibility, better mixing quality and good combustion characteristics of the Compressed Natural Gas fuel. In this study the application of Compressed Natural Gas fuel along with diesel oil in a heavy duty direct-injection automotive diesel engine is experimentally investigated. In order to convert a diesel engine into a diesel-gas one, the so called m ixed diesel-gas a pproach has been used and for this purpose a carbureted Compressed Natural Gas fuel system has been designed and manufactured. For controlling quantity of Compressed Natural Gas, the gas valve is linked to the diesel fuel injection system by means of a set of rods. Then, the dual-fuel system is adjusted so that, at full load conditions, the quantity of diesel fuel is reduced to 20% and 80% of its equivalent energy is substituted by Compressed Natural Gas fuel. Also injection pressure of pilot jet is increased by 11.4%. Performance and emission tests are conducted under variation of load and speed on both diesel and diesel-gas engines. Results show that, with equal power and torque, the diesel-gas engine has the potential to improve overall engine performance and emission. For example, at rated power and speed, fuel economy increases by 5.48%, the amount of smoke decreases by 78%, amount of CO decreases by 64.3% and mean exhaust gas temperature decreases by 6.4%

  19. Comprehensive two-dimensional gas chromatography applied to illicit drug analysis.

    Science.gov (United States)

    Mitrevski, Blagoj; Wynne, Paul; Marriott, Philip J

    2011-11-01

    Multidimensional gas chromatography (MDGC), and especially its latest incarnation--comprehensive two-dimensional gas chromatography (GC × GC)--have proved advantageous over and above classic one-dimensional gas chromatography (1D GC) in many areas of analysis by offering improved peak capacity, often enhanced sensitivity and, especially in the case of GC × GC, the unique feature of 'structured' chromatograms. This article reviews recent advances in MDGC and GC × GC in drug analysis with special focus on ecstasy, heroin and cocaine profiling. Although 1D GC is still the method of choice for drug profiling in most laboratories because of its simplicity and instrument availability, GC × GC is a tempting proposition for this purpose because of its ability to generate a higher net information content. Effluent refocusing due to the modulation (compression) process, combined with the separation on two 'orthogonal' columns, results in more components being well resolved and therefore being analytically and statistically useful to the profile. The spread of the components in the two-dimensional plots is strongly dependent on the extent of retention 'orthogonality' (i.e. the extent to which the two phases possess different or independent retention mechanisms towards sample constituents) between the two columns. The benefits of 'information-driven' drug profiling, where more points of reference are usually required for sample differentiation, are discussed. In addition, several limitations in application of MDGC in drug profiling, including data acquisition rate, column temperature limit, column phase orthogonality and chiral separation, are considered and discussed. Although the review focuses on the articles published in the last decade, a brief chronological preview of the profiling methods used throughout the last three decades is given.

  20. Development of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    A natural gas and diesel dual-fuel turbocharged compression ignition (CI) engine is developed to reduce emissions of a heavy-duty diesel engine. The compressed natural gas (CNG) pressure regulator is specially designed to feed back the boost pressure to simplify the fuel metering system. The natural gas bypass improves the engine response to acceleration. The modes of diesel injection are set according to the engine operating conditions. The application of honeycomb mixers changes the flowrate shape of natural gas and reduces hydrocarbon (HC) emission under low-load and lowspeed conditions. The cylinder pressures of a CI engine fuelled with diesel and dual fuel are analysed. The introduction of natural gas makes the ignition delay change with engine load. Under the same operating conditions, the emissions of smoke and NO{sub x} from the dual-fuel engine are both reduced. The HC and CO emissions for the dual-fuel engine remain within the range of regulation. (Author)

  1. One dimensional modeling of a diesel-CNG dual fuel engine

    Science.gov (United States)

    Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir

    2017-04-01

    Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.

  2. Semi-implicit method for three-dimensional compressible MHD simulation

    International Nuclear Information System (INIS)

    Harned, D.S.; Kerner, W.

    1984-03-01

    A semi-implicit method for solving the full compressible MHD equations in three dimensions is presented. The method is unconditionally stable with respect to the fast compressional modes. The time step is instead limited by the slower shear Alfven motion. The computing time required for one time step is essentially the same as for explicit methods. Linear stability limits are derived and verified by three-dimensional tests on linear waves in slab geometry. (orig.)

  3. Non-thermal fixed points and solitons in a one-dimensional Bose gas

    International Nuclear Information System (INIS)

    Schmidt, Maximilian; Erne, Sebastian; Nowak, Boris; Sexty, Dénes; Gasenzer, Thomas

    2012-01-01

    Single-particle momentum spectra for a dynamically evolving one-dimensional Bose gas are analysed in the semi-classical wave limit. Representing one of the simplest correlation functions, these provide information on a possible universal scaling behaviour. Motivated by the previously discovered connection between (quasi-) topological field configurations, strong wave turbulence and non-thermal fixed points of quantum field dynamics, soliton formation is studied with respect to the appearance of transient power-law spectra. A random-soliton model is developed for describing the spectra analytically, and the analogies and differences between the emerging power laws and those found in a field theory approach to strong wave turbulence are discussed. The results open a new perspective on solitary wave dynamics from the point of view of critical phenomena far from thermal equilibrium and the possibility of studying this dynamics by experiment without the need for detecting solitons in situ. (paper)

  4. Tonks-Girardeau and super-Tonks-Girardeau states of a trapped one-dimensional spinor Bose gas

    International Nuclear Information System (INIS)

    Girardeau, M. D.

    2011-01-01

    A harmonically trapped, ultracold, one-dimensional (1D) spin-1 Bose gas with strongly repulsive or attractive 1D even-wave interactions induced by a three-dimensional (3D) Feshbach resonance is studied. The exact ground state, a hybrid of Tonks-Girardeau (TG) and ideal Fermi gases, is constructed in the TG limit of infinite even-wave repulsion by a spinor Fermi-Bose mapping to a spinless ideal Fermi gas. It is then shown that in the limit of infinite even-wave attraction this same state remains an exact many-body eigenstate, now highly excited relative to the collapsed generalized McGuire-cluster ground state, showing that the hybrid TG state is completely stable against collapse to this cluster ground state under a sudden switch from infinite repulsion to infinite attraction. It is shown to be the TG limit of a hybrid super-Tonks-Girardeau (STG) state, which is metastable under a sudden switch from finite but very strong repulsion to finite but very strong attraction. It should be possible to create it experimentally by a sudden switch from strongly repulsive to strongly attractive interaction, as in the recent Innsbruck experiment on a spin-polarized bosonic STG gas. In the case of strong attraction, there should also exist another STG state of much lower energy, consisting of strongly bound dimers, a bosonic analog of a recently predicted STG state which is an ultracold gas of strongly bound bosonic dimers of fermionic atoms, but it is shown that this STG state cannot be created by such a switch from strong repulsion to strong attraction.

  5. Gas compression infrared generator

    International Nuclear Information System (INIS)

    Hug, W.F.

    1980-01-01

    A molecular gas is compressed in a quasi-adiabatic manner to produce pulsed radiation during each compressor cycle when the pressure and temperature are sufficiently high, and part of the energy is recovered during the expansion phase, as defined in U.S. Pat. No. 3,751,666; characterized by use of a cylinder with a reciprocating piston as a compressor

  6. Study of instantaneous unsteady heat transfer in a rapid compression-expansion machine using zero dimensional k- ε turbulence model

    International Nuclear Information System (INIS)

    Bakhshan, Y.; Karim, G. A.; Mansouri, S. H.

    2003-01-01

    In this investigation, the instantaneous unsteady heat transfer within a pneumatically driven rapid compression-expansion machine that offers simple, well-controlled and known boundary conditions was studied. Values of the instantaneous apparent overall heat flux from the cylinder gas to the wall surfaces were calculated using a thermodynamics analysis of the experimentally measured pressure and volume temporal development. Corresponding heat flux values were also calculated through the application of a zero-dimensional k- ε turbulence model the characteristic velocity is a contribution of turbulence kinetic energy, mean kinetic energy of charged air into cylinder and piston motion for the calculation of Reynolds, Nusselt and Prandtl numbers. Comparison of the zero-dimensional k- ε turbulence model prediction with experimental data shows good agreement for all compression ratios

  7. Scaling symmetries, conservation laws and action principles in one-dimensional gas dynamics

    International Nuclear Information System (INIS)

    Webb, G M; Zank, G P

    2009-01-01

    Scaling symmetries of the planar, one-dimensional gas dynamic equations with adiabatic index γ are used to obtain Lagrangian and Eulerian conservation laws associated with the symmetries. The known Eulerian symmetry operators for the scaling symmetries are converted to the Lagrangian form, in which the Eulerian spatial position of the fluid element is given in terms of the Lagrangian fluid labels. Conditions for a linear combination of the three scaling symmetries to be a divergence or variational symmetry of the action are established. The corresponding Lagrangian and Eulerian form of the conservation laws are determined by application of Noether's theorem. A nonlocal conservation law associated with the scaling symmetries is obtained by applying a nonlocal symmetry operator to the scaling symmetry-conserved vector. An action principle incorporating known conservation laws using Lagrangian constraints is developed. Noether's theorem for the constrained action principle gives the same formulas for the conserved vector as the classical Noether theorem, except that the Lie symmetry vector field now includes the effects of nonlocal potentials. Noether's theorem for the constrained action principle is used to obtain nonlocal conservation laws. The scaling symmetry conservation laws only apply for special forms of the entropy of the gas.

  8. Computer calculations of compressibility of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Kassem, J.H.; Mattar, L.; Dranchuk, P.M

    An alternative method for the calculation of pseudo reduced compressibility of natural gas is presented. The method is incorporated into the routines by adding a single FORTRAN statement before the RETURN statement. The method is suitable for computer and hand-held calculator applications. It produces the same reduced compressibility as other available methods but is computationally superior. Tabular definitions of coefficients and comparisons of predicted pseudo reduced compressibility using different methods are presented, along with appended FORTRAN subroutines. 7 refs., 2 tabs.

  9. Safety for Compressed Gas and Air Equipment. Module SH-26. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safety for compressed gas and air equipment is one of 50 modules concerned with job safety and health. This module presents technical data about commonly used gases and stresses the procedures necessary for safe handling of compressed gases. Following the introduction, 14 objectives (each keyed to a page in the text) the…

  10. The Effect of Inhomogeneous Compression on Water Transport in the Cathode of a Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen

    2012-01-01

    A three-dimensional, multicomponent, two-fluid model developed in the commercial CFD package CFX 13 (ANSYS Inc.) is used to investigate the effect of porous media compression on water transport in a proton exchange membrane fuel cell (PEMFC). The PEMFC model only consist of the cathode channel, gas....... Furthermore, the presence of irreducible liquid water is taken into account. In order to account for compression, porous media morphology variations are specified based on the gas diffusion layer (GDL) through-plane strain and intrusion which are stated as a function of compression. These morphology...... variations affect gas and liquid water transport, and hence liquid water distribution and the risk of blocking active sites. Hence, water transport is studied under GDL compression in order to investigate the qualitative effects. Two simulation cases are compared; one with and one without compression....

  11. Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries

    Science.gov (United States)

    Nyström, Gustav; Marais, Andrew; Karabulut, Erdem; Wågberg, Lars; Cui, Yi; Hamedi, Mahiar M.

    2015-01-01

    Traditional thin-film energy-storage devices consist of stacked layers of active films on two-dimensional substrates and do not exploit the third dimension. Fully three-dimensional thin-film devices would allow energy storage in bulk materials with arbitrary form factors and with mechanical properties unique to bulk materials such as compressibility. Here we show three-dimensional energy-storage devices based on layer-by-layer self-assembly of interdigitated thin films on the surface of an open-cell aerogel substrate. We demonstrate a reversibly compressible three-dimensional supercapacitor with carbon nanotube electrodes and a three-dimensional hybrid battery with a copper hexacyanoferrate ion intercalating cathode and a carbon nanotube anode. The three-dimensional supercapacitor shows stable operation over 400 cycles with a capacitance of 25 F g−1 and is fully functional even at compressions up to 75%. Our results demonstrate that layer-by-layer self-assembly inside aerogels is a rapid, precise and scalable route for building high-surface-area 3D thin-film devices. PMID:26021485

  12. Comprehensive two-dimensional gas chromatography for biogas and biomethane analysis.

    Science.gov (United States)

    Hilaire, F; Basset, E; Bayard, R; Gallardo, M; Thiebaut, D; Vial, J

    2017-11-17

    The gas industry is going to be revolutionized by being able to generate bioenergy from biomass. The production of biomethane - a green substitute of natural gas - is growing in Europe and the United-States of America. Biomethane can be injected into the gas grid or used as fuel for vehicles after compression. Due to various biomass inputs (e.g. agricultural wastes, sludges from sewage treatment plants, etc.), production processes (e.g. anaerobic digestion, municipal solid waste (MSW) landfills), seasonal effects and purification processes (e.g. gas scrubbers, pressure swing adsorption, membranes for biogas upgrading), the composition and quality of biogas and biomethane produced is difficult to assess. All previous publications dealing with biogas analysis reported that hundreds of chemicals from ten chemical families do exist in trace amounts in biogas. However, to the best of our knowledge, no study reported a detailed analysis or the implementation of comprehensive two-dimensional gas chromatography (GC×GC) for biogas matrices. This is the reason why the benefit of implementing two-dimensional gas chromatography for the characterization of biogas and biomethane samples was evaluated. In a first step, a standard mixture of 89 compounds belonging to 10 chemical families, representative of those likely to be found, was used to optimize the analytical method. A set consisting of a non-polar and a polar columns, respectively in the first and the second dimension, was used with a modulation period of six seconds. Applied to ten samples of raw biogas, treated biogas and biomethane collected on 4 industrial sites (two MSW landfills, one anaerobic digester on a wastewater treatment plant and one agricultural biogas plant), this analytical method provided a "fingerprint" of the gases composition at the molecular level in all biogas and biomethane samples. Estimated limits of detection (far below the μgNm -3 ) coupled with the resolution of GC×GC allowed the comparison

  13. Future perspective for CNG (Compressed Natural Gas)

    International Nuclear Information System (INIS)

    Veen, D.

    1999-01-01

    Driving on natural gas (CNG, Compressed Natural Gas) has been the talk of the industry for many years now. Although the benefits of natural gas as an engine fuel have become well-known, this phenomenon does not seem to gain momentum in the Netherlands. Over the last few months, however, the attitude towards CNG seems to be changing. Energy companies are increasingly engaged in commercial activities, e.g. selling natural gas at petrol stations, an increasing number of car manufacturers are delivering natural gas vehicles ex-works, and recently the NGV (Natural Gas Vehicles) Holland platform was set up for the unequivocal marketing of natural gas as an engine fuel

  14. The wet compression technology for gas turbine power plants: Thermodynamic model

    International Nuclear Information System (INIS)

    Bracco, Stefano; Pierfederici, Alessandro; Trucco, Angela

    2007-01-01

    This paper examines from a thermodynamic point of view the effects of wet compression on gas turbine power plants, particularly analysing the influence of ambient conditions on the plant performance. The results of the mathematical model, implemented in 'Matlab' software, have been compared with the simulation results presented in literature and in particular the values of the 'evaporative rate', proposed in Araimo et al. [L. Araimo, A. Torelli, Thermodynamic analysis of the wet compression process in heavy duty gas turbine compressors, in: Proceedings of the 59th ATI Annual Congress, Genova, 2004, pp. 1249-1263; L. Araimo, A. Torelli, Wet compression technology applied to heavy duty gas turbines - GT power augmentation and efficiency upgrade, in: Proceedings of the 59th ATI Annual Congress, Genova, 2004, pp. 1265-1277] by 'Gas Turbines Department' of Ansaldo Energia S.p.A., have been taken into account to validate the model. The simulator permits to investigate the effects of the fogging and wet compression techniques and estimate the power and efficiency gain of heavy duty gas turbines operating in hot and arid conditions

  15. Flow design and simulation of a gas compression system for hydrogen fusion energy production

    Energy Technology Data Exchange (ETDEWEB)

    Avital, E J; Salvatore, E [School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd London E1 4NS (United Kingdom); Munjiza, A [Civil Engineering, University of Split, Livanjska 2100 Split (Croatia); Suponitsky, V; Plant, D; Laberge, M, E-mail: e.avital@qmul.ac.uk [General Fusion Inc.,108-3680 Bonneville Place, Burnaby, BC V3N 4T5 (Canada)

    2017-08-15

    An innovative gas compression system is proposed and computationally researched to achieve a short time response as needed in engineering applications such as hydrogen fusion energy reactors and high speed hammers. The system consists of a reservoir containing high pressure gas connected to a straight tube which in turn is connected to a spherical duct, where at the sphere’s centre plasma resides in the case of a fusion reactor. Diaphragm located inside the straight tube separates the reservoir’s high pressure gas from the rest of the plenum. Once the diaphragm is breached the high pressure gas enters the plenum to drive pistons located on the inner wall of the spherical duct that will eventually end compressing the plasma. Quasi-1D and axisymmetric flow formulations are used to design and analyse the flow dynamics. A spike is designed for the interface between the straight tube and the spherical duct to provide a smooth geometry transition for the flow. Flow simulations show high supersonic flow hitting the end of the spherical duct, generating a return shock wave propagating upstream and raising the pressure above the reservoir pressure as in the hammer wave problem, potentially giving temporary pressure boost to the pistons. Good agreement is revealed between the two flow formulations pointing to the usefulness of the quasi-1D formulation as a rapid solver. Nevertheless, a mild time delay in the axisymmetric flow simulation occurred due to moderate two-dimensionality effects. The compression system is settled down in a few milliseconds for a spherical duct of 0.8 m diameter using Helium gas and a uniform duct cross-section area. Various system geometries are analysed using instantaneous and time history flow plots. (paper)

  16. Flow design and simulation of a gas compression system for hydrogen fusion energy production

    Science.gov (United States)

    Avital, E. J.; Salvatore, E.; Munjiza, A.; Suponitsky, V.; Plant, D.; Laberge, M.

    2017-08-01

    An innovative gas compression system is proposed and computationally researched to achieve a short time response as needed in engineering applications such as hydrogen fusion energy reactors and high speed hammers. The system consists of a reservoir containing high pressure gas connected to a straight tube which in turn is connected to a spherical duct, where at the sphere’s centre plasma resides in the case of a fusion reactor. Diaphragm located inside the straight tube separates the reservoir’s high pressure gas from the rest of the plenum. Once the diaphragm is breached the high pressure gas enters the plenum to drive pistons located on the inner wall of the spherical duct that will eventually end compressing the plasma. Quasi-1D and axisymmetric flow formulations are used to design and analyse the flow dynamics. A spike is designed for the interface between the straight tube and the spherical duct to provide a smooth geometry transition for the flow. Flow simulations show high supersonic flow hitting the end of the spherical duct, generating a return shock wave propagating upstream and raising the pressure above the reservoir pressure as in the hammer wave problem, potentially giving temporary pressure boost to the pistons. Good agreement is revealed between the two flow formulations pointing to the usefulness of the quasi-1D formulation as a rapid solver. Nevertheless, a mild time delay in the axisymmetric flow simulation occurred due to moderate two-dimensionality effects. The compression system is settled down in a few milliseconds for a spherical duct of 0.8 m diameter using Helium gas and a uniform duct cross-section area. Various system geometries are analysed using instantaneous and time history flow plots.

  17. Ultracold atoms in one-dimensional optical lattices approaching the Tonks-Girardeau regime

    International Nuclear Information System (INIS)

    Pollet, L.; Rombouts, S.M.A.; Denteneer, P.J. H.

    2004-01-01

    Recent experiments on ultracold atomic alkali gases in a one-dimensional optical lattice have demonstrated the transition from a gas of soft-core bosons to a Tonks-Girardeau gas in the hard-core limit, where one-dimensional bosons behave like fermions in many respects. We have studied the underlying many-body physics through numerical simulations which accommodate both the soft-core and hard-core limits in one single framework. We find that the Tonks-Girardeau gas is reached only at the strongest optical lattice potentials. Results for slightly higher densities, where the gas develops a Mott-like phase already at weaker optical lattice potentials, show that these Mott-like short-range correlations do not enhance the convergence to the hard-core limit

  18. Three-dimensional range data compression using computer graphics rendering pipeline.

    Science.gov (United States)

    Zhang, Song

    2012-06-20

    This paper presents the idea of naturally encoding three-dimensional (3D) range data into regular two-dimensional (2D) images utilizing computer graphics rendering pipeline. The computer graphics pipeline provides a means to sample 3D geometry data into regular 2D images, and also to retrieve the depth information for each sampled pixel. The depth information for each pixel is further encoded into red, green, and blue color channels of regular 2D images. The 2D images can further be compressed with existing 2D image compression techniques. By this novel means, 3D geometry data obtained by 3D range scanners can be instantaneously compressed into 2D images, providing a novel way of storing 3D range data into its 2D counterparts. We will present experimental results to verify the performance of this proposed technique.

  19. Starting up a programme of atomic piles using compressed gas

    International Nuclear Information System (INIS)

    Horowitz, J.; Yvon, J.

    1959-01-01

    1) An examination of the intellectual and material resources which have directed the French programme towards: a) the natural uranium and plutonium system, b) the use of compressed gas as heat transfer fluid (primary fluid). 2) The parts played in exploring the field by the pile EL2 and G1, EL2 a natural uranium, heavy water and compressed gas pile, G1 a natural uranium, graphite and atmospheric air pile. 3) Development of the neutronics of graphite piles: physical study of G1. 4) The examination of certain problem posed by centres equipped with natural uranium, graphite and compressed carbon dioxide piles: structure, special materials, fluid circuits, maximum efficiency. Economic aspects. 5) Aids to progress: a) piles for testing materials and for tests on canned fuel elements, b) laboratory and calculation facilities. 6) Possible new orientations of compressed gas piles: a) raising of the pressure, b) enriched fuel, c) higher temperatures, d) use of heavy water. (author) [fr

  20. Three-Dimensional Inverse Transport Solver Based on Compressive Sensing Technique

    Science.gov (United States)

    Cheng, Yuxiong; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi

    2013-09-01

    According to the direct exposure measurements from flash radiographic image, a compressive sensing-based method for three-dimensional inverse transport problem is presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. It is always very expensive to obtain enough measurements. With limited measurements, compressive sensing sparse reconstruction technique orthogonal matching pursuit is applied to obtain the sparse coefficients by solving an optimization problem. A three-dimensional inverse transport solver is developed based on a compressive sensing-based technique. There are three features in this solver: (1) AutoCAD is employed as a geometry preprocessor due to its powerful capacity in graphic. (2) The forward projection matrix rather than Gauss matrix is constructed by the visualization tool generator. (3) Fourier transform and Daubechies wavelet transform are adopted to convert an underdetermined system to a well-posed system in the algorithm. Simulations are performed and numerical results in pseudo-sine absorption problem, two-cube problem and two-cylinder problem when using compressive sensing-based solver agree well with the reference value.

  1. Boltzmann equations for a binary one-dimensional ideal gas.

    Science.gov (United States)

    Boozer, A D

    2011-09-01

    We consider a time-reversal invariant dynamical model of a binary ideal gas of N molecules in one spatial dimension. By making time-asymmetric assumptions about the behavior of the gas, we derive Boltzmann and anti-Boltzmann equations that describe the evolution of the single-molecule velocity distribution functions for an ensemble of such systems. We show that for a special class of initial states of the ensemble one can obtain an exact expression for the N-molecule velocity distribution function, and we use this expression to rigorously prove that the time-asymmetric assumptions needed to derive the Boltzmann and anti-Boltzmann equations hold in the limit of large N. Our results clarify some subtle issues regarding the origin of the time asymmetry of Boltzmann's H theorem.

  2. Wellhead gas compression extends life of beam-pumped wells

    International Nuclear Information System (INIS)

    Sherry, M.J.; Fairchild, P.W.

    1992-01-01

    This paper reports that operators of marginal oil and gas wells often can avoid having to shut them in by compressing gas from the back side of the casing at the well head and delivering it into the flowline. This process can reduce the back pressure at the face of the producing formation, which allows additional oil and gas to be produced and extends the economical reserves. Small, low-horsepower stationary compressors or a walking beam compressor (WBC) may be used for this purpose. A portable compressor test unit recently has been employed to evaluate wells that are possible candidates for wellhead compression as another cost cutting measure

  3. Slow quench dynamics of a one-dimensional Bose gas confined to an optical lattice.

    Science.gov (United States)

    Bernier, Jean-Sébastien; Roux, Guillaume; Kollath, Corinna

    2011-05-20

    We analyze the effect of a linear time variation of the interaction strength on a trapped one-dimensional Bose gas confined to an optical lattice. The evolution of different observables such as the experimentally accessible on site particle distribution are studied as a function of the ramp time by using time-dependent numerical techniques. We find that the dynamics of a trapped system typically displays two regimes: For long ramp times, the dynamics is governed by density redistribution, while at short ramp times, local dynamics dominates as the evolution is identical to that of an homogeneous system. In the homogeneous limit, we also discuss the nontrivial scaling of the energy absorbed with the ramp time.

  4. Compressed Natural Gas Technology for Alternative Fuel Power Plants

    Science.gov (United States)

    Pujotomo, Isworo

    2018-02-01

    Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%), and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant) be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant) has a high electrical efficiency (45%). Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG) Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.

  5. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  6. Compressed natural gas (CNG) in fueled systems and the significance of CNG in vehicular transportation

    Energy Technology Data Exchange (ETDEWEB)

    Ayar, G. [Besikduzu, Trabzon (Turkey)

    2006-05-15

    Most NG vehicles operate using compressed natural gas (CNG). CNG's popularity stems, in part, from its clean-burning properties. In addition, more than 85,000 CNG vehicles, including one out of every five transit buses, are operating successfully today. This compressed gas is stored in similar fashion to a car's gasoline tank, attached to the rear, top, or undercarriage of the vehicle in a tube-shaped storage tank. A CNG tank can be filled in a similar manner, and in a similar amount of time, to a gasoline tank. (author)

  7. Three-dimensional density and compressible magnetic structure in solar wind turbulence

    Science.gov (United States)

    Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe

    2018-03-01

    The three-dimensional structure of both compressible and incompressible components of turbulence is investigated at proton characteristic scales in the solar wind. Measurements of the three-dimensional structure are typically difficult, since the majority of measurements are performed by a single spacecraft. However, the Cluster mission consisting of four spacecraft in a tetrahedral formation allows for a fully three-dimensional investigation of turbulence. Incompressible turbulence is investigated by using the three vector components of the magnetic field. Meanwhile compressible turbulence is investigated by considering the magnitude of the magnetic field as a proxy for the compressible fluctuations and electron density data deduced from spacecraft potential. Application of the multi-point signal resonator technique to intervals of fast and slow wind shows that both compressible and incompressible turbulence are anisotropic with respect to the mean magnetic field direction P⟂ ≫ P∥ and are sensitive to the value of the plasma beta (β; ratio of thermal to magnetic pressure) and the wind type. Moreover, the incompressible fluctuations of the fast and slow solar wind are revealed to be different with enhancements along the background magnetic field direction present in the fast wind intervals. The differences in the fast and slow wind and the implications for the presence of different wave modes in the plasma are discussed.

  8. Two compressible and immiscible flow in porous media: mathematical and numerical analysis

    International Nuclear Information System (INIS)

    Khalil, Z.

    2010-01-01

    The aim of this thesis is the study of Cauchy problem (existence of weak solutions) for three degenerate highly coupled parabolic systems modeling compressible immiscible flow in porous media. The motivation of this work is a benchmark of the GNR MoMaS, to study the impact of the gas flow due to the corrosion of ferrous materials in a radioactive waste storage site. This thesis is divided into three independent chapters. Firstly, we look at a problem modeling the flow of two immiscible phases and considering one phase is compressible and the other is incompressible (water/gas). Secondly, we consider the problem modeling two-compressible immiscible flow in porous media. An existence results for both problems established by a semi-discretization method. Finally, The fourth chapter is devoted to the construction and convergence of a multi-dimensional finite volume method (upwind scheme) for the gas-water model under the assumption that the gas density is a function of a global pressure. (author)

  9. Adiabatic compression of elongated field-reversed configurations

    International Nuclear Information System (INIS)

    Spencer, R.L.; Tuszewski, M.; Linford, R.K.

    1983-01-01

    The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas

  10. 46 CFR 188.10-21 - Compressed gas.

    Science.gov (United States)

    2010-10-01

    ... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-21 Compressed gas. This term includes any... by the Reid method covered by the American Society for Testing Materials Method of Test for Vapor...

  11. 49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.

    Science.gov (United States)

    2010-10-01

    ... compressed natural gas vehicles. 571.303 Section 571.303 Transportation Other Regulations Relating to... system integrity of compressed natural gas vehicles. S1. Scope. This standard specifies requirements for the integrity of motor vehicle fuel systems using compressed natural gas (CNG), including the CNG fuel...

  12. A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, J.R.; Arnau, F.J.; Dolz, V.; Tiseira, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Cervello, C. [Conselleria de Cultura, Educacion y Deporte, Generalitat Valenciana (Spain)

    2008-12-15

    The paper presents a model of fixed and variable geometry turbines. The aim of this model is to provide an efficient boundary condition to model turbocharged internal combustion engines with zero- and one-dimensional gas dynamic codes. The model is based from its very conception on the measured characteristics of the turbine. Nevertheless, it is capable of extrapolating operating conditions that differ from those included in the turbine maps, since the engines usually work within these zones. The presented model has been implemented in a one-dimensional gas dynamic code and has been used to calculate unsteady operating conditions for several turbines. The results obtained have been compared with success against pressure-time histories measured upstream and downstream of the turbine during on-engine operation. (author)

  13. A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling

    International Nuclear Information System (INIS)

    Serrano, J.R.; Arnau, F.J.; Dolz, V.; Tiseira, A.; Cervello, C.

    2008-01-01

    The paper presents a model of fixed and variable geometry turbines. The aim of this model is to provide an efficient boundary condition to model turbocharged internal combustion engines with zero- and one-dimensional gas dynamic codes. The model is based from its very conception on the measured characteristics of the turbine. Nevertheless, it is capable of extrapolating operating conditions that differ from those included in the turbine maps, since the engines usually work within these zones. The presented model has been implemented in a one-dimensional gas dynamic code and has been used to calculate unsteady operating conditions for several turbines. The results obtained have been compared with success against pressure-time histories measured upstream and downstream of the turbine during on-engine operation

  14. Adiabatic compression of elongated field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, R.L.; Tuszewski, M.; Linford, R.K.

    1983-06-01

    The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas.

  15. Fundamentals of gas dynamics

    CERN Document Server

    Babu, V

    2014-01-01

    Fundamentals of Gas Dynamics, Second Edition isa comprehensively updated new edition and now includes a chapter on the gas dynamics of steam. It covers the fundamental concepts and governing equations of different flows, and includes end of chapter exercises based on the practical applications. A number of useful tables on the thermodynamic properties of steam are also included.Fundamentals of Gas Dynamics, Second Edition begins with an introduction to compressible and incompressible flows before covering the fundamentals of one dimensional flows and normal shock wav

  16. Histomorphometric study and three-dimensional reconstruction of the osteocyte lacuno-canalicular network one hour after applying tensile and compressive forces.

    Science.gov (United States)

    Bozal, Carola B; Sánchez, Luciana M; Mandalunis, Patricia M; Ubios, Ángela M

    2013-01-01

    The occurrence of very early morphological changes in the osteocyte lacuno-canalicular network following application of tensile and/or compressive forces remains unknown to date. Thus, the aim of this study was to perform a morphological and morphometric evaluation of the changes in the three-dimensional structure of the lacuno-canalicular network and the osteocyte network of alveolar bone that take place very early after applying tensile and compressive forces in vivo, conducting static histomorphometry on bright-field microscopy and confocal laser scanning microscopy images. Our results showed that both the tensile and compressive forces induced early changes in osteocytes and their lacunae, which manifested as an increase in lacunar volume and changes in lacunar shape and orientation. An increase in canalicular width and a decrease in the width and an increase in the length of cytoplasmic processes were also observed. The morphological changes in the lacuno-canalicular and osteocyte networks that occur in vivo very early after application of tensile and compressive forces would be an indication of an increase in permeability within the system. Thus, both compressive and tensile forces would cause fluid displacement very soon after being applied; the latter would in turn rapidly activate alveolar bone osteocytes, enhancing transmission of the signals to the entire osteocyte network and the effector cells located at the bone surface. Copyright © 2013 S. Karger AG, Basel.

  17. High Precision Motion Control System for the Two-Stage Light Gas Gun at the Dynamic Compression Sector

    Science.gov (United States)

    Zdanowicz, E.; Guarino, V.; Konrad, C.; Williams, B.; Capatina, D.; D'Amico, K.; Arganbright, N.; Zimmerman, K.; Turneaure, S.; Gupta, Y. M.

    2017-06-01

    The Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS), located at Argonne National Laboratory (ANL), has a diverse set of dynamic compression drivers to obtain time resolved x-ray data in single event, dynamic compression experiments. Because the APS x-ray beam direction is fixed, each driver at DCS must have the capability to move through a large range of linear and angular motions with high precision to accommodate a wide variety of scientific needs. Particularly challenging was the design and implementation of the motion control system for the two-stage light gas gun, which rests on a 26' long structure and weighs over 2 tons. The target must be precisely positioned in the x-ray beam while remaining perpendicular to the gun barrel axis to ensure one-dimensional loading of samples. To accommodate these requirements, the entire structure can pivot through 60° of angular motion and move 10's of inches along four independent linear directions with 0.01° and 10 μm resolution, respectively. This presentation will provide details of how this system was constructed, how it is controlled, and provide examples of the wide range of x-ray/sample geometries that can be accommodated. Work supported by DOE/NNSA.

  18. Constructing a unique two-phase compressibility factor model for lean gas condensates

    Energy Technology Data Exchange (ETDEWEB)

    Moayyedi, Mahmood; Gharesheikhlou, Aliashghar [Research Institute of Petroleum Industry (RIPI), Tehran (Iran, Islamic Republic of); Azamifard, Arash; Mosaferi, Emadoddin [Amirkabir University of Technology (AUT), Tehran (Iran, Islamic Republic of)

    2015-02-15

    Generating a reliable experimental model for two-phase compressibility factor in lean gas condensate reservoirs has always been demanding, but it was neglected due to lack of required experimental data. This study presents the main results of constructing the first two-phase compressibility factor model that is completely valid for Iranian lean gas condensate reservoirs. Based on a wide range of experimental data bank for Iranian lean gas condensate reservoirs, a unique two-phase compressibility factor model was generated using design of experiments (DOE) method and neural network technique (ANN). Using DOE, a swift cubic response surface model was generated for two-phase compressibility factor as a function of some selected fluid parameters for lean gas condensate fluids. The proposed DOE and ANN models were finally validated using four new independent data series. The results showed that there is a good agreement between experimental data and the proposed models. In the end, a detailed comparison was made between the results of proposed models.

  19. Constructing a unique two-phase compressibility factor model for lean gas condensates

    International Nuclear Information System (INIS)

    Moayyedi, Mahmood; Gharesheikhlou, Aliashghar; Azamifard, Arash; Mosaferi, Emadoddin

    2015-01-01

    Generating a reliable experimental model for two-phase compressibility factor in lean gas condensate reservoirs has always been demanding, but it was neglected due to lack of required experimental data. This study presents the main results of constructing the first two-phase compressibility factor model that is completely valid for Iranian lean gas condensate reservoirs. Based on a wide range of experimental data bank for Iranian lean gas condensate reservoirs, a unique two-phase compressibility factor model was generated using design of experiments (DOE) method and neural network technique (ANN). Using DOE, a swift cubic response surface model was generated for two-phase compressibility factor as a function of some selected fluid parameters for lean gas condensate fluids. The proposed DOE and ANN models were finally validated using four new independent data series. The results showed that there is a good agreement between experimental data and the proposed models. In the end, a detailed comparison was made between the results of proposed models

  20. Exact results on the one-dimensional Potts lattice gas

    International Nuclear Information System (INIS)

    Riera, R.; Chaves, C.M.G.F.

    1982-12-01

    An exact calculation of the Potts Lattice Gas in one dimension is presented. Close to T=O 0 K, the uniform susceptibility presents an essencial singularity, when the excharge parameter is positive, and a power law behaviour with critical exponent γ=1, when this parameter is negative. (Author) [pt

  1. Exact results on the one-dimensional Potts lattice gas

    International Nuclear Information System (INIS)

    Riera, R.; Chaves, C.M.G.F.

    1983-01-01

    An exact calculation of the Potts Lattice Gas in one dimension is presented. Close to T=O 0 K, the uniform susceptibility presents an essential singularity, when the exchange parameter is positive, and a power law behaviour with critical exponent γ=1, when this parameter is negative. (Author) [pt

  2. Cluster properties of the one-dimensional lattice gas: the microscopic meaning of grand potential.

    Science.gov (United States)

    Fronczak, Agata

    2013-02-01

    Using a concrete example, we demonstrate how the combinatorial approach to a general system of particles, which was introduced in detail in an earlier paper [Fronczak, Phys. Rev. E 86, 041139 (2012)], works and where this approach provides a genuine extension of results obtained through more traditional methods of statistical mechanics. We study the cluster properties of a one-dimensional lattice gas with nearest-neighbor interactions. Three cases (the infinite temperature limit, the range of finite temperatures, and the zero temperature limit) are discussed separately, yielding interesting results and providing alternative proof of known results. In particular, the closed-form expression for the grand partition function in the zero temperature limit is obtained, which results in the nonanalytic behavior of the grand potential, in accordance with the Yang-Lee theory.

  3. Two-Dimensional DOA Estimation in Compressed Sensing with Compressive-Reduced Dimension-lp-MUSIC

    Directory of Open Access Journals (Sweden)

    Weijian Si

    2015-01-01

    Full Text Available This paper presents a novel two-dimensional (2D direction of arrival (DOA estimation method in compressed sensing (CS to remove the estimation failure problem and achieve superior performance. The proposed method separates the steering vector into two parts to construct two corresponding noise subspaces by introducing electric angles. Then, electric angles are estimated based on the constructed noise subspaces. In order to estimate the azimuth and elevation angles in terms of estimates of electric angles, arc-tangent operations are exploited. The arc-tangent is a one-to-one function and allows the value of the argument to be larger than unity so that the proposed method never fails. The proposed method can avoid pair matching to reduce the computational complexity and extend the number of snapshots to improve performance. Simulation results show that the proposed method can avoid estimation failure occurrence and has superior performance as compared to existing methods.

  4. Chemical potential of one-dimensional simple harmonic oscillators

    International Nuclear Information System (INIS)

    Mungan, Carl E

    2009-01-01

    Expressions for the chemical potential of an Einstein solid, and of ideal Fermi and Bose gases in an external one-dimensional oscillatory trap, are calculated by two different methods and are all found to share the same functional form. These derivations are easier than traditional textbook calculations for an ideal gas in an infinite three-dimensional square well. Furthermore, the results indicate some important features of chemical potential that could promote student learning in an introductory course in statistical mechanics at the undergraduate level.

  5. Compressed natural gas transportation by utilizing FRP composite pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, S.C. [Trans Ocean Gas Inc., St. John' s, NF (Canada)

    2004-07-01

    This paper discussed the Trans Ocean Gas (TOG) method for transporting compressed natural gas (CNG). As demand for natural gas increases and with half of the world's reserves considered stranded, a method to transport natural gas by ship is needed. CNG transportation is widely viewed as a viable method. Transported as CNG, stranded gas reserves can be delivered to existing markets or can create new natural gas markets not applicable to liquefied natural gas (LNG). In contrast to LNG, compressed gas requires no processing to offload. TOG proposes that CNG be transported using fiber reinforced plastic (FRP) pressure vessels which overcome all the deficiencies of proposed steel-based systems. FRP pressure vessels have been proven safe and reliable through critical applications in the national defense, aerospace, and natural gas vehicle industries. They are light-weight, highly reliable, have very safe failure modes, are corrosion resistant, and have excellent low temperature characteristics. Under TOG's scheme, natural gas can be stored at two thirds the density of LNG without costly processing. TOG's proposed design and testing of a CNG system was reviewed in detail. 1 fig.

  6. Analytical modeling of wet compression of gas turbine systems

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Ko, Hyung-Jong; Perez-Blanco, Horacio

    2011-01-01

    Evaporative gas turbine cycles (EvGT) are of importance to the power generation industry because of the potential of enhanced cycle efficiencies with moderate incremental cost. Humidification of the working fluid to result in evaporative cooling during compression is a key operation in these cycles. Previous simulations of this operation were carried out via numerical integration. The present work is aimed at modeling the wet-compression process with approximate analytical solutions instead. A thermodynamic analysis of the simultaneous heat and mass transfer processes that occur during evaporation is presented. The transient behavior of important variables in wet compression such as droplet diameter, droplet mass, gas and droplet temperature, and evaporation rate is investigated. The effects of system parameters on variables such as droplet evaporation time, compressor outlet temperature and input work are also considered. Results from this work exhibit good agreement with those of previous numerical work.

  7. One-Dimensional Photonic Crystal Superprisms

    Science.gov (United States)

    Ting, David

    2005-01-01

    Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.

  8. Steady Secondary Flows Generated by Periodic Compression and Expansion of an Ideal Gas in a Pulse Tube

    Science.gov (United States)

    Lee, Jeffrey M.

    1999-01-01

    This study establishes a consistent set of differential equations for use in describing the steady secondary flows generated by periodic compression and expansion of an ideal gas in pulse tubes. Also considered is heat transfer between the gas and the tube wall of finite thickness. A small-amplitude series expansion solution in the inverse Strouhal number is proposed for the two-dimensional axisymmetric mass, momentum and energy equations. The anelastic approach applies when shock and acoustic energies are small compared with the energy needed to compress and expand the gas. An analytic solution to the ordered series is obtained in the strong temperature limit where the zeroth-order temperature is constant. The solution shows steady velocities increase linearly for small Valensi number and can be of order I for large Valensi number. A conversion of steady work flow to heat flow occurs whenever temperature, velocity or phase angle gradients are present. Steady enthalpy flow is reduced by heat transfer and is scaled by the Prandtl times Valensi numbers. Particle velocities from a smoke-wire experiment were compared with predictions for the basic and orifice pulse tube configurations. The theory accurately predicted the observed steady streaming.

  9. Approximate characteristics for one-dimensional two-phase flows

    International Nuclear Information System (INIS)

    Sarayloo, A.; Peddleson, J.

    1985-01-01

    An approximate method for determining the characteristics associated with one-dimensional particulate two-phase flow models is presented. The method is based on iteration and is valid for small particulate volume fractions. The method is applied to several special cases involving incompressible particles suspended in a gas. The influences of certain changes in the physical model are investigated

  10. Survey of numerical methods for compressible fluids

    Energy Technology Data Exchange (ETDEWEB)

    Sod, G A

    1977-06-01

    The finite difference methods of Godunov, Hyman, Lax-Wendroff (two-step), MacCormack, Rusanov, the upwind scheme, the hybrid scheme of Harten and Zwas, the antidiffusion method of Boris and Book, and the artificial compression method of Harten are compared with the random choice known as Glimm's method. The methods are used to integrate the one-dimensional equations of gas dynamics for an inviscid fluid. The results are compared and demonstrate that Glimm's method has several advantages. 16 figs., 4 tables.

  11. Three-dimensional nonlinear ideal MHD equilibria with field-aligned incompressible and compressible flows

    International Nuclear Information System (INIS)

    Moawad, S. M.; Ibrahim, D. A.

    2016-01-01

    The equilibrium properties of three-dimensional ideal magnetohydrodynamics (MHD) are investigated. Incompressible and compressible flows are considered. The governing equations are taken in a steady state such that the magnetic field is parallel to the plasma flow. Equations of stationary equilibrium for both of incompressible and compressible MHD flows are derived and described in a mathematical mode. For incompressible MHD flows, Alfvénic and non-Alfvénic flows with constant and variable magnetofluid density are investigated. For Alfvénic incompressible flows, the general three-dimensional solutions are determined with the aid of two potential functions of the velocity field. For non-Alfvénic incompressible flows, the stationary equilibrium equations are reduced to two differential constraints on the potential functions, flow velocity, magnetofluid density, and the static pressure. Some examples which may be of some relevance to axisymmetric confinement systems are presented. For compressible MHD flows, equations of the stationary equilibrium are derived with the aid of a single potential function of the velocity field. The existence of three-dimensional solutions for these MHD flows is investigated. Several classes of three-dimensional exact solutions for several cases of nonlinear equilibrium equations are presented.

  12. Oblique propagation of nonlinear hydromagnetic waves: One- and two-dimensional behavior

    International Nuclear Information System (INIS)

    Malara, F.; Elaoufir, J.

    1991-01-01

    The one- and two-dimensional behavior of obliquely propagating hydromagnetic waves is analyzed by means of analytical theory and numerical simulations. It is shown that the nonlinear evolution of a one-dimensional MHD wave leads to the formation of a rotational discontinuity and a compressive steepened quasi-linearly polarized pulse whose structure is similar to that of a finite amplitude magnetosonic simple wave. For small propagation angles, the pulse mode (fast or slow) depends on the value of β with respect to unity while for large propagation angles the wave mode is fixed by the sign of the initial density-field correlation. The two-dimensional evolution shows that an MHD wave is unstable against a small-amplitude long-wavelength modulation in the direction transverse to the wave propagation direction. A two-dimensional magnetosonic wave solution is found, in which the density fluctuation is driven by the corresponding total pressure fluctuation, exactly as in the one-dimensional simple wave. Along with the steepening effect, the wave experiences both wave front deformation and a self-focusing effect which may eventually lead to the collapse of the wave. The results compare well with observations of MHD waves in the Earth's foreshock and at comets

  13. Compressed gas domestic aerosol valve design using high viscous product

    Directory of Open Access Journals (Sweden)

    A Nourian

    2016-10-01

    Full Text Available Most of the current universal consumer aerosol products using high viscous product such as cooking oil, antiperspirants, hair removal cream are primarily used LPG (Liquefied Petroleum Gas propellant which is unfriendly environmental. The advantages of the new innovative technology described in this paper are: i. No butane or other liquefied hydrocarbon gas is used as a propellant and it replaced with Compressed air, nitrogen or other safe gas propellant. ii. Customer acceptable spray quality and consistency during can lifetime iii. Conventional cans and filling technology There is only a feasible energy source which is inert gas (i.e. compressed air to replace VOCs (Volatile Organic Compounds and greenhouse gases, which must be avoided, to improve atomisation by generating gas bubbles and turbulence inside the atomiser insert and the actuator. This research concentrates on using "bubbly flow" in the valve stem, with injection of compressed gas into the passing flow, thus also generating turbulence. The new valve designed in this investigation using inert gases has advantageous over conventional valve with butane propellant using high viscous product (> 400 Cp because, when the valving arrangement is fully open, there are negligible energy losses as fluid passes through the valve from the interior of the container to the actuator insert. The use of valving arrangement thus permits all pressure drops to be controlled, resulting in improved control of atomising efficiency and flow rate, whereas in conventional valves a significant pressure drops occurs through the valve which has a complex effect on the corresponding spray.

  14. One-Dimensionality and Whiteness

    Science.gov (United States)

    Calderon, Dolores

    2006-01-01

    This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…

  15. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    Science.gov (United States)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  16. Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems

    Science.gov (United States)

    Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.

    2017-12-01

    Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given

  17. User Guide for Compressible Flow Toolbox Version 2.1 for Use With MATLAB(Registered Trademark); Version 7

    Science.gov (United States)

    Melcher, Kevin J.

    2006-01-01

    This report provides a user guide for the Compressible Flow Toolbox, a collection of algorithms that solve almost 300 linear and nonlinear classical compressible flow relations. The algorithms, implemented in the popular MATLAB programming language, are useful for analysis of one-dimensional steady flow with constant entropy, friction, heat transfer, or shock discontinuities. The solutions do not include any gas dissociative effects. The toolbox also contains functions for comparing and validating the equation-solving algorithms against solutions previously published in the open literature. The classical equations solved by the Compressible Flow Toolbox are: isentropic-flow equations, Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section.), normal-shock equations, oblique-shock equations, and Prandtl-Meyer expansion equations. At the time this report was published, the Compressible Flow Toolbox was available without cost from the NASA Software Repository.

  18. Well-posedness of one-dimensional Korteweg models

    Directory of Open Access Journals (Sweden)

    Sylvie Benzoni-Gavage

    2006-05-01

    Full Text Available We investigate the initial-value problem for one-dimensional compressible fluids endowed with internal capillarity. We focus on the isothermal inviscid case with variable capillarity. The resulting equations for the density and the velocity, consisting of the mass conservation law and the momentum conservation with Korteweg stress, are a system of third order nonlinear dispersive partial differential equations. Additionally, this system is Hamiltonian and admits travelling solutions, representing propagating phase boundaries with internal structure. By change of unknown, it roughly reduces to a quasilinear Schrodinger equation. This new formulation enables us to prove local well-posedness for smooth perturbations of travelling profiles and almost-global existence for small enough perturbations. A blow-up criterion is also derived.

  19. Exact Local Correlations and Full Counting Statistics for Arbitrary States of the One-Dimensional Interacting Bose Gas

    Science.gov (United States)

    Bastianello, Alvise; Piroli, Lorenzo; Calabrese, Pasquale

    2018-05-01

    We derive exact analytic expressions for the n -body local correlations in the one-dimensional Bose gas with contact repulsive interactions (Lieb-Liniger model) in the thermodynamic limit. Our results are valid for arbitrary states of the model, including ground and thermal states, stationary states after a quantum quench, and nonequilibrium steady states arising in transport settings. Calculations for these states are explicitly presented and physical consequences are critically discussed. We also show that the n -body local correlations are directly related to the full counting statistics for the particle-number fluctuations in a short interval, for which we provide an explicit analytic result.

  20. Control volume based modelling in one space dimension of oscillating, compressible flow in reciprocating machines

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Carlsen, Henrik; Thomsen, Per Grove

    2006-01-01

    We present an approach for modelling unsteady, primarily one-dimensional, compressible flow. The conservation laws for mass, energy, and momentum are applied to a staggered mesh of control volumes and loss mechanisms are included directly as extra terms. Heat transfer, flow friction, and multidim...... are presented. The capabilities of the approach are illustrated with an example solution and an experimental validation of a Stirling engine model....

  1. Spherical-shell boundaries for two-dimensional compressible convection in a star

    Science.gov (United States)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.

    2016-10-01

    Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so

  2. Image-Based Compression Method of Three-Dimensional Range Data with Texture

    OpenAIRE

    Chen, Xia; Bell, Tyler; Zhang, Song

    2017-01-01

    Recently, high speed and high accuracy three-dimensional (3D) scanning techniques and commercially available 3D scanning devices have made real-time 3D shape measurement and reconstruction possible. The conventional mesh representation of 3D geometry, however, results in large file sizes, causing difficulties for its storage and transmission. Methods for compressing scanned 3D data therefore become desired. This paper proposes a novel compression method which stores 3D range data within the c...

  3. Interacting Fermi gases in disordered one-dimensional lattices

    International Nuclear Information System (INIS)

    Xianlong, Gao; Polini, M.; Tosi, M. P.; Tanatar, B.

    2006-01-01

    Interacting two-component Fermi gases loaded in a one-dimensional (1D) lattice and subject to harmonic trapping exhibit intriguing compound phases in which fluid regions coexist with local Mott-insulator and/or band-insulator regions. Motivated by experiments on cold atoms inside disordered optical lattices, we present a theoretical study of the effects of a random potential on these ground-state phases. Within a density-functional scheme we show that disorder has two main effects: (i) it destroys the local insulating regions if it is sufficiently strong compared with the on-site atom-atom repulsion, and (ii) it induces an anomaly in the compressibility at low density from quenching of percolation

  4. Longitudinal beam compression for heavy-ion inertial fusion

    International Nuclear Information System (INIS)

    Ho, D.D.M.; Brandon, S.T.

    1991-01-01

    A scheme is described for compressing a heavy-ion beam longitudinally in such a way that the compressed pulse has uniform line-charge density and longitudinal momentum. Attaining these conditions will be important in the final focusing of a beam on a small fuel capsule in an inertial confinement fusion reactor. The longitudinal dynamics can be approximately described by a one-dimensional (1-D) fluid model for charged particles. Recognizing the similarity between the 1-D charged particle equations of motion and the 1-D equations for ideal-gas flow permits us to calculate the evolution of the line-charge density and velocity profile using self-similar solutions and the method of characteristics, developed for unsteady supersonic gas dynamics, for different regions along the beam. Simple physical arguments show that although the longitudinal and transverse temperatures vary along the beam following the adiabatic laws, no substantial longitudinal and transverse emittance growth is to be expected. Particle-in-cell simulations confirm all the physical arguments. The compressed beam has negligible longitudinal momentum spread and can therefore avoid chromatic aberrations in final focus. (author) 24 refs., 5 figs., 1 tab

  5. Self-contained anti-static adapter for compressed gas dust blowing devices

    International Nuclear Information System (INIS)

    Schwartz, L.H.; Miller, S.W.; Severud, C.N. Jr.

    1984-01-01

    An anti-static adapter which enhances the operation of compressed gas dust blowing devices by allowing the safe use of a radioactive source to ionize a gas stream. The adapter may be used and handled safely without special precautions on the part of the operator

  6. Compressed natural gas for vehicles and how we can develop and meet the market

    International Nuclear Information System (INIS)

    Pinkerton, W.E.

    1992-01-01

    This paper reports that state and federal legislation have mandated the use of clean burning fuels. Clean fuels include: compressed natural gas (CNG), ethanol, methanol, liquefied petroleum gas (LPG), electricity, and reformulated gasoline. The Clean Air Amendments 1990 have created support for the rapid utilization of the compressed natural gas (CNG). Responsively, diverse occupations related to this industry are emerging. A coordinated infrastructure is vital to the successful promotion of clean fuels and synchronized endorsement of the law

  7. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  8. Proximity Induced Superconducting Properties in One and Two Dimensional Semiconductors

    DEFF Research Database (Denmark)

    Kjærgaard, Morten

    This report is concerned with the properties of one and two dimensional semiconducting materials when brought into contact with a superconductor. Experimentally we study the 2D electron gas in an InGaAs/InAs heterostructure with aluminum grown in situ on the surface, and theoretically we show tha...

  9. Numerical simulation of compressible two-phase flow using a diffuse interface method

    International Nuclear Information System (INIS)

    Ansari, M.R.; Daramizadeh, A.

    2013-01-01

    Highlights: ► Compressible two-phase gas–gas and gas–liquid flows simulation are conducted. ► Interface conditions contain shock wave and cavitations. ► A high-resolution diffuse interface method is investigated. ► The numerical results exhibit very good agreement with experimental results. -- Abstract: In this article, a high-resolution diffuse interface method is investigated for simulation of compressible two-phase gas–gas and gas–liquid flows, both in the presence of shock wave and in flows with strong rarefaction waves similar to cavitations. A Godunov method and HLLC Riemann solver is used for discretization of the Kapila five-equation model and a modified Schmidt equation of state (EOS) is used to simulate the cavitation regions. This method is applied successfully to some one- and two-dimensional compressible two-phase flows with interface conditions that contain shock wave and cavitations. The numerical results obtained in this attempt exhibit very good agreement with experimental results, as well as previous numerical results presented by other researchers based on other numerical methods. In particular, the algorithm can capture the complex flow features of transient shocks, such as the material discontinuities and interfacial instabilities, without any oscillation and additional diffusion. Numerical examples show that the results of the method presented here compare well with other sophisticated modeling methods like adaptive mesh refinement (AMR) and local mesh refinement (LMR) for one- and two-dimensional problems

  10. GITTAM program for numerical simulation of one-dimensional targets TIS. Part 3

    International Nuclear Information System (INIS)

    Basko, M.M.; Sokolovskij, M.V.

    1989-01-01

    Results of testing calculations according to GITTAM program, developed for numeric simulation of one-dimensional thermonuclear targets of heavy-ion synthesis are presented. Finite-difference method for solving a system of one-dimensional hydrodynamics equations with heat conductivity, radiation diffusion and thermonuclear combustion is used in the GITTAM program. In the tests presented, based on simple automodel solutions, adiabatic motion as well as distribution of shock, thermal and radial waves in gas with simple polytron state equation is investigated. 3 refs.; 6 figs

  11. Finite Element Analysis of Three-Dimensional (3D Auxetic Textile Composite under Compression

    Directory of Open Access Journals (Sweden)

    Jifang Zeng

    2018-03-01

    Full Text Available This paper reports a finite element (FE analysis of three-dimensional (3D auxetic textile composite by using commercial software ANSYS 15 under compression. The two-dimensional (2D FE model was first developed and validated by experiment. Then, the validated model was used to evaluate effects of structural parameters and constituent material properties. For the comparison, 3D non-auxetic composite that was made with the same constituent materials and structural parameters, but with different yarn arrangement in the textile structure was also analyzed at the same time. The analysis results showed that the auxetic and non-auxetic composites have different compression behaviors and the auxetic composite has better the energy absorption capacity than the non-auxetic composite under the same compression stress. The study has provided us a guidance to design and fabricate auxetic composites with the required mechanical behavior by appropriately selecting structural parameters and constituent materials.

  12. Effects of a delta-attractive impurity in the thermodynamics properties of an one-dimensional ideal Bose gas

    International Nuclear Information System (INIS)

    Ioriatti Junior, L.C.

    1976-01-01

    The thermodynamic behavior of the one-dimensional bose gas-attractive delta impurity system is studied. The system is shown to undergo the Bose-Einstein condensation and the cause of the phase transition is attributed to the bound state introduced by the impurity in the free particle energy spectrum. The condensed phase is composed by particles captured by the impurity, forming a drop of particles well localized in space. This gives to the Bose-Einstein condensation in this system the appearance of the ordinary vapor-liquid phase transition. The order of the phase transition is analized with the aid of the Clausius-Clayperon equation, leading to the conclusion that the transition is a first order one. This reinforces the interpretation of a vapor-liquid transition. The evaluation of the heat capacity at constant length shows the existence of a finite discontinuity at the transition temperature [pt

  13. Particle emissions from compressed natural gas engines

    International Nuclear Information System (INIS)

    Ristovski, Z.D.; Morawska, L.; Hitchins, J.; Thomas, S.; Greenaway, C.; Gilbert, D.

    2000-01-01

    This paper presents the results of measurements conducted to determine particle and gas emissions from two large compressed natural gas (CNG) spark ignition (SI) engines. Particle size distributions in the range from 0.01-30 μm, and gas composition were measured for five power settings of the engines: 35, 50, 65, 80 and 100% of full power. Particle emissions in the size range between 0.5 and 30 μm, measured by the aerodynamic particle sizer (APS), were very low at a level below two particles cm -3 . These concentrations were comparable with average ambient concentration, and were not considered in the succeeding analysis. Both engines produce significant amounts of particles in the size range between 0.015 and 0.7 μm, measured by the scanning mobility particle size (SMPS). Maximum number of concentrations of about 1 x 10 7 particles cm -3 were very similar for both engines. The CMDs were in the range between 0.020 and 0.060 μm. The observed levels of particulate emission are in terms of number of the same order as emissions from heavy duty diesel engines (Morawska et al., Environ. Sci. Tech. 32, 2033-2042). On the other hand, emissions of CO and NO x of 5.53 and 3.33 g k W h -1 , respectively, for one of the tested engines, were considerably lower than set by the standards. According to the specifications for the gas emissions, provided by the US EPA (US EPA, 1997), this engine can be considered as a 'low-emission' engine, although emissions of submicrometer particles are of the same order as heavy-duty vehicles. (Author)

  14. VNAP2: a computer program for computation of two-dimensional, time-dependent, compressible, turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Cline, M.C.

    1981-08-01

    VNAP2 is a computer program for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow. VNAP2 solves the two-dimensional, time-dependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing-length model, a one-equation model, or the Jones-Launder two-equation model. The geometry may be a single- or a dual-flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference-plane-characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free-jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet-powered afterbodies, airfoils, and free-jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.

  15. Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air

    Science.gov (United States)

    Bland, Robert J [Oviedo, FL; Horazak, Dennis A [Orlando, FL

    2012-03-06

    A gas turbine engine is provided comprising an outer shell, a compressor assembly, at least one combustor assembly, a turbine assembly and duct structure. The outer shell includes a compressor section, a combustor section, an intermediate section and a turbine section. The intermediate section includes at least one first opening and at least one second opening. The compressor assembly is located in the compressor section to define with the compressor section a compressor apparatus to compress air. The at least one combustor assembly is coupled to the combustor section to define with the combustor section a combustor apparatus. The turbine assembly is located in the turbine section to define with the turbine section a turbine apparatus. The duct structure is coupled to the intermediate section to receive at least a portion of the compressed air from the compressor apparatus through the at least one first opening in the intermediate section, pass the compressed air to an apparatus for separating a portion of oxygen from the compressed air to produced vitiated compressed air and return the vitiated compressed air to the intermediate section via the at least one second opening in the intermediate section.

  16. A dynamic counterpart of Lamb vector in viscous compressible aerodynamics

    International Nuclear Information System (INIS)

    Liu, L Q; Wu, J Z; Shi, Y P; Zhu, J Y

    2014-01-01

    The Lamb vector is known to play a key role in incompressible fluid dynamics and vortex dynamics. In particular, in low-speed steady aerodynamics it is solely responsible for the total force acting on a moving body, known as the vortex force, with the classic two-dimensional (exact) Kutta–Joukowski theorem and three-dimensional (linearized) lifting-line theory as the most famous special applications. In this paper we identify an innovative dynamic counterpart of the Lamb vector in viscous compressible aerodynamics, which we call the compressible Lamb vector. Mathematically, we present a theorem on the dynamic far-field decay law of the vorticity and dilatation fields, and thereby prove that the generalized Lamb vector enjoys exactly the same integral properties as the Lamb vector does in incompressible flow, and hence the vortex-force theory can be generalized to compressible flow with exactly the same general formulation. Moreover, for steady flow of polytropic gas, we show that physically the force exerted on a moving body by the gas consists of a transverse force produced by the original Lamb vector and a new longitudinal force that reflects the effects of compression and irreversible thermodynamics. (paper)

  17. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-07-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey site test performed on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. This test completes planned screening efforts designed to guide selection of one or more units for design analysis and testing with emphasis on identification and reduction of compressor losses. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  18. Finite-dimensional effects and critical indices of one-dimensional quantum models

    International Nuclear Information System (INIS)

    Bogolyubov, N.M.; Izergin, A.G.; Reshetikhin, N.Yu.

    1986-01-01

    Critical indices, depending on continuous parameters in Bose-gas quantum models and Heisenberg 1/2 spin antiferromagnetic in two-dimensional space-time at zero temperature, have been calculated by means of finite-dimensional effects. In this case the long-wave asymptotics of the correlation functions is of a power character. Derivation of man asymptotics terms is reduced to the determination of a central charge in the appropriate Virassoro algebra representation and the anomalous dimension-operator spectrum in this representation. The finite-dimensional effects allow to find these values

  19. Solution of weakly compressible isothermal flow in landfill gas collection networks

    Science.gov (United States)

    Nec, Y.; Huculak, G.

    2017-12-01

    Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy-Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein.

  20. Compressed natural gas vehicles motoring towards a green Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming; Kraft-Oliver, T. [International Institute for Energy Conservation (IIEC) - Asia, Bangkok (Thailand); Guo Xiao Yan [China North Vehicle Research Institute (CNVRI), Beijing (China)

    1996-12-31

    This paper first describes the state-of-the-art of compressed natural gas (CNG) technologies and evaluates the market prospects for CNG vehicles in Beijing. An analysis of the natural gas resource supply for fleet vehicles follows. The costs and benefits of establishing natural gas filling stations and promoting the development of vehicle technology are evaluated. The quantity of GHG reduction is calculated. The objective of the paper is to provide information of transfer niche of CNG vehicle and equipment production in Beijing. This paper argues that the development of CNG vehicles is a cost-effective strategy for mitigating both air pollution and GHG.

  1. Combustion characteristics of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Longbao, Z.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    The combustion characteristics of a turbocharged natural gas and diesel dual-fuelled compression ignition (CI) engine are investigated. With the measured cylinder pressures of the engine operated on pure diesel and dual fuel, the ignition delay, effects of pilot diesel and engine load on combustion characteristics are analysed. Emissions of HC, CO, NO{sub x} and smoke are measured and studied too. The results show that the quantity of pilot diesel has important effects on the performance and emissions of a dual-fuel engine at low-load operating conditions. Ignition delay varies with the concentration of natural gas. Smoke is much lower for the developed dual-fuel engine under all the operating conditions. (Author)

  2. University Students Explaining Adiabatic Compression of an Ideal Gas--A New Phenomenon in Introductory Thermal Physics

    Science.gov (United States)

    Leinonen, Risto; Asikainen, Mervi A.; Hirvonen, Pekka E.

    2012-01-01

    This study focuses on second-year university students' explanations and reasoning related to adiabatic compression of an ideal gas. The phenomenon was new to the students, but it was one which they should have been capable of explaining using their previous upper secondary school knowledge. The students' explanations and reasoning were…

  3. CFD modeling of two-stage ignition in a rapid compression machine: Assessment of zero-dimensional approach

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Gaurav [Department of Mechanical Engineering, The University of Akron, Akron, OH 44325 (United States); Raju, Mandhapati P. [General Motor R and D Tech Center, Warren, MI 48090 (United States); Sung, Chih-Jen [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2010-07-15

    In modeling rapid compression machine (RCM) experiments, zero-dimensional approach is commonly used along with an associated heat loss model. The adequacy of such approach has not been validated for hydrocarbon fuels. The existence of multi-dimensional effects inside an RCM due to the boundary layer, roll-up vortex, non-uniform heat release, and piston crevice could result in deviation from the zero-dimensional assumption, particularly for hydrocarbons exhibiting two-stage ignition and strong thermokinetic interactions. The objective of this investigation is to assess the adequacy of zero-dimensional approach in modeling RCM experiments under conditions of two-stage ignition and negative temperature coefficient (NTC) response. Computational fluid dynamics simulations are conducted for n-heptane ignition in an RCM and the validity of zero-dimensional approach is assessed through comparisons over the entire NTC region. Results show that the zero-dimensional model based on the approach of 'adiabatic volume expansion' performs very well in adequately predicting the first-stage ignition delays, although quantitative discrepancy for the prediction of the total ignition delays and pressure rise in the first-stage ignition is noted even when the roll-up vortex is suppressed and a well-defined homogeneous core is retained within an RCM. Furthermore, the discrepancy is pressure dependent and decreases as compressed pressure is increased. Also, as ignition response becomes single-stage at higher compressed temperatures, discrepancy from the zero-dimensional simulations reduces. Despite of some quantitative discrepancy, the zero-dimensional modeling approach is deemed satisfactory from the viewpoint of the ignition delay simulation. (author)

  4. Natural Gas Compression Technician: Apprenticeship Course Outline. Apprenticeship and Industry Training. 5311.1

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2011

    2011-01-01

    The graduate of the Natural Gas Compression Technician apprenticeship program is a certified journeyperson who will be able to install, commission, maintain and repair equipment used to gather store and transmit natural gas. Advanced Education and Technology has prepared this course outline in partnership with the Natural Gas Compression…

  5. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas with spin–orbit coupling

    International Nuclear Information System (INIS)

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2015-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems. (paper)

  6. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas with spin-orbit coupling

    Science.gov (United States)

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2015-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems.

  7. Thermal analysis of near-isothermal compressed gas energy storage system

    International Nuclear Information System (INIS)

    Odukomaiya, Adewale; Abu-Heiba, Ahmad; Gluesenkamp, Kyle R.; Abdelaziz, Omar; Jackson, Roderick K.; Daniel, Claus; Graham, Samuel; Momen, Ayyoub M.

    2016-01-01

    Highlights: • A novel, high-efficiency, scalable, near-isothermal, energy storage system is introduced. • A comprehensive analytical physics-based model for the system is presented. • Efficiency improvement is achieved via heat transfer enhancement and use of waste heat. • Energy storage roundtrip efficiency (RTE) of 82% and energy density of 3.59 MJ/m"3 is shown. - Abstract: Due to the increasing generation capacity of intermittent renewable electricity sources and an electrical grid ill-equipped to handle the mismatch between electricity generation and use, the need for advanced energy storage technologies will continue to grow. Currently, pumped-storage hydroelectricity and compressed air energy storage are used for grid-scale energy storage, and batteries are used at smaller scales. However, prospects for expansion of these technologies suffer from geographic limitations (pumped-storage hydroelectricity and compressed air energy storage), low roundtrip efficiency (compressed air energy storage), and high cost (batteries). Furthermore, pumped-storage hydroelectricity and compressed air energy storage are challenging to scale-down, while batteries are challenging to scale-up. In 2015, a novel compressed gas energy storage prototype system was developed at Oak Ridge National Laboratory. In this paper, a near-isothermal modification to the system is proposed. In common with compressed air energy storage, the novel storage technology described in this paper is based on air compression/expansion. However, several novel features lead to near-isothermal processes, higher efficiency, greater system scalability, and the ability to site a system anywhere. The enabling features are utilization of hydraulic machines for expansion/compression, above-ground pressure vessels as the storage medium, spray cooling/heating, and waste-heat utilization. The base configuration of the novel storage system was introduced in a previous paper. This paper describes the results

  8. One-dimensional simulation of a stirling three-stage pulse-tube refrigerator

    NARCIS (Netherlands)

    Etaati, M.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.

    2009-01-01

    A one-dimensional mathematical model is derived for a three-stage pulse-tube refrigerator (PTR) that is based on the conservation laws and the ideal gas law. The three-stage PTR is regarded as three separate single-stage PTRs that are coupled via proper junction conditions. At the junctions there

  9. One-dimensional simulation of a Stirling three-stage pulse-tube refrigerator

    NARCIS (Netherlands)

    Etaati, M.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.

    2009-01-01

    A one-dimensional mathematical model is derived for a three-stage pulse-tube refrigerator (PTR) that is based on the conservation laws and the ideal gas law. The three-stage PTR is regarded as three separate single-stage PTRs that are coupled via proper junction conditions. At the junctions there

  10. From free expansion to abrupt compression of an ideal gas

    International Nuclear Information System (INIS)

    Anacleto, Joaquim; Pereira, Mario G

    2009-01-01

    Using macroscopic thermodynamics, the general law for adiabatic processes carried out by an ideal gas was studied. It was shown that the process reversibility is characterized by the adiabatic reversibility coefficient r, in the range 0 ≤ r ≤ 1 for expansions and r ≥ 1 for compressions. The particular cases of free expansion and reversible adiabatic processes correspond to r = 0 and r = 1, respectively. To conclude the interpretation of r, the relation between r and the variation of the system entropy was also obtained. Comparison between this study and one restricted to expansions following a microscopic point of view showed not only equivalent interpretations but also that our approach is more general, since it also comprises compressions, provides an objective relation between r and entropy change and considers instantaneous varying values of the adiabatic reversibility coefficient. Finally, simulations of selected adiabatic processes are performed and numerical calculations of r are presented. This paper is intended primarily for the undergraduate student, although a comparison with the aforementioned work also requires a background in thermodynamics and kinetic theory

  11. Solution of weakly compressible isothermal flow in landfill gas collection networks

    Energy Technology Data Exchange (ETDEWEB)

    Nec, Y [Thompson Rivers University, Kamloops, British Columbia (Canada); Huculak, G, E-mail: cranberryana@gmail.com, E-mail: greg@gnhconsulting.ca [GNH Consulting, Delta, British Columbia (Canada)

    2017-12-15

    Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy–Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein. (paper)

  12. Solution of weakly compressible isothermal flow in landfill gas collection networks

    International Nuclear Information System (INIS)

    Nec, Y; Huculak, G

    2017-01-01

    Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy–Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein. (paper)

  13. Neutron and photon (light) scattering on solitons in the quasi-one-dimensional magnetics

    CERN Document Server

    Abdulloev, K O

    1999-01-01

    The general expression we have found earlier for the dynamics form-factor is used to analyse experiments on the neutron and photon (light) scattering by the gas of solitons in quasi-one-dimensional magnetics (Authors)

  14. Qualities of Wigner function and its applications to one-dimensional infinite potential and one-dimensional harmonic oscillator

    International Nuclear Information System (INIS)

    Xu Hao; Shi Tianjun

    2011-01-01

    In this article,the qualities of Wigner function and the corresponding stationary perturbation theory are introduced and applied to one-dimensional infinite potential well and one-dimensional harmonic oscillator, and then the particular Wigner function of one-dimensional infinite potential well is specified and a special constriction effect in its pure state Wigner function is discovered, to which,simultaneously, a detailed and reasonable explanation is elaborated from the perspective of uncertainty principle. Ultimately, the amendment of Wigner function and energy of one-dimensional infinite potential well and one-dimensional harmonic oscillator under perturbation are calculated according to stationary phase space perturbation theory. (authors)

  15. Dynamic behaviour of high-pressure natural-gas flow in pipelines

    International Nuclear Information System (INIS)

    Gato, L.M.C.; Henriques, J.C.C.

    2005-01-01

    The aim of the present study is the numerical modelling of the dynamic behaviour of high-pressure natural-gas flow in pipelines. The numerical simulation was performed by solving the conservation equations, for one-dimensional compressible flow, using the Runge-Kutta discontinuous Galerkin method, with third-order approximation in space and time. The boundary conditions were imposed using a new weak formulation based on the characteristic variables. The occurrence of pressure oscillations in natural-gas pipelines was studied as a result of the compression wave originated by the rapid closure of downstream shut-off valves. The effect of the partial reflection of pressure waves was also analyzed in the transition between pipes of different cross-sectional areas

  16. Dynamic behaviour of high-pressure natural-gas flow in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Gato, L.M.C. [Department of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: lgato@mail.ist.utl.pt; Henriques, J.C.C. [Department of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: jcch@mail.ist.utl.pt

    2005-10-01

    The aim of the present study is the numerical modelling of the dynamic behaviour of high-pressure natural-gas flow in pipelines. The numerical simulation was performed by solving the conservation equations, for one-dimensional compressible flow, using the Runge-Kutta discontinuous Galerkin method, with third-order approximation in space and time. The boundary conditions were imposed using a new weak formulation based on the characteristic variables. The occurrence of pressure oscillations in natural-gas pipelines was studied as a result of the compression wave originated by the rapid closure of downstream shut-off valves. The effect of the partial reflection of pressure waves was also analyzed in the transition between pipes of different cross-sectional areas.

  17. Ordering kinetics in quasi-one-dimensional Ising-like systems

    International Nuclear Information System (INIS)

    Mueller, M.; Paul, W.

    1993-01-01

    Results are presented of a Monte Carlo simulation of the kinetics of ordering in the two-dimensional nearest-neighbor Ising model in an L x M geometry with two free boundaries of length M much-gt L. This model can be viewed as representing an adsorbant on a stepped surface with mean terrace width L. The authors follow the ordering kinetics after quenches to temperatures 0.25 ≤T/T c ≤1 starting from a random initial configuration at a coverage of Θ=0.5 in the corresponding lattice gas picture. The systems evolve in time according to a Glauber kinetics with nonconserved order parameter. The equilibrium structure is given by a one-dimensional sequence of ordered domains. The ordering process evolves from a short initial two-dimensional ordering process through a crossover region to a quasi-one-dimensional behavior. The whole process is diffusive (inverse half-width of the structure factor peak 1/Δq parallel ∝ √t), in contrast to a model proposed by Kawasaki et al., where an intermediate logarithmic growth law is expected. All results are completely describable in the picture of an annihilating random walk (ARW) of domain walls. 36 refs., 16 figs

  18. A stable penalty method for the compressible Navier-Stokes equations: II: One-dimensional domain decomposition schemes

    DEFF Research Database (Denmark)

    Hesthaven, Jan

    1997-01-01

    This paper presents asymptotically stable schemes for patching of nonoverlapping subdomains when approximating the compressible Navier-Stokes equations given on conservation form. The scheme is a natural extension of a previously proposed scheme for enforcing open boundary conditions and as a res......This paper presents asymptotically stable schemes for patching of nonoverlapping subdomains when approximating the compressible Navier-Stokes equations given on conservation form. The scheme is a natural extension of a previously proposed scheme for enforcing open boundary conditions...... and as a result the patching of subdomains is local in space. The scheme is studied in detail for Burgers's equation and developed for the compressible Navier-Stokes equations in general curvilinear coordinates. The versatility of the proposed scheme for the compressible Navier-Stokes equations is illustrated...

  19. Longitudinal and spin Hall conductance of a one-dimensional Aharonov-Bohm ring

    International Nuclear Information System (INIS)

    Moca, Catalin Pascu; Marinescu, D C

    2006-01-01

    The longitudinal and spin Hall conductances of an electron gas with Rashba-Dresselhaus spin-orbit interaction, confined to a quasi-one-dimensional Aharonov-Bohm ring, are studied as functions of disorder and magnetic flux. The system is mapped onto a one-dimensional virtual lattice and is described, in a tight binding approximation, by a Hamiltonian that depends parametrically on the nearest neighbour hopping integral t, the Rashba spin-orbit coupling V R , the Dresselhaus spin-orbit coupling V D and an Anderson-like, on-site disorder energy strength W. Numerical results are obtained within a spin dependent Landauer-Buettiker formalism

  20. Saclay Reactor: acquired knowledge by two years experience in heat transfer using compressed gas

    International Nuclear Information System (INIS)

    Yvon, J.

    1955-01-01

    Describes the conception and functioning of a new reactor (EL-2) using compressed gas as primary coolant. The aim of the use of compressed gas as primary coolant is to reduce the quantity of heavy water used in the functioning of the reactor. Description of the reactor vessel (dimensions, materials, reflector and protection). Description of the cells and the circulation of the gas within the cells. A complete explanation of the control and regulating of the reaction by the ionization chamber is given. Heavy water is used as modulator: it describes the heavy water system and its recombination system. The fuel slugs are cooled by compressed gas: its system is described as well as the blower and the heat exchanger system. Water is supplied by a cooling tower which means the reactor power is dependant of the atmospheric conditions. Particular attention has been given to the tightness of the different systems used. The relation between neutron flow and the thermal output is discussed: the thermal output can be calculated by measuring the gas flow and its heating or by measuring the neutron flow within the reactor, both methods gives closed results. Reactivity study: determination of the different factors which induce a variation of reactivity. Heat transfer: discussion on the use of different heat transfer systems, determination of the required chemical and physical properties of the primary coolant as well as the discussion of the nuclear and thermal requirements for the choice of it. A comparison between the use of nitrogen and carbon dioxide gas shows an advantage in using nitrogen with the existing knowledge. Reflexion on the relevance of this work and the future perspectives of the use of compressed gas as primary coolant. (M.P.)

  1. Three-dimensional lattice Boltzmann model for compressible flows.

    Science.gov (United States)

    Sun, Chenghai; Hsu, Andrew T

    2003-07-01

    A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade.

  2. A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme

    International Nuclear Information System (INIS)

    Chang, Chih-Hao; Liou, Meng-Sing

    2007-01-01

    In this paper, we propose a new approach to compute compressible multifluid equations. Firstly, a single-pressure compressible multifluid model based on the stratified flow model is proposed. The stratified flow model, which defines different fluids in separated regions, is shown to be amenable to the finite volume method. We can apply the conservation law to each subregion and obtain a set of balance equations. Secondly, the AUSM + scheme, which is originally designed for the compressible gas flow, is extended to solve compressible liquid flows. By introducing additional dissipation terms into the numerical flux, the new scheme, called AUSM + -up, can be applied to both liquid and gas flows. Thirdly, the contribution to the numerical flux due to interactions between different phases is taken into account and solved by the exact Riemann solver. We will show that the proposed approach yields an accurate and robust method for computing compressible multiphase flows involving discontinuities, such as shock waves and fluid interfaces. Several one-dimensional test problems are used to demonstrate the capability of our method, including the Ransom's water faucet problem and the air-water shock tube problem. Finally, several two dimensional problems will show the capability to capture enormous details and complicated wave patterns in flows having large disparities in the fluid density and velocities, such as interactions between water shock wave and air bubble, between air shock wave and water column(s), and underwater explosion

  3. Numerical analysis for two-dimensional compressible and two-phase flow fields of air-water in Eulerian grid framework

    International Nuclear Information System (INIS)

    Park, Chan Wook; Lee, Sung Su

    2008-01-01

    Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of ech phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe's approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated

  4. MARCUSE’S ONE-DIMENSIONAL SOCIETY IN ONE-DIMENSIONAL MAN

    Directory of Open Access Journals (Sweden)

    MILOS RASTOVIC

    2013-05-01

    Full Text Available Nowadays, Marcuse’s main book One-Dimensional Man is almost obsolete, or rather passé. However, there are reasons to renew the reading of his book because of “the crisis of capitalism,” and the prevailing framework of technological domination in “advanced industrial society” in which we live today. “The new forms of control” in “advanced industrial societies” have replaced traditional methods of political and economic administration. The dominant structural element of “advanced industrial society” has become a technical and scientific apparatus of production and distribution of technology and administrative practice based on application of impersonal rules by a hierarchy of associating authorities. Technology has been liberated from the control of particular interests, and it has become the factor of domination in itself. Technological domination stems from the technical development of the productive apparatus that reproduces its ability into all spheres of social life (cultural, political, and economic. Based upon this consideration, in this paper, I will examine Marcuse’s ideas of “the new forms of control,” which creates a one–dimensional society. Marcuse’s fundamental thesis in One-Dimensional Man is that technological rationality is the most dominant factor in an “advanced industrial society,” which unites two earlier opposing forces of dissent: the bourgeoisie and the proletariat.

  5. Feasibility of Ericsson type isothermal expansion/compression gas turbine cycle for nuclear energy use

    International Nuclear Information System (INIS)

    Shimizu, Akihiko

    2007-01-01

    A gas turbine with potential demand for the next generation nuclear energy use such as HTGR power plants, a gas cooled FBR, a gas cooled nuclear fusion reactor uses helium as working gas and with a closed cycle. Materials constituting a cycle must be set lower than allowable temperature in terms of mechanical strength and radioactivity containment performance and so expansion inlet temperature is remarkably limited. For thermal efficiency improvement, isothermal expansion/isothermal compression Ericsson type gas turbine cycle should be developed using wet surface of an expansion/compressor casing and a duct between stators without depending on an outside heat exchanger performing multistage re-heat/multistage intermediate cooling. Feasibility of an Ericsson cycle in comparison with a Brayton cycle and multi-stage compression/expansion cycle was studied and technologies to be developed were clarified. (author)

  6. Correlation functions of one-dimensional bosons at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maillet, J.M. [CNRS, ENS Lyon (France). Lab. de Physique; Slavnov, N.A. [Steklov Mathematical Institute, Moscow (Russian Federation)

    2010-12-15

    We consider the low-temperature limit of the long-distance asymptotic behavior of the finite temperature density-density correlation function in the one-dimensional Bose gas derived recently in the algebraic Bethe Ansatz framework. Our results confirm the predictions based on the Luttinger liquid and conformal field theory approaches. We also demonstrate that the amplitudes arising in this asymptotic expansion at low-temperature coincide with the amplitudes associated with the so-called critical form factors. (orig.)

  7. Processing of mixed-waste compressed-gas cylinders on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.

    1998-03-01

    To comply with restrictions on the storage of old compressed gas cylinders, the environmental management organization of Lockheed Martin Energy Systems must dispose of several thousand kilograms of compressed gases stored on the Oak Ridge Reservation (ORR) because the cylinders cannot be taken off-site for disposal in their current configuration. In the ORR Site Treatment Plan, a milestone is cited that requires repackaging and shipment off-site of 21 cylinders by September 30, 1997. A project was undertaken to first evaluate and then either recontainerize or neutralize these cylinders using a transportable compressed gas recontainerization skid (TCGRS), which was developed by Integrated Environmental Services of Atlanta. The transportable system can: (1) sample, analyze, and identify at the site the chemical and radiological content of each cylinder, even those with inoperable valves; (2) breach cylinders, when necessary, to release their contents into a containment chamber; and (3) either neutralize the gas or liquid contents within the containment chamber or transfer the gas or liquids to a new cylinder. The old cylinders and cylinder fragments were disposed of and the gases neutralized or transferred to new cylinders for transportation off-site for disposal. The entire operation to process the 21 cylinders took place in only 5 days once the system was approved for operation. The system performed as expected and can now be used to process the potentially thousands of more cylinders located across the US Department of Energy (DOE) complex that have not yet been declared surplus

  8. A two-dimensional, transient, compressible isothermal and two-phase model for the air-side electrode of PEM fuel cells

    International Nuclear Information System (INIS)

    Khakbaz Baboli, M.; Kermani, M.J.

    2008-01-01

    A two-dimensional, transient, compressible, isothermal and two-phase flow of reactant-product mixture in the air-side electrode of proton exchange membrane fuel cells (PEMFC) are numerically studied in the present paper. The mixture is composed of four species: oxygen, nitrogen, liquid water and water vapor. The governing PDE's are conservation of the water vapor and oxygen species, momentum equation of the mixture (gas+liquid), mass conservation of the liquid phase, and mass conservation of the mixture. In this study, a separate PDE for the mass conservation of the liquid water is solved to calculate the saturation levels. The capillary pressure was used to determine the slip velocity between the phases. A full compressible form of the momentum equation was used, with the ∇.V preserved in the equation. The Maxwell-Stefan equation was used to model the diffusive fluxes of the multi-component gas mixture. The strongly coupled equations are solved based on a recently developed finite volume SIMPLER scheme of S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., McGraw-Hill Book Company, 1984. The computational domain consists of two regions; an open area (gas delivery channel) linked to a porous gas diffusion layer (GDL). A single (unified) set of the PDE's are used for the whole domain with the corresponding properties of each sub-domain. A polarization curve for the whole spectrum of the dry and wet regions were obtained. The results were compared with the experiments of E.A. Ticianelli, C.R. Derouin, A. Redondo, S. Srinivasan, J. Electrochem. Soc. 135 (1988) 2209, and good agreements were achieved

  9. Bose gases in one-dimensional harmonic trap

    Indian Academy of Sciences (India)

    dimensional Bose gas confined by a harmonic potential are studied using different ensemble approaches. Combining number theory methods, a new approach is presented to calculate the occupation numbers of different energy levels in ...

  10. The use of compressed natural gas as a strategy of development of natural gas industry; Utilizacao do GNC (Gas Natural Comprimido) como estrategia de desenvolvimento da industria do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Jucemara [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Coordenacao de Segmento Veicular; Rickmann, Cristiano [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia de Novos Negocios; Maestri, Juares [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia de Mercado de Grandes Consumidores

    2008-07-01

    This work emphasizes the Compressed Natural Gas (CNG) as modal of transport, used by the Company of Gas of the State of Rio Grande do Sul - Sulgas, through experience in pioneering project in Brazil: the introduction of the technology of Compressed Natural Gas (CNG) to assist areas where there is not the infrastructure of pipeline for the transport. The article offers a display of the project of expansion of the Natural gas in Rio Grande do Sul, through the supply of CNG to the company Tramontina in Carlos Barbosa's city in the year of 2002. The last aspect focused by this article demonstrates as the use of this transport technology impelled the development of the transport market in the State and it has been used as an important strategy for the development of the market of Natural Gas Vehicle (NGV) in the state. (author)

  11. Myth and One-Dimensionality

    Directory of Open Access Journals (Sweden)

    William Hansen

    2017-12-01

    Full Text Available A striking difference between the folk-narrative genres of legend and folktale is how the human characters respond to supernatural, otherworldly, or uncanny beings such as ghosts, gods, dwarves, giants, trolls, talking animals, witches, and fairies. In legend the human actors respond with fear and awe, whereas in folktale they treat such beings as if they were ordinary and unremarkable. Since folktale humans treat all characters as belonging to a single realm, folklorists have described the world of the folktale as one-dimensional, in contrast to the two-dimensionality of the legend. The present investigation examines dimensionality in the third major genre of folk narrative: myth. Using the Greek and Hebrew myths of primordial paradise as sample narratives, the present essay finds—surprisingly—that the humans in these stories respond to the otherworldly one-dimensionally, as folktale characters do, and suggests an explanation for their behavior that is peculiar to the world of myth.

  12. Three dimensional range geometry and texture data compression with space-filling curves.

    Science.gov (United States)

    Chen, Xia; Zhang, Song

    2017-10-16

    This paper presents a novel method to effectively store three-dimensional (3D) data and 2D texture data into a regular 24-bit image. The proposed method uses the Hilbert space-filling curve to map the normalized unwrapped phase map to two 8-bit color channels, and saves the third color channel for 2D texture storage. By further leveraging existing 2D image and video compression techniques, the proposed method can achieve high compression ratios while effectively preserving data quality. Since the encoding and decoding processes can be applied to most of the current 2D media platforms, this proposed compression method can make 3D data storage and transmission available for many electrical devices without requiring special hardware changes. Experiments demonstrate that if a lossless 2D image/video format is used, both original 3D geometry and 2D color texture can be accurately recovered; if lossy image/video compression is used, only black-and-white or grayscale texture can be properly recovered, but much higher compression ratios (e.g., 1543:1 against the ASCII OBJ format) are achieved with slight loss of 3D geometry quality.

  13. 78 FR 16045 - Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders

    Science.gov (United States)

    2013-03-13

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2013-0019; Notice No. 13-03] Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Safety Advisory...

  14. Effects of weak localization in quasi-one-dimensional electronic system over liquid helium

    CERN Document Server

    Kovdrya, Y Z; Gladchenko, S P

    2001-01-01

    One measured rho sub x sub x magnetoresistance of a quasi-one-dimensional electronic system over liquid helium within gas scattering range (1.3-2.0 K temperature range). It is shown that with increase of magnetic field the magnetoresistance is reduced at first and them upon passing over minimum it begins to increase from rho sub x sub x approx B sup 2 law. One anticipated that the negative magnetoresistance detected in the course of experiments resulted from the effects of weak localization. The experiment results are in qualitative conformity with the theoretical model describing processes of weak localization in single-dimensional nondegenerate electronic systems

  15. Highly conducting one-dimensional solids

    CERN Document Server

    Evrard, Roger; Doren, Victor

    1979-01-01

    Although the problem of a metal in one dimension has long been known to solid-state physicists, it was not until the synthesis of real one-dimensional or quasi-one-dimensional systems that this subject began to attract considerable attention. This has been due in part to the search for high­ temperature superconductivity and the possibility of reaching this goal with quasi-one-dimensional substances. A period of intense activity began in 1973 with the report of a measurement of an apparently divergent conduc­ tivity peak in TfF-TCNQ. Since then a great deal has been learned about quasi-one-dimensional conductors. The emphasis now has shifted from trying to find materials of very high conductivity to the many interesting problems of physics and chemistry involved. But many questions remain open and are still under active investigation. This book gives a review of the experimental as well as theoretical progress made in this field over the last years. All the chapters have been written by scientists who have ...

  16. Modelling studies for influence factors of gas bubble in compressed air energy storage in aquifers

    International Nuclear Information System (INIS)

    Guo, Chaobin; Zhang, Keni; Li, Cai; Wang, Xiaoyu

    2016-01-01

    CAES (Compressed air energy storage) is credited with its potential ability for large-scale energy storage. Generally, it is more convenient using deep aquifers than employing underground caverns for energy storage, because of extensive presence of aquifers. During the first stage in a typical process of CAESA (compressed air energy storage in aquifers), a large amount of compressed air is injected into the target aquifer to develop an initial space (a gas bubble) for energy storage. In this study, numerical simulations were conducted to investigate the influence of aquifer's permeability, geological structure and operation parameters on the formation of gas bubble and the sustainability for the later cycling operation. The SCT (system cycle times) was designed as a parameter to evaluate the reservoir performance and the effect of operation parameters. Simulation results for pressure and gas saturation results of basic model confirm the feasibility of compressed air energy storage in aquifers. The results of different permeability cases show that, for a certain scale of CAESA system, there is an optimum permeability range for a candidate aquifer. An aquifer within this permeability range will not only satisfy the injectivity requirement but also have the best energy efficiency. Structural impact analysis indicates that the anticline structure has the best performance to hold the bubble under the same daily cycling schedule with the same initial injected air mass. In addition, our results indicate that the SCT shows a logarithmic growth as the injected air mass increase. During the formation of gas bubble, compressed air should be injected into aquifers with moderate rate and the injection can be done in several stages with different injection rate to avoid onset pressure. - Highlights: • Impact of permeability, geological structure, operation parameters was investigated. • With certain air production rate, an optimum permeability exists for performance.

  17. Simulation of distribution nets for natural gas, in stationary state considering the compressible effects

    International Nuclear Information System (INIS)

    Valbuena C, Javier

    1997-01-01

    The general method is presented to calculate the losses of pressure in a RTD starting from the geometry of the net (diameter and longitude), of the real behavior of the gas, of the ruggedness of the pipe and of the flow, considering the compressibility of the fluid so much as the influence of the compressible effects. The simulation method is derived of the principles of conservation of mass and energy for a gas that follows a reversible poly tropic process of stable state and stable flow - stationary regime

  18. Approximation for discrete Fourier transform and application in study of three-dimensional interacting electron gas.

    Science.gov (United States)

    Yan, Xin-Zhong

    2011-07-01

    The discrete Fourier transform is approximated by summing over part of the terms with corresponding weights. The approximation reduces significantly the requirement for computer memory storage and enhances the numerical computation efficiency with several orders without losing accuracy. As an example, we apply the algorithm to study the three-dimensional interacting electron gas under the renormalized-ring-diagram approximation where the Green's function needs to be self-consistently solved. We present the results for the chemical potential, compressibility, free energy, entropy, and specific heat of the system. The ground-state energy obtained by the present calculation is compared with the existing results of Monte Carlo simulation and random-phase approximation.

  19. A Gas-kinetic Discontinuous Galerkin Method for Viscous Flow Equations

    International Nuclear Information System (INIS)

    Liu, Hongwei; Xu, Kun

    2007-01-01

    This paper presents a Runge-Kutta discontinuous Galerkin (RKDG) method for viscous flow computation. The construction of the RKDG method is based on a gas-kinetic formulation, which not only couples the convective and dissipative terms together, but also includes both discontinuous and continuous representation in the flux evaluation at the cell interface through a simple hybrid gas distribution function. Due to the intrinsic connection between the gaskinetic BGK model and the Navier-Stokes equations, the Navier-Stokes flux is automatically obtained by the present method. Numerical examples for both one dimensional (10) and two dimensional(20) compressible viscous flows are presented to demonstrate the accuracy and shock capturing capability of the current RKDG method

  20. A Numerical Scheme Based on an Immersed Boundary Method for Compressible Turbulent Flows with Shocks: Application to Two-Dimensional Flows around Cylinders

    Directory of Open Access Journals (Sweden)

    Shun Takahashi

    2014-01-01

    Full Text Available A computational code adopting immersed boundary methods for compressible gas-particle multiphase turbulent flows is developed and validated through two-dimensional numerical experiments. The turbulent flow region is modeled by a second-order pseudo skew-symmetric form with minimum dissipation, while the monotone upstream-centered scheme for conservation laws (MUSCL scheme is employed in the shock region. The present scheme is applied to the flow around a two-dimensional cylinder under various freestream Mach numbers. Compared with the original MUSCL scheme, the minimum dissipation enabled by the pseudo skew-symmetric form significantly improves the resolution of the vortex generated in the wake while retaining the shock capturing ability. In addition, the resulting aerodynamic force is significantly improved. Also, the present scheme is successfully applied to moving two-cylinder problems.

  1. Chemical reactivity of the compressed noble gas atoms and their ...

    Indian Academy of Sciences (India)

    Attempts are made to gain insights into the effect of confinement of noble gas atoms on their various reactivity indices. Systems become harder, less polarizable and difficult to excite as the compression increases. Ionization also causes similar effects. A quantum fluid density functional technique is adopted in order to study ...

  2. Analysis of Modifications on a Spark Ignition Engine for Operation with Natural Gas

    Directory of Open Access Journals (Sweden)

    Ramasamy D.

    2016-01-01

    Full Text Available Transportation is one of the key contributors to petroleum usage and emissions to the atmosphere. According to researchers, there are many ways to use transport by using renewable energy sources. Of these solutions, the immediate solution which requires less modification to current engine technology is by using gaseous fuels. Natural gas is the fuel of choice for minor modification to current engines. As it can be derived from anaerobic digestion process, the potential as a renewable energy source is tremendous, especially for an agricultural country such a Malaysia. The aim in the future will be operating an engine with natural gas only with pipelines straight to houses for easy filling. The fuel is light and can be easily carried in vehicles when in compressed form. As such, Compressed Natural Gas (CNG is currently used in bi-fuel engines, but is mostly not optimized in term of their performance. The focus of the paper is to optimize a model of natural gas engine by one dimensional flow modeling for operation with natural gas. The model is analyzed for performance and emission characteristics produced by a gasoline engine and later compared with natural gas. The average performance drop is about 15% from its gasoline counterpart. The 4% benchmark indicates that the modification to ignition timing and compression ratio does improve engine performance using natural gas as fuel.

  3. Broad-Spectrum Liquid- and Gas-Phase Decontamination of Chemical Warfare Agents by One-Dimensional Heteropolyniobates.

    Science.gov (United States)

    Guo, Weiwei; Lv, Hongjin; Sullivan, Kevin P; Gordon, Wesley O; Balboa, Alex; Wagner, George W; Musaev, Djamaladdin G; Bacsa, John; Hill, Craig L

    2016-06-20

    A wide range of chemical warfare agents and their simulants are catalytically decontaminated by a new one-dimensional polymeric polyniobate (P-PONb), K12 [Ti2 O2 ][GeNb12 O40 ]⋅19 H2 O (KGeNb) under mild conditions and in the dark. Uniquely, KGeNb facilitates hydrolysis of nerve agents Sarin (GB) and Soman (GD) (and their less reactive simulants, dimethyl methylphosphonate (DMMP)) as well as mustard (HD) in both liquid and gas phases at ambient temperature and in the absence of neutralizing bases or illumination. Three lines of evidence establish that KGeNb removes DMMP, and thus likely GB/GD, by general base catalysis: a) the k(H2 O)/k(D2 O) solvent isotope effect is 1.4; b) the rate law (hydrolysis at the same pH depends on the amount of P-PONb present); and c) hydroxide is far less active against the above simulants at the same pH than the P-PONbs themselves, a critical control experiment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Quantitative analysis of fragrance in selectable one dimensional or two dimensional gas chromatography-mass spectrometry with simultaneous detection of multiple detectors in single injection.

    Science.gov (United States)

    Tan, Hui Peng; Wan, Tow Shi; Min, Christina Liew Shu; Osborne, Murray; Ng, Khim Hui

    2014-03-14

    A selectable one-dimensional ((1)D) or two-dimensional ((2)D) gas chromatography-mass spectrometry (GC-MS) system coupled with flame ionization detector (FID) and olfactory detection port (ODP) was employed in this study to analyze perfume oil and fragrance in shower gel. A split/splitless (SSL) injector and a programmable temperature vaporization (PTV) injector are connected via a 2-way splitter of capillary flow technology (CFT) in this selectable (1)D/(2)D GC-MS/FID/ODP system to facilitate liquid sample injections and thermal desorption (TD) for stir bar sorptive extraction (SBSE) technique, respectively. The dual-linked injectors set-up enable the use of two different injector ports (one at a time) in single sequence run without having to relocate the (1)D capillary column from one inlet to another. Target analytes were separated in (1)D GC-MS/FID/ODP and followed by further separation of co-elution mixture from (1)D in (2)D GC-MS/FID/ODP in single injection without any instrumental reconfiguration. A (1)D/(2)D quantitative analysis method was developed and validated for its repeatability - tR; calculated linear retention indices (LRI); response ratio in both MS and FID signal, limit of detection (LOD), limit of quantitation (LOQ), as well as linearity over a concentration range. The method was successfully applied in quantitative analysis of perfume solution at different concentration level (RSD≤0.01%, n=5) and shower gel spiked with perfume at different dosages (RSD≤0.04%, n=5) with good recovery (96-103% for SSL injection; 94-107% for stir bar sorptive extraction-thermal desorption (SBSE-TD). Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A computational study of the electronic properties of one-dimensional armchair phosphorene nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sheng; Zhu, Hao; Eshun, Kwesi; Arab, Abbas; Badwan, Ahmad; Li, Qiliang [Department of Electrical and Computer Engineering, George Mason University, Fairfax, Virginia 22033 (United States)

    2015-10-28

    We have performed a comprehensive first-principle computational study of the electronic properties of one-dimensional phosphorene nanotubes (PNTs), and the strain effect on the mechanical and electrical properties of PNTs, including the elastic modulus, energy bandstructure, and carrier effective mass. The study has demonstrated that the armchair PNTs have semiconducting properties along the axial direction and the carrier mobility can be significantly improved by compressive strain. The hole mobility increases from 40.7 cm{sup 2}/V s to 197.0 cm{sup 2}/V s as the compressive strain increases to −5% at room temperature. The investigations of size effect on armchair PNTs indicated that the conductance increases significantly as the increasing diameter. Overall, this study indicated that the PNTs have very attractive electronic properties for future application in nanomaterials and devices.

  6. Quantum mechanics of lattice gas automata: One-particle plane waves and potentials

    International Nuclear Information System (INIS)

    Meyer, D.A.

    1997-01-01

    Classical lattice gas automata effectively simulate physical processes, such as diffusion and fluid flow (in certain parameter regimes), despite their simplicity at the microscale. Motivated by current interest in quantum computation we recently defined quantum lattice gas automata; in this paper we initiate a project to analyze which physical processes these models can effectively simulate. Studying the single particle sector of a one-dimensional quantum lattice gas we find discrete analogs of plane waves and wave packets, and then investigate their behavior in the presence of inhomogeneous potentials. copyright 1997 The American Physical Society

  7. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank

    2014-01-01

    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...

  8. Three-dimensional short-range MR angiography and multiplanar reconstruction images in the evaluation of neurovascular compression in hemifacial spasm

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woo Suk; Kim, Eui Jong; Lee, Jae Gue; Rhee, Bong Arm [Kyunghee Univ. Hospital, Seoul (Korea, Republic of)

    1998-08-01

    To evaluate the diagnostic efficacy of three-dimensional(3D) short-range MR angiography(MRA) and multiplanar reconstruction(MPR) imaging in hemifacial spasm(HS). Materials and Methods : Two hundreds patients with HS were studied using a 1.5T MRI system with a 3D time-of-flight(TOF) MRA sequence. To reconstruct short-range MRA, 6-10 source images near the 7-8th cranial nerve complex were processed using a maximum-intensity projection technique. In addition, an MPR technique was used to investigate neurovascular compression. We observed the relationship between the root-exit zone(REZ) of the 7th cranial nerve and compressive vessel, and identified the compressive vessels on symptomatic sides. To investigate neurovascular contact, asymptomatic contralateral sides were also evaluated. Results : MRI showed that in 197 of 200 patients there was vascular compression or contact with the facial nerve REZ on symptomatic sides. One of the three remaining patients was suffering from acoustic neurinoma on the symptomatic side, while in two patients there were no definite abnormal findings.Compressive vessels were demonstrated in all 197 patients; 80 cases involved the anterior inferior cerebellar artery(AICA), 74 the posterior cerebellar artery(PICA), 13 the vertebral artery(VA), 16 the VA and AICA, eight the VA and PICA, and six the AICA and PICA. In all 197 patients, compressive vessels were reconstructed on one 3D short-range MRA image without discontinuation from vertebral or basilar arteries. 3D MPR studies provided additional information such as the direction of compression and course of the compressive vessel. In 31 patients there was neurovascular contact on the contralateral side at the 7-8th cranial nerve complex. Conclusion : Inpatients with HS, 3D short-range MRA and MPR images are excellent and very helpful for the investigation of neurovascular compression and the identification of compressive vessels.

  9. Three-dimensional short-range MR angiography and multiplanar reconstruction images in the evaluation of neurovascular compression in hemifacial spasm

    International Nuclear Information System (INIS)

    Choi, Woo Suk; Kim, Eui Jong; Lee, Jae Gue; Rhee, Bong Arm

    1998-01-01

    To evaluate the diagnostic efficacy of three-dimensional(3D) short-range MR angiography(MRA) and multiplanar reconstruction(MPR) imaging in hemifacial spasm(HS). Materials and Methods : Two hundreds patients with HS were studied using a 1.5T MRI system with a 3D time-of-flight(TOF) MRA sequence. To reconstruct short-range MRA, 6-10 source images near the 7-8th cranial nerve complex were processed using a maximum-intensity projection technique. In addition, an MPR technique was used to investigate neurovascular compression. We observed the relationship between the root-exit zone(REZ) of the 7th cranial nerve and compressive vessel, and identified the compressive vessels on symptomatic sides. To investigate neurovascular contact, asymptomatic contralateral sides were also evaluated. Results : MRI showed that in 197 of 200 patients there was vascular compression or contact with the facial nerve REZ on symptomatic sides. One of the three remaining patients was suffering from acoustic neurinoma on the symptomatic side, while in two patients there were no definite abnormal findings.Compressive vessels were demonstrated in all 197 patients; 80 cases involved the anterior inferior cerebellar artery(AICA), 74 the posterior cerebellar artery(PICA), 13 the vertebral artery(VA), 16 the VA and AICA, eight the VA and PICA, and six the AICA and PICA. In all 197 patients, compressive vessels were reconstructed on one 3D short-range MRA image without discontinuation from vertebral or basilar arteries. 3D MPR studies provided additional information such as the direction of compression and course of the compressive vessel. In 31 patients there was neurovascular contact on the contralateral side at the 7-8th cranial nerve complex. Conclusion : Inpatients with HS, 3D short-range MRA and MPR images are excellent and very helpful for the investigation of neurovascular compression and the identification of compressive vessels

  10. Hydrofluoric acid burn resulting from ignition of gas from a compressed air duster.

    Science.gov (United States)

    Foster, Kevin N; Jones, LouAnn; Caruso, Daniel M

    2003-01-01

    A young female suffered burns to her hand after the ignition of gas from a compressed air duster. After debridement and dressing, the patient continued to have pain out of proportion to injury that was refractory to intravenous morphine. The material safety data sheet revealed that the chemical used was 1,1-difluoroethane. High temperatures can cause decompensation to form hydrofluoric acid. Calcium gluconate gel was applied topically to the patient's burns, which caused prompt and complete relief of her pain. A review of different compressed air duster products revealed that the main ingredient in each was a halogenated hydrocarbon. Although not considered flammable, all products have warnings regarding the possibility of ignition under various circumstances. Ignition of the gas in compressed air cleaners not only can cause flame burns, it can also cause chemical damage from exposure to hydrogen and fluoride ions. Prompt recognition and treatment is necessary to prevent severe injury.

  11. Transient dynamic crack propagation in gas pressurised pipelines

    International Nuclear Information System (INIS)

    Caldis, E.S.; Owen, D.R.J.; Taylor, C.

    1983-01-01

    The prime limitation of dynamic fracture analysis is the lack of a fundamental crack advance theory which can be easily and economically adopted for use with numerical models. The necessity for the inclusion of inertia effects in the solution of certain problem classes is now evident, but most transient dynamic fracture models considered to date include (of necessity) some intuitive/empirical parameters with a frequent need of a priori knowledge of experimental solutions. The particular problem considered in this study is Mode I transient dynamic crack propagation in gas pressurised pipelines. The steel pipe is modelled using thin shell Semiloof finite elements and its transient response is coupled to a one-dimensional finite element model of the compressible gas equations, incorporating a lateral gas flow parameter. The pipe is governed by the usual dynamic equilibrium equation which is discretised in the time domain by a central difference explicit algorithm. The compressible gas response is modelled by the Continuity and Momentum equations and time discretisation is performed by means of a fully backward difference scheme in time. (orig./GL)

  12. Compressive Properties and Anti-Erosion Characteristics of Foam Concrete in Road Engineering

    Science.gov (United States)

    Li, Jinzhu; Huang, Hongxiang; Wang, Wenjun; Ding, Yifan

    2018-01-01

    To analyse the compression properties and anti-erosion characteristics of foam concrete, one dimensional compression tests were carried out using ring specimens of foam concrete, and unconfined compression tests were carried out using foam concrete specimens cured in different conditions. The results of one dimensional compression tests show that the compression curve of foam concrete has two critical points and three stages, which has significant difference with ordinary geotechnical materials such as soil. Based on the compression curve the compression modulus of each stage were determined. The results of erosion tests show that sea water has a slight influence on the long-term strength of foam concrete, while the sulphate solution has a significant influence on the long-term strength of foam concrete, which needs to pay more attention.

  13. Isobaric expansion coefficient and isothermal compressibility for a finite-size ideal Fermi gas system

    International Nuclear Information System (INIS)

    Su, Guozhen; Chen, Liwei; Chen, Jincan

    2014-01-01

    Due to quantum size effects (QSEs), the isobaric thermal expansion coefficient and isothermal compressibility well defined for macroscopic systems are invalid for finite-size systems. The two parameters are redefined and calculated for a finite-size ideal Fermi gas confined in a rectangular container. It is found that the isobaric thermal expansion coefficient and isothermal compressibility are generally anisotropic, i.e., they are generally different in different directions. Moreover, it is found the thermal expansion coefficient may be negative in some directions under the condition that the pressures in all directions are kept constant. - Highlights: • Isobaric thermal expansion coefficient and isothermal compressibility are redefined. • The two parameters are calculated for a finite-size ideal Fermi gas. • The two parameters are generally anisotropic for a finite-size system. • Isobaric thermal expansion coefficient may be negative in some directions

  14. 76 FR 55736 - Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders

    Science.gov (United States)

    2011-09-08

    ... certain of high- and low-pressure compressed gas cylinders, primarily fire extinguishers, by Atlas Fire...- pressure cylinders serviced by Atlas Fire Protection were marked and represented as requalified (visually... damage, serious personal injury, or death could result from the rupture of a cylinder. Cylinders not...

  15. Quasi-Dimensional Modelling and Parametric Studies of a Heavy-Duty HCCI Engine

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Pandey

    2011-01-01

    Full Text Available A quasi-dimensional modelling study is conducted for the first time for a heavy duty, diesel-fuelled, multicylinder engine operating in HCCI mode. This quasidimensional approach involves a zero-dimensional single-zone homogeneous charge compression ignition (HCCI combustion model along with a one-dimensional treatment of the intake and exhaust systems. A skeletal chemical kinetic scheme for n-heptane was used in the simulations. Exhaust gas recirculation (EGR and compression ratio (CR were the two parameters that were altered in order to deal with the challenges of combustion phasing control and operating load range extension. Results from the HCCI mode simulations show good potential when compared to conventional diesel performance with respect to important performance parameters such as peak firing pressure, specific fuel consumption, peak pressure rise, and combustion noise. This study shows that HCCI combustion mode can be employed at part load of 25% varying the EGR rates between 0 and 60%.

  16. From Free Expansion to Abrupt Compression of an Ideal Gas

    Science.gov (United States)

    Anacleto, Joaquim; Pereira, Mario G.

    2009-01-01

    Using macroscopic thermodynamics, the general law for adiabatic processes carried out by an ideal gas was studied. It was shown that the process reversibility is characterized by the adiabatic reversibility coefficient r, in the range 0 [less than or equal] r [less than or equal] 1 for expansions and r [greater than or equal] 1 for compressions.…

  17. Potentiality of the Usage of Compressed Natural Gas for Competitiveness in Service Delivery Industries

    Directory of Open Access Journals (Sweden)

    Gazi Mohammad Hasan Jamil

    2014-08-01

    Full Text Available Abstract. With the rising costs of gasoline, many vehicle owners are looking for alternatives of it. Compressed natural gas (CNG has been tested for this very purpose in some countries and found as a better alternative so far. CNG comes from country’s natural resources and it is clean and less costly to use. This paper is mainly an analysis of the potential benefits of using natural gas as a transportation fuel by the service delivery industries. It will examine CNG’s potential contribution in reducing delivery and vehicle maintenance cost, saving money in the long run projects, improving fuel efficiency, enhancing physical safety and assuring environment friendly emissions of carbon monoxide or reactive gases for the service delivery industries.Keywords: Compressed natural gas (CNG, Service Delivery, Fossil fuel, Global warming, Competitiveness

  18. Analysis of biogas compression system dynamics

    International Nuclear Information System (INIS)

    Morini, Mirko; Pinelli, Michele; Venturini, Mauro

    2009-01-01

    The use of biogas for energy production has progressively increased in recent years, due to an increasing interest both in agricultural and energy policies of many industrialized countries. Biogas compression by means of natural gas infrastructure seems the most immediate solution, but could also lead to problems due to the different physical properties of the two gases. In this paper, a non-linear one-dimensional modular dynamic model is developed and used for the simulation of compression system transient behavior. The arrangement consists of a main line, where the compressor operates, and an anti-surge control, which consists of a recycle loop activated by a fast acting valve. Different maneuvers (start-up, normal operation, emergency shutdown and operating point variation) are simulated by using two different working fluids (methane and biogas). Simulations prove that the design of the surge protection system should consider the fluid to be elaborated. Moreover, system predisposition to surge increases as the ratio between system volumes and the inertia of the rotating masses increases.

  19. Capillary condensation in one-dimensional irregular confinement.

    Science.gov (United States)

    Handford, Thomas P; Pérez-Reche, Francisco J; Taraskin, Sergei N

    2013-07-01

    A lattice-gas model with heterogeneity is developed for the description of fluid condensation in finite sized one-dimensional pores of arbitrary shape. Mapping to the random-field Ising model allows an exact solution of the model to be obtained at zero-temperature, reproducing the experimentally observed dependence of the amount of fluid adsorbed in the pore on external pressure. It is demonstrated that the disorder controls the sorption for long pores and can result in H2-type hysteresis. Finite-temperature Metropolis dynamics simulations support analytical findings in the limit of low temperatures. The proposed framework is viewed as a fundamental building block of the theory of capillary condensation necessary for reliable structural analysis of complex porous media from adsorption-desorption data.

  20. FPGA Implementation of one-dimensional and two-dimensional cellular automata

    International Nuclear Information System (INIS)

    D'Antone, I.

    1999-01-01

    This report describes the hardware implementation of one-dimensional and two-dimensional cellular automata (CAs). After a general introduction to the cellular automata, we consider a one-dimensional CA used to implement pseudo-random techniques in built-in self test for VLSI. Due to the increase in digital ASIC complexity, testing is becoming one of the major costs in the VLSI production. The high electronics complexity, used in particle physics experiments, demands higher reliability than in the past time. General criterions are given to evaluate the feasibility of the circuit used for testing and some quantitative parameters are underlined to optimize the architecture of the cellular automaton. Furthermore, we propose a two-dimensional CA that performs a peak finding algorithm in a matrix of cells mapping a sub-region of a calorimeter. As in a two-dimensional filtering process, the peaks of the energy clusters are found in one evolution step. This CA belongs to Wolfram class II cellular automata. Some quantitative parameters are given to optimize the architecture of the cellular automaton implemented in a commercial field programmable gate array (FPGA)

  1. Rapid depressurization of a compressible fluid

    International Nuclear Information System (INIS)

    Dang, M.; Dupont, J.F.; Weber, H.

    1978-08-01

    The rapid depressurization of a plenum is a situation frequently encountered in the dynamical analysis of nuclear gas cycles of the HHT type. Various methods of numerical analyses for a 1-dimensional flow model are examined: finite difference method; control volume method; method of characteristics. Based on the shallow water analogy to compressible flow, the numerical results are compared with those from a water table set up to simulate a standard problem. (Auth.)

  2. Spin-zero sound in one- and quasi-one-dimensional 3He

    International Nuclear Information System (INIS)

    Hernandez, E.S.

    2002-01-01

    The zero sound spectrum of fluid 3 He confined to a cylindrical shell is examined for configurations characterizing strictly one-dimensional and quasi-one-dimensional regimes. It is shown that the restricted dimensionality makes room to the possibility of spin-zero sound for the attractive particle-hole interaction of liquid helium. This fact can be related to the suppression of phase instabilities and thermodynamic phase transitions in one dimension

  3. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  4. Ideal gas approximation for a two-dimensional rarefied gas under Kawasaki dynamics

    NARCIS (Netherlands)

    Gaudillière, A.; Hollander, den W.Th.F.; Nardi, F.R.; Olivieri, E.; Scoppola, E.

    2009-01-01

    In this paper we consider a two-dimensional lattice gas under Kawasaki dynamics, i.e., particles hop around randomly subject to hard-core repulsion and nearest-neighbor attraction. We show that, at fixed temperature and in the limit as the particle density tends to zero, such a gas evolves in a way

  5. Global Classical and Weak Solutions to the Three-Dimensional Full Compressible Navier-Stokes System with Vacuum and Large Oscillations

    Science.gov (United States)

    Huang, Xiangdi; Li, Jing

    2018-03-01

    For the three-dimensional full compressible Navier-Stokes system describing the motion of a viscous, compressible, heat-conductive, and Newtonian polytropic fluid, we establish the global existence and uniqueness of classical solutions with smooth initial data which are of small energy but possibly large oscillations where the initial density is allowed to vanish. Moreover, for the initial data, which may be discontinuous and contain vacuum states, we also obtain the global existence of weak solutions. These results generalize previous ones on classical and weak solutions for initial density being strictly away from a vacuum, and are the first for global classical and weak solutions which may have large oscillations and can contain vacuum states.

  6. One-dimensional photonic crystal design

    International Nuclear Information System (INIS)

    Mee, Cornelis van der; Contu, Pietro; Pintus, Paolo

    2010-01-01

    In this article we present a method to determine the band spectrum, band gaps, and discrete energy levels, of a one-dimensional photonic crystal with localized impurities. For one-dimensional crystals with piecewise constant refractive indices we develop an algorithm to recover the refractive index distribution from the period map. Finally, we derive the relationship between the period map and the scattering matrix containing the information on the localized modes.

  7. Hydro-pneumatic accumulators for vehicles kinetic energy storage: Influence of gas compressibility and thermal losses on storage capability

    International Nuclear Information System (INIS)

    Puddu, Pierpaolo; Paderi, Maurizio

    2013-01-01

    In this work the differences between the thermodynamic behaviour of real and ideal gases are analysed to determine their influence on the processes of compression and expansion of a gas-charged accumulator. The behaviour of real gas has a significant influence on the size of accumulators used for Kinetic Energy Recovery of vehicles. In particular, it is underscored that the accumulator's design, based on ideal gas behaviour, provides undersized accumulators and therefore makes impossible the complete energy recovery for Hydraulic Energy Storage Systems (HES). The analysis of the thermodynamic properties of gases has shown that the main differences between ideal and real behaviour are due to gas compressibility. A mathematical model of a gas-charged accumulator is developed in order to analyse its real behaviour in presence of irreversible heat transfer and viscous losses. The simulation process of charging and discharging of a hydro-pneumatic accumulator, makes it clear that hydrodynamic and thermal losses are responsible for the characteristic hysteresis cycle on the p–V diagram. Different gases are tested as charged fluid of a hydro-pneumatic accumulator to simulate cyclic processes of charge and discharge. Results show different characteristics in terms of volumetric gas properties, thermal time-constant and thermal efficiency of the accumulator. - Highlights: • A dynamic model of a gas charged accumulator was developed. • Gas compressibility significantly influences the size of high-pressure accumulators. • A hysteresis loop is indicative of the thermal energy losses. • Loss increases with increasing the period of the cyclic process. • Thermal time constant is different from compression to expansion

  8. Data Compression of Hydrocarbon Reservoir Simulation Grids

    KAUST Repository

    Chavez, Gustavo Ivan

    2015-05-28

    A dense volumetric grid coming from an oil/gas reservoir simulation output is translated into a compact representation that supports desired features such as interactive visualization, geometric continuity, color mapping and quad representation. A set of four control curves per layer results from processing the grid data, and a complete set of these 3-dimensional surfaces represents the complete volume data and can map reservoir properties of interest to analysts. The processing results yield a representation of reservoir simulation results which has reduced data storage requirements and permits quick performance interaction between reservoir analysts and the simulation data. The degree of reservoir grid compression can be selected according to the quality required, by adjusting for different thresholds, such as approximation error and level of detail. The processions results are of potential benefit in applications such as interactive rendering, data compression, and in-situ visualization of large-scale oil/gas reservoir simulations.

  9. Unexpected Magnetic Semiconductor Behavior in Zigzag Phosphorene Nanoribbons Driven by Half-Filled One Dimensional Band

    Science.gov (United States)

    Du, Yongping; Liu, Huimei; Xu, Bo; Sheng, Li; Yin, Jiang; Duan, Chun-Gang; Wan, Xiangang

    2015-01-01

    Phosphorene, as a novel two-dimensional material, has attracted a great interest due to its novel electronic structure. The pursuit of controlled magnetism in Phosphorene in particular has been persisting goal in this area. In this paper, an antiferromagnetic insulating state has been found in the zigzag phosphorene nanoribbons (ZPNRs) from the comprehensive density functional theory calculations. Comparing with other one-dimensional systems, the magnetism in ZPNRs display several surprising characteristics: (i) the magnetic moments are antiparallel arranged at each zigzag edge; (ii) the magnetism is quite stable in energy (about 29 meV/magnetic-ion) and the band gap is big (about 0.7 eV); (iii) the electronic and magnetic properties is almost independent on the width of nanoribbons; (iv) a moderate compressive strain will induce a magnetic to nonmagnetic as well as semiconductor to metal transition. All of these phenomena arise naturally due to one unique mechanism, namely the electronic instability induced by the half-filled one-dimensional bands which cross the Fermi level at around π/2a. The unusual electronic and magnetic properties in ZPNRs endow them possible potential for the applications in nanoelectronic devices. PMID:25747727

  10. One-dimensional Gromov minimal filling problem

    International Nuclear Information System (INIS)

    Ivanov, Alexandr O; Tuzhilin, Alexey A

    2012-01-01

    The paper is devoted to a new branch in the theory of one-dimensional variational problems with branching extremals, the investigation of one-dimensional minimal fillings introduced by the authors. On the one hand, this problem is a one-dimensional version of a generalization of Gromov's minimal fillings problem to the case of stratified manifolds. On the other hand, this problem is interesting in itself and also can be considered as a generalization of another classical problem, the Steiner problem on the construction of a shortest network connecting a given set of terminals. Besides the statement of the problem, we discuss several properties of the minimal fillings and state several conjectures. Bibliography: 38 titles.

  11. Efficient High-Dimensional Entanglement Imaging with a Compressive-Sensing Double-Pixel Camera

    Directory of Open Access Journals (Sweden)

    Gregory A. Howland

    2013-02-01

    Full Text Available We implement a double-pixel compressive-sensing camera to efficiently characterize, at high resolution, the spatially entangled fields that are produced by spontaneous parametric down-conversion. This technique leverages sparsity in spatial correlations between entangled photons to improve acquisition times over raster scanning by a scaling factor up to n^{2}/log⁡(n for n-dimensional images. We image at resolutions up to 1024 dimensions per detector and demonstrate a channel capacity of 8.4 bits per photon. By comparing the entangled photons’ classical mutual information in conjugate bases, we violate an entropic Einstein-Podolsky-Rosen separability criterion for all measured resolutions. More broadly, our result indicates that compressive sensing can be especially effective for higher-order measurements on correlated systems.

  12. Transient compressible flows in porous media

    International Nuclear Information System (INIS)

    Morrison, F.A. Jr.

    1975-09-01

    Transient compressible flow in porous media was investigated analytically. The major portion of the investigation was directed toward improving and understanding of dispersion in these flows and developing rapid accurate numerical techniques for predicting the extent of dispersion. The results are of interest in the containment of underground nuclear experiments. The transient one-dimensional transport of a trace component in a gas flow is analyzed. A conservation equation accounting for the effects of convective transport, dispersive transport, and decay, is developed. This relation, as well as a relation governing the fluid flow, is used to predict trace component concentration as a function of position and time. A detailed analysis of transport associated with the isothermal flow of an ideal gas is done. Because the governing equations are nonlinear, numerical calculations are performed. The ideal gas flow is calculated using a highly stable implicit iterative procedure with an Eulerian mesh. In order to avoid problems of anomolous dispersion associated with finite difference calculation, trace component convection and dispersion are calculated using a Lagrangian mesh. Details of the Eulerian-Lagrangian numerical technique are presented. Computer codes have been developed and implemented on the Lawrence Livermore Laboratory computer system

  13. Survey for the development of compressed natural gas systems (CNG) for vehicles

    OpenAIRE

    Abulamosha, A.M.

    2005-01-01

    Compressed Natural Gas (CNG) vehicles have been used internationally by fleets for decades. The use of CNG vehicles results in less petroleum consumption, resulting in fewer air pollutants and greenhouse gas emissions in most applications. In Europe, the adoption of CNG among consumers has been slowed by the availability of affordable gasoline and diesel fuel. This investigation addresses the current situation of the CNG vehicle at the manufacturing level and the consumer level in Europe. Bas...

  14. Sizing of Compression Coil Springs Gas Regulators Using Modern Methods CAD and CAE

    Directory of Open Access Journals (Sweden)

    Adelin Ionel Tuţă

    2010-10-01

    Full Text Available This paper presents a method for compression coil springs sizing by gas regulators composition, using CAD techniques (Computer Aided Design and CAE (Computer Aided Engineering. Sizing is to optimize the functioning of the regulators under dynamic industrial and house-hold. Gas regulator is a device that automatically and continuously adjusted to maintain pre-set limits on output gas pressure at varying flow and input pressure. The performances of the pressure regulators like automatic systems depend on their behaviour under dynamic opera-tion. Time constant optimization of pneumatic actuators, which drives gas regulators, leads to a better functioning under their dynamic.

  15. THE FORMATION OF ROTATIONAL DISCONTINUITIES IN COMPRESSIVE THREE-DIMENSIONAL MHD TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liping; Feng, Xueshang [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, 100190, Beijing (China); Zhang, Lei; He, Jiansen; Tu, Chuanyi; Wang, Linghua; Wang, Xin [School of Earth and Space Sciences, Peking University, 100871 Beijing (China); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian Albrechts University at Kiel, D-24118 Kiel (Germany); Zhang, Shaohua, E-mail: jshept@gmail.com [Center of Spacecraft Assembly Integration and Test, China Academy of Space Technology, Beijing 100094 (China)

    2015-08-20

    Measurements of solar wind turbulence reveal the ubiquity of discontinuities. In this study we investigate how the discontinuities, especially rotational discontinuities (RDs), are formed in MHD turbulence. In a simulation of the decaying compressive three-dimensional (3D) MHD turbulence with an imposed uniform background magnetic field, we detect RDs with sharp field rotations and little variations of magnetic field intensity, as well as mass density. At the same time, in the de Hoffman–Teller frame, the plasma velocity is nearly in agreement with the Alfvén speed, and is field-aligned on both sides of the discontinuity. We take one of the identified RDs to analyze its 3D structure and temporal evolution in detail. By checking the magnetic field and plasma parameters, we find that the identified RD evolves from the steepening of the Alfvén wave with moderate amplitude, and that steepening is caused by the nonuniformity of the Alfvén speed in the ambient turbulence.

  16. Impact of comprehensive two-dimensional gas chromatography with mass spectrometry on food analysis.

    Science.gov (United States)

    Tranchida, Peter Q; Purcaro, Giorgia; Maimone, Mariarosa; Mondello, Luigi

    2016-01-01

    Comprehensive two-dimensional gas chromatography with mass spectrometry has been on the separation-science scene for about 15 years. This three-dimensional method has made a great positive impact on various fields of research, and among these that related to food analysis is certainly at the forefront. The present critical review is based on the use of comprehensive two-dimensional gas chromatography with mass spectrometry in the untargeted (general qualitative profiling and fingerprinting) and targeted analysis of food volatiles; attention is focused not only on its potential in such applications, but also on how recent advances in comprehensive two-dimensional gas chromatography with mass spectrometry will potentially be important for food analysis. Additionally, emphasis is devoted to the many instances in which straightforward gas chromatography with mass spectrometry is a sufficiently-powerful analytical tool. Finally, possible future scenarios in the comprehensive two-dimensional gas chromatography with mass spectrometry food analysis field are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Experimental investigation of integrated refrigeration system (IRS) with gas engine, compression chiller and absorption chiller

    International Nuclear Information System (INIS)

    Sun, Z.G.

    2008-01-01

    An integrated refrigeration system (IRS) with a gas engine, a vapor-compression chiller and an absorption chiller is set up and tested. The vapor-compression refrigeration cycle is operated directly by the gas engine. The waste heat from the gas engine operates the absorption refrigeration cycle, which provides additional cooling. The performance of the IRS is described. The cooling capacity of the IRS is about 596 kW, and primary energy ratio (PER) reaches 1.84 at air-conditioning rated conditions. The refrigerating capacity of the prototype increased and PER of prototype decreased with the increase of the gas engine speed. The gas engine speed was preferably regulated at part load condition in order to operate the prototype at high-energy efficiency. The refrigerating capacity and PER of the prototype increased with the increase of the outlet temperature of chilled water or the decrease of the inlet temperature of cooling water. The integrated refrigeration chiller in this work saves running costs as compared to the conventional refrigeration system by using the waste heat

  18. Plasma properties of quasi-one-dimensional ring

    CERN Document Server

    Shmelev, G M

    2001-01-01

    The plasma properties of the quasi-one-dimensional ring in the threshold cases of low and high frequencies, corresponding to the plasma oscillations and dielectric relaxation are studied within the frames of the classical approach. The plasma oscillations spectrum and the electron dielectric relaxation frequency in the quasi-one-dimensional ring are calculated. The plasmons spectrum equidistance is identified. It is shown , that in contrast to the three-dimensional case there takes place the dielectric relaxation dispersion, wherefrom there follows the possibility of studying the carriers distribution in the quasi-one-dimensional rings through the method of the dielectric relaxation spectroscopy

  19. A one-dimensional collisional model for plasma-immersion ion implantation

    International Nuclear Information System (INIS)

    Vahedi, V.; Lieberman, M.A.; Alves, M.V.; Verboncoeur, J.P.; Birdsall, C.K.

    1991-01-01

    Plasma-immersion ion implantation (also known as plasma-source ion implantation) is a process in which a target is immersed in a plasma and a series of large negative-voltage pulses are applied to it to extract ions from the plasma and implant them into the target. A general one-dimensional model is developed to study this process in different coordinate systems for the case in which the pressure of the neutral gas is large enough that the ion motion in the sheath can be assumed to be highly collisional

  20. SU-E-J-190: Development of Abdominal Compression & Respiratory Guiding System Using Gas Pressure Sensor

    International Nuclear Information System (INIS)

    Kim, T; Kim, D; Kang, S; Cho, M; Kim, K; Shin, D; Suh, T; Kim, S

    2015-01-01

    Purpose: Abdominal compression is known to be effective but, often makes external-marker-based monitoring of breathing motion not feasible. In this study, we developed and evaluated a system that enables both abdominal compression and monitoring of residual abdominal motion simultaneously. The system can also provide visual-biofeedback capability. Methods: The system developed consists of a compression belt, an abdominal motion monitoring sensor (gas pressure sensor) and a visual biofeedback device. The compression belt was designed to be able to compress the frontal side of the abdomen. The pressure level of the belt is controlled by air volume and monitored in real time using the gas pressure sensor. The system displays not only the real-time monitoring curve but also a guiding respiration model (e.g., a breath hold or shallow breathing curve) simultaneously on the head mounted display to help patients keep their breathing pattern as consistent as possible. Three healthy volunteers were enrolled in this pilot study and respiratory signals (pressure variations) were obtained both with and without effective abdominal compression to investigate the feasibility of the developed system. Two guidance patterns, breath hold and shallow breathing, were tested. Results: All volunteers showed smaller abdominal motion with compression (about 40% amplitude reduction compared to without compression). However, the system was able to monitor residual abdominal motion for all volunteers. Even under abdominal compression, in addition, it was possible to make the subjects successfully follow the guide patterns using the visual biofeedback system. Conclusion: The developed abdominal compression & respiratory guiding system was feasible for residual abdominal motion management. It is considered that the system can be used for a respiratory motion involved radiation therapy while maintaining the merit of abdominal compression. This work was supported by the Radiation Technology R

  1. SU-E-J-190: Development of Abdominal Compression & Respiratory Guiding System Using Gas Pressure Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T; Kim, D; Kang, S; Cho, M; Kim, K; Shin, D; Suh, T [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of); Kim, S [Virginia Commonwealth University, Richmond, VA (United States)

    2015-06-15

    Purpose: Abdominal compression is known to be effective but, often makes external-marker-based monitoring of breathing motion not feasible. In this study, we developed and evaluated a system that enables both abdominal compression and monitoring of residual abdominal motion simultaneously. The system can also provide visual-biofeedback capability. Methods: The system developed consists of a compression belt, an abdominal motion monitoring sensor (gas pressure sensor) and a visual biofeedback device. The compression belt was designed to be able to compress the frontal side of the abdomen. The pressure level of the belt is controlled by air volume and monitored in real time using the gas pressure sensor. The system displays not only the real-time monitoring curve but also a guiding respiration model (e.g., a breath hold or shallow breathing curve) simultaneously on the head mounted display to help patients keep their breathing pattern as consistent as possible. Three healthy volunteers were enrolled in this pilot study and respiratory signals (pressure variations) were obtained both with and without effective abdominal compression to investigate the feasibility of the developed system. Two guidance patterns, breath hold and shallow breathing, were tested. Results: All volunteers showed smaller abdominal motion with compression (about 40% amplitude reduction compared to without compression). However, the system was able to monitor residual abdominal motion for all volunteers. Even under abdominal compression, in addition, it was possible to make the subjects successfully follow the guide patterns using the visual biofeedback system. Conclusion: The developed abdominal compression & respiratory guiding system was feasible for residual abdominal motion management. It is considered that the system can be used for a respiratory motion involved radiation therapy while maintaining the merit of abdominal compression. This work was supported by the Radiation Technology R

  2. Multiple soliton compression stages in mid-IR gas-filled hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Md Selim; Markos, Christos; Bang, Ole

    2017-01-01

    The light confinement inside hollow-core (HC) fibers filled with noble gases constitutes an efficient route to study interesting soliton-plasma dynamics [1]. More recently, plasma-induced soliton splitting at the self-compression point was observed in a gas-filled fiber in the near-IR [2]. However...

  3. Self-similar compression of a magnetized plasma filled liner

    International Nuclear Information System (INIS)

    Felber, F.S.; Liberman, M.A.; Velikovich, A.L.

    1985-01-01

    New analytic, one-dimensional, self-similar solutions of magnetohydrodynamic equations describing the compression of a magnetized plasma by a thin cylindrical liner are presented. The solutions include several features that have not been included in an earlier self-similar solution of the equations of ideal magnetohydrodynamics. These features are the effects of finite plasma electrical conductivity, induction heating, thermal conductivity and related thermogalvanomagnetic effects, plasma turbulence, and plasma boundary effects. These solutions have been motivated by recent suggestions for production of ultrahigh magnetic fields by new methods. The methods involve radially imploding plasmas in which axial magnetic fields have been entrained. These methods may be capable of producing controlled magnetic fields up to approx. = 100 MG. Specific methods of implosion suggested were by ablative radial acceleration of a liner by a laser and by a gas-puff Z pinch. The model presented here addresses the first of these methods. The solutions derived here are used to estimate magnetic flux losses out of the compression volume, and to indicate conditions under which an impulsively-accelerated, plasma-filled liner may compress an axial magnetic field to large magnitude

  4. On the phase transition nature in compressible Ising models

    International Nuclear Information System (INIS)

    Ota, A.T.

    1985-01-01

    The phase transition phenomenon is analysed in a compressible ferromagnetic Ising model at null field, through the mean-field approximation. The model studied is d-dimensional under the magnetic point of view and one-dimensional under the elastic point of view. This is achieved keeping the compressive interactions among the ions and rejecting annealing forces completely. The exchange parameter J is linear and the elastic potential quadratic in relation to the microscopic shifts of the lattice. In the one-dimensional case, this model shows no phase transition. In the two-dimensional case, the role of the S i spin of the i-the ion is crucial: a) for spin 1/2 the transitions are of second order; b) for spin 1, desides the second order transitions there is a three-critical point and a first-order transitions line. (L.C.) [pt

  5. Smart multi-channel two-dimensional micro-gas chromatography for rapid workplace hazardous volatile organic compounds measurement.

    Science.gov (United States)

    Liu, Jing; Seo, Jung Hwan; Li, Yubo; Chen, Di; Kurabayashi, Katsuo; Fan, Xudong

    2013-03-07

    We developed a novel smart multi-channel two-dimensional (2-D) micro-gas chromatography (μGC) architecture that shows promise to significantly improve 2-D μGC performance. In the smart μGC design, a non-destructive on-column gas detector and a flow routing system are installed between the first dimensional separation column and multiple second dimensional separation columns. The effluent from the first dimensional column is monitored in real-time and decision is then made to route the effluent to one of the second dimensional columns for further separation. As compared to the conventional 2-D μGC, the greatest benefit of the smart multi-channel 2-D μGC architecture is the enhanced separation capability of the second dimensional column and hence the overall 2-D GC performance. All the second dimensional columns are independent of each other, and their coating, length, flow rate and temperature can be customized for best separation results. In particular, there is no more constraint on the upper limit of the second dimensional column length and separation time in our architecture. Such flexibility is critical when long second dimensional separation is needed for optimal gas analysis. In addition, the smart μGC is advantageous in terms of elimination of the power intensive thermal modulator, higher peak amplitude enhancement, simplified 2-D chromatogram re-construction and potential scalability to higher dimensional separation. In this paper, we first constructed a complete smart 1 × 2 channel 2-D μGC system, along with an algorithm for automated control/operation of the system. We then characterized and optimized this μGC system, and finally employed it in two important applications that highlight its uniqueness and advantages, i.e., analysis of 31 workplace hazardous volatile organic compounds, and rapid detection and identification of target gas analytes from interference background.

  6. Wellhead compression

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Joe [Sertco Industries, Inc., Okemah, OK (United States); Vazquez, Daniel [Hoerbiger Service Latin America Inc., Deerfield Beach, FL (United States); Jacobs, Denis Richard [Hoerbiger do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)

    2012-07-01

    Over time, all wells experience a natural decline in oil and gas production. In gas wells, the major problems are liquid loading and low downhole differential pressures which negatively impact total gas production. As a form of artificial lift, wellhead compressors help reduce the tubing pressure resulting in gas velocities above the critical velocity needed to surface water, oil and condensate regaining lost production and increasing recoverable reserves. Best results come from reservoirs with high porosity, high permeability, high initial flow rates, low decline rates and high total cumulative production. In oil wells, excessive annulus gas pressure tends to inhibit both oil and gas production. Wellhead compression packages can provide a cost effective solution to these problems by reducing the system pressure in the tubing or annulus, allowing for an immediate increase in production rates. Wells furthest from the gathering compressor typically benefit the most from wellhead compression due to system pressure drops. Downstream compressors also benefit from higher suction pressures reducing overall compression horsepower requirements. Special care must be taken in selecting the best equipment for these applications. The successful implementation of wellhead compression from an economical standpoint hinges on the testing, installation and operation of the equipment. Key challenges and suggested equipment features designed to combat those challenges and successful case histories throughout Latin America are discussed below.(author)

  7. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine

    Science.gov (United States)

    Moura, A. F.; Wheatley, V.; Jahn, I.

    2017-12-01

    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further

  8. The dynamics of the Frustrated Ising Lattice Gas

    International Nuclear Information System (INIS)

    Arenzon, J.J.; Stariolo, D.A.; Ricci-Tersenghi, F.

    2000-04-01

    The dynamical properties of a three dimensional model glass, the Frustrated Ising Lattice Gas (FILG) are studied by Monte Carlo simulations. We present results of compression experiments, where the chemical potential is either slowly or abruptly changed, as well as simulations at constant density. One-time quantities like density and two-times ones as correlations, responses and mean square displacements are measured, and the departure from equilibrium clearly characterized. The aging scenario, particularly in the case of the density autocorrelations, is reminiscent of spin glass phenomenology with violations of the fluctuation-dissipation theorem, typical of systems with one replica symmetry breaking. The FILG, as a valid on-lattice model of structural glasses, can be described with tools developed in spin glass theory and, being a finite dimensional model, can open the way for a systematic study of activated processes in glasses. (author)

  9. Evolution Of Nonlinear Waves in Compressing Plasma

    International Nuclear Information System (INIS)

    Schmit, P.F.; Dodin, I.Y.; Fisch, N.J.

    2011-01-01

    Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size Δ during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches Δ. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.

  10. Evolution Of Nonlinear Waves in Compressing Plasma

    Energy Technology Data Exchange (ETDEWEB)

    P.F. Schmit, I.Y. Dodin, and N.J. Fisch

    2011-05-27

    Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.

  11. Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions

    Energy Technology Data Exchange (ETDEWEB)

    Korakianitis, T.; Namasivayam, A.M.; Crookes, R.J. [School of Engineering and Materials Science, Queen Mary University of London (United Kingdom)

    2011-02-15

    Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NO{sub x}) emissions, while producing lower emissions of carbon dioxide (CO{sub 2}), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NO{sub x} emissions. High NO{sub x} emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NO{sub x} and CO{sub 2} emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is

  12. Statistical thermodynamics of a two-dimensional relativistic gas.

    Science.gov (United States)

    Montakhab, Afshin; Ghodrat, Malihe; Barati, Mahmood

    2009-03-01

    In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the general problems associated with relativistic particle collisions and is therefore an ideal system to study relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation, concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the rest frame (Gamma) as well as the moving frame (Gamma;{'}) . Our results confirm that Jüttner distribution is the correct generalization of Maxwell-Boltzmann distribution. We obtain the same "temperature" parameter beta for both frames consistent with a recent study of a limited one-dimensional model. We also address the controversial topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame, relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclusive in deciding on a correct temperature transformation law (if any).

  13. Deformation behaviors of three-dimensional graphene honeycombs under out-of-plane compression: Atomistic simulations and predictive modeling

    Science.gov (United States)

    Meng, Fanchao; Chen, Cheng; Hu, Dianyin; Song, Jun

    2017-12-01

    Combining atomistic simulations and continuum modeling, a comprehensive study of the out-of-plane compressive deformation behaviors of equilateral three-dimensional (3D) graphene honeycombs was performed. It was demonstrated that under out-of-plane compression, the honeycomb exhibits two critical deformation events, i.e., elastic mechanical instability (including elastic buckling and structural transformation) and inelastic structural collapse. The above events were shown to be strongly dependent on the honeycomb cell size and affected by the local atomic bonding at the cell junction. By treating the 3D graphene honeycomb as a continuum cellular solid, and accounting for the structural heterogeneity and constraint at the junction, a set of analytical models were developed to accurately predict the threshold stresses corresponding to the onset of those deformation events. The present study elucidates key structure-property relationships of 3D graphene honeycombs under out-of-plane compression, and provides a comprehensive theoretical framework to predictively analyze their deformation responses, and more generally, offers critical new knowledge for the rational bottom-up design of 3D networks of two-dimensional nanomaterials.

  14. Integrated modeling for optimized regional transportation with compressed natural gas fuel

    Directory of Open Access Journals (Sweden)

    Hossam A. Gabbar

    2016-03-01

    Full Text Available Transportation represents major energy consumption where fuel is considered as a primary energy source. Recent development in the vehicle technology revealed possible economical improvements when using natural gas as a fuel source instead of traditional gasoline. There are several fuel alternatives such as electricity, which showed potential for future long-term transportation. However, the move from current situation where gasoline vehicle is dominating shows high cost compared to compressed natural gas vehicle. This paper presents modeling and simulation methodology to optimize performance of transportation based on quantitative study of the risk-based performance of regional transportation. Emission estimation method is demonstrated and used to optimize transportation strategies based on life cycle costing. Different fuel supply scenarios are synthesized and evaluated, which showed strategic use of natural gas as a fuel supply.

  15. Improved determination of flavour compounds in butter by solid-phase (micro)extraction and comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Adahchour, M.; Wiewel, J.; Verdel, R.; Vreuls, R.J.J.; Brinkman, U.A.T.

    2005-01-01

    The practicability and potential of comprehensive two-dimensional gas chromatography (GC × GC) coupled to both conventional flame ionisation (FID) and time-of-flight mass spectrometric (TOF-MS) detection, were compared with those of conventional one-dimensional (1D) GC, with the determination of

  16. Model of two-dimensional electron gas formation at ferroelectric interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aguado-Puente, P.; Bristowe, N. C.; Yin, B.; Shirasawa, R.; Ghosez, Philippe; Littlewood, P. B.; Artacho, Emilio

    2015-07-01

    The formation of a two-dimensional electron gas at oxide interfaces as a consequence of polar discontinuities has generated an enormous amount of activity due to the variety of interesting effects it gives rise to. Here, we study under what circumstances similar processes can also take place underneath ferroelectric thin films. We use a simple Landau model to demonstrate that in the absence of extrinsic screening mechanisms, a monodomain phase can be stabilized in ferroelectric films by means of an electronic reconstruction. Unlike in the LaAlO3/SrTiO3 heterostructure, the emergence with thickness of the free charge at the interface is discontinuous. This prediction is confirmed by performing first-principles simulations of free-standing slabs of PbTiO3. The model is also used to predict the response of the system to an applied electric field, demonstrating that the two-dimensional electron gas can be switched on and off discontinuously and in a nonvolatile fashion. Furthermore, the reversal of the polarization can be used to switch between a two-dimensional electron gas and a two-dimensional hole gas, which should, in principle, have very different transport properties. We discuss the possible formation of polarization domains and how such configuration competes with the spontaneous accumulation of free charge at the interfaces.

  17. Data compression and genomes: a two-dimensional life domain map.

    Science.gov (United States)

    Menconi, Giulia; Benci, Vieri; Buiatti, Marcello

    2008-07-21

    We define the complexity of DNA sequences as the information content per nucleotide, calculated by means of some Lempel-Ziv data compression algorithm. It is possible to use the statistics of the complexity values of the functional regions of different complete genomes to distinguish among genomes of different domains of life (Archaea, Bacteria and Eukarya). We shall focus on the distribution function of the complexity of non-coding regions. We show that the three domains may be plotted in separate regions within the two-dimensional space where the axes are the skewness coefficient and the curtosis coefficient of the aforementioned distribution. Preliminary results on 15 genomes are introduced.

  18. Advanced One-Dimensional Entrained-Flow Gasifier Model Considering Melting Phenomenon of Ash

    Directory of Open Access Journals (Sweden)

    Jinsu Kim

    2018-04-01

    Full Text Available A one-dimensional model is developed to represent the ash-melting phenomenon, which was not considered in the previous one-dimensional (1-D entrained-flow gasifier model. We include sensible heat of slag and the fusion heat of ash in the heat balance equation. To consider the melting of ash, we propose an algorithm that calculates the energy balance for three scenarios based on temperature. We also use the composition and the thermal properties of anorthite mineral to express ash. gPROMS for differential equations is used to solve this algorithm in a simulation; the results include coal conversion, gas composition, and temperature profile. Based on the Texaco pilot plant gasifier, we validate our model. Our results show good agreement with previous experimental data. We conclude that the sensible heat of slag and the fusion heat of ash must be included in the entrained flow gasifier model.

  19. A new integrated planning model for gas compression and transmission through a complex pipeline network; Um novo modelo de planejamento integrado de compressao e escoamento de gas para uma rede complexa

    Energy Technology Data Exchange (ETDEWEB)

    Iamashita, Edson K. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Galaxe, Frederico; Arica, Jose [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil)

    2005-07-01

    The aim of this paper is to show a new approach to solve integrated gas balance planning problems that defines the best compression and transmission strategy for a system with a large number of platforms or compression units that are interlinked with the delivery points through a complex gas pipeline network. For solving the proposed optimization problem is used a genetic meta-heuristic technique, where the fitness function of the algorithm is the Profit function of the gas balance, being considered the incomes and costs besides the pipeline network constraints, representing the compression system and transmission network near to the real operational condition. Newton Raphson's method is used to solve the nonlinear system that represents the calculation of the pressure drop in the gas pipeline network that can contain various cycles. This model could be used for design and optimization of gas pipeline networks, as well as for the gas balance planning of an existent network looking for the profit maximization. (author)

  20. Quench-Induced Breathing Mode of One-Dimensional Bose Gases

    Science.gov (United States)

    Fang, Bess; Carleo, Giuseppe; Johnson, Aisling; Bouchoule, Isabelle

    2014-07-01

    We measure the position- and momentum-space breathing dynamics of trapped one-dimensional Bose gases at finite temperature. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking temperature into account is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism due to the repulsive interactions. Such a mechanism is predicted for a fermionized system, and has not been observed to date. The disappearance of the frequency doubling through the crossover is mapped out experimentally, giving insights into the dynamics of the breathing evolution.

  1. Quench-induced breathing mode of one-dimensional Bose gases.

    Science.gov (United States)

    Fang, Bess; Carleo, Giuseppe; Johnson, Aisling; Bouchoule, Isabelle

    2014-07-18

    We measure the position- and momentum-space breathing dynamics of trapped one-dimensional Bose gases at finite temperature. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking temperature into account is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism due to the repulsive interactions. Such a mechanism is predicted for a fermionized system, and has not been observed to date. The disappearance of the frequency doubling through the crossover is mapped out experimentally, giving insights into the dynamics of the breathing evolution.

  2. Factorizations of one-dimensional classical systems

    International Nuclear Information System (INIS)

    Kuru, Senguel; Negro, Javier

    2008-01-01

    A class of one-dimensional classical systems is characterized from an algebraic point of view. The Hamiltonians of these systems are factorized in terms of two functions that together with the Hamiltonian itself close a Poisson algebra. These two functions lead directly to two time-dependent integrals of motion from which the phase motions are derived algebraically. The systems so obtained constitute the classical analogues of the well known factorizable one-dimensional quantum mechanical systems

  3. X-ray imaging device for one-dimensional and two-dimensional radioscopy

    International Nuclear Information System (INIS)

    1978-01-01

    The X-ray imaging device for the selectable one-dimensional or two-dimensional pictures of objects illuminated by X-rays, comprising an X-ray source, an X-ray screen, and an opto-electrical picture development device placed behind the screen, is characterized by an anamorphotic optical system, which is positioned with a one-dimensional illumination between the X-ray screen and the opto-electrical device and that a two-dimensional illumination will be developed, and that in view of the lens system which forms part of the opto-electrical device, there is placed an X-ray screen in a specified beam direction so that a magnified image may be formed by equalisation of the distance between the X-ray screen and the lens system. (G.C.)

  4. Two-dimensional beam profiles and one-dimensional projections

    Science.gov (United States)

    Findlay, D. J. S.; Jones, B.; Adams, D. J.

    2018-05-01

    One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.

  5. One-dimensional versus two-dimensional electronic states in vicinal surfaces

    International Nuclear Information System (INIS)

    Ortega, J E; Ruiz-Oses, M; Cordon, J; Mugarza, A; Kuntze, J; Schiller, F

    2005-01-01

    Vicinal surfaces with periodic arrays of steps are among the simplest lateral nanostructures. In particular, noble metal surfaces vicinal to the (1 1 1) plane are excellent test systems to explore the basic electronic properties in one-dimensional superlattices by means of angular photoemission. These surfaces are characterized by strong emissions from free-electron-like surface states that scatter at step edges. Thereby, the two-dimensional surface state displays superlattice band folding and, depending on the step lattice constant d, it splits into one-dimensional quantum well levels. Here we use high-resolution, angle-resolved photoemission to analyse surface states in a variety of samples, in trying to illustrate the changes in surface state bands as a function of d

  6. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher L.; Babbitt, Guy; Turner, Christopher; Echter, Nick; Weyer-Geigel, Kristina

    2016-04-19

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a system for compressing a gas comprises a reciprocating internal combustion engine including at least one piston-cylinder assembly comprising a piston configured to travel in a cylinder and to compress gas in the cylinder in multiple compression stages. The system can further comprise a first pressure tank in fluid communication with the piston-cylinder assembly to receive compressed gas from the piston-cylinder assembly until the first pressure tank reaches a predetermined pressure, and a second pressure tank in fluid communication with the piston-cylinder assembly and the first pressure tank. The second pressure tank can be configured to receive compressed gas from the piston-cylinder assembly until the second pressure tank reaches a predetermined pressure. When the first and second pressure tanks have reached the predetermined pressures, the first pressure tank can be configured to supply gas to the piston-cylinder assembly, and the piston can be configured to compress the gas supplied by the first pressure tank such that the compressed gas flows into the second pressure tank.

  7. CoGI: Towards Compressing Genomes as an Image.

    Science.gov (United States)

    Xie, Xiaojing; Zhou, Shuigeng; Guan, Jihong

    2015-01-01

    Genomic science is now facing an explosive increase of data thanks to the fast development of sequencing technology. This situation poses serious challenges to genomic data storage and transferring. It is desirable to compress data to reduce storage and transferring cost, and thus to boost data distribution and utilization efficiency. Up to now, a number of algorithms / tools have been developed for compressing genomic sequences. Unlike the existing algorithms, most of which treat genomes as one-dimensional text strings and compress them based on dictionaries or probability models, this paper proposes a novel approach called CoGI (the abbreviation of Compressing Genomes as an Image) for genome compression, which transforms the genomic sequences to a two-dimensional binary image (or bitmap), then applies a rectangular partition coding algorithm to compress the binary image. CoGI can be used as either a reference-based compressor or a reference-free compressor. For the former, we develop two entropy-based algorithms to select a proper reference genome. Performance evaluation is conducted on various genomes. Experimental results show that the reference-based CoGI significantly outperforms two state-of-the-art reference-based genome compressors GReEn and RLZ-opt in both compression ratio and compression efficiency. It also achieves comparable compression ratio but two orders of magnitude higher compression efficiency in comparison with XM--one state-of-the-art reference-free genome compressor. Furthermore, our approach performs much better than Gzip--a general-purpose and widely-used compressor, in both compression speed and compression ratio. So, CoGI can serve as an effective and practical genome compressor. The source code and other related documents of CoGI are available at: http://admis.fudan.edu.cn/projects/cogi.htm.

  8. QUICKGUN: An algorithm for estimating the performance of two-stage light gas guns

    International Nuclear Information System (INIS)

    Milora, S.L.; Combs, S.K.; Gouge, M.J.; Kincaid, R.W.

    1990-09-01

    An approximate method is described for solving the equation of motion of a projectile accelerated by a two-stage light gas gun that uses high-pressure (<100-bar) gas from a storage reservoir to drive a piston to moderate speed (<400 m/s) for the purpose of compressing the low molecular weight propellant gas (hydrogen or helium) to high pressure (1000 to 10,000 bar) and temperature (1000 to 10,000 K). Zero-dimensional, adiabatic (isentropic) processes are used to describe the time dependence of the ideal gas thermodynamic properties of the storage reservoir and the first and second stages of the system. A one-dimensional model based on an approximate method of characteristics, or wave diagram analysis, for flow with friction (nonisentropic) is used to describe the nonsteady compressible flow processes in the launch tube. Linear approximations are used for the characteristic and fluid particle trajectories by averaging the values of the flow parameters at the breech and at the base of the projectile. An assumed functional form for the Mach number at the breech provides the necessary boundary condition. Results of the calculation are compared with data obtained from two-stage light gas gun experiments at Oak Ridge National Laboratory for solid deuterium and nylon projectiles with masses ranging from 10 to 35 mg and for projectile speeds between 1.6 and 4.5 km/s. The predicted and measured velocities generally agree to within 15%. 19 refs., 3 figs., 2 tabs

  9. Strong chaos in one-dimensional quantum system

    International Nuclear Information System (INIS)

    Yang, C.-D.; Wei, C.-H.

    2008-01-01

    According to the Poincare-Bendixson theorem, a minimum of three autonomous equations is required to exhibit deterministic chaos. Because a one-dimensional quantum system is described by only two autonomous equations using de Broglie-Bohm's trajectory interpretation, chaos in one-dimensional quantum systems has long been considered impossible. We will prove in this paper that chaos phenomenon does exist in one-dimensional quantum systems, if the domain of quantum motions is extended to complex space by noting that the quantum world is actually characterized by a four-dimensional complex spacetime according to the E (∞) theory. Furthermore, we point out that the interaction between the real and imaginary parts of complex trajectories produces a new chaos phenomenon unique to quantum systems, called strong chaos, which describes the situation that quantum trajectories may emerge and diverge spontaneously without any perturbation in the initial position

  10. Two-phase behavior and compression effects in the PEFC gas diffusion medium

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Schulz, Volker P [APL-LANDAU GMBH; Wang, Chao - Yang [PENN STATE UNIV; Becker, Jurgen [NON LANL; Wiegmann, Andreas [NON LANL

    2009-01-01

    A key performance limitation in the polymer electrolyte fuel cell (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. A key contributor to the mass transport loss is the cathode gas diffusion layer (GDL) due to the blockage of available pore space by liquid water thus rendering hindered oxygen transport to the active reaction sites in the electrode. The GDL, therefore, plays an important role in the overall water management in the PEFC. The underlying pore-morphology and the wetting characteristics have significant influence on the flooding dynamics in the GDL. Another important factor is the role of cell compression on the GDL microstructural change and hence the underlying two-phase behavior. In this article, we present the development of a pore-scale modeling formalism coupled With realistic microstructural delineation and reduced order compression model to study the structure-wettability influence and the effect of compression on two-phase behavior in the PEFC GDL.

  11. Cow Power: A Case Study of Renewable Compressed Natural Gas as a Transportation Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mintz, Marianne [Argonne National Lab. (ANL), Argonne, IL (United States); Tomich, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-01

    This case study explores the production and use of renewable compressed natural gas (R-CNG)—derived from the anaerobic digestion (AD) of dairy manure—to fuel 42 heavy-duty milk tanker trucks operating in Indiana, Michigan, Tennessee, and Kentucky.

  12. Compression enhancement by current stepping in a multicascade liner gas-puff Z-pinch plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khattak, N A D [Department of Physics, Gomal Unversity, D I Khan (Pakistan); Ahmad, Zahoor; Murtaza, G [National Tokamak Fusion Program, PAEC, Islamabad (Pakistan); Zakaullah, M [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: ktk_nad@yahoo.com

    2008-04-15

    Plasma dynamics of a liner consisting of two or three annular cascade gas-puffs with entrained axial magnetic field is studied using the modified snow-plow model. The current stepping technique (Les 1984 J. Phys. D: Appl. Phys. 17 733) is employed to enhance compression of the imploding plasma. A small-diameter low-voltage-driven system of imploding plasma is considered in order to work out the possibility of the highest gain, in terms of plasma parameters and radiation yield with a relatively simple and compact system. Our numerical results demonstrate that current stepping enhances the plasma compression, yielding high values of the plasma parameters and compressed magnetic field B{sub z} (in magnitudes), if the switching time for the additional current is properly synchronized.

  13. Compression enhancement by current stepping in a multicascade liner gas-puff Z-pinch plasma

    International Nuclear Information System (INIS)

    Khattak, N A D; Ahmad, Zahoor; Murtaza, G; Zakaullah, M

    2008-01-01

    Plasma dynamics of a liner consisting of two or three annular cascade gas-puffs with entrained axial magnetic field is studied using the modified snow-plow model. The current stepping technique (Les 1984 J. Phys. D: Appl. Phys. 17 733) is employed to enhance compression of the imploding plasma. A small-diameter low-voltage-driven system of imploding plasma is considered in order to work out the possibility of the highest gain, in terms of plasma parameters and radiation yield with a relatively simple and compact system. Our numerical results demonstrate that current stepping enhances the plasma compression, yielding high values of the plasma parameters and compressed magnetic field B z (in magnitudes), if the switching time for the additional current is properly synchronized

  14. Quantum criticality of one-dimensional multicomponent Fermi gas with strongly attractive interaction

    International Nuclear Information System (INIS)

    He, Peng; Jiang, Yuzhu; Guan, Xiwen; He, Jinyu

    2015-01-01

    Quantum criticality of strongly attractive Fermi gas with SU(3) symmetry in one dimension is studied via the thermodynamic Bethe ansatz (TBA) equations. The phase transitions driven by the chemical potential μ, effective magnetic field H 1 , H 2 (chemical potential biases) are analyzed at the quantum criticality. The phase diagram and critical fields are analytically determined by the TBA equations in the zero temperature limit. High accurate equations of state, scaling functions are also obtained analytically for the strong interacting gases. The dynamic exponent z=2 and correlation length exponent ν=1/2 read off the universal scaling form. It turns out that the quantum criticality of the three-component gases involves a sudden change of density of states of one cluster state, two or three cluster states. In general, this method can be adapted to deal with the quantum criticality of multicomponent Fermi gases with SU(N) symmetry. (paper)

  15. Anomalous effective dimensionality of quantum gas adsorption near nanopores.

    Science.gov (United States)

    Full, Steven J; McNutt, Jessica P; Cole, Milton W; Mbaye, Mamadou T; Gatica, Silvina M

    2010-08-25

    Three problems involving quasi-one-dimensional (1D) ideal gases are discussed. The simplest problem involves quantum particles localized within the 'groove', a quasi-1D region created by two adjacent, identical and parallel nanotubes. At low temperature (T), the transverse motion of the adsorbed gas, in the plane perpendicular to the axes of the tubes, is frozen out. Then, the low T heat capacity C(T) of N particles is that of a 1D classical gas: C(*)(T) = C(T)/(Nk(B)) --> 1/2. The dimensionless heat capacity C(*) increases when T ≥ 0.1T(x, y) (transverse excitation temperatures), asymptoting at C(*) = 2.5. The second problem involves a gas localized between two nearly parallel, co-planar nanotubes, with small divergence half-angle γ. In this case, too, the transverse motion does not contribute to C(T) at low T, leaving a problem of a gas of particles in a 1D harmonic potential (along the z axis, midway between the tubes). Setting ω(z) as the angular frequency of this motion, for T ≥ τ(z) ≡ ω(z)ħ/k(B), the behavior approaches that of a 2D classical gas, C(*) = 1; one might have expected instead C(*) = 1/2, as in the groove problem, since the limit γ ≡ 0 is 1D. For T τ(z)), motion is excited in the y direction, perpendicular to the plane of nanotubes, resulting in thermal behavior (C(*) = 7/4) corresponding to a gas in 7/2 dimensions, while at very high T (T > ħω(x)/k(B) ≡ τ(x) > τ(y)), the behavior becomes that of a D = 11/2 system. The third problem is that of a gas of particles, e.g. (4)He, confined in the interstitial region between four square parallel pores. The low T behavior found in this case is again surprising--that of a 5D gas.

  16. Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity

    International Nuclear Information System (INIS)

    Singh, Mamta; Gupta, D. N.

    2016-01-01

    We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show that the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.

  17. Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in [Department of Physics and Astrophysics, North Campus, University of Delhi, Delhi 110 007 (India)

    2016-05-15

    We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show that the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.

  18. Self-organization in three-dimensional compressible magnetohydrodynamic flow

    International Nuclear Information System (INIS)

    Horiuchi, Ritoku; Sato, Tetsuya.

    1987-07-01

    A three-dimensional self-organization process of a compressible dissipative plasma with a velocity-magnetic field correlation is investigated in detail by means of a variational method and a magnetohydrodynamic simulation. There are two types of relaxation, i.e., fast relaxation in which the cross helicity is not conserved, and slow relaxation in which the cross helicity is approximately conserved. In the slow relaxation case the cross helicity consists of two components with opposite sign which have almost the same amplitude in the large wavenumber region. In both cases the system approaches a high correlation state, dependent on the initial condition. These results are consistent with an observational data of the solar wind. Selective dissipation of magnetic energy, normal cascade of magnetic energy spectrum and inverse cascade of magnetic helicity spectrum are observed for the sub-Alfvenic flow case as was previously observed for the zero flow case. When the flow velocity is super-Alfvenic, the relaxation process is significantly altered from the zero flow case. (author)

  19. Probing the exchange statistics of one-dimensional anyon models

    Science.gov (United States)

    Greschner, Sebastian; Cardarelli, Lorenzo; Santos, Luis

    2018-05-01

    We propose feasible scenarios for revealing the modified exchange statistics in one-dimensional anyon models in optical lattices based on an extension of the multicolor lattice-depth modulation scheme introduced in [Phys. Rev. A 94, 023615 (2016), 10.1103/PhysRevA.94.023615]. We show that the fast modulation of a two-component fermionic lattice gas in the presence a magnetic field gradient, in combination with additional resonant microwave fields, allows for the quantum simulation of hardcore anyon models with periodic boundary conditions. Such a semisynthetic ring setup allows for realizing an interferometric arrangement sensitive to the anyonic statistics. Moreover, we show as well that simple expansion experiments may reveal the formation of anomalously bound pairs resulting from the anyonic exchange.

  20. Hidden magnetism in periodically modulated one dimensional dipolar fermions

    Science.gov (United States)

    Fazzini, S.; Montorsi, A.; Roncaglia, M.; Barbiero, L.

    2017-12-01

    The experimental realization of time-dependent ultracold lattice systems has paved the way towards the implementation of new Hubbard-like Hamiltonians. We show that in a one-dimensional two-components lattice dipolar Fermi gas the competition between long range repulsion and correlated hopping induced by periodically modulated on-site interaction allows for the formation of hidden magnetic phases, with degenerate protected edge modes. The magnetism, characterized solely by string-like nonlocal order parameters, manifests in the charge and/or in the spin degrees of freedom. Such behavior is enlighten by employing Luttinger liquid theory and numerical methods. The range of parameters for which hidden magnetism is present can be reached by means of the currently available experimental setups and probes.

  1. Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization

    Science.gov (United States)

    Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.

    2016-04-01

    We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χmlaw ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.

  2. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    OpenAIRE

    Abbanat, Brian A.

    2001-01-01

    Compressed natural gas (CNG) vehicles have been used internationally by fleets and households for decades. The use of CNG vehicles results in less petroleum consumption, and fewer air pollutant and greenhouse gas emissions in most applications. In the United States, the adoption of CNG technology has been slowed by the availability of affordable gasoline and diesel fuel. This study addresses the potential market for CNG vehicles at the consumer level in California. Based on semi-structured pe...

  3. About one non linear generalization of the compression reflection ...

    African Journals Online (AJOL)

    Both cases of stage and spiral iterations are considered. A geometrical interpretation of a convergence of a generalize method of iteration is brought, the case of stage and spiral iterations are considered. The formula for the non linear generalize compression reflection operator as a function from one variable is obtained.

  4. QUASI-ONE DIMENSIONAL CLASSICAL FLUIDS

    Directory of Open Access Journals (Sweden)

    J.K.Percus

    2003-01-01

    Full Text Available We study the equilibrium statistical mechanics of simple fluids in narrow pores. A systematic expansion is made about a one-dimensional limit of this system. It starts with a density functional, constructed from projected densities, which depends upon projected one and two-body potentials. The nature of higher order corrections is discussed.

  5. RETRAN-02 one-dimensional kinetics model: a review

    International Nuclear Information System (INIS)

    Gose, G.C.; McClure, J.A.

    1986-01-01

    RETRAN-02 is a modular code system that has been designed for one-dimensional, transient thermal-hydraulics analysis. In RETRAN-02, core power behavior may be treated using a one-dimensional reactor kinetics model. This model allows the user to investigate the interaction of time- and space-dependent effects in the reactor core on overall system behavior for specific LWR operational transients. The purpose of this paper is to review the recent analysis and development activities related to the one dimensional kinetics model in RETRAN-02

  6. Economic analysis of using above ground gas storage devices for compressed air energy storage system

    Science.gov (United States)

    Liu, Jinchao; Zhang, Xinjing; Xu, Yujie; Chen, Zongyan; Chen, Haisheng; Tan, Chunqing

    2014-12-01

    Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis. The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number. The LCCs of the three types are comprehensively analyzed and compared. The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types. This study may serve as a reference for designing large-scale CAES systems.

  7. A comparison of hyperbolic solvers for ideal and real gas flows

    Directory of Open Access Journals (Sweden)

    R. M. L. Coelho

    2006-09-01

    Full Text Available Classical and recent numerical schemes for solving hyperbolic conservation laws were analyzed for computational efficiency and application to nonideal gas flows. The Roe-Pike approximate Riemann solver with entropy correction, the Harten second-order scheme and the extension of the Roe-Pike method to second-order by the MUSCL strategy were compared for one-dimensional flows of an ideal gas. These methods require the so-called Roe's average state, which is frequently difficult and sometimes impossible to obtain. Other methods that do not require the average state are best suited for complex equations of state. Of these, the VFRoe, AUSM+ and Hybrid Lax-Friedrich-Lax-Wendroff methods were compared for one-dimensional compressible flows of a Van der Waals gas. All methods were evaluated regarding their accuracy for given mesh sizes and their computational cost for a given solution accuracy. It was shown that, even though they require more floating points and indirect addressing operations per time step, for a given time interval for integration the second-order methods are less-time consuming than the first-order methods for a required accuracy. It was also shown that AUSM+ and VFRoe are the most accurate methods and that AUSM+ is much faster than the others, and is thus recommended for nonideal one-phase gas flows.

  8. Non-equilibrium dynamics of one-dimensional Bose gases

    International Nuclear Information System (INIS)

    Langen, T.

    2013-01-01

    Understanding the non-equilibrium dynamics of isolated quantum many-body systems is an open problem on vastly different energy, length, and time scales. Examples range from the dynamics of the early universe and heavy-ion collisions to the subtle coherence and transport properties in condensed matter physics. However, realizations of such quantum many-body systems, which are both well isolated from the environment and accessible to experimental study are scarce. This thesis presents a series of experiments with ultracold one-dimensional Bose gases. These gases combine a nearly perfect isolation from the environment with many well-established methods to manipulate and probe their quantum states. This makes them an ideal model system to explore the physics of quantum many body systems out of equilibrium. In the experiments, a well-defined non-equilibrium state is created by splitting a single one-dimensional gas coherently into two parts. The relaxation of this state is probed using matter-wave interferometry. The Observations reveal the emergence of a prethermalized steady state which differs strongly from thermal equilibrium. Such thermal-like states had previously been predicted for a large variety of systems, but never been observed directly. Studying the relaxation process in further detail shows that the thermal correlations of the prethermalized state emerge locally in their final form and propagate through the system in a light-cone-like evolution. This provides first experimental evidence for the local relaxation conjecture, which links relaxation processes in quantum many-body systems to the propagation of correlations. Furthermore, engineering the initial state of the evolution demonstrates that the prethermalized state is described by a generalized Gibbs ensemble, an observation which substantiates the importance of this ensemble as an extension of standard statistical mechanics. Finally, an experiment is presented, where pairs of gases with an atom

  9. Cooling performance and energy saving of a compression-absorption refrigeration system driven by a gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Z.G.; Guo, K.H. [Sun Yat-Sen University, Guangzhou (China). Engineering School

    2006-07-01

    The prototype of combined vapour compression-absorption refrigeration system was set up, where a gas engine drove directly an open screw compressor in a vapour compression refrigeration chiller and waste heat from the gas engine was used to operate absorption refrigeration cycle. The experimental procedure and results showed that the combined refrigeration system was feasible. The cooling capacity of the prototype reached about 589 kW at the Chinese rated conditions of air conditioning (the inlet and outlet temperatures of chilled water are 12 and 7{sup o}C, the inlet and outlet temperatures of cooling water are 30 and 35{sup o}C, respectively). Primary energy rate (PER) and comparative primary energy saving were used to evaluate energy utilization efficiency of the combined refrigeration system. The calculated results showed that the PER of the prototype was about 1.81 and the prototype saved more than 25% of primary energy compared to a conventional electrically driven vapour compression refrigeration unit. Error analysis showed that the total error of the combined cooling system measurement was about 4.2% in this work. (author)

  10. One-Dimensional SnO2 Nano structures: Synthesis and Applications

    International Nuclear Information System (INIS)

    Pan, J.; Shen, H.; Mathur, S.; Pan, J.

    2012-01-01

    Nano scale semiconducting materials such as quantum dots (0-dimensional) and one-dimensional (1D) structures, like nano wires, nano belts, and nano tubes, have gained tremendous attention within the past decade. Among the variety of 1D nano structures, tin oxide (SnO 2 ) semiconducting nano structures are particularly interesting because of their promising applications in optoelectronic and electronic devices due to both good conductivity and transparence in the visible region. This article provides a comprehensive review of the recent research activities that focus on the rational synthesis and unique applications of 1D SnO 2 nano structures and their optical and electrical properties. We begin with the rational design and synthesis of 1D SnO 2 nano structures, such as nano tubes, nano wires, nano belts, and some heterogeneous nano structures, and then highlight a range of applications (e.g., gas sensor, lithium-ion batteries, and nano photonics) associated with them. Finally, the review is concluded with some perspectives with respect to future research on 1D SnO 2 nano structures

  11. One-Dimensional Czedli-Type Islands

    Science.gov (United States)

    Horvath, Eszter K.; Mader, Attila; Tepavcevic, Andreja

    2011-01-01

    The notion of an island has surfaced in recent algebra and coding theory research. Discrete versions provide interesting combinatorial problems. This paper presents the one-dimensional case with finitely many heights, a topic convenient for student research.

  12. One-Dimensional Vanadium Dioxide Nanostructures for Room Temperature Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Aline Simo

    2015-06-01

    Full Text Available In relation to hydrogen (H2 economy in general and gas sensing in particular, an extensive set of one dimensional (1-D nano-scaled oxide materials are being investigated as ideal candidates for potential gas sensing applications. This is correlated to their set of singular surface characteristics, shape anisotropy and readiness for integrated devices. Nanostructures of well- established gas sensing materials such as Tin Oxide (SnO2, Zinc Oxide (ZnO, Indium (III Oxide (In2O3, and Tungsten Trioxide (WO3 have shown higher sensitivity and gas selectivity, quicker response, faster time recovery, as well as an enhanced capability to detect gases at low concentrations. While the overall sensing characteristics of these so called 1-D nanomaterials are superior, they are efficient at high temperature; generally above 200 0C. This operational impediment results in device complexities in integration that limit their technological applications, specifically in their miniaturized arrangements. Unfortunately, for room temperature applications, there is a necessity to dope the above mentioned nano-scaled oxides with noble metals such as Platinum (Pt, Palladium (Pd, Gold (Au, Ruthenium (Ru. This comes at a cost. This communication reports, for the first time, on the room temperature enhanced H2 sensing properties of a specific phase of pure Vanadium Dioxide (VO2 phase A in their nanobelt form. The relatively observed large H2 room temperature sensing in this Mott type specific oxide seems to reach values as low as 14 ppm H2 which makes it an ideal gas sensing in H2 fuelled systems.

  13. Three-dimensional Simulation of Gas Conductance Measurement Experiments on Alcator C-Mod

    International Nuclear Information System (INIS)

    Stotler, D.P.; LaBombard, B.

    2004-01-01

    Three-dimensional Monte Carlo neutral transport simulations of gas flow through the Alcator C-Mod subdivertor yield conductances comparable to those found in dedicated experiments. All are significantly smaller than the conductance found with the previously used axisymmetric geometry. A benchmarking exercise of the code against known conductance values for gas flow through a simple pipe provides a physical basis for interpreting the comparison of the three-dimensional and experimental C-Mod conductances

  14. Multi-perspective views of students’ difficulties with one-dimensional vector and two-dimensional vector

    Science.gov (United States)

    Fauzi, Ahmad; Ratna Kawuri, Kunthi; Pratiwi, Retno

    2017-01-01

    Researchers of students’ conceptual change usually collects data from written tests and interviews. Moreover, reports of conceptual change often simply refer to changes in concepts, such as on a test, without any identification of the learning processes that have taken place. Research has shown that students have difficulties with vectors in university introductory physics courses and high school physics courses. In this study, we intended to explore students’ understanding of one-dimensional and two-dimensional vector in multi perspective views. In this research, we explore students’ understanding through test perspective and interviews perspective. Our research study adopted the mixed-methodology design. The participants of this research were sixty students of third semester of physics education department. The data of this research were collected by testand interviews. In this study, we divided the students’ understanding of one-dimensional vector and two-dimensional vector in two categories, namely vector skills of the addition of one-dimensionaland two-dimensional vector and the relation between vector skills and conceptual understanding. From the investigation, only 44% of students provided correct answer for vector skills of the addition of one-dimensional and two-dimensional vector and only 27% students provided correct answer for the relation between vector skills and conceptual understanding.

  15. One-dimensional reactor kinetics model for RETRAN

    International Nuclear Information System (INIS)

    Gose, G.C.; Peterson, C.E.; Ellis, N.L.; McClure, J.A.

    1981-01-01

    This paper describes a one-dimensional spatial neutron kinetics model that was developed for the RETRAN code. The RETRAN -01 code has a point kinetics model to describe the reactor core behavior during thermal-hydraulic transients. A one-dimensional neutronics model has been developed for RETRAN-02. The ability to account for flux shape changes will permit an improved representation of the thermal and hydraulic feedback effects for many operational transients. 19 refs

  16. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    OpenAIRE

    Nikola Stefanović

    2007-01-01

    In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic ...

  17. Deep linear autoencoder and patch clustering-based unified one-dimensional coding of image and video

    Science.gov (United States)

    Li, Honggui

    2017-09-01

    This paper proposes a unified one-dimensional (1-D) coding framework of image and video, which depends on deep learning neural network and image patch clustering. First, an improved K-means clustering algorithm for image patches is employed to obtain the compact inputs of deep artificial neural network. Second, for the purpose of best reconstructing original image patches, deep linear autoencoder (DLA), a linear version of the classical deep nonlinear autoencoder, is introduced to achieve the 1-D representation of image blocks. Under the circumstances of 1-D representation, DLA is capable of attaining zero reconstruction error, which is impossible for the classical nonlinear dimensionality reduction methods. Third, a unified 1-D coding infrastructure for image, intraframe, interframe, multiview video, three-dimensional (3-D) video, and multiview 3-D video is built by incorporating different categories of videos into the inputs of patch clustering algorithm. Finally, it is shown in the results of simulation experiments that the proposed methods can simultaneously gain higher compression ratio and peak signal-to-noise ratio than those of the state-of-the-art methods in the situation of low bitrate transmission.

  18. Full evaporation dynamic headspace in combination with selectable one-dimensional/two-dimensional gas chromatography-mass spectrometry for the determination of suspected fragrance allergens in cosmetic products.

    Science.gov (United States)

    Devos, Christophe; Ochiai, Nobuo; Sasamoto, Kikuo; Sandra, Pat; David, Frank

    2012-09-14

    Suspected fragrance allergens were determined in cosmetic products using a combination of full evaporation-dynamic headspace (FEDHS) with selectable one-dimensional/two-dimensional GC-MS. The full evaporation dynamic headspace approach allows the non-discriminating extraction and injection of both apolar and polar fragrance compounds, without contamination of the analytical system by high molecular weight non-volatile matrix compounds. The method can be applied to all classes of cosmetic samples, including water containing matrices such as shower gels or body creams. In combination with selectable (1)D/(2)D GC-MS, consisting of a dedicated heart-cutting GC-MS configuration using capillary flow technology (CFT) and low thermal mass GC (LTM-GC), a highly flexible and easy-to-use analytical solution is offered. Depending on the complexity of the perfume fraction, analyses can be performed in one-dimensional GC-MS mode or in heart-cutting two-dimensional GC-MS mode, without the need of hardware reconfiguration. The two-dimensional mode with independent temperature control of the first and second dimension column is especially useful to confirm the presence of detected allergen compounds when mass spectral deconvolution is not possible. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Three dimensional simulation of compressible and incompressible flows through the finite element method

    International Nuclear Information System (INIS)

    Costa, Gustavo Koury

    2004-11-01

    Although incompressible fluid flows can be regarded as a particular case of a general problem, numerical methods and the mathematical formulation aimed to solve compressible and incompressible flows have their own peculiarities, in such a way, that it is generally not possible to attain both regimes with a single approach. In this work, we start from a typically compressible formulation, slightly modified to make use of pressure variables and, through augmenting the stabilising parameters, we end up with a simplified model which is able to deal with a wide range of flow regimes, from supersonic to low speed gas flows. The resulting methodology is flexible enough to allow for the simulation of liquid flows as well. Examples using conservative and pressure variables are shown and the results are compared to those published in the literature, in order to validate the method. (author)

  20. Multiplate ionization total absorption spectrometer with a compressed gas

    International Nuclear Information System (INIS)

    Baskakov, V.I.; Dolgoshein, B.A.; Kantserov, V.A.

    1978-01-01

    The characteristics of a multiplate total absorption spectrometer working with the compressed xenon (up to 25 atm) containing up to 23 radiation lengths of matter are studied. The dependence of the spectrometer energy resolution on the detecting matter density, on the material and thickness of the absorber plates has been studied. The ability of the spectrometer with a tungsten absorber to select hadrons and electrons with P=6 GeV/c by total energy release and characteristics of the cascade longitudinal development has been also studied. The gas spectrometer as it is shown differs quite slightly from the similar spectrometer with liquid argon as for its time resolution it is much better

  1. On mathematical modelling and numerical simulation of transient compressible flow across open boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Rian, Kjell Erik

    2003-07-01

    In numerical simulations of turbulent reacting compressible flows, artificial boundaries are needed to obtain a finite computational domain when an unbounded physical domain is given. Artificial boundaries which fluids are free to cross are called open boundaries. When calculating such flows, non-physical reflections at the open boundaries may occur. These reflections can pollute the solution severely, leading to inaccurate results, and the generation of spurious fluctuations may even cause the numerical simulation to diverge. Thus, a proper treatment of the open boundaries in numerical simulations of turbulent reacting compressible flows is required to obtain a reliable solution for realistic conditions. A local quasi-one-dimensional characteristic-based open-boundary treatment for the Favre-averaged governing equations for time-dependent three-dimensional multi-component turbulent reacting compressible flow is presented. A k-{epsilon} model for turbulent compressible flow and Magnussen's EDC model for turbulent combustion is included in the analysis. The notion of physical boundary conditions is incorporated in the method, and the conservation equations themselves are applied on the boundaries to complement the set of physical boundary conditions. A two-dimensional finite-difference-based computational fluid dynamics code featuring high-order accurate numerical schemes was developed for the numerical simulations. Transient numerical simulations of the well-known, one-dimensional shock-tube problem, a two-dimensional pressure-tower problem in a decaying turbulence field, and a two-dimensional turbulent reacting compressible flow problem have been performed. Flow- and combustion-generated pressure waves seem to be well treated by the non-reflecting subsonic open-boundary conditions. Limitations of the present open-boundary treatment are demonstrated and discussed. The simple and solid physical basis of the method makes it both favourable and relatively easy to

  2. Simple model of the indirect compression of targets under conditions close to the national ignition facility at an energy of 1.5 MJ

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, V. B., E-mail: rozanov@sci.lebedev.ru; Vergunova, G. A., E-mail: verg@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2015-11-15

    The possibility of the analysis and interpretation of the reported experiments with the megajoule National Ignition Facility (NIF) laser on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry has been studied. The problem of the energy balance in a target and the determination of the laser energy that should be used in the spherical model of the target has been considered. The results of action of pulses differing in energy and time profile (“low-foot” and “high-foot” regimes) have been analyzed. The parameters of the compression of targets with a high-density carbon ablator have been obtained. The results of the simulations are in satisfactory agreement with the measurements and correspond to the range of the observed parameters. The set of compared results can be expanded, in particular, for a more detailed determination of the parameters of a target near the maximum compression of the capsule. The physical foundation of the possibility of using the one-dimensional description is the necessity of the closeness of the last stage of the compression of the capsule to a one-dimensional process. The one-dimensional simulation of the compression of the capsule can be useful in establishing the boundary behind which two-dimensional and three-dimensional simulation should be used.

  3. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  4. Zero-dimensional mathematical model of the torch ignited engine

    International Nuclear Information System (INIS)

    Cruz, Igor William Santos Leal; Alvarez, Carlos Eduardo Castilla; Teixeira, Alysson Fernandes; Valle, Ramon Molina

    2016-01-01

    Highlights: • Publications about the torch ignition system are mostly CFD or experimental research. • A zero-dimensional mathematical model is presented. • The model is based on classical thermodynamic equations. • Approximations are based on empirical functions. • The model is applied to a prototype by means of a computer code. - Abstract: Often employed in the analysis of conventional SI and CI engines, mathematical models can also be applied to engines with torch ignition, which have been researched almost exclusively by CFD or experimentally. The objective of this work is to describe the development and application of a zero-dimensional model of the compression and power strokes of a torch ignited engine. It is an initial analysis that can be used as a basis for future models. The processes of compression, combustion and expansion were described mathematically and applied to an existing prototype by means of a computer code written in MATLAB language. Conservation of energy and mass and the ideal gas law were used in determining gas temperature, pressure, and mass flow rate within the cylinder. Gas motion through the orifice was modelled as an isentropic compressible flow. The thermodynamic properties of the mixture were found by a weighted arithmetic mean of the data for each component, computed by polynomial functions of temperature. Combustion was modelled by the Wiebe function. Heat transfer to the cylinder walls was estimated by Annand’s correlations. Results revealed the behaviour of pressure, temperature, jet velocity, energy transfer, thermodynamic properties, among other variables, and how some of these are influenced by others.

  5. Solvothermal synthesis and characterisation of new one-dimensional indium and gallium sulphides: [C1N4H26]0.5[InS2] and [C1N4H26]0.5[GaS2

    International Nuclear Information System (INIS)

    Vaqueiro, Paz

    2006-01-01

    Two new main group metal sulphides, [C 1 N 4 H 26 ] 0.5 [InS 2 ] (1) and [C 1 N 4 H 26 ] 0.5 [GaS 2 ] (2) have been prepared solvothermally in the presence of 1,4-bis(3-aminopropyl)piperazine and their crystal structures determined by single-crystal X-ray diffraction. Both compounds are isostructural and crystallise in the monoclinic space group P2 1 /n (Z=4), with a=6.5628(5), b=11.2008(9), c=12.6611(9) A and β=94.410(4) o (wR=0.035) for compound (1) and a=6.1094(5), b=11.2469(9), c=12.7064(10) A and β=94.313(4) o (wR=0.021) for compound (2). The structure of [C 1 N 4 H 26 ] 0.5 [MS 2 ] (M=In,Ga) consists of one-dimensional [MS 2 ] - chains which run parallel to the crystallographic a axis and are separated by diprotonated amine molecules. These materials represent the first example of solvothermally prepared one-dimensional gallium and indium sulphides. -- Graphical abstract: [C 1 N 4 H 26 ] 0.5 [InS 2 ] and [C 1 N 4 H 26 ] 0.5 [GaS 2 ], prepared under solvothermal conditions, consist of one-dimensional [MS 2 ] - chains separated by diprotonated 1,4-bis(3-aminopropyl)piperazine molecules

  6. Effects of polytetrafluoroethylene treatment and compression on gas diffusion layer microstructure using high-resolution X-ray computed tomography

    Science.gov (United States)

    Khajeh-Hosseini-Dalasm, Navvab; Sasabe, Takashi; Tokumasu, Takashi; Pasaogullari, Ugur

    2014-11-01

    The microstructure of a TGP-H-120 Toray paper gas diffusion layer (GDL) was investigated using high resolution X-ray computed tomography (CT) technique, with a resolution of 1.8 μm and a field of view (FOV) of ∼1.8 × 1.8 mm. The images obtained from the tomography scans were further post processed, and image thresholding and binarization methodologies are presented. The validity of Otsu's thresholding method was examined. Detailed information on bulk porosity and porosity distribution of the GDL at various Polytetrafluoroethylene (PTFE) treatments and uniform/non-uniform compression pressures was provided. A sample holder was designed to investigate the effects of non-uniform compression pressure, which enabled regulating compression pressure between 0, and 3 MPa at a gas channel/current collector rib configuration. The results show the heterogeneous and anisotropic microstructure of the GDL, non-uniform distribution of PTFE, and significant microstructural change under uniform/non-uniform compression. These findings provide useful inputs for numerical models to include the effects of microstructural changes in the study of transport phenomena within the GDL and to increase the accuracy and predictability of cell performance.

  7. Control volume based modelling of compressible flow in reciprocating machines

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik

    2004-01-01

    , and multidimensional effects must be calculated using empirical correlations; correlations for steady state flow can be used as an approximation. A transformation that assumes ideal gas is presented for transforming equations for masses and energies in control volumes into the corresponding pressures and temperatures......An approach to modelling unsteady compressible flow that is primarily one dimensional is presented. The approach was developed for creating distributed models of machines with reciprocating pistons but it is not limited to this application. The approach is based on the integral form of the unsteady...... conservation laws for mass, energy, and momentum applied to a staggered mesh consisting of two overlapping strings of control volumes. Loss mechanisms can be included directly in the governing equations of models by including them as terms in the conservation laws. Heat transfer, flow friction...

  8. D-Dimensional ideal gas in parastatistics.: thermodynamic properties

    International Nuclear Information System (INIS)

    Sousa Vieira, M. C. de; Tsallis, C.

    1986-01-01

    A parastatistics ideal gas with energy spectrum ε is proportional to |k| → sup (α) (α>0) or even more general in a d-dimensional box with volume V (periodic boundary conditions), the number N of the gas particles being well determined (real particles) or not (quasi particles), is considered. The main thermodynamic quantities (chemical potential, internal energy, specific heat C, equation of state, latent heat, average numbers of particles) for arbitrary d,α, T (temperature) and p (maximal number of particles per state allowed in the parastatistics), are calculated. The main asymptotic regimes are worked out explicitly. In particular, the Bose-Einstein condensation for fixed density, N/V appears as a non uniform convergence in the p→ ∞ limit, in complete analogy with the standard critical phenomena which appear in interacting systems in the N →∞ limit. The system behaves essentially like a Fermi-Dirac one for all finite values of p, and reveals a Bose-Einstein behavior only in the p → ∞ limit. For instance, at low temperatures C ∝ T if p d/α if p → ∞. Finally the Sommerfeld integral and its expansion are generalized to an arbitrary finite p. (author) [pt

  9. Application of nonlinear models to estimate the gain of one-dimensional free-electron lasers

    Science.gov (United States)

    Peter, E.; Rizzato, F. B.; Endler, A.

    2017-06-01

    In the present work, we make use of simplified nonlinear models based on the compressibility factor (Peter et al., Phys. Plasmas, vol. 20 (12), 2013, 123104) to predict the gain of one-dimensional (1-D) free-electron lasers (FELs), considering space-charge and thermal effects. These models proved to be reasonable to estimate some aspects of 1-D FEL theory, such as the position of the onset of mixing, in the case of a initially cold electron beam, and the position of the breakdown of the laminar regime, in the case of an initially warm beam (Peter et al., Phys. Plasmas, vol. 21 (11), 2014, 113104). The results given by the models are compared to wave-particle simulations showing a reasonable agreement.

  10. One- and zero-dimensional electron systems over liquid helium (Review article)

    CERN Document Server

    Kovdrya, Y Z

    2003-01-01

    Experimental and theoretical investigations of one-dimensional and zero-dimensional electron systems near the liquid helium surface are surveyed. The properties of electron states over the plane surface of liquid helium including thin layers of helium are considered. The methods of realization of one- and zero-dimensional electron systems are discussed, and the results of experimental and theoretical investigations of their properties are given. The experiments with localization processes in a quasi-one-dimensional electron systems on liquid helium are described. The collective effects in one-dimensional and quasi-one-dimensional electron systems are considered, and the point of possible application of low-dimensional electron systems on liquid helium in electron devices and quantum computers is discussed.

  11. Image interpolation used in three-dimensional range data compression.

    Science.gov (United States)

    Zhang, Shaoze; Zhang, Jianqi; Huang, Xi; Liu, Delian

    2016-05-20

    Advances in the field of three-dimensional (3D) scanning have made the acquisition of 3D range data easier and easier. However, with the large size of 3D range data comes the challenge of storing and transmitting it. To address this challenge, this paper presents a framework to further compress 3D range data using image interpolation. We first use a virtual fringe-projection system to store 3D range data as images, and then apply the interpolation algorithm to the images to reduce their resolution to further reduce the data size. When the 3D range data are needed, the low-resolution image is scaled up to its original resolution by applying the interpolation algorithm, and then the scaled-up image is decoded and the 3D range data are recovered according to the decoded result. Experimental results show that the proposed method could further reduce the data size while maintaining a low rate of error.

  12. Baseload wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation

    International Nuclear Information System (INIS)

    Greenblatt, Jeffery B.; Succar, Samir; Denkenberger, David C.; Williams, Robert H.; Socolow, Robert H.

    2007-01-01

    The economic viability of producing baseload wind energy was explored using a cost-optimization model to simulate two competing systems: wind energy supplemented by simple- and combined cycle natural gas turbines ('wind+gas'), and wind energy supplemented by compressed air energy storage ('wind+CAES'). Pure combined cycle natural gas turbines ('gas') were used as a proxy for conventional baseload generation. Long-distance electric transmission was integral to the analysis. Given the future uncertainty in both natural gas price and greenhouse gas (GHG) emissions price, we introduced an effective fuel price, p NGeff , being the sum of the real natural gas price and the GHG price. Under the assumption of p NGeff =$5/GJ (lower heating value), 650 W/m 2 wind resource, 750 km transmission line, and a fixed 90% capacity factor, wind+CAES was the most expensive system at cents 6.0/kWh, and did not break even with the next most expensive wind+gas system until p NGeff =$9.0/GJ. However, under real market conditions, the system with the least dispatch cost (short-run marginal cost) is dispatched first, attaining the highest capacity factor and diminishing the capacity factors of competitors, raising their total cost. We estimate that the wind+CAES system, with a greenhouse gas (GHG) emission rate that is one-fourth of that for natural gas combined cycle plants and about one-tenth of that for pulverized coal plants, has the lowest dispatch cost of the alternatives considered (lower even than for coal power plants) above a GHG emissions price of $35/tC equiv. , with good prospects for realizing a higher capacity factor and a lower total cost of energy than all the competing technologies over a wide range of effective fuel costs. This ability to compete in economic dispatch greatly boosts the market penetration potential of wind energy and suggests a substantial growth opportunity for natural gas in providing baseload power via wind+CAES, even at high natural gas prices

  13. Application of a method for comparing one-dimensional and two-dimensional models of a ground-water flow system

    International Nuclear Information System (INIS)

    Naymik, T.G.

    1978-01-01

    To evaluate the inability of a one-dimensional ground-water model to interact continuously with surrounding hydraulic head gradients, simulations using one-dimensional and two-dimensional ground-water flow models were compared. This approach used two types of models: flow-conserving one-and-two dimensional models, and one-dimensional and two-dimensional models designed to yield two-dimensional solutions. The hydraulic conductivities of controlling features were varied and model comparison was based on the travel times of marker particles. The solutions within each of the two model types compare reasonably well, but a three-dimensional solution is required to quantify the comparison

  14. POLYCOMP: Efficient and configurable compression of astronomical timelines

    Science.gov (United States)

    Tomasi, M.

    2016-07-01

    This paper describes the implementation of polycomp, a open-sourced, publicly available program for compressing one-dimensional data series in tabular format. The program is particularly suited for compressing smooth, noiseless streams of data like pointing information, as one of the algorithms it implements applies a combination of least squares polynomial fitting and discrete Chebyshev transforms that is able to achieve a compression ratio Cr up to ≈ 40 in the examples discussed in this work. This performance comes at the expense of a loss of information, whose upper bound is configured by the user. I show two areas in which the usage of polycomp is interesting. In the first example, I compress the ephemeris table of an astronomical object (Ganymede), obtaining Cr ≈ 20, with a compression error on the x , y , z coordinates smaller than 1 m. In the second example, I compress the publicly available timelines recorded by the Low Frequency Instrument (LFI), an array of microwave radiometers onboard the ESA Planck spacecraft. The compression reduces the needed storage from ∼ 6.5 TB to ≈ 0.75 TB (Cr ≈ 9), thus making them small enough to be kept in a portable hard drive.

  15. Compact toroid formation, compression, and acceleration

    International Nuclear Information System (INIS)

    Degnan, J.H.; Peterkin, R.E. Jr.; Baca, G.P.; Beason, J.D.; Bell, D.E.; Dearborn, M.E.; Dietz, D.; Douglas, M.R.; Englert, S.E.; Englert, T.J.; Hackett, K.E.; Holmes, J.H.; Hussey, T.W.; Kiuttu, G.F.; Lehr, F.M.; Marklin, G.J.; Mullins, B.W.; Price, D.W.; Roderick, N.F.; Ruden, E.L.; Sovinec, C.R.; Turchi, P.J.; Bird, G.; Coffey, S.K.; Seiler, S.W.; Chen, Y.G.; Gale, D.; Graham, J.D.; Scott, M.; Sommars, W.

    1993-01-01

    Research on forming, compressing, and accelerating milligram-range compact toroids using a meter diameter, two-stage, puffed gas, magnetic field embedded coaxial plasma gun is described. The compact toroids that are studied are similar to spheromaks, but they are threaded by an inner conductor. This research effort, named MARAUDER (Magnetically Accelerated Ring to Achieve Ultra-high Directed Energy and Radiation), is not a magnetic confinement fusion program like most spheromak efforts. Rather, the ultimate goal of the present program is to compress toroids to high mass density and magnetic field intensity, and to accelerate the toroids to high speed. There are a variety of applications for compressed, accelerated toroids including fast opening switches, x-radiation production, radio frequency (rf) compression, as well as charge-neutral ion beam and inertial confinement fusion studies. Experiments performed to date to form and accelerate toroids have been diagnosed with magnetic probe arrays, laser interferometry, time and space resolved optical spectroscopy, and fast photography. Parts of the experiment have been designed by, and experimental results are interpreted with, the help of two-dimensional (2-D), time-dependent magnetohydrodynamic (MHD) numerical simulations. When not driven by a second discharge, the toroids relax to a Woltjer--Taylor equilibrium state that compares favorably to the results of 2-D equilibrium calculations and to 2-D time-dependent MHD simulations. Current, voltage, and magnetic probe data from toroids that are driven by an acceleration discharge are compared to 2-D MHD and to circuit solver/slug model predictions. Results suggest that compact toroids are formed in 7--15 μsec, and can be accelerated intact with material species the same as injected gas species and entrained mass ≥1/2 the injected mass

  16. Inverse problem and uncertainty quantification: application to compressible gas dynamics

    International Nuclear Information System (INIS)

    Birolleau, Alexandre

    2014-01-01

    This thesis deals with uncertainty propagation and the resolution of inverse problems together with their respective acceleration via Polynomial Chaos. The object of this work is to present a state of the art and a numerical analysis of this stochastic spectral method, in order to understand its pros and cons when tackling the probabilistic study of hydrodynamical instabilities in Richtmyer-Meshkov shock tube experiments. The first chapter is introductory and allows understanding the stakes of being able to accurately take into account uncertainties in compressible gas dynamics simulations. The second chapter is both an illustrative state of the art on generalized Polynomial Chaos and a full numerical analysis of the method keeping in mind the final application on hydrodynamical problems developing shocks and discontinuous solutions. In this chapter, we introduce a new method, naming iterative generalized Polynomial Chaos, which ensures a gain with respect to generalized Polynomial Chaos, especially with non smooth solutions. Chapter three is closely related to an accepted publication in Communication in Computational Physics. It deals with stochastic inverse problems and introduces bayesian inference. It also emphasizes the possibility of accelerating the bayesian inference thanks to iterative generalized Polynomial Chaos described in the previous chapter. Theoretical convergence is established and illustrated on several test-cases. The last chapter consists in the application of the above materials to a complex and ambitious compressible gas dynamics problem (Richtmyer-Meshkov shock tube configuration) together with a deepened study of the physico-numerical phenomenon at stake. Finally, in the appendix, we also present some interesting research paths we quickly tackled during this thesis. (author) [fr

  17. Combustion Temperature Effect of Diesel Engine Convert to Compressed Natural Gas Engine

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    Effect of combustion temperature in the engine cylinder of diesel engine convert to Compressed Natural Gas (CNG) engine was presents in this study. The objective of this study was to investigate the engine cylinder combustion temperature effect of diesel engine convert to CNG engine on variation engine speed. Problem statement: The hypothesis was that the lower performance of CNG engine was caused by the effect of lower in engine cylinder temperature. Are the CNG engine is lower cylinder temp...

  18. Compressed sampling for boundary measurements in three-dimensional electrical impedance tomography

    International Nuclear Information System (INIS)

    Javaherian, Ashkan; Soleimani, Manuchehr

    2013-01-01

    Electrical impedance tomography (EIT) utilizes electrodes on a medium's surface to produce measured data from which the conductivity distribution inside the medium is estimated. For the cases that relocation of electrodes is impractical or no a priori assumptions can be made to optimize the electrodes placement, a large number of electrodes may be needed to cover all possible imaging volume. This may occur in dynamically varying conductivity distribution in 3D EIT. Three-dimensional EIT then requires inverting very large linear systems to calculate the conductivity field, which causes significant problems regarding storage space and reconstruction time in addition to that data acquisition for a large number of electrodes will reduce the achievable frame rate, which is considered as major advantage of EIT imaging. This study proposes an idea to reduce the reconstruction complexity based on the well-known compressed sampling theory. By applying the so-called model-based CoSaMP algorithm to large size data collected by a 256 channel system, the size of forward operator and data acquisition time is reduced to those of a 32 channel system, while accuracy of reconstruction is significantly improved. The results demonstrate great capability of compressed sampling for overriding the challenges arising in 3D EIT. (paper)

  19. Contamination of hospital compressed air with nitric oxide: unwitting replacement therapy.

    Science.gov (United States)

    Pinsky, M R; Genc, F; Lee, K H; Delgado, E

    1997-06-01

    Inhaled nitric oxide (NO) at levels between 5 and 80 ppm has been used experimentally to treat a variety of conditions. NO also is a common environmental air pollutant in industrial regions. As compressed hospital air is drawn from the local environment, we speculated that it may contain NO contamination, which, if present, would provide unwitting inhaled NO therapy to all subjects respiring this compressed gas. NO levels were measured twice daily from ambient hospital air and compressed gas sources driving positive pressure ventilation from two adjacent hospitals and compared with NO levels reported daily by local Environmental Protection Agency sources. An NO chemiluminescence analyzer (Sievers 270B; Boulder, Colo) sensitive to > or =2 parts per billion was used to measure NO levels in ambient air and compressed gas. NO levels in ambient air and hospital compressed air covaried from day to day, and absolute levels of NO differed between hospitals with the difference never exceeding 1.4 ppm (range, 0 to 1.4 ppm; median, 0.07 ppm). The hospital with the highest usage level of compressed air had the highest levels of NO, which approximated ambient levels of NO. NO levels were lowest on weekends in both hospitals. We also documented inadvertent NO contamination in one hospital occurring over 5 days, which corresponded to welding activity near the intake port for fresh gas. This contamination resulted in system-wide NO levels of 5 to 8 ppm. Hospital compressed air contains highly variable levels of NO that tend to covary with ambient NO levels and to be highest when the rate of usage is high enough to preclude natural degradation of NO in 21% oxygen. Assuming that inhaled NO may alter gas exchange, pulmonary hemodynamics, and outcome from acute lung injury, the role of unwitting variable NO of hospital compressed air needs to be evaluated.

  20. One dimensional reactor core model

    International Nuclear Information System (INIS)

    Kostadinov, V.; Stritar, A.; Radovo, M.; Mavko, B.

    1984-01-01

    The one dimensional model of neutron dynamic in reactor core was developed. The core was divided in several axial nodes. The one group neutron diffusion equation for each node is solved. Feedback affects of fuel and water temperatures is calculated. The influence of xenon, boron and control rods is included in cross section calculations for each node. The system of equations is solved implicitly. The model is used in basic principle Training Simulator of NPP Krsko. (author)

  1. Exact partial solution to the compressible flow problems of jet formation and penetration in plane, steady flow

    International Nuclear Information System (INIS)

    Karpp, R.R.

    1984-01-01

    The particle solution of the problem of the symmetric impact of two compressible fluid stream is derived. The plane two-dimensional flow is assumed to be steady, and the inviscid compressible fluid is of the Chaplygin (tangent gas) type. The equations governing this flow are transformed to the hodograph plane where an exact, closed-form solution for the stream function is obtained. The distribution of fluid properties along the plane of symmetry and the shape of free surface streamlines are determined by transformation back to the physical plane. The problem of a compressible fluid jet penetrating an infinite target of similar material is also solved by considering a limiting case of this solution. Differences between compressible and incompressible flows of the type considered are illustrated

  2. Compressive Strength Properties of Natural Gas Hydrate Pellet by Continuous Extrusion from a Twin-Roll System

    Directory of Open Access Journals (Sweden)

    Yun-Hoo Lee

    2013-01-01

    Full Text Available This study investigates the compressive strength of natural gas hydrate (NGH pellet strip extruded from die holes of a twin-roll press for continuous pelletizing (TPCP. The lab-scale TPCP was newly developed, where NGH powder was continuously fed and extruded into strip-type pellet between twin rolls. The system was specifically designed for future expansion towards mass production of solid form NGH. It is shown that the compressive strength of NGH pellet strip heavily depends on parameters in the extrusion process, such as feeding pressure, pressure ratio, and rotational speed. The mechanism of TPCP, along with the compressive strength and density of pellets, is discussed in terms of its feasibility for producing NGH pellets in the future.

  3. Numerical solution of multigroup diffuse equations of one-dimensional geometry

    International Nuclear Information System (INIS)

    Pavelesku, M.; Adam, S.

    1975-01-01

    The one-dimensional diffuse theory is used for reactor physics calculations of fast reactors. Computer program based on the one-dimensional diffuse theory is speedy and not memory consuming. The algorithm is described for the three-zone fast reactor criticality computation in one-dimensional diffusion approximation. This algorithm is realised on IBM 370/135 computer. (I.T.)

  4. Drude weight and optical conductivity of a two-dimensional heavy-hole gas with k-cubic spin-orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Mawrie, Alestin; Ghosh, Tarun Kanti [Department of Physics, Indian Institute of Technology-Kanpur, Kanpur 208 016 (India)

    2016-01-28

    We present a detailed theoretical study on zero-frequency Drude weight and optical conductivity of a two-dimensional heavy-hole gas (2DHG) with k-cubic Rashba and Dresselhaus spin-orbit interactions. The presence of k-cubic spin-orbit couplings strongly modifies the Drude weight in comparison to the electron gas with k-linear spin-orbit couplings. For large hole density and strong k-cubic spin-orbit couplings, the density dependence of Drude weight deviates from the linear behavior. We establish a relation between optical conductivity and the Berry connection. Unlike two-dimensional electron gas with k-linear spin-orbit couplings, we explicitly show that the optical conductivity does not vanish even for equal strength of the two spin-orbit couplings. We attribute this fact to the non-zero Berry phase for equal strength of k-cubic spin-orbit couplings. The least photon energy needed to set in the optical transition in hole gas is one order of magnitude smaller than that of electron gas. Types of two van Hove singularities appear in the optical spectrum are also discussed.

  5. Computer program for compressible flow network analysis

    Science.gov (United States)

    Wilton, M. E.; Murtaugh, J. P.

    1973-01-01

    Program solves problem of an arbitrarily connected one dimensional compressible flow network with pumping in the channels and momentum balancing at flow junctions. Program includes pressure drop calculations for impingement flow and flow through pin fin arrangements, as currently found in many air cooled turbine bucket and vane cooling configurations.

  6. Coherent Electron Focussing in a Two-Dimensional Electron Gas.

    NARCIS (Netherlands)

    Houten, H. van; Wees, B.J. van; Mooij, J.E.; Beenakker, C.W.J.; Williamson, J.G.; Foxon, C.T.

    1988-01-01

    The first experimental realization of ballistic point contacts in a two-dimensional electron gas for the study of transverse electron focussing by a magnetic field is reported. Multiple peaks associated with skipping orbits of electrons reflected specularly by the channel boundary are observed. At

  7. Energetic and exergetic analyses of a variable compression ratio spark ignition gas engine

    International Nuclear Information System (INIS)

    Javaheri, A.; Esfahanian, V.; Salavati-Zadeh, A.; Darzi, M.

    2014-01-01

    Highlights: • Effects of CR and λ on CNG SI ICE 1st and 2nd law analyses are experimentally studied. • The performance of pure methane and a real CNG are observed and compared. • The ratio of actual to Otto cycle thermal efficiencies is 0.78 for all cases. • At least 25.5% of destructed availability is due to combustion irreversibility. • With decrease in methane content, CNG shows more combustion irreversibility. - Abstract: Considering the significance of obtaining higher efficiencies from internal combustion engines (ICE) along with the growing role of natural gas as a fuel, the present work is set to explore the effects of compression ratio (CR hereafter) and air/fuel equivalence ratio (AFER hereafter) on the energy and exergy potentials in a gas-fueled spark ignition internal combustion engine. Experiments are carried out using a single cylinder, port injection, water cooled, variable compression ratio (VCR hereafter), spark ignition engine at a constant engine speed of 2000 rpm. The study involves CRs of 12, 14 and 16 and 10 AFERs between 0.8 and 1.25. Pure methane is utilized for the analysis. In addition, a natural gas blend with the minimum methane content among Iranian gas sources is also tested in order to investigate the effect of real natural gas on findings. The energy analysis involves input fuel power, indicated power and losses due to high temperature of exhaust gases and their unburned content, blow-by and heat loss. The exergy analysis is carried out for availability input and piston, exhaust, and losses availabilities along with destructed entropy. The analysis indicates an increase in the ratio of thermo-mechanical exhaust availability to fuel availability by CR with a maximum near stoichiometry, whereas it is shown that chemical exhaust exergy is not dependent on CR and reduces with AFER. In addition, it is indicated that the ratio of actual cycle to Otto cycle thermal efficiencies is about constant (about 0.784) with changing CR

  8. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-10-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first summarizes key results from survey site tests performed on an HBA-6 installed at Duke Energy's Bedford compressor station, and on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. The report then presents results of design analysis performed on the Bedford HBA-6 to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  9. Gravitational anomalies and one-dimensional behavior of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Bibhas Ranjan [Indian Institute of Technology Guwahati, Department of Physics, Guwahati, Assam (India)

    2015-12-15

    It has been pointed out by Bekenstein and Mayo that the behavior of the black hole's entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S on the power is S ∝ P{sup 1/2}, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry's formula, while in the latter situation its value decreases. (orig.)

  10. Effect of process operating conditions in the biomass torrefaction: A simulation study using one-dimensional reactor and process model

    International Nuclear Information System (INIS)

    Park, Chansaem; Zahid, Umer; Lee, Sangho; Han, Chonghun

    2015-01-01

    Torrefaction reactor model is required for the development of reactor and process design for biomass torrefaction. In this study, a one-dimensional reactor model is developed based on the kinetic model describing volatiles components and solid evolution and the existing thermochemical model considering the heat and mass balance. The developed reactor model used the temperature and flow rate of the recycled gas as the practical manipulated variables instead of the torrefaction temperature. The temperature profiles of the gas and solid phase were generated, depending on the practical thermal conditions, using developed model. Moreover, the effect of each selected operating variables on the parameters of the torrefaction process and the effect of whole operating variables with particular energy yield were analyzed. Through the results of sensitivity analysis, it is shown that the residence time insignificantly influenced the energy yield when the flow rate of recycled gas is low. Moreover, higher temperature of recycled gas with low flow rate and residence time produces the attractive properties, including HHV and grindability, of torrefied biomass when the energy yield is specified. - Highlights: • A one-dimensional reactor model for biomass torrefaction is developed considering the heat and mass balance. • The developed reactor model uses the temperature and flow rate of the recycled gas as the practical manipulated variables. • The effect of operating variables on the parameters of the torrefaction process is analyzed. • The results of sensitivity analysis represent notable discussions which were not done by the previous researches

  11. Magnetotransport in a quasi-one-dimensional electron system over superfluid helium

    International Nuclear Information System (INIS)

    Nikolaenko, V.A.; Kovdrya, Yu.Z.; Gladchenko, S.P.

    2002-01-01

    Magnetotransport in a nondegenerate quasi-one-dimensional electron system (Q1D) over superfluid helium is investigated experimentally. The experiments were carried out at perpendicular magnetic fields, B xx of the conducting channels mainly grows with increasing B for both the electron-gas atom scattering (T > 0.9 K) and the electron-ripplon scattering (T c τ>1(here ω c is the cyclotron frequency and t is the relaxation time of the electron system) agree qualitatively with the self-consistent Born approximation theory for a 2D electron system over helium. It is supposed that the quantitative discrepancies in the experimental and theoretical data are connected with different peculiar features of the investigated and analyzed electron systems. The experimental data on electron mobility at low temperatures and small magnetic fields coincide with the theoretical calculation made for the Q1D system. The negative magnetoresistance of the channels observed both in the electron-gas scattering and electron-ripplon scattering regions is supposed to be due to weak localization of carriers in the investigated electron system

  12. Study on sensing property of one-dimensional ring mirror-defect photonic crystal

    Science.gov (United States)

    Chen, Ying; Luo, Pei; Cao, Huiying; Zhao, Zhiyong; Zhu, Qiguang

    2018-02-01

    Based on the photon localization and the photonic bandgap characteristics of photonic crystals (PCs), one-dimensional (1D) ring mirror-defect photonic crystal structure is proposed. Due to the introduction of mirror structure, a defect cavity is formed in the center of the photonic crystal, and then the resonant transmission peak can be obtained in the bandgap of transmission spectrum. The transfer matrix method is used to establish the relationship model between the resonant transmission peak and the structure parameters of the photonic crystals. Using the rectangular air gate photonic crystal structure, the dynamic monitoring of the detected gas sample parameters can be achieved from the shift of the resonant transmission peak. The simulation results show that the Q-value can attain to 1739.48 and the sensitivity can attain to 1642 nm ṡ RIU-1, which demonstrates the effectiveness of the sensing structure. The structure can provide certain theoretical reference for air pollution monitoring and gas component analysis.

  13. One-way mode transmission in one-dimensional phononic crystal plates

    Science.gov (United States)

    Zhu, Xuefeng; Zou, Xinye; Liang, Bin; Cheng, Jianchun

    2010-12-01

    We investigate theoretically the band structures of one-dimensional phononic crystal (PC) plates with both antisymmetric and symmetric structures, and show how unidirectional transmission behavior can be obtained for either antisymmetric waves (A modes) or symmetric waves (S modes) by exploiting mode conversion and selection in the linear plate systems. The theoretical approach is illustrated for one PC plate example where unidirectional transmission behavior is obtained in certain frequency bands. Employing harmonic frequency analysis, we numerically demonstrate the one-way mode transmission for the PC plate with finite superlattice by calculating the steady-state displacement fields under A modes source (or S modes source) in forward and backward direction, respectively. The results show that the incident waves from A modes source (or S modes source) are transformed into S modes waves (or A modes waves) after passing through the superlattice in the forward direction and the Lamb wave rejections in the backward direction are striking with a power extinction ratio of more than 1000. The present structure can be easily extended to two-dimensional PC plate and efficiently encourage practical studies of experimental realization which is believed to have much significance for one-way Lamb wave mode transmission.

  14. Clean air program : design guidelines for bus transit systems using compressed natural gas as an alternative fuel

    Science.gov (United States)

    1996-06-01

    This report documents design guidelines for the safe use of Compressed Natural Gas (CNG). The report is designed to provide guidance, information on safe industry practices, applicable national codes and standards, and reference data that transit age...

  15. Three-Dimensional Neutral Transport Simulations of Gas Puff Imaging Experiments

    International Nuclear Information System (INIS)

    Stotler, D.P.; DIppolito, D.A.; LeBlanc, B.; Maqueda, R.J.; Myra, J.R.; Sabbagh, S.A.; Zweben, S.J.

    2003-01-01

    Gas Puff Imaging (GPI) experiments are designed to isolate the structure of plasma turbulence in the plane perpendicular to the magnetic field. Three-dimensional aspects of this diagnostic technique as used on the National Spherical Torus eXperiment (NSTX) are examined via Monte Carlo neutral transport simulations. The radial width of the simulated GPI images are in rough agreement with observations. However, the simulated emission clouds are angled approximately 15 degrees with respect to the experimental images. The simulations indicate that the finite extent of the gas puff along the viewing direction does not significantly degrade the radial resolution of the diagnostic. These simulations also yield effective neutral density data that can be used in an approximate attempt to infer two-dimensional electron density and temperature profiles from the experimental images

  16. Combined rankine and vapor compression cycles

    Science.gov (United States)

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  17. Entropy Stable Wall Boundary Conditions for the Three-Dimensional Compressible Navier-Stokes Equations

    Science.gov (United States)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2015-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  18. Three-dimensional fractal geometry for gas permeation in microchannels

    NARCIS (Netherlands)

    Malankowska, Magdalena; Schlautmann, Stefan; Berenschot, Erwin J.W.; Tiggelaar, Roald M.; Pina, Maria Pilar; Mallada, Reyes; Tas, Niels R.; Gardeniers, Han

    2018-01-01

    The novel concept of a microfluidic chip with an integrated three-dimensional fractal geometry with nanopores, acting as a gas transport membrane, is presented. The method of engineering the 3D fractal structure is based on a combination of anisotropic etching of silicon and corner lithography. The

  19. Detection of compression vessels in trigeminal neuralgia by surface-rendering three-dimensional reconstruction of 1.5- and 3.0-T magnetic resonance imaging.

    Science.gov (United States)

    Shimizu, Masahiro; Imai, Hideaki; Kagoshima, Kaiei; Umezawa, Eriko; Shimizu, Tsuneo; Yoshimoto, Yuhei

    2013-01-01

    Surface-rendered three-dimensional (3D) 1.5-T magnetic resonance (MR) imaging is useful for presurgical simulation of microvascular decompression. This study compared the sensitivity and specificity of 1.5- and 3.0-T surface-rendered 3D MR imaging for preoperative identification of the compression vessels of trigeminal neuralgia. One hundred consecutive patients underwent microvascular decompression for trigeminal neuralgia. Forty and 60 patients were evaluated by 1.5- and 3.0-T MR imaging, respectively. Three-dimensional MR images were constructed on the basis of MR imaging, angiography, and venography data and evaluated to determine the compression vessel before surgery. MR imaging findings were compared with the microsurgical findings to compare the sensitivity and specificity of 1.5- and 3.0-T MR imaging. The agreement between MR imaging and surgical findings depended on the compression vessels. For superior cerebellar artery, 1.5- and 3.0-T MR imaging had 84.4% and 82.7% sensitivity and 100% and 100% specificity, respectively. For anterior inferior cerebellar artery, 1.5- and 3.0-T MR imaging had 33.3% and 50% sensitivity and 92.9% and 95% specificity, respectively. For the petrosal vein, 1.5- and 3.0-T MR imaging had 75% and 64.3% sensitivity and 79.2% and 78.1% specificity, respectively. Complete pain relief was obtained in 36 of 40 and 55 of 60 patients undergoing 1.5- and 3.0-T MR imaging, respectively. The present study showed that both 1.5- and 3.0-T MR imaging provided high sensitivity and specificity for preoperative assessment of the compression vessels of trigeminal neuralgia. Preoperative 3D imaging provided very high quality presurgical simulation, resulting in excellent clinical outcomes. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. DNA denaturation through a model of the partition points on a one-dimensional lattice

    International Nuclear Information System (INIS)

    Mejdani, R.; Huseini, H.

    1994-08-01

    We have shown that by using a model of the partition points gas on a one-dimensional lattice, we can study, besides the saturation curves obtained before for the enzyme kinetics, also the denaturation process, i.e. the breaking of the hydrogen bonds connecting the two strands, under treatment by heat of DNA. We think that this model, as a very simple model and mathematically transparent, can be advantageous for pedagogic goals or other theoretical investigations in chemistry or modern biology. (author). 29 refs, 4 figs

  1. OSCIL: one-dimensional spring-mass system simulator for seismic analysis of high temperature gas cooled reactor core

    International Nuclear Information System (INIS)

    Lasker, L.

    1976-01-01

    OSCIL is a program to predict the effects of seismic input on a HTGR core. The present model is a one-dimensional array of blocks with appropriate spring constants, inter-elemental and ground damping, and clearances. It can be used more generally for systems of moving masses separated by nonlinear springs and dampers

  2. OSCIL: one-dimensional spring-mass system simulator for seismic analysis of high temperature gas cooled reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Lasker, L. (ed.)

    1976-01-01

    OSCIL is a program to predict the effects of seismic input on a HTGR core. The present model is a one-dimensional array of blocks with appropriate spring constants, inter-elemental and ground damping, and clearances. It can be used more generally for systems of moving masses separated by nonlinear springs and dampers.

  3. Absorption in one-dimensional metallic-dielectric photonic crystals

    International Nuclear Information System (INIS)

    Yu Junfei; Shen Yifeng; Liu Xiaohan; Fu Rongtang; Zi Jian; Zhu Zhiqiang

    2004-01-01

    We show theoretically that the absorption of one-dimensional metallic-dielectric photonic crystals can be enhanced considerably over the corresponding constituent metal. By properly choosing the structural and material parameters, the absorption of one-dimensional metallic-dielectric photonic crystals can be enhanced by one order of magnitude in the visible and in the near infrared regions. It is found that the absorptance of such photonic crystals increases with increasing number of periods. Rules on how to obtain a absorption enhancement in a certain frequency range are discussed. (letter to the editor)

  4. Two dimensional gas temperature measurements of fuel sprays in a high pressure cell

    NARCIS (Netherlands)

    Yu, M.

    2012-01-01

    Premixed charge compression ignition (PCCI) is a promising low-emission combustion concept. By partially mixing the fuel, air and exhaust gas before auto-ignition, the soot and NOx emissions are lower than for conventional diesel combustion. However, the fundamental aspects of the mixing process of

  5. On the ground state of the two-dimensional non-ideal Bose gas

    International Nuclear Information System (INIS)

    Lozovik, Yu.E.; Yudson, V.I.

    1978-01-01

    The theory of the ground state of the two-dimensional non-ideal Bose gas is presented. The conditions for the validity of the ladder and the Bogolubov approximations are derived. These conditions ensure the existence of a Bose condensate in the ground state of two-dimensional systems. These conditions are different from the corresponding conditions for the three-dimensional case. The connection between the effective interaction and the two-dimensional scattering amplitude at some characteristic energy kappa 2 /2m (not equal to 0) is obtained (f(kappa = 0) = infinity in the two-dimensional case). (Auth.)

  6. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  7. Some application of the model of partition points on a one-dimensional lattice

    International Nuclear Information System (INIS)

    Mejdani, R.

    1991-07-01

    We have shown that by using a model of the gas of partition points on one-dimensional lattice, we can find some results about the enzyme kinetics or the average domain-size, which we have obtained before by using a correlated Walks' theory or a probabilistic (combinatoric) way. We have discussed also the problem related with the spread of an infection of disease and the stochastic model of partition points. We think that this model, as a very simple model and mathematically transparent, can be advantageous for other theoretical investigations in chemistry or modern biology. (author). 14 refs, 6 figs, 1 tab

  8. Prediction of inorganic superconductors with quasi-one-dimensional crystal structure

    International Nuclear Information System (INIS)

    Volkova, L M; Marinin, D V

    2013-01-01

    Models of superconductors having a quasi-one-dimensional crystal structure based on the convoluted into a tube Ginzburg sandwich, which comprises a layered dielectric–metal–dielectric structure, have been suggested. The critical crystal chemistry parameters of the Ginzburg sandwich determining the possibility of the emergence of superconductivity and the T c value in layered high-T c cuprates, which could have the same functions in quasi-one-dimensional fragments (sandwich-type tubes), have been examined. The crystal structures of known low-temperature superconductors, in which one can mark out similar quasi-one-dimensional fragments, have been analyzed. Five compounds with quasi-one-dimensional structures, which can be considered as potential parents of new superconductor families, possibly with high transition temperatures, have been suggested. The methods of doping and modification of these compounds are provided. (paper)

  9. Three-dimensional numerical simulation for plastic injection-compression molding

    Science.gov (United States)

    Zhang, Yun; Yu, Wenjie; Liang, Junjie; Lang, Jianlin; Li, Dequn

    2018-03-01

    Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian- Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.

  10. Pulsed Compression Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roestenberg, T. [University of Twente, Enschede (Netherlands)

    2012-06-07

    The advantages of the Pulsed Compression Reactor (PCR) over the internal combustion engine-type chemical reactors are briefly discussed. Over the last four years a project concerning the fundamentals of the PCR technology has been performed by the University of Twente, Enschede, Netherlands. In order to assess the feasibility of the application of the PCR principle for the conversion methane to syngas, several fundamental questions needed to be answered. Two important questions that relate to the applicability of the PCR for any process are: how large is the heat transfer rate from a rapidly compressed and expanded volume of gas, and how does this heat transfer rate compare to energy contained in the compressed gas? And: can stable operation with a completely free piston as it is intended with the PCR be achieved?.

  11. Energy Current Cumulants in One-Dimensional Systems in Equilibrium

    Science.gov (United States)

    Dhar, Abhishek; Saito, Keiji; Roy, Anjan

    2018-06-01

    A recent theory based on fluctuating hydrodynamics predicts that one-dimensional interacting systems with particle, momentum, and energy conservation exhibit anomalous transport that falls into two main universality classes. The classification is based on behavior of equilibrium dynamical correlations of the conserved quantities. One class is characterized by sound modes with Kardar-Parisi-Zhang scaling, while the second class has diffusive sound modes. The heat mode follows Lévy statistics, with different exponents for the two classes. Here we consider heat current fluctuations in two specific systems, which are expected to be in the above two universality classes, namely, a hard particle gas with Hamiltonian dynamics and a harmonic chain with momentum conserving stochastic dynamics. Numerical simulations show completely different system-size dependence of current cumulants in these two systems. We explain this numerical observation using a phenomenological model of Lévy walkers with inputs from fluctuating hydrodynamics. This consistently explains the system-size dependence of heat current fluctuations. For the latter system, we derive the cumulant-generating function from a more microscopic theory, which also gives the same system-size dependence of cumulants.

  12. Higher first Chern numbers in one-dimensional Bose-Fermi mixtures

    Science.gov (United States)

    Knakkergaard Nielsen, Kristian; Wu, Zhigang; Bruun, G. M.

    2018-02-01

    We propose to use a one-dimensional system consisting of identical fermions in a periodically driven lattice immersed in a Bose gas, to realise topological superfluid phases with Chern numbers larger than 1. The bosons mediate an attractive induced interaction between the fermions, and we derive a simple formula to analyse the topological properties of the resulting pairing. When the coherence length of the bosons is large compared to the lattice spacing and there is a significant next-nearest neighbour hopping for the fermions, the system can realise a superfluid with Chern number ±2. We show that this phase is stable in a large region of the phase diagram as a function of the filling fraction of the fermions and the coherence length of the bosons. Cold atomic gases offer the possibility to realise the proposed system using well-known experimental techniques.

  13. Application of a two-dimensional model for predicting the pressure-flow and compression properties during column packing scale-up.

    Science.gov (United States)

    McCue, Justin T; Cecchini, Douglas; Chu, Cathy; Liu, Wei-Han; Spann, Andrew

    2007-03-23

    A two-dimensional model was formulated to describe the pressure-flow behavior of compressible stationary phases for protein chromatography at different temperatures and column scales. The model was based on the assumption of elastic deformation of the solid phase and steady-state Darcy flow. Using a single fitted value for the empirical modulus parameters, the model was applied to describe the pressure-flow behavior of several adsorbents packed using both fluid flow and mechanical compression. Simulations were in agreement with experimental data and accurately predicted the pressure-flow and compression behavior of three adsorbents over a range of column scales and operating temperatures. Use of the described theoretical model potentially improves the accuracy of the column scale-up process, allowing the use of limited laboratory scale data to predict column performance in large scale applications.

  14. Relevance of postmortem radiology to the diagnosis of fatal cerebral gas embolism from compressed air diving.

    Science.gov (United States)

    Cole, A J; Griffiths, D; Lavender, S; Summers, P; Rich, K

    2006-05-01

    To test the hypothesis that artefact caused by postmortem off-gassing is at least partly responsible for the presence of gas within the vascular system and tissues of the cadaver following death associated with compressed air diving. Controlled experiment sacrificing sheep after a period of simulated diving in a hyperbaric chamber and carrying out sequential postmortem computed tomography (CT) on the cadavers. All the subject sheep developed significant quantities of gas in the vascular system within 24 hours, as demonstrated by CT and necropsy, while the control animals did not. The presence of gas in the vascular system of human cadavers following diving associated fatalities is to be expected, and is not necessarily connected with gas embolism following pulmonary barotrauma, as has previously been claimed.

  15. Gas-driven fracture propagation

    International Nuclear Information System (INIS)

    Nilson, R.H.

    1981-10-01

    A one-dimensional gas-flow drives a wedge-shaped fracture into a linearly elastic, impermeable half-space which is in uniform compression, sigma/sub infinity/, at infinity. Under a constant driving pressure, p 0 , the fracture/flow system accelerates through a sequence of three self-similar asymptotic regimes (laminar, turbulent, inviscid) in which the fracture grows like an elementary function of time (exponential, near-unity power, and linear; respectively). In each regime, the transport equations are reducible under a separation-of-variables transformation. The integro-differential equations which describe the viscous flows are solved by iterative shooting-methods using expansion techniques to accommodate a zero-pressure singularity at the leading edge of the flow. These numerical results are complemented by an asymptotic analysis for large pressure ratio (N = p 0 /sigma/sub infinity/ → infinity) which exploits the disparity between the fracture-length and penetration-length of the flow. The considered prototypic problem has geologic applications: containment evaluation of underground nuclear tests, explosive stimulation of oil and gas wells, and explosive permeability-enhancement prior to in-situ combustion of coal or oil-shale

  16. Zero sound in a two-dimensional dipolar Fermi gas

    NARCIS (Netherlands)

    Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.

    2013-01-01

    We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both

  17. Spin Polarization Oscillations without Spin Precession: Spin-Orbit Entangled Resonances in Quasi-One-Dimensional Spin Transport

    Directory of Open Access Journals (Sweden)

    D. H. Berman

    2014-03-01

    Full Text Available Resonant behavior involving spin-orbit entangled states occurs for spin transport along a narrow channel defined in a two-dimensional electron gas, including an apparent rapid relaxation of the spin polarization for special values of the channel width and applied magnetic field (so-called ballistic spin resonance. A fully quantum-mechanical theory for transport using multiple subbands of the one-dimensional system provides the dependence of the spin density on the applied magnetic field and channel width and position along the channel. We show how the spatially nonoscillating part of the spin density vanishes when the Zeeman energy matches the subband energy splittings. The resonance phenomenon persists in the presence of disorder.

  18. Thermal conductivity in one-dimensional nonlinear systems

    Science.gov (United States)

    Politi, Antonio; Giardinà, Cristian; Livi, Roberto; Vassalli, Massimo

    2000-03-01

    Thermal conducitivity of one-dimensional nonlinear systems typically diverges in the thermodynamic limit, whenever the momentum is conserved (i.e. in the absence of interactions with an external substrate). Evidence comes from detailed studies of Fermi-Pasta-Ulam and diatomic Toda chains. Here, we discuss the first example of a one-dimensional system obeying Fourier law : a chain of coupled rotators. Numerical estimates of the thermal conductivity obtained by simulating a chain in contact with two thermal baths at different temperatures are found to be consistent with those ones based on linear response theory. The dynamics of the Fourier modes provides direct evidence of energy diffusion. The finiteness of the conductivity is traced back to the occurrence of phase-jumps. Our conclusions are confirmed by the analysis of two variants of the rotator model.

  19. Important role of vertical migration of compressed gas, oil and water in formation of AVPD (abnormally high pressure gradient) zones

    Energy Technology Data Exchange (ETDEWEB)

    Anikiyev, K.A.

    1980-01-01

    The principal role of vertical migration of compressed gases, gas-saturated petroleum and water during formation of abnormally high pressure gradients (AVPD) is confirmed by extensive factual data on gas production, grifons, blowouts and gushers that accompany drilling formations with AVPD from early history to the present time; the sources of vertical migration of compressed fluids, in accordance with geodynamic AVPD theory, are the deep degasified centers of the earth mantle. Among the various types of AVPD zones especially notable are the large (often massive or massive-layer) deposits and the intrusion aureoles that top them in the overlapping covering layers. Prediction of AVPD zones and determining their field and energy potential must be based on field-baric simulation of the formations being drilled in light of laws regarding the important role of the vertical migration of compressed fluids. When developing field-baric models, it is necessary to utilize the extensive and valuable data on grifons, gas production and blowouts that has been collected and categorized by drilling engineers and production geologists. To further develop data on field-baric conditions of the earth, it is necessary to collect and study signals of AVPD. First of all, there is a need to evaluate potential elastic resources of compressed fluids which can move from the bed into the well. Thus it is necessary to study and standardize intrusion aureoles and other AVPD zones within the aspect of fieldbaric modeling.

  20. Controlled size and one-dimensional growth

    Indian Academy of Sciences (India)

    875–881. c Indian Academy of Sciences. Synthesis of azamacrocycle stabilized palladium nanoparticles: Controlled size and one-dimensional growth. JEYARAMAN ATHILAKSHMI and DILLIP KUMAR CHAND. ∗. Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India e-mail: dillip@iitm.ac.

  1. Compressed Natural Gas (CNG) Transit Bus Experience Survey: April 2009--April 2010

    Energy Technology Data Exchange (ETDEWEB)

    Adams, R.; Horne, D. B.

    2010-09-01

    This survey was commissioned by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) to collect and analyze experiential data and information from a cross-section of U.S. transit agencies with varying degrees of compressed natural gas (CNG) bus and station experience. This information will be used to assist DOE and NREL in determining areas of success and areas where further technical or other assistance might be required, and to assist them in focusing on areas judged by the CNG transit community as priority items.

  2. A novel full-field experimental method to measure the local compressibility of gas diffusion media

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Yeh-Hung; Li, Yongqiang [Electrochemical Energy Research Lab, GM R and D, Honeoye Falls, NY 14472 (United States); Rock, Jeffrey A. [GM Powertrain, Honeoye Falls, NY 14472 (United States)

    2010-05-15

    The gas diffusion medium (GDM) in a proton exchange membrane (PEM) fuel cell needs to simultaneously satisfy the requirements of transporting reactant gases, removing product water, conducting electrons and heat, and providing mechanical support to the membrane electrode assembly (MEA). Concerning the localized over-compression which may force carbon fibers and other conductive debris into the membrane to cause fuel cell failure by electronically shorting through the membrane, we have developed a novel full-field experimental method to measure the local thickness and compressibility of GDM. Applying a uniform air pressure upon a thin polyimide film bonded on the top surface of the GDM with support from the bottom by a flat metal substrate and measuring the thickness change using the 3-D digital image correlation technique with an out-of-plane displacement resolution less than 0.5 {mu}m, we have determined the local thickness and compressive stress/strain behavior in the GDM. Using the local thickness and compressibility data over an area of 11.2 mm x 11.2 mm, we numerically construct the nominal compressive response of a commercial Toray trademark TGP-H-060 based GDM subjected to compression by flat platens. Good agreement in the nominal stress/strain curves from the numerical construction and direct experimental flat-platen measurement confirms the validity of the methodology proposed in this article. The result shows that a nominal pressure of 1.4 MPa compressed between two flat platens can introduce localized compressive stress concentration of more than 3 MPa in up to 1% of the total area at various locations from several hundred micrometers to 1 mm in diameter. We believe that this full-field experimental method can be useful in GDM material and process development to reduce the local hard spots and help to mitigate the membrane shorting failure in PEM fuel cells. (author)

  3. A novel full-field experimental method to measure the local compressibility of gas diffusion media

    Science.gov (United States)

    Lai, Yeh-Hung; Li, Yongqiang; Rock, Jeffrey A.

    The gas diffusion medium (GDM) in a proton exchange membrane (PEM) fuel cell needs to simultaneously satisfy the requirements of transporting reactant gases, removing product water, conducting electrons and heat, and providing mechanical support to the membrane electrode assembly (MEA). Concerning the localized over-compression which may force carbon fibers and other conductive debris into the membrane to cause fuel cell failure by electronically shorting through the membrane, we have developed a novel full-field experimental method to measure the local thickness and compressibility of GDM. Applying a uniform air pressure upon a thin polyimide film bonded on the top surface of the GDM with support from the bottom by a flat metal substrate and measuring the thickness change using the 3-D digital image correlation technique with an out-of-plane displacement resolution less than 0.5 μm, we have determined the local thickness and compressive stress/strain behavior in the GDM. Using the local thickness and compressibility data over an area of 11.2 mm × 11.2 mm, we numerically construct the nominal compressive response of a commercial Toray™ TGP-H-060 based GDM subjected to compression by flat platens. Good agreement in the nominal stress/strain curves from the numerical construction and direct experimental flat-platen measurement confirms the validity of the methodology proposed in this article. The result shows that a nominal pressure of 1.4 MPa compressed between two flat platens can introduce localized compressive stress concentration of more than 3 MPa in up to 1% of the total area at various locations from several hundred micrometers to 1 mm in diameter. We believe that this full-field experimental method can be useful in GDM material and process development to reduce the local hard spots and help to mitigate the membrane shorting failure in PEM fuel cells.

  4. Development and Test of a new Concept for Biomass Producer Gas Engines

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Foged, Esben Vendelbo; Strand, Rune

    The technical requirements and the economical assessment of converting commercial diesel engine gen-sets into high compression spark ignition operation on biomass producer gas have been investigated. Assessments showed that for a 200 kWe gen-set there would be a financial benefit of approximately...... 600.000 DKK corresponding to a reduction of 60% in investment costs compared to the price of a conventional gas engine gen-set. Experimental investigations have been conducted on two identical small scale SI gas engine gen-sets operating on biomass producer gas from thermal gasification of wood....... The engines were operated with two different compression ratios, one with the original compression ratio for natural gas operation 9.5:1, and the second with a compression ratio of 18.5:1 (converted diesel engine). It was shown that high compression ratio SI engine operation was possible when operating...

  5. One dimensional models of excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia Decebal; Duclos, P.; Pedersen, Thomas Garm

    Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....

  6. One-dimensional models of excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia Decebal; Duclos, Pierre; Pedersen, Thomas Garm

    2004-01-01

    Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one-dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one-dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....

  7. Comparison of zero-dimensional and one-dimensional thermonuclear burn computations for the reversed-field pinch reactor (RFPR)

    International Nuclear Information System (INIS)

    Nebel, R.A.; Hagenson, R.L.; Moses, R.W.; Krakowski, R.A.

    1980-01-01

    Conceptual fusion reactor designs of the Reversed-Field Pinch Reactor (RFPR) have been based on profile-averaged zero-dimensional (point) plasma models. The plasma response/performance that has been predicted by the point plasma model is re-examined by a comprehensive one-dimensional (radial) burn code that has been developed and parametrically evaluated for the RFPR. Agreement is good between the zero-dimensional and one-dimensional models, giving more confidence in the RFPR design point reported previously from the zero-dimensional analysis

  8. Experimental study on the leakage of gas through cracked concrete walls

    International Nuclear Information System (INIS)

    Suzuki, T.; Takiguchi, K.; Hotta, H.; Kojima, N.; Fukuhara, M.; Kimura, K.

    1989-01-01

    The air-tightness of concrete walls is important for nuclear-related facilities. A concrete wall has very high probabilities of developing cracks due to shrinkage, seismic forces or other factors. It is therefore essential to be able to predict the amount of gas which will leak through a cracked concrete wall. In the previous paper published in SmiRT-9, the experimental equation on the gas leakage through a single crack occurred in concrete was presented based on two-dimensional Poiseuille's flow. In this paper, the experimental results were examined again considering the compressibility of gas, and new equation is presented. The experiments which were similar to ones in the previous paper were carried out on several kinds of concrete using several kinds of gases, and the effects of the kinds of gaseous body, particle size of aggregates and shape of aggregates were examined

  9. Characteristics of compressed natural gas jet and jet-wall impingement using the Schlieren imaging technique

    International Nuclear Information System (INIS)

    Ismael, M A; Heikal, M R; Baharom, M B

    2013-01-01

    An experimental study was performed to investigate the compressed natural gas jet characteristics and jet-wall impingement using the Schlieren imaging technique and image processing. An injector driver was used to drive the natural gas injector and synchronized with camera triggering. A constant-volume optical chamber was designed to facilitate maximum optical access for the study of the jet macroscopic characteristics and jet-wall impingement at different injection pressures and injectors-wall distances. Measurement of the jet tip penetration and cone angle at different conditions are presented in this paper together with temporal presentation of the jet radial travel along the wall.

  10. Study of one dimensional magnetic system via field theory

    International Nuclear Information System (INIS)

    Talim, S.L.

    1988-04-01

    We present a study of one-dimensional magnetic system using field theory methods. We studied the discreteness effects in a classical anisotropic one dimensional antiferromagnet in an external magnetic field. It is shown that for TMMC, at the temperatures and magnetic fields where most experiments have been done, the corrections are small and can be neglected. (author)

  11. Remarks for one-dimensional fractional equations

    Directory of Open Access Journals (Sweden)

    Massimiliano Ferrara

    2014-01-01

    Full Text Available In this paper we study a class of one-dimensional Dirichlet boundary value problems involving the Caputo fractional derivatives. The existence of infinitely many solutions for this equations is obtained by exploiting a recent abstract result. Concrete examples of applications are presented.

  12. Scattering theory for one-dimensional step potentials

    International Nuclear Information System (INIS)

    Ruijsenaars, S.N.M.; Bongaarts, P.J.M.

    1977-01-01

    The scattering theory is treated for the one-dimensional Dirac equation with potentials that are bounded, measurable, real-valued functions on the real line, having constant values, not necessarily the same, on the left and on the right side of a compact interval. Such potentials appear in the Klein paradox. It is shown that appropriately modified wave operators exist and that the corresponding S-operator is unitary. The connection between time-dependent scattering theory and time-independent scattering theory in terms of incoming and outgoing plane wave solutions is established and some further properties are proved. All results and their proofs have a straightforward translation to the one-dimensional Schroedinger equation with the same class of step potentials

  13. Parallelization of one image compression method. Wavelet, Transform, Vector Quantization and Huffman Coding

    International Nuclear Information System (INIS)

    Moravie, Philippe

    1997-01-01

    Today, in the digitized satellite image domain, the needs for high dimension increase considerably. To transmit or to stock such images (more than 6000 by 6000 pixels), we need to reduce their data volume and so we have to use real-time image compression techniques. The large amount of computations required by image compression algorithms prohibits the use of common sequential processors, for the benefits of parallel computers. The study presented here deals with parallelization of a very efficient image compression scheme, based on three techniques: Wavelets Transform (WT), Vector Quantization (VQ) and Entropic Coding (EC). First, we studied and implemented the parallelism of each algorithm, in order to determine the architectural characteristics needed for real-time image compression. Then, we defined eight parallel architectures: 3 for Mallat algorithm (WT), 3 for Tree-Structured Vector Quantization (VQ) and 2 for Huffman Coding (EC). As our system has to be multi-purpose, we chose 3 global architectures between all of the 3x3x2 systems available. Because, for technological reasons, real-time is not reached at anytime (for all the compression parameter combinations), we also defined and evaluated two algorithmic optimizations: fix point precision and merging entropic coding in vector quantization. As a result, we defined a new multi-purpose multi-SMIMD parallel machine, able to compress digitized satellite image in real-time. The definition of the best suited architecture for real-time image compression was answered by presenting 3 parallel machines among which one multi-purpose, embedded and which might be used for other applications on board. (author) [fr

  14. Apparent destruction of superconductivity in the disordered one-dimensional limit

    International Nuclear Information System (INIS)

    Graybeal, J.M.; Mankiewich, P.M.; Dynes, R.C.; Beasley, M.R.

    1987-01-01

    We present the results of a model-system study of the competition between superconductivity and disorder in narrow superconducting wires. As one moves from the two-dimensional regime toward the one-dimensional limit, large and systematic reductions in the superconducting transition temperature are obtained. The observed behavior extrapolates to the total destruction of superconductivity in the disordered one-dimensional limit. Our findings are in clear disagreement with a recent theoretical treatment. In addition, the superconducting fluctuations appear to be modified by disorder for the narrowest samples

  15. Inertia and compressibility effects on density waves and Ledinegg phenomena in two-phase flow systems

    International Nuclear Information System (INIS)

    Ruspini, L.C.

    2012-01-01

    Highlights: ► The stability influence of piping fluid inertia on two-phase instabilities is studied. ► Inlet inertia stabilizes the system while outlet inertia destabilizes it. ► High-order modes oscillations are found and analyzed. ► The effect of compressible volumes in the system is studied. ► Inlet compressibility destabilizes the system while outlet comp. stabilizes it. - Abstract: The most common kind of static and dynamic two-phase flow instabilities namely Ledinegg and density wave oscillations are studied. A new model to study two-phase flow instabilities taking into account general parameters from real systems is proposed. The stability influence of external parameters such as the fluid inertia and the presence of compressible gases in the system is analyzed. High-order oscillation modes are found to be related with the fluid inertia of external piping. The occurrence of high-order modes in experimental works is analyzed with focus on the results presented in this work. Moreover, both inertia and compressibility are proven to have a high impact on the stability limits of the systems. The performed study is done by modeling the boiling channel using a one dimensional equilibrium model. An incompressible transient model describes the evolution of the flow and pressure in the non-heated regions and an ideal gas model is used to simulate the compressible volumes in the system. The use of wavelet decomposition analysis is proven to be an efficient tool in stability analysis of several frequencies oscillations.

  16. Thermoelectric properties of one-dimensional graphene antidot arrays

    International Nuclear Information System (INIS)

    Yan, Yonghong; Liang, Qi-Feng; Zhao, Hui; Wu, Chang-Qin; Li, Baowen

    2012-01-01

    We investigate the thermoelectric properties of one-dimensional (1D) graphene antidot arrays by nonequilibrium Green's function method. We show that by introducing antidots to the pristine graphene nanoribbon the thermal conductance can be reduced greatly while keeping the power factor still high, thus leading to an enhanced thermoelectric figure of merit (ZT). Our numerical results indicate that ZT values of 1D antidot graphene arrays can be up to unity, which means the 1D graphene antidot arrays may be promising for thermoelectric applications. -- Highlights: ► We study thermoelectric properties of one-dimensional (1D) graphene antidot arrays. ► Thermoelectric figure of merit (ZT) of 1D antidot arrays can exceed unity. ► ZT of 1D antidot arrays is larger than that of two-dimensional arrays.

  17. Development and test of a new concept for biomass producer gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Vendelbo Foged, E.; Strand, R.; Birk Henriksen, U.

    2010-02-15

    The technical requirements and the economical assessment of converting commercial diesel engine gen-sets into high compression spark ignition operation on biomass producer gas have been investigated. Assessments showed that for a 200 kW{sub e} gen-set there would be a financial benefit of approximately 600.000 DKK corresponding to a reduction of 60% in investment costs compared to the price of a conventional gas engine gen-set. Experimental investigations have been conducted on two identical small scale SI gas engine gen-sets operating on biomass producer gas from thermal gasification of wood. The engines were operated with two different compression ratios, one with the original compression ratio for natural gas operation 9.5:1, and the second with a compression ratio of 18.5:1 (converted diesel engine). It was shown that high compression ratio SI engine operation was possible when operating on this specific biomass producer gas. The results showed an increase in the electrical efficiency from 30% to 34% when the compression ratio was increased. (author)

  18. Variable valve timing in a homogenous charge compression ignition engine

    Science.gov (United States)

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  19. Specificities of one-dimensional dissipative magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Popov, P. V., E-mail: popov.pv@mipt.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-11-15

    One-dimensional dynamics of a plane slab of cold (β ≪ 1) isothermal plasma accelerated by a magnetic field is studied in terms of the MHD equations with a finite constant conductivity. The passage to the limit β → 0 is analyzed in detail. It is shown that, at β = 0, the character of the solution depends substantially on the boundary condition for the electric field at the inner plasma boundary. The relationship between the boundary condition for the pressure at β > 0 and the conditions for the electric field at β = 0 is found. The stability of the solution against one-dimensional longitudinal perturbations is analyzed. It is shown that, in the limit β → 0, the stationary solution is unstable if the time during which the acoustic wave propagates across the slab is longer than the time of magnetic field diffusion. The growth rate and threshold of instability are determined, and results of numerical simulation of its nonlinear stage are presented.

  20. Third sound in one and two dimensional modulated structures

    International Nuclear Information System (INIS)

    Komuro, T.; Kawashima, H., Shirahama, K.; Kono, K.

    1996-01-01

    An experimental technique is developed to study acoustic transmission in one and two dimensional modulated structures by employing third sound of a superfluid helium film. In particular, the Penrose lattice, which is a two dimensional quasiperiodic structure, is studied. In two dimensions, the scattering of third sound is weaker than in one dimension. Nevertheless, the authors find that the transmission spectrum in the Penrose lattice, which is a two dimensional prototype of the quasicrystal, is observable if the helium film thickness is chosen around 5 atomic layers. The transmission spectra in the Penrose lattice are explained in terms of dynamical theory of diffraction

  1. The one-loop Green's functions of dimensionally reduced gauge theories

    International Nuclear Information System (INIS)

    Ketov, S.V.; Prager, Y.S.

    1988-01-01

    The dimensional regularization technique as well as that by dimensional reduction is applied to the calculation of the regularized one-loop Green's functions in dsub(o)-dimensional Yang-Mills theory with real massless scalars and spinors in arbitrary (real) representations of a gauge group G. As a particular example, the super-symmetrically regularized one-loop Green's functions of the N=4 supersymmetric Yang-Mills model are derived. (author). 17 refs

  2. Appropriateness of one-dimensional calculations for repository analysis

    International Nuclear Information System (INIS)

    Eaton, R.R.

    1994-01-01

    This paper brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. It is shown that in many cases, one-dimensional modeling is more rigorous than previously assumed

  3. Analysis of Polycyclic Aromatic Hydrocarbons in Ambient Aerosols by Using One-Dimensional and Comprehensive Two-Dimensional Gas Chromatography Combined with Mass Spectrometric Method: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Yun Gyong Ahn

    2018-01-01

    Full Text Available Advanced separation technology paired with mass spectrometry is an ideal method for the analysis of atmospheric samples having complex chemical compositions. Due to the huge variety of both natural and anthropogenic sources of organic compounds, simultaneous quantification and identification of organic compounds in aerosol samples represents a demanding analytical challenge. In this regard, comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS has become an effective analytical method. However, verification and validation approaches to quantify these analytes have not been critically evaluated. We compared the performance of gas chromatography with quadrupole mass spectrometry (GC-qMS and GC×GC-TOFMS for quantitative analysis of eighteen target polycyclic aromatic hydrocarbons (PAHs. The quantitative obtained results such as limits of detection (LODs, limits of quantification (LOQs, and recoveries of target PAHs were approximately equivalent based on both analytical methods. Furthermore, a larger number of analytes were consistently identified from the aerosol samples by GC×GC-TOFMS compared to GC-qMS. Our findings suggest that GC×GC-TOFMS would be widely applicable to the atmospheric and related sciences with simultaneous target and nontarget analysis in a single run.

  4. Emission Characteristics for a Homogeneous Charged Compression Ignition Diesel Engine with Exhaust Gas Recirculation Using Split Injection Methodology

    Directory of Open Access Journals (Sweden)

    Changhee Lee

    2017-12-01

    Full Text Available Due to the serious issues caused by air pollution and global warming, emission regulations are becoming stricter. New technologies that reduce NOx and PM emissions are needed. To cope with these social exhaust gas regulation demands, many advanced countries are striving to develop eco-friendly vehicles in order to respond to stricter emissions regulations. The homogeneous charged compression ignition engine (HCCI incorporates a multi-stage combustion engine with multiple combustion modes, catalyst, direct fuel injection and partial mixing combustion. In this study, the HCCI combustion was applied to analyze and review the results of engines applying HCCI combustion without altering the conventional engine specifications. The optimization of exhaust gas recirculation (EGR and compression ratio changes provides an optimal fuel economy. In this study, potential for optimum economy within the range of IMEP 0.8 MPa has been evaluated.

  5. Environmentally friendly drive for gas compression applications: enhanced design of high-speed induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Karina Velloso; Pradurat, Jean Francois; Mercier, Jean Charles [Institut National Polytechncique, Lorrain (France). Converteam Motors Div.; Truchot, Patrick [Nancy Universite (France). Equipe de Recherche sur les Processus Innovatifs (ERPI)

    2008-07-01

    Taking into account the key issues faced by gas compressors users, this paper aims to help optimize the choice of the drive equipment as well as the driven equipment, in function of the cost of the whole installation life cycle. The design of the enhanced high-speed induction motor (MGV-Moteuer a Grande Vitesse) represents a technological breakthrough for the industry, it allows the direct coupling to the compressor, without using a gearbox making the system more efficient and reliable. From both micro and macro-economic viewpoints, the high-speed electric driver becomes a more efficient use of natural gas energy resources. This new technology associated with the electric option offers challenging and rewarding work to those responsible for the operation and maintenance of the compressor station. The electric option is not only conceptually viable but has a proven track record that justifies serious consideration as an alternative for reliably powering. Once an operator becomes comfortable with the prospects of motor-driven compression, the analysis of machine options requires only a few new approaches to fairly evaluate the alternatives. The application of this reasoning in projects using compression units is especially opportune, in view of the great variations of operational conditions and environmental issues. (author)

  6. Thermal fluid dynamic behavior of coolant helium gas in a typical reactor VHTGR channel of prismatic core; Comportamento termofluidodinamico do gas refrigerante helio em um canal topico de reator VHTGR de nucleo prismatico

    Energy Technology Data Exchange (ETDEWEB)

    Belo, Allan Cavalcante

    2016-08-01

    The current studies about the thermal fluid dynamic behavior of the VHTGR core reactors of 4{sup th} generation are commonly developed in 3-D analysis in CFD (computational fluid dynamics), which often requires considerable time and complex mathematical calculations for carrying out these analysis. The purpose of this project is to achieve thermal fluid dynamic analysis of flow of gas helium refrigerant in a typical channel of VHTGR prismatic core reactor evaluating magnitudes of interest such as temperature, pressure and fluid velocity and temperature distribution in the wall of the coolant channel from the development of a computer code in MATLAB considering the flow on one-dimensional channel, thereby significantly reducing the processing time of calculations. The model uses three different references to the physical properties of helium: expressions given by the KTA (German committee of nuclear safety standards), the computational tool REFPROP and a set of constant values for the entire channel. With the use of these three references it is possible to simulate the flow treating the gas both compressible and incompressible. The results showed very close values for the interest quantities and revealed that there are no significant differences in the use of different references used in the project. Another important conclusion to be observed is the independence of helium in the gas compressibility effects on thermal fluid dynamic behavior. The study also indicated that the gas undergoes no severe effects due to high temperature variations in the channel, since this goes in the channel at 914 K and exits at approximately 1263 K, which shows the excellent use of helium as a refrigerant fluid in reactor channels VHTGR. The comparison of results obtained in this work with others in the literature served to confirm the effectiveness of the one-dimensional consideration of method of gas flow in the coolant channel to replace the models made in 3-D for the pressure range

  7. Removal of methane from compressed natural gas fueled vehicle exhaust

    International Nuclear Information System (INIS)

    Subramanian, S.; Kudla, R.J.; Chattha, M.S.

    1992-01-01

    The objective of this paper is to investigate the modes of methane (CH 4 ) removal from simulated compressed natural gas (CNG) fueled vehicle exhaust under net oxidizing, net reducing, and stoichiometric conditions. Model reaction studies were conducted. The results suggest that the oxidation of methane with oxygen contributes to the removal of methane under net oxidizing conditions. In contrast, the oxidation of methane with oxygen as well as nitric oxide contributes to its removal under net reducing conditions. The steam reforming reaction does not significantly contribute to the removal of methane. The methane conversions under net reducing conditions are higher than those observed under net oxidizing conditions. The study shows that the presence of carbon monoxide in the feed gas leads to a gradual decrease in the methane conversion with increasing redox ratio, under net oxidizing conditions. a minimum in methane conversion is observed at a redox ratio of 0. 8. The higher activity for the methane-oxygen reaction resulting from a lowering in the overall oxidation state of palladium and the contribution of the methane-nitric oxide reaction toward the removal of CH 4 appear to account for the higher CH 4 conversions observed under net reducing conditions

  8. Compressed Natural Gas Vehicle Maintenance Facility Modification Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Kay L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ramsden, Margo M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gonzales, John E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lynch, Lauren [National Renewable Energy Lab. (NREL), Golden, CO (United States); Coale, Bob [Gladstein, Neandross & Associates, Santa Monica, CA (United States); Kohout, Jarrod [Gladstein, Neandross & Associates, Santa Monica, CA (United States)

    2017-09-28

    To ensure the safety of personnel and facilities, vehicle maintenance facilities are required by law and by guidelines of the National Fire Protection Association (NFPA) and the International Fire Code (IFC) to exhibit certain design features. They are also required to be fitted with certain fire protection equipment and devices because of the potential for fire or explosion in the event of fuel leakage or spills. All fuels have an explosion or fire potential if specific conditions are present. The hazard presented by liquid fuels, such as gasoline and diesel, results from the spillage of these liquids and subsequent ignition of vapors, causing a fire or explosion. Facilities that maintain liquid-fueled vehicles and implement appropriate safety measures are protected with ventilation systems designed to capture liquid fuel vapors at or near floor level. To minimize the potential for ignition in the event of a spill, receptacles, electrical fixtures, and hot-work operations, such as welding, are located outside of these areas. Compressed natural gas (CNG) is composed of methane with slight amounts of heavier simple hydrocarbons. Maintenance facilities that maintain CNG vehicles indoors must be protected against fire and explosion. However, the means of ensuring safety are different from those employed for liquid fuels because of the gaseous nature of methane and the fact that it is lighter than air. Because CNG is lighter than air, a release will rise to the ceiling of the maintenance facility and quickly dissipate rather than remaining at or near floor level like liquid fuel vapors. Although some of the means of protection for CNG vehicle maintenance facilities are similar to those used for liquid-fueled vehicles (ventilation and elimination of ignition sources), the types and placement of the protection equipment are different because of the behavior of the different fuels. The nature of gaseous methane may also require additional safeguards, such as combustible

  9. THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Schober, Jennifer [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Bovino, Stefano; Schleicher, Dominik R. G., E-mail: christoph.federrath@anu.edu.au [Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany)

    2014-12-20

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.

  10. Underwater striling engine design with modified one-dimensional model

    Directory of Open Access Journals (Sweden)

    Daijin Li

    2015-05-01

    Full Text Available Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA. The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

  11. Analytical solutions of one-dimensional advection–diffusion

    Indian Academy of Sciences (India)

    Analytical solutions are obtained for one-dimensional advection –diffusion equation with variable coefficients in a longitudinal finite initially solute free domain,for two dispersion problems.In the first one,temporally dependent solute dispersion along uniform flow in homogeneous domain is studied.In the second problem the ...

  12. Compressible simulation of rotor-stator interaction in pump-turbines

    International Nuclear Information System (INIS)

    Yan, J; Koutnik, J; Seidel, U; Huebner, B

    2010-01-01

    This work investigates the influence of water compressibility on pressure pulsations induced by rotor-stator interaction (RSI) in hydraulic machinery, using the commercial CFD solver ANSYS-CFX. A pipe flow example with harmonic velocity excitation at the inlet plane is simulated using different grid densities and time step sizes. Results are compared with a validated code for hydraulic networks (SIMSEN). Subsequently, the solution procedure is applied to a simplified 2.5-dimensional pump-turbine configuration in model scale with an adapted speed of sound. Pressure fluctuations are compared with numerical and experimental data based on prototype scale. The good agreement indicates that the scaling of acoustic effects with an adapted speed of sound works well. Finally, the procedure is applied to a 3-dimensional pump configuration in model scale. Pressure fluctuations are compared with results from prototype measurements. Compared to incompressible computations, compressible simulations provide similar pressure fluctuations in vaneless space, but pressure fluctuations in spiral case and penstock may be much higher. With respect to pressure fluctuation amplitudes along the centerline of runner channels, incompressible solutions exhibit a linear decrease while compressible solutions exhibit sinusoidal distributions with maximum values at half the channel length, coinciding with analytical solutions of one-dimensional acoustics.

  13. Preliminary analysis of combined cycle of modular high-temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Baogang, Z.; Xiaoyong, Y.; Jie, W.; Gang, Z.; Qian, S.

    2015-01-01

    Modular high-temperature gas cooled reactor (HTGR) is known as one of the most advanced nuclear reactors because of its inherent safety and high efficiency. The power conversion system of HTGR can be steam turbine based on Rankine cycle or gas turbine based on Brayton cycle respectively. The steam turbine system is mature and the gas turbine system has high efficiency but under development. The Brayton-Rankine combined cycle is an effective way to further promote the efficiency. This paper investigated the performance of combined cycle from the viewpoint of thermodynamics. The effect of non-dimensional parameters on combined cycle’s efficiency, such as temperature ratio, compression ratio, efficiency of compressor, efficiency of turbine, was analyzed. Furthermore, the optimal parameters to achieve highest efficiency was also given by this analysis under engineering constraints. The conclusions could be helpful to the design and development of combined cycle of HTGR. (author)

  14. One-Dimensional Modelling of Internal Ballistics

    Science.gov (United States)

    Monreal-González, G.; Otón-Martínez, R. A.; Velasco, F. J. S.; García-Cascáles, J. R.; Ramírez-Fernández, F. J.

    2017-10-01

    A one-dimensional model is introduced in this paper for problems of internal ballistics involving solid propellant combustion. First, the work presents the physical approach and equations adopted. Closure relationships accounting for the physical phenomena taking place during combustion (interfacial friction, interfacial heat transfer, combustion) are deeply discussed. Secondly, the numerical method proposed is presented. Finally, numerical results provided by this code (UXGun) are compared with results of experimental tests and with the outcome from a well-known zero-dimensional code. The model provides successful results in firing tests of artillery guns, predicting with good accuracy the maximum pressure in the chamber and muzzle velocity what highlights its capabilities as prediction/design tool for internal ballistics.

  15. Sounds in one-dimensional superfluid helium

    International Nuclear Information System (INIS)

    Um, C.I.; Kahng, W.H.; Whang, E.H.; Hong, S.K.; Oh, H.G.; George, T.F.

    1989-01-01

    The temperature variations of first-, second-, and third-sound velocity and attenuation coefficients in one-dimensional superfluid helium are evaluated explicitly for very low temperatures and frequencies (ω/sub s/tau 2 , and the ratio of second sound to first sound becomes unity as the temperature decreases to absolute zero

  16. De Haas-van Alphen effect of a two-dimensional ultracold atomic gas

    Science.gov (United States)

    Farias, B.; Furtado, C.

    2016-01-01

    In this paper, we show how the ultracold atom analogue of the two-dimensional de Haas-van Alphen effect in electronic condensed matter systems can be induced by optical fields in a neutral atomic system. The interaction between the suitable spatially varying laser fields and tripod-type trapped atoms generates a synthetic magnetic field which leads the particles to organize themselves in Landau levels. Initially, with the atomic gas in a regime of lowest Landau level, we display the oscillatory behaviour of the atomic energy and its derivative with respect to the effective magnetic field (B) as a function of 1/B. Furthermore, we estimate the area of the Fermi circle of the two-dimensional atomic gas.

  17. Tunable secondary dimension selectivity in comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Mommers, J.; Pluimakers, G.; Knooren, J.; Dutriez, T.; van der Wal, S.

    2013-01-01

    In this paper two tunable two-dimensional gas chromatography setups are compared and described in which the secondary dimension consists of two different capillary columns coupled in series. In the first setup the selectivity of the second dimension can be tuned by adjusting the effective column

  18. A comparative experimental study on engine operating on premixed charge compression ignition and compression ignition mode

    Directory of Open Access Journals (Sweden)

    Bhiogade Girish E.

    2017-01-01

    Full Text Available New combustion concepts have been recently developed with the purpose to tackle the problem of high emissions level of traditional direct injection Diesel engines. A good example is the premixed charge compression ignition combustion. A strategy in which early injection is used causing a burning process in which the fuel burns in the premixed condition. In compression ignition engines, soot (particulate matter and NOx emissions are an extremely unsolved issue. Premixed charge compression ignition is one of the most promising solutions that combine the advantages of both spark ignition and compression ignition combustion modes. It gives thermal efficiency close to the compression ignition engines and resolves the associated issues of high NOx and particulate matter, simultaneously. Premixing of air and fuel preparation is the challenging part to achieve premixed charge compression ignition combustion. In the present experimental study a diesel vaporizer is used to achieve premixed charge compression ignition combustion. A vaporized diesel fuel was mixed with the air to form premixed charge and inducted into the cylinder during the intake stroke. Low diesel volatility remains the main obstacle in preparing premixed air-fuel mixture. Exhaust gas re-circulation can be used to control the rate of heat release. The objective of this study is to reduce exhaust emission levels with maintaining thermal efficiency close to compression ignition engine.

  19. Polylogs, thermodynamics and scaling functions of one-dimensional quantum many-body systems

    International Nuclear Information System (INIS)

    Guan, X-W; Batchelor, M T

    2011-01-01

    We demonstrate that the thermodynamics of one-dimensional Lieb-Liniger bosons can be accurately calculated in analytic fashion using the polylog function in the framework of the thermodynamic Bethe ansatz. The approach does away with the need to numerically solve the thermodynamic Bethe ansatz (Yang-Yang) equation. The expression for the equation of state allows the exploration of Tomonaga-Luttinger liquid physics and quantum criticality in an archetypical quantum system. In particular, the low-temperature phase diagram is obtained, along with the scaling functions for the density and compressibility. It has been shown recently by Guan and Ho (arXiv:1010.1301) that such scaling can be used to map out the criticality of ultracold fermionic atoms in experiments. We show here how to map out quantum criticality for Lieb-Liniger bosons. More generally, the polylog function formalism can be applied to a wide range of Bethe ansatz integrable quantum many-body systems which are currently of theoretical and experimental interest, such as strongly interacting multi-component fermions, spinor bosons and mixtures of bosons and fermions. (fast track communication)

  20. Simple relationship between the virial-route hypernetted-chain and the compressibility-route Percus-Yevick values of the fourth virial coefficient.

    Science.gov (United States)

    Santos, Andrés; Manzano, Gema

    2010-04-14

    As is well known, approximate integral equations for liquids, such as the hypernetted chain (HNC) and Percus-Yevick (PY) theories, are in general thermodynamically inconsistent in the sense that the macroscopic properties obtained from the spatial correlation functions depend on the route followed. In particular, the values of the fourth virial coefficient B(4) predicted by the HNC and PY approximations via the virial route differ from those obtained via the compressibility route. Despite this, it is shown in this paper that the value of B(4) obtained from the virial route in the HNC theory is exactly three halves the value obtained from the compressibility route in the PY theory, irrespective of the interaction potential (whether isotropic or not), the number of components, and the dimensionality of the system. This simple relationship is confirmed in one-component systems by analytical results for the one-dimensional penetrable-square-well model and the three-dimensional penetrable-sphere model, as well as by numerical results for the one-dimensional Lennard-Jones model, the one-dimensional Gaussian core model, and the three-dimensional square-well model.

  1. Thermodynamics of a one-dimensional ideal gas with fractional exclusion statistics

    International Nuclear Information System (INIS)

    Murthy, M.V.N.; Shankar, R.

    1994-01-01

    We show that the particles in the Calogero-Sutherland model obey fractional exclusion statistics as defined by Haldane. We construct anyon number densities and derive the energy distribution function. We show that the partition function factorizes in the form characteristic of an ideal gas. The virial expansion is exactly computable and interestingly it is only the second virial coefficient that encodes the statistics information

  2. Multiband and Lossless Compression of Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Raffaele Pizzolante

    2016-02-01

    Full Text Available Hyperspectral images are widely used in several real-life applications. In this paper, we investigate on the compression of hyperspectral images by considering different aspects, including the optimization of the computational complexity in order to allow implementations on limited hardware (i.e., hyperspectral sensors, etc.. We present an approach that relies on a three-dimensional predictive structure. Our predictive structure, 3D-MBLP, uses one or more previous bands as references to exploit the redundancies among the third dimension. The achieved results are comparable, and often better, with respect to the other state-of-art lossless compression techniques for hyperspectral images.

  3. Analytical model for super-compression of multi-structured pellet

    International Nuclear Information System (INIS)

    Yabe, T.; Niu, K.

    1975-09-01

    We present a one-dimensional analytical model which can be applied to the super-compression of the multistructured pellet. The main result shows that the time dependence of the input power E for the optimal compression is given by E proportional to (1 - t/tsub(s))sup(-3(G+1)/2G) where G=(rho 1 /rho 2 )sup(1/4), rho 1 and rho 2 are the densities of the D-T fuel and the high Z material respectively, and tsub(s) if the characteristic time interval. (auth.)

  4. Effects of the addition of nanoparticulate calcium carbonate on setting time, dimensional change, compressive strength, solubility and pH of MTA.

    Science.gov (United States)

    Bernardi, A; Bortoluzzi, E A; Felippe, W T; Felippe, M C S; Wan, W S; Teixeira, C S

    2017-01-01

    To evaluate nanoparticulate calcium carbonate (NPCC) using transmission electron microscopy and the effects of NPCC addition to MTA in regard to the setting time, dimensional change, compressive strength, solubility and pH. The experimental groups were G1 (MTA), G2 (MTA with 5% NPCC) and G3 (MTA with 10% NPCC). The tests followed ISO and ADA standards. The specimens in the dimensional change and compressive strength tests were measured immediately after setting, after 24 h and after 30 days. In the solubility test, rings filled with cement were weighed after setting and after 30 days. The pH was measured after 24 h and 30 days. The data were analysed with the ANOVA, Tukey's and Kruskal-Wallis tests (α = 5%). The setting time was reduced (P  G2 > G3). The solubility test revealed a difference amongst the groups when the specimens were hydrated: G2 > G1 > G3 and dehydrated: G3 > G2 > G1. The pH of the groups was similar at 24 h with higher values in each group after 30 days (P calcium carbonate had a cubic morphology with few impurities. The addition of nanoparticulate calcium carbonate to MTA accelerated the setting time, decreased compressive strength and, after 30 days, resulted in lower dimensional change (G2), higher solubility and a higher pH. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Rational solutions to two- and one-dimensional multicomponent Yajima–Oikawa systems

    International Nuclear Information System (INIS)

    Chen, Junchao; Chen, Yong; Feng, Bao-Feng; Maruno, Ken-ichi

    2015-01-01

    Exact explicit rational solutions of two- and one-dimensional multicomponent Yajima–Oikawa (YO) systems, which contain multi-short-wave components and single long-wave one, are presented by using the bilinear method. For two-dimensional system, the fundamental rational solution first describes the localized lumps, which have three different patterns: bright, intermediate and dark states. Then, rogue waves can be obtained under certain parameter conditions and their behaviors are also classified to above three patterns with different definition. It is shown that the simplest (fundamental) rogue waves are line localized waves which arise from the constant background with a line profile and then disappear into the constant background again. In particular, two-dimensional intermediate and dark counterparts of rogue wave are found with the different parameter requirements. We demonstrate that multirogue waves describe the interaction of several fundamental rogue waves, in which interesting curvy wave patterns appear in the intermediate times. Different curvy wave patterns form in the interaction of different types fundamental rogue waves. Higher-order rogue waves exhibit the dynamic behaviors that the wave structures start from lump and then retreat back to it, and this transient wave possesses the patterns such as parabolas. Furthermore, different states of higher-order rogue wave result in completely distinguishing lumps and parabolas. Moreover, one-dimensional rogue wave solutions with three states are constructed through the further reduction. Specifically, higher-order rogue wave in one-dimensional case is derived under the parameter constraints. - Highlights: • Exact explicit rational solutions of two-and one-dimensional multicomponent Yajima–Oikawa systems. • Two-dimensional rogue wave contains three different patterns: bright, intermediate and dark states. • Multi- and higher-order rogue waves exhibit distinct dynamic behaviors in two-dimensional case

  6. Numerical analysis of gas leakage in the piston-cylinder clearance of reciprocating compressors considering compressibility effects

    Science.gov (United States)

    Braga, V. M.; Deschamps, C. J.

    2017-08-01

    Leakage is a major source of inefficiency in low-capacity reciprocating compressors. Not only does it lower the mass flow rate provided by the compressor, reducing its volumetric efficiency, but also gives rise to outflux of energy that decreases the isentropic efficiency. Leakage in the piston-cylinder clearance of reciprocating compressors is driven by the piston motion and pressure difference between the compression chamber and the shell internal environment. In compressors adopted for domestic refrigeration, such a clearance is usually filled by a mixture of refrigerant and lubricating oil. Besides its lubricating function, the oil also acts as sealing element for the piston-cylinder clearance, and hence leakage is expected to be more detrimental to oil-free compressors. This paper presents a model based on the Reynolds equation for compressible fluid flow to predict leakage in oil-free reciprocating compressors. The model is solved throughout the compression cycle so as to assess the effect of the clearance geometry and piston velocity on leakage and compressor efficiency. The results show that compressible fluid flow formulation must be considered for predictions of gas leakage in the cylinder-piston clearance.

  7. The one-dimensional extended Bose–Hubbard model

    Indian Academy of Sciences (India)

    Unknown

    method to obtain the zero-temperature phase diagram of the one-dimensional, extended ... Progress in this field has been driven by an interplay between ... superconductor-insulator transition in thin films of superconducting materials like bis-.

  8. Potential development of compressed bio-methane gas production from pig farms and elephant grass silage for transportation in Thailand.

    Science.gov (United States)

    Dussadee, Natthawud; Reansuwan, Kamoldara; Ramaraj, Rameshprabu

    2014-03-01

    This research project evaluated biogas production using anaerobic co-digestion of pig manure and elephant grass silage in large scale to delivered transportation directly for cars. Anaerobic co-digestion was estimated in three full-scale continuously stirred tank reactors (CSTRs) at 40°C. In the form of compressed bio-methane gas (CBG) production was 14,400m(3)/day (CH4 60-70%) amount of CBG was 9600m(3)/day. The procedure was enhanced by using molecular sieve, activated carbon for removal of moisture and CO2 membrane H2S and CO2 respectively. The results were demonstrated the amount of CO2, H2S gas was reduced along with CH4 was improved up to 90% by volume and compressed to 250bar tank pressure gauge to the fuel for cars. The CBG production, methane gas improvement and performance were evaluated before entering the delivered systems according to the energy standards. The production of CBG is advantageous to strengthen the Thailand biogas market. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Analytical solution of one dimensional temporally dependent ...

    African Journals Online (AJOL)

    user

    transfer of heat in fluids, flow through porous media, and the spread of ... In present paper, advection-dispersion equation is considered one dimensional longitudinal initially solute free semi- .... free. Thus initial and boundary conditions for eq.

  10. Quasi-one-dimensional scattering in a discrete model

    DEFF Research Database (Denmark)

    Valiente, Manuel; Mølmer, Klaus

    2011-01-01

    We study quasi-one-dimensional scattering of one and two particles with short-range interactions on a discrete lattice model in two dimensions. One of the directions is tightly confined by an arbitrary trapping potential. We obtain the collisional properties of these systems both at finite and zero...

  11. Quantum autoencoders for efficient compression of quantum data

    Science.gov (United States)

    Romero, Jonathan; Olson, Jonathan P.; Aspuru-Guzik, Alan

    2017-12-01

    Classical autoencoders are neural networks that can learn efficient low-dimensional representations of data in higher-dimensional space. The task of an autoencoder is, given an input x, to map x to a lower dimensional point y such that x can likely be recovered from y. The structure of the underlying autoencoder network can be chosen to represent the data on a smaller dimension, effectively compressing the input. Inspired by this idea, we introduce the model of a quantum autoencoder to perform similar tasks on quantum data. The quantum autoencoder is trained to compress a particular data set of quantum states, where a classical compression algorithm cannot be employed. The parameters of the quantum autoencoder are trained using classical optimization algorithms. We show an example of a simple programmable circuit that can be trained as an efficient autoencoder. We apply our model in the context of quantum simulation to compress ground states of the Hubbard model and molecular Hamiltonians.

  12. Surgical Outcomes of Pneumatic Compression Using Carbon Dioxide Gas in Thoracoscopic Diaphragmatic Plication.

    Science.gov (United States)

    Ahn, Hyo Yeong; Kim, Yeong Dae; Hoseok, I; Cho, Jeong Su; Lee, Jonggeun; Son, Joohyung

    2016-12-01

    Surgical correction needs to be considered when diaphragm eventration leads to impaired ventilation and respiratory muscle fatigue. Plication to sufficiently tense the diaphragm by VATS is not as easy to achieve as plication by open surgery. We used pneumatic compression with carbon dioxide (CO 2 ) gas in thoracoscopic diaphragmatic plication and evaluated feasibility and efficacy. Eleven patients underwent thoracoscopic diaphragmatic plication between January 2008 and December 2013 in Pusan National University Hospital. Medical records were retrospectively reviewed, and compared between the group using CO 2 gas and group without using CO 2 gas, for operative time, plication technique, duration of hospital stay, postoperative chest tube drainage, pulmonary spirometry, dyspnea score pre- and postoperation, and postoperative recurrence. The improvement of forced expiratory volume at 1 second in the group using CO 2 gas and the group not using CO 2 gas was 22.46±11.27 and 21.08±5.39 (p=0.84). The improvement of forced vital capacity 3 months after surgery was 16.74±10.18 (with CO 2 ) and 15.6±0.89 (without CO 2 ) (p=0.03). During follow-up (17±17 months), there was no dehiscence in plication site and relapse. No complications or hospital mortalities occurred. Thoracoscopic plication under single lung ventilation using CO 2 insufflation could be an effective, safe option to flatten the diaphragm.

  13. Review of homogeneous charge compression ignition (HCCI) combustion engines and exhaust gas recirculation (EGR) effects on HCCI

    Science.gov (United States)

    Akma Tuan Kamaruddin, Tengku Nordayana; Wahid, Mazlan Abdul; Sies, Mohsin Mohd

    2012-06-01

    This paper describes the development in ICE which leads to the new advanced combustion mode named Homogeneous Charge Compression Ignition (HCCI). It explains regarding the theory and working principle of HCCI plus the difference of the process in gasoline and diesel fuelled engines. Many of pioneer and recent research works are discussed to get the current state of art about HCCI. It gives a better indication on the potential of this method in improving the fuel efficiency and emission produced by the vehicles' engine. Apart from the advantages, the challenges and future trend of this technology are also included. HCCI is applying few types of control strategy in producing the optimum performance. This paper looks into Exhaust Gas Recirculation (EGR) as one of the control strategies.

  14. Numerical investigation of the impact of gas composition on the combustion process in a dual-fuel compression-ignition engine

    NARCIS (Netherlands)

    Mikulski, M.; Wierzbicki, S.

    2016-01-01

    This study discusses the model of operation of a dual-fuel compression-ignition engine, powered by gaseous fuel with an initial dose of diesel fuel as the ignition inhibitor. The study used a zero-dimensional multiphase mathematical model of a dual-fuel engine to simulate the impact of enhancing

  15. Practical approach on gas pipeline compression system availability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sidney Pereira dos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Kurz, Rainer; Lubomirsky, Matvey [Solar Turbines, San Diego, CA (United States)

    2009-12-19

    Gas pipeline projects traditionally have been designed based on load factor and steady state flow. This approach exposes project sponsors to project sustainability risks due to potential losses of revenues and transportation contract penalties related to pipeline capacity shortage as consequence of compressor unit's unavailability. Such unavailability should previously be quantified during the design phase. This paper presents a case study and a methodology that highlights the practical benefits of applying Monte Carlo simulation for the compression system availability analysis in conjunction with quantitative risk analysis and economic feasibility study. Project economics main variables and their impacts on the project NPV (Net Present Value) are evaluated with their respective statistics distribution to quantify risk and support decision makers to adopt mitigating measures to guarantee competitiveness while protecting project sponsors from otherwise unpredictable risks. This practical approach is compared to load factor approach and the results are presented and evaluated. (author)

  16. One-dimensional low spatial frequency LIPSS with rotating orientation on fused silica

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Simon, E-mail: simon.schwarz@h-ab.de; Rung, Stefan; Hellmann, Ralf

    2017-07-31

    Highlights: • Generation of one-dimensional low spatial frequency LIPSS on transparent material. • Varying the angle of incidence results in a rotation of the one-dimensional LSFL. • Rotation angle of LSFL decreases with increasing the applied fluence. • Orientation of the LSFL is mirror-inverted when reversing the scanning direction. - Abstract: We report on the generation of one-dimensional low spatial frequency LIPSS on transparent material. The influence of the applied laser fluence and angle of incidence on the periodicity, orientation and quality of the one-dimensional low spatial frequency LIPSS is investigated, facilitating the generation of highly uniform LIPSS alongside a line. Most strikingly, however, we observe a previously unreported effect of a pronounced rotation of the one-dimensional low spatial frequency LIPSS for varying angle of incidence upon inclined laser irradiation.

  17. Compressing Data Cube in Parallel OLAP Systems

    Directory of Open Access Journals (Sweden)

    Frank Dehne

    2007-03-01

    Full Text Available This paper proposes an efficient algorithm to compress the cubes in the progress of the parallel data cube generation. This low overhead compression mechanism provides block-by-block and record-by-record compression by using tuple difference coding techniques, thereby maximizing the compression ratio and minimizing the decompression penalty at run-time. The experimental results demonstrate that the typical compression ratio is about 30:1 without sacrificing running time. This paper also demonstrates that the compression method is suitable for Hilbert Space Filling Curve, a mechanism widely used in multi-dimensional indexing.

  18. Algorithm for Compressing Time-Series Data

    Science.gov (United States)

    Hawkins, S. Edward, III; Darlington, Edward Hugo

    2012-01-01

    An algorithm based on Chebyshev polynomials effects lossy compression of time-series data or other one-dimensional data streams (e.g., spectral data) that are arranged in blocks for sequential transmission. The algorithm was developed for use in transmitting data from spacecraft scientific instruments to Earth stations. In spite of its lossy nature, the algorithm preserves the information needed for scientific analysis. The algorithm is computationally simple, yet compresses data streams by factors much greater than two. The algorithm is not restricted to spacecraft or scientific uses: it is applicable to time-series data in general. The algorithm can also be applied to general multidimensional data that have been converted to time-series data, a typical example being image data acquired by raster scanning. However, unlike most prior image-data-compression algorithms, this algorithm neither depends on nor exploits the two-dimensional spatial correlations that are generally present in images. In order to understand the essence of this compression algorithm, it is necessary to understand that the net effect of this algorithm and the associated decompression algorithm is to approximate the original stream of data as a sequence of finite series of Chebyshev polynomials. For the purpose of this algorithm, a block of data or interval of time for which a Chebyshev polynomial series is fitted to the original data is denoted a fitting interval. Chebyshev approximation has two properties that make it particularly effective for compressing serial data streams with minimal loss of scientific information: The errors associated with a Chebyshev approximation are nearly uniformly distributed over the fitting interval (this is known in the art as the "equal error property"); and the maximum deviations of the fitted Chebyshev polynomial from the original data have the smallest possible values (this is known in the art as the "min-max property").

  19. Quantum logic using correlated one-dimensional quantum walks

    Science.gov (United States)

    Lahini, Yoav; Steinbrecher, Gregory R.; Bookatz, Adam D.; Englund, Dirk

    2018-01-01

    Quantum Walks are unitary processes describing the evolution of an initially localized wavefunction on a lattice potential. The complexity of the dynamics increases significantly when several indistinguishable quantum walkers propagate on the same lattice simultaneously, as these develop non-trivial spatial correlations that depend on the particle's quantum statistics, mutual interactions, initial positions, and the lattice potential. We show that even in the simplest case of a quantum walk on a one dimensional graph, these correlations can be shaped to yield a complete set of compact quantum logic operations. We provide detailed recipes for implementing quantum logic on one-dimensional quantum walks in two general cases. For non-interacting bosons—such as photons in waveguide lattices—we find high-fidelity probabilistic quantum gates that could be integrated into linear optics quantum computation schemes. For interacting quantum-walkers on a one-dimensional lattice—a situation that has recently been demonstrated using ultra-cold atoms—we find deterministic logic operations that are universal for quantum information processing. The suggested implementation requires minimal resources and a level of control that is within reach using recently demonstrated techniques. Further work is required to address error-correction.

  20. One-dimensional crystal with a complex periodic potential

    International Nuclear Information System (INIS)

    Boyd, John K.

    2001-01-01

    A one-dimensional crystal model is constructed with a complex periodic potential. A wave function solution for the crystal model is derived without relying on Bloch functions. The new wave function solution of this model is shown to correspond to the solution for the probability amplitude of a two-level system. The energy discriminant is evaluated using an analytic formula derived from the probability amplitude solution, and based on an expansion parameter related to the energy and potential amplitude. From the wave function energy discriminant the crystal band structure is derived and related to standard energy bands and gaps. It is also shown that several of the properties of the two-level system apply to the one-dimensional crystal model. The two-level system solution which evolves in time is shown to manifest as a spatial configuration of the one-dimensional crystal model. The sensitivity of the wave function probability density is interpreted in the context of the new solution. The spatial configuration of the wave function, and the appearance of a long wavelength in the wave function probability density is explained in terms of the properties of Bessel functions

  1. One dimensional Bosons: From Condensed Matter Systems to Ultracold Gases

    OpenAIRE

    Cazalilla, M. A.; Citro, R.; Giamarchi, T.; Orignac, E.; Rigol, M.

    2011-01-01

    The physics of one-dimensional interacting bosonic systems is reviewed. Beginning with results from exactly solvable models and computational approaches, the concept of bosonic Tomonaga-Luttinger liquids relevant for one-dimensional Bose fluids is introduced, and compared with Bose-Einstein condensates existing in dimensions higher than one. The effects of various perturbations on the Tomonaga-Luttinger liquid state are discussed as well as extensions to multicomponent and out of equilibrium ...

  2. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation

    Science.gov (United States)

    Wang, Xuerui; Chi, Chenglong; Zhang, Kang; Qian, Yuhong; Gupta, Krishna M.; Kang, Zixi; Jiang, Jianwen; Zhao, Dan

    2017-02-01

    It is highly desirable to reduce the membrane thickness in order to maximize the throughput and break the trade-off limitation for membrane-based gas separation. Two-dimensional membranes composed of atomic-thick graphene or graphene oxide nanosheets have gas transport pathways that are at least three orders of magnitude higher than the membrane thickness, leading to reduced gas permeation flux and impaired separation throughput. Here we present nm-thick molecular sieving membranes composed of porous two-dimensional metal-organic nanosheets. These membranes possess pore openings parallel to gas concentration gradient allowing high gas permeation flux and high selectivity, which are proven by both experiment and molecular dynamics simulation. Furthermore, the gas transport pathways of these membranes exhibit a reversed thermo-switchable feature, which is attributed to the molecular flexibility of the building metal-organic nanosheets.

  3. Burned gas and unburned mixture composition prediction in biodiesel-fuelled compression igniton engine

    International Nuclear Information System (INIS)

    Chuepeng, S.; Komintarachati, C.

    2009-01-01

    A prediction of burned gas and unburned mixture composition from a variety of methyl ester based bio diesel combustion in compression ignition engine, in comparison with conventional diesel fuel is presented. A free-energy minimisation scheme was used to determine mixture composition. Firstly, effects of bio diesel type were studied without exhaust gas recirculation (EGR). The combustion of the higher hydrogen-to-carbon molar ratio (H/C) bio diesel resulted in lower carbon dioxide and oxygen emissions but higher water vapour in the exhaust gases, compared to those of lower H/C ratios. At the same results also show that relative air-to-fuel ratio, that bio diesel combustion gases contain a higher amount of water vapour and a higher level of carbon dioxide compared to those of diesel. Secondly, influences of EGR (burned gas fraction) addition to bio diesel-fuelled engine on unburned mixture were simulated. For both diesel and bio diesel, the increased burned gas fraction addition to the fresh charge increased carbon dioxide and water vapour emissions while lowering oxygen content, especially for the bio diesel case. The prediction was compared with experimental results from literatures; good agreement was found. This can be considered to be a means for explaining some phenomenon occurring in bio diesel-fuelled engines. (author)

  4. Time-dependent solution for a one-dimensional piston problem in a non-ideal gas

    International Nuclear Information System (INIS)

    Purohit, S.C.

    1980-01-01

    In this article we study the effect of a non-ideal gas parameter on the piston (contact) surface when a strong shock moves into a non-uniform medium. The solution corresponding to the ideal gas can be obtained as a particular case of the analysis. (orig.)

  5. Active bypass flow control for a seal in a gas turbine engine

    Science.gov (United States)

    Ebert, Todd A.; Kimmel, Keith D.

    2017-01-10

    An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears. In at least one embodiment, the metering device may include a valve formed from one or more pins movable between open and closed positions in which the one pin at least partially bisects the bypass channel to regulate flow.

  6. Assessment of neurovascular compression in patients with trigeminal neuralgia with a boundary fusion three-dimensional magnetic resonance cisternogram/angiogram

    International Nuclear Information System (INIS)

    Satoh, Toru; Omi, Megumi; Ohsako, Chika; Onoda, Keisuke; Date, Isao

    2007-01-01

    Precise assessment of the complex nerve-vessel relationship at the root entry zone (REZ) of the trigeminal nerve is useful for the planning of the microvascular decompression (MVD) in patients with trigeminal neuralgia. We have applied a boundary imaging of fusion three-dimensional (3D) magnetic resonance (MR) cisternogram/angiogram. The boundary imaging allows virtual assessment of the spatial relationship of the neurovascular compression at the REZ of the trigeminal nerve. The boundary images depicted complex anatomical relationship of the offending vessels to the trigeminal nerve REZ. The presence of offending vessels, compressive site, and degree of neurovascular compression were assessed from various viewpoints in the cistern and virtually through the brainstem and trigeminal nerve per se. The 3D visualization of the nerve-vessel relationship with fusion images was consistent with the intraoperative findings. The boundary fusion 3D MR cisternogram/angiogram may prove a useful adjunct for the diagnosis and decision-marking process to execute the MVD in patients with trigeminal neuralgia. (author)

  7. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot Diesel fuel and natural gas

    International Nuclear Information System (INIS)

    Papagiannakis, R.G.; Hountalas, D.T.

    2004-01-01

    Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines, i.e. they use conventional Diesel fuel and a gaseous fuel as well. This technology is currently reintroduced, associated with efforts to overcome various difficulties of HCCI engines, using various fuels. The use of natural gas as an alternative fuel is a promising solution. The potential benefits of using natural gas in Diesel engines are both economical and environmental. The high autoignition temperature of natural gas is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under dual fuel conditions. The primary amount of fuel is the gaseous one, which is ignited by a pilot Diesel liquid injection. Comparative results are given for various engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions

  8. Treatment of mandibular angle fracture with a 2mm, 3 dimensional rectangular grid compression miniplates: A prospective clinical study.

    Science.gov (United States)

    Mansuri, Samir; Abdulkhayum, Abdul Mujeeb; Gazal, Giath; Hussain, Mohammed Abid Zahir

    2013-12-01

    Surgical treatment of fracture mandible using an internal fixation has changed in the last decades to achieve the required rigidity, stability and immediate restoration of function. The aim of the study was to do a Prospective study of 10 patients to determine the efficacy of rectangular grid compression miniplates in mandibular fractures. This study was carried out using 2.0 rectangular grid compression miniplates and 8 mm multidirectional screws as a rigid internal fixation in 10 patients without post operative intermaxillary fixation (IMF). Follow up was done for period of 6 months. All fractures were healed with an absolute stability in post operative period. None of the patient complained of post operative difficulty in occlusion. Within the limits of this study, it can be concluded that rectangular grid compression miniplates was rigid, reliable and thus can be recommended for the treatment of mandibular angle fractures. How to cite this article: Mansuri S, Abdulkhayum AM, Gazal G, Hussain MA. Treatment of mandibular angle fracture with a 2mm, 3 dimensional rectangular grid compression miniplates: A prospective clinical study. J Int Oral Health 2013;5(6):93-100 .

  9. Ptosis as partial oculomotor nerve palsy due to compression by infundibular dilatation of posterior communicating artery, visualized with three-dimensional computer graphics: case report.

    Science.gov (United States)

    Fukushima, Yuta; Imai, Hideaki; Yoshino, Masanori; Kin, Taichi; Takasago, Megumi; Saito, Kuniaki; Nakatomi, Hirofumi; Saito, Nobuhito

    2014-01-01

    Oculomotor nerve palsy (ONP) due to internal carotid-posterior communicating artery (PcomA) aneurysm generally manifests as partial nerve palsy including pupillary dysfunction. In contrast, infundibular dilatation (ID) of the PcomA has no pathogenic significance, and mechanical compression of the cranial nerve is extremely rare. We describe a 60-year-old woman who presented with progressive ptosis due to mechanical compression of the oculomotor nerve by an ID of the PcomA. Three-dimensional computer graphics (3DCG) accurately visualized the mechanical compression by the ID, and her ptosis was improved after clipping of the ID. ID of the PcomA may cause ONP by mechanical compression and is treatable surgically. 3DCG are effective for the diagnosis and preoperative simulation.

  10. Localization of the solution of a one-dimensional one-phase Stefan problem

    OpenAIRE

    Cortazar, C.; Elgueta, M.; Primicerio, M.

    1996-01-01

    Studiamo la localizzazione, l'insieme dei punti di blow up ed alcuni aspetti della velocità di propagazione della frontiera libera di soluzioni di un problema di Stefan unidimensionale ad una fase. We study localization, the set of blow up points and some aspects of the speed of the free boundary of solutions of a one-dimensional, one-phase Stefan problem.

  11. Incorrectness of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional circular composite pipes

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Chen, W.-L.; Yu, S.-J.

    2008-01-01

    This study is to prove that two-dimensional steady state heat transfer problems of composite circular pipes cannot be appropriately solved by the conventional one-dimensional parallel thermal resistance circuits (PTRC) model because its interface temperatures are not unique. Thus, the PTRC model is definitely different from its conventional recognized analogy, parallel electrical resistance circuits (PERC) model, which has unique node electric voltages. Two typical composite circular pipe examples are solved by CFD software, and the numerical results are compared with those obtained by the PTRC model. This shows that the PTRC model generates large error. Thus, this conventional model, introduced in most heat transfer text books, cannot be applied to two-dimensional composite circular pipes. On the contrary, an alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to a two-dimensional composite circular pipe with isothermal boundaries, and acceptable results are returned

  12. Exact pairing correlations in one-dimensional trapped fermions with stochastic mean-field wave-functions

    Energy Technology Data Exchange (ETDEWEB)

    Juillet, O.; Gulminelli, F. [Caen Univ., Lab. de Physique Corpusculaire (LPC/ENSICAEN), 14 (France); Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)

    2003-11-01

    The canonical thermodynamic properties of a one-dimensional system of interacting spin-1/2 fermions with an attractive zero-range pseudo-potential are investigated within an exact approach. The density operator is evaluated as the statistical average of dyadics formed from a stochastic mean-field propagation of independent Slater determinants. For an harmonically trapped Fermi gas and for fermions confined in a 1D-like torus, we observe the transition to a quasi-BCS state with Cooper-like momentum correlations and an algebraic long-range order. For few trapped fermions in a rotating torus, a dominant superfluid component with quantized circulation can be isolated. (author)

  13. On the question of gas-dynamic temperature stratification device optimization

    Science.gov (United States)

    Khazov, Dmitry

    2017-11-01

    One- and two-dimensional mathematical models of the devices for the machine-free energy separation of compressible gas flows have been considered. The device is a “pipe in a pipe” heat exchanger; the supersonic flow passes along an internal cylindrical channel, the subsonic flow — along an external annular channel. Energy separation takes place without any moving pieces. Main stream divides in two parts: a cold one (subsonic) and a hot one (supersonic). The proposed models were validated in a wide range of input parameters changes. The influence of a direct and counter flow pattern at the energy separation effect was investigated in terms of subsonic cooling maximization. By using the developed models, the optimal profiles of the supersonic channel were determined from the maximum energy separation effect point of view at identical initial total pressures, total temperatures and mass flows.

  14. Resonant tunneling and persistent current of a non-interacting and weakly interacting one-dimensional electron gas

    International Nuclear Information System (INIS)

    Krive, I.V.; Sandstroem, P.

    1997-01-01

    The persistent current for a one-dimensional ring with two tunneling barriers is considered in the limit of weakly interacting electrons. In addition to small off-resonance current, there are two kinds of resonant behaviour; (i) a current independent of the barrier transparency (true resonance) and (ii) a current analogous to the one for a ring with only single barrier (''semi''-resonance). For a given barrier transparency the realization of this or that type of resonant behaviour depends both on the geometrical factor (the ratio of interbarrier distance to a ring circumference) and on the strength of electron-electron interaction. It is shown that repulsive interaction favours the ''semi''-resonance behaviour. For a small barrier transparency the ''semi''-resonance peaks are easily washed out by temperature whereas the true resonance peaks survive. (author). 22 refs, 2 figs

  15. One-dimensional metallic edge states in MoS2

    DEFF Research Database (Denmark)

    Bollinger, Mikkel; Lauritsen, J.V.; Jacobsen, Karsten Wedel

    2001-01-01

    By the use of density functional calculations it is shown that the edges of a two-dimensional slab of insulating MoS2 exhibit several metallic states. These edge states can be viewed as one-dimensional conducting wires, and we show that they can be observed directly using scanning tunneling...

  16. One and two dimensional simulations on beat wave acceleration

    International Nuclear Information System (INIS)

    Mori, W.; Joshi, C.; Dawson, J.M.; Forslund, D.W.; Kindel, J.M.

    1984-01-01

    Recently there has been considerable interest in the use of fast-large-amplitude plasma waves as the basis for a high energy particle accelerator. In these schemes, lasers are used to create the plasma wave. To date the few simulation studies on this subject have been limited to one-dimensional, short rise time simulations. Here the authors present results from simulations in which more realistic parameters are used. In addition, they present the first two dimensional simulations on this subject. One dimensional simulations on a 2 1/2-D relativistic electromagnetic particle code, in which only a few cells were used in one direction, on colinear optical mixing are presented. In these simulations the laser rise time, laser intensity, plasma density, plasma temperature and system size were varied. The simulations indicate that the theory of Rosenbluth and Liu is applicable over a wide range of parameters. In addition, simulations with a DC magnetic field are presented in order to study the ''Surfatron'' concept

  17. GITTAM program for numerical simulation of one-dimensional targets TIS. Part 2

    International Nuclear Information System (INIS)

    Arpishkin, Yu.P.; Basko, M.M.; Sokolovskij, M.V.

    1989-01-01

    A finite-difference algorithm for numeric solution of a system of one-dimensional hydrodynamics equation with heat conductivity, radiation diffusion and thermonuclear combustion is considered. The algorithm presented allows one to simulate one-dimensional thermonuclear targets for heavy-ion synthesis (HIS), irradiated with heavy ion beams. A brief description of a complex of GITTAM programs in which finite-difference algorithm for one-dimensional thermonuclear HIS target simulation is used, is given. 5 refs.; 3 figs

  18. Shock dynamics of weak imploding cylindrical and spherical shock waves with non-ideal gas effects

    International Nuclear Information System (INIS)

    Anand, R K

    2013-01-01

    The author (Anand 2012 Astrophys. Space Sci. 342 377–88) recently obtained jump relations across a shock front in non-ideal gas flow taking into consideration the equation of state for a non-ideal gas as given by Landau and Lifshitz. In this paper an analytical solution for one-dimensional adiabatic flow behind weak converging shock waves propagating in a non-ideal gas is obtained by using Whitham's (1974 Linear and Nonlinear Waves (New York: Wiley)) geometrical shock dynamics approach. The effects of an increase in (i) the propagation distance from the centre of convergence, (ii) the non-idealness parameter and (iii) the adiabatic index of the gas, on the shock velocity, pressure, density, particle velocity, adiabatic compressibility and the change in entropy across the shock front, are analyzed. The results provided a clear picture of whether and how the non-idealness parameter and the adiabatic index affect the flow field behind the imploding shock front. (paper)

  19. Thermal fluid dynamic behavior of coolant helium gas in a typical reactor VHTGR channel of prismatic core

    International Nuclear Information System (INIS)

    Belo, Allan Cavalcante

    2016-01-01

    The current studies about the thermal fluid dynamic behavior of the VHTGR core reactors of 4 th generation are commonly developed in 3-D analysis in CFD (computational fluid dynamics), which often requires considerable time and complex mathematical calculations for carrying out these analysis. The purpose of this project is to achieve thermal fluid dynamic analysis of flow of gas helium refrigerant in a typical channel of VHTGR prismatic core reactor evaluating magnitudes of interest such as temperature, pressure and fluid velocity and temperature distribution in the wall of the coolant channel from the development of a computer code in MATLAB considering the flow on one-dimensional channel, thereby significantly reducing the processing time of calculations. The model uses three different references to the physical properties of helium: expressions given by the KTA (German committee of nuclear safety standards), the computational tool REFPROP and a set of constant values for the entire channel. With the use of these three references it is possible to simulate the flow treating the gas both compressible and incompressible. The results showed very close values for the interest quantities and revealed that there are no significant differences in the use of different references used in the project. Another important conclusion to be observed is the independence of helium in the gas compressibility effects on thermal fluid dynamic behavior. The study also indicated that the gas undergoes no severe effects due to high temperature variations in the channel, since this goes in the channel at 914 K and exits at approximately 1263 K, which shows the excellent use of helium as a refrigerant fluid in reactor channels VHTGR. The comparison of results obtained in this work with others in the literature served to confirm the effectiveness of the one-dimensional consideration of method of gas flow in the coolant channel to replace the models made in 3-D for the pressure range and

  20. Experimental Investigation on Low-velocity Impact and Compression After Impact Properties of Three-dimensional Five-directional Braided Composites

    Directory of Open Access Journals (Sweden)

    YAN Shi

    2017-12-01

    Full Text Available The low-velocity impact and compression after impact (CAI properties of three-dimensional (3D five-directional carbon fiber/epoxy resin braided composites were experimentally investigated. Specimens prepared with different braiding angles were tested at the same impact energy level. Residual post-impact mechanical properties of the different configurations were characterized by compression after impact tests. Results show that the specimens with bigger braiding angle sustain higher peak loads, and smaller impact damage area, mainly attributes to a more compact space construction. The CAI strength and damage mechanism are found to be mainly dependent on the axial support of the braiding fiber tows. With the increase of braiding angle, the CAI strength decreases, and the damage mode of the composites is changed from transverse fracture to shear failure.

  1. Iranian 42/40 inch gas line to central Persia and USSR one of the world's largest

    Energy Technology Data Exchange (ETDEWEB)

    Naghavi, S; Manoochehri, N

    1969-03-01

    Iran Gas Trunkline consists of 1,120 km of 42 in./40 in. main pipeline, and 675 km of spur lines. It also consists of 104 km gas gathering lines, compression facilities for collection, treatment, and transportation of dry sweet gas to Shiraz, Esfahan and Tehran for industrial purposes in early spring 1970 and export gas to Russia during fall that year. The system will have an ultimate capacity for 1,650 MMscfd of gas equivalent to about 275,000 bpd of crude oil. Distribution will commence in Tehran and Esfahan in 1970, probably to industrial consumers only initially, but later on also to domestic and commercial users. Gas will be used extensively for power generation in these cities, the need for which is increasing rapidly. The source gas used in this pipeline would otherwise be flared to waste.

  2. One dimensional model for polytypes

    International Nuclear Information System (INIS)

    Rosato, A.

    1979-01-01

    The general expression for the dispersion relation for a polyatomic one dimensional crystal obtained by the Laplace Transform Method is applied to materials with the fcc and hcp structures, both consisting of close-packed planes of atoms with the stacking sequence of plane ABC/ABC... and AB/AB... respectively. The expression is also applied to polytypes, that is materials caracterized by a stacking sequence with longer repeat unit. The effective mass is cast in a condensed form useful for further calculations. The results from this simple model are only qualitative. (Author) [pt

  3. A review on one dimensional perovskite nanocrystals for piezoelectric applications

    Directory of Open Access Journals (Sweden)

    Li-Qian Cheng

    2016-03-01

    Full Text Available In recent years, one-dimensional piezoelectric nanomaterials have become a research topic of interest because of their special morphology and excellent piezoelectric properties. This article presents a short review on one dimensional perovskite piezoelectric materials in different systems including Pb(Zr,TiO3, BaTiO3 and (K,NaNbO3 (KNN. We emphasize KNN as a promising lead-free piezoelectric compound with a high Curie temperature and high piezoelectric properties and describe its synthesis and characterization. In particular, details are presented for nanoscale piezoelectricity characterization of a single KNN nanocrystal by piezoresponse force microscopy. Finally, this review describes recent progress in applications based on one dimensional piezoelectric nanostructures with a focus on energy harvesting composite materials.

  4. Resonance Raman spectroscopy in one-dimensional carbon materials

    Directory of Open Access Journals (Sweden)

    Dresselhaus Mildred S.

    2006-01-01

    Full Text Available Brazil has played an important role in the development and use of resonance Raman spectroscopy as a powerful characterization tool for materials science. Here we present a short history of Raman scattering research in Brazil, highlighting the important contributions to the field coming from Brazilian researchers in the past. Next we discuss recent and important contributions where Brazil has become a worldwide leader, that is on the physics of quasi-one dimensional carbon nanotubes. We conclude this article by presenting results from a very recent resonance Raman study of exciting new materials, that are strictly one-dimensional carbon chains formed by the heat treatment of very pure double-wall carbon nanotube samples.

  5. Geophysical assessments of renewable gas energy compressed in geologic pore storage reservoirs.

    Science.gov (United States)

    Al Hagrey, Said Attia; Köhn, Daniel; Rabbel, Wolfgang

    2014-01-01

    Renewable energy resources can indisputably minimize the threat of global warming and climate change. However, they are intermittent and need buffer storage to bridge the time-gap between production (off peak) and demand peaks. Based on geologic and geochemical reasons, the North German Basin has a very large capacity for compressed air/gas energy storage CAES in porous saltwater aquifers and salt cavities. Replacing pore reservoir brine with CAES causes changes in physical properties (elastic moduli, density and electrical properties) and justify applications of integrative geophysical methods for monitoring this energy storage. Here we apply techniques of the elastic full waveform inversion FWI, electric resistivity tomography ERT and gravity to map and quantify a gradually saturated gas plume injected in a thin deep saline aquifer within the North German Basin. For this subsurface model scenario we generated different synthetic data sets without and with adding random noise in order to robust the applied techniques for the real field applications. Datasets are inverted by posing different constraints on the initial model. Results reveal principally the capability of the applied integrative geophysical approach to resolve the CAES targets (plume, host reservoir, and cap rock). Constrained inversion models of elastic FWI and ERT are even able to recover well the gradual gas desaturation with depth. The spatial parameters accurately recovered from each technique are applied in the adequate petrophysical equations to yield precise quantifications of gas saturations. Resulting models of gas saturations independently determined from elastic FWI and ERT techniques are in accordance with each other and with the input (true) saturation model. Moreover, the gravity technique show high sensitivity to the mass deficit resulting from the gas storage and can resolve saturations and temporal saturation changes down to ±3% after reducing any shallow fluctuation such as that of

  6. The inaccuracy of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional composite walls

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Hsiao, M.-C.; Chen, W.-L.; Lin, K.-C.

    2008-01-01

    This investigation is to show that two-dimensional steady state heat transfer problems of composite walls should not be solved by the conventionally one-dimensional parallel thermal resistance circuits (PTRC) model because the interface temperatures are not unique. Thus PTRC model cannot be used like its conventional recognized analogy, parallel electrical resistance circuits (PERC) model which has the unique node electric voltage. Two typical composite wall examples, solved by CFD software, are used to demonstrate the incorrectness. The numerical results are compared with those obtained by PTRC model, and very large differences are observed between their results. This proves that the application of conventional heat transfer PTRC model to two-dimensional composite walls, introduced in most heat transfer text book, is totally incorrect. An alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to the two-dimensional composite walls with isothermal boundaries. Results with acceptable accuracy can be obtained by the new model

  7. Seismic response of high temperature gas-cooled reactor core with block-type fuel, (2)

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Honma, Toshiaki.

    1980-01-01

    For the aseismic design of a high temperature gas-cooled reactor (HTGR) with block-type fuel, it is necessary to predict the motion and force of core columns and blocks. To reveal column vibration characteristics in three-dimensional space and impact response, column vibration tests were carried out with a scale model of a one-region section (seven columns) of the HTGR core. The results are as follows: (1) the column has a soft spring characteristic based on stacked blocks connected with loose pins, (2) the column has whirling phenomena, (3) the compression spring force simulating the gas pressure has the effect of raising the column resonance frequency, and (4) the vibration behavior of the stacked block column and impact response of the surrounding columns show agreement between experiment and analysis. (author)

  8. Small angle X-ray scattering experiments with three-dimensional imaging gas detectors

    International Nuclear Information System (INIS)

    La Monaca, A.; Iannuzzi, M.; Messi, R.

    1985-01-01

    Measurements of small angle X-ray scattering of lupolen - R, dry collagen and dry cornea are presented. The experiments have been performed with synchrotron radiation and a new three-dimensional imaging drif-chamber gas detector

  9. Gas deliverability forecasting - why bother?

    International Nuclear Information System (INIS)

    Trick, M.

    1996-01-01

    According to the author the answer to the question is an unequivocal 'yes' because gas production forecasting is extremely useful for the management and development of a gas field. To model a gas field, one must take into account reservoir performance, sandface inflow performance, wellbore pressure losses, gathering system pressure losses, and field facility performance. The integration of all these factors in a single computer-based model that incorporates proven technology will facilitate the evaluation of various development strategies. A good computer model can help to predict the most cost effective improvement methods, determine economic viability, estimate how much gas is available, evaluate whether drilling wells or adding compression will produce the most reserves, determine optimum placement of compression, evaluate changes to the gathering system, and determine if production from existing wells can be increased by wellbore modifications

  10. Realization of Configurable One-Dimensional Reflectarray

    Science.gov (United States)

    2017-08-31

    experiments show strong signatures of beam steering that are dependent upon graphene doping. This seed grant has allowed our team to establish the essential...based, one-dimensional reflectarrays. Several immediate improvements to the device design and process flow are essential to suppress specular...beam steering that are dependent upon graphene doping. This seed grant has allowed our team to establish the essential operating procedures (i.e

  11. Analysis of the transient compressible vapor flow in heat pipes

    Science.gov (United States)

    Jang, J. H.; Faghri, A.; Chang, W. S.

    1989-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

  12. Analysis of the transient compressible vapor flow in heat pipe

    International Nuclear Information System (INIS)

    Jang, J.H.; Faghri, A.; Chang, W.S.

    1989-07-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures

  13. Analysis of the transient compressible vapor flow in heat pipe

    Science.gov (United States)

    Jang, Jong Hoon; Faghri, Amir; Chang, Won Soon

    1989-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

  14. One-dimensional treatment of polyatomic crystals by the Laplace transform method

    International Nuclear Information System (INIS)

    Rosato, A.; Santana, P.H.A.

    1976-01-01

    The one dimensional periodic potential problem is solved using the Laplace transform method and a condensed expression for the relation E x k and effective mass for one electron in a polyatomic structure is determined. Applications related to the effect of the asymmetry of the potential upon the one dimensional band structure are discussed [pt

  15. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Science.gov (United States)

    Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D.

    2016-08-01

    This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  16. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Directory of Open Access Journals (Sweden)

    Thomas M. Vlasic

    2016-08-01

    Full Text Available This work uses density functional theory (DFT to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane, at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  17. Surgical Outcomes of Pneumatic Compression Using Carbon Dioxide Gas in Thoracoscopic Diaphragmatic Plication

    Directory of Open Access Journals (Sweden)

    Hyo Yeong Ahn

    2016-12-01

    Full Text Available Background: Surgical correction needs to be considered when diaphragm eventration leads to impaired ventilation and respiratory muscle fatigue. Plication to sufficiently tense the diaphragm by VATS is not as easy to achieve as plication by open surgery. We used pneumatic compression with carbon dioxide (CO2 gas in thoracoscopic diaphragmatic plication and evaluated feasibility and efficacy. Methods: Eleven patients underwent thoracoscopic diaphragmatic plication between January 2008 and December 2013 in Pusan National University Hospital. Medical records were retrospectively reviewed, and compared between the group using CO2 gas and group without using CO2 gas, for operative time, plication technique, duration of hospital stay, postoperative chest tube drainage, pulmonary spirometry, dyspnea score pre- and postoperation, and postoperative recurrence. Results: The improvement of forced expiratory volume at 1 second in the group using CO2 gas and the group not using CO2 gas was 22.46±11.27 and 21.08±5.39 (p=0.84. The improvement of forced vital capacity 3 months after surgery was 16.74±10.18 (with CO2 and 15.6±0.89 (without CO2 (p=0.03. During follow-up (17±17 months, there was no dehiscence in plication site and relapse. No complications or hospital mortalities occurred. Conclusion: Thoracoscopic plication under single lung ventilation using CO2 insufflation could be an effective, safe option to flatten the diaphragm.

  18. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Energy Technology Data Exchange (ETDEWEB)

    Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D., E-mail: alejandro.rey@mcgill.ca [Department of Chemical Engineering, McGill University, Montreal H3A 0C5 (Canada)

    2016-08-15

    This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  19. The appropriateness of one-dimensional Yucca Mountain hydrologic calculations

    International Nuclear Information System (INIS)

    Eaton, R.R.

    1993-07-01

    This report brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. it is shown that, in many cases, one-dimensional modeling is more rigorous than previously assumed

  20. Study of three-dimensional Rayleigh--Taylor instability in compressible fluids through level set method and parallel computation

    International Nuclear Information System (INIS)

    Li, X.L.

    1993-01-01

    Computation of three-dimensional (3-D) Rayleigh--Taylor instability in compressible fluids is performed on a MIMD computer. A second-order TVD scheme is applied with a fully parallelized algorithm to the 3-D Euler equations. The computational program is implemented for a 3-D study of bubble evolution in the Rayleigh--Taylor instability with varying bubble aspect ratio and for large-scale simulation of a 3-D random fluid interface. The numerical solution is compared with the experimental results by Taylor

  1. Scattering resonances in a low-dimensional Rashba-Dresselhaus spin-orbit coupled quantum gas

    Science.gov (United States)

    Wang, Su-Ju; Blume, D.

    2017-04-01

    Confinement-induced resonances allow for the tuning of the effective one-dimensional coupling constant. When the scattering state associated with the ground transverse mode is brought into resonance with the bound state attached to the energetically excited transverse modes, the atoms interact through an infinitely strong repulsion. This provides a route to realize the Tonks-Girardeau gas. On the other hand, the realization of synthetic gauge fields in cold atomic systems has attracted a lot of attention. For instance, bound-state formation is found to be significantly modified in the presence of spin-orbit coupling in three dimensions. This motivates us to study ultracold collisions between two Rashba-Dresselhaus spin-orbit coupled atoms in a quasi-one-dimensional geometry. We develop a multi-channel scattering formalism that accounts for the external transverse confinement and the spin-orbit coupling terms. The interplay between these two single-particle terms is shown to give rise to new scattering resonances. In particular, it is analyzed what happens when the scattering energy crosses the various scattering thresholds that arise from the single-particle confinement and the spin-orbit coupling. Support by the NSF is gratefully acknowledged.

  2. One-dimensional calculation of flow branching using the method of characteristics

    International Nuclear Information System (INIS)

    Meier, R.W.; Gido, R.G.

    1978-05-01

    In one-dimensional flow systems, the flow often branches, such as at a tee or manifold. The study develops a formulation for calculating the flow through branch points with one-dimensional method of characteristics equations. The resultant equations were verified by comparison with experimental measurements

  3. Quantitative hyperbolicity estimates in one-dimensional dynamics

    International Nuclear Information System (INIS)

    Day, S; Kokubu, H; Pilarczyk, P; Luzzatto, S; Mischaikow, K; Oka, H

    2008-01-01

    We develop a rigorous computational method for estimating the Lyapunov exponents in uniformly expanding regions of the phase space for one-dimensional maps. Our method uses rigorous numerics and graph algorithms to provide results that are mathematically meaningful and can be achieved in an efficient way

  4. One-dimensional autonomous systems and dissipative systems

    International Nuclear Information System (INIS)

    Lopez, G.

    1996-01-01

    The Lagrangian and the Generalized Linear Momentum are given in terms of a constant of motion for a one-dimensional autonomous system. The possibility of having an explicit Hamiltonian expression is also analyzed. The approach is applied to some dissipative systems. Copyright copyright 1996 Academic Press, Inc

  5. One-dimensional position readout from microchannel plates

    International Nuclear Information System (INIS)

    Connell, K.A.; Przybylski, M.M.

    1982-01-01

    The development of a one-dimensional position readout system with microchannel plates, is described, for heavy ion detectors for use in a particle time-of-flight telescope and as a position sensitive device in front of an ionisation counter at the Nuclear Structure Facility. (U.K.)

  6. One-dimensional transport code for one-group problems in plane geometry

    International Nuclear Information System (INIS)

    Bareiss, E.H.; Chamot, C.

    1970-09-01

    Equations and results are given for various methods of solution of the one-dimensional transport equation for one energy group in plane geometry with inelastic scattering and an isotropic source. After considerable investigation, a matrix method of solution was found to be faster and more stable than iteration procedures. A description of the code is included which allows for up to 24 regions, 250 points, and 16 angles such that the product of the number of angles and the number of points is less than 600

  7. The one-dimensional Gross-Pitaevskii equation and its some excitation states

    Energy Technology Data Exchange (ETDEWEB)

    Prayitno, T. B., E-mail: trunk-002@yahoo.com [Physics Department, Faculty of Mathematics and Natural Science, Universitas Negeri Jakarta, Jl. Pemuda Rawamangun no. 10, Jakarta, 13220 (Indonesia)

    2015-04-16

    We have derived some excitation states of the one-dimensional Gross-Pitaevskii equation coupled by the gravitational potential. The methods that we have used here are taken by pursuing the recent work of Kivshar et. al. by considering the equation as a macroscopic quantum oscillator. To obtain the states, we have made the appropriate transformation to reduce the three-dimensional Gross-Pitaevskii equation into the one-dimensional Gross-Pitaevskii equation and applying the time-independent perturbation theory in the general solution of the one-dimensional Gross-Pitaevskii equation as a linear superposition of the normalized eigenfunctions of the Schrödinger equation for the harmonic oscillator potential. Moreover, we also impose the condition by assuming that some terms in the equation should be so small in order to preserve the use of the perturbation method.

  8. Surfactant 1-Hexadecyl-3-methylimidazolium Chloride Can Convert One-Dimensional Viologen Bromoplumbate into Zero-Dimensional.

    Science.gov (United States)

    Liu, Guangfeng; Liu, Jie; Nie, Lina; Ban, Rui; Armatas, Gerasimos S; Tao, Xutang; Zhang, Qichun

    2017-05-15

    A zero-dimensional N,N'-dibutyl-4,4'-dipyridinium bromoplumbate, [BV] 6 [Pb 9 Br 30 ], with unusual discrete [Pb 9 Br 30 ] 12- anionic clusters was prepared via a facile surfactant-mediated solvothermal process. This bromoplumbate exhibits a narrower optical band gap relative to the congeneric one-dimensional viologen bromoplumbates.

  9. One-Dimensional Forward–Forward Mean-Field Games

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Diogo A., E-mail: diogo.gomes@kaust.edu.sa; Nurbekyan, Levon; Sedjro, Marc [King Abdullah University of Science and Technology (KAUST), CEMSE Division (Saudi Arabia)

    2016-12-15

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  10. One-Dimensional Forward–Forward Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.; Nurbekyan, Levon; Sedjro, Marc

    2016-01-01

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  11. One-Dimensional Forward–Forward Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.

    2016-11-01

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  12. Quantum interference of ballistic carriers in one-dimensional semiconductor rings

    International Nuclear Information System (INIS)

    Bagraev, N.T.; Buravlev, A.D.; Klyachkin, L.E.; Malyarenko, A.M.; Ivanov, V.K.; Rykov, S.A.; Shelykh, I.A.

    2000-01-01

    Quantum interference of ballistic carriers has been studied for the first time, using one-dimensional rings formed by quantum wire pairs in self-assembled silicon quantum wells. Energy dependencies of the transmission coefficient is calculated as a function of the length and modulation of the quantum wire pairs separated by a unified drain-source system or the quantum point contacts. The quantum conductance is predicted to be increased by a factor of four using the unified drain-source system as a result of the quantum interference. Theoretical dependencies are revealed by the quantum conductance oscillations created by the deviations of both the drain-source voltage and external magnetic field inside the silicon one-dimensional rings. The results obtained put forward a basis to create the Aharonov-Bohm interferometer using the silicon one-dimensional ring [ru

  13. Quantum magnetism in strongly interacting one-dimensional spinor Bose systems

    DEFF Research Database (Denmark)

    Salami Dehkharghani, Amin; Volosniev, A. G.; Lindgren, E. J.

    2015-01-01

    -range inter-species interactions much larger than their intra-species interactions and show that they have novel energetic and magnetic properties. In the strongly interacting regime, these systems have energies that are fractions of the basic harmonic oscillator trap quantum and have spatially separated......Strongly interacting one-dimensional quantum systems often behave in a manner that is distinctly different from their higher-dimensional counterparts. When a particle attempts to move in a one-dimensional environment it will unavoidably have to interact and 'push' other particles in order...... ground states with manifestly ferromagnetic wave functions. Furthermore, we predict excited states that have perfect antiferromagnetic ordering. This holds for both balanced and imbalanced systems, and we show that it is a generic feature as one crosses from few- to many-body systems....

  14. One-dimensional GIS-based model compared with a two-dimensional model in urban floods simulation.

    Science.gov (United States)

    Lhomme, J; Bouvier, C; Mignot, E; Paquier, A

    2006-01-01

    A GIS-based one-dimensional flood simulation model is presented and applied to the centre of the city of Nîmes (Gard, France), for mapping flow depths or velocities in the streets network. The geometry of the one-dimensional elements is derived from the Digital Elevation Model (DEM). The flow is routed from one element to the next using the kinematic wave approximation. At the crossroads, the flows in the downstream branches are computed using a conceptual scheme. This scheme was previously designed to fit Y-shaped pipes junctions, and has been modified here to fit X-shaped crossroads. The results were compared with the results of a two-dimensional hydrodynamic model based on the full shallow water equations. The comparison shows that good agreements can be found in the steepest streets of the study zone, but differences may be important in the other streets. Some reasons that can explain the differences between the two models are given and some research possibilities are proposed.

  15. The co-evolution of alternative fuel infrastructure and vehicles. A study of the experience of Argentina with compressed natural gas

    International Nuclear Information System (INIS)

    Collantes, Gustavo; Melaina, Marc W.

    2011-01-01

    In a quest for strategic and environmental benefits, the developed countries have been trying for many years to increase the share of alternative fuels in their transportation fuel mixes. They have met very little success though. In this paper, we examine the experience of Argentina with compressed natural gas. We conducted interviews with a wide range of stakeholders and analyzed econometrically data collected in Argentina to investigate the factors, economic, political, and others that determined the high rate of adoption of this fuel. A central objective of this research was to identify lessons that could be useful to developed countries in their efforts to deploy alternative fuel vehicles. We find that fuel price regulation was a significant determinant of the adoption of compressed natural gas, while, contrary to expectations, government financing of refueling infrastructure was minimal. (author)

  16. Processing mixed-waste compressed-gas cylinders at the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.

    1998-05-01

    Until recently, several thousand kilograms of compressed gases were stored at the Oak Ridge Reservation (ORR), in Oak Ridge, Tennessee, because these cylinders could not be taken off-site in their state of configuration for disposal. Restrictions on the storage of old compressed-gas cylinders compelled the Waste Management Organization of Lockheed Martin Energy Systems, Inc. (LMES) to dispose of these materials. Furthermore, a milestone in the ORR Site Treatment Plan required repackaging and shipment off-site of 21 cylinders by September 30, 1997. A pilot project, coordinated by the Chemical Technology Division (CTD) at the Oak Ridge National Laboratory (ORNL), was undertaken to evaluate and recontainerize or neutralize these cylinders, which are mixed waste, to meet that milestone. Because the radiological component was considered to be confined to the exterior of the cylinder, the contents (once removed from the cylinder) could be handled as hazardous waste, and the cylinder could be handled as low-level waste (LLW). This pilot project to process 21 cylinders was important because of its potential impact. The successful completion of the project provides a newly demonstrated technology which can now be used to process the thousands of additional cylinders in inventory across the DOE complex. In this paper, many of the various aspects of implementing this project, including hurdles encountered and the lessons learned in overcoming them, are reported

  17. Introduction of a compressed air breathing apparatus for the offshore oil and gas industry.

    Science.gov (United States)

    Brooks, Chris J; MacDonald, Conor V; Carroll, Joel; Gibbs, Peter N G

    2010-07-01

    When a helicopter ditches the majority of crew and passengers have to make an underwater escape. Some may not be able to hold their breath and will drown. For at least 15 yr, military aircrew have been trained to use a scuba system. In the offshore oil and gas industry, there has been more caution about introducing a compressed air system and a rebreather system has been introduced as an alternative. Recently, Canadian industry and authorities approved the introduction of Helicopter Underwater Emergency Breathing Apparatus (HUEBA) training using compressed air. This communication reports the training of the first 1000 personnel. Training was introduced in both Nova Scotia and Newfoundland concurrently by the same group of instructors. Trainees filled out a questionnaire concerning their perceived ratings of the ease or difficulty of classroom training and the practical use of the HUEBA. Ninety-eight percent of trainees found the classroom and in-water training to be "good/very good". Trainees found it to be "easy/very easy" to clear the HUEBA and breathe underwater in 84% and 64% of cases, respectively. Divers reported a greater ease in learning all the practical uses of the HUEBA except application of the nose clip. There were problems with the nose clip fitting incorrectly, and interference of the survival suit hood with the regulator, which subsequently have been resolved. When carefully applied, the introduction of the HUEBA into training for offshore oil and gas industry helicopter crew and passengers can be safely conducted.

  18. Nanostructural evolution from nanosheets to one-dimensional nanoparticles for manganese oxide

    International Nuclear Information System (INIS)

    Pan, Hongmei; Kong, Xingang; Wen, Puhong; Kitayama, Tomonori; Feng, Qi

    2012-01-01

    Highlights: ► Nanosheets were transformed to other one-dimensional nanoparticles. ► Nanofibers, nanotubes, nanoribbons, and nanobelts were obtained. ► Nanoparticle morphology can be controlled with organic amines. ► Organic amines act as morphology directing agent. -- Abstract: This paper introduces a novel hydrothermal soft chemical synthesis process for manganese oxide nanostructured particles using two-dimensional manganese oxide nanosheets as precursor. In this process, a birnessite-type manganese oxide with a layered structure was exfoliated into its elementary layer nanosheets, and then the nanosheets were hydrothermally treated to transform the two-dimensional morphology of the nanosheets to one-dimensional nanoparticles. The manganese oxide nanofibers, nanotubes, nanobelts, nanoribbons, and fabric-ribbon-like particles constructed from nanofibers or nanobelts were obtained using this hydrothermal soft chemical process. The nanostructural evolution from the two-dimensional nanosheets to the one-dimensional nanoparticles was characterized by XRD, SEM, TEM, and TG-DTA analysis. The morphology and nanostructure of the products are strongly dependent on the molecular dimension of organic amine cations added in the reaction system. The organic amine cations act as a morphology directing agent in the nanostructural evolution process.

  19. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Ford A. Phillips; Danny M. Deffenbaugh

    2006-05-31

    This project has documented and demonstrated the feasibility of technologies and operational choices for companies who operate the large installed fleet of integral engine compressors in pipeline service. Continued operations of this fleet is required to meet the projected growth of the U.S. gas market. Applying project results will meet the goals of the DOE-NETL Natural Gas Infrastructure program to enhance integrity, extend life, improve efficiency, and increase capacity, while managing NOx emissions. These benefits will translate into lower cost, more reliable gas transmission, and options for increasing deliverability from the existing infrastructure on high demand days. The power cylinders on large bore slow-speed integral engine/compressors do not in general combust equally. Variations in cylinder pressure between power cylinders occur cycle-to-cycle. These variations affect both individual cylinder performance and unit average performance. The magnitude of the variations in power cylinder combustion is dependent on a variety of parameters, including air/fuel ratio. Large variations in cylinder performance and peak firing pressure can lead to detonation and misfires, both of which can be damaging to the unit. Reducing the variation in combustion pressure, and moving the high and low performing cylinders closer to the mean is the goal of engine balancing. The benefit of improving the state of the engine ''balance'' is a small reduction in heat rate and a significant reduction in both crankshaft strain and emissions. A new method invented during the course of this project is combustion pressure ratio (CPR) balancing. This method is more effective than current methods because it naturally accounts for differences in compression pressure, which results from cylinder-to-cylinder differences in the amount of air flowing through the inlet ports and trapped at port closure. It also helps avoid compensation for low compression pressure by the

  20. Shock wave and flame front induced detonation in a rapid compression machine

    Science.gov (United States)

    Wang, Y.; Qi, Y.; Xiang, S.; Mével, R.; Wang, Z.

    2018-05-01

    The present study focuses on one mode of detonation initiation observed in a rapid compression machine (RCM). This mode is referred to as shock wave and flame front-induced detonation (SWFID). Experimental high-speed imaging and two-dimensional numerical simulations with skeletal chemistry are combined to unravel the dominant steps of detonation initiation under SWFID conditions. It is shown that the interaction between the shock wave generated by the end-gas auto-ignition and the spherical flame creates a region of high pressure and temperature which enables the acceleration of the flame front and the detonation onset. The experimental observation lacks adequate spatial and temporal resolution despite good reproducibility of the detonation onset. Based on the numerical results, phenomenological interpretation of the event within the framework of shock wave refraction indicates that the formation of a free-precursor shock wave at the transition between regular and irregular refraction may be responsible for detonation onset. The present results along with previous findings on shock wave reflection-induced detonation in the RCM indicate that super-knock occurs after the interaction of the shock wave generated by end-gas auto-ignition with the RCM walls, preignition flame, or another shock wave.

  1. Versatile hydrothermal synthesis of one-dimensional composite structures

    Science.gov (United States)

    Luo, Yonglan

    2008-12-01

    In this paper we report on a versatile hydrothermal approach developed to fabricate one-dimensional (1D) composite structures. Sulfur and selenium formed liquid and adsorbed onto microrods as droplets and subsequently reacted with metallic ion in solution to produce nanoparticles-decorated composite microrods. 1D composites including ZnO/CdS, ZnO/MnS, ZnO/CuS, ZnO/CdSe, and FeOOH/CdS were successfully made using this hydrothermal strategy and the growth mechanism was also discussed. This hydrothermal strategy is simple and green, and can be extended to the synthesis of various 1D composite structures. Moreover, the interaction between the shell nanoparticles and the one-dimensional nanomaterials were confirmed by photoluminescence investigation of ZnO/CdS.

  2. Quantitative analysis of target components by comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Mispelaar, V.G. van; Tas, A.C.; Smilde, A.K.; Schoenmakers, P.J.; Asten, A.C. van

    2003-01-01

    Quantitative analysis using comprehensive two-dimensional (2D) gas chromatography (GC) is still rarely reported. This is largely due to a lack of suitable software. The objective of the present study is to generate quantitative results from a large GC x GC data set, consisting of 32 chromatograms.

  3. Bound states of Dipolar Bosons in One-dimensional Systems

    DEFF Research Database (Denmark)

    G. Volosniev, A.; R. Armstrong, J.; V. Fedorov, D.

    2013-01-01

    that in the weakly-coupled limit the inter-tube interaction is similar to a zero-range term with a suitable rescaled strength. This allows us to address the corresponding many-body physics of the system by constructing a model where bound chains with one molecule in each tube are the effective degrees of freedom......We consider one-dimensional tubes containing bosonic polar molecules. The long-range dipole-dipole interactions act both within a single tube and between different tubes. We consider arbitrary values of the externally aligned dipole moments with respect to the symmetry axis of the tubes. The few....... This model can be mapped onto one-dimensional Hamiltonians for which exact solutions are known....

  4. One-dimensional hypersonic phononic crystals.

    Science.gov (United States)

    Gomopoulos, N; Maschke, D; Koh, C Y; Thomas, E L; Tremel, W; Butt, H-J; Fytas, G

    2010-03-10

    We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons.

  5. Mathematical modeling of compression processes in air-driven boosters

    International Nuclear Information System (INIS)

    Li Zeyu; Zhao Yuanyang; Li Liansheng; Shu Pengcheng

    2007-01-01

    The compressed air in normal pressure is used as the source of power of the air-driven booster. The continuous working of air-driven boosters relies on the difference of surface area between driven piston and driving piston, i.e., the different forces acting on the pistons. When the working surface area of the driving piston for providing power is greater than that of the driven piston for compressing gas, the gas in compression chamber will be compressed. On the basis of the first law of thermodynamics, the motion regulation of piston is analyzed and the mathematical model of compression processes is set up. Giving a calculating example, the vary trends of gas pressure and pistons' move in working process of booster have been gotten. The change of parameters at different working conditions is also calculated and compared. And the corresponding results can be referred in the design of air-driven boosters

  6. Dynamic control of a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Mehresh, Parag [Peoria, IL; Schuh, David [Peoria, IL; Kieser, Andrew J [Morton, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  7. Magnetotransport in a quasi-one-dimensional electron system over superfluid helium

    CERN Document Server

    Nikolaenko, V A; Gladchenko, S P

    2002-01-01

    Magnetotransport in a nondegenerate quasi-one-dimensional electron system (Q1D) over superfluid helium is investigated experimentally. The experiments were carried out at perpendicular magnetic fields, B 0.9 K) and the electron-ripplon scattering (T 1(here omega sub c is the cyclotron frequency and t is the relaxation time of the electron system) agree qualitatively with the self-consistent Born approximation theory for a 2D electron system over helium. It is supposed that the quantitative discrepancies in the experimental and theoretical data are connected with different peculiar features of the investigated and analyzed electron systems. The experimental data on electron mobility at low temperatures and small magnetic fields coincide with the theoretical calculation made for the Q1D system. The negative magnetoresistance of the channels observed both in the electron-gas scattering and electron-ripplon scattering regions is supposed to be due to weak localization of carriers in the investigated electron syst...

  8. One-Dimensional Finite Elements An Introduction to the FE Method

    CERN Document Server

    Öchsner, Andreas

    2013-01-01

     This textbook presents finite element methods using exclusively  one-dimensional elements. The aim is to present the complex methodology in  an easily understandable but mathematically correct fashion. The approach of  one-dimensional elements enables the reader to focus on the understanding of  the principles of basic and advanced mechanical problems. The reader easily  understands the assumptions and limitations of mechanical modeling as well  as the underlying physics without struggling with complex mathematics. But  although the description is easy it remains scientifically correct.   The approach using only one-dimensional elements covers not only standard  problems but allows also for advanced topics like plasticity or the  mechanics of composite materials. Many examples illustrate the concepts and  problems at the end of every chapter help to familiarize with the topics.

  9. Quasi-exact solvability of the one-dimensional Holstein model

    International Nuclear Information System (INIS)

    Pan Feng; Dai Lianrong; Draayer, J P

    2006-01-01

    The one-dimensional Holstein model of spinless fermions interacting with dispersionless phonons is solved by using a Bethe ansatz in analogue to that for the one-dimensional spinless Fermi-Hubbard model. Excitation energies and the corresponding wavefunctions of the model are determined by a set of partial differential equations. It is shown that the model is, at least, quasi-exactly solvable for the two-site case, when the phonon frequency, the electron-phonon coupling strength and the hopping integral satisfy certain relations. As examples, some quasi-exact solutions of the model for the two-site case are derived. (letter to the editor)

  10. Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments.

    Science.gov (United States)

    Choi, Ji Yeh; Hwang, Heungsun; Timmerman, Marieke E

    2018-03-01

    Parallel factor analysis (PARAFAC) is a useful multivariate method for decomposing three-way data that consist of three different types of entities simultaneously. This method estimates trilinear components, each of which is a low-dimensional representation of a set of entities, often called a mode, to explain the maximum variance of the data. Functional PARAFAC permits the entities in different modes to be smooth functions or curves, varying over a continuum, rather than a collection of unconnected responses. The existing functional PARAFAC methods handle functions of a one-dimensional argument (e.g., time) only. In this paper, we propose a new extension of functional PARAFAC for handling three-way data whose responses are sequenced along both a two-dimensional domain (e.g., a plane with x- and y-axis coordinates) and a one-dimensional argument. Technically, the proposed method combines PARAFAC with basis function expansion approximations, using a set of piecewise quadratic finite element basis functions for estimating two-dimensional smooth functions and a set of one-dimensional basis functions for estimating one-dimensional smooth functions. In a simulation study, the proposed method appeared to outperform the conventional PARAFAC. We apply the method to EEG data to demonstrate its empirical usefulness.

  11. Cohesive motion in one-dimensional flocking

    International Nuclear Information System (INIS)

    Dossetti, V

    2012-01-01

    A one-dimensional rule-based model for flocking, which combines velocity alignment and long-range centering interactions, is presented and studied. The induced cohesion in the collective motion of the self-propelled agents leads to unique group behavior that contrasts with previous studies. Our results show that the largest cluster of particles, in the condensed states, develops a mean velocity slower than the preferred one in the absence of noise. For strong noise, the system also develops a non-vanishing mean velocity, alternating its direction of motion stochastically. This allows us to address the directional switching phenomenon. The effects of different sources of stochasticity on the system are also discussed. (paper)

  12. Fluffy dust forms icy planetesimals by static compression

    Science.gov (United States)

    Kataoka, Akimasa; Tanaka, Hidekazu; Okuzumi, Satoshi; Wada, Koji

    2013-09-01

    Context. Several barriers have been proposed in planetesimal formation theory: bouncing, fragmentation, and radial drift problems. Understanding the structure evolution of dust aggregates is a key in planetesimal formation. Dust grains become fluffy by coagulation in protoplanetary disks. However, once they are fluffy, they are not sufficiently compressed by collisional compression to form compact planetesimals. Aims: We aim to reveal the pathway of dust structure evolution from dust grains to compact planetesimals. Methods: Using the compressive strength formula, we analytically investigate how fluffy dust aggregates are compressed by static compression due to ram pressure of the disk gas and self-gravity of the aggregates in protoplanetary disks. Results: We reveal the pathway of the porosity evolution from dust grains via fluffy aggregates to form planetesimals, circumventing the barriers in planetesimal formation. The aggregates are compressed by the disk gas to a density of 10-3 g/cm3 in coagulation, which is more compact than is the case with collisional compression. Then, they are compressed more by self-gravity to 10-1 g/cm3 when the radius is 10 km. Although the gas compression decelerates the growth, the aggregates grow rapidly enough to avoid the radial drift barrier when the orbital radius is ≲6 AU in a typical disk. Conclusions: We propose a fluffy dust growth scenario from grains to planetesimals. It enables icy planetesimal formation in a wide range beyond the snowline in protoplanetary disks. This result proposes a concrete initial condition of planetesimals for the later stages of the planet formation.

  13. Expandable image compression system: A modular approach

    International Nuclear Information System (INIS)

    Ho, B.K.T.; Lo, S.C.; Huang, H.K.

    1986-01-01

    The full-frame bit-allocation algorithm for radiological image compression can achieve an acceptable compression ratio as high as 30:1. It involves two stages of operation: a two-dimensional discrete cosine transform and pixel quantization in the transformed space with pixel depth kept accountable by a bit-allocation table. The cosine transform hardware design took an expandable modular approach based on the VME bus system with a maximum data transfer rate of 48 Mbytes/sec and a microprocessor (Motorola 68000 family). The modules are cascadable and microprogrammable to perform 1,024-point butterfly operations. A total of 18 stages would be required for transforming a 1,000 x 1,000 image. Multiplicative constants and addressing sequences are to be software loaded into the parameter buffers of each stage prior to streaming data through the processor stages. The compression rate for 1K x 1K images is expected to be faster than one image per sec

  14. Majorana fermion exchange in strictly one dimensional structures

    OpenAIRE

    Chiu, Ching-Kai; Vazifeh, M. M.; Franz, M.

    2014-01-01

    It is generally thought that adiabatic exchange of two identical particles is impossible in one spatial dimension. Here we describe a simple protocol that permits adiabatic exchange of two Majorana fermions in a one-dimensional topological superconductor wire. The exchange relies on the concept of "Majorana shuttle" whereby a $\\pi$ domain wall in the superconducting order parameter which hosts a pair of ancillary Majoranas delivers one zero mode across the wire while the other one tunnels in ...

  15. State reconstruction of one-dimensional wave packets

    Science.gov (United States)

    Krähmer, D. S.; Leonhardt, U.

    1997-12-01

    We review and analyze the method [U. Leonhardt, M.G. Raymer: Phys. Rev. Lett. 76, 1985 (1996)] for quantum-state reconstruction of one-dimensional non-relativistic wave packets from position observations. We illuminate the theoretical background of the technique and show how to extend the procedure to the continuous part of the spectrum.

  16. Study of the Injection Control Strategies of a Compression Ignition Free Piston Engine Linear Generator in a One-Stroke Starting Process

    Directory of Open Access Journals (Sweden)

    Huihua Feng

    2016-06-01

    Full Text Available For a compression ignition (CI free piston engine linear generator (FPLG, injection timing is one of the most important parameters that affect its performance, especially for the one-stroke starting operation mode. In this paper, two injection control strategies are proposed using piston position and velocity signals. It was found experimentally that the injection timing’s influence on the compression ratio, the peak in-cylinder gas pressure and the indicated work (IW is different from that of traditional reciprocating CI engines. The maximum IW of the ignition starting cylinder, say left cylinder (LC and the right cylinder (RC are 132.7 J and 138.1 J, respectively. The thermal-dynamic model for simulating the working processes of the FPLG are built and verified by experimental results. The numerical simulation results show that the running instability and imbalance between LC and RC are the obvious characters when adopting the injection strategy of the velocity feedback. These could be solved by setting different triggering velocity thresholds for the two cylinders. The IW output from the FPLG under this strategy is higher than that of adopting the position feedback strategy, and the maximum IW of the RC could reach 162.3 J. Under this strategy, the prototype is able to achieve better starting conditions and could operate continuously for dozens of cycles.

  17. Metrological and operational performance of measuring systems used in vehicle compressed natural gas filling stations

    Energy Technology Data Exchange (ETDEWEB)

    Velosa, Jhonn F.; Abril, Henry; Garcia, Luis E. [CDT de GAS (Venezuela). Gas Technological Development Center Corporation

    2008-07-01

    Corporation CDT GAS financially supported by the Colombian government through COLCIENCIAS, carried out a study aimed at designing, developing and implementing in Colombia a calibration and metrological verification 'specialized service' for gas meters installed at dispensers of filling stations using compressed natural gas. The results permitted the identification of improving opportunities (in measuring systems, equipment and devices used to deliver natural gas) which are focused on achieving the highest security and reliability of trading processes of CNG for vehicles. In the development of the first stage of the project, metrological type variables were initially considered, but given the importance of the measuring system and its interaction with the various elements involving gas supply to the filling station, the scope of the work done included aspects related to the operational performance, that is, those influencing the security of the users and the metrological performance of the measuring system. The development of the second stage counted on the collaboration of national companies from the sector of CNG for vehicles, which permitted the carrying out of multiple calibrations to the measuring systems installed in the CNG dispensers, thus achieving, in a concrete way, valid and reliable technological information of the implemented procedures. (author)

  18. Well-to-Wheels Analysis of Compressed Natural Gas and Ethanol from Municipal Solid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Uisung [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2016-10-01

    The amount of municipal solid waste (MSW) generated in the United States was estimated at 254 million wet tons in 2013, and around half of that generated waste was landfilled. There is a huge potential in recovering energy from that waste, since around 60% of landfilled material is biomass-derived waste that has high energy content. In addition, diverting waste for fuel production avoids huge fugitive emissions from landfills, especially uncontrolled CH4 emissions, which are the third largest anthropogenic CH4 source in the United States. Lifecycle analysis (LCA) is typically used to evaluate the environmental impact of alternative fuel production pathways. LCA of transportation fuels is called well-to-wheels (WTW) and covers all stages of the fuel production pathways, from feedstock recovery (well) to vehicle operation (wheels). In this study, the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET®) model developed by Argonne National Laboratory is used to evaluate WTW greenhouse gas (GHG) emissions and fossil fuel consumption of waste-derived fuels. Two waste-to-energy (WTE) pathways have been evaluated – one for compressed natural gas (CNG) production using food waste via anaerobic digestion, and the other for ethanol production from yard trimmings via fermentation processes. Because the fuel production pathways displace current waste management practices (i.e., landfilling waste), we use a marginal approach that considers only the differences in emissions between the counterfactual case and the alternative fuel production case.

  19. Condensation and critical exponents of an ideal non-Abelian gas

    Science.gov (United States)

    Talaei, Zahra; Mirza, Behrouz; Mohammadzadeh, Hosein

    2017-11-01

    We investigate an ideal gas obeying non-Abelian statistics and derive the expressions for some thermodynamic quantities. It is found that thermodynamic quantities are finite at the condensation point where their derivatives diverge and, near this point, they behave as \\vert T-Tc\\vert^{-ρ} in which Tc denotes the condensation temperature and ρ is a critical exponent. The critical exponents related to the heat capacity and compressibility are obtained by fitting numerical results and others are obtained using the scaling law hypothesis for a three-dimensional non-Abelian ideal gas. This set of critical exponents introduces a new universality class.

  20. Phase-Dependent Resistance in a Superconductor—Two-Dimensional-Electron-Gas Quasiparticle Interferometer

    NARCIS (Netherlands)

    Dimoulas, A.; Heida, J.P.; Wees, B.J. v.; Klapwijk, T.M.; Graaf, W. v.d.; Borghs, G.

    1995-01-01

    We have investigated the interplay between Josephson coupling and quasiparticle interference effects in the resistance of a two-dimensional electron gas connected to superconducting electrodes with an interrupted ring geometry. By reducing the influence of the Josephson coupling strength at high dc

  1. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs :

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, William Payton

    2013-06-01

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a

  2. One dimensional neutron kinetics in the TRAC-BF1 code

    International Nuclear Information System (INIS)

    Weaver, W.L. III; Wagner, K.C.

    1987-01-01

    The TRAC-BWR code development program at the Idaho National Engineering Laboratory is developing a version of the TRAC code for the U.S. Nuclear Regulatory Commission (USNRC) to provide a best-estimate analysis capability for the simulation of postulated accidents in boiling water reactor (BWR) power systems and related experimental facilities. Recent development efforts in the TRAC-BWR program have focused on improving the computational efficiency through the incorporation of a hybrid Courant- limit-violating numerical solution scheme in the one-dimensional component models and on improving code accuracy through the development of a one-dimensional neutron kinetics model. Many other improvements have been incorporated into TRAC-BWR to improve code portability, accuracy, efficiency, and maintainability. This paper will describe the one- dimensional neutron kinetics model, the generation of the required input data for this model, and present results of the first calculations using the model

  3. One dimensional systems with singular perturbations

    International Nuclear Information System (INIS)

    Alvarez, J J; Gadella, M; Nieto, L M; Glasser, L M; Lara, L P

    2011-01-01

    This paper discusses some one dimensional quantum models with singular perturbations. Eventually, a mass discontinuity is added at the points that support the singular perturbations. The simplest model includes an attractive singular potential with a mass jump both located at the origin. We study the form of the only bound state. Another model exhibits a hard core at the origin plus one or more repulsive deltas with mass jumps at the points supporting these deltas. We study the location and the multiplicity of these resonances for the case of one or two deltas and settle the basis for a generalization. Finally, we consider the harmonic oscillator and the infinite square well plus a singular potential at the origin. We see how the energy of bound states is affected by the singular perturbation.

  4. A transient one-dimensional numerical model for kinetic Stirling engine

    International Nuclear Information System (INIS)

    Wang, Kai; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei

    2016-01-01

    Highlights: • A non-equilibrium thermal mode with considering loses is adopted in Stirling engine. • Good agreements are achieved for predicting various critical system parameters. • Differences between helium and hydrogen systems are highlighted and analyzed. • Pressure drop of helium system is much larger and more sensitive to frequency. - Abstract: A third-order numerical model based on one-dimensional computational fluid dynamics is developed for kinetic Stirling engines. Various loss mechanisms in Stirling engines, including gas spring hysteresis loss, shuttle loss, appendix displacer gap loss, gas leakage loss, finite speed loss, piston friction loss, pressure drop loss, heat conduction loss, mechanical loss and imperfect heat transfer, are considered and embedded into the basic control equations. The non-equilibrium thermal model is adopted for the regenerator to capture the oscillating features of the gas and solid temperatures. To improve the numerical stability and accuracy, the implicit second-order time difference scheme and the second-order upwind scheme are adopted for discretizing the time differential terms and convective terms, respectively. Experimental validations are then conducted on a beta-type Stirling engine with the extensive experimental data for diverse working conditions. The results show that the developed model has better accuracies than the previous second-order models. Good agreements are achieved for predicting various critical system parameters, including pressure-volume diagram, indicated power, brake power, indicated efficiency, brake efficiency and mechanical efficiency. In particular, both the experiments and simulations show that the Stirling engine charged with helium tends to have much lower optimal working frequencies and poorer performances compared to the hydrogen system. Based on the analyses of the losses, it reveals that the pressure drop in the flow channels plays a critical role in shaping the different

  5. Graphene-based one-dimensional photonic crystal

    OpenAIRE

    Berman, Oleg L.; Kezerashvili, Roman Ya.

    2011-01-01

    A novel type of one-dimensional (1D) photonic crystal formed by the array of periodically located stacks of alternating graphene and dielectric stripes embedded into a background dielectric medium is proposed. The wave equation for the electromagnetic wave propagating in such structure solved in the framework of the Kronig-Penney model. The frequency band structure of 1D graphene-based photonic crystal is obtained analytically as a function of the filling factor and the thickness of the diele...

  6. Topologically protected states in one-dimensional systems

    CERN Document Server

    Fefferman, C L; Weinstein, M I

    2017-01-01

    The authors study a class of periodic Schrödinger operators, which in distinguished cases can be proved to have linear band-crossings or "Dirac points". They then show that the introduction of an "edge", via adiabatic modulation of these periodic potentials by a domain wall, results in the bifurcation of spatially localized "edge states". These bound states are associated with the topologically protected zero-energy mode of an asymptotic one-dimensional Dirac operator. The authors' model captures many aspects of the phenomenon of topologically protected edge states for two-dimensional bulk structures such as the honeycomb structure of graphene. The states the authors construct can be realized as highly robust TM-electromagnetic modes for a class of photonic waveguides with a phase-defect.

  7. One-dimensional plasma simulation studies

    International Nuclear Information System (INIS)

    Friberg, Ari; Virtamo, Jorma

    1976-01-01

    Some basic plasma phenomena are studied by a one-dimensional electrostatic simulation code. A brief description of the code and its application to a test problem is given. The experiments carried out include Landau damping of an excited wave, particle retardation by smoothed field and beam-plasma instability. In each case, the set-up of the experiment is described and the results are compared with theoretical predictions. In the theoretical discussions, the oscillatory behaviour found in the Landau damping experiment is explained, an explicit formula for the particle retardation rate is derived and a rudimentary picture of the beam-plasma instability in terms of quasilinear theory is given. (author)

  8. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    Science.gov (United States)

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    2018-04-01

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three-dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb2 Pt2 Pb , a metal where itinerant electrons coexist with localized moments of Yb ions which can be described in terms of effective S =1 /2 spins with a dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasilinear temperature dependence.

  9. One-dimensional map-based neuron model: A logistic modification

    International Nuclear Information System (INIS)

    Mesbah, Samineh; Moghtadaei, Motahareh; Hashemi Golpayegani, Mohammad Reza; Towhidkhah, Farzad

    2014-01-01

    A one-dimensional map is proposed for modeling some of the neuronal activities, including different spiking and bursting behaviors. The model is obtained by applying some modifications on the well-known Logistic map and is named the Modified and Confined Logistic (MCL) model. Map-based neuron models are known as phenomenological models and recently, they are widely applied in modeling tasks due to their computational efficacy. Most of discrete map-based models involve two variables representing the slow-fast prototype. There are also some one-dimensional maps, which can replicate some of the neuronal activities. However, the existence of four bifurcation parameters in the MCL model gives rise to reproduction of spiking behavior with control over the frequency of the spikes, and imitation of chaotic and regular bursting responses concurrently. It is also shown that the proposed model has the potential to reproduce more realistic bursting activity by adding a second variable. Moreover the MCL model is able to replicate considerable number of experimentally observed neuronal responses introduced in Izhikevich (2004) [23]. Some analytical and numerical analyses of the MCL model dynamics are presented to explain the emersion of complex dynamics from this one-dimensional map

  10. Thermo-fluid dynamic analysis of wet compression process

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Abhay; Kim, Heuy Dong [School of Mechanical Engineering, Andong National University, Andong (Korea, Republic of); Chidambaram, Palani Kumar [FMTRC, Daejoo Machinery Co. Ltd., Daegu (Korea, Republic of); Suryan, Abhilash [Dept. of Mechanical Engineering, College of Engineering Trivandrum, Kerala (India)

    2016-12-15

    Wet compression systems increase the useful power output of a gas turbine by reducing the compressor work through the reduction of air temperature inside the compressor. The actual wet compression process differs from the conventional single phase compression process due to the presence of latent heat component being absorbed by the evaporating water droplets. Thus the wet compression process cannot be assumed isentropic. In the current investigation, the gas-liquid two phase has been modeled as air containing dispersed water droplets inside a simple cylinder-piston system. The piston moves in the axial direction inside the cylinder to achieve wet compression. Effects on the thermodynamic properties such as temperature, pressure and relative humidity are investigated in detail for different parameters such as compression speeds and overspray. An analytical model is derived and the requisite thermodynamic curves are generated. The deviations of generated thermodynamic curves from the dry isentropic curves (PV{sup γ} = constant) are analyzed.

  11. Thermo-fluid dynamic analysis of wet compression process

    International Nuclear Information System (INIS)

    Mohan, Abhay; Kim, Heuy Dong; Chidambaram, Palani Kumar; Suryan, Abhilash

    2016-01-01

    Wet compression systems increase the useful power output of a gas turbine by reducing the compressor work through the reduction of air temperature inside the compressor. The actual wet compression process differs from the conventional single phase compression process due to the presence of latent heat component being absorbed by the evaporating water droplets. Thus the wet compression process cannot be assumed isentropic. In the current investigation, the gas-liquid two phase has been modeled as air containing dispersed water droplets inside a simple cylinder-piston system. The piston moves in the axial direction inside the cylinder to achieve wet compression. Effects on the thermodynamic properties such as temperature, pressure and relative humidity are investigated in detail for different parameters such as compression speeds and overspray. An analytical model is derived and the requisite thermodynamic curves are generated. The deviations of generated thermodynamic curves from the dry isentropic curves (PV γ = constant) are analyzed

  12. Volatile organic compounds in a residential and commercial urban area with a diesel, compressed natural gas and oxygenated gasoline vehicular fleet.

    Science.gov (United States)

    Martins, Eduardo Monteiro; Arbilla, Graciela; Gatti, Luciana Vanni

    2010-02-01

    Air samples were collected in a typical residential and commercial area in Rio de Janeiro, Brazil, where buses and trucks use diesel and light duty vehicles use compressed natural gas, ethanol, and gasohol (gasoline blended with ethanol) as fuel. A total of 66 C3-C12 volatile organic compounds (VOCs) were identified. The most abundant compounds, on a mass concentration basis, included propane, isobutane, i-pentane, m,p-xylene, 1,3,5-trimethylbenzene, toluene, styrene, ethylbenzene, isopropylbenzene, o-xylene and 1,2,4-trimethylbenzene. Two VOCs photochemical reactivity rankings are presented: one involves reaction with OH and the other involves production of ozone.

  13. Explicit Solutions for One-Dimensional Mean-Field Games

    KAUST Repository

    Prazeres, Mariana

    2017-01-01

    In this thesis, we consider stationary one-dimensional mean-field games (MFGs) with or without congestion. Our aim is to understand the qualitative features of these games through the analysis of explicit solutions. We are particularly interested

  14. Structure Variation from One-Dimensional Chain to Three ...

    Indian Academy of Sciences (India)

    WEN-XUAN LI, XIAO-MIN GU, WEN-LI ZHANG and LIANG NI. School of Chemistry ... Compound 1 possesses one-dimensional chain structure, and expands into ..... sis of fine chemicals and pharmaceuticals.30 The results were summarized ...

  15. Three-dimensional multiphase effects in aquifer gas storage

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A.; Fuller, P.; Finsterle, S. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    The underground storage of natural gas in the United States is one of the most widespread methods of storing energy in the United States. There are two main kinds of storage: (a) dry gas fields, and (b) aquifer storage fields. The storage of gas in dry gas fields involves the conversion of petroleum bearing reservoirs, usually after they have been depleted of any economic production, into a storage operation. An appropriate number of injection-withdrawal (I-W) wells are either drilled or converted from existing exploitation wells, and the storage operations begin by injecting gas to build up to some desired volume of gas in storage.

  16. Comprehensive two-dimensional gas chromatography for the analysis of organohalogenated micro-contaminants

    NARCIS (Netherlands)

    Korytar, P.; Haglund, P.; Boer, de J.; Brinkman, U.A.Th.

    2006-01-01

    We explain the principles of comprehensive two-dimensional gas chromatography (GC × GC), and discuss key instrumental aspects - with emphasis on column combinations and mass spectrometric detection. As the main item of interest, we review the potential of GC × GC for the analysis of

  17. Quasi-one-dimensional Hall physics in the Harper–Hofstadter–Mott model

    Science.gov (United States)

    Kozarski, Filip; Hügel, Dario; Pollet, Lode

    2018-04-01

    We study the ground-state phase diagram of the strongly interacting Harper–Hofstadter–Mott model at quarter flux on a quasi-one-dimensional lattice consisting of a single magnetic flux quantum in y-direction. In addition to superfluid phases with various density patterns, the ground-state phase diagram features quasi-one-dimensional analogs of fractional quantum Hall phases at fillings ν = 1/2 and 3/2, where the latter is only found thanks to the hopping anisotropy and the quasi-one-dimensional geometry. At integer fillings—where in the full two-dimensional system the ground-state is expected to be gapless—we observe gapped non-degenerate ground-states: at ν = 1 it shows an odd ‘fermionic’ Hall conductance, while the Hall response at ν = 2 consists of the transverse transport of a single particle–hole pair, resulting in a net zero Hall conductance. The results are obtained by exact diagonalization and in the reciprocal mean-field approximation.

  18. On the quantisation of one-dimensional bags

    International Nuclear Information System (INIS)

    Fairley, G.T.; Squires, E.J.

    1976-01-01

    The quantisation of one-dimensional MIT bags by expanding the fields as a sum of classical modes and truncating the series after the first term is discussed. The lowest states of a bag in a world containing two scalar quark fields are obtained. Problems associated with the zero-point oscillations of the field are discussed. (Auth.)

  19. Strong Bulk-Edge Coupling in the Compressible Half-Filled Quantum Hall State

    International Nuclear Information System (INIS)

    Milovanovic, M.V.; Shimshoni, E.

    1999-01-01

    We studied analytically static correlators in the compressible half-filled quantum Hall state, which characterize the nature of charged excitations in the bulk and on the edge of the system. We employ a modified version of the plasma analogy - namely, a mapping to a classical two-dimensional system of interacting particles - similarly to what has been done in studies of the incompressible (Laughlin) states. However, the 'fake plasma' corresponding to the half-filled state is found to have anomalously weak screening properties. As a consequence, the correlations along the edge do not decay algebraically as in the incompressible case, thus indicating the breakdown of Wen's edge theory. On the other hand, the bulk correlator (which parallels the Girvin-MacDonald algebraic off-diagonal long range order) decays algebraically in a similar way as in the incompressible states, signifying the presence of some kind of bosonic order even in the compressible state. The above results suggest that due to the strong coupling between charged modes on the edge and the neutral Fermions (dipoles) in the bulk, the (attractive) correlation hole is not well defined on the edge. Hence, the system there can be modeled as a free Fermi gas of electrons (with an appropriate boundary condition). A possible experimental indication of a strong bulk-edge coupling at half-filling has been indeed observed in non-local resistance measurements [1]. We also suggest, that while our results contradict the validity of an effective one-dimensional description of the edge excitations on the static level, the dynamics may decouple the edge and bulk so as to recover the Laughlin-like behavior apparent in the experiment of Grayson et al

  20. Effect of one-rescuer compression/ventilation ratios on cardiopulmonary resuscitation in infant, pediatric, and adult manikins.

    Science.gov (United States)

    Srikantan, Shoba Krishnan; Berg, Robert A; Cox, Tim; Tice, Lisa; Nadkarni, Vinay M

    2005-05-01

    Optimal chest compression to ventilation ratio (C:V) for one-rescuer cardiopulmonary resuscitation (CPR) is not known, with current American Heart Association recommendations 3:1 for newborns, 5:1 for children, and 15:2 for adults. C:V ratios influence effectiveness of CPR, but memorizing different ratios is educationally cumbersome. We hypothesized that a 10:2 ratio might provide adequate universal application for all age arrest victims. Clinical study. Tertiary care children's hospital. Thirty-five health care providers. Thirty-five health care providers performed 5-min epochs of one-rescuer CPR at C:V ratios of 3:1, 5:1, 10:2, and 15:2 in random order on infant, pediatric, and adult manikins. Compressions were paced at 100/min by metronome. The number of effective compressions and ventilations delivered per minute was recorded by a trained basic life support instructor. Subjective assessments of fatigue (self-report) and exertion (change in rescuer pulse rate compared with baseline) were assessed. Analysis was by repeated measures analysis of variance and paired Student's t-test. Effective infant compressions per minute did not differ by C:V ratio, but ventilations per minute were greater at 3:1 vs. 5:1, 10:2, and 15:2 (p 15:2 (p educational value and technique retention.