WorldWideScience

Sample records for oncolytic parvovirus h-1

  1. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of); Kang, Ho Young [Department of Microbiology, Pusan National University, Busan 609-736 (Korea, Republic of); Kim, Manbok [Department of Medical Science, Dankook University College of Medicine, Cheonan 330-714 (Korea, Republic of); Koh, Sang Seok [Department of Biological Sciences, Dong-A University, Busan 604-714 (Korea, Republic of); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of)

    2015-04-03

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells.

  2. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    International Nuclear Information System (INIS)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok; Kang, Ho Young; Kim, Manbok; Koh, Sang Seok; Chung, Young-Hwa

    2015-01-01

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells

  3. Oncolytic effects of parvovirus H-1 in medulloblastoma are associated with repression of master regulators of early neurogenesis.

    Science.gov (United States)

    Lacroix, Jeannine; Schlund, Franziska; Leuchs, Barbara; Adolph, Kathrin; Sturm, Dominik; Bender, Sebastian; Hielscher, Thomas; Pfister, Stefan M; Witt, Olaf; Rommelaere, Jean; Schlehofer, Jörg R; Witt, Hendrik

    2014-02-01

    Based on extensive pre-clinical studies, the oncolytic parvovirus H-1 (H-1PV) is currently applied to patients with recurrent glioblastoma in a phase I/IIa clinical trial (ParvOryx01, NCT01301430). Cure rates of about 40% in pediatric high-risk medulloblastoma (MB) patients also indicate the need of new therapeutic approaches. In order to prepare a future application of oncolytic parvovirotherapy to MB, the present study preclinically evaluates the cytotoxic efficacy of H-1PV on MB cells in vitro and characterizes cellular target genes involved in this effect. Six MB cell lines were analyzed by whole genome oligonucleotide microarrays after treatment and the results were matched to known molecular and cytogenetic risk factors. In contrast to non-transformed infant astrocytes and neurons, in five out of six MB cell lines lytic H-1PV infection and efficient viral replication could be demonstrated. The cytotoxic effects induced by H-1PV were observed at LD50s below 0.05 p. f. u. per cell indicating high susceptibility. Gene expression patterns in the responsive MB cell lines allowed the identification of candidate target genes mediating the cytotoxic effects of H-1PV. H-1PV induced down-regulation of key regulators of early neurogenesis shown to confer poor prognosis in MB such as ZIC1, FOXG1B, MYC, and NFIA. In MB cell lines with genomic amplification of MYC, expression of MYC was the single gene most significantly repressed after H-1PV infection. H-1PV virotherapy may be a promising treatment approach for MB since it targets genes of functional relevance and induces cell death at very low titers of input virus. Copyright © 2013 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.

  4. Synergistic combination of valproic acid and oncolytic parvovirus H-1PV as a potential therapy against cervical and pancreatic carcinomas.

    Science.gov (United States)

    Li, Junwei; Bonifati, Serena; Hristov, Georgi; Marttila, Tiina; Valmary-Degano, Séverine; Stanzel, Sven; Schnölzer, Martina; Mougin, Christiane; Aprahamian, Marc; Grekova, Svitlana P; Raykov, Zahari; Rommelaere, Jean; Marchini, Antonio

    2013-10-01

    The rat parvovirus H-1PV has oncolytic and tumour-suppressive properties potentially exploitable in cancer therapy. This possibility is being explored and results are encouraging, but it is necessary to improve the oncotoxicity of the virus. Here we show that this can be achieved by co-treating cancer cells with H-1PV and histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA). We demonstrate that these agents act synergistically to kill a range of human cervical carcinoma and pancreatic carcinoma cell lines by inducing oxidative stress, DNA damage and apoptosis. Strikingly, in rat and mouse xenograft models, H-1PV/VPA co-treatment strongly inhibits tumour growth promoting complete tumour remission in all co-treated animals. At the molecular level, we found acetylation of the parvovirus nonstructural protein NS1 at residues K85 and K257 to modulate NS1-mediated transcription and cytotoxicity, both of which are enhanced by VPA treatment. These results warrant clinical evaluation of H-1PV/VPA co-treatment against cervical and pancreatic ductal carcinomas. © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  5. Complementary induction of immunogenic cell death by oncolytic parvovirus H-1PV and gemcitabine in pancreatic cancer.

    Science.gov (United States)

    Angelova, Assia L; Grekova, Svitlana P; Heller, Anette; Kuhlmann, Olga; Soyka, Esther; Giese, Thomas; Aprahamian, Marc; Bour, Gaétan; Rüffer, Sven; Cziepluch, Celina; Daeffler, Laurent; Rommelaere, Jean; Werner, Jens; Raykov, Zahari; Giese, Nathalia A

    2014-05-01

    Novel therapies employing oncolytic viruses have emerged as promising anticancer modalities. The cure of particularly aggressive malignancies requires induction of immunogenic cell death (ICD), coupling oncolysis with immune responses via calreticulin, ATP, and high-mobility group box protein B1 (HMGB1) release from dying tumor cells. The present study shows that in human pancreatic cancer cells (pancreatic ductal adenocarcinoma [PDAC] cells n=4), oncolytic parvovirus H-1 (H-1PV) activated multiple interconnected death pathways but failed to induce calreticulin exposure or ATP release. In contrast, H-1PV elevated extracellular HMGB1 levels by 4.0±0.5 times (58%±9% of total content; up to 100 ng/ml) in all infected cultures, whether nondying, necrotic, or apoptotic. An alternative secretory route allowed H-1PV to overcome the failure of gemcitabine to trigger HMGB1 release, without impeding cytotoxicity or other ICD activities of the standard PDAC medication. Such broad resistance of H-1PV-induced HMGB1 release to apoptotic blockage coincided with but was uncoupled from an autocrine interleukin-1β (IL-1β) loop. That and the pattern of viral determinants maintained in gemcitabine-treated cells suggested the activation of an inflammasome/caspase 1 (CASP1) platform alongside DNA detachment and/or nuclear exclusion of HMGB1 during early stages of the viral life cycle. We concluded that H-1PV infection of PDAC cells is signaled through secretion of the alarmin HMGB1 and, besides its own oncolytic effect, might convert drug-induced apoptosis into an ICD process. A transient arrest of cells in the cyclin A1-rich S phase would suffice to support compatibility of proliferation-dependent H-1PV with cytotoxic regimens. These properties warrant incorporation of the oncolytic virus H-1PV, which is not pathogenic in humans, into multimodal anticancer treatments. The current therapeutic concepts targeting aggressive malignancies require an induction of immunogenic cell death

  6. Immunotherapeutic Potential of Oncolytic H-1 Parvovirus: Hints of Glioblastoma Microenvironment Conversion towards Immunogenicity.

    Science.gov (United States)

    Angelova, Assia L; Barf, Milena; Geletneky, Karsten; Unterberg, Andreas; Rommelaere, Jean

    2017-12-15

    Glioblastoma, one of the most aggressive primary brain tumors, is characterized by highly immunosuppressive microenvironment. This contributes to glioblastoma resistance to standard treatment modalities and allows tumor growth and recurrence. Several immune-targeted approaches have been recently developed and are currently under preclinical and clinical investigation. Oncolytic viruses, including the autonomous protoparvovirus H-1 (H-1PV), show great promise as novel immunotherapeutic tools. In a first phase I/IIa clinical trial (ParvOryx01), H-1PV was safe and well tolerated when locally or systemically administered to recurrent glioblastoma patients. The virus was able to cross the blood-brain (tumor) barrier after intravenous infusion. Importantly, H-1PV treatment of glioblastoma patients was associated with immunogenic changes in the tumor microenvironment. Tumor infiltration with activated cytotoxic T cells, induction of cathepsin B and inducible nitric oxide (NO) synthase (iNOS) expression in tumor-associated microglia/macrophages (TAM), and accumulation of activated TAM in cluster of differentiation (CD) 40 ligand (CD40L)-positive glioblastoma regions was detected. These are the first-in-human observations of H-1PV capacity to switch the immunosuppressed tumor microenvironment towards immunogenicity. Based on this pilot study, we present a tentative model of H-1PV-mediated modulation of glioblastoma microenvironment and propose a combinatorial therapeutic approach taking advantage of H-1PV-induced microglia/macrophage activation for further (pre)clinical testing.

  7. Activation of the human immune system by chemotherapeutic or targeted agents combined with the oncolytic parvovirus H-1

    International Nuclear Information System (INIS)

    Moehler, Markus; Sieben, Maike; Roth, Susanne; Springsguth, Franziska; Leuchs, Barbara; Zeidler, Maja; Dinsart, Christiane; Rommelaere, Jean; Galle, Peter R

    2011-01-01

    Parvovirus H-1 (H-1PV) infects and lyses human tumor cells including melanoma, hepatoma, gastric, colorectal, cervix and pancreatic cancers. We assessed whether the beneficial effects of chemotherapeutic agents or targeted agents could be combined with the oncolytic and immunostimmulatory properties of H-1PV. Using human ex vivo models we evaluated the biological and immunological effects of H-1PV-induced tumor cell lysis alone or in combination with chemotherapeutic or targeted agents in human melanoma cells +/- characterized human cytotoxic T-cells (CTL) and HLA-A2-restricted dendritic cells (DC). H-1PV-infected MZ7-Mel cells showed a clear reduction in cell viability of >50%, which appeared to occur primarily through apoptosis. This correlated with viral NS1 expression levels and was enhanced by combination with chemotherapeutic agents or sunitinib. Tumor cell preparations were phagocytosed by DC whose maturation was measured according to the treatment administered. Immature DC incubated with H-1PV-induced MZ7-Mel lysates significantly increased DC maturation compared with non-infected or necrotic MZ7-Mel cells. Tumor necrosis factor-α and interleukin-6 release was clearly increased by DC incubated with H-1PV-induced SK29-Mel tumor cell lysates (TCL) and was also high with DC-CTL co-cultures incubated with H-1PV-induced TCL. Similarly, DC co-cultures with TCL incubated with H-1PV combined with cytotoxic agents or sunitinib enhanced DC maturation to a greater extent than cytotoxic agents or sunitinib alone. Again, these combinations increased pro-inflammatory responses in DC-CTL co-cultures compared with chemotherapy or sunitinib alone. In our human models, chemotherapeutic or targeted agents did not only interfere with the pronounced immunomodulatory properties of H-1PV, but also reinforced drug-induced tumor cell killing. H-1PV combined with cisplatin, vincristine or sunitinib induced effective immunostimulation via a pronounced DC maturation, better cytokine

  8. Preclinical Testing of an Oncolytic Parvovirus: Standard Protoparvovirus H-1PV Efficiently Induces Osteosarcoma Cell Lysis In Vitro

    OpenAIRE

    Carsten Geiss; Zoltán Kis; Barbara Leuchs; Monika Frank-Stöhr; Jörg R. Schlehofer; Jean Rommelaere; Christiane Dinsart; Jeannine Lacroix

    2017-01-01

    Osteosarcoma is the most frequent malignant disease of the bone. On the basis of early clinical experience in the 1960s with H-1 protoparvovirus (H-1PV) in osteosarcoma patients, this effective oncolytic virus was selected for systematic preclinical testing on various osteosarcoma cell cultures. A panel of five human osteosarcoma cell lines (CAL 72, H-OS, MG-63, SaOS-2, U-2OS) was tested. Virus oncoselectivity was confirmed by infecting non-malignant human neonatal fibroblasts and osteoblasts...

  9. Preclinical Testing of an Oncolytic Parvovirus: Standard Protoparvovirus H-1PV Efficiently Induces Osteosarcoma Cell Lysis In Vitro.

    Science.gov (United States)

    Geiss, Carsten; Kis, Zoltán; Leuchs, Barbara; Frank-Stöhr, Monika; Schlehofer, Jörg R; Rommelaere, Jean; Dinsart, Christiane; Lacroix, Jeannine

    2017-10-17

    Osteosarcoma is the most frequent malignant disease of the bone. On the basis of early clinical experience in the 1960s with H-1 protoparvovirus (H-1PV) in osteosarcoma patients, this effective oncolytic virus was selected for systematic preclinical testing on various osteosarcoma cell cultures. A panel of five human osteosarcoma cell lines (CAL 72, H-OS, MG-63, SaOS-2, U-2OS) was tested. Virus oncoselectivity was confirmed by infecting non-malignant human neonatal fibroblasts and osteoblasts used as culture models of non-transformed mesenchymal cells. H-1PV was found to enter osteosarcoma cells and to induce viral DNA replication, transcription of viral genes, and translation to viral proteins. After H-1PV infection, release of infectious viral particles from osteosarcoma cells into the supernatant indicated successful viral assembly and egress. Crystal violet staining revealed progressive cytomorphological changes in all osteosarcoma cell lines. Infection of osteosarcoma cell lines with the standard H-1PV caused an arrest of the cell cycle in the G2 phase, and these lines had a limited capacity for standard H-1PV virus replication. The cytotoxicity of wild-type H-1PV virus towards osteosarcoma cells was compared in vitro with that of two variants, Del H-1PV and DM H-1PV, previously described as fitness variants displaying higher infectivity and spreading in human transformed cell lines of different origins. Surprisingly, wild-type H-1PV displayed the strongest cytostatic and cytotoxic effects in this analysis and thus seems the most promising for the next preclinical validation steps in vivo.

  10. Preclinical Testing of an Oncolytic Parvovirus: Standard Protoparvovirus H-1PV Efficiently Induces Osteosarcoma Cell Lysis In Vitro

    Directory of Open Access Journals (Sweden)

    Carsten Geiss

    2017-10-01

    Full Text Available Osteosarcoma is the most frequent malignant disease of the bone. On the basis of early clinical experience in the 1960s with H-1 protoparvovirus (H-1PV in osteosarcoma patients, this effective oncolytic virus was selected for systematic preclinical testing on various osteosarcoma cell cultures. A panel of five human osteosarcoma cell lines (CAL 72, H-OS, MG-63, SaOS-2, U-2OS was tested. Virus oncoselectivity was confirmed by infecting non-malignant human neonatal fibroblasts and osteoblasts used as culture models of non-transformed mesenchymal cells. H-1PV was found to enter osteosarcoma cells and to induce viral DNA replication, transcription of viral genes, and translation to viral proteins. After H-1PV infection, release of infectious viral particles from osteosarcoma cells into the supernatant indicated successful viral assembly and egress. Crystal violet staining revealed progressive cytomorphological changes in all osteosarcoma cell lines. Infection of osteosarcoma cell lines with the standard H-1PV caused an arrest of the cell cycle in the G2 phase, and these lines had a limited capacity for standard H-1PV virus replication. The cytotoxicity of wild-type H-1PV virus towards osteosarcoma cells was compared in vitro with that of two variants, Del H-1PV and DM H-1PV, previously described as fitness variants displaying higher infectivity and spreading in human transformed cell lines of different origins. Surprisingly, wild-type H-1PV displayed the strongest cytostatic and cytotoxic effects in this analysis and thus seems the most promising for the next preclinical validation steps in vivo.

  11. Preclinical Testing of an Oncolytic Parvovirus in Ewing Sarcoma: Protoparvovirus H-1 Induces Apoptosis and Lytic Infection In Vitro but Fails to Improve Survival In Vivo.

    Science.gov (United States)

    Lacroix, Jeannine; Kis, Zoltán; Josupeit, Rafael; Schlund, Franziska; Stroh-Dege, Alexandra; Frank-Stöhr, Monika; Leuchs, Barbara; Schlehofer, Jörg R; Rommelaere, Jean; Dinsart, Christiane

    2018-06-03

    About 70% of all Ewing sarcoma (EWS) patients are diagnosed under the age of 20 years. Over the last decades little progress has been made towards finding effective treatment approaches for primarily metastasized or refractory Ewing sarcoma in young patients. Here, in the context of the search for novel therapeutic options, the potential of oncolytic protoparvovirus H-1 (H-1PV) to treat Ewing sarcoma was evaluated, its safety having been proven previously tested in adult cancer patients and its oncolytic efficacy demonstrated on osteosarcoma cell cultures. The effects of viral infection were tested in vitro on four human Ewing sarcoma cell lines. Notably evaluated were effects of the virus on the cell cycle and its replication efficiency. Within 24 h after infection, the synthesis of viral proteins was induced. Efficient H-1PV replication was confirmed in all four Ewing sarcoma cell lines. The cytotoxicity of the virus was determined on the basis of cytopathic effects, cell viability, and cell lysis. These in vitro experiments revealed efficient killing of Ewing sarcoma cells by H-1PV at a multiplicity of infection between 0.1 and 5 plaque forming units (PFU)/cell. In two of the four tested cell lines, significant induction of apoptosis by H-1PV was observed. H-1PV thus meets all the in vitro criteria for a virus to be oncolytic towards Ewing sarcoma. In the first xenograft experiments, however, although an antiproliferative effect of intratumoral H-1PV injection was observed, no significant improvement of animal survival was noted. Future projects aiming to validate parvovirotherapy for the treatment of pediatric Ewing sarcoma should focus on combinatorial treatments and will require the use of patient-derived xenografts and immunocompetent syngeneic animal models.

  12. Preclinical Testing of an Oncolytic Parvovirus in Ewing Sarcoma: Protoparvovirus H-1 Induces Apoptosis and Lytic Infection In Vitro but Fails to Improve Survival In Vivo

    Directory of Open Access Journals (Sweden)

    Jeannine Lacroix

    2018-06-01

    Full Text Available About 70% of all Ewing sarcoma (EWS patients are diagnosed under the age of 20 years. Over the last decades little progress has been made towards finding effective treatment approaches for primarily metastasized or refractory Ewing sarcoma in young patients. Here, in the context of the search for novel therapeutic options, the potential of oncolytic protoparvovirus H-1 (H-1PV to treat Ewing sarcoma was evaluated, its safety having been proven previously tested in adult cancer patients and its oncolytic efficacy demonstrated on osteosarcoma cell cultures. The effects of viral infection were tested in vitro on four human Ewing sarcoma cell lines. Notably evaluated were effects of the virus on the cell cycle and its replication efficiency. Within 24 h after infection, the synthesis of viral proteins was induced. Efficient H-1PV replication was confirmed in all four Ewing sarcoma cell lines. The cytotoxicity of the virus was determined on the basis of cytopathic effects, cell viability, and cell lysis. These in vitro experiments revealed efficient killing of Ewing sarcoma cells by H-1PV at a multiplicity of infection between 0.1 and 5 plaque forming units (PFU/cell. In two of the four tested cell lines, significant induction of apoptosis by H-1PV was observed. H-1PV thus meets all the in vitro criteria for a virus to be oncolytic towards Ewing sarcoma. In the first xenograft experiments, however, although an antiproliferative effect of intratumoral H-1PV injection was observed, no significant improvement of animal survival was noted. Future projects aiming to validate parvovirotherapy for the treatment of pediatric Ewing sarcoma should focus on combinatorial treatments and will require the use of patient-derived xenografts and immunocompetent syngeneic animal models.

  13. Capacity of wild-type and chemokine-armed parvovirus H-1PV for inhibiting neo-angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Lavie, Muriel [Tumor Virology Division, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany); Struyf, Sofie [Laboratory of Molecular Immunology, Rega Institute for Medical Research, K.U. Leuven, Leuven (Belgium); Stroh-Dege, Alexandra; Rommelaere, Jean [Tumor Virology Division, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany); Van Damme, Jo [Laboratory of Molecular Immunology, Rega Institute for Medical Research, K.U. Leuven, Leuven (Belgium); Dinsart, Christiane, E-mail: c.dinsart@dkfz.de [Tumor Virology Division, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany)

    2013-12-15

    Anti-angiogenic therapy has been recognized as a powerful potential strategy for impeding the growth of various tumors. However no major therapeutic effects have been observed to date, mainly because of the emergence of several resistance mechanisms. Among novel strategies to target tumor vasculature, some oncolytic viruses open up new prospects. In this context, we addressed the question whether the rodent parvovirus H-1PV can target endothelial cells. We show that cultures of human normal (HUVEC) and immortalized (KS-IMM) endothelial cells sustain an abortive viral cycle upon infection with H-1PV and are sensitive to H-1PV cytotoxicity. H-1PV significantly inhibits infected KS-IMM tumor growth. This effect may be traced back by the virus ability to both kill proliferating endothelial cells and inhibit VEGF production Recombinant H-1PV vectors can also transduce tumor cells with chemokines endowed with anti-angiogenesis properties, and warrant further validation for the treatment of highly vascularized tumors. - Highlights: • The oncolytic parvovirus H-1PV can target endothelial cells. • Abortive viral cycle upon infection of endothelial cells with H-1PV. • Inhibition of VEGF expression and KS-IMM tumor growth by H-1PV.

  14. Capacity of wild-type and chemokine-armed parvovirus H-1PV for inhibiting neo-angiogenesis

    International Nuclear Information System (INIS)

    Lavie, Muriel; Struyf, Sofie; Stroh-Dege, Alexandra; Rommelaere, Jean; Van Damme, Jo; Dinsart, Christiane

    2013-01-01

    Anti-angiogenic therapy has been recognized as a powerful potential strategy for impeding the growth of various tumors. However no major therapeutic effects have been observed to date, mainly because of the emergence of several resistance mechanisms. Among novel strategies to target tumor vasculature, some oncolytic viruses open up new prospects. In this context, we addressed the question whether the rodent parvovirus H-1PV can target endothelial cells. We show that cultures of human normal (HUVEC) and immortalized (KS-IMM) endothelial cells sustain an abortive viral cycle upon infection with H-1PV and are sensitive to H-1PV cytotoxicity. H-1PV significantly inhibits infected KS-IMM tumor growth. This effect may be traced back by the virus ability to both kill proliferating endothelial cells and inhibit VEGF production Recombinant H-1PV vectors can also transduce tumor cells with chemokines endowed with anti-angiogenesis properties, and warrant further validation for the treatment of highly vascularized tumors. - Highlights: • The oncolytic parvovirus H-1PV can target endothelial cells. • Abortive viral cycle upon infection of endothelial cells with H-1PV. • Inhibition of VEGF expression and KS-IMM tumor growth by H-1PV

  15. Production, purification, crystallization and structure determination of H-1 Parvovirus

    International Nuclear Information System (INIS)

    Halder, Sujata; Nam, Hyun-Joo; Govindasamy, Lakshmanan; Vogel, Michèle; Dinsart, Christiane; Salomé, Nathalie; McKenna, Robert; Agbandje-McKenna, Mavis

    2012-01-01

    The production, purification, crystallization and crystallographic analysis of H-1 Parvovirus, a gene-therapy vector, are reported. Crystals of H-1 Parvovirus (H-1PV), an antitumor gene-delivery vector, were obtained for DNA-containing capsids and diffracted X-rays to 2.7 Å resolution using synchrotron radiation. The crystals belonged to the monoclinic space group P2 1 , with unit-cell parameters a = 255.4, b = 350.4, c = 271.6 Å, β = 90.34°. The unit cell contained two capsids, with one capsid per crystallographic asymmetric unit. The H-1PV structure has been determined by molecular replacement and is currently being refined

  16. Pediatric and Adult High-Grade Glioma Stem Cell Culture Models Are Permissive to Lytic Infection with Parvovirus H-1.

    Science.gov (United States)

    Josupeit, Rafael; Bender, Sebastian; Kern, Sonja; Leuchs, Barbara; Hielscher, Thomas; Herold-Mende, Christel; Schlehofer, Jörg R; Dinsart, Christiane; Witt, Olaf; Rommelaere, Jean; Lacroix, Jeannine

    2016-05-19

    Combining virus-induced cytotoxic and immunotherapeutic effects, oncolytic virotherapy represents a promising therapeutic approach for high-grade glioma (HGG). A clinical trial has recently provided evidence for the clinical safety of the oncolytic parvovirus H-1 (H-1PV) in adult glioblastoma relapse patients. The present study assesses the efficacy of H-1PV in eliminating HGG initiating cells. H-1PV was able to enter and to transduce all HGG neurosphere culture models (n = 6), including cultures derived from adult glioblastoma, pediatric glioblastoma, and diffuse intrinsic pontine glioma. Cytotoxic effects induced by the virus have been observed in all HGG neurospheres at half maximal inhibitory concentration (IC50) doses of input virus between 1 and 10 plaque forming units per cell. H-1PV infection at this dose range was able to prevent tumorigenicity of NCH421k glioblastoma multiforme (GBM) "stem-like" cells in NOD/SCID mice. Interestingly NCH421R, an isogenic subclone with equal capacity of xenograft formation, but resistant to H-1PV infection could be isolated from the parental NCH421k culture. To reveal changes in gene expression associated with H-1PV resistance we performed a comparative gene expression analysis in these subclones. Several dysregulated genes encoding receptor proteins, endocytosis factors or regulators innate antiviral responses were identified and represent intriguing candidates for to further study molecular mechanisms of H-1PV resistance.

  17. Generation of an adenovirus-parvovirus chimera with enhanced oncolytic potential.

    Science.gov (United States)

    El-Andaloussi, Nazim; Bonifati, Serena; Kaufmann, Johanna K; Mailly, Laurent; Daeffler, Laurent; Deryckère, François; Nettelbeck, Dirk M; Rommelaere, Jean; Marchini, Antonio

    2012-10-01

    In this study, our goal was to generate a chimeric adenovirus-parvovirus (Ad-PV) vector that combines the high-titer and efficient gene transfer of adenovirus with the anticancer potential of rodent parvovirus. To this end, the entire oncolytic PV genome was inserted into a replication-defective E1- and E3-deleted Ad5 vector genome. As we found that parvoviral NS expression inhibited Ad-PV chimera production, we engineered the parvoviral P4 early promoter, which governs NS expression, by inserting into its sequence tetracycline operator elements. As a result of these modifications, P4-driven expression was blocked in the packaging T-REx-293 cells, which constitutively express the tetracycline repressor, allowing high-yield chimera production. The chimera effectively delivered the PV genome into cancer cells, from which fully infectious replication-competent parvovirus particles were generated. Remarkably, the Ad-PV chimera exerted stronger cytotoxic activities against various cancer cell lines, compared with the PV and Ad parental viruses, while being still innocuous to a panel of tested healthy primary human cells. This Ad-PV chimera represents a novel versatile anticancer agent which can be subjected to further genetic manipulations in order to reinforce its enhanced oncolytic capacity through arming with transgenes or retargeting into tumor cells.

  18. Capacity of wild-type and chemokine-armed parvovirus H-1PV for inhibiting neo-angiogenesis.

    Science.gov (United States)

    Lavie, Muriel; Struyf, Sofie; Stroh-Dege, Alexandra; Rommelaere, Jean; Van Damme, Jo; Dinsart, Christiane

    2013-12-01

    Anti-angiogenic therapy has been recognized as a powerful potential strategy for impeding the growth of various tumors. However no major therapeutic effects have been observed to date, mainly because of the emergence of several resistance mechanisms. Among novel strategies to target tumor vasculature, some oncolytic viruses open up new prospects. In this context, we addressed the question whether the rodent parvovirus H-1PV can target endothelial cells. We show that cultures of human normal (HUVEC) and immortalized (KS-IMM) endothelial cells sustain an abortive viral cycle upon infection with H-1PV and are sensitive to H-1PV cytotoxicity. H-1PV significantly inhibits infected KS-IMM tumor growth. This effect may be traced back by the virus ability to both kill proliferating endothelial cells and inhibit VEGF production Recombinant H-1PV vectors can also transduce tumor cells with chemokines endowed with anti-angiogenesis properties, and warrant further validation for the treatment of highly vascularized tumors. © 2013 Elsevier Inc. All rights reserved.

  19. Structural Characterization of H-1 Parvovirus: Comparison of Infectious Virions to Empty Capsids

    Science.gov (United States)

    Halder, Sujata; Nam, Hyun-Joo; Govindasamy, Lakshmanan; Vogel, Michèle; Dinsart, Christiane; Salomé, Nathalie; McKenna, Robert

    2013-01-01

    The structure of single-stranded DNA (ssDNA) packaging H-1 parvovirus (H-1PV), which is being developed as an antitumor gene delivery vector, has been determined for wild-type (wt) virions and noninfectious (empty) capsids to 2.7- and 3.2-Å resolution, respectively, using X-ray crystallography. The capsid viral protein (VP) structure consists of an α-helix and an eight-stranded anti-parallel β-barrel with large loop regions between the strands. The β-barrel and loops form the capsid core and surface, respectively. In the wt structure, 600 nucleotides are ordered in an interior DNA binding pocket of the capsid. This accounts for ∼12% of the H-1PV genome. The wt structure is identical to the empty capsid structure, except for side chain conformation variations at the nucleotide binding pocket. Comparison of the H-1PV nucleotides to those observed in canine parvovirus and minute virus of mice, two members of the genus Parvovirus, showed both similarity in structure and analogous interactions. This observation suggests a functional role, such as in capsid stability and/or ssDNA genome recognition for encapsulation. The VP structure differs from those of other parvoviruses in surface loop regions that control receptor binding, tissue tropism, pathogenicity, and antibody recognition, including VP sequences reported to determine tumor cell tropism for oncotropic rodent parvoviruses. These structures of H-1PV provide insight into structural features that dictate capsid stabilization following genome packaging and three-dimensional information applicable for rational design of tumor-targeted recombinant gene delivery vectors. PMID:23449783

  20. Phase I/IIa study of intratumoral/intracerebral or intravenous/intracerebral administration of Parvovirus H-1 (ParvOryx) in patients with progressive primary or recurrent glioblastoma multiforme: ParvOryx01 protocol

    International Nuclear Information System (INIS)

    Geletneky, Karsten; Hajda, Jacek; Huesing, Johannes; Rommelaere, Jean; Schlehofer, Joerg R; Leuchs, Barbara; Dahm, Michael; Krebs, Ottheinz; Knebel Doeberitz, Magnus von; Huber, Bernard

    2012-01-01

    The treatment of patients with malignant brain tumors remains a major oncological problem. The median survival of patients with glioblastoma multiforme (GBM), the most malignant type, is only 15 months after initial diagnosis and even less after tumor recurrence. Improvements of standard treatment including surgery and radio-chemotherapy have not lead to major improvements. Therefore, alternative therapeutics such as oncolytic viruses that specifically target and destroy cancer cells are under investigation. Preclinical data of oncolytic parvovirus H-1 (H-1PV) infection of glioma cells demonstrated strong cytotoxic and oncosuppressing effects, leading to a phase I/IIa trial of H-1PV in patients with recurrent GBM (ParvOryx01). ParvOryx01 is the first trial with a replication competent oncolytic virus in Germany. ParvOryx01 is an open, non-controlled, two groups, intra-group dose escalation, single center, phase I/IIa trial. 18 patients with recurrent GBM will be treated in 2 groups of 9 patients each. Treatment group 1 will first receive H-1PV by intratumoral injection and second by administration into the walls of the tumor cavity during tumor resection. In treatment group 2 the virus will initially be injected intravenously and afterwards, identical to group 1, into the surrounding brain tissue during tumor removal. Main eligibility criteria are: age of 18 years, unifocal recurrent GBM, amenable to complete or subtotal resection. Dose escalation will be based on the Continual Reassessment Method. The primary objective of the trial is local and systemic safety and tolerability and to determine the maximum tolerated dose (MTD). Secondary objectives are proof of concept (PoC) and Progression-free Survival (PFS) up to 6 months. This is the first trial with H-1PV in patients with recurrent GBM. The risks for the participants appear well predictable and justified. Furthermore, ParvOryx01 will be the first assessment of combined intratumoral and intravenous application

  1. Retargeting of rat parvovirus H-1PV to cancer cells through genetic engineering of the viral capsid.

    Science.gov (United States)

    Allaume, Xavier; El-Andaloussi, Nazim; Leuchs, Barbara; Bonifati, Serena; Kulkarni, Amit; Marttila, Tiina; Kaufmann, Johanna K; Nettelbeck, Dirk M; Kleinschmidt, Jürgen; Rommelaere, Jean; Marchini, Antonio

    2012-04-01

    The rat parvovirus H-1PV is a promising anticancer agent given its oncosuppressive properties and the absence of known side effects in humans. H-1PV replicates preferentially in transformed cells, but the virus can enter both normal and cancer cells. Uptake by normal cells sequesters a significant portion of the administered viral dose away from the tumor target. Hence, targeting H-1PV entry specifically to tumor cells is important to increase the efficacy of parvovirus-based treatments. In this study, we first found that sialic acid plays a key role in H-1PV entry. We then genetically engineered the H-1PV capsid to improve its affinity for human tumor cells. By analogy with the resolved crystal structure of the closely related parvovirus minute virus of mice, we developed an in silico three-dimensional (3D) model of the H-1PV wild-type capsid. Based on this model, we identified putative amino acids involved in cell membrane recognition and virus entry at the level of the 2-fold axis of symmetry of the capsid, within the so-called dimple region. In situ mutagenesis of these residues significantly reduced the binding and entry of H-1PV into permissive cells. We then engineered an entry-deficient viral capsid and inserted a cyclic RGD-4C peptide at the level of its 3-fold axis spike. This peptide binds α(v)β(3) and α(v)β(5) integrins, which are overexpressed in cancer cells and growing blood vessels. The insertion of the peptide rescued viral infectivity toward cells overexpressing α(v)β(5) integrins, resulting in the efficient killing of these cells by the reengineered virus. This work demonstrates that H-1PV can be genetically retargeted through the modification of its capsid, showing great promise for a more efficient use of this virus in cancer therapy.

  2. Virotherapy of digestive tumors with rodent parvovirus: overview and perspectives.

    Science.gov (United States)

    Akladios, Cherif; Aprahamian, Marc

    2016-01-01

    Toolan's H-1 parvovirus (H-1PV) exerts a cytotoxic/oncolytic effect, predominantly mediated by its non-structural protein (NS1). This rat parvovirus is harmless, unlike other parvoviruses, and its antitumor potential may be useful to clinicians as its oncolytic action appears to be true in numerous non-digestive and digestive cancers. After a brief review of parvovirus genus and biology, we summarize the proposed mechanisms to explain the cytotoxicity of H-1PV to tumors which results in dysregulation of cell transcription, cell-cycle arrest, termination of cell replication, activation of cellular stress response and induction of cell death. Viral oncolysis induces a strong tumor-specific immune response leading to the recognition and elimination of minimal residual disease. As the action of H-1PV is not limited to the digestive tract, we initially analyse studies performed in non-digestive cancers such as glioma (as the virus is able to cross the blood brain barrier), and then focused more particularly on the results in digestive cancers. Based on the results of studies showing little H-1PV toxicity to living bodies, we advocate for the use of the parvovirus in cancers such as melanoma, glioma and pancreatic ductal adenocarcinoma in addition to conventional chemotherapy.

  3. Deficient expression of enhanced reactivation of parvovirus H-1 in ataxia telangiectasia cells irradiated with X-rays or u.v. light

    International Nuclear Information System (INIS)

    Gilgers, Genevieve; Chen, Y.Q.; Cornelis, J.J.; Rommelaere, Jean

    1987-01-01

    Cells of patients with ataxia telangiectasia (AT), an inherited disease characterized by a high propensity to cancer, are hypersensitive to ionizing radiation. We investigated whether the hyper-radiosensitivity of AT cells correlated with a defect in their constitutive and/or conditional ability to rescue a damaged exogenous virus. For that purpose, parvovirus H-1, a single-stranded DNA virus whose intranuclear replication mostly relies on host cell functions, was used as a probe. The survival of u.v.-or γ-irradiated H-1 was measured in X-, u.v.-or mock-irradiated human cells of normal (NB-E) or AT (AT5BIVA) origin. γ-Irradiated H-1 survived to similar extents in untreated normal and AT cell lines. Both X- and u.v.-irradiation induced normal cells to achieve an enhanced reactivation (ER) of γ- or u.v.-damaged H-1. In contrast, neither dose-effect curves nor time course revealed significant levels of ER expression after X- or u.v.-irradiation in AT5BIVA cells. Our results suggest that the impairment of ER of damaged parvoviruses may constitute a marker of the AT cell phenotype and be related to the radiosensitivity of AT cells. (author)

  4. Deficient expression of enhanced reactivation of parvovirus H-1 in ataxia telangiectasia cells irradiated with X-rays or u. v. light

    Energy Technology Data Exchange (ETDEWEB)

    Hilgers, G.; Chen, Y.Q.; Cornelis, J.J.; Rommelaere, J.

    1987-02-01

    Cells of patients with ataxia telangiectasia (AT), an inherited disease characterized by a high propensity to cancer, are hypersensitive to ionizing radiation. We investigated whether the hyper-radiosensitivity of AT cells correlated with a defect in their constitutive and/or conditional ability to rescue a damaged exogenous virus. For that purpose, parvovirus H-1, a single-stranded DNA virus whose intranuclear replication mostly relies on host cell functions, was used as a probe. The survival of u.v.- or gamma-irradiated H-1 was measured in X-, u.v.- or mock-irradiated human cells of normal (NB-E) or AT (AT5BIVA) origin. gamma-Irradiated H-1 survived to similar extents in untreated normal and AT cell lines. Both X- and u.v.-irradiation induced normal cells to achieve an enhanced reactivation (ER) of gamma- or u.v.-damaged H-1. In contrast, neither dose-effect curves nor time course revealed significant levels of ER expression after X- or u.v.-irradiation in AT5BIVA cells. Our results suggest that the impairment of ER of damaged parvoviruses may constitute a marker of the AT cell phenotype and be related to the radiosensitivity of AT cells.

  5. LuIII parvovirus selectively and efficiently targets, replicates in, and kills human glioma cells.

    Science.gov (United States)

    Paglino, Justin C; Ozduman, Koray; van den Pol, Anthony N

    2012-07-01

    Because productive infection by parvoviruses requires cell division and is enhanced by oncogenic transformation, some parvoviruses may have potential utility in killing cancer cells. To identify the parvovirus(es) with the optimal oncolytic effect against human glioblastomas, we screened 12 parvoviruses at a high multiplicity of infection (MOI). MVMi, MVMc, MVM-G17, tumor virus X (TVX), canine parvovirus (CPV), porcine parvovirus (PPV), rat parvovirus 1A (RPV1A), and H-3 were relatively ineffective. The four viruses with the greatest oncolytic activity, LuIII, H-1, MVMp, and MVM-G52, were tested for the ability, at a low MOI, to progressively infect the culture over time, causing cell death at a rate higher than that of cell proliferation. LuIII alone was effective in all five human glioblastomas tested. H-1 progressively infected only two of five; MVMp and MVM-G52 were ineffective in all five. To investigate the underlying mechanism of LuIII's phenotype, we used recombinant parvoviruses with the LuIII capsid replacing the MVMp capsid or with molecular alteration of the P4 promoter. The LuIII capsid enhanced efficient replication and oncolysis in MO59J gliomas cells; other gliomas tested required the entire LuIII genome to exhibit enhanced infection. LuIII selectively infected glioma cells over normal glial cells in vitro. In mouse models, human glioblastoma xenografts were selectively infected by LuIII when administered intratumorally; LuIII reduced tumor growth by 75%. LuIII also had the capacity to selectively infect subcutaneous or intracranial gliomas after intravenous inoculation. Intravenous or intracranial LuIII caused no adverse effects. Intracranial LuIII caused no infection of mature mouse neurons or glia in vivo but showed a modest infection of developing neurons.

  6. Transfection with extracellularly UV-damaged DNA induces human and rat cells to express a mutator phenotype towards parvovirus H-1

    International Nuclear Information System (INIS)

    Dinsart, C.; Cornelis, J.J.; Klein, B.; van der Eb, A.J.; Rommelaere, J.

    1984-01-01

    Human and rat cells transfected with UV-irradiated linear double-stranded DNA from calf thymus displayed a mutator activity. This phenotype was identified by growing a lytic thermosensitive single-stranded DNA virus (parvovirus H-1) in those cells and determining viral reversion frequencies. Likewise, exogenous UV-irradiated closed circular DNAs, either double-stranded (simian virus 40) or single-stranded (phi X174), enhanced the ability of recipient cells to mutate parvovirus H-1. The magnitude of mutator activity expression increased along with the number of UV lesions present in the inoculated DNA up to a saturation level. Unirradiated DNA displayed little inducing capacity, irrespective of whether it was single or double stranded. Deprivation of a functional replication origin did not impede UV-irradiated simian virus 40 DNA from providing rat and human cells with a mutator function. Our data suggest that in mammalian cells a trans-acting mutagenic signal might be generated from UV-irradiated DNA without the necessity for damaged DNA to replicate

  7. Induction of Programmed Cell Death by Parvovirus H-1 in U937 Cells: Connection with the Tumor Necrosis Factor Alpha Signalling Pathway

    Science.gov (United States)

    Rayet, Béatrice; Lopez-Guerrero, José-Antonio; Rommelaere, Jean; Dinsart, Christiane

    1998-01-01

    The human promonocytic cell line U937 undergoes apoptosis upon treatment with tumor necrosis factor alpha (TNF-α). This cell line has previously been shown to be very sensitive to the lytic effect of the autonomous parvovirus H-1. Parvovirus infection leads to the activation of the CPP32 ICE-like cysteine protease which cleaves the enzyme poly(ADP-ribose)polymerase and induces morphologic changes that are characteristic of apoptosis in a way that is similar to TNF-α treatment. This effect is also observed when the U937 cells are infected with a recombinant H-1 virus which expresses the nonstructural (NS) proteins but in which the capsid genes are replaced by a reporter gene, indicating that the induction of apoptosis can be assigned to the cytotoxic nonstructural proteins in this cell system. The c-Myc protein, which is overexpressed in U937 cells, is rapidly downregulated during infection, in keeping with a possible role of this product in mediating the apoptotic cell death induced by H-1 virus infection. Interestingly, four clones (designated RU) derived from the U937 cell line and selected for their resistance to H-1 virus (J. A. Lopez-Guerrero et al., Blood 89:1642–1653, 1997) failed to decrease c-Myc expression upon treatment with differentiation agents and also resisted the induction of cell death after TNF-α treatment. Our data suggest that the RU clones have developed defense strategies against apoptosis, either by their failure to downregulate c-Myc and/or by activating antiapoptotic factors. PMID:9765434

  8. Transformation of human fibroblasts by ionizing radiation, a chemical carcinogen, or simian virus 40 correlates with an increase in susceptibility to the autonomous parvoviruses H-1 virus and minute virus of mice

    International Nuclear Information System (INIS)

    Cornelis, J.J.; Becquart, P.; Duponchel, N.; Salome, N.; Avalosse, B.L.; Namba, M.; Rommelaere, J.

    1988-01-01

    Morphologically altered and established human fibroblasts, obtained either by 60 Co gamma irradiation, treatment with the carcinogen 4-nitroquinoline 1-oxide, or simian virus 40 (SV40) infection, were compared with their normal finite-life parental strains for susceptibility to the autonomous parvoviruses H-1 virus and the prototype strain of minute virus of mice (MVMp). All transformed cells suffered greater virus-induced killing than their untransformed progenitors. The cytotoxic effect of H-1 virus was more severe than that of MVMp. Moreover, the level of viral DNA replication was much (10- to 85-fold) enhanced in the transformants compared with their untransformed parent cells. Thus, in this system, cell transformation appears to correlate with an increase in both DNA amplification and cytotoxicity of the parvoviruses. However, the accumulation of parvovirus DNA in the transformants was not always accompanied by the production of infectious virus. Like in vitro-transformed fibroblasts, a fibrosarcoma-derived cell line was sensitive to the killing effect of both H-1 virus and MVMp and amplified viral DNA to high extents. The results indicate that oncogenic transformation can be included among cellular states which modulate permissiveness to parvoviruses under defined growth conditions

  9. Autonomous parvoviruses neither stimulate nor are inhibited by the type I interferon response in human normal or cancer cells.

    Science.gov (United States)

    Paglino, Justin C; Andres, Wells; van den Pol, Anthony N

    2014-05-01

    Members of the genus Parvovirus are small, nonenveloped single-stranded DNA viruses that are nonpathogenic in humans but have potential utility as cancer therapeutics. Because the innate immune response to parvoviruses has received relatively little attention, we compared the response to parvoviruses to that of several other types of viruses in human cells. In normal human glia, fibroblasts, or melanocytes, vesicular stomatitis virus evoked robust beta interferon (IFN-β) responses. Cytomegalovirus, pseudorabies virus, and Sindbis virus all evoked a 2-log-unit or greater upregulation of IFN-β in glia; in contrast, LuIII and MVMp parvoviruses did not evoke a detectable IFN-β or interferon-stimulated gene (ISG; MX1, oligoadenylate synthetase [OAS], IFIT-1) response in the same cell types. The lack of response raised the question of whether parvoviral infection can be attenuated by IFN; interestingly, we found that IFN did not decrease parvovirus (MVMp, LuIII, and H-1) infectivity in normal human glia, fibroblasts, or melanocytes. The same was true in human cancers, including glioma, sarcoma, and melanoma. Similarly, IFN failed to attenuate transduction by the dependovirus vector adeno-associated virus type 2. Progeny production of parvoviruses was also unimpaired by IFN in both glioma and melanoma, whereas vesicular stomatitis virus replication was blocked. Sarcoma cells with upregulated IFN signaling that show high levels of resistance to other viruses showed strong infection by LuIII. Unlike many other oncolytic viruses, we found no evidence that impairment of innate immunity in cancer cells plays a role in the oncoselectivity of parvoviruses in human cells. Parvoviral resistance to the effects of IFN in cancer cells may constitute an advantage in the virotherapy of some tumors. Understanding the interactions between oncolytic viruses and the innate immune system will facilitate employing these viruses as therapeutic agents in cancer patients. The cancer

  10. NK-cell-dependent killing of colon carcinoma cells is mediated by natural cytotoxicity receptors (NCRs) and stimulated by parvovirus infection of target cells

    International Nuclear Information System (INIS)

    Bhat, Rauf; Rommelaere, Jean

    2013-01-01

    Investigating how the immune system functions during malignancies is crucial to developing novel therapeutic strategies. Natural killer (NK) cells, an important component of the innate immune system, play a vital role in immune defense against tumors and virus-infected cells. The poor survival rate in colon cancer makes it particularly important to develop novel therapeutic strategies. Oncolytic viruses, in addition to lysing tumor cells, may have the potential to augment antitumor immune responses. In the present study, we investigate the role of NK cells and how parvovirus H-1PV can modulate NK-cell mediated immune responses against colon carcinoma. Human NK cells were isolated from the blood of healthy donors. The cytotoxicity and antibody-mediated inhibition of NK cells were measured in chromium release assays. Phenotypic assessment of colon cancer and dendritic cells was done by FACS. The statistical significance of the results was calculated with Student’s t test (*p <0.05; **, p < 0.01; ***, p < 0.001). We show that IL-2-activated human NK cells can effectively kill colon carcinoma cells. Killing of colon carcinoma cells by NK cells was further enhanced upon infection of the former cells with parvovirus H-1PV. H-1PV has potent oncolytic activity against various tumors, yet its direct killing effect on colon carcinoma cells is limited. The cytotoxicity of NK cells towards colon carcinoma cells, both mock- and H-1PV-infected, was found to be mostly mediated by a combination of natural cytotoxicity receptors (NCRs), namely NKp30, 44, and 46. Colon carcinoma cells displayed low to moderate expression of NK cell ligands, and this expression was modulated upon H-1PV infection. Lysates of H-1PV-infected colon carcinoma cells were found to increase MHC class II expression on dendritic cells. Altogether, these data suggest that IL-2-activated NK cells actively kill colon carcinoma cells and that this killing is mediated by several natural cytotoxicity receptors

  11. Human Parvoviruses

    Science.gov (United States)

    Söderlund-Venermo, Maria; Young, Neal S.

    2016-01-01

    SUMMARY Parvovirus B19 (B19V) and human bocavirus 1 (HBoV1), members of the large Parvoviridae family, are human pathogens responsible for a variety of diseases. For B19V in particular, host features determine disease manifestations. These viruses are prevalent worldwide and are culturable in vitro, and serological and molecular assays are available but require careful interpretation of results. Additional human parvoviruses, including HBoV2 to -4, human parvovirus 4 (PARV4), and human bufavirus (BuV) are also reviewed. The full spectrum of parvovirus disease in humans has yet to be established. Candidate recombinant B19V vaccines have been developed but may not be commercially feasible. We review relevant features of the molecular and cellular biology of these viruses, and the human immune response that they elicit, which have allowed a deep understanding of pathophysiology. PMID:27806994

  12. Oncolytic viruses as anticancer vaccines

    Directory of Open Access Journals (Sweden)

    Norman eWoller

    2014-07-01

    Full Text Available Oncolytic virotherapy has shown impressive results in preclinical studies and first promising therapeutic outcomes in clinical trials as well. Since viruses are known for a long time as excellent vaccination agents, oncolytic viruses are now designed as novel anticancer agents combining the aspect of lysis-dependent cytoreductive activity with concomitant induction of antitumoral immune responses. Antitumoral immune activation by oncolytic virus infection of tumor tissue comprises both, immediate effects of innate immunity and also adaptive responses for long lasting antitumoral activity which is regarded as the most prominent challenge in clinical oncology. To date, the complex effects of a viral tumor infection on the tumor microenvironment and the consequences for the tumor-infiltrating immune cell compartment are poorly understood. However, there is more and more evidence that a tumor infection by an oncolytic virus opens up a number of options for further immunomodulating interventions such as systemic chemotherapy, generic immunostimulating strategies, dendritic cell-based vaccines, and antigenic libraries to further support clinical efficacy of oncolytic virotherapy.

  13. Oncolytic Adenoviruses in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Ramon Alemany

    2014-02-01

    Full Text Available The therapeutic use of viruses against cancer has been revived during the last two decades. Oncolytic viruses replicate and spread inside tumors, amplifying their cytotoxicity and simultaneously reversing the tumor immune suppression. Among different viruses, recombinant adenoviruses designed to replicate selectively in tumor cells have been clinically tested by intratumoral or systemic administration. Limited efficacy has been associated to poor tumor targeting, intratumoral spread, and virocentric immune responses. A deeper understanding of these three barriers will be required to design more effective oncolytic adenoviruses that, alone or combined with chemotherapy or immunotherapy, may become tools for oncologists.

  14. Designing herpes viruses as oncolytics

    Directory of Open Access Journals (Sweden)

    Cole Peters

    Full Text Available Oncolytic herpes simplex virus (oHSV was one of the first genetically-engineered oncolytic viruses. Because HSV is a natural human pathogen that can cause serious disease, it is incumbent that it can be genetically-engineered or significantly attenuated for safety. Here, we present a detailed explanation of the functions of HSV-1 genes frequently mutated to endow oncolytic activity. These genes are nonessential for growth in tissue culture cells but are important for growth in postmitotic cells, interfering with intrinsic antiviral and innate immune responses or causing pathology, functions dispensable for replication in cancer cells. Understanding the function of these genes leads to informed creation of new oHSVs with better therapeutic efficacy. Virus infection and replication can also be directed to cancer cells through tumor-selective receptor binding and transcriptional- or post-transcriptional miRNA-targeting, respectively. In addition to the direct effects of oHSV on infected cancer cells and tumors, oHSV can be “armed” with transgenes that are: reporters, to track virus replication and spread; cytotoxic, to kill uninfected tumor cells; immune modulatory, to stimulate antitumor immunity; or tumor microenvironment altering, to enhance virus spread or to inhibit tumor growth. In addition to HSV-1, other alphaherpesviruses are also discussed for their oncolytic activity.

  15. Designing herpes viruses as oncolytics

    Science.gov (United States)

    Peters, Cole; Rabkin, Samuel D

    2015-01-01

    Oncolytic herpes simplex virus (oHSV) was one of the first genetically-engineered oncolytic viruses. Because HSV is a natural human pathogen that can cause serious disease, it is incumbent that it can be genetically-engineered or significantly attenuated for safety. Here, we present a detailed explanation of the functions of HSV-1 genes frequently mutated to endow oncolytic activity. These genes are nonessential for growth in tissue culture cells but are important for growth in postmitotic cells, interfering with intrinsic antiviral and innate immune responses or causing pathology, functions dispensable for replication in cancer cells. Understanding the function of these genes leads to informed creation of new oHSVs with better therapeutic efficacy. Virus infection and replication can also be directed to cancer cells through tumor-selective receptor binding and transcriptional- or post-transcriptional miRNA-targeting, respectively. In addition to the direct effects of oHSV on infected cancer cells and tumors, oHSV can be “armed” with transgenes that are: reporters, to track virus replication and spread; cytotoxic, to kill uninfected tumor cells; immune modulatory, to stimulate antitumor immunity; or tumor microenvironment altering, to enhance virus spread or to inhibit tumor growth. In addition to HSV-1, other alphaherpesviruses are also discussed for their oncolytic activity. PMID:26462293

  16. Parvovirus B19 and Other Illnesses

    Science.gov (United States)

    ... Cheek Rash Parvovirus B19 and Other Illnesses References Parvovirus B19 and Other Illnesses Recommend on Facebook Tweet Share ... disease is the most common illness caused by parvovirus B19 infection. Learn More Parvovirus B19 infection can cause ...

  17. Oncolytic viral therapy: targeting cancer stem cells

    Directory of Open Access Journals (Sweden)

    Smith TT

    2014-02-01

    Full Text Available Tyrel T Smith,1 Justin C Roth,1 Gregory K Friedman,1 G Yancey Gillespie2 1Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA; 2Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, AL, USA Abstract: Cancer stem cells (CSCs are defined as rare populations of tumor-initiating cancer cells that are capable of both self-renewal and differentiation. Extensive research is currently underway to develop therapeutics that target CSCs for cancer therapy, due to their critical role in tumorigenesis, as well as their resistance to chemotherapy and radiotherapy. To this end, oncolytic viruses targeting unique CSC markers, signaling pathways, or the pro-tumor CSC niche offer promising potential as CSCs-destroying agents/therapeutics. We provide a summary of existing knowledge on the biology of CSCs, including their markers and their niche thought to comprise the tumor microenvironment, and then we provide a critical analysis of the potential for targeting CSCs with oncolytic viruses, including herpes simplex virus-1, adenovirus, measles virus, reovirus, and vaccinia virus. Specifically, we review current literature regarding first-generation oncolytic viruses with their innate ability to replicate in CSCs, as well as second-generation viruses engineered to enhance the oncolytic effect and CSC-targeting through transgene expression. Keywords: oncolytic virotherapy, cancer stem cell niche

  18. Biology of Porcine Parvovirus (Ungulate parvovirus 1)

    OpenAIRE

    István Mészáros; Ferenc Olasz; Attila Cságola; Peter Tijssen; Zoltán Zádori

    2017-01-01

    Porcine parvovirus (PPV) is among the most important infectious agents causing infertility in pigs. Until recently, it was thought that the virus had low genetic variance, and that prevention of its harmful effect on pig fertility could be well-controlled by vaccination. However, at the beginning of the third millennium, field observations raised concerns about the effectiveness of the available vaccines against newly emerging strains. Subsequent investigations radically changed our view on t...

  19. Molecular imaging of oncolytic viral therapy

    Directory of Open Access Journals (Sweden)

    Dana Haddad

    2014-01-01

    Full Text Available Oncolytic viruses have made their mark on the cancer world as a potential therapeutic option, with the possible advantages of reduced side effects and strengthened treatment efficacy due to higher tumor selectivity. Results have been so promising, that oncolytic viral treatments have now been approved for clinical trials in several countries. However, clinical studies may benefit from the ability to noninvasively and serially identify sites of viral targeting via molecular imaging in order to provide safety, efficacy, and toxicity information. Furthermore, molecular imaging of oncolytic viral therapy may provide a more sensitive and specific diagnostic technique to detect tumor origin and, more importantly, presence of metastases. Several strategies have been investigated for molecular imaging of viral replication broadly categorized into optical and deep tissue imaging, utilizing several reporter genes encoding for fluorescence proteins, conditional enzymes, and membrane protein and transporters. Various imaging methods facilitate molecular imaging, including computer tomography, magnetic resonance imaging, positron emission tomography, single photon emission CT, gamma-scintigraphy, and photoacoustic imaging. In addition, several molecular probes are used for medical imaging, which act as targeting moieties or signaling agents. This review will explore the preclinical and clinical use of in vivo molecular imaging of replication-competent oncolytic viral therapy.

  20. The impact of hypoxia on oncolytic virotherapy

    Directory of Open Access Journals (Sweden)

    Guo ZS

    2011-11-01

    Full Text Available Z Sheng GuoUniversity of Pittsburgh Cancer Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USAAbstract: The hypoxic tumor microenvironment plays significant roles in tumor cell metabolism and survival, tumor growth, and progression. Hypoxia modulates target genes in target cells mainly through an oxygen-sensing signaling pathway mediated by hypoxia-inducible factor of transcription factors. As a result, hypoxic tumor cells are resistant to conventional therapeutics such as radiation and chemotherapy. Oncolytic virotherapy may be a promising novel therapeutic for hypoxic cancer. Some oncolytic viruses are better adapted than others to the hypoxic tumor environment. Replication of adenoviruses from both groups B and C is inhibited, yet replication of herpes simplex virus is enhanced. Hypoxia seems to exert little or no effect on the replication of other oncolytic viruses. Vaccinia virus displayed increased cytotoxicity in some hypoxic cancer cells even though viral protein synthesis and transgene expression were not affected. Vesicular stomatitis virus replicated to similar levels in both hypoxic and normoxic conditions, and is effective for killing hypoxic cancer cells. However, vesicular stomatitis virus and reovirus, but not encephalomyocarditis virus, are sensitive to elevated levels of hypoxia-inducible factor-1α in renal cancer cells with the loss of von Hippel–Lindau tumor suppressor protein, because elevated hypoxia-inducible factor activity confers dramatically enhanced resistance to cytotoxicity mediated by vesicular stomatitis virus or reovirus. A variety of hypoxia-selective and tumor-type-specific oncolytic adenoviruses, generated by incorporating hypoxia-responsive elements into synthetic promoters to control essential genes for viral replication or therapeutic genes, have been shown to be safe and efficacious. Hypoxic tumor-homing macrophages can function effectively as carrier

  1. Canine Parvovirus: Current Perspective

    OpenAIRE

    Nandi, S.; Kumar, Manoj

    2010-01-01

    Canine parvovirus 2 (CPV-2) has been considered to be an important pathogen of domestic and wild canids and has spread worldwide since its emergence in 1978. It has been reported from Asia, Australia, New Zealand, the Americas and Europe. Two distinct parvoviruses are now known to infect dogs—the pathogenic CPV-2 and CPV-1 or the minute virus of canine (MVC). CPV-2, the causative agent of acute hemorrhagic enteritis and myocarditis in dogs, is one of the most important pathogenic viruses with...

  2. Verspreiding parvovirus onderzocht

    NARCIS (Netherlands)

    Huysman, C.

    1991-01-01

    Op het Proefstation voor de Varkenshouderij werden gedurende een periode van 31 maanden de gevolgen van infecties met het parvovirus bekeken bij de zeugen van verschillende worpnummers. Bij de eersteworps zeugen bleek de groep zeugen, die een infectiedoormaakte tijdens de dracht 0,9 levend geboren

  3. The H1 detector

    International Nuclear Information System (INIS)

    Cozzika, G.

    1992-11-01

    The H1 detector presently operating at the HERA e-p collider is described. A general overview of the detector is given with particular emphasis on the calorimeters, the main element of which is a liquid Argon calorimeter enclosed within a large radius solenoid. Calorimetry in the proton direction, close to the beam-pipe is provided by a copper-silicon pad hadronic calorimeter. In the electron direction a lead-scintillator electromagnetic calorimeter closes the solid angle between the rear part of the liquid Argon calorimeter and the beam-pipe. An iron limited streamer tube tail catcher using the return yoke of the solenoid as absorber completes the calorimetry of the detector. The hardware triggers derived from the calorimeters are also described and some performance details of the calorimeters are given

  4. Pengobatan infeksi parvovirus pada anjing

    Directory of Open Access Journals (Sweden)

    IKW Sardjana D Kusumawati

    2012-02-01

    Full Text Available Treatments of canine Parvovirus have already done to 22 dogs. There were 16 dogs, one month to one years of age and 6 dogs twoyears to seven years of age. The results of the theraphy, were ten dogs survived and twelve dogs died due to Parvovirus infection. Fluidtheraphy supported by antibiotic, antiemetic or antacids administrations were essential for Parvovirus infection in dogs. The recoveryrate of this dogs was 45%.

  5. Oncolytic virotherapy in upper gastrointestinal tract cancers

    Directory of Open Access Journals (Sweden)

    Yokoda R

    2018-03-01

    Full Text Available Raquel Yokoda,1 Bolni M Nagalo,1 Mansi Arora,1 Jan B Egan,1 James M Bogenberger,1 Thomas T DeLeon,1 Yumei Zhou,1 Daniel H Ahn,1 Mitesh J Borad1–3 1Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, 2Department of Molecular Medicine, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 3Department of Oncology, Mayo Clinic Cancer Center, Phoenix, AZ, USA Abstract: Upper gastrointestinal tract malignancies are among the most challenging cancers with regard to response to treatment and prognosis. Cancers of the esophagus, stomach, pancreas, liver, and biliary tree have dismal 5-year survival, and very modest improvements in this rate have been made in recent times. Oncolytic viruses are being developed to address these malignancies, with a focus on high safety profiles and low off-target toxicities. Each viral platform has evolved to enhance oncolytic potency and the clinical response to either single-agent viral therapy or combined viral treatment with radiotherapy and chemotherapy. A panel of genomic alterations, chimeric proteins, and pseudotyped capsids are the breakthroughs for vector success. This article revisits developments for each viral platform to each tumor type, in an attempt to achieve maximum tumor selectivity. From the bench to clinical trials, the scope of this review is to highlight the beginnings of translational oncolytic virotherapy research in upper gastrointestinal tract malignancies and provide a bioengineering perspective of the most promising platforms. Keywords: oncolytic viruses, hepatopancreatobiliary, gastric cancer, pancreatic cancer, liver cancer, biliary cancer

  6. Oncolytic viruses: a step into cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Pol JG

    2011-12-01

    Full Text Available Jonathan G Pol, Julien Rességuier, Brian D LichtyMcMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, CanadaAbstract: Oncolytic virotherapy is currently under investigation in phase I–III clinical trials for approval as a new cancer treatment. Oncolytic viruses (OVs selectively infect, replicate in, and kill tumor cells. For a long time, the therapeutic efficacy was thought to depend on the direct viral oncolysis (virocentric view. The host immune system was considered as a brake that impaired virus delivery and spread. Attention was paid primarily to approaches enhancing virus tumor selectivity and cytotoxicity and/or that limited antiviral responses. Thinking has changed over the past few years with the discovery that OV therapy was also inducing indirect oncolysis mechanisms. Among them, induction of an antitumor immunity following OV injection appeared to be a key factor for an efficient therapeutic activity (immunocentric view. Indeed, tumor-specific immune cells persist post-therapy and can search and destroy any tumor cells that escape the OVs, and thus immune memory may prevent relapse of the disease. Various strategies, which are summarized in this manuscript, have been developed to enhance the efficacy of OV therapy with a focus on its immunotherapeutic aspects. These include genetic engineering and combination with existing cancer treatments. Several are currently being evaluated in human patients and already display promising efficacy.Keywords: oncolytic virus, cancer immunotherapy, tumor antigen, cancer vaccine, combination strategies

  7. Parvovirus B19.

    Science.gov (United States)

    Landry, Marie Louise

    2016-06-01

    Primary parvovirus B19 infection is an infrequent, but serious and treatable, cause of chronic anemia in immunocompromised hosts. Many compromised hosts have preexisting antibody to B19 and are not at risk. However, upon primary infection, some patients may be able to mount a sufficient immune response to terminate active parvovirus B19 infection of erythroid precursors. The most common consequence of B19 infection in the compromised host is pure red-cell aplasia, resulting in chronic or recurrent anemia with reticulocytopenia. Anemia persists until neutralizing antibody is either produced by the host or passively administered. Parvovirus B19 should be suspected in compromised hosts with unexplained or severe anemia and reticulocytopenia, or when bone-marrow examination shows either giant pronormoblasts or absence of red-cell precursors. Diagnosis is established by detection of B19 DNA in serum in the absence of IgG antibody to B19. In some cases, IgG antibody is detected but is not neutralizing. Anti-B19 IgM may or may not be present. Therapy includes any or all of the following: red-cell transfusion, adjustment in medications to restore or improve the patient's immune system, and administration of intravenous immunoglobulin (IVIG). Following treatment, patients should be closely monitored, especially if immunosuppression is unchanged or increased. Should hematocrit trend downward and parvovirus DNA trend upward, the therapeutic options above should be revisited. In a few instances, monthly maintenance IVIG may be indicated. Caregivers should be aware that B19 variants, though rarely encountered, can be missed or under-quantitated by some real-time polymerase-chain reaction methods.

  8. Oncolytic virus delivery: from nano-pharmacodynamics to enhanced oncolytic effect

    Directory of Open Access Journals (Sweden)

    Yokoda R

    2017-11-01

    Full Text Available Raquel Yokoda,1 Bolni M Nagalo,1 Brent Vernon,2 Rahmi Oklu,3 Hassan Albadawi,3 Thomas T DeLeon,1 Yumei Zhou,1 Jan B Egan,1 Dan G Duda,4 Mitesh J Borad1 1Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale, 2Department of Biomedical Engineering, Arizona State University, Tempe, 3Division of Vascular and Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, AZ, 4Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA Abstract: With the advancement of a growing number of oncolytic viruses (OVs to clinical development, drug delivery is becoming an important barrier to overcome for optimal therapeutic benefits. Host immunity, tumor microenvironment and abnormal vascularity contribute to inefficient vector delivery. A number of novel approaches for enhanced OV delivery are under evaluation, including use of nanoparticles, immunomodulatory agents and complex viral–particle ligands along with manipulations of the tumor microenvironment. This field of OV delivery has quickly evolved to bioengineering of complex nanoparticles that could be deposited within the tumor using minimal invasive image-guided delivery. Some of the strategies include ultrasound (US-mediated cavitation-enhanced extravasation, magnetic viral complexes delivery, image-guided infusions with focused US and targeting photodynamic virotherapy. In addition, strategies that modulate tumor microenvironment to decrease extracellular matrix deposition and increase viral propagation are being used to improve tumor penetration by OVs. Some involve modification of the viral genome to enhance their tumoral penetration potential. Here, we highlight the barriers to oncolytic viral delivery, and discuss the challenges to improving it and the perspectives of establishing new modes of active delivery to achieve enhanced oncolytic effects. Keywords: oncolytic viruses, oncolytic virotherapy, drug delivery systems, tumor

  9. H1 at HERA Exhibition

    CERN Multimedia

    2000-01-01

    H1 is one of the two large detectors installed at HERA, the first electron-proton accelerator, located at DESY in Hamburg. The H1 collaboration regroups physicists from 32institutes of 11countries all over the world.

  10. Therapeutic potential of oncolytic Newcastle disease virus: a critical review.

    Science.gov (United States)

    Tayeb, Shay; Zakay-Rones, Zichria; Panet, Amos

    2015-01-01

    Newcastle disease virus (NDV) features a natural preference for replication in many tumor cells compared with normal cells. The observed antitumor effect of NDV appears to be a result of both selective killing of tumor cells and induction of immune responses. Genetic manipulations to change viral tropism and arming the virus with genes encoding for cytokines improved the oncolytic capacity of NDV. Several intracellular proteins in tumor cells, including antiapoptotic proteins (Livin) and oncogenic proteins (H-Ras), are relevant for the oncolytic activity of NDV. Defects in the interferon system, found in some tumor cells, also contribute to the oncolytic selectivity of NDV. Notwithstanding, NDV displays effective oncolytic activity in many tumor types, despite having intact interferon signaling. Taken together, several cellular systems appear to dictate the selective oncolytic activity of NDV. Some barriers, such as neutralizing antibodies elicited during NDV treatment and the extracellular matrix in tumor tissue appear to interfere with spread of NDV and reduce oncolysis. To further understand the oncolytic activity of NDV, we compared two NDV strains, ie, an attenuated virus (NDV-HUJ) and a pathogenic virus (NDV-MTH-68/H). Significant differences in amino acid sequence were noted in several viral proteins, including the fusion precursor (F0) glycoprotein, an important determinant of replication and pathogenicity. However, no difference in the oncolytic activity of the two strains was noted using human tumor tissues maintained as organ cultures or in mouse tumor models. To optimize virotherapy in clinical trials, we describe here a unique organ culture methodology, using a biopsy taken from a patient's tumor before treatment for ex vivo infection with NDV to determine the oncolytic potential on an individual basis. In conclusion, oncolytic NDV is an excellent candidate for cancer therapy, but more knowledge is needed to ensure success in clinical trials.

  11. Biology of Porcine Parvovirus (Ungulate parvovirus 1

    Directory of Open Access Journals (Sweden)

    István Mészáros

    2017-12-01

    Full Text Available Porcine parvovirus (PPV is among the most important infectious agents causing infertility in pigs. Until recently, it was thought that the virus had low genetic variance, and that prevention of its harmful effect on pig fertility could be well-controlled by vaccination. However, at the beginning of the third millennium, field observations raised concerns about the effectiveness of the available vaccines against newly emerging strains. Subsequent investigations radically changed our view on the evolution and immunology of PPV, revealing that the virus is much more diverse than it was earlier anticipated, and that some of the “new” highly virulent isolates cannot be neutralized effectively by antisera raised against “old” PPV vaccine strains. These findings revitalized PPV research that led to significant advancements in the understanding of early and late viral processes during PPV infection. Our review summarizes the recent results of PPV research and aims to give a comprehensive update on the present understanding of PPV biology.

  12. Biology of Porcine Parvovirus (Ungulate parvovirus 1)

    Science.gov (United States)

    Mészáros, István; Olasz, Ferenc; Cságola, Attila; Tijssen, Peter; Zádori, Zoltán

    2017-01-01

    Porcine parvovirus (PPV) is among the most important infectious agents causing infertility in pigs. Until recently, it was thought that the virus had low genetic variance, and that prevention of its harmful effect on pig fertility could be well-controlled by vaccination. However, at the beginning of the third millennium, field observations raised concerns about the effectiveness of the available vaccines against newly emerging strains. Subsequent investigations radically changed our view on the evolution and immunology of PPV, revealing that the virus is much more diverse than it was earlier anticipated, and that some of the “new” highly virulent isolates cannot be neutralized effectively by antisera raised against “old” PPV vaccine strains. These findings revitalized PPV research that led to significant advancements in the understanding of early and late viral processes during PPV infection. Our review summarizes the recent results of PPV research and aims to give a comprehensive update on the present understanding of PPV biology. PMID:29261104

  13. Electron microscopic comparison of the sequences of single-stranded genomes of mammalian parvoviruses by heteroduplex mapping

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, P.T.; Olson, W.H.; Allison, D.P.; Bates, R.C.; Snyder, C.E.; Mitra, S.

    1983-01-01

    The sequence homologies among the linear single-stranded genomes of several mammalian parvoviruses have been studied by electron microscopic analysis of tthe heteroduplexes produced by reannealing the complementary strands of their DNAs. The genomes of Kilham rat virus, H-1, minute virus of ice and LuIII, which are antigenically distinct non-defective parvoviruses, have considerable homology: about 70% of their sequences are conserved. The homologous regions map at similar locations in the left halves (from the 3' ends) of the genomes. No sequence homology, however, is observed between the DNAs of these nondefective parvoviruses and that of bovine parvovirus, another non-defective virus, or that of defective adenoassociated virus, nor between the genomes of bovine parvovirus and adenoassociated virus. This suggests that only very short, if any, homologous regions are present. From these results, an evolutionary relationship among Kilham rat virus, H-1, minute virus of mice and LuIII is predicted. It is interesting to note that, although LuIII was originally isolated from a human cell line and is specific for human cells in vitro, its genome has sequences in common only with the rodent viruses Kilham rat virus, minute virus of mice and H-1, and not with the other two mammalian parvoviruses tested.

  14. Current Immunotherapeutic Strategies to Enhance Oncolytic Virotherapy

    Directory of Open Access Journals (Sweden)

    Daniel E. Meyers

    2017-06-01

    Full Text Available Oncolytic viruses (OV represent a promising strategy to augment the spectrum of cancer therapeutics. For efficacy, they rely on two general mechanisms: tumor-specific infection/cell-killing, followed by subsequent activation of the host’s adaptive immune response. Numerous OV genera have been utilized in clinical trials, ultimately culminating in the 2015 Food and Drug Administration approval of a genetically engineered herpes virus, Talminogene laherparepvec (T-VEC. It is generally accepted that OV as monotherapy have only modest clinical efficacy. However, due to their ability to elicit specific antitumor immune responses, they are prime candidates to be paired with other immune-modulating strategies in order to optimize therapeutic efficacy. Synergistic strategies to enhance the efficacy of OV include augmenting the host antitumor response through the insertion of therapeutic transgenes such as GM-CSF, utilization of the prime-boost strategy, and combining OV with immune-modulatory drugs such as cyclophosphamide, sunitinib, and immune checkpoint inhibitors. This review provides an overview of these immune-based strategies to improve the clinical efficacy of oncolytic virotherapy.

  15. Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications

    Directory of Open Access Journals (Sweden)

    Hanni Uusi-Kerttula

    2015-11-01

    Full Text Available Adenoviruses (Ad are commonly used both experimentally and clinically, including oncolytic virotherapy applications. In the clinical area, efficacy is frequently hampered by the high rates of neutralizing immunity, estimated as high as 90% in some populations that promote vector clearance and limit bioavailability for tumor targeting following systemic delivery. Active tumor targeting is also hampered by the ubiquitous nature of the Ad5 receptor, hCAR, as well as the lack of highly tumor-selective targeting ligands and suitable targeting strategies. Furthermore, significant off-target interactions between the viral vector and cellular and proteinaceous components of the bloodstream have been documented that promote uptake into non-target cells and determine dose-limiting toxicities. Novel strategies are therefore needed to overcome the obstacles that prevent efficacious Ad deployment for wider clinical applications. The use of less seroprevalent Ad serotypes, non-human serotypes, capsid pseudotyping, chemical shielding and genetic masking by heterologous peptide incorporation are all potential strategies to achieve efficient vector escape from humoral immune recognition. Conversely, selective vector arming with immunostimulatory agents can be utilized to enhance their oncolytic potential by activation of cancer-specific immune responses against the malignant tissues. This review presents recent advantages and pitfalls occurring in the field of adenoviral oncolytic therapies.

  16. Parvovirus B19 associated acute cholestatic hepatitis

    Directory of Open Access Journals (Sweden)

    S. Perrini

    2014-12-01

    Full Text Available There are few reports in the literature of hepatitis as a manifestation of Parvovirus B19 infection. We describe a case of Parvovirus B19 associated acute cholestatic hepatitis diagnosed based on a positive serologic test (IgM and molecular detection of parvovirus B19 DNA in peripheral blood. Parvovirus B19 infection should be considered in the differential diagnosis of patient presenting with acute hepatitis of unknown etiology.

  17. Enteric parvovirus infections of chickens and turkeys

    Science.gov (United States)

    Chicken and turkey parvoviruses are members of the Parvovirus family. Comparative sequence analysis of their genome structure revealed that they should form a new genus within the vertebrate Parvovirinae subfamily. The first chicken and turkey parvoviruses were identified by electron microscopy duri...

  18. Oncolytic vaccinia therapy of squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yu Yong A

    2009-07-01

    Full Text Available Abstract Background Novel therapies are necessary to improve outcomes for patients with squamous cell carcinomas (SCC of the head and neck. Historically, vaccinia virus was administered widely to humans as a vaccine and led to the eradication of smallpox. We examined the therapeutic effects of an attenuated, replication-competent vaccinia virus (GLV-1h68 as an oncolytic agent against a panel of six human head and neck SCC cell lines. Results All six cell lines supported viral transgene expression (β-galactosidase, green fluorescent protein, and luciferase as early as 6 hours after viral exposure. Efficient transgene expression and viral replication (>150-fold titer increase over 72 hrs were observed in four of the cell lines. At a multiplicity of infection (MOI of 1, GLV-1h68 was highly cytotoxic to the four cell lines, resulting in ≥ 90% cytotoxicity over 6 days, and the remaining two cell lines exhibited >45% cytotoxicity. Even at a very low MOI of 0.01, three cell lines still demonstrated >60% cell death over 6 days. A single injection of GLV-1h68 (5 × 106 pfu intratumorally into MSKQLL2 xenografts in mice exhibited localized intratumoral luciferase activity peaking at days 2–4, with gradual resolution over 10 days and no evidence of spread to normal organs. Treated animals exhibited near-complete tumor regression over a 24-day period without any observed toxicity, while control animals demonstrated rapid tumor progression. Conclusion These results demonstrate significant oncolytic efficacy by an attenuated vaccinia virus for infecting and lysing head and neck SCC both in vitro and in vivo, and support its continued investigation in future clinical trials.

  19. Canine parvovirus: current perspective.

    Science.gov (United States)

    Nandi, S; Kumar, Manoj

    2010-06-01

    Canine parvovirus 2 (CPV-2) has been considered to be an important pathogen of domestic and wild canids and has spread worldwide since its emergence in 1978. It has been reported from Asia, Australia, New Zealand, the Americas and Europe. Two distinct parvoviruses are now known to infect dogs-the pathogenic CPV-2 and CPV-1 or the minute virus of canine (MVC). CPV-2, the causative agent of acute hemorrhagic enteritis and myocarditis in dogs, is one of the most important pathogenic viruses with high morbidity (100%) and frequent mortality up to 10% in adult dogs and 91% in pups. The disease condition has been complicated further due to emergence of a number of variants namely CPV-2a, CPV-2b and CPV-2c over the years and involvement of domestic and wild canines. There are a number of different serological and molecular tests available for prompt, specific and accurate diagnosis of the disease. Further, both live attenuated and inactivated vaccines are available to control the disease in animals. Besides, new generation vaccines namely recombinant vaccine, peptide vaccine and DNA vaccine are in different stages of development and offer hope for better management of the disease in canines. However, new generation vaccines have not been issued license to be used in the field condition. Again, the presence of maternal antibodies often interferes with the active immunization with live attenuated vaccine and there always exists a window of susceptibility in spite of following proper immunization regimen. Lastly, judicious use of the vaccines in pet dogs, stray dogs and wild canids keeping in mind the new variants of the CPV-2 along with the proper sanitation and disinfection practices must be implemented for the successful control the disease.

  20. Polymicrogyria and Congenital Parvovirus B19 Infection

    Directory of Open Access Journals (Sweden)

    Grant S. Schulert

    2011-12-01

    Full Text Available Fetal parvovirus B19 infection causes anemia, hydrops, and pregnancy loss but is generally not considered teratogenic. Nevertheless, disturbances of neuronal migration have been described with congenital parvovirus infection. We evaluated a term infant with congenital parvovirus disease and polymicrogyria. We compared this case with four other reports of central nervous system disease after birth to parvovirus-infected mothers. After an extensive diagnostic evaluation, this infant was found to have congenital parvovirus disease with severe anemia and nonimmune hydrops as well as extensive polymicrogyria. Although rare, this report and literature review suggest that parvovirus B19 has the potential to disrupt normal neurodevelopment. We suggest that infants with severe congenital parvovirus infection have close developmental surveillance and if symptomatic undergo neuroimaging to assess for disorders of neuromigration.

  1. Promising oncolytic agents for metastatic breast cancer treatment

    Directory of Open Access Journals (Sweden)

    Cody JJ

    2015-06-01

    Full Text Available James J Cody,1 Douglas R Hurst2 1ImQuest BioSciences, Frederick, MD, 2Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA Abstract: New therapies for metastatic breast cancer patients are urgently needed. The long-term survival rates remain unacceptably low for patients with recurrent disease or disseminated metastases. In addition, existing therapies often cause a variety of debilitating side effects that severely impact quality of life. Oncolytic viruses constitute a developing therapeutic modality in which interest continues to build due to their ability to spare normal tissue while selectively destroying tumor cells. A number of different viruses have been used to develop oncolytic agents for breast cancer, including herpes simplex virus, adenovirus, vaccinia virus, measles virus, reovirus, and others. In general, clinical trials for several cancers have demonstrated excellent safety records and evidence of efficacy. However, the impressive tumor responses often observed in preclinical studies have yet to be realized in the clinic. In order for the promise of oncolytic virotherapy to be fully realized for breast cancer patients, effectiveness must be demonstrated in metastatic disease. This review provides a summary of oncolytic virotherapy strategies being developed to target metastatic breast cancer. Keywords: oncolytic virus, virotherapy, breast cancer, metastasis 

  2. Mechanisms of cell death in canine parvovirus-infected cells provide intuitive insights to developing nanotools for medicine

    Directory of Open Access Journals (Sweden)

    Jonna Nykky

    2010-06-01

    Full Text Available Jonna Nykky, Jenni E Tuusa, Sanna Kirjavainen, Matti Vuento, Leona GilbertNanoscience Center and Department of Biological and Environmental Science, University of Jyväskylä, FinlandAbstract: Viruses have great potential as nanotools in medicine for gene transfer, targeted gene delivery, and oncolytic cancer virotherapy. Here we have studied cell death mechanisms of canine parvovirus (CPV to increase the knowledge on the CPV life cycle in order to facilitate the development of better parvovirus vectors. Morphological studies of CPV-infected Norden laboratory feline kidney (NLFK cells and canine fibroma cells (A72 displayed characteristic apoptotic events. Apoptosis was further confirmed by activation of caspases and cellular DNA damage. However, results from annexin V-propidium iodide (PI labeling and membrane polarization assays indicated disruption of the plasma membrane uncommon to apoptosis. These results provide evidence that secondary necrosis followed apoptosis. In addition, two human cancer cell lines were found to be infected by CPV. This necrotic event over apoptotic cell death and infection in human cells provide insightful information when developing CPV as a nanotool for cancer treatments.Keywords: canine parvovirus, apoptosis, necrosis, nanoparticle, virotherapy

  3. H1 in RSA galaxies

    Science.gov (United States)

    Richter, OTTO-G.

    1993-01-01

    The original Revised Shapley-Ames (RSA) galaxy sample of almost 1300 galaxies has been augmented with further bright galaxies from the RSA appendix as well as newer galaxy catalogs. A complete and homogeneous, strictly magnitude-limited all-sky sample of 2345 galaxies brighter than 13.4 in apparent blue magnitude was formed. New 21 cm H1 line observations for more than 600 RSA galaxies have been combined with all previously available H1 data from the literature. This new extentise data act allows detailed tests of widely accepted 'standard' reduction and analysis techniques.

  4. Oncolytic Sendai virus-based virotherapy for cancer: recent advances

    Directory of Open Access Journals (Sweden)

    Saga K

    2015-10-01

    Full Text Available Kotaro Saga, Yasufumi Kaneda Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Osaka, Japan Abstract: Many drugs have been developed and optimized for the treatment of cancer; however, it is difficult to completely cure cancer with anticancer drugs alone. Therefore, the development of new therapeutic technologies, in addition to new anticancer drugs, is necessary for more effective oncotherapy. Oncolytic viruses are one potential new anticancer strategy. Various oncolytic viruses have been developed for safe and effective oncotherapy. Recently, Sendai virus-based oncotherapy has been reported by several groups, and attention has been drawn to its unique anticancer mechanisms, which are different from those of the conventional oncolytic viruses that kill cancer cells by cancer cell-selective replication. Here, we introduce Sendai virus-based virotherapy and its anticancer mechanisms. Keywords: HVJ-E, cancer therapy, apoptosis, necroptosis, anticancer immunity 

  5. Tumor-Associated Macrophages in Oncolytic Virotherapy: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Nicholas L. Denton

    2016-07-01

    Full Text Available Cancer therapy remains a challenge due to toxicity limitations of chemotherapy and radiation therapy. Oncolytic viruses that selectively replicate and destroy cancer cells are of increasing interest. In addition to direct cell lysis, these vectors stimulate an anti-tumor immune response. A key regulator of tumor immunity is the tumor-associated macrophage population. Macrophages can either support oncolytic virus therapy through pro-inflammatory stimulation of the anti-tumor response at the cost of hindering direct oncolysis or through immunosuppressive protection of virus replication at the cost of hindering the anti-tumor immune response. Despite similarities in macrophage interaction between adult and pediatric tumors and the abundance of research supporting macrophage modulation in adult tumors, there are few studies investigating macrophage modulation in pediatric cancers or modulation of immunotherapy. We review the current state of knowledge regarding macrophages in cancers and their influence on oncolytic virotherapy.

  6. H1 antihistamines and driving

    OpenAIRE

    Florin-Dan, Popescu

    2008-01-01

    Driving performances depend on cognitive, psychomotor and perception functions. The CNS adverse effects of some H1 antihistamines can alter the patient ability to drive. Data from studies using standardized objective cognitive and psychomotor tests (Choice Reaction Time, Critical Flicker Fusion, Digital Symbol Substitution Test), functional brain imaging (Positron Emission Tomography, functional Magnetic Resonance Imaging), neurophysiological studies (Multiple Sleep Latency Test, auditory and...

  7. Oncolytic Viruses: Therapeutics With an Identity Crisis

    Directory of Open Access Journals (Sweden)

    Caroline J. Breitbach

    2016-07-01

    Full Text Available Oncolytic viruses (OV are replicating viral therapeutics for the treatment of cancer and have been in laboratory development for about twenty years. Recently, the FDA approved Imlygic, a herpes virus based therapeutic for the treatment of melanoma and thus OVs have entered a new era where they are a weapon in the armament of the oncologist. OVs are unique therapeutics with multiple mechanisms of therapeutic activity. The exact path for their development and eventual uptake by pharmaceutical companies is somewhat clouded by an uncertain identity. Are they vaccines, tumour lysing therapeutics, inducers of innate immunity, gene therapy vectors, anti-vascular agents or all of the above? Should they be developed as stand-alone loco-regional therapeutics, systemically delivered tumour hunters or immune modulators best tested as combination therapeutics? We summarize data here supporting the idea, depending upon the virus, that OVs can be any or all of these things. Pursuing a “one-size fits all” approach is counter-productive to their clinical development and instead as a field we should build on the strengths of individual virus platforms.

  8. Parvovirus Capsid Structures Required for Infection: Mutations Controlling Receptor Recognition and Protease Cleavages.

    Science.gov (United States)

    Callaway, Heather M; Feng, Kurtis H; Lee, Donald W; Allison, Andrew B; Pinard, Melissa; McKenna, Robert; Agbandje-McKenna, Mavis; Hafenstein, Susan; Parrish, Colin R

    2017-01-15

    Parvovirus capsids are small but complex molecular machines responsible for undertaking many of the steps of cell infection, genome packing, and cell-to-cell as well as host-to-host transfer. The details of parvovirus infection of cells are still not fully understood, but the processes must involve small changes in the capsid structure that allow the endocytosed virus to escape from the endosome, pass through the cell cytoplasm, and deliver the single-stranded DNA (ssDNA) genome to the nucleus, where viral replication occurs. Here, we examine capsid substitutions that eliminate canine parvovirus (CPV) infectivity and identify how those mutations changed the capsid structure or altered interactions with the infectious pathway. Amino acid substitutions on the exterior surface of the capsid (Gly299Lys/Ala300Lys) altered the binding of the capsid to transferrin receptor type 1 (TfR), particularly during virus dissociation from the receptor, but still allowed efficient entry into both feline and canine cells without successful infection. These substitutions likely control specific capsid structural changes resulting from TfR binding required for infection. A second set of changes on the interior surface of the capsid reduced viral infectivity by >100-fold and included two cysteine residues and neighboring residues. One of these substitutions, Cys270Ser, modulates a VP2 cleavage event found in ∼10% of the capsid proteins that also was shown to alter capsid stability. A neighboring substitution, Pro272Lys, significantly reduced capsid assembly, while a Cys273Ser change appeared to alter capsid transport from the nucleus. These mutants reveal additional structural details that explain cell infection processes of parvovirus capsids. Parvoviruses are commonly found in both vertebrate and invertebrate animals and cause widespread disease. They are also being developed as oncolytic therapeutics and as gene therapy vectors. Most functions involved in infection or transduction

  9. Parvovirus Capsid Structures Required for Infection: Mutations Controlling Receptor Recognition and Protease Cleavages

    Science.gov (United States)

    Callaway, Heather M.; Feng, Kurtis H.; Lee, Donald W.; Pinard, Melissa; McKenna, Robert; Agbandje-McKenna, Mavis; Hafenstein, Susan

    2016-01-01

    ABSTRACT Parvovirus capsids are small but complex molecular machines responsible for undertaking many of the steps of cell infection, genome packing, and cell-to-cell as well as host-to-host transfer. The details of parvovirus infection of cells are still not fully understood, but the processes must involve small changes in the capsid structure that allow the endocytosed virus to escape from the endosome, pass through the cell cytoplasm, and deliver the single-stranded DNA (ssDNA) genome to the nucleus, where viral replication occurs. Here, we examine capsid substitutions that eliminate canine parvovirus (CPV) infectivity and identify how those mutations changed the capsid structure or altered interactions with the infectious pathway. Amino acid substitutions on the exterior surface of the capsid (Gly299Lys/Ala300Lys) altered the binding of the capsid to transferrin receptor type 1 (TfR), particularly during virus dissociation from the receptor, but still allowed efficient entry into both feline and canine cells without successful infection. These substitutions likely control specific capsid structural changes resulting from TfR binding required for infection. A second set of changes on the interior surface of the capsid reduced viral infectivity by >100-fold and included two cysteine residues and neighboring residues. One of these substitutions, Cys270Ser, modulates a VP2 cleavage event found in ∼10% of the capsid proteins that also was shown to alter capsid stability. A neighboring substitution, Pro272Lys, significantly reduced capsid assembly, while a Cys273Ser change appeared to alter capsid transport from the nucleus. These mutants reveal additional structural details that explain cell infection processes of parvovirus capsids. IMPORTANCE Parvoviruses are commonly found in both vertebrate and invertebrate animals and cause widespread disease. They are also being developed as oncolytic therapeutics and as gene therapy vectors. Most functions involved in

  10. H1 antihistamines and driving.

    Science.gov (United States)

    Popescu, Florin Dan

    2008-01-01

    Driving performances depend on cognitive, psychomotor and perception functions. The CNS adverse effects of some H1 antihistamines can alter the patient ability to drive. Data from studies using standardized objective cognitive and psychomotor tests (Choice Reaction Time, Critical Flicker Fusion. Digital Symbol Substitution Test), functional brain imaging (Positron Emission Tomography, functional Magnetic Resonance Imaging), neurophysiological studies (Multiple Sleep Latency Test, auditory and visual evoked potentials), experimental simulated driving (driving simulators) and real driving studies (the Highway Driving Test, with the evaluation of the Standard Deviation Lateral Position, and the Car Following Test, with the measurement of the Brake Reaction Time) must be discussed in order to classify a H1 antihistamine as a true non-sedating one.

  11. Parvovirus B19 Associated Hepatitis

    Science.gov (United States)

    Bihari, Chhagan; Rastogi, Archana; Saxena, Priyanka; Rangegowda, Devraj; Chowdhury, Ashok; Gupta, Nalini; Sarin, Shiv Kumar

    2013-01-01

    Parvovirus B19 infection can present with myriads of clinical diseases and syndromes; liver manifestations and hepatitis are examples of them. Parvovirus B19 hepatitis associated aplastic anemia and its coinfection with other hepatotropic viruses are relatively underrecognized, and there is sufficient evidence in the literature suggesting that B19 infections can cause a spectrum of liver diseases from elevation of transaminases to acute hepatitis to fulminant liver failure and even chronic hepatitis. It can also cause fatal macrophage activation syndrome and fibrosing cholestatic hepatitis. Parvovirus B19 is an erythrovirus that can only be replicate in pronormoblasts and hepatocytes, and other cells which have globosides and glycosphingolipids in their membrane can also be affected by direct virus injury due to nonstructural protein 1 persistence and indirectly by immune mediated injury. The virus infection is suspected in bone marrow aspiration in cases with sudden drop of hemoglobin and onset of transient aplastic anemia in immunosuppressed or immunocompetent patients and is confirmed either by IgM and IgG positive serology, PCR analysis, and in situ hybridization in biopsy specimens or by application of both. There is no specific treatment for parvovirus B19 related liver diseases, but triple therapy regimen may be effective consisting of immunoglobulin, dehydrohydrocortisone, and cyclosporine. PMID:24232179

  12. Improvement of oncolytic adenovirus vectors through genetic capsid modifications

    NARCIS (Netherlands)

    Vrij, Jeroen de

    2012-01-01

    Recombinant viral vectors hold great promise in the field of cancer gene therapy. While a plethora of viruses is being evaluated as oncolytic agents, human adenoviruses of serotype 5 (HAdV-5) are among the most popular of viruses to be developed. Although clinical studies have demonstrated safety of

  13. Genetic Modification of Oncolytic Newcastle Disease Virus for Cancer Therapy.

    Science.gov (United States)

    Cheng, Xing; Wang, Weijia; Xu, Qi; Harper, James; Carroll, Danielle; Galinski, Mark S; Suzich, JoAnn; Jin, Hong

    2016-06-01

    Clinical development of a mesogenic strain of Newcastle disease virus (NDV) as an oncolytic agent for cancer therapy has been hampered by its select agent status due to its pathogenicity in avian species. Using reverse genetics, we have generated a lead candidate oncolytic NDV based on the mesogenic NDV-73T strain that is no longer classified as a select agent for clinical development. This recombinant NDV has a modification at the fusion protein (F) cleavage site to reduce the efficiency of F protein cleavage and an insertion of a 198-nucleotide sequence into the HN-L intergenic region, resulting in reduced viral gene expression and replication in avian cells but not in mammalian cells. In mammalian cells, except for viral polymerase (L) gene expression, viral gene expression is not negatively impacted or increased by the HN-L intergenic insertion. Furthermore, the virus can be engineered to express a foreign gene while still retaining the ability to grow to high titers in cell culture. The recombinant NDV selectively replicates in and kills tumor cells and is able to drive potent tumor growth inhibition following intratumoral or intravenous administration in a mouse tumor model. The candidate is well positioned for clinical development as an oncolytic virus. Avian paramyxovirus type 1, NDV, has been an attractive oncolytic agent for cancer virotherapy. However, this virus can cause epidemic disease in poultry, and concerns about the potential environmental and economic impact of an NDV outbreak have precluded its clinical development. Here we describe generation and characterization of a highly potent oncolytic NDV variant that is unlikely to cause Newcastle disease in its avian host, representing an essential step toward moving NDV forward as an oncolytic agent. Several attenuation mechanisms have been genetically engineered into the recombinant NDV that reduce chicken pathogenicity to a level that is acceptable worldwide without impacting viral production in

  14. Immune cells: more than simple carriers for systemic delivery of oncolytic viruses

    Directory of Open Access Journals (Sweden)

    Eisenstein S

    2014-11-01

    Full Text Available Samuel Eisenstein,1 Shu-Hsia Chen,2 Ping-Ying Pan21Department of Surgery, 2Department of Oncological Sciences and Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USAAbstract: Oncolytic virotherapy on its own has numerous drawbacks, including an inability of the virus to actively target tumor cells and systemic toxicities at the high doses necessary to effectively treat tumors. Addition of immune cell-based carriers of oncolytic viruses holds promise as a technique in which oncolytic virus can be delivered directly to tumors in smaller and less toxic doses. Interestingly, the cell carriers themselves have also demonstrated antitumor effects, which can be augmented further by tailoring the appropriate oncolytic virus to the appropriate cell type. This review discusses the multiple factors that go into devising an effective, cell-based delivery system for oncolytic viruses.Keywords: oncolytic virus, cell carrier, immune cells, cancer therapy, myeloid-derived suppressor cells

  15. 9 CFR 113.317 - Parvovirus Vaccine (Canine).

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Parvovirus Vaccine (Canine). 113.317... Virus Vaccines § 113.317 Parvovirus Vaccine (Canine). Parvovirus Vaccine recommended for use in dogs... from each dog shall be individually tested for neutralizing antibody against canine parvovirus to...

  16. 9 CFR 113.214 - Parvovirus Vaccine, Killed Virus (Canine).

    Science.gov (United States)

    2010-01-01

    ... REQUIREMENTS Killed Virus Vaccines § 113.214 Parvovirus Vaccine, Killed Virus (Canine). Parvovirus Vaccine... antibody against canine parvovirus to determine susceptibility. A constant virus-varying serum... vaccinates and the controls shall be challenged with virulent canine parvovirus furnished or approved by...

  17. Parvovirus B19 viraemia in Dutch blood donors

    NARCIS (Netherlands)

    Zaaijer, H. L.; Koppelman, M. H. G. M.; Farrington, C. P.

    2004-01-01

    Blood, donated by asymptomatic donors, may contain and transmit parvovirus B19. To investigate the dynamics of parvovirus viraemia in asymptomatic blood donors, we studied the amounts of parvovirus DNA in pools of donor plasma, the prevalence of parvovirus antibodies among blood donors in relation

  18. Oncolytic viruses for cancer therapy II. Cell-internal factors for conditional growth in neoplastic cells.

    Science.gov (United States)

    Campbell, Stephanie A; Gromeier, Matthias

    2005-04-01

    Recent advances in our understanding of virus-host interactions have fueled new studies in the field of oncolytic viruses. The first part of this review explained how cell-external factors, such as cellular receptors, influence tumor tropism and specificity of oncolytic virus candidates. In the second part of this review, we focus on cellinternal factors that mediate tumor-specific virus growth. An oncolytic virus must be able to replicate within cancerous cells and kill them without collateral damage to healthy surrounding cells. This desirable property is inherent to some proposed oncolytic viral agents or has been achieved by genetic manipulation in others.

  19. Fifth Disease (Parvovirus B19) and Pregnancy

    Science.gov (United States)

    Fifth Disease (parvovirus B19) In every pregnancy, a woman starts out with a 3-5% chance of having a baby with a ... infectiosum, is a viral illness caused by human parvovirus B19. It occurs most commonly in children ages 4 ...

  20. Parvovirus B19 infection in pregnancy

    NARCIS (Netherlands)

    de Jong, Eveline P.; de Haan, Timo R.; Kroes, Aloys C. M.; Beersma, Matthias F. C.; Oepkes, Dick; Walther, Frans J.

    2006-01-01

    Parvovirus B19 is a small single-stranded DNA virus and a potent inhibitor of erythropoiesis, due to its cytotoxicity to erythroid progenitor cells. Infection with parvovirus B19 during pregnancy can cause several serious complications in the fetus, such as fetal anemia, neurological anomalies,

  1. Parvovirus infection-induced DNA damage response

    Science.gov (United States)

    Luo, Yong; Qiu, Jianming

    2014-01-01

    Parvoviruses are a group of small DNA viruses with ssDNA genomes flanked by two inverted terminal structures. Due to a limited genetic resource they require host cellular factors and sometimes a helper virus for efficient viral replication. Recent studies have shown that parvoviruses interact with the DNA damage machinery, which has a significant impact on the life cycle of the virus as well as the fate of infected cells. In addition, due to special DNA structures of the viral genomes, parvoviruses are useful tools for the study of the molecular mechanisms underlying viral infection-induced DNA damage response (DDR). This review aims to summarize recent advances in parvovirus-induced DDR, with a focus on the diverse DDR pathways triggered by different parvoviruses and the consequences of DDR on the viral life cycle as well as the fate of infected cells. PMID:25429305

  2. Immunostimulatory Gene Therapy Using Oncolytic Viruses as Vehicles

    Directory of Open Access Journals (Sweden)

    Angelica Loskog

    2015-11-01

    Full Text Available Immunostimulatory gene therapy has been developed during the past twenty years. The aim of immunostimulatory gene therapy is to tilt the suppressive tumor microenvironment to promote anti-tumor immunity. Hence, like a Trojan horse, the gene vehicle can carry warriors and weapons into enemy territory to combat the tumor from within. The most promising immune stimulators are those activating and sustaining Th1 responses, but even if potent effects were seen in preclinical models, many clinical trials failed to show objective responses in cancer patients. However, with new tools to control ongoing immunosuppression in cancer patients, immunostimulatory gene therapy is now emerging as an interesting option. In parallel, oncolytic viruses have been shown to be safe in patients. To prolong immune stimulation and to increase efficacy, these two fields are now merging and oncolytic viruses are armed with immunostimulatory transgenes. These novel agents are racing towards approval as established cancer immunotherapeutics.

  3. Measles to the Rescue: A Review of Oncolytic Measles Virus

    Directory of Open Access Journals (Sweden)

    Sarah Aref

    2016-10-01

    Full Text Available Oncolytic virotherapeutic agents are likely to become serious contenders in cancer treatment. The vaccine strain of measles virus is an agent with an impressive range of oncolytic activity in pre-clinical trials with increasing evidence of safety and efficacy in early clinical trials. This paramyxovirus vaccine has a proven safety record and is amenable to careful genetic modification in the laboratory. Overexpression of the measles virus (MV receptor CD46 in many tumour cells may direct the virus to preferentially enter transformed cells and there is increasing awareness of the importance of nectin-4 and signaling lymphocytic activation molecule (SLAM in oncolysis. Successful attempts to retarget MV by inserting genes for tumour-specific ligands to antigens such as carcinoembryonic antigen (CEA, CD20, CD38, and by engineering the virus to express synthetic microRNA targeting sequences, and “blinding” the virus to the natural viral receptors are exciting measures to increase viral specificity and enhance the oncolytic effect. Sodium iodine symporter (NIS can also be expressed by MV, which enables in vivo tracking of MV infection. Radiovirotherapy using MV-NIS, chemo-virotherapy to convert prodrugs to their toxic metabolites, and immune-virotherapy including incorporating antibodies against immune checkpoint inhibitors can also increase the oncolytic potential. Anti-viral host immune responses are a recognized barrier to the success of MV, and approaches such as transporting MV to the tumour sites by carrier cells, are showing promise. MV Clinical trials are producing encouraging preliminary results in ovarian cancer, myeloma and cutaneous non-Hodgkin lymphoma, and the outcome of currently open trials in glioblastoma multiforme, mesothelioma and squamous cell carcinoma are eagerly anticipated.

  4. Advances in the design and development of oncolytic measles viruses

    Directory of Open Access Journals (Sweden)

    Hutzen B

    2015-08-01

    Full Text Available Brian Hutzen,1 Corey Raffel,2 Adam W Studebaker1 1Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA; 2Department of Neurological Surgery and Pediatrics, University of California, San Francisco, San Francisco, CA, USA Abstract: A successful oncolytic virus is one that selectively propagates and destroys cancerous tissue without causing excessive damage to the normal surrounding tissue. Oncolytic measles virus (MV is one such virus that exhibits this characteristic and thus has rapidly emerged as a potentially useful anticancer modality. Derivatives of the Edmonston MV vaccine strain possess a remarkable safety record in humans. Promising results in preclinical animal models and evidence of biological activity in early phase trials contribute to the enthusiasm. Genetic modifications have enabled MV to evolve from a vaccine agent to a potential anticancer therapy. Specifically, alterations of the MV genome have led to improved tumor selectivity and delivery, therapeutic potency, and immune system modulation. In this article, we will review the advancements that have been made in the design and development of MV that have led to its use as a cancer therapy. In addition, we will discuss the evidence supporting its use, as well as the challenges associated with MV as a potential cancer therapeutic. Keywords: virotherapy, measles virus, oncolytic therapy

  5. Oncolytic Replication of E1b-Deleted Adenoviruses

    Directory of Open Access Journals (Sweden)

    Pei-Hsin Cheng

    2015-11-01

    Full Text Available Various viruses have been studied and developed for oncolytic virotherapies. In virotherapy, a relatively small amount of viruses used in an intratumoral injection preferentially replicate in and lyse cancer cells, leading to the release of amplified viral particles that spread the infection to the surrounding tumor cells and reduce the tumor mass. Adenoviruses (Ads are most commonly used for oncolytic virotherapy due to their infection efficacy, high titer production, safety, easy genetic modification, and well-studied replication characteristics. Ads with deletion of E1b55K preferentially replicate in and destroy cancer cells and have been used in multiple clinical trials. H101, one of the E1b55K-deleted Ads, has been used for the treatment of late-stage cancers as the first approved virotherapy agent. However, the mechanism of selective replication of E1b-deleted Ads in cancer cells is still not well characterized. This review will focus on three potential molecular mechanisms of oncolytic replication of E1b55K-deleted Ads. These mechanisms are based upon the functions of the viral E1B55K protein that are associated with p53 inhibition, late viralmRNAexport, and cell cycle disruption.

  6. Oncolytic virotherapy in veterinary medicine: current status and future prospects for canine patients

    Directory of Open Access Journals (Sweden)

    Patil Sandeep S

    2012-01-01

    Full Text Available Abstract Oncolytic viruses refer to those that are able to eliminate malignancies by direct targeting and lysis of cancer cells, leaving non-cancerous tissues unharmed. Several oncolytic viruses including adenovirus strains, canine distemper virus and vaccinia virus strains have been used for canine cancer therapy in preclinical studies. However, in contrast to human studies, clinical trials with oncolytic viruses for canine cancer patients have not been reported. An 'ideal' virus has yet to be identified. This review is focused on the prospective use of oncolytic viruses in the treatment of canine tumors - a knowledge that will undoubtedly contribute to the development of oncolytic viral agents for canine cancer therapy in the future.

  7. Oncolytic Herpes Simplex Virus Vectors Fully Retargeted to Tumor- Associated Antigens.

    Science.gov (United States)

    Uchida, Hiroaki; Hamada, Hirofumi; Nakano, Kenji; Kwon, Heechung; Tahara, Hideaki; Cohen, Justus B; Glorioso, Joseph C

    2018-01-01

    Oncolytic virotherapy is a novel therapeutic modality for malignant diseases that exploits selective viral replication in cancer cells. Herpes simplex virus (HSV) is a promising agent for oncolytic virotherapy due to its broad cell tropism and the identification of mutations that favor its replication in tumor over normal cells. However, these attenuating mutations also tend to limit the potency of current oncolytic HSV vectors that have entered clinical studies. As an alternative, vector retargeting to novel entry receptors has the potential to achieve tumor specificity at the stage of virus entry, eliminating the need for replication-attenuating mutations. Here, we summarize the molecular mechanism of HSV entry and recent advances in the development of fully retargeted HSV vectors for oncolytic virotherapy. Retargeted HSV vectors offer an attractive platform for the creation of a new generation of oncolytic HSV with improved efficacy and specificity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. New frontiers in oncolytic viruses: optimizing and selecting for virus strains with improved efficacy

    Directory of Open Access Journals (Sweden)

    Lundstrom K

    2018-02-01

    Full Text Available Kenneth Lundstrom PanTherapeutics, Lutry, Switzerland Abstract: Oncolytic viruses have demonstrated selective replication and killing of tumor cells. Different types of oncolytic viruses – adenoviruses, alphaviruses, herpes simplex viruses, Newcastle disease viruses, rhabdoviruses, Coxsackie viruses, and vaccinia viruses – have been applied as either naturally occurring or engineered vectors. Numerous studies in animal-tumor models have demonstrated substantial tumor regression and prolonged survival rates. Moreover, clinical trials have confirmed good safety profiles and therapeutic efficacy for oncolytic viruses. Most encouragingly, the first cancer gene-therapy drug – Gendicine, based on oncolytic adenovirus type 5 – was approved in China. Likewise, a second-generation oncolytic herpes simplex virus-based drug for the treatment of melanoma has been registered in the US and Europe as talimogene laherparepvec. Keywords: immunotherapy, viral vectors, clinical trials, drug approval

  9. Oncolytic herpes viruses, chemotherapeutics, and other cancer drugs

    Directory of Open Access Journals (Sweden)

    Braidwood L

    2013-12-01

    Full Text Available Lynne Braidwood,1 Sheila V Graham,2 Alex Graham,1 Joe Conner11Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK; 2MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Jarrett Building, University of Glasgow, Glasgow, UKAbstract: Oncolytic viruses are emerging as a potential new way of treating cancers. They are selectively replication-competent viruses that propagate only in actively dividing tumor cells but not in normal cells and, as a result, destroy the tumor cells by consequence of lytic infection. At least six different oncolytic herpes simplex viruses (oHSVs have undergone clinical trials worldwide to date, and they have demonstrated an excellent safety profile and intimations of efficacy. The first pivotal Phase III trial with an oHSV, talimogene laherparepvec (T-Vec [OncoVexGM-CSF], is almost complete, with extremely positive early results reported. Intuitively, therapeutically beneficial interactions between oHSV and chemotherapeutic and targeted therapeutic drugs would be limited as the virus requires actively dividing cells for maximum replication efficiency and most anticancer agents are cytotoxic or cytostatic. However, combinations of such agents display a range of responses, with antagonistic, additive, or, perhaps most surprisingly, synergistic enhancement of antitumor activity. When synergistic interactions in cancer cell killing are observed, chemotherapy dose reductions that achieve the same overall efficacy may be possible, resulting in a valuable reduction of adverse side effects. Therefore, the combination of an oHSV with “standard-of-care” drugs makes a logical and reasonable approach to improved therapy, and the addition of a targeted oncolytic therapy with “standard-of-care” drugs merits further investigation, both preclinically and in the clinic. Numerous publications report

  10. Oncolytic adenovirus Ad657 for systemic virotherapy against prostate cancer

    Directory of Open Access Journals (Sweden)

    Nguyen TV

    2018-05-01

    Full Text Available Tien V Nguyen,1,* Catherine M Crosby,2,* Gregory J Heller,3 Zachary I Mendel,3 Mary E Barry,1 Michael A Barry1,4,5 1Department of Internal Medicine, Division of Infectious Diseases, 2Virology and Gene Therapy Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, 3Postbaccalaureate Research Education Program, Mayo Clinic Graduate School of Biomedical Sciences, 4Department of Immunology, 5Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA *These authors contributed equally to this work Background: Human species C adenovirus serotype 5 (Ad5 is the archetype oncolytic adenovirus and has been used in the vast majority of preclinical and clinical tests. While Ad5 can be robust, species C Ad6 has lower seroprevalence, side effects, and appears to be more potent as a systemic therapy against a number of tumors than Ad5. Historically, there have only been four species C human adenoviruses: serotypes 1, 2, 5, and 6. More recently a new species C adenovirus, Ad57, was identified. Ad57 is most similar to Ad6 with virtually all variation in their capsid proteins occurring in the hypervariable regions (HVRs of their hexon proteins. Most adenovirus neutralizing antibodies target the HVRs on adenoviruses. This led us to replace the hexon HVRs in Ad6 with those from Ad57 to create a new virus called Ad657 and explore this novel species C platform’s utility as an oncolytic virus. Methods: The HVR region from Ad57 was synthesized and used to replace the Ad6 HVR region by homologous recombination in bacteria generating a new viral platform that we call Ad657. Replication-competent Ad5, Ad6, and Ad657 were compared in vitro and in vivo for liver damage and oncolytic efficacy against prostate cancers after single intravenous treatment in mice. Results: Ad5, Ad6, and Ad657 had similar in vitro oncolytic activity against human prostate cancer cells. Ad5 provoked the highest level of liver toxicity after intravenous injection and Ad657

  11. H1N1 influenza (Swine flu)

    Science.gov (United States)

    Swine flu; H1N1 type A influenza ... The H1N1 virus is now considered a regular flu virus. It is one of the three viruses included in the regular (seasonal) flu vaccine . You cannot get H1N1 flu virus from ...

  12. Parvovirus-induced dyserythropoeisis in a child

    Directory of Open Access Journals (Sweden)

    Jain Deepali

    2008-07-01

    Full Text Available Most persons with parvovirus B19 infection are asymptomatic or exhibit mild, nonspecific, cold-like symptoms. However, hematologic problems associated with the infection include transient aplastic crisis, chronic red cell aplasia, mild neutropenia and thrombocytopenia. A rare hematologic manifestation is in the form of dyserythropoeisis. Herein, we present the case of a 9-year-old female with severe dyserythropoeisis associated with parvovirus infection.

  13. Efficacy of feline anti-parvovirus antibodies in the treatment of canine parvovirus infection.

    Science.gov (United States)

    Gerlach, M; Proksch, A L; Unterer, S; Speck, S; Truyen, U; Hartmann, K

    2017-07-01

    This prospective, randomised, placebo-controlled, double-blinded study aimed to evaluate efficacy of commercially available feline anti-parvovirus antibodies in dogs with canine parvovirus infection. First, cross-protection of feline panleukopenia virus antibodies against canine parvovirus was evaluated in vitro. In the subsequent prospective clinical trial, 31 dogs with clinical signs of canine parvovirus infection and a positive faecal canine parvovirus polymerase chain reaction were randomly assigned to a group receiving feline panleukopenia virus antibodies (n=15) or placebo (n=16). All dogs received additional routine treatment. Clinical signs, blood parameters, time to clinical recovery and mortality were compared between the groups. Serum antibody titres and quantitative faecal polymerase chain reaction were compared on days 0, 3, 7, and 14. In vitro, canine parvovirus was fully neutralised by feline panleukopenia virus antibodies. There were no detected significant differences in clinical signs, time to clinical recovery, blood parameters, mortality, faecal virus load, or viral shedding between groups. Dogs in the placebo group showed a significant increase of serum antibody titres and a significant decrease of faecal virus load between day 14 and day 0, which was not detectable in dogs treated with feline panleukopenia virus antibodies. No significant beneficial effect of passively transferred feline anti-parvovirus antibodies in the used dosage regimen on the treatment of canine parvovirus infection was demonstrated. © 2017 British Small Animal Veterinary Association.

  14. [Parvovirus B19 infection after kidney transplantation].

    Science.gov (United States)

    Brodin-Sartorius, Albane; Mekki, Yahia; Bloquel, Bénédicte; Rabant, Marion; Legendre, Christophe

    2012-02-01

    Prevalence for human parvovirus B19 infection is estimated to be between 2% and 30% in renal transplant recipients. In post-transplant settings, parvovirus B19 infection may occur either as a primary infection or a reactivation. Parvovirus transmission most commonly occurs through respiratory tract but may also result from graft or blood packs contamination. Co-infections with HHV-6 and CMV viruses are frequent. The hallmark symptom is anemia, more rarely pancytopenia and hemophagocytic syndrome. In respect to renal involvement, parvovirus B19 infection has been associated with graft dysfunction in 10% of cases. Both thrombotic microangiopathies and collapsing glomerulopathies have been reported concomitantly with parvovirus B19 infection but the causal link remains unclear. Other complications are seldomly reported, including hepatitis, encephalitis, and myocarditis. Diagnosis is based on pre and post-transplant serological status. In addition, the management of parvovirus B19 infection in immunocompromised patients requires quantitative assessment of blood viral load by PCR. The treatment relies primarily on reduction of immunosuppression combined with intravenous immunoglobulin infusions. Relapses occur in 30% of cases. Copyright © 2011 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  15. Oncolytic Herpes Simplex Viral Therapy: A Stride toward Selective Targeting of Cancer Cells.

    Science.gov (United States)

    Sanchala, Dhaval S; Bhatt, Lokesh K; Prabhavalkar, Kedar S

    2017-01-01

    Oncolytic viral therapy, which makes use of replication-competent lytic viruses, has emerged as a promising modality to treat malignancies. It has shown meaningful outcomes in both solid tumor and hematologic malignancies. Advancements during the last decade, mainly genetic engineering of oncolytic viruses have resulted in improved specificity and efficacy of oncolytic viruses in cancer therapeutics. Oncolytic viral therapy for treating cancer with herpes simplex virus-1 has been of particular interest owing to its range of benefits like: (a) large genome and power to infiltrate in the tumor, (b) easy access to manipulation with the flexibility to insert multiple transgenes, (c) infecting majority of the malignant cell types with quick replication in the infected cells and (d) as Anti-HSV agent to terminate HSV replication. This review provides an exhaustive list of oncolytic herpes simplex virus-1 along with their genetic alterations. It also encompasses the major developments in oncolytic herpes simplex-1 viral therapy and outlines the limitations and drawbacks of oncolytic herpes simplex viral therapy.

  16. The current status of oncolytic viral therapy for head and neck cancer

    Directory of Open Access Journals (Sweden)

    Matthew O. Old

    2016-06-01

    Full Text Available Objective: Cancer affects the head and neck region frequently and leads to significant morbidity and mortality. Oncolytic viral therapy has the potential to make a big impact in cancers that affect the head and neck. We intend to review the current state of oncolytic viruses in the treatment of cancers that affect the head and neck region. Method: Data sources are from National clinical trials database, literature, and current research. Results: There are many past and active trials for oncolytic viruses that show promise for treating cancers of the head and neck. The first oncolytic virus was approved by the FDA October 2015 (T-VEC, Amgen for the treatment of melanoma. Active translational research continues for this and many other oncolytic viruses. Conclusion: The evolving field of oncolytic viruses is impacting the treatment of head and neck cancer and further trials and agents are moving forward in the coming years. Keywords: Head and neck squamous cell carcinoma, Oncolytic viruses, Clinical trials, Novel therapeutics

  17. ONCOLYTIC VIRUS-MEDIATED REVERSAL OF IMPAIRED TUMOR ANTIGEN PRESENTATION

    Directory of Open Access Journals (Sweden)

    Shashi Ashok Gujar

    2014-04-01

    Full Text Available Anti-tumor immunity can eliminate existing cancer cells and also maintain a constant surveillance against possible relapse. Such an antigen-specific adaptive response begins when tumor-specific T cells become activated. T cell activation requires two signals on antigen presenting cells (APCs: antigen presentation through MHC molecules and co-stimulation. In the absence of one or both of these signals, T cells remain inactivated or can even become tolerized. Cancer cells and their associated microenvironment strategically hinder the processing and presentation of tumor antigens and consequently prevent the development of anti-tumor immunity. Many studies, however, demonstrate that interventions that overturn tumor-associated immune evasion mechanisms can establish anti-tumor immune responses of therapeutic potential. One such intervention is oncolytic virus (OV-based anti-cancer therapy. Here we discuss how OV-induced immunological events override tumor-associated antigen presentation impairment and promote appropriate T cell:APC interaction. Detailed understanding of this phenomenon is pivotal for devising the strategies that will enhance the efficacy of OV-based anti-cancer therapy by complementing its inherent oncolytic

  18. Pediatric glioma stem cells: biologic strategies for oncolytic HSV virotherapy

    Directory of Open Access Journals (Sweden)

    Gregory K Friedman

    2013-02-01

    Full Text Available While glioblastoma multiforme (GBM is the most common adult malignant brain tumor, GBMs in childhood represent less than 10% of pediatric malignant brain tumors and are phenotypically and molecularly distinct from adult GBMs. Similar to adult patients, outcomes for children with high-grade gliomas (HGGs remain poor. Furthermore, the significant morbidity and mortality yielded by pediatric GBM is compounded by neurotoxicity for the developing brain caused by current therapies. Poor outcomes have been attributed to a subpopulation of chemotherapy and radiotherapy resistant cells, termed ‘glioma stem cells’ (GSCs, ‘glioma progenitor cells’, or ‘glioma-initiating cells', which have the ability to initiate and maintain the tumor and to repopulate the recurring tumor after conventional therapy. Future innovative therapies for pediatric HGGs must be able to eradicate these therapy-resistant GSCs. Oncolytic herpes simplex viruses, genetically engineered to be safe for normal cells and to express diverse foreign anti-tumor therapeutic genes, have been demonstrated in preclinical studies to infect and kill GSCs and tumor cells equally while sparing normal brain cells. In this review, we discuss the unique aspects of pediatric GSCs, including markers to identify them, the microenvironment they reside in, signaling pathways that regulate them, mechanisms of cellular resistance, and approaches to target GSCs, with a focus on the promising therapeutic, genetically engineered oncolytic herpes simplex virus (HSV.

  19. Oncolytic Maraba Virus MG1 as a Treatment for Sarcoma.

    Science.gov (United States)

    Le Boeuf, Fabrice; Selman, Mohammed; Son, Hwan Hee; Bergeron, Anabel; Chen, Andrew; Tsang, Jovian; Butterwick, Derek; Arulanandam, Rozanne; Forbes, Nicole E; Tzelepis, Fanny; Bell, John C; Werier, Joel; Abdelbary, Hesham; Diallo, Jean-Simon

    2017-09-15

    The poor prognosis of patients with advanced bone and soft-tissue sarcoma has not changed in the past several decades, highlighting the necessity for new therapeutic approaches. Immunotherapies, including oncolytic viral (OV) therapy, have shown great promise in a number of clinical trials for a variety of tumor types. However, the effective application of OV in treating sarcoma still remains to be demonstrated. Although few pre-clinical studies using distinct OVs have been performed and demonstrated therapeutic benefit in sarcoma models, a side-by-side comparison of clinically relevant OV platforms has not been performed. Four clinically relevant OV platforms (Reovirus, Vaccinia virus, Herpes-simplex virus and Rhabdovirus) were screened for their ability to infect and kill human and canine sarcoma cell lines in vitro, and human sarcoma specimens ex vivo. In vivo treatment efficacy was tested in a murine model. The rhabdovirus MG1 demonstrated the highest potency in vitro. Ex vivo, MG1 productively infected more than 80% of human sarcoma tissues tested, and treatment in vivo led to a significant increase in long-lasting cures in sarcoma-bearing mice. Importantly, MG1 treatment induced the generation of memory immune response that provided protection against a subsequent tumor challenge. This study opens the door for the use of MG1-based oncolytic immunotherapy strategies as treatment for sarcoma or as a component of a combined therapy. © 2017 UICC.

  20. Parvovirus Family Conundrum: What Makes a Killer?

    Science.gov (United States)

    Kailasan, Shweta; Agbandje-McKenna, Mavis; Parrish, Colin R

    2015-11-01

    Parvoviruses infect a wide variety of hosts, and their ancestors appear to have emerged tens to hundreds of millions of years ago and to have spread widely ever since. The diversity of parvoviruses is therefore extensive, and although they all appear to descend from a common ancestor and share common structures in their capsid and nonstructural proteins, there is often low homology at the DNA or protein level. The diversity of these viruses is also seen in the widely differing impacts they have on their hosts, which range from severe and even lethal disease to subclinical or nonpathogenic infections. In the past few years, deep sequencing of DNA samples from animals has shown just how widespread the parvoviruses are in nature, but most of the newly discovered viruses have not yet been associated with any disease. However, variants of some parvoviruses have altered their host ranges to create new epidemic or pandemic viruses. Here, we examine the properties of parvoviruses and their interactions with their hosts that are associated with these disparate pathogenic outcomes.

  1. Use of an oncolytic virus secreting GM-CSF as combined oncolytic and immunotherapy for treatment of colorectal and hepatic adenocarcinomas.

    Science.gov (United States)

    Malhotra, Sandeep; Kim, Teresa; Zager, Jonathan; Bennett, Joseph; Ebright, Michael; D'Angelica, Michael; Fong, Yuman

    2007-04-01

    Oncolytic cancer therapy using herpes simplex viruses (HSV) that have direct tumoricidal effects and cancer immunotherapy using the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) have each been effective in preclinical testing. NV1034 is a multimutated oncolytic HSV carrying the gene for murine GM-CSF that attempts to combine these 2 anticancer strategies. The purpose of this study was to compare NV1034 to NV1023, the parent HSV mutants lacking GM-CSF, to determine if such combined oncolytic and immunotherapy using a single vector has advantages over oncolytic therapy alone. Expression GM-CSF in vitro did not alter the infectivity, cytotoxicity, or replication of NV1034 compared to the noncytokine-secreting control. Tumors infected with NV1034 produced GM-CSF in picogram quantities. In vivo efficacy of the viruses against murine colorectal carcinoma CT26 and murine hepatoma Hepa l-6 was then tested in subcutaneous tumors in syngeneic Balb/c and C57 L/J mice, respectively. In these immune-competent models, NV1034 and NV1023 each demonstrated potent antitumor activity. Treatment with NV1034 had significantly better antitumor effect compared to treatment with NV1023. Furthermore, there was no difference in the antitumor efficacy of these viruses in mice depleted of CD4+ and CD8+ T lymphocytes. Viral vectors combining oncolytic and immunotherapy are promising agents in treatment of colorectal carcinoma and hepatoma.

  2. A Fusogenic Oncolytic Herpes Simplex Virus for Therapy of Advanced Ovarian Cancer

    National Research Council Canada - National Science Library

    Zhang, Xiaoliu

    2004-01-01

    The tasks that were originally planned for the first year of this 3 year project are to demonstrate that the fusogenic oncolytic herpes simplex viruses are potent anti-tumor agents for advanced ovarian cancer...

  3. A Potent Oncolytic Herpes Simplex Virus for Therapy of Advanced Prostate Cancer

    National Research Council Canada - National Science Library

    Zhang, Xiaoliu

    2005-01-01

    ... only. Therefore fusogenic oncolytic HSV should be no more toxic than its parental construct. Nonetheless, we proposed in the year 2 of this funded project to conduct extensive studies in animal models...

  4. A Potent Oncolytic Herpes Simplex Virus for the Therapy of Advanced Prostate

    National Research Council Canada - National Science Library

    Zhang, Xiaoliu

    2006-01-01

    .... WE PROPOSED IN THE AIM 3 OF THIS FUNDED PROJECT TO ADDRESS THIS ISSUE WITH TWO STRATEGIES: 1) TO DELIVER ONCOLYTIC HSVS THROUGH LIPOSOME-FORMULATED VIRAL DNA INSTEAD OF THE TRADITIONAL VIRAL PARTICLES AND 2...

  5. Oncolytic effects of a novel influenza A virus expressing interleukin-15 from the NS reading frame.

    Directory of Open Access Journals (Sweden)

    Marijke van Rikxoort

    Full Text Available Oncolytic influenza A viruses with deleted NS1 gene (delNS1 replicate selectively in tumour cells with defective interferon response and/or activated Ras/Raf/MEK/ERK signalling pathway. To develop a delNS1 virus with specific immunostimulatory properties, we used an optimised technology to insert the interleukin-15 (IL-15 coding sequence into the viral NS gene segment (delNS1-IL-15. DelNS1 and delNS1-IL-15 exerted similar oncolytic effects. Both viruses replicated and caused caspase-dependent apoptosis in interferon-defective melanoma cells. Virus replication was required for their oncolytic activity. Cisplatin enhanced the oncolytic activity of delNS1 viruses. The cytotoxic drug increased delNS1 replication and delNS1-induced caspase-dependent apoptosis. Interference with MEK/ERK signalling by RNAi-mediated depletion or the MEK inhibitor U0126 did not affect the oncolytic effects of the delNS1 viruses. In oncolysis sensitive melanoma cells, delNS1-IL-15 (but not delNS1 infection resulted in the production of IL-15 levels ranging from 70 to 1140 pg/mL in the cell culture supernatants. The supernatants of delNS1-IL-15-infected (but not of delNS1-infected melanoma cells induced primary human natural killer cell-mediated lysis of non-infected tumour cells. In conclusion, we constructed a novel oncolytic influenza virus that combines the oncolytic activity of delNS1 viruses with immunostimulatory properties through production of functional IL-15. Moreover, we showed that the oncolytic activity of delNS1 viruses can be enhanced in combination with cytotoxic anti-cancer drugs.

  6. Prevalence and evolution of human parvoviruses

    OpenAIRE

    Norja, Päivi

    2012-01-01

    Parvoviruses are minute single-stranded DNA viruses that infect a wide range of mammalians and invertebrates. Human parvovirus B19 (B19V) was discovered in the 1970s and was soon found to cause several diseases, including erythema infectiosum, arthropathy, anemias, fetal hydrops, and fetal death. The B19V titer in blood is high during acute infection. After primary infection, B19V has been shown to persist in tissues of symptomatic and asymptomatic persons. Prior to the commencement of this w...

  7. The symbiotic star H1-36

    International Nuclear Information System (INIS)

    Allen, D.A.

    1983-01-01

    Optical and infrared spectrophotometry is presented of the high-excitation emission-line star H1-36. The presence of a variable M giant is established: H1-36 may therefore be classified as a symbiotic star. The observations are interpreted in terms of the usual binary model for symbiotic stars, namely that an unseen star is heated by accretion of gas from its companion M giant. (author)

  8. Homologous histamine H1 receptor desensitization results in reduction of H1 receptor agonist efficacy

    NARCIS (Netherlands)

    Leurs, R; Smit, M J; Bast, A; Timmerman, H

    1991-01-01

    Prolonged exposure of the guinea-pig intestinal longitudinal smooth muscle to histamine caused homologous desensitization of the H1 receptor, which led to reduced H1 receptor-mediated production of [3H]inositol phosphates as well as to reduced H1 agonist-induced contractions. [3H]Mepyramine binding

  9. Parvovirus B19 infection in pregnancy.

    Science.gov (United States)

    Crane, Joan; Mundle, William; Boucoiran, Isabelle

    2014-12-01

    This guideline reviews the evidence relating to the effects of parvovirus B19 on the pregnant woman and fetus, and discusses the management of women who are exposed to, who are at risk of developing, or who develop parvovirus B19 infection in pregnancy. The outcomes evaluated were maternal outcomes including erythema infectiosum, arthropathy, anemia, and myocarditis, and fetal outcomes including spontaneous abortion, congenital anomalies, hydrops fetalis, stillbirth, and long-term effects. Published literature was retrieved through searches of PubMed and The Cochrane Library on July 8, 2013, using appropriate controlled vocabulary (MeSH terms "parvovirus" and "pregnancy") and key words (parvovirus, infection, pregnancy, hydrops). Results were restricted to systematic reviews, randomized control trials/controlled clinical trials, and observational studies. There were no date restrictions but results were limited to English or French language materials. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology assessment-related agencies, clinical practice guideline collections, and national and international medical specialty. The quality of evidence in this document was rated using the criteria described in the Report of the Canadian Task Force on Preventive Health Care (Table 1). Recommendations 1. Investigation for parvovirus B19 infection is recommended apart of the standard workup for fetal hydrops or intrauterine fetal death. (II-2A) 2. Routine screening for parvovirus immunity in low-risk pregnancies is not recommended. (II-2E) 3. Pregnant women who are exposed to, or who develop symptoms of, parvovirus B19 infection should be assessed to determine whether they are susceptible to infection (non-immune) or have a current infection by determining their parvovirus B19 immunoglobulin G and immunoglobulin M status. (II-2A) 4. If parvovirus B19 immunoglobulin G is present and immunoglobulin M

  10. Showing the Way: Oncolytic Adenoviruses as Chaperones of Immunostimulatory Adjuncts

    Directory of Open Access Journals (Sweden)

    Jing Li Huang

    2016-09-01

    Full Text Available Oncolytic adenoviruses (OAds are increasingly recognized as vectors for immunotherapy in the treatment of various solid tumors. The myriads of advantages of using adenovirus include targeted specificity upon infection and selective replication, which lead to localized viral burst, exponential spread of OAds, and antitumor effect. OAds can also induce a strong immune reaction due to the massive release of tumor antigens upon cytolysis and the presence of viral antigens. This review will highlight recent advances in adenoviral vectors expressing immunostimulatory effectors, such as GM-CSF (granulocyte macrophage colony-stimulating factor, interferon-α, interleukin-12, and CD40L. We will also discuss the combination of OAds with other immunotherapeutic strategies and describe the current understanding of how adenoviral vectors interact with the immune system to eliminate cancer cells.

  11. Showing the Way: Oncolytic Adenoviruses as Chaperones of Immunostimulatory Adjuncts.

    Science.gov (United States)

    Huang, Jing Li; LaRocca, Christopher J; Yamamoto, Masato

    2016-09-19

    Oncolytic adenoviruses (OAds) are increasingly recognized as vectors for immunotherapy in the treatment of various solid tumors. The myriads of advantages of using adenovirus include targeted specificity upon infection and selective replication, which lead to localized viral burst, exponential spread of OAds, and antitumor effect. OAds can also induce a strong immune reaction due to the massive release of tumor antigens upon cytolysis and the presence of viral antigens. This review will highlight recent advances in adenoviral vectors expressing immunostimulatory effectors, such as GM-CSF (granulocyte macrophage colony-stimulating factor), interferon-α, interleukin-12, and CD40L. We will also discuss the combination of OAds with other immunotherapeutic strategies and describe the current understanding of how adenoviral vectors interact with the immune system to eliminate cancer cells.

  12. Attacking Postoperative Metastases using Perioperative Oncolytic Viruses and Viral Vaccines

    Science.gov (United States)

    Tai, Lee-Hwa; Auer, Rebecca

    2014-01-01

    Surgical resection of solid primary malignancies is a mainstay of therapy for cancer patients. Despite being the most effective treatment for these tumors, cancer surgery has been associated with impaired metastatic clearance due to immunosuppression. In preclinical surgery models and human cancer patients, we and others have demonstrated a profound suppression of both natural killer (NK) and T cell function in the postoperative period and this plays a major role in the enhanced development of metastases following surgery. Oncolytic viruses (OV) were originally designed to selectively infect and replicate in tumors, with the primary objective of directly lysing cancer cells. It is becoming increasingly clear, however, that OV infection results in a profound inflammatory reaction within the tumor, initiating innate and adaptive immune responses against it that is critical for its therapeutic benefit. This anti-tumor immunity appears to be mediated predominantly by NK and cytotoxic T cells. In preclinical models, we found that preoperative OV prevents postoperative NK cell dysfunction and attenuates tumor dissemination. Due to theoretical safety concerns of administering live virus prior to surgery in cancer patients, we characterized safe, attenuated versions of OV, and viral vaccines that could stimulate NK cells and reduce metastases when administered in the perioperative period. In cancer patients, we observed that in vivo infusion with oncolytic vaccinia virus and ex vivo stimulation with viral vaccines promote NK cell activation. These preclinical studies provide a novel and clinically relevant setting for OV therapy. Our challenge is to identify safe and promising OV therapies that will activate NK and T cells in the perioperative period preventing the establishment of micrometastatic disease in cancer patients. PMID:25161958

  13. High-throughput screening to enhance oncolytic virus immunotherapy

    Directory of Open Access Journals (Sweden)

    Allan KJ

    2016-04-01

    Full Text Available KJ Allan,1,2 David F Stojdl,1–3 SL Swift1 1Children’s Hospital of Eastern Ontario (CHEO Research Institute, 2Department of Biology, Microbiology and Immunology, 3Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada Abstract: High-throughput screens can rapidly scan and capture large amounts of information across multiple biological parameters. Although many screens have been designed to uncover potential new therapeutic targets capable of crippling viruses that cause disease, there have been relatively few directed at improving the efficacy of viruses that are used to treat disease. Oncolytic viruses (OVs are biotherapeutic agents with an inherent specificity for treating malignant disease. Certain OV platforms – including those based on herpes simplex virus, reovirus, and vaccinia virus – have shown success against solid tumors in advanced clinical trials. Yet, many of these OVs have only undergone minimal engineering to solidify tumor specificity, with few extra modifications to manipulate additional factors. Several aspects of the interaction between an OV and a tumor-bearing host have clear value as targets to improve therapeutic outcomes. At the virus level, these include delivery to the tumor, infectivity, productivity, oncolysis, bystander killing, spread, and persistence. At the host level, these include engaging the immune system and manipulating the tumor microenvironment. Here, we review the chemical- and genome-based high-throughput screens that have been performed to manipulate such parameters during OV infection and analyze their impact on therapeutic efficacy. We further explore emerging themes that represent key areas of focus for future research. Keywords: oncolytic, virus, screen, high-throughput, cancer, chemical, genomic, immunotherapy

  14. The H1 Data Preservation Project

    International Nuclear Information System (INIS)

    South, D M; Steder, M

    2012-01-01

    The H1 data preservation project was started in 2009 as part of the global data preservation initiative in high-energy physics, DPHEP. In order to retain the full potential for future improvements, the H1 Collaboration aims for level 4 of the DPHEP recommendations, which requires the full simulation and reconstruction chain as well as the data to be preserved for future analysis. A major goal of the H1 project is therefore to provide secure, long-lived and validated access to the H1 data and analysis software, which is realised in collaboration with DESY-IT using virtualisation techniques. By implementing such a system, it is hoped that the lifetime of the unique ep collision data from HERA will be extended, providing the possibility for novel analysis in the future. The preservation of the data and software is performed alongside a consolidation programme of digital and non-digital documentation, some of which dates back to the early 1980s. A new organisational model of the H1 Collaboration, reflecting the change to the long term phase, is to be adopted in July 2012.

  15. Role of mitochondria in parvovirus pathology.

    Directory of Open Access Journals (Sweden)

    Jonna Nykky

    Full Text Available Proper functioning of the mitochondria is crucial for the survival of the cell. Viruses are able to interfere with mitochondrial functions as they infect the host cell. Parvoviruses are known to induce apoptosis in infected cells, but the role of the mitochondria in parvovirus induced cytopathy is only partially known. Here we demonstrate with confocal and electron microscopy that canine parvovirus (CPV associated with the mitochondrial outer membrane from the onset of infection. During viral entry a transient depolarization of the mitochondrial transmembrane potential and increase in ROS level was detected. Subsequently, mitochondrial homeostasis was normalized shortly, as detected by repolarization of the mitochondrial membrane and decrease of ROS. Indeed, activation of cell survival signalling through ERK1/2 cascade was observed early in CPV infected cells. At 12 hours post infection, concurrent with the expression of viral non-structural protein 1, damage to the mitochondrial structure and depolarization of its membrane were apparent. Results of this study provide additional insight of parvovirus pathology and also more general information of virus-mitochondria association.

  16. Molecular Epidemiology of Canine Parvovirus, Europe

    Science.gov (United States)

    Desario, Costantina; Addie, Diane D.; Martella, Vito; Vieira, Maria João; Elia, Gabriella; Zicola, Angelique; Davis, Christopher; Thompson, Gertrude; Thiry, Ethienne; Truyen, Uwe; Buonavoglia, Canio

    2007-01-01

    Canine parvovirus (CPV), which causes hemorrhagic enteritis in dogs, has 3 antigenic variants: types 2a, 2b, and 2c. Molecular method assessment of the distribution of the CPV variants in Europe showed that the new variant CPV-2c is widespread in Europe and that the viruses are distributed in different countries. PMID:17953097

  17. Stem Cell-Based Cell Carrier for Targeted Oncolytic Virotherapy: Translational Opportunity and Open Questions

    Directory of Open Access Journals (Sweden)

    Janice Kim

    2015-11-01

    Full Text Available Oncolytic virotherapy for cancer is an innovative therapeutic option where the ability of a virus to promote cell lysis is harnessed and reprogrammed to selectively destroy cancer cells. Such treatment modalities exhibited antitumor activity in preclinical and clinical settings and appear to be well tolerated when tested in clinical trials. However, the clinical success of oncolytic virotherapy has been significantly hampered due to the inability to target systematic metastasis. This is partly due to the inability of the therapeutic virus to survive in the patient circulation, in order to target tumors at distant sites. An early study from various laboratories demonstrated that cells infected with oncolytic virus can protect the therapeutic payload form the host immune system as well as function as factories for virus production and enhance the therapeutic efficacy of oncolytic virus. While a variety of cell lineages possessed potential as cell carriers, copious investigation has established stem cells as a very attractive cell carrier system in oncolytic virotherapy. The ideal cell carrier desire to be susceptible to viral infection as well as support viral infection, maintain immunosuppressive properties to shield the loaded viruses from the host immune system, and most importantly possess an intrinsic tumor homing ability to deliver loaded viruses directly to the site of the metastasis—all qualities stem cells exhibit. In this review, we summarize the recent work in the development of stem cell-based carrier for oncolytic virotherapy, discuss the advantages and disadvantages of a variety of cell carriers, especially focusing on why stem cells have emerged as the leading candidate, and finally propose a future direction for stem cell-based targeted oncolytic virotherapy that involves its establishment as a viable treatment option for cancer patients in the clinical setting.

  18. Parvovirus infection: an immunohistochemical study using fetal and placental tissue.

    Science.gov (United States)

    Li, Jing Jing; Henwood, Tony; Van Hal, Sebastian; Charlton, Amanda

    2015-01-01

    Parvovirus B19 infection causes 5% to 15% of cases of nonimmune hydrops fetalis. The aim of our study was to evaluate the use of immunohistochemistry in diagnosing parvovirus infection in fetal and placental tissue during routine fetal and perinatal autopsies. Histology slides of 20 cases of confirmed parvovirus infection were reviewed, and immunohistochemistry was applied to selected blocks of fetal and placental tissue. Immunohistochemistry was positive in all 20 cases, and histologic viral inclusions were seen in 19 cases. Immunohistochemical staining was closely correlated with histology and was more sensitive than histology in detecting virally infected cells, especially in autolyzed tissue. All cases also had confirmatory evidence of parvovirus infection by polymerase chain reaction of fetal liver and positive maternal serology, where it was available. We conclude that parvovirus immunohistochemistry is a reliable method for diagnosing parvovirus infection, especially in autolyzed tissue where histologic assessment may be suboptimal.

  19. Coping with parvovirus infections in mice: health surveillance and control.

    Science.gov (United States)

    Janus, Lydia M; Bleich, Andre

    2012-01-01

    Parvoviruses of mice, minute virus of mice (MVM) and mouse parvovirus (MPV), are challenging pathogens to eradicate from laboratory animal facilities. Due to the impediment on rodent-based research, recent studies have focused on the assessment of re-derivation techniques and parvoviral potential to induce persistent infections. Summarizing recent data, this review gives an overview on studies associated with parvoviral impact on research, diagnostic methods, parvoviral persistence and re-derivation techniques, demonstrating the complex nature of parvovirus infection in mice and unfolding the challenge of controlling parvovirus infections in laboratory animal facilities.

  20. Parvovirus B19 is a bystander in adult myocarditis.

    Science.gov (United States)

    Koepsell, Scott A; Anderson, Daniel R; Radio, Stanley J

    2012-01-01

    The genomic DNA of parvovirus B19, a small single-stranded DNA virus of the genus Erythrovirus, has been shown to persist in solid tissues of constitutionally healthy, immunocompetent individuals. Despite these data, many case reports and series have linked the presence of parvovirus B19 genomic DNA, detected through nucleic acid amplification testing, with myocarditis and cardiomyopathy. Herein, we use multiple tools to better assess the relationship between parvovirus B19 and myocarditis and cardiomyopathy. Nucleic acid amplification testing, immunohistochemistry, in situ hybridization, and electron microscopy were used to assess the location and activity of parvovirus B19 in cases of myocarditis and in cases with no significant cardiac disease. Nucleic acid amplification testing for parvovirus B19 genomic DNA was positive in 73% of patients with myocarditis/cardiomyopathy and in 26% of patients with no significant disease. In situ hybridization and immunohistochemistry showed that, in cases with amplifiable parvovirus B19 DNA, parvovirus B19 genomic DNA and viral protein production were present in rare mononuclear cells. In a majority of cases of myocarditis and a significant number of otherwise normal hearts, nucleic acid amplification testing detected persistent parvovirus B19 genomic DNA that did not play a significant pathogenic role. The source of parvovirus B19 DNA appeared to be interstitial mononuclear inflammatory cells and not myocardial or endothelial cells. Therefore, nucleic acid amplification testing alone is not diagnostically helpful for determining the etiology of adult myocarditis. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Atypical Papular Purpuric Eruption Induced by Parvovirus B19 Infection

    Directory of Open Access Journals (Sweden)

    Şeyma Kayalı

    2016-03-01

    Full Text Available Parvovirus B19 infection’s most common dermatological manifestation is erythema infectiosum as also known the fifth disease. Rare clinical presentations of parvovirus B 19 like papulopurpuric gloves and socks syndrome and acropetechial syndrome has also been described re­cently. This study presents report of a case with atypical feature and distribution of rash due to parvovirus B19 in­fection. We want to emphasize that pediatricians should consider parvovirus B19 infection of any patient who has leukopenia presenting with petechial/purpuric eruption of an unclear origin.

  2. Antiviral Prophylaxis and H1N1

    Centers for Disease Control (CDC) Podcasts

    2011-07-14

    Dr. Richard Pebody, a consultant epidemiologist at the Health Protection Agency in London, UK, discusses the use of antiviral post-exposure prophylaxis and pandemic H1N1.  Created: 7/14/2011 by National Center for Emerging Zoonotic and Infectious Diseases (NCEZID).   Date Released: 7/18/2011.

  3. Pandemic influenza A (H1N1)

    African Journals Online (AJOL)

    ... in Port Shepstone, South Africa. Introduction. Influenza A (H1N1) 2009 'swine flu' variant is currently a global pandemic.1 The infection associated with this virus is usually a mild, self-limiting illness. However, it may progress to severe pneumonia requiring intensive care unit (ICU) therapy in 31% of patients.2 This may.

  4. Chemotherapy and Oncolytic Virotherapy: Advanced Tactics in the War against Cancer

    Directory of Open Access Journals (Sweden)

    Andrew eNguyen

    2014-06-01

    Full Text Available Cancer is a traitorous archenemy that threatens our survival. Its ability to evade detection and adapt to various cancer therapies means that it is a moving target that becomes increasingly difficult to attack. Through technological advancements we have developed sophisticated weapons to fight off tumor growth and invasion. However, if we are to stand a chance in this war against cancer, advanced tactics will be required to maximize the use of our available resources. Oncolytic viruses are multi-functional cancer-fighters that can be engineered to suit many different strategies; in particular, their retooling can facilitate increased capacity for direct tumor killing (oncolytic virotherapy and elicit adaptive antitumor immune responses (oncolytic immunotherapy. However, administration of these modified oncolytic viruses alone, rarely induces successful regression of established tumors. This may be attributed to host antiviral immunity that acts to eliminate viral particles, as well as the capacity for tumors to adapt to therapeutic selective pressure. It has been shown that various chemotherapeutic drugs with distinct functional properties can potentiate the antitumor efficacy of oncolytic viruses. In this review, we summarize the chemotherapeutic combinatorial strategies used to optimize virally-induced destruction of tumors. With a particular focus on pharmaceutical immunomodulators, we discuss how specific therapeutic contexts may alter the effects of these synergistic combinations and their implications for future clinical use.

  5. Antiallergic effects of H1-receptor antagonists.

    Science.gov (United States)

    Baroody, F M; Naclerio, R M

    2000-01-01

    The primary mechanism of antihistamine action in the treatment of allergic diseases is believed to be competitive antagonism of histamine binding to cellular receptors (specifically, the H1-receptors), which are present on nerve endings, smooth muscles, and glandular cells. This notion is supported by the fact that structurally unrelated drugs antagonize the H1-receptor and provide clinical benefit. However, H1-receptor antagonism may not be their sole mechanism of action in treating allergic rhinitis. On the basis of in vitro and animal experiments, drugs classified as H1-receptor antagonists have long been recognized to have additional pharmacological properties. Most first-generation H1-antihistamines have anticholinergic, sedative, local anaesthetic, and anti-5-HT effects, which might favourably affect the symptoms of the allergic response but also contribute to side-effects. These additional properties are not uniformly distributed among drugs classified as H1-receptor antagonists. Azatadine, for example, inhibits in vitro IgE-mediated histamine and leukotriene (LT) release from mast cells and basophils. In human challenge models, terfenadine, azatadine, and loratadine reduce IgE-mediated histamine release. Cetirizine reduces eosinophilic infiltration at the site of antigen challenge in the skin, but not the nose. In a nasal antigen challenge model, cetirizine pretreatment did not affect the levels of histamine and prostaglandin D2 recovered in postchallenge lavages, whereas the levels of albumin, N-tosyl-L-arginine methyl ester (TAME) esterase activity, and LTs were reduced. Terfenadine, cetirizine, and loratadine blocked allergen-induced hyperresponsiveness to methacholine. In view of the complexity of the pathophysiology of allergy, a number of H1 antagonists with additional properties are currently under development for allergic diseases. Mizolastine, a new H1-receptor antagonist, has been shown to have additional actions that should help reduce the

  6. Antifungal properties of wheat histones (H1-H4) and purified wheat histone H1

    Science.gov (United States)

    Wheat (Triticum sp.) histones H1, H2, H3, and H4 were extracted. H1 was further purified. Their activities against fungi with varying degrees of wheat pathogenicity were determined. They included Aspergillus flavus, A. fumigatus, A. niger, F. oxysporum, F. verticillioides, F. solani, F. graminearu...

  7. The H1 silicon vertex detector

    International Nuclear Information System (INIS)

    Pitzl, D.; Behnke, O.; Biddulph, M.; Boesiger, K.; Eichler, R.; Erdmann, W.; Gabathuler, K.; Gassner, J.; Haynes, W.J..; Horisberger, R.; Kausch, M.; Lindstroem, M.; Niggli, H.; Noyes, G.; Pollet, P.; Steiner, S.; Streuli, S.; Szeker, K.; Truoel, P.

    2000-01-01

    The design, construction and performance of the H1 silicon vertex detector is described. It consists of two cylindrical layers of double-sided, double-metal silicon sensors read out by a custom designed analog pipeline chip. The analog signals are transmitted by optical fibres to a custom-designed ADC board and are reduced on PowerPC processors. Details of the design and construction are given and performance figures from the first data-taking periods are presented

  8. Symbiotic star H1-36

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A

    1983-01-01

    It is suggested that H1-36 should be classified as a symbiotic star rather than a planetary nebula. Evidence of a cool giant now exists and the high-excitation emission-line spectrum resembles the spectra of many symbiotic stars. The optical spectrum, radio spectrum, high spectral index of +0.9 and computed mass-loss rate are among the features discussed.

  9. The symbiotic star H1-36

    International Nuclear Information System (INIS)

    Allen, D.A.

    1983-01-01

    It is suggested that H1-36 should be classified as a symbiotic star rather than a planetary nebula. Evidence of a cool giant now exists and the high-excitation emission-line spectrum resembles the spectra of many symbiotic stars. The optical spectrum, radio spectrum, high spectral index of +0.9 and computed mass-loss rate are among the features discussed

  10. Oncolytic virotherapy using herpes simplex virus: how far have we come?

    Directory of Open Access Journals (Sweden)

    Sokolowski NAS

    2015-11-01

    Full Text Available Nicolas AS Sokolowski,1 Helen Rizos,2 Russell J Diefenbach1 1Centre for Virus Research, Westmead Millennium Institute for Medical Research, The University of Sydney, 2Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia Abstract: Oncolytic virotherapy exploits the properties of human viruses to naturally cause cytolysis of cancer cells. The human pathogen herpes simplex virus (HSV has proven particularly amenable for use in oncolytic virotherapy. The relative safety of HSV coupled with extensive knowledge on how HSV interacts with the host has provided a platform for manipulating HSV to enhance the targeting and killing of human cancer cells. This has culminated in the approval of talimogene laherparepvec for the treatment of melanoma. This review focuses on the development of HSV as an oncolytic virus and where the field is likely to head in the future. Keywords: herpes simplex virus, cancer, immunity, combination therapy, oncolysis

  11. The H1 liquid argon calorimeter system

    International Nuclear Information System (INIS)

    Andrieu, B.; Babayev, A.; Ban, J.

    1993-06-01

    The liquid argon calorimeter of the H1 detector presently taking data at the HERA ep - collider at DESY, Hamburg, is described here. The main physics requirements and the most salient design features relevant to this calorimeter are given. The aim to have smooth and hermetic calorimetric coverage over the polar angular range 4 ≤ θ ≤ 154 is achieved by a single liquid argon cryostat containing calorimeter stacks structured in wheels and octants for easy handling. The absorber materials used are lead in the electromagnetic part and stainless steel in the hadronic part. The read-out system is pipelined to reduce the dead time induced by the high trigger rate expected at the HERA collider where consecutive bunches are separated in time by 96 ns. The main elements of the calorimeter, such as the cryostat, with its associated cryogenics, the stack modules, the read-out, calibration and trigger electronics as well as the data acquisition system are described. Performance results from data taken in calibration runs with full size H1 calorimeter stacks at a CERN test beam, as well as results from data collected with the complete H1 detector using cosmic rays during the initial phase of ep operations are presented. The observed energy resolutions and linearities are well in agreement with the requirements. (orig.)

  12. Antigenic typing Polish isolates of canine parvovirus

    Energy Technology Data Exchange (ETDEWEB)

    Mizak, B. [National Veterinary Research Institute, Pulawy (Poland); Plucienniczak, A. [Polish Academy ofd Sciences. Microbiology and Virology Center, Lodz (Poland)

    1995-12-31

    Polish strains of canine parvovirus isolated between 1982 and 1993 were examined to determine the extent to which the virus has evolved antigenically and genetically over eleven years. Two CPV isolates obtained in Warsaw in 1982 and Pulawy in 1993, were examined using monoclonal antibody typing, restriction analysis and sequencing VP-2 protein gene. Five other isolates from Warsaw and Pulawy were tested with the panel of monoclonal antibodies specific to CPV-2, CPV-2a and common for canine parvovirus, feline panleukopenia virus and milk enteritis virus. Results of the studies demonstrated that all isolates tested represented CPV-2a antigenic type. Rapid antigenic strain replacement recorded by Parrish and Senda in the U.S.A and Japan was not confirmed in Poland. (author). 30 refs, 2 tabs.

  13. Antigenic typing Polish isolates of canine parvovirus

    International Nuclear Information System (INIS)

    Mizak, B.; Plucienniczak, A.

    1995-01-01

    Polish strains of canine parvovirus isolated between 1982 and 1993 were examined to determine the extent to which the virus has evolved antigenically and genetically over eleven years. Two CPV isolates obtained in Warsaw in 1982 and Pulawy in 1993, were examined using monoclonal antibody typing, restriction analysis and sequencing VP-2 protein gene. Five other isolates from Warsaw and Pulawy were tested with the panel of monoclonal antibodies specific to CPV-2, CPV-2a and common for canine parvovirus, feline panleukopenia virus and milk enteritis virus. Results of the studies demonstrated that all isolates tested represented CPV-2a antigenic type. Rapid antigenic strain replacement recorded by Parrish and Senda in the U.S.A and Japan was not confirmed in Poland. (author). 30 refs, 2 tabs

  14. In silico comparative study of epitopes predicted from different strains of genus parvovirus.

    OpenAIRE

    Rahul B. Chamute; Mahadev A. Jadhav; Anant Patil

    2011-01-01

    Parvoviruses are typically linear, non-segmented single-stranded DNA viruses, with an average genome size of 5000 nucleotides. Parvoviruses are some of the smallest viruses found in nature. Some have been found as small as 23 nm. Many types of mammalian species have a strain of parvovirus associated with them. Parvoviruses tend to be specific about the taxon of animal they will infect, but this is a somewhat flexible characteristic. Thus, all strains of parvovirus will affect dogs, wolves, an...

  15. The Sero-Prevalence of Parvovirus Antibodies among Children with ...

    African Journals Online (AJOL)

    Parvovirus is an erythrovirus that infects red cell precursors in individuals with conditions characterised by a high red cell turnover like sickle cell anaemia and thalassaemia. Arthritis, vasculitis, carditis, bone marrow failure, and the slapped cheek appearance have been associated with Parvovirus B19 infection. Recurrent ...

  16. Host specificity and phylogenetic relationships of chicken and turkey parvoviruses

    Science.gov (United States)

    Previous reports indicate that the newly discovered chicken parvoviruses (ChPV) and turkey parvoviruses (TuPV) are very similar to each other, yet they represent different species within a new genus of Parvoviridae. Currently, strain classification is based on the phylogenetic analysis of a 561 bas...

  17. New parvovirus in child with unexplained diarrhea, Tunisia.

    Science.gov (United States)

    Phan, Tung G; Sdiri-Loulizi, Khira; Aouni, Mahjoub; Ambert-Balay, Katia; Pothier, Pierre; Deng, Xutao; Delwart, Eric

    2014-11-01

    A divergent parvovirus genome was the only eukaryotic viral sequence detected in feces of a Tunisian child with unexplained diarrhea. Tusavirus 1 shared 44% and 39% identity with the nonstructural protein 1 and viral protein 1, respectively, of the closest genome, Kilham rat parvovirus, indicating presence of a new human viral species in the Protoparvovirus genus.

  18. Molecular epidemiology of seal parvovirus, 1988-2014

    NARCIS (Netherlands)

    R. Bodewes (Rogier); R. Hapsari (Rebriarina); A.R. García (Ana Rubio); G.J. Sá Nchez Contreras (Guillermo J.); M.W.G. van de Bildt (Marco); M. de Graaf (Miranda); T. Kuiken (Thijs); A.D.M.E. Osterhaus (Albert)

    2014-01-01

    textabstractA novel parvovirus was discovered recently in the brain of a harbor seal (Phoca vitulina) with chronic meningo-encephalitis. Phylogenetic analysis of this virus indicated that it belongs to the genus Erythroparvovirus, to which also human parvovirus B19 belongs. In the present study, the

  19. Passive and active immunity against parvovirus infection in piglets ...

    African Journals Online (AJOL)

    On the basis of the given results, we conclude that colostral immunity to parvovirus infection in swine lasts for about one month and that antibodies found in the blood serum of piglets after the first month of life are a result of the activation of the immune system. Keywords: Porcine parvovirus, colostral immunity, reproductive ...

  20. Human parvovirus B19: a review.

    Science.gov (United States)

    Rogo, L D; Mokhtari-Azad, T; Kabir, M H; Rezaei, F

    2014-01-01

    Parvovirus B19 (B19V) is a small non-enveloped single-stranded DNA (ssDNA) virus of the family Parvoviridae, the subfamily Parvovirinae, the genus Erythrovirus and Human parvovirus B19 type species. It is a common community-acquired respiratory pathogen without ethnic, socioeconomic, gender, age or geographic boundaries. Moreover, the epidemiological and ecological relationships between human parvovirus B19, man and environment have aroused increasing interest in this virus. B19V infection is associated with a wide spectrum of clinical manifestations, some of which were well established and some are still controversial, however, it is also underestimated from a clinical perspective. B19V targets the erythroid progenitors in the bone marrow by binding to the glycosphingolipid globoside (Gb4), leading to large receptor-induced structural changes triggering cell death either by lysis or by apoptosis mediated by the nonstructural (NS)1 protein. The pattern of genetic evolution, its peculiar properties and functional profile, the characteristics of its narrow tropism and restricted replication, its complex relationship with the host and its ample pathogenetic potential are all topics that are far from a comprehensive understanding. The lack of efficient adaptation to in vitro cellular cultures and the absence of animal models have limited classical virological studies and made studies on B19V dependent on molecular biology. The present review looks at the nature of this virus with the view to provide more information about its biology, which may be useful to the present and future researchers. human parvovirus B19; respiratory pathogen; biology; genome; fifth disease; transient aplastic crisis; anemia.

  1. Combining Oncolytic Virotherapy with p53 Tumor Suppressor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Christian Bressy

    2017-06-01

    Full Text Available Oncolytic virus (OV therapy utilizes replication-competent viruses to kill cancer cells, leaving non-malignant cells unharmed. With the first U.S. Food and Drug Administration-approved OV, dozens of clinical trials ongoing, and an abundance of translational research in the field, OV therapy is poised to be one of the leading treatments for cancer. A number of recombinant OVs expressing a transgene for p53 (TP53 or another p53 family member (TP63 or TP73 were engineered with the goal of generating more potent OVs that function synergistically with host immunity and/or other therapies to reduce or eliminate tumor burden. Such transgenes have proven effective at improving OV therapies, and basic research has shown mechanisms of p53-mediated enhancement of OV therapy, provided optimized p53 transgenes, explored drug-OV combinational treatments, and challenged canonical roles for p53 in virus-host interactions and tumor suppression. This review summarizes studies combining p53 gene therapy with replication-competent OV therapy, reviews preclinical and clinical studies with replication-deficient gene therapy vectors expressing p53 transgene, examines how wild-type p53 and p53 modifications affect OV replication and anti-tumor effects of OV therapy, and explores future directions for rational design of OV therapy combined with p53 gene therapy.

  2. Oncolytic Immunotherapy: Conceptual Evolution, Current Strategies, and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Zong Sheng Guo

    2017-05-01

    Full Text Available The concept of oncolytic virus (OV-mediated cancer therapy has been shifted from an operational virotherapy paradigm to an immunotherapy. OVs often induce immunogenic cell death (ICD of cancer cells, and they may interact directly with immune cells as well to prime antitumor immunity. We and others have developed a number of strategies to further stimulate antitumor immunity and to productively modulate the tumor microenvironment (TME for potent and sustained antitumor immune cell activity. First, OVs have been engineered or combined with other ICD inducers to promote more effective T cell cross-priming, and in many cases, the breaking of functional immune tolerance. Second, OVs may be armed to express Th1-stimulatory cytokines/chemokines or costimulators to recruit and sustain the potent antitumor immunity into the TME to focus their therapeutic activity within the sites of disease. Third, combinations of OV with immunomodulatory drugs or antibodies that recondition the TME have proven to be highly promising in early studies. Fourth, combinations of OVs with other immunotherapeutic regimens (such as prime-boost cancer vaccines, CAR T cells; armed with bispecific T-cell engagers have also yielded promising preliminary findings. Finally, OVs have been combined with immune checkpoint blockade, with robust antitumor efficacy being observed in pilot evaluations. Despite some expected hurdles for the rapid translation of OV-based state-of-the-art protocols, we believe that a cohort of these novel approaches will join the repertoire of standard cancer treatment options in the near future.

  3. The H1 forward muon spectrometer

    International Nuclear Information System (INIS)

    Kenyon, I.R.; Phillips, H.; Cronstroem, H.I.; Hedberg, V.; Jacobsson, C.; Joensson, L.; Lohmander, H.; Nyberg, M.; Biddulph, P.; Finnegan, P.; Foster, J.; Gilbert, S.; Hilton, C.; Ibbotson, M.; Mehta, A.; Sutton, P.; Stephens, K.; Thompson, R.

    1993-02-01

    The H1 detector started taking data at the electron- proton collider HERA in the beginning of 1992. In HERA 30 GeV electrons collide with 820 GeV protons giving a strong boost of the centre-of-mass system in the direction of the proton, also called the forward region. For the detection of high momentum muons in this region a muon spectrometer has been constructed, consisting of six drift chamber planes, three either side of a toroidal magnet. A first brief description of the system and its main parameters as well as the principles for track reconstruction and Τ 0 determination is given. (orig.)

  4. The RNA profile of porcine parvovirus 4, a Boca-like virus, is unique among the Parvoviruses

    Science.gov (United States)

    Phylogenetically, porcine parvovirus 4 (PPV4) is most related to bovine parvovirus 2 that has two open reading frames (ORFs), but its genome organization resembles that of members of the Bocavirus genus that has three ORFs. Although PPV4 transcribes its genome from a single promoter and the transcri...

  5. Novel Parvoviruses from Wild and Domestic Animals in Brazil Provide New Insights into Parvovirus Distribution and Diversity

    Directory of Open Access Journals (Sweden)

    William Marciel de Souza

    2018-03-01

    Full Text Available Parvoviruses (family Parvoviridae are small, single-stranded DNA viruses. Many parvoviral pathogens of medical, veterinary and ecological importance have been identified. In this study, we used high-throughput sequencing (HTS to investigate the diversity of parvoviruses infecting wild and domestic animals in Brazil. We identified 21 parvovirus sequences (including twelve nearly complete genomes and nine partial genomes in samples derived from rodents, bats, opossums, birds and cattle in Pernambuco, São Paulo, Paraná and Rio Grande do Sul states. These sequences were investigated using phylogenetic and distance-based approaches and were thereby classified into eight parvovirus species (six of which have not been described previously, representing six distinct genera in the subfamily Parvovirinae. Our findings extend the known biogeographic range of previously characterized parvovirus species and the known host range of three parvovirus genera (Dependovirus, Aveparvovirus and Tetraparvovirus. Moreover, our investigation provides a window into the ecological dynamics of parvovirus infections in vertebrates, revealing that many parvovirus genera contain well-defined sub-lineages that circulate widely throughout the world within particular taxonomic groups of hosts.

  6. Photoperiod-H1 (Ppd-H1) Controls Leaf Size1[OPEN

    Science.gov (United States)

    Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Xu, Xin

    2016-01-01

    Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. PMID:27457126

  7. Photoperiod-H1 (Ppd-H1) Controls Leaf Size.

    Science.gov (United States)

    Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Tondelli, Alessandro; Xu, Xin; Cattivelli, Luigi; Rossini, Laura; von Korff, Maria

    2016-09-01

    Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. © 2016 American Society of Plant Biologists. All rights reserved.

  8. Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses

    Directory of Open Access Journals (Sweden)

    Guy Ungerechts

    2016-01-01

    Full Text Available Oncolytic viruses (OVs are unique anticancer agents based on their pleotropic modes of action, which include, besides viral tumor cell lysis, activation of antitumor immunity. A panel of diverse viruses, often genetically engineered, has advanced to clinical investigation, including phase 3 studies. This diversity of virotherapeutics not only offers interesting opportunities for the implementation of different therapeutic regimens but also poses challenges for clinical translation. Thus, manufacturing processes and regulatory approval paths need to be established for each OV individually. This review provides an overview of clinical-grade manufacturing procedures for OVs using six virus families as examples, and key challenges are discussed individually. For example, different virus features with respect to particle size, presence/absence of an envelope, and host species imply specific requirements for measures to ensure sterility, for handling, and for determination of appropriate animal models for toxicity testing, respectively. On the other hand, optimization of serum-free culture conditions, increasing virus yields, development of scalable purification strategies, and formulations guaranteeing long-term stability are challenges common to several if not all OVs. In light of the recent marketing approval of the first OV in the Western world, strategies for further upscaling OV manufacturing and optimizing product characterization will receive increasing attention.

  9. Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses.

    Science.gov (United States)

    Ungerechts, Guy; Bossow, Sascha; Leuchs, Barbara; Holm, Per S; Rommelaere, Jean; Coffey, Matt; Coffin, Rob; Bell, John; Nettelbeck, Dirk M

    2016-01-01

    Oncolytic viruses (OVs) are unique anticancer agents based on their pleotropic modes of action, which include, besides viral tumor cell lysis, activation of antitumor immunity. A panel of diverse viruses, often genetically engineered, has advanced to clinical investigation, including phase 3 studies. This diversity of virotherapeutics not only offers interesting opportunities for the implementation of different therapeutic regimens but also poses challenges for clinical translation. Thus, manufacturing processes and regulatory approval paths need to be established for each OV individually. This review provides an overview of clinical-grade manufacturing procedures for OVs using six virus families as examples, and key challenges are discussed individually. For example, different virus features with respect to particle size, presence/absence of an envelope, and host species imply specific requirements for measures to ensure sterility, for handling, and for determination of appropriate animal models for toxicity testing, respectively. On the other hand, optimization of serum-free culture conditions, increasing virus yields, development of scalable purification strategies, and formulations guaranteeing long-term stability are challenges common to several if not all OVs. In light of the recent marketing approval of the first OV in the Western world, strategies for further upscaling OV manufacturing and optimizing product characterization will receive increasing attention.

  10. Poly (I:C) enhances the anti-tumor activity of canine parvovirus NS1 protein by inducing a potent anti-tumor immune response.

    Science.gov (United States)

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Tiwari, A K; Gandham, Ravi Kumar; Sahoo, A P

    2016-09-01

    The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.

  11. Oncolytic adenovirus targeting cyclin E overexpression repressed tumor growth in syngeneic immunocompetent mice

    International Nuclear Information System (INIS)

    Cheng, Pei-Hsin; Rao, Xiao-Mei; Wechman, Stephen L.; Li, Xiao-Feng; McMasters, Kelly M.; Zhou, Heshan Sam

    2015-01-01

    Clinical trials have indicated that preclinical results obtained with human tumor xenografts in mouse models may overstate the potential of adenovirus (Ad)-mediated oncolytic therapies. We have previously demonstrated that the replication of human Ads depends on cyclin E dysregulation or overexpression in cancer cells. ED-1 cell derived from mouse lung adenocarcinomas triggered by transgenic overexpression of human cyclin E may be applied to investigate the antitumor efficacy of oncolytic Ads. Ad-cycE was used to target cyclin E overexpression in ED-1 cells and repress tumor growth in a syngeneic mouse model for investigation of oncolytic virotherapies. Murine ED-1 cells were permissive for human Ad replication and Ad-cycE repressed ED-1 tumor growth in immunocompetent FVB mice. ED-1 cells destroyed by oncolytic Ads in tumors were encircled in capsule-like structures, while cells outside the capsules were not infected and survived the treatment. Ad-cycE can target cyclin E overexpression in cancer cells and repress tumor growth in syngeneic mouse models. The capsule structures formed after Ad intratumoral injection may prevent viral particles from spreading to the entire tumor. The online version of this article (doi:10.1186/s12885-015-1731-x) contains supplementary material, which is available to authorized users

  12. Pediatric cancer gone viral. Part I: strategies for utilizing oncolytic herpes simplex virus-1 in children

    Science.gov (United States)

    Cripe, Timothy P; Chen, Chun-Yu; Denton, Nicholas L; Haworth, Kellie B; Hutzen, Brian; Leddon, Jennifer L; Streby, Keri A; Wang, Pin-Yi; Markert, James M; Waters, Alicia M; Gillespie, George Yancey; Beierle, Elizabeth A; Friedman, Gregory K

    2015-01-01

    Progress for improving outcomes in pediatric patients with solid tumors remains slow. In addition, currently available therapies are fraught with numerous side effects, often causing significant life-long morbidity for long-term survivors. The use of viruses to kill tumor cells based on their increased vulnerability to infection is gaining traction, with several viruses moving through early and advanced phase clinical testing. The prospect of increased efficacy and decreased toxicity with these agents is thus attractive for pediatric cancer. In part I of this two-part review, we focus on strategies for utilizing oncolytic engineered herpes simplex virus (HSV) to target pediatric malignancies. We discuss mechanisms of action, routes of delivery, and the role of preexisting immunity on antitumor efficacy. Challenges to maximizing oncolytic HSV in children are examined, and we highlight how these may be overcome through various arming strategies. We review the preclinical and clinical evidence demonstrating safety of a variety of oncolytic HSVs. In Part II, we focus on the antitumor efficacy of oncolytic HSV in pediatric tumor types, pediatric clinical advances made to date, and future prospects for utilizing HSV in pediatric patients with solid tumors. PMID:26436135

  13. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus.

    Directory of Open Access Journals (Sweden)

    Yonatan Y Mahller

    Full Text Available Although disease remission can frequently be achieved for patients with neuroblastoma, relapse is common. The cancer stem cell theory suggests that rare tumorigenic cells, resistant to conventional therapy, are responsible for relapse. If true for neuroblastoma, improved cure rates may only be achieved via identification and therapeutic targeting of the neuroblastoma tumor initiating cell. Based on cues from normal stem cells, evidence for tumor populating progenitor cells has been found in a variety of cancers.Four of eight human neuroblastoma cell lines formed tumorspheres in neural stem cell media, and all contained some cells that expressed neurogenic stem cell markers including CD133, ABCG2, and nestin. Three lines tested could be induced into multi-lineage differentiation. LA-N-5 spheres were further studied and showed a verapamil-sensitive side population, relative resistance to doxorubicin, and CD133+ cells showed increased sphere formation and tumorigenicity. Oncolytic viruses, engineered to be clinically safe by genetic mutation, are emerging as next generation anticancer therapeutics. Because oncolytic viruses circumvent typical drug-resistance mechanisms, they may represent an effective therapy for chemotherapy-resistant tumor initiating cells. A Nestin-targeted oncolytic herpes simplex virus efficiently replicated within and killed neuroblastoma tumor initiating cells preventing their ability to form tumors in athymic nude mice.These results suggest that human neuroblastoma contains tumor initiating cells that may be effectively targeted by an oncolytic virus.

  14. Differential biodistribution of oncolytic poxvirus administered systemically in an autochthonous model of hepatocellular carcinoma.

    Science.gov (United States)

    Baril, Patrick; Touchefeu, Yann; Cany, Jeannette; Cherel, Yan; Thorne, Steve H; Tran, Lucile; Conchon, Sophie; Vassaux, Georges

    2011-12-01

    Preclinical studies have demonstrated that, unlike oncolytic adenoviruses, oncolytic vaccinia viruses can reach implanted tumors upon systemic injection. However, the biodistribution of this oncolytic agent in in situ autochthonous tumor models remains poorly characterized. In the present study, we assessed this biodistribution in a model of mouse hepatocellular carcinoma (HCC) obtained after injection of the carcinogen diethylnitrosamine (DEN). Twelve months after DEN administration, histology, quantitative reverse transcription-polymerase chain reaction, in situ hybridization and viral titration were used to characterize tumors, as well as to assess the viral load of the livers upon either intravenous or intraperitoineal injection. The results obtained showed that the architecture of the liver was lost, with a noticeable absence of sinusoids, as well as the presence of steatosis and α-fetoprotein-positive HCC tumor nodules. Bioluminescence imaging and measures of the infective virus load demonstrated that intravenous injection of 10(8)  plaque-forming units of the recombinant vaccinia virus led to a predominant transduction of the liver, whereas intraperitoneal injection resulted in a lower level of liver transduction accompanied by an increased infection of the lungs, spleen, kidneys and bowels. Immunohistochemical analysis of liver sections of animals injected intravenously with the virus revealed a preferential localization of vaccinia-specific immunoreactivity in the tumors. The findings of the present study emphasize the importance of the route of administration of the vector and highlight the relevance of systemic injection of oncolytic vaccinia virus in the context of hepatocellular carcinoma. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Presage of oncolytic virotherapy for oral cancer with herpes simplex virus

    Directory of Open Access Journals (Sweden)

    Yoshiaki Yura

    2017-05-01

    Full Text Available A virus is a pathogenic organism that causes a number of infectious diseases in humans. The oral cavity is the site at which viruses enter and are excreted from the human body. Herpes simplex virus type 1 (HSV-1 produces the primary infectious disease, gingivostomatitis, and recurrent disease, labial herpes. HSV-1 is one of the most extensively investigated viruses used for cancer therapy. In principle, HSV-1 infects epithelial cells and neuronal cells and exhibits cytotoxicity due to its cytopathic effects on these cells. If the replication of the virus occurs in tumor cells, but not normal cells, the virus may be used as an antitumor agent. Therefore, HSV-1 genes have been modified by genetic engineering, and in vitro and in vivo studies with the oncolytic virus have demonstrated its efficiency against head and neck cancer including oral cancer. The oncolytic abilities of other viruses such as adenovirus and reovirus have also been demonstrated. In clinical trials, HSV-1 is the top runner and is now available for the treatment of patients with advanced melanoma. Thus, melanoma in the oral cavity is the target of oncolytic HSV-1. Oncolytic virotherapy is a hopeful and realistic modality for the treatment of oral cancer.

  16. Pediatric cancer gone viral. Part I: strategies for utilizing oncolytic herpes simplex virus-1 in children

    Directory of Open Access Journals (Sweden)

    Timothy P Cripe

    Full Text Available Progress for improving outcomes in pediatric patients with solid tumors remains slow. In addition, currently available therapies are fraught with numerous side effects, often causing significant life-long morbidity for long-term survivors. The use of viruses to kill tumor cells based on their increased vulnerability to infection is gaining traction, with several viruses moving through early and advanced phase clinical testing. The prospect of increased efficacy and decreased toxicity with these agents is thus attractive for pediatric cancer. In part I of this two-part review, we focus on strategies for utilizing oncolytic engineered herpes simplex virus (HSV to target pediatric malignancies. We discuss mechanisms of action, routes of delivery, and the role of preexisting immunity on antitumor efficacy. Challenges to maximizing oncolytic HSV in children are examined, and we highlight how these may be overcome through various arming strategies. We review the preclinical and clinical evidence demonstrating safety of a variety of oncolytic HSVs. In Part II, we focus on the antitumor efficacy of oncolytic HSV in pediatric tumor types, pediatric clinical advances made to date, and future prospects for utilizing HSV in pediatric patients with solid tumors.

  17. Silk-elastin-like protein polymer matrix for intraoperative delivery of an oncolytic vaccinia virus.

    Science.gov (United States)

    Price, Daniel L; Li, Pingdong; Chen, Chun-Hao; Wong, Danni; Yu, Zhenkun; Chen, Nanhai G; Yu, Yong A; Szalay, Aladar A; Cappello, Joseph; Fong, Yuman; Wong, Richard J

    2016-02-01

    Oncolytic viral efficacy may be limited by the penetration of the virus into tumors. This may be enhanced by intraoperative application of virus immediately after surgical resection. Oncolytic vaccinia virus GLV-1h68 was delivered in silk-elastin-like protein polymer (SELP) in vitro and in vivo in anaplastic thyroid carcinoma cell line 8505c in nude mice. GLV-1h68 in SELP infected and lysed anaplastic thyroid cancer cells in vitro equally as effectively as in phosphate-buffered saline (PBS), and at 1 week retains a thousand fold greater infectious plaque-forming units. In surgical resection models of residual tumor, GLV-1h68 in SELP improves tumor control and shows increased viral β-galactosidase expression as compared to PBS. The use of SELP matrix for intraoperative oncolytic viral delivery protects infectious viral particles from degradation, facilitates sustained viral delivery and transgene expression, and improves tumor control. Such optimization of methods of oncolytic viral delivery may enhance therapeutic outcomes. © 2014 Wiley Periodicals, Inc.

  18. 77 FR 22333 - Prospective Grant of Exclusive License: Development of Oncolytic Viral Cancer Therapies

    Science.gov (United States)

    2012-04-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Prospective Grant of Exclusive License: Development of Oncolytic Viral Cancer Therapies AGENCY: National Institutes of Health... administration of the recombinant virus to a human or animal subject, the foreign gene is expressed in vivo to...

  19. Genome-wide RNAi Screening to Identify Host Factors That Modulate Oncolytic Virus Therapy.

    Science.gov (United States)

    Allan, Kristina J; Mahoney, Douglas J; Baird, Stephen D; Lefebvre, Charles A; Stojdl, David F

    2018-04-03

    High-throughput genome-wide RNAi (RNA interference) screening technology has been widely used for discovering host factors that impact virus replication. Here we present the application of this technology to uncovering host targets that specifically modulate the replication of Maraba virus, an oncolytic rhabdovirus, and vaccinia virus with the goal of enhancing therapy. While the protocol has been tested for use with oncolytic Maraba virus and oncolytic vaccinia virus, this approach is applicable to other oncolytic viruses and can also be utilized for identifying host targets that modulate virus replication in mammalian cells in general. This protocol describes the development and validation of an assay for high-throughput RNAi screening in mammalian cells, the key considerations and preparation steps important for conducting a primary high-throughput RNAi screen, and a step-by-step guide for conducting a primary high-throughput RNAi screen; in addition, it broadly outlines the methods for conducting secondary screen validation and tertiary validation studies. The benefit of high-throughput RNAi screening is that it allows one to catalogue, in an extensive and unbiased fashion, host factors that modulate any aspect of virus replication for which one can develop an in vitro assay such as infectivity, burst size, and cytotoxicity. It has the power to uncover biotherapeutic targets unforeseen based on current knowledge.

  20. Comparison of Liver Detargeting Strategies for Systemic Therapy with Oncolytic Adenovirus Serotype 5

    Directory of Open Access Journals (Sweden)

    Tien V. Nguyen

    2017-08-01

    Full Text Available Oncolytic viruses would ideally be of use for systemic therapy to treat disseminated cancer. To do this safely, this may require multiple layers of cancer specificity. The pharmacology and specificity of oncolytic adenoviruses can be modified by (1 physical retargeting, (2 physical detargeting, (3 chemical shielding, or (4 by modifying the ability of viral early gene products to selectively activate in cancer versus normal cells. We explored the utility of these approaches with oncolytic adenovirus serotype 5 (Ad5 in immunocompetent Syrian hamsters bearing subcutaneous HaK tumors. After a single intravenous injection to reach the distant tumors, the physically hepatocyte-detargeted virus Ad5-hexon-BAP was more effective than conditionally replicating Ad5-dl1101/07 with mutations in its E1A protein. When these control or Ad5 treated animals were treated a second time by intratumoral injection, prior exposure to Ad5 did not affect tumor growth, suggesting that anti-Ad immunity neither prevented treatment nor amplified anti-tumor immune responses. Ad5-dl1101/07 was next chemically shielded with polyethylene glycol (PEG. While 5 kDa of PEG blunted pro-inflammatory IL-6 production induced by Ad5-dl1101/07, this shielding reduced Ad oncolytic activity.

  1. Oncolytic viruses in head and neck cancer: a new ray of hope in the ...

    African Journals Online (AJOL)

    This paper intends to highlight the different types of oncolytic viruses (OVs), mechanism of tumor specificity, its safety, and various obstacles in the design of treatment and combination therapy utilizing oncotherapy. Search was conducted using the internet‑based search engines and scholarly bibliographic databases with ...

  2. Chronic hepatitis caused by persistent parvovirus B19 infection

    Directory of Open Access Journals (Sweden)

    Mogensen Trine H

    2010-08-01

    Full Text Available Abstract Background Human infection with parvovirus B19 may lead to a diverse spectrum of clinical manifestations, including benign erythema infectiosum in children, transient aplastic crisis in patients with haemolytic anaemia, and congenital hydrops foetalis. These different diseases represent direct consequences of the ability of parvovirus B19 to target the erythroid cell lineage. However, accumulating evidence suggests that this virus can also infect other cell types resulting in diverse clinical manifestations, of which the pathogenesis remains to be fully elucidated. This has prompted important questions regarding the tropism of the virus and its possible involvement in a broad range of infectious and autoimmune medical conditions. Case Presentation Here, we present an unusual case of persistent parvovirus B19 infection as a cause of chronic hepatitis. This patient had persistent parvovirus B19 viraemia over a period of more than four years and displayed signs of chronic hepatitis evidenced by fluctuating elevated levels of ALAT and a liver biopsy demonstrating chronic hepatitis. Other known causes of hepatitis and liver damage were excluded. In addition, the patient was evaluated for immunodeficiency, since she had lymphopenia both prior to and following clearance of parvovirus B19 infection. Conclusions In this case report, we describe the current knowledge on the natural history and pathogenesis of parvovirus B19 infection, and discuss the existing evidence of parvovirus B19 as a cause of acute and chronic hepatitis. We suggest that parvovirus B19 was the direct cause of this patient's chronic hepatitis, and that she had an idiopathic lymphopenia, which may have predisposed her to persistent infection, rather than bone marrow depression secondary to infection. In addition, we propose that her liver involvement may have represented a viral reservoir. Finally, we suggest that clinicians should be aware of parvovirus B19 as an unusual

  3. Treatment of medulloblastoma with oncolytic measles viruses expressing the angiogenesis inhibitors endostatin and angiostatin

    International Nuclear Information System (INIS)

    Hutzen, Brian; Bid, Hemant Kumar; Houghton, Peter J; Pierson, Christopher R; Powell, Kimerly; Bratasz, Anna; Raffel, Corey; Studebaker, Adam W

    2014-01-01

    Medulloblastoma is the most common type of pediatric brain tumor. Although numerous factors influence patient survival rates, more than 30% of all cases will ultimately be refractory to conventional therapies. Current standards of care are also associated with significant morbidities, giving impetus for the development of new treatments. We have previously shown that oncolytic measles virotherapy is effective against medulloblastoma, leading to significant prolongation of survival and even cures in mouse xenograft models of localized and metastatic disease. Because medulloblastomas are known to be highly vascularized tumors, we reasoned that the addition of angiogenesis inhibitors could further enhance the efficacy of oncolytic measles virotherapy. Toward this end, we have engineered an oncolytic measles virus that express a fusion protein of endostatin and angiostatin, two endogenous and potent inhibitors of angiogenesis. Oncolytic measles viruses encoding human and mouse variants of a secretable endostatin/angiostatin fusion protein were designed and rescued according to established protocols. These viruses, known as MV-hE:A and MV-mE:A respectively, were then evaluated for their anti-angiogenic potential and efficacy against medulloblastoma cell lines and orthotopic mouse models of localized disease. Medulloblastoma cells infected by MV-E:A readily secrete endostatin and angiostatin prior to lysis. The inclusion of the endostatin/angiostatin gene did not negatively impact the measles virus’ cytotoxicity against medulloblastoma cells or alter its growth kinetics. Conditioned media obtained from these infected cells was capable of inhibiting multiple angiogenic factors in vitro, significantly reducing endothelial cell tube formation, viability and migration compared to conditioned media derived from cells infected by a control measles virus. Mice that were given a single intratumoral injection of MV-E:A likewise showed reduced numbers of tumor-associated blood

  4. Safety and Immunogenicity of a Candidate Parvovirus B19 Vaccine

    OpenAIRE

    Bernstein, David I; El Sahly, Hana M; Keitel, Wendy A; Wolff, Mark; Simone, Gina; Segawa, Claire; Wong, Susan; Shelly, Daniel; Young, Neal S; Dempsey, Walla

    2011-01-01

    Parvovirus B19 is an important human pathogen causing erythema infectiosum, transient aplastic crisis in individuals with underlying hemolytic disorders and hydrops fetalis. We therefore evaluated a parvovirus B19 virus like particle (VLP) vaccine. The safety and immunogenicity of a 25 μg dose of parvovirus B19 recombinant capsid; 2.5 and 25 μg doses of the recombinant capsid given with MF59; and saline placebo were assessed in healthy adults. Because of 3 unexplained cutaneous events the stu...

  5. H1-antihistamines in pregnancy and lactation.

    Science.gov (United States)

    Schatz, Michael

    2002-01-01

    Antihistamines may be used for the treatment of allergic rhinitis, upper respiratory infections, urticaria/angioedema, atopic dermatitis, and, rarely, as adjunctive treatment for anaphylaxis, during pregnancy. Because these illnesses may affect maternal comfort and safety as well as threaten the fetus directly (anaphylaxis) or indirectly, they often require therapy during pregnancy. Based on the information available to date, in this chapter we have attempted to provide rational guidelines for the gestational use of H1-receptor antagonists in a manner that will lead to the optimal well-being of both the mother and her infant. As more information becomes available, the recommendations herein may require modification. Although this chapter has dealt specifically with gestational management, a case can be made for considering this information when making therapeutic decisions in all women of childbearing potential. First, most pregnancies are unplanned, and the peak period of fetal vulnerability to drug-induced teratogenesis begins the day a woman's period is due. Second, during gestation, substantial alterations in a previously successful but not optimal-for-pregnancy chronic therapeutic regimen may be psychologically threatening to the patient and may lead to either uncontrolled disease or unanticipated side effects. Thus, pregnancy-appropriate regimens should ideally be discussed with all women of childbearing age as part of the informed therapeutic decision-making process.

  6. Canine parvovirus in asymptomatic feline carriers.

    Science.gov (United States)

    Clegg, S R; Coyne, K P; Dawson, S; Spibey, N; Gaskell, R M; Radford, A D

    2012-05-25

    Canine parvovirus (CPV) and feline panleukopaenia virus (FPLV) are two closely related viruses, which are known to cause severe disease in younger unvaccinated animals. As well as causing disease in their respective hosts, CPV has recently acquired the feline host range, allowing it to infect both cats and dogs. As well as causing disease in dogs, there is evidence that under some circumstances CPV may also cause disease in cats. This study has investigated the prevalence of parvoviruses in the faeces of clinically healthy cats and dogs in two rescue shelters. Canine parvovirus was demonstrated in 32.5% (13/50) of faecal samples in a cross sectional study of 50 cats from a feline only shelter, and 33.9% (61/180) of faecal samples in a longitudinal study of 74 cats at a mixed canine and feline shelter. Virus was isolated in cell cultures of both canine and feline origin from all PCR-positive samples suggesting they contained viable, infectious virus. In contrast to the high CPV prevalence in cats, no FPLV was found, and none of 122 faecal samples from dogs, or 160 samples collected from the kennel environment, tested positive for parvovirus by PCR. Sequence analysis of major capsid VP2 gene from all positive samples, as well as the non-structural gene from 18 randomly selected positive samples, showed that all positive cats were shedding CPV2a or 2b, rather than FPLV. Longitudinally sampling in one shelter showed that all cats appeared to shed the same virus sequence type at each date they were positive (up to six weeks), despite a lack of clinical signs. Fifty percent of the sequences obtained here were shown to be similar to those recently obtained in a study of sick dogs in the UK (Clegg et al., 2011). These results suggest that in some circumstances, clinically normal cats may be able to shed CPV for prolonged periods of time, and raises the possibility that such cats may be important reservoirs for the maintenance of infection in both the cat and the dog

  7. Expression of DAI by an oncolytic vaccinia virus boosts the immunogenicity of the virus and enhances antitumor immunity

    Directory of Open Access Journals (Sweden)

    Mari Hirvinen

    2016-01-01

    Full Text Available In oncolytic virotherapy, the ability of the virus to activate the immune system is a key attribute with regard to long-term antitumor effects. Vaccinia viruses bear one of the strongest oncolytic activities among all oncolytic viruses. However, its capacity for stimulation of antitumor immunity is not optimal, mainly due to its immunosuppressive nature. To overcome this problem, we developed an oncolytic VV that expresses intracellular pattern recognition receptor DNA-dependent activator of IFN-regulatory factors (DAI to boost the innate immune system and to activate adaptive immune cells in the tumor. We showed that infection with DAI-expressing VV increases expression of several genes related to important immunological pathways. Treatment with DAI-armed VV resulted in significant reduction in the size of syngeneic melanoma tumors in mice. When the mice were rechallenged with the same tumor, DAI-VV-treated mice completely rejected growth of the new tumor, which indicates immunity established against the tumor. We also showed enhanced control of growth of human melanoma tumors and elevated levels of human T-cells in DAI-VV-treated mice humanized with human peripheral blood mononuclear cells. We conclude that expression of DAI by an oncolytic VV is a promising way to amplify the vaccine potency of an oncolytic vaccinia virus to trigger the innate—and eventually the long-lasting adaptive immunity against cancer.

  8. Death of a wild wolf from canine parvovirus enteritis

    Science.gov (United States)

    Mech, L.D.; Kurtz, H.J.; Goyal, S.

    1997-01-01

    A 9-mo-old female wolf (Canis lupus) in the Superior National Forest of Minnesota (USA) died from a canine parvovirus (CPV) infection. This is the first direct evidence that this infection effects free-ranging wild wolves.

  9. Parvovirus B19 induced lupus-like syndrome with nephritis.

    Science.gov (United States)

    Georges, Elodie; Rihova, Zuzana; Cmejla, Radek; Decleire, Pierre-Yves; Langen, Corinne

    2016-12-01

    We report a case of a 65-year-old man who developed an acute illness with fever, arthralgia and nephritic syndrome. Antinuclear antibodies were slightly positive and complement levels were low. Renal biopsy showed exudative diffuse proliferative endocapillary glomerulonephritis with diffuse immunoglobulin (IgG, IgA, IgM) and complement deposition (C3d, C4d, C1q) on immunofluorescence. The patient was first treated with corticosteroids and mycophenolate mofetil for suspected lupus with WHO class IV glomerulonephritis. The diagnosis was questioned and a diagnosis of parvovirus B19-associated nephritis was made based on elevation of serum IgM antibodies for parvovirus B19 and detection of parvovirus B19 DNA on renal biopsy. The immunosuppressive treatment was stopped and progressive spontaneous regression of clinical and laboratory abnormalities was observed. We conclude that human parvovirus B19 infection should be considered as a cause of lupus-like symptomatology and acute glomerulonephritis.

  10. Seroepidemiology of Canine parvovirus infection in dogs

    Directory of Open Access Journals (Sweden)

    Indrawati Sendow

    2004-10-01

    Full Text Available Canine parvovirus is an acute and fatal viral disease in dogs. A total of 209 local, cross breed and breed dogs sera from Kodya Bogor, Kabupaten Bogor, Sukabumi, and Jakarta, had been tested using Haemagglutination Inhibition Test (HI with pig red blood cells. A total of 64 breed and cross breed dogs from Sukabumi and Kodya Bogor, were used as a sentinel dogs to study the epidemiology of Canine parvovirus (CPV infection and its immunological responses caused by vaccination. The results indicated that 78% (95 breed and cross bred dogs and 59% (51 local dogs had antibody to CPV. Sentinel dogs results indicated that dogs had been vaccinated showed antibody response with the varied titre dependant upon prevaccination titre. Low prevaccinated titre gave better response than protective level titre. From 19 puppies observed, Maternal antibodi were still detected until 5 weeks old puppies. First vaccination given at less than 3 months old, should be boosted after 3 months old puppied. Antibodi titre produced by natural infection will keep untill 2 years. These data concluded that the dog condition and time of vaccination will affect the optimum antibody response.

  11. The role of nuclear localization signal in parvovirus life cycle.

    Science.gov (United States)

    Liu, Peng; Chen, Shun; Wang, Mingshu; Cheng, Anchun

    2017-04-14

    Parvoviruses are small, non-enveloped viruses with an approximately 5.0 kb, single-stranded DNA genome. Usually, the parvovirus capsid gene contains one or more nuclear localization signals (NLSs), which are required for guiding the virus particle into the nucleus through the nuclear pore. However, several classical NLSs (cNLSs) and non-classical NLSs (ncNLSs) have been identified in non-structural genes, and the ncNLSs can also target non-structural proteins into the nucleus. In this review, we have summarized recent research findings on parvovirus NLSs. The capsid protein of the adeno-associated virus has four potential nuclear localization sequences, named basic region 1 (BR), BR2, BR3 and BR4. BR3 was identified as an NLS by fusing it with green fluorescent protein. Moreover, BR3 and BR4 are required for infectivity and virion assembly. In Protoparvovirus, the canine parvovirus has a common cNLS located in the VP1 unique region, similar to parvovirus minute virus of mice (MVM) and porcine parvovirus. Moreover, an ncNLS is found in the C-terminal region of MVM VP1/2. Parvovirus B19 also contains an ncNLS in the C-terminal region of VP1/2, which is essential for the nuclear transport of VP1/VP2. Approximately 1 or 2 cNLSs and 1 ncNLS have been reported in the non-structural protein of bocaviruses. Understanding the role of the NLS in the process of parvovirus infection and its mechanism of nuclear transport will contribute to the development of therapeutic vaccines and novel antiviral medicines.

  12. Neurologiske symptomer og akut hepatitis associeret til parvovirus B19

    DEFF Research Database (Denmark)

    Giørtz-Carlsen, Birgitte; Rittig, Søren; Thelle, Thomas

    2007-01-01

    The spectrum of symptoms correlated to parvovirus B19 infections has expanded greatly during the past years. We report a case of anaemia, encephalitis-like symptoms and acute hepatitis in a 15-months-old Danish girl associated with parvovirus B19, verified by positive serum IgM og IgG antibodies....... She presented with non-febrile seizures and decreased level of consciousness. Later she developed signs of acute hepatitis. The course was benign. Udgivelsesdato: 2007-Nov-19...

  13. Successful experimental challenge of dogs with canine parvovirus-2.

    OpenAIRE

    Carman, S; Povey, C

    1982-01-01

    Withholding food from dogs for 24 hours prior to, and for 48 hours following oral challenge with a gut mucosal homogenate of canine parvovirus-2, was a successful means of reproducing gastroenteric signs of canine parvovirus-2 infection. Twenty-one of 24 dogs, which had previously received various vaccine preparations of mink enteritis virus or were unvaccinated, and which were starved at challenge, developed soft or liquid feces with large or without large clots of mucus. Altered feces were ...

  14. Seroprevalence of Canine Parvovirus in Dogs in Lusaka District, Zambia

    OpenAIRE

    Saasa, Ngonda; Nalubamba, King Shimumbo; M’kandawire, Ethel; Siwila, Joyce

    2016-01-01

    Canine parvovirus (CPV) enteritis is a highly contagious enteric disease of young dogs. Limited studies have been done in Zambia to investigate the prevalence of CPV in dogs. Blood was collected from dogs from three veterinary clinics (clinic samples, n = 174) and one township of Lusaka (field samples, n = 56). Each dog's age, sex, breed, and vaccination status were recorded. A haemagglutination assay using pig erythrocytes and modified live parvovirus vaccine as the antigen was used. Antibod...

  15. Generalized edema associated with parvovirus B19 infection

    Directory of Open Access Journals (Sweden)

    Pieter J. Vlaar

    2014-12-01

    Full Text Available Generalized edema is a rare presentation of human parvovirus B19 infection. The etiology of this edema is unclear, particularly because signs of heart or renal failure are often not present. We report the case of a young adult presenting with generalized edema with serological and PCR evidence of parvovirus B19 infection, and discuss the potential mechanisms of edema based on the previous literature.

  16. Isolated velopalatine paralysis associated with parvovirus B19 infection

    Directory of Open Access Journals (Sweden)

    Soares-Fernandes João P.

    2006-01-01

    Full Text Available A case of isolated velopalatine paralysis in an 8-year-old boy is presented. The symptoms were sudden-onset of nasal speech, regurgitation of liquids into the nose and dysphagia. Brain MRI and cerebrospinal fluid examination were normal. Infectious serologies disclosed an antibody arrangement towards parvovirus B19 that was typical of recent infection. In the absence of other positive data, the possibility of a correlation between the tenth nerve palsy and parvovirus infection is discussed.

  17. [Observations on human parvovirus B19 infection diagnosed in 2011].

    Science.gov (United States)

    Mihály, Ilona; Trethon, András; Arányi, Zsuzsanna; Lukács, Adrienne; Kolozsi, Tímea; Prinz, Gyula; Marosi, Anikó; Lovas, Nóra; Dobner, Ilona Sarolta; Prinz, Géza; Szalai, Zsuzsanna; Pék, Tamás

    2012-12-09

    The incidence of human parvovirus B19 infection is unknown. A retrospective analysis of clinical and laboratory findings was carried out in patients diagnosed with human parvovirus B19 infection in 2011 in a virologic laboratory of a single centre in Hungary. Clinical and laboratory data of patients with proven human parvovirus B19 infection were analysed using in- and out-patient files. In 2011, 72 patients proved to have human parvovirus B19 infection with the use of enzyme immunoassay. The clinical diagnoses of these patients were as follows: human parvovirus B19 infection (30.6%), transient aplastic crisis (16.7%), arthritis (8.3%) and acute hepatitis (4.1%). Symptoms of each of the four phases of the infection occurred in various combinations with the exception of the monophase of cheek exanthema. This occurred without the presence of other symptoms in some cases. Leading symptoms and signs were exanthema (in 74.6% of cases), haematological disorders (in 69% of cases), fever (in 54.9% of cases) and arthritis (in 33.8% of cases). Several atypical dermatological symptoms were also observed. Acute arthritis without exanthema was noted in 8 patients. Of the 72 patients with proven human parvovirus B19 infection there were 7 pregnant women, and one of them had hydrops foetalis resulting spontaneous abortion. In 16 patients (22.5%) human parvovirus B19 IgG was undetectable despite an optimal time for testing. The observations of this study may contribute to a better recognition of clinical symptoms of human parvovirus B19 infection.

  18. Parvovirus transmission by blood products - a cause for concern?

    Science.gov (United States)

    Norja, Päivi; Lassila, Riitta; Makris, Mike

    2012-11-01

    The introduction of dual viral inactivation of clotting factor concentrates has practically eliminated infections by viruses associated with significant pathogenicity over the last 20 years. Despite this, theoretical concerns about transmission of infection have remained, as it is known that currently available viral inactivation methods are unable to eliminate parvovirus B19 or prions from these products. Recently, concern has been raised following the identification of the new parvoviruses, human parvovirus 4 (PARV4) and new genotypes of parvovirus B19, in blood products. Parvoviruses do not cause chronic pathogenicity similar to human immunodeficiency virus or hepatitis C virus, but nevertheless may cause clinical manifestations, especially in immunosuppressed patients. Manufacturers should institute measures, such as minipool polymerase chain reaction testing, to ensure that their products contain no known viruses. So far, human bocavirus, another new genus of parvovirus, has not been detected in fractionated blood products, and unless their presence can be demonstrated, routine testing during manufacture is not essential. Continued surveillance of the patients and of the safety of blood products remains an important ongoing issue. © 2012 Blackwell Publishing Ltd.

  19. Analysis of Evolutionary Processes of Species Jump in Waterfowl Parvovirus

    Science.gov (United States)

    Fan, Wentao; Sun, Zhaoyu; Shen, Tongtong; Xu, Danning; Huang, Kehe; Zhou, Jiyong; Song, Suquan; Yan, Liping

    2017-01-01

    Waterfowl parvoviruses are classified into goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) according to their antigenic features and host preferences. A novel duck parvovirus (NDPV), identified as a new variant of GPV, is currently infecting ducks, thus causing considerable economic loss. This study analyzed the molecular evolution and population dynamics of the emerging parvovirus capsid gene to investigate the evolutionary processes concerning the host shift of NDPV. Two important amino acids changes (Asn-489 and Asn-650) were identified in NDPV, which may be responsible for host shift of NDPV. Phylogenetic analysis indicated that the currently circulating NDPV originated from the GPV lineage. The Bayesian Markov chain Monte Carlo tree indicated that the NDPV diverged from GPV approximately 20 years ago. Evolutionary rate analyses demonstrated that GPV evolved with 7.674 × 10-4 substitutions/site/year, and the data for MDPV was 5.237 × 10-4 substitutions/site/year, whereas the substitution rate in NDPV branch was 2.25 × 10-3 substitutions/site/year. Meanwhile, viral population dynamics analysis revealed that the GPV major clade, including NDPV, grew exponentially at a rate of 1.717 year-1. Selection pressure analysis showed that most sites are subject to strong purifying selection and no positively selected sites were found in NDPV. The unique immune-epitopes in waterfowl parvovirus were also estimated, which may be helpful for the prediction of antibody binding sites against NDPV in ducks. PMID:28352261

  20. Seroprevalence of human parvovirus B19 in healthy blood donors.

    Science.gov (United States)

    Kumar, Satish; Gupta, R M; Sen, Sourav; Sarkar, R S; Philip, J; Kotwal, Atul; Sumathi, S H

    2013-07-01

    Human parvovirus B19 is an emerging transfusion transmitted infection. Although parvovirus B19 infection is connected with severe complications in some recipients, donor screening is not yet mandatory. To reduce the risk of contamination, plasma-pool screening and exclusion of highly viraemic donations are recommended. In this study the prevalence of parvovirus B19 in healthy blood donors was detected by ELISA. A total of 1633 samples were screened for IgM and IgG antibodies against parvovirus B19 by ELISA. The initial 540 samples were screened for both IgM and IgG class antibodies and remaining 1093 samples were screened for only IgM class antibodies by ELISA. Net prevalence of IgM antibodies to human parvovirus B19 in our study was 7.53% and prevalence of IgG antibodies was 27.96%. Dual positivity (IgG and IgM) was 2.40%. The seroprevalence of human parvovirus B19 among blood donor population in our study is high, and poses an adverse transfusion risk especially in high-risk group of patients who have no detectable antibodies to B19. Studies with large sample size are needed to validate these results.

  1. Placental abruption possibly due to parvovirus B19 infection.

    Science.gov (United States)

    Kawabe, Ayaka; Takai, Yasushi; Tamaru, Jun-Ichi; Samejima, Kouki; Seki, Hiroyuki

    2016-01-01

    There is concern about the development of anemia-associated fetal hydrops associated with maternal parvovirus B19 infection. Parvovirus B19 infection occurs via the globoside (P antigen) receptor, the main glycolipid of erythroid cells, which induces apoptosis. Similar findings have been reported for the P antigen of globoside-containing placental trophoblast cells. A 32-year-old woman was infected with human parvovirus B19 at week 32 of pregnancy, and had severe anemia at week 34. At week 37, an emergency cesarean section was performed because of sudden abdominal pain and fetal bradycardia; placental abruption was found. A live male infant was delivered with no sign of fetal hydrops or fetal infection. Placental tissue was positive for parvovirus B19 according to polymerase chain reaction. Immunohistochemical analysis using caspase-related M30 CytoDEATH monoclonal antibody revealed M30 staining of the placental villous trophoblasts. Placental trophoblasts and erythroid precursor cells have been reported to express globoside (P antigen), which is necessary for parvovirus B19 infectivity, and to show apoptotic activity as a result of infection. Placentas from three other pregnancies with documented abruption showed no M30 staining. The present case strongly suggests an association between placental abruption and apoptosis resulting from parvovirus B19 infection.

  2. Antibody Response against Parvovirus in Patients with Inflammatory Rheumatological Diseases

    Directory of Open Access Journals (Sweden)

    SH Raeisi

    2011-07-01

    Full Text Available Introduction: Some viral infections have been suggested to trigger or cause autoimmune diseases. One of these viruses is parvovirus B19 which can have various rheumatologic manifestations. In this study we investigated the association between parvovirus and rheumatoid arthritis (RA, systemic lupus erythematosis(SLE, systemic sclerosis(SSc and undifferentiated arthritis at the Rheumatological Clinic, Imam Khomeini hospital. Methods: In this sectional case-control study, IgM and IgG antibodies against parvovirus B19 were measured with ELISA in 41 patients with RA, 28 patients with SLE, 13 patients with SSc, 8 patients with undifferentiated arthritis as well as 90 healthy controls. The ELISA kit (DRG, Germany was semi-quantitative and qualititative. Results: Parvovirus B19 IgM was detected in one patient with RA, one with SSc and four in the control group. IgG anti- B19-specific antibody was detected in 58.5% of RA patients, 67.9% of SLE patients, 69. 2% of SSc patients, 87.5% of undifferentiated arthritis patients as compared to 53.3% of controls. The results were compared between the patient and control groups(p>0.05. Conclusion: According to the results, there was no significant correlation for the antibody titer against parvovirus B19 in the patient and control group. The highly positive response of IgG against parvovirus in undifferentiated arthritis implies the need for more research.

  3. Acute human parvovirus b19 infection: cytologic diagnosis.

    Science.gov (United States)

    Sharada Raju, Rane; Nalini Vinayak, Kadgi; Madhusudan Bapat, Vishnuprasad; Preeti Balkisanji, Agrawal; Shaila Chandrakant, Puranik

    2014-09-01

    Human parvovirus B19 is highly tropic to human bone marrow and replicates only in erythroid progenitor cells. It is causative agent of transient aplastic crisis in patients with chronic haemolytic anemia. In immunocompromised patients persistent parvovirus B19 infection may develop and it manifests as pure red cell aplasia and chronic anaemia. Bone marrow is characterised morphologically by giant pronormoblast stage with little or no further maturation. We encountered a case of 6 year old HIV positive male child presented with pure red cell aplasia due to parvovirus B19 infection. Bone marrow aspiration cytology revealed giant pronormoblast with prominent intranuclear inclusions led to suspicion of parvovirus B19 infection which was confirmed by DNA PCR. This case is presented to report classical morphological features of parvovirus B19 infection rarely seen on bone marrow examination should warrant the suspicion of human parvovirus B19 infection in the setting of HIV positive patient with repeated transfusions and confirmation should be done by PCR.

  4. Human parvovirus B19 and parvovirus 4 among Iranian patients with hemophilia.

    Science.gov (United States)

    Javanmard, Davod; Ziaee, Masood; Ghaffari, Hadi; Namaei, Mohammad Hasan; Tavakoli, Ahmad; Mollaei, Hamidreza; Moghoofei, Mohsen; Mortazavi, Helya Sadat; Monavari, Seyed Hamidreza

    2017-12-01

    Human parvovirus B19 (B19V) is one of the smallest DNA viruses and shows great resistance to most disinfectants. Therefore, it is one of the common contaminant pathogens present in blood and plasma products. Parvovirus 4 (PARV4) is a newly identified parvovirus, which is also prevalent in parenteral transmission. In this study, we aimed to evaluate the prevalence of B19V and PARV4 DNA among patients with hemophilia in Birjand County in eastern Iran. This was a cross-sectional epidemiological study comprising nearly all people with hemophilia in this region. Whole blood samples were taken after patient registration and sent for plasma isolation. After nucleic acid extraction, B19V was detected with real-time polymerase chain reaction, PARV4 DNA was then detected using sensitive semi-nested PCR. In total, there were 86 patients with hemophilia, with mean age 28.5±1.5 years. Of these, 90.7% were men and 9.3% women; 84.9% had hemophilia A and 7.0% had hemophilia B. We found 11 patients (12.8%) were positive for B19V DNA and 8 were positive (9.3%) for PARV4 DNA. The prevalence of B19V was higher in middle-aged groups rather than younger people, whereas PARV4 infection was more common in younger patients ( P B19 virus, imposing more precautionary measures for serum and blood products is recommended.

  5. Calibration of denaturing agarose gels for molecular weight estimation of DNA: size determination of the single-stranded genomes of parvoviruses

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, C.E. (Oak Ridge National Lab., TN); Schmoyer, R.L.; Bates, R.C.; Mitra, S.

    1982-01-01

    Vertical slab gel electrophoresis of DNA with CH/sub 3/HgOH-containing agarose produces sharp bands whose mobilities are suitable for size estimation of single-stranded DNA containing 600 to 20,000 bases. The relationship of electrophoretic mobility to size of DNA over this range is a smooth, S-shaped function, and an empirical model was developed to express the relationship. The model involves terms in squared and reciprocal mobilities, and produced excellent fit of known standard markers to measured mobilities. It was used to estimate the sizes of six parvovirus DNAs: Kilham rat virus (KRV), H-1, LuIII, and minute virus of mice (MVM) DNAs had molecular weights of 1.66 to 1.70 x 10/sup 6/, while the molecular weight of bovine parvovirus (BPV) DNA was 1.84 x 10/sup 6/ and that of adenoassociated virus (AAV) DNA was 1.52 x 10/sup 6/.

  6. Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice.

    Science.gov (United States)

    Sui, Jinyu; Yang, Dawei; Qiao, Chuanling; Xu, Huiyang; Xu, Bangfeng; Wu, Yunpu; Yang, Huanliang; Chen, Yan; Chen, Hualan

    2016-07-19

    Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses are prevalent in pigs in Europe and Asia, but occasionally cause human infection, which raises concern about their pandemic potential. Here, we produced a whole-virus inactivated vaccine with an EA H1N1 strain (A/swine/Guangxi/18/2011, SW/GX/18/11) and evaluated its efficacy against homologous H1N1 and heterologous H1N1 and H1N2 influenza viruses in mice. A strong humoral immune response, which we measured by hemagglutination inhibition (HI) and virus neutralization (VN), was induced in the vaccine-inoculated mice upon challenge. The inactivated SW/GX/18/11 vaccine provided complete protection against challenge with homologous SW/GX/18/11 virus in mice and provided effective protection against challenge with heterologous H1N1 and H1N2 viruses with distinctive genomic combinations. Our findings suggest that this EA H1N1 vaccine can provide protection against both homologous H1N1 and heterologous H1N1 or H1N2 virus infection. As such, it is an excellent vaccine candidate to prevent H1N1 swine influenza. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Oncorine, the World First Oncolytic Virus Medicine and its Update in China.

    Science.gov (United States)

    Liang, Min

    2018-01-01

    The oncolytic viruses now hold a promise of new therapeutic strategy for cancer. Its concept has inspired a wave of commercial research and development activities for the products of this category in China since 1998. The first commercialized oncolytic virus product in the world, Oncorine (H101), developed by Shanghai Sunway Biotech Co., Ltd since 1999, was approved by Chinese SFDA in November, 2005 for nasopharyngeal carcinoma in combination with chemotherapy after the phase III clinical trial, and finally acquired GMP certificate in August, 2006. This review introduces how Oncorine was successfully developed in China, and how the Chinese market responded after it was launched into the market in 2006. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Reovirus FAST Protein Enhances Vesicular Stomatitis Virus Oncolytic Virotherapy in Primary and Metastatic Tumor Models

    Directory of Open Access Journals (Sweden)

    Fabrice Le Boeuf

    2017-09-01

    Full Text Available The reovirus fusion-associated small transmembrane (FAST proteins are the smallest known viral fusogens (∼100–150 amino acids and efficiently induce cell-cell fusion and syncytium formation in multiple cell types. Syncytium formation enhances cell-cell virus transmission and may also induce immunogenic cell death, a form of apoptosis that stimulates immune recognition of tumor cells. These properties suggest that FAST proteins might serve to enhance oncolytic virotherapy. The oncolytic activity of recombinant VSVΔM51 (an interferon-sensitive vesicular stomatitis virus [VSV] mutant encoding the p14 FAST protein (VSV-p14 was compared with a similar construct encoding GFP (VSV-GFP in cell culture and syngeneic BALB/c tumor models. Compared with VSV-GFP, VSV-p14 exhibited increased oncolytic activity against MCF-7 and 4T1 breast cancer spheroids in culture and reduced primary 4T1 breast tumor growth in vivo. VSV-p14 prolonged survival in both primary and metastatic 4T1 breast cancer models, and in a CT26 metastatic colon cancer model. As with VSV-GFP, VSV-p14 preferentially replicated in vivo in tumors and was cleared rapidly from other sites. Furthermore, VSV-p14 increased the numbers of activated splenic CD4, CD8, natural killer (NK, and natural killer T (NKT cells, and increased the number of activated CD4 and CD8 cells in tumors. FAST proteins may therefore provide a multi-pronged approach to improving oncolytic virotherapy via syncytium formation and enhanced immune stimulation.

  9. Sensitivity of C6 Glioma Cells Carrying the Human Poliovirus Receptor to Oncolytic Polioviruses.

    Science.gov (United States)

    Sosnovtseva, A O; Lipatova, A V; Grinenko, N F; Baklaushev, V P; Chumakov, P M; Chekhonin, V P

    2016-10-01

    A humanized line of rat C6 glioma cells expressing human poliovirus receptor was obtained and tested for the sensitivity to oncolytic effects of vaccine strains of type 1, 2, and 3 polioviruses. Presentation of the poliovirus receptor on the surface of C6 glioma cells was shown to be a necessary condition for the interaction of cells with polioviruses, but insufficient for complete poliovirus oncolysis.

  10. Proof-of-principle that a decoy virus protects oncolytic measles virus against neutralizing antibodies

    OpenAIRE

    Xu C; Goß AV; Dorneburg C; Debatin KM; Wei J; Beltinger C

    2018-01-01

    Chun Xu,1,2,* Annika Verena Goß,1,* Carmen Dorneburg,1 Klaus-Michael Debatin,1 Jiwu Wei,2 Christian Beltinger1 1Department of Pediatrics and Adolescent Medicine, Section of Experimental Pediatric Oncology, University Medical Center Ulm, Ulm, Germany; 2Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, China *These authors contributed equally to this work Background: Attenuated oncolytic measles virus (OMV) is a promising antitumor agent in early-phase cl...

  11. 2009 H1N1 Flu Vaccine Facts

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Flu 2009 H1N1 Flu Vaccine Facts Past Issues / Fall 2009 Table of ... the H1N1 flu vaccine. 1 The 2009 H1N1 flu vaccine is safe and well tested. Clinical trials ...

  12. Targeting an Oncolytic Influenza A Virus to Tumor Tissue by Elastase

    Directory of Open Access Journals (Sweden)

    Irina Kuznetsova

    2017-12-01

    Full Text Available Oncolytic viruses are currently established as a novel type of immunotherapy. The challenge is to safely target oncolytic viruses to tumors. Previously, we have generated influenza A viruses (IAVs containing deletions in the viral interferon antagonist. Those deletions have attenuated the virus in normal tissue but allowed replication in tumor cells. IAV entry is mediated by hemagglutinin (HA, which needs to be activated by a serine protease, for example, through trypsin. To further target the IAV to tumors, we have changed the trypsin cleavage site to an elastase cleavage site. We chose this cleavage site because elastase is expressed in the tumor microenvironment. Moreover, the exchange of the cleavage site previously has been shown to attenuate viral growth in lungs. Newly generated elastase-activated influenza viruses (AE viruses grew to similar titers in tumor cells as the trypsin-activated counterparts (AT viruses. Intratumoral injection of AE viruses into syngeneic B16f1 melanoma-derived tumors in mice reduced tumor growth similar to AT viruses and had a better therapeutic effect in heterologous human PANC-1-derived tumors. Therefore, the introduction of the attenuation marker “elastase cleavage site” in viral HA allows for safe, effective oncolytic virus therapy.

  13. A novel, polymer-coated oncolytic measles virus overcomes immune suppression and induces robust antitumor activity

    Directory of Open Access Journals (Sweden)

    Kaname Nosaki

    2016-01-01

    Full Text Available Although various therapies are available to treat cancers, including surgery, chemotherapy, and radiotherapy, cancer has been the leading cause of death in Japan for the last 30 years, and new therapeutic modalities are urgently needed. As a new modality, there has recently been great interest in oncolytic virotherapy, with measles virus being a candidate virus expected to show strong antitumor effects. The efficacy of virotherapy, however, was strongly limited by the host immune response in previous clinical trials. To enhance and prolong the antitumor activity of virotherapy, we combined the use of two newly developed tools: the genetically engineered measles virus (MV-NPL and the multilayer virus-coating method of layer-by-layer deposition of ionic polymers. We compared the oncolytic effects of this polymer-coated MV-NPL with the naked MV-NPL, both in vitro and in vivo. In the presence of anti-MV neutralizing antibodies, the polymer-coated virus showed more enhanced oncolytic activity than did the naked MV-NPL in vitro. We also examined antitumor activities in virus-treated mice. Complement-dependent cytotoxicity and antitumor activities were higher in mice treated with polymer-coated MV-NPL than in mice treated with the naked virus. This novel, polymer-coated MV-NPL is promising for clinical cancer therapy in the future.

  14. Oncolytic Viruses-Interaction of Virus and Tumor Cells in the Battle to Eliminate Cancer.

    Science.gov (United States)

    Howells, Anwen; Marelli, Giulia; Lemoine, Nicholas R; Wang, Yaohe

    2017-01-01

    Oncolytic viruses (OVs) are an emerging treatment option for many cancer types and have recently been the focus of extensive research aiming to develop their therapeutic potential. The ultimate aim is to design a virus which can effectively replicate within the host, specifically target and lyse tumor cells and induce robust, long lasting tumor-specific immunity. There are a number of viruses which are either naturally tumor-selective or can be modified to specifically target and eliminate tumor cells. This means they are able to infect only tumor cells and healthy tissue remains unharmed. This specificity is imperative in order to reduce the side effects of oncolytic virotherapy. These viruses can also be modified by various methods including insertion and deletion of specific genes with the aim of improving their efficacy and safety profiles. In this review, we have provided an overview of the various virus species currently being investigated for their oncolytic potential and the positive and negative effects of a multitude of modifications used to increase their infectivity, anti-tumor immunity, and treatment safety, in particular focusing on the interaction of tumor cells and OVs.

  15. uPAR-controlled oncolytic adenoviruses eliminate cancer stem cells in human pancreatic tumors.

    Science.gov (United States)

    Sobrevals, Luciano; Mato-Berciano, Ana; Urtasun, Nerea; Mazo, Adela; Fillat, Cristina

    2014-01-01

    Pancreatic tumors contain cancer stem cells highly resistant to chemotherapy. The identification of therapies that can eliminate this population of cells might provide with more effective treatments. In the current work we evaluated the potential of oncolytic adenoviruses to act against pancreatic cancer stem cells (PCSC). PCSC from two patient-derived xenograft models were isolated from orthotopic pancreatic tumors treated with saline, or with the chemotherapeutic agent gemcitabine. An enrichment in the number of PCSC expressing the cell surface marker CD133 and a marked enhancement on tumorsphere formation was observed in gemcitabine treated tumors. No significant increase in the CD44, CD24, and epithelial-specific antigen (ESA) positive cells was observed. Neoplastic sphere-forming cells were susceptible to adenoviral infection and exposure to oncolytic adenoviruses resulted in elevated cytotoxicity with both Adwt and the tumor specific AduPARE1A adenovirus. In vivo, intravenous administration of a single dose of AduPARE1A in human-derived pancreatic xenografts led to a remarkable anti-tumor effect. In contrast to gemcitabine AduPARE1A treatment did not result in PCSC enrichment. No enrichment on tumorspheres neither on the CD133(+) population was detected. Therefore our data provide evidences of the relevance of uPAR-controlled oncolytic adenoviruses for the elimination of pancreatic cancer stem cells. © 2013.

  16. Preclinical evaluation of oncolytic vaccinia virus for therapy of canine soft tissue sarcoma.

    Directory of Open Access Journals (Sweden)

    Ivaylo Gentschev

    Full Text Available Virotherapy using oncolytic vaccinia virus (VACV strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.1 and GLV-1h68 strains against CSTS. Cell culture data demonstrated that both tested VACV strains efficiently infected and destroyed cells of the canine soft tissue sarcoma line STSA-1. In addition, in our new canine sarcoma tumor xenograft mouse model, systemic administration of LIVP1.1.1 or GLV-1h68 viruses led to significant inhibition of tumor growth compared to control mice. Furthermore, LIVP1.1.1 mediated therapy resulted in almost complete tumor regression and resulted in long-term survival of sarcoma-bearing mice. The replication of the tested VACV strains in tumor tissues led to strong oncolytic effects accompanied by an intense intratumoral infiltration of host immune cells, mainly neutrophils. These findings suggest that the direct viral oncolysis of tumor cells and the virus-dependent activation of tumor-associated host immune cells could be crucial parts of anti-tumor mechanism in STSA-1 xenografts. In summary, the data showed that both tested vaccinia virus strains and especially LIVP1.1.1 have great potential for effective treatment of CSTS.

  17. Targeting Poxvirus Decapping Enzymes and mRNA Decay to Generate an Effective Oncolytic Virus

    Directory of Open Access Journals (Sweden)

    Hannah Burgess

    2018-03-01

    Full Text Available Through the action of two virus-encoded decapping enzymes (D9 and D10 that remove protective caps from mRNA 5′-termini, Vaccinia virus (VACV accelerates mRNA decay and limits activation of host defenses. D9- or D10-deficient VACV are markedly attenuated in mice and fail to counter cellular double-stranded RNA-responsive innate immune effectors, including PKR. Here, we capitalize upon this phenotype and demonstrate that VACV deficient in either decapping enzyme are effective oncolytic viruses. Significantly, D9- or D10-deficient VACV displayed anti-tumor activity against syngeneic mouse tumors of different genetic backgrounds and human hepatocellular carcinoma xenografts. Furthermore, D9- and D10-deficient VACV hyperactivated the host anti-viral enzyme PKR in non-tumorigenic cells compared to wild-type virus. This establishes a new genetic platform for oncolytic VACV development that is deficient for a major pathogenesis determinant while retaining viral genes that support robust productive replication like those required for nucleotide metabolism. It further demonstrates how VACV mutants unable to execute a fundamental step in virus-induced mRNA decay can be unexpectedly translated into a powerful anti-tumor therapy. Keywords: oncolytic virus, mRNA decay, decapping

  18. Novel therapeutic strategies in human malignancy: combining immunotherapy and oncolytic virotherapy

    Directory of Open Access Journals (Sweden)

    Sampath P

    2015-06-01

    Full Text Available Padma Sampath, Steve H Thorne Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA Abstract: Results from randomized clinical trials over the last several years have finally begun to demonstrate the potential of oncolytic viral therapies to treat a variety of cancers. One reason for these successes has been the realization that this platform is most effective when considered primarily as an immunotherapy. Cancer immunotherapy has also made dramatic strides recently with antibodies capable of blocking immune checkpoint inhibitors and adoptive T-cell therapies, notably CAR T-cells, leading a panel of novel and highly clinically effective therapies. It is clear therefore that an understanding of how and when these complementary approaches can most effectively be combined offers the real hope of moving beyond simply treating the disease and toward starting to talk about curative therapies. In this review we discuss approaches to combining these therapeutic platforms, both through engineering the viral vectors to more beneficially interact with the host immune response during therapy, as well as through the direct combinations of different therapeutics. This primarily, but not exclusively focuses on strains of oncolytic vaccinia virus. Some of the results reported to date, primarily in pre-clinical models but also in early clinical trials, are dramatic and hold great promise for the future development of similar therapies and their translation into cancer therapies. Keywords: oncolytic virus, CAR T-cell, adoptive cell therapy, immune checkpoint inhibitor 

  19. Perspectives on the Evolution of Porcine Parvovirus.

    Science.gov (United States)

    Oh, Woo-Taek; Kim, Ri-Yeon; Nguyen, Van-Giap; Chung, Hee-Chun; Park, Bong-Kyun

    2017-07-26

    Porcine parvovirus (PPV) is one of the main causes of porcine reproductive failure. It is important for swine industries to understand the recent trends in PPV evolution. Previous data show that PPV has two genetic lineages originating in Germany. In this study, two more genetic lineages were defined, one of which was distinctly Asian. Additionally, amino acid substitutions in European strains and Asian strains showed distinct differences in several regions of the VP2 gene. The VP1 gene of the recent PPV isolate (T142_South Korea) was identical to that of Kresse strain isolated in the USA in 1985, indicating that modern PPV strains now resemble the original strains (Kresse and NADL-2). In this study, we compared strains isolated in the 20th century to recent isolates and confirmed the trend that modern strains are becoming more similar to previous strains.

  20. Molecular Epidemiology of Seal Parvovirus, 1988–2014

    Science.gov (United States)

    Bodewes, Rogier; Hapsari, Rebriarina; Rubio García, Ana; Sánchez Contreras, Guillermo J.; van de Bildt, Marco W. G.; de Graaf, Miranda; Kuiken, Thijs; Osterhaus, Albert D. M. E.

    2014-01-01

    A novel parvovirus was discovered recently in the brain of a harbor seal (Phoca vitulina) with chronic meningo-encephalitis. Phylogenetic analysis of this virus indicated that it belongs to the genus Erythroparvovirus, to which also human parvovirus B19 belongs. In the present study, the prevalence, genetic diversity and clinical relevance of seal parvovirus (SePV) infections was evaluated in both harbor and grey seals (Halichoerus grypus) that lived in Northwestern European coastal waters from 1988 to 2014. To this end, serum and tissue samples collected from seals were tested for the presence of seal parvovirus DNA by real-time PCR and the sequences of the partial NS gene and the complete VP2 gene of positive samples were determined. Seal parvovirus DNA was detected in nine (8%) of the spleen tissues tested and in one (0.5%) of the serum samples tested, including samples collected from seals that died in 1988. Sequence analysis of the partial NS and complete VP2 genes of nine SePV revealed multiple sites with nucleotide substitutions but only one amino acid change in the VP2 gene. Estimated nucleotide substitution rates per year were 2.00×10−4 for the partial NS gene and 1.15×10−4 for the complete VP2 gene. Most samples containing SePV DNA were co-infected with phocine herpesvirus 1 or PDV, so no conclusions could be drawn about the clinical impact of SePV infection alone. The present study is one of the few in which the mutation rates of parvoviruses were evaluated over a period of more than 20 years, especially in a wildlife population, providing additional insights into the genetic diversity of parvoviruses. PMID:25390639

  1. Molecular epidemiology of seal parvovirus, 1988-2014.

    Science.gov (United States)

    Bodewes, Rogier; Hapsari, Rebriarina; Rubio García, Ana; Sánchez Contreras, Guillermo J; van de Bildt, Marco W G; de Graaf, Miranda; Kuiken, Thijs; Osterhaus, Albert D M E

    2014-01-01

    A novel parvovirus was discovered recently in the brain of a harbor seal (Phoca vitulina) with chronic meningo-encephalitis. Phylogenetic analysis of this virus indicated that it belongs to the genus Erythroparvovirus, to which also human parvovirus B19 belongs. In the present study, the prevalence, genetic diversity and clinical relevance of seal parvovirus (SePV) infections was evaluated in both harbor and grey seals (Halichoerus grypus) that lived in Northwestern European coastal waters from 1988 to 2014. To this end, serum and tissue samples collected from seals were tested for the presence of seal parvovirus DNA by real-time PCR and the sequences of the partial NS gene and the complete VP2 gene of positive samples were determined. Seal parvovirus DNA was detected in nine (8%) of the spleen tissues tested and in one (0.5%) of the serum samples tested, including samples collected from seals that died in 1988. Sequence analysis of the partial NS and complete VP2 genes of nine SePV revealed multiple sites with nucleotide substitutions but only one amino acid change in the VP2 gene. Estimated nucleotide substitution rates per year were 2.00 × 10(-4) for the partial NS gene and 1.15 × 10(-4) for the complete VP2 gene. Most samples containing SePV DNA were co-infected with phocine herpesvirus 1 or PDV, so no conclusions could be drawn about the clinical impact of SePV infection alone. The present study is one of the few in which the mutation rates of parvoviruses were evaluated over a period of more than 20 years, especially in a wildlife population, providing additional insights into the genetic diversity of parvoviruses.

  2. Molecular epidemiology of seal parvovirus, 1988-2014.

    Directory of Open Access Journals (Sweden)

    Rogier Bodewes

    Full Text Available A novel parvovirus was discovered recently in the brain of a harbor seal (Phoca vitulina with chronic meningo-encephalitis. Phylogenetic analysis of this virus indicated that it belongs to the genus Erythroparvovirus, to which also human parvovirus B19 belongs. In the present study, the prevalence, genetic diversity and clinical relevance of seal parvovirus (SePV infections was evaluated in both harbor and grey seals (Halichoerus grypus that lived in Northwestern European coastal waters from 1988 to 2014. To this end, serum and tissue samples collected from seals were tested for the presence of seal parvovirus DNA by real-time PCR and the sequences of the partial NS gene and the complete VP2 gene of positive samples were determined. Seal parvovirus DNA was detected in nine (8% of the spleen tissues tested and in one (0.5% of the serum samples tested, including samples collected from seals that died in 1988. Sequence analysis of the partial NS and complete VP2 genes of nine SePV revealed multiple sites with nucleotide substitutions but only one amino acid change in the VP2 gene. Estimated nucleotide substitution rates per year were 2.00 × 10(-4 for the partial NS gene and 1.15 × 10(-4 for the complete VP2 gene. Most samples containing SePV DNA were co-infected with phocine herpesvirus 1 or PDV, so no conclusions could be drawn about the clinical impact of SePV infection alone. The present study is one of the few in which the mutation rates of parvoviruses were evaluated over a period of more than 20 years, especially in a wildlife population, providing additional insights into the genetic diversity of parvoviruses.

  3. Selective replication of oncolytic virus M1 results in a bystander killing effect that is potentiated by Smac mimetics.

    Science.gov (United States)

    Cai, Jing; Lin, Yuan; Zhang, Haipeng; Liang, Jiankai; Tan, Yaqian; Cavenee, Webster K; Yan, Guangmei

    2017-06-27

    Oncolytic virotherapy is a treatment modality that uses native or genetically modified viruses that selectively replicate in and kill tumor cells. Viruses represent a type of pathogen-associated molecular pattern and thereby induce the up-regulation of dozens of cytokines via activating the host innate immune system. Second mitochondria-derived activator of caspases (Smac) mimetic compounds (SMCs), which antagonize the function of inhibitor of apoptosis proteins (IAPs) and induce apoptosis, sensitize tumor cells to multiple cytokines. Therefore, we sought to determine whether SMCs sensitize tumor cells to cytokines induced by the oncolytic M1 virus, thus enhancing a bystander killing effect. Here, we report that SMCs potentiate the oncolytic effect of M1 in vitro, in vivo, and ex vivo. This strengthened oncolytic efficacy resulted from the enhanced bystander killing effect caused by the M1 virus via cytokine induction. Through a microarray analysis and subsequent validation using recombinant cytokines, we identified IL-8, IL-1A, and TRAIL as the key cytokines in the bystander killing effect. Furthermore, SMCs increased the replication of M1, and the accumulation of virus protein induced irreversible endoplasmic reticulum stress- and c-Jun N-terminal kinase-mediated apoptosis. Nevertheless, the combined treatment with M1 and SMCs had little effect on normal and human primary cells. Because SMCs selectively and significantly enhance the bystander killing effect and the replication of oncolytic virus M1 specifically in cancer cells, this combined treatment may represent a promising therapeutic strategy.

  4. Suppression of Oncolytic Adenovirus-Mediated Hepatotoxicity by Liver-Specific Inhibition of NF-κB

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Machitani

    2017-12-01

    Full Text Available Telomerase-specific replication-competent adenoviruses (Ads, i.e., TRADs, which possess an E1 gene expression cassette driven by the human telomerase reverse transcriptase promoter, are promising agents for cancer treatment. However, even though oncolytic Ads, including TRAD, are intratumorally administered, they are disseminated from the tumor to systemic circulation, causing concern about oncolytic Ad-mediated hepatotoxicity (due mainly to leaky expression of Ad genes in liver. We reported that inhibition of nuclear factor-κB (NF-κB leads to the suppression of replication-incompetent Ad vector-mediated hepatotoxicity via reduction of the leaky expression of Ad genes in liver. Here, to develop a TRAD with an improved safety profile, we designed a TRAD that carries a liver-specific promoter-driven dominant-negative IκBα (DNIκBα expression cassette (TRAD-DNIκBα. Compared with a conventional TRAD, TRAD-DNIκBα showed hepatocyte-specific inhibition of NF-κB signaling and significantly reduced Ad gene expression and replication in the normal human hepatocyte cell line. TRAD-induced hepatotoxicity was largely suppressed in mice following intravenous administration of TRAD-DNIκBα. However, the replication profiles and oncolytic activities of TRAD-DNIκBα were comparable with those of the conventional TRAD in human non-hepatic tumor cells. These results indicate that oncolytic Ads containing the liver-specific DNIκBα expression cassette have improved safety profiles without inhibiting oncolytic activities.

  5. The combination of i-leader truncation and gemcitabine improves oncolytic adenovirus efficacy in an immunocompetent model.

    Science.gov (United States)

    Puig-Saus, C; Laborda, E; Rodríguez-García, A; Cascalló, M; Moreno, R; Alemany, R

    2014-02-01

    Adenovirus (Ad) i-leader protein is a small protein of unknown function. The C-terminus truncation of the i-leader protein increases Ad release from infected cells and cytotoxicity. In the current study, we use the i-leader truncation to enhance the potency of an oncolytic Ad. In vitro, an i-leader truncated oncolytic Ad is released faster to the supernatant of infected cells, generates larger plaques, and is more cytotoxic in both human and Syrian hamster cell lines. In mice bearing human tumor xenografts, the i-leader truncation enhances oncolytic efficacy. However, in a Syrian hamster pancreatic tumor model, which is immunocompetent and less permissive to human Ad, antitumor efficacy is only observed when the i-leader truncated oncolytic Ad, but not the non-truncated version, is combined with gemcitabine. This synergistic effect observed in the Syrian hamster model was not seen in vitro or in immunodeficient mice bearing the same pancreatic hamster tumors, suggesting a role of the immune system in this synergism. These results highlight the interest of the i-leader C-terminus truncation because it enhances the antitumor potency of an oncolytic Ad and provides synergistic effects with gemcitabine in the presence of an immune competent system.

  6. Molecular Study of Parvovirus B19 Infection in Children with

    Science.gov (United States)

    Tharwat Abou El-Khier, Noha; Darwish, Ahmad; El Sayed Zaki, Maysaa

    2018-02-26

    Background: Parvovirus B19 is a common viral infection in children. Nearby evidences are present about its association with acute leukemia, especially acute lymphoblast leukemia. Nevertheless, scanty reports have discussed any role in acute myeloid leukemia (AML). Purpose: To evaluate the frequency of virological markers of B19 infection including its DNA along with specific immunoglobulins G (IgG) and M (IgM) among children with newly diagnosed AML. Besides, describing the clinical importance of Parvovirus B19 infection in those patients. Patients and methods: A case-control retrospective study was conducted on 48 children recently diagnosed with AML before and during chemotherapy induction and 60 healthy control. Specific serum IgM and IgG levels were determined by enzyme linked immunosorbant assay (ELISA) and DNA detection by polymerase chain reaction (PCR). Results: Parvovirus DNA was detected in 20 patients with AML. IgM was found in sera of four patients and one case had positive DNA and IgG (5%). Patients with recent parvovirus B19 infection had a significantly reduced hemoglobin levels, RBCs counts, platelet counts, neutrophil counts and absolute lymphocytosis (p=0.01, p=0.0001, p=0.01, p=0.02, p=0.0003, respectively). There were no clinical findings with statistically significant association to recent infection. Half of the patients with AML had positive PCR and/or IgM for parvovirus B19. Among children with AML under chemotherapy, there were reduced hemoglobin levels (P=0.03), reduced platelet counts (P=0.0001) and absolute neutropenia (mean±SD, 1.200 ±1.00) in those with parvovirus B19 infection. More than half of patients with parvovirus B19 (72.2%) had positive PCR and/or IgM and 36.4% of them had positive IgG. Conclusion: This study highlights that parvovirus B19 is common in children with AML either at diagnosis or under chemotherapy. There are no clinical manifestations that can be used as markers for its presence, but hematological laboratory

  7. Luminosity measurement in H1; Mesure de la luminosite pour l'experience H1

    Energy Technology Data Exchange (ETDEWEB)

    Frisson, T

    2006-10-15

    At HERA, luminosity is determined on-line and bunch by bunch by measuring the Bremsstrahlung spectrum from e-p collisions. The Hl collaboration has built a completely new luminosity system in order to sustain the harsh running conditions after the fourfold luminosity increase. Namely, the higher synchrotron radiation doses and the increased event pile-up have governed the design of the two major components, a radiation resistant quartz-fibre electro-magnetic calorimeter, and a fast read-out electronic with on-line energy histogram loading at a rate of 500 kHz. The group was in charge of the electronic and the on-line data analysis of the new luminosity system. In this thesis, I present analysis tools and methods to improve the precision of the luminosity measurement. The energy scale and acceptance calculation methods set out in this thesis permit these values to be determined every four minutes, to an accuracy of 0.5 parts per thousand for the energy scale and 2 parts per thousand for the acceptance. From these results, the degree of accuracy obtained on the luminosity measurement is between 6.5 and 9.5 parts per thousand. These results are currently undergoing validation, with the aim of becoming the standard H1 method. I also studied quasi-elastic Compton events to cross-check the luminosity measurement using the 2003- 2004 and 2005 data. Indeed, this process has a well calculable cross section and a clear experimental signature. The leptonic final state consists of a coplanar e-gamma system, both observable in the central H1 detector. (author)

  8. Safety and immunogenicity of a candidate parvovirus B19 vaccine.

    Science.gov (United States)

    Bernstein, David I; El Sahly, Hana M; Keitel, Wendy A; Wolff, Mark; Simone, Gina; Segawa, Claire; Wong, Susan; Shelly, Daniel; Young, Neal S; Dempsey, Walla

    2011-10-06

    Parvovirus B19 is an important human pathogen causing erythema infectiosum, transient aplastic crisis in individuals with underlying hemolytic disorders and hydropsfetalis. We therefore evaluated a parvovirus B19 virus like particle (VLP) vaccine. The safety and immunogenicity of a 25 μg dose of parvovirus B19 recombinant capsid; 2.5 and 25 μg doses of the recombinant capsid given with MF59; and saline placebo were assessed in healthy adults. Because of 3 unexplained cutaneous events the study was halted after enrollment of 43 subjects and before any subject received their third scheduled dose. The rashes developed 5-9 days after the first or second injection and were seen in one placebo recipient (without an injection site lesion) and two vaccine recipients (with injection site reactions). No clear cause was established. Other safety evaluations revealed mostly injection site reactions that were mild to moderate with an increase in pain in subjects receiving vaccine and MF59. After dose 2 the majority of vaccine recipients developed ELISA and neutralizing antibody to parvovirus B19. Given the possible severe consequences of parvovirus B19 infection, further development of a safe and effective vaccine continues to be important. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Studies of parvovirus vaccination in the dog: the performance of live attenuated feline parvovirus vaccines.

    Science.gov (United States)

    Thompson, H; McCandlish, I A; Cornwell, H J; Macartney, L; Maxwell, N S; Weipers, A F; Wills, I R; Black, J A; Mackenzie, A C

    1988-04-16

    The performance of three live attenuated feline parvovirus vaccines licensed for use in the dog was studied. At the end of the primary vaccination course 67 per cent of dogs had inadequate antibody levels (less than or equal to 32) as measured by a haemagglutination inhibition test. Interference by maternal antibody accounted for some of the failures but the fact that there was no significant difference in performance between dogs vaccinated at 12 weeks or 16 weeks of age indicated that maternal antibody was not the only factor.

  10. Novel parvoviruses in reptiles and genome sequence of a lizard parvovirus shed light on Dependoparvovirus genus evolution.

    Science.gov (United States)

    Pénzes, Judit J; Pham, Hanh T; Benkö, Mária; Tijssen, Peter

    2015-09-01

    Here, we report the detection and partial genome characterization of two novel reptilian parvoviruses derived from a short-tailed pygmy chameleon (Rampholeon brevicaudatus) and a corn snake (Pantherophis guttatus) along with the complete genome analysis of the first lizard parvovirus, obtained from four bearded dragons (Pogona vitticeps). Both homology searches and phylogenetic tree reconstructions demonstrated that all are members of the genus Dependoparvovirus. Even though most dependoparvoviruses replicate efficiently only in co-infections with large DNA viruses, no such agents could be detected in one of the bearded dragon samples, hence the possibility of autonomous replication was explored. The alternative ORF encoding the full assembly activating protein (AAP), typical for the genus, could be obtained from reptilian parvoviruses for the first time, with a structure that appears to be more ancient than that of avian and mammalian parvoviruses. All three viruses were found to harbour short introns as previously observed for snake adeno-associated virus, shorter than that of any non-reptilian dependoparvovirus. According to the phylogenetic calculations based on full non-structural protein (Rep) and AAP sequences, the monophyletic cluster of reptilian parvoviruses seems to be the most basal out of all lineages of genus Dependoparvovirus. The suspected ability for autonomous replication, results of phylogenetic tree reconstruction, intron lengths and the structure of the AAP suggested that a single Squamata origin instead of the earlier assumed diapsid (common avian-reptilian) origin is more likely for the genus Dependoparvovirus of the family Parvoviridae.

  11. The structure and host entry of an invertebrate parvovirus.

    Science.gov (United States)

    Meng, Geng; Zhang, Xinzheng; Plevka, Pavel; Yu, Qian; Tijssen, Peter; Rossmann, Michael G

    2013-12-01

    The 3.5-Å resolution X-ray crystal structure of mature cricket parvovirus (Acheta domesticus densovirus [AdDNV]) has been determined. Structural comparisons show that vertebrate and invertebrate parvoviruses have evolved independently, although there are common structural features among all parvovirus capsid proteins. It was shown that raising the temperature of the AdDNV particles caused a loss of their genomes. The structure of these emptied particles was determined by cryo-electron microscopy to 5.5-Å resolution, and the capsid structure was found to be the same as that for the full, mature virus except for the absence of the three ordered nucleotides observed in the crystal structure. The viral protein 1 (VP1) amino termini could be externalized without significant damage to the capsid. In vitro, this externalization of the VP1 amino termini is accompanied by the release of the viral genome.

  12. Interconnection between thyroid hormone signalling pathways and parvovirus cytotoxic functions.

    Science.gov (United States)

    Vanacker, J M; Laudet, V; Adelmant, G; Stéhelin, D; Rommelaere, J

    1993-01-01

    Nonstructural (NS) proteins of autonomous parvoviruses can repress expression driven by heterologous promoters, an activity which thus far has not been separated from their cytotoxic effects. It is shown here that, in transient transfection assays, the NS-1 protein of the parvovirus minute virus of mice (MVMp) activates the promoter of the human c-erbA1 gene, encoding the thyroid hormone (T3) receptor alpha. The endogenous c-erbA1 promoter is also a target for induction upon MVMp infection. Moreover, T3 was found to up-modulate the level of cell sensitivity to parvovirus attack. These data suggest an interconnection between T3 signalling and NS cytotoxic pathways. Images PMID:8230488

  13. Parvovirus B19 VLP recognizes globoside in supported lipid bilayers.

    Science.gov (United States)

    Nasir, Waqas; Nilsson, Jonas; Olofsson, Sigvard; Bally, Marta; Rydell, Gustaf E

    2014-05-01

    Studies have suggested that the glycosphingolipid globoside (Gb4Cer) is a receptor for human parvovirus B19. Virus-like particles bind to Gb4Cer on thin-layer chromatograms, but a direct interaction between the virus and lipid membrane-associated Gb4Cer has been debated. Here, we characterized the binding of parvovirus B19 VP1/VP2 virus-like particles to glycosphingolipids (i) on thin-layer chromatograms (TLCs) and (ii) incorporated into supported lipid bilayers (SLBs) acting as cell-membrane mimics. The binding specificities of parvovirus B19 determined in the two systems were in good agreement; the VLP recognized both Gb4Cer and the Forssman glycosphingolipid on TLCs and in SLBs compatible with the role of Gb4Cer as a receptor for this virus. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Histone h1 depletion impairs embryonic stem cell differentiation.

    Science.gov (United States)

    Zhang, Yunzhe; Cooke, Marissa; Panjwani, Shiraj; Cao, Kaixiang; Krauth, Beth; Ho, Po-Yi; Medrzycki, Magdalena; Berhe, Dawit T; Pan, Chenyi; McDevitt, Todd C; Fan, Yuhong

    2012-01-01

    Pluripotent embryonic stem cells (ESCs) are known to possess a relatively open chromatin structure; yet, despite efforts to characterize the chromatin signatures of ESCs, the role of chromatin compaction in stem cell fate and function remains elusive. Linker histone H1 is important for higher-order chromatin folding and is essential for mammalian embryogenesis. To investigate the role of H1 and chromatin compaction in stem cell pluripotency and differentiation, we examine the differentiation of embryonic stem cells that are depleted of multiple H1 subtypes. H1c/H1d/H1e triple null ESCs are more resistant to spontaneous differentiation in adherent monolayer culture upon removal of leukemia inhibitory factor. Similarly, the majority of the triple-H1 null embryoid bodies (EBs) lack morphological structures representing the three germ layers and retain gene expression signatures characteristic of undifferentiated ESCs. Furthermore, upon neural differentiation of EBs, triple-H1 null cell cultures are deficient in neurite outgrowth and lack efficient activation of neural markers. Finally, we discover that triple-H1 null embryos and EBs fail to fully repress the expression of the pluripotency genes in comparison with wild-type controls and that H1 depletion impairs DNA methylation and changes of histone marks at promoter regions necessary for efficiently silencing pluripotency gene Oct4 during stem cell differentiation and embryogenesis. In summary, we demonstrate that H1 plays a critical role in pluripotent stem cell differentiation, and our results suggest that H1 and chromatin compaction may mediate pluripotent stem cell differentiation through epigenetic repression of the pluripotency genes.

  15. Patient-derived mesenchymal stem cells as delivery vehicles for oncolytic virotherapy: novel state-of-the-art technology

    Directory of Open Access Journals (Sweden)

    Ramírez M

    2015-10-01

    Full Text Available Manuel Ramírez,1 Javier García-Castro,2 Gustavo J Melen,1 África González-Murillo,1 Lidia Franco-Luzón1 1Oncohematología, Hospital Universitario Niño Jesús, 2Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Madrid, Spain Abstract: Oncolytic virotherapy is gaining interest in the clinic as a new weapon against cancer. In vivo administration of oncolytic viruses showed important limitations that decrease their effectiveness very significantly: the antiviral immune response causes the elimination of the therapeutic effect, and the poor natural ability of oncolytic viruses to infect micrometastatic lesions significantly minimizes the effective dose of virus. This review will focus on updating the technical and scientific foundations of one of the strategies developed to overcome these limitations, ie, using cells as vehicles for oncolytic viruses. Among many candidates, a special type of adult stem cell, mesenchymal stem cells (MSCs, have already been used in the clinic as cell vehicles for oncolytic viruses, partly due to the fact that these cells are actively being evaluated for other indications. MSC carrier cells are used as Trojan horses loaded with oncoviruses, are administered systemically, and release their cargos at the right places. MSCs are equipped with an array of molecules involved in cell arrest in the capillaries (integrins and selectins, migration toward specific parenchymal locations within tissues (chemokine receptors, and invasion and degradation of the extracellular matrix (proteases. In addition to anatomical targeting capacity, MSCs have a well-recognized role in modulating immune responses by affecting cells of the innate (antigen-presenting cells, natural killer cells and adaptive immune system (effector and regulatory lymphocytes. Therefore, carrier MSCs may also modulate the immune responses taking place after therapy, ie, the antiviral and the antitumor immune responses. Keywords: virotherapy

  16. Effect of vaccination on parvovirus antigen testing in kittens.

    Science.gov (United States)

    Patterson, Erin V; Reese, Michael J; Tucker, Sylvia J; Dubovi, Edward J; Crawford, P Cynda; Levy, Julie K

    2007-02-01

    To determine the frequency and duration of feline panleukopenia virus (FPV) vaccine-induced interference with fecal parvovirus diagnostic testing in cats. Prospective controlled study. Sixty-four 8- to 10-week-old specific-pathogen-free kittens. Kittens were inoculated once with 1 of 8 commercial multivalent vaccines containing modified-live virus (MLV) or inactivated FPV by the SC or intranasal routes. Feces were tested for parvovirus antigen immediately prior to vaccination, then daily for 14 days with 3 tests designed for detection of canine parvovirus. Serum anti-FPV antibody titers were determined by use of hemagglutination inhibition prior to vaccination and 14 days later. All fecal parvovirus test results were negative prior to vaccination. After vaccination, 1 kitten had positive test results with test 1, 4 kittens had positive results with test 2, and 13 kittens had positive results with test 3. Only 1 kitten had positive results with all 3 tests, and only 2 of those tests were subjectively considered to have strongly positive results. At 14 days after vaccination, 31% of kittens receiving inactivated vaccines had protective FPV titers, whereas 85% of kittens receiving MLV vaccines had protective titers. Animal shelter veterinarians should select fecal tests for parvovirus detection that have high sensitivity for FPV and low frequency of vaccine-related test interference. Positive parvovirus test results should be interpreted in light of clinical signs, vaccination history, and results of confirmatory testing. Despite the possibility of test interference, the benefit provided by universal MLV FPV vaccination of cats in high-risk environments such as shelters outweighs the impact on diagnostic test accuracy.

  17. Interconnection between thyroid hormone signalling pathways and parvovirus cytotoxic functions.

    OpenAIRE

    Vanacker, J M; Laudet, V; Adelmant, G; Stéhelin, D; Rommelaere, J

    1993-01-01

    Nonstructural (NS) proteins of autonomous parvoviruses can repress expression driven by heterologous promoters, an activity which thus far has not been separated from their cytotoxic effects. It is shown here that, in transient transfection assays, the NS-1 protein of the parvovirus minute virus of mice (MVMp) activates the promoter of the human c-erbA1 gene, encoding the thyroid hormone (T3) receptor alpha. The endogenous c-erbA1 promoter is also a target for induction upon MVMp infection. M...

  18. 1918 pandemic H1N1 DNA vaccine protects ferrets against 2007 H1N1 virus infection

    DEFF Research Database (Denmark)

    Bragstad, Karoline; Martel, Cyril Jean-Marie; Aasted, Bent

    of the H1N1 pandemic virus from 1918 induce protection in ferrets against infection with a H1N1 (A/New Caledonia/20/99(H1N1)) virus which was included in the conventional vaccine for the 2006-2007 season. The viruses are separated by a time interval of 89 years and differ by 21.2% in the HA1 protein...

  19. Histone HIST1H1C/H1.2 regulates autophagy in the development of diabetic retinopathy.

    Science.gov (United States)

    Wang, Wenjun; Wang, Qing; Wan, Danyang; Sun, Yue; Wang, Lin; Chen, Hong; Liu, Chengyu; Petersen, Robert B; Li, Jianshuang; Xue, Weili; Zheng, Ling; Huang, Kun

    2017-05-04

    Autophagy plays critical and complex roles in many human diseases, including diabetes and its complications. However, the role of autophagy in the development of diabetic retinopathy remains uncertain. Core histone modifications have been reported involved in the development of diabetic retinopathy, but little is known about the histone variants. Here, we observed increased autophagy and histone HIST1H1C/H1.2, an important variant of the linker histone H1, in the retinas of type 1 diabetic rodents. Overexpression of histone HIST1H1C upregulates SIRT1 and HDAC1 to maintain the deacetylation status of H4K16, leads to upregulation of ATG proteins, then promotes autophagy in cultured retinal cell line. Histone HIST1H1C overexpression also promotes inflammation and cell toxicity in vitro. Knockdown of histone HIST1H1C reduces both the basal and stresses (including high glucose)-induced autophagy, and inhibits high glucose induced inflammation and cell toxicity. Importantly, AAV-mediated histone HIST1H1C overexpression in the retinas leads to increased autophagy, inflammation, glial activation and neuron loss, similar to the pathological changes identified in the early stage of diabetic retinopathy. Furthermore, knockdown of histone Hist1h1c by siRNA in the retinas of diabetic mice significantly attenuated the diabetes-induced autophagy, inflammation, glial activation and neuron loss. These results indicate that histone HIST1H1C may offer a novel therapeutic target for preventing diabetic retinopathy.

  20. Regulation of Cellular Dynamics and Chromosomal Binding Site Preference of Linker Histones H1.0 and H1.X.

    Science.gov (United States)

    Okuwaki, Mitsuru; Abe, Mayumi; Hisaoka, Miharu; Nagata, Kyosuke

    2016-11-01

    Linker histones play important roles in the genomic organization of mammalian cells. Of the linker histone variants, H1.X shows the most dynamic behavior in the nucleus. Recent research has suggested that the linker histone variants H1.X and H1.0 have different chromosomal binding site preferences. However, it remains unclear how the dynamics and binding site preferences of linker histones are determined. Here, we biochemically demonstrated that the DNA/nucleosome and histone chaperone binding activities of H1.X are significantly lower than those of other linker histones. This explains why H1.X moves more rapidly than other linker histones in vivo Domain swapping between H1.0 and H1.X suggests that the globular domain (GD) and C-terminal domain (CTD) of H1.X independently contribute to the dynamic behavior of H1.X. Our results also suggest that the N-terminal domain (NTD), GD, and CTD cooperatively determine the preferential binding sites, and the contribution of each domain for this determination is different depending on the target genes. We also found that linker histones accumulate in the nucleoli when the nucleosome binding activities of the GDs are weak. Our results contribute to understanding the molecular mechanisms of dynamic behaviors, binding site selection, and localization of linker histones. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. CpG dinucleotide frequencies reveal the role of host methylation capabilities in parvovirus evolution.

    Science.gov (United States)

    Upadhyay, Mohita; Samal, Jasmine; Kandpal, Manish; Vasaikar, Suhas; Biswas, Banhi; Gomes, James; Vivekanandan, Perumal

    2013-12-01

    Parvoviruses are rapidly evolving viruses that infect a wide range of hosts, including vertebrates and invertebrates. Extensive methylation of the parvovirus genome has been recently demonstrated. A global pattern of methylation of CpG dinucleotides is seen in vertebrate genomes, compared to "fractional" methylation patterns in invertebrate genomes. It remains unknown if the loss of CpG dinucleotides occurs in all viruses of a given DNA virus family that infect host species spanning across vertebrates and invertebrates. We investigated the link between the extent of CpG dinucleotide depletion among autonomous parvoviruses and the evolutionary lineage of the infected host. We demonstrate major differences in the relative abundance of CpG dinucleotides among autonomous parvoviruses which share similar genome organization and common ancestry, depending on the infected host species. Parvoviruses infecting vertebrate hosts had significantly lower relative abundance of CpG dinucleotides than parvoviruses infecting invertebrate hosts. The strong correlation of CpG dinucleotide depletion with the gain in TpG/CpA dinucleotides and the loss of TpA dinucleotides among parvoviruses suggests a major role for CpG methylation in the evolution of parvoviruses. Our data present evidence that links the relative abundance of CpG dinucleotides in parvoviruses to the methylation capabilities of the infected host. In sum, our findings support a novel perspective of host-driven evolution among autonomous parvoviruses.

  2. Epidemiological characteristics of Pandemic Influenza A (H1N1 ...

    African Journals Online (AJOL)

    Background: A novel influenza A virus strain (H1N1-2009) spread first in Mexico and the United Stated in late April 2009, leading to the first influenza pandemic of the 21st century. The objective of this study was to determine the epidemiological and virological characteristics of the pandemic influenza A (H1N1-2009) in ...

  3. Epidemiological characteristics of Pandemic Influenza A (H1N1 ...

    African Journals Online (AJOL)

    ... novel influenza A virus strain (H1N1-2009) spread first in Mexico and the United Stated in late April 2009, leading to the first influenza pandemic of the 21st century. The objective of this study was to determine the epidemiological and virological characteristics of the pandemic influenza A (H1N1-2009) in Zhanjiang, China ...

  4. (H1N1) Influenza in Saurashtra, India

    African Journals Online (AJOL)

    Mexico in April, 2009,[1] and then in United States (US).[2,3]. This was originally ... duration of hospital stay of such patients was 2‑32 days. All admitted A (H1N1) .... Because of limited resources, only 2009 A (H1N1) influenza virus was tested ...

  5. Molecular epidemiology of canine parvovirus in Morocco.

    Science.gov (United States)

    Amrani, Nadia; Desario, Costantina; Kadiri, Ahlam; Cavalli, Alessandra; Berrada, Jaouad; Zro, Khalil; Sebbar, Ghizlane; Colaianni, Maria Loredana; Parisi, Antonio; Elia, Gabriella; Buonavoglia, Canio; Malik, Jamal; Decaro, Nicola

    2016-07-01

    Since it first emergence in the mid-1970's, canine parvovirus 2 (CPV-2) has evolved giving rise to new antigenic variants termed CPV-2a, CPV-2b and CPV-2c, which have completely replaced the original strain and had been variously distributed worldwide. In Africa limited data are available on epidemiological prevalence of these new types. Hence, the aim of the present study was to determine circulating variants in Morocco. Through TaqMan-based real-time PCR assay, 91 samples, collected from symptomatic dogs originating from various cities between 2011 and 2015, were diagnosed. Positive specimens were characterised by means of minor groove binder (MGB) probe PCR. The results showed that all samples but one (98.9%) were CPV positive, of which 1 (1.1%) was characterised as CPV-2a, 43 (47.7%) as CPV-2b and 39 (43.3%) as CPV-2c. Interestingly, a co-infection with CPV-2b and CPV-2c was detected in 4 (4.4%) samples and 3 (3.3%) samples were not characterised. Sequencing of the full VP2 gene revealed these 3 uncharacterised strains as CPV-2c, displaying a change G4068A responsible for the replacement of aspartic acid with asparagine at residue 427, impacting the MGB probe binding. In this work we provide a better understanding of the current status of prevailing CPV strains in northern Africa. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Genotyping of Canine parvovirus in western Mexico.

    Science.gov (United States)

    Pedroza-Roldán, César; Páez-Magallan, Varinia; Charles-Niño, Claudia; Elizondo-Quiroga, Darwin; De Cervantes-Mireles, Raúl Leonel; López-Amezcua, Mario Alberto

    2015-01-01

    Canine parvovirus (CPV) is one of the most common infectious agents related to high morbidity rates in dogs. In addition, the virus is associated with severe gastroenteritis, diarrhea, and vomiting, resulting in high death rates, especially in puppies and nonvaccinated dogs. To date, there are 3 variants of the virus (CPV-2a, CPV-2b, and CPV-2c) circulating worldwide. In Mexico, reports describing the viral variants circulating in dog populations are lacking. In response to this deficiency, a total of 41 fecal samples of suspected dogs were collected from October 2013 through April 2014 in the Veterinary Hospital of the University of Guadalajara in western Mexico. From these, 24 samples resulted positive by polymerase chain reaction, and the viral variant was determined by restriction fragment length polymorphism. Five positive diagnosed samples were selected for partial sequencing of the vp2 gene and codon analysis. The results demonstrated that the current dominant viral variant in Mexico is CPV-2c. The current study describes the genotyping of CPV strains, providing valuable evidence of the dominant frequency of this virus in a dog population from western Mexico. © 2014 The Author(s).

  7. Intracellular Route of Canine Parvovirus Entry

    Science.gov (United States)

    Vihinen-Ranta, Maija; Kalela, Anne; Mäkinen, Päivi; Kakkola, Laura; Marjomäki, Varpu; Vuento, Matti

    1998-01-01

    The present study was designed to investigate the endocytic pathway involved in canine parvovirus (CPV) infection. Reduced temperature (18°C) or the microtubule-depolymerizing drug nocodazole was found to inhibit productive infection of canine A72 cells by CPV and caused CPV to be retained in cytoplasmic vesicles as indicated by immunofluorescence microscopy. Consistent with previously published results, these data indicate that CPV enters a host cell via an endocytic route and further suggest that microtubule-dependent delivery of CPV to late endosomes is required for productive infection. Cytoplasmic microinjection of CPV particles was used to circumvent the endocytosis and membrane fusion steps in the entry process. Microinjection experiments showed that CPV particles which were injected directly into the cytoplasm, thus avoiding the endocytic pathway, were unable to initiate progeny virus production. CPV treated at pH 5.0 prior to microinjection was unable to initiate virus production, showing that factors of the endocytic route other than low pH are necessary for the initiation of infection by CPV. PMID:9420290

  8. [Diagnostic tools for canine parvovirus infection].

    Science.gov (United States)

    Proksch, A L; Hartmann, K

    2015-01-01

    Canine parvovirus (CPV) infection is one of the most important and common infectious diseases in dogs, in particular affecting young puppies when maternal antibodies have waned and vaccine-induced antibodies have not yet developed. The mortality rate remains high. Therefore, a rapid and safe diagnostic tool is essential to diagnose the disease to 1) provide intensive care treatment and 2) to identify virus-shedding animals and thus prevent virus spread. Whilst the detection of antibodies against CPV is considered unsuitable to diagnose the disease, there are several different methods to directly detect complete virus, virus antigen or DNA. Additionally, to test in commercial laboratories, rapid in-house tests based on ELISA are available worldwide. The specificity of the ELISA rapid in-house tests is reported to be excellent. However, results on sensitivity vary and high numbers of false-negative results are commonly reported, which potentially leads to misdiagnosis. Polymerase chain reaction (PCR) is a very sensitive and specific diagnostic tool. It also provides the opportunity to differentiate vaccine strains from natural infection when sequencing is performed after PCR.

  9. MicroRNA-mediated suppression of oncolytic adenovirus replication in human liver.

    Directory of Open Access Journals (Sweden)

    Erkko Ylösmäki

    Full Text Available MicroRNAs (miRNAs are important and ubiquitous regulators of gene expression that can suppress their target genes by translational inhibition as well as mRNA destruction. Cell type-specific miRNA expression patterns have been successfully exploited for targeting the expression of experimental and therapeutic gene constructs, for example to reduce pathogenic effects of cancer virotherapy in normal tissues. In order to avoid liver damage associated with systemic or intrahepatic delivery of oncolytic adenoviruses we have introduced the concept of suppressing adenovirus replication in hepatic cells by inserting target elements for the liver-specific miR122 into the viral genome. Here we show using ex vivo cultured tissue specimens that six perfectly complementary miR122 target sites in the 3' untranslated region of the viral E1A gene are sufficient in the absence of any other genetic modifications to prevent productive replication of serotype 5 adenovirus (Ad5 in normal human liver. This modification did not compromise the replicative capacity of the modified virus in cancer tissue derived from a colon carcinoma liver metastasis or its oncolytic potency in a human lung cancer xenograft mouse model. Unlike wild-type Ad5, the modified virus did not result in increased serum levels of liver enzymes in infected mice. These results provide a strong preclinical proof of concept for the use of miR122 target sites for reducing the risk of liver damage caused by oncolytic adenoviruses, and suggest that ectopic miR122 target elements should be considered as an additional safety measure included in any therapeutic virus or viral vector posing potential hazard to the liver.

  10. Histone H1(0) mapping using monoclonal antibodies.

    Science.gov (United States)

    Dousson, S; Gorka, C; Gilly, C; Lawrence, J J

    1989-06-01

    Monoclonal antibodies (mAb) to ox liver histone H1 degree were produced and characterized. Two sets of mice were immunized either with pure H1(0) or with an H1(0)-yeast tRNA complex. Eleven hybridomas of various clonal origin were selected. Typing of the antibodies indicated that all but three IgM belonged to the IgG1 class and contained kappa light chains. Immunoblotting experiments using peptides derived from H1(0) or H5 treated by various proteolytic agents (trypsin, N-bromosuccinimide, cyanogen bromide, acetic acid), revealed that nine of the mAb reacted with the globular part of H1(0). More advanced characterization of the antigenic determinants allowed us to determine distinct regions within this globular part which are involved in the antigenic recognition. The peptopes could be subdivided into two groups. Three mAb bound to residues 24-27 and were specific for H1(0). Six mAb bound to residues 27-30 and were specific for H1(0) except one of them which strongly cross-reacted with H5 and GH5. Two mAb reacted with the entire histone H1(0) but failed to react with any of the peptides, suggesting that the corresponding epitope is a conformational antigenic determinant. In order to confirm the localization of the two distinct regions which are involved in the antigenic recognition, a synthetic decapeptide corresponding to the beginning of human H1(0) globular part (from residue 19 to residue 28) was synthesized. Inhibition experiments of the reaction between H1(0) and the various IgG1 mAb by increasing amounts of peptide-bovine serum albumin conjugates were then performed.

  11. Inhibitory effect of Survivin promoter-regulated oncolytic adenovirus carrying P53 gene against gallbladder cancer.

    Science.gov (United States)

    Liu, Chen; Sun, Bin; An, Ni; Tan, Weifeng; Cao, Lu; Luo, Xiangji; Yu, Yong; Feng, Feiling; Li, Bin; Wu, Mengchao; Su, Changqing; Jiang, Xiaoqing

    2011-12-01

    Gene therapy has become an important strategy for treatment of malignancies, but problems remains concerning the low gene transferring efficiency, poor transgene expression and limited targeting specific tumors, which have greatly hampered the clinical application of tumor gene therapy. Gallbladder cancer is characterized by rapid progress, poor prognosis, and aberrantly high expression of Survivin. In the present study, we used a human tumor-specific Survivin promoter-regulated oncolytic adenovirus vector carrying P53 gene, whose anti-cancer effect has been widely confirmed, to construct a wide spectrum, specific, safe, effective gene-viral therapy system, AdSurp-P53. Examining expression of enhanced green fluorecent protein (EGFP), E1A and the target gene P53 in the oncolytic adenovirus system validated that Survivin promoter-regulated oncolytic adenovirus had high proliferation activity and high P53 expression in Survivin-positive gallbladder cancer cells. Our in vitro cytotoxicity experiment demonstrated that AdSurp-P53 possessed a stronger cytotoxic effect against gallbladder cancer cells and hepatic cancer cells. The survival rate of EH-GB1 cells was lower than 40% after infection of AdSurp-P53 at multiplicity of infection (MOI) = 1 pfu/cell, while the rate was higher than 90% after infection of Ad-P53 at the same MOI, demonstrating that AdSurp-P53 has a potent cytotoxicity against EH-GB1 cells. The tumor growth was greatly inhibited in nude mice bearing EH-GB1 xenografts when the total dose of AdSurp-P53 was 1 × 10(9) pfu, and terminal dUTP nick end-labeling (TUNEL) revealed that the apoptotic rate of cancer cells was (33.4 ± 8.4)%. This oncolytic adenovirus system overcomes the long-standing shortcomings of gene therapy: poor transgene expression and targeting of only specific tumors, with its therapeutic effect better than the traditional Ad-P53 therapy regimen already on market; our system might be used for patients with advanced gallbladder cancer and

  12. Reassortant H1N1 influenza virus vaccines protect pigs against pandemic H1N1 influenza virus and H1N2 swine influenza virus challenge.

    Science.gov (United States)

    Yang, Huanliang; Chen, Yan; Shi, Jianzhong; Guo, Jing; Xin, Xiaoguang; Zhang, Jian; Wang, Dayan; Shu, Yuelong; Qiao, Chuanling; Chen, Hualan

    2011-09-28

    Influenza A (H1N1) virus has caused human influenza outbreaks in a worldwide pandemic since April 2009. Pigs have been found to be susceptible to this influenza virus under experimental and natural conditions, raising concern about their potential role in the pandemic spread of the virus. In this study, we generated a high-growth reassortant virus (SC/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from a novel H1N1 isolate, A/Sichuan/1/2009 (SC/09), and six internal genes from A/Puerto Rico/8/34 (PR8) virus, by genetic reassortment. The immunogenicity and protective efficacy of this reassortant virus were evaluated at different doses in a challenge model using a homologous SC/09 or heterologous A/Swine/Guangdong/1/06(H1N2) virus (GD/06). Two doses of SC/PR8 virus vaccine elicited high-titer serum hemagglutination inhibiting (HI) antibodies specific for the 2009 H1N1 virus and conferred complete protection against challenge with either SC/09 or GD/06 virus, with reduced lung lesions and viral shedding in vaccine-inoculated animals compared with non-vaccinated control animals. These results indicated for the first time that a high-growth SC/PR8 reassortant H1N1 virus exhibits properties that are desirable to be a promising vaccine candidate for use in swine in the event of a pandemic H1N1 influenza. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Antibody response to chicken parvovirus following inoculation with inactivated virus and recombinant viruses expressing chicken parvovirus viral protein 2(VP2).

    Science.gov (United States)

    We reported earlier that day-old broiler chickens showed typical runting-stunting syndrome (RSS) post infection with chicken parvovirus (ChPV). There was also evidence that ChPV-specific maternal antibodies could provide significant protection against parvovirus induced enteric disease. Here, we st...

  14. Two parvoviruses that cause different diseases in mink have different transcription patterns: Transcription analysis of mink enteritis virus and Aleutian mink disease parvovirus the same cell line

    DEFF Research Database (Denmark)

    Storgaard, T.; Oleksiewicz, M.; Bloom, M.E.

    1997-01-01

    The two parvoviruses of mink cause very different diseases, Mink enteritis virus (MEV) is associated with rapid, high-level viral replication and acute disease, In contrast, infection with Aleutian mink disease parvovirus (ADV) is associated with persistent, low-level viral replication and chronic...

  15. Drugs prescription pattern in dogs diagnosed with parvovirus ...

    African Journals Online (AJOL)

    Canine parvovirus enteritis affects predominantly puppies with a high prevalence rate in Nigeria and is characterized by diarrhea, vomiting, anorexia and leucopenia. Treatment is non-specific; hence array of medications are usually prescribed to manage the condition symptomatically. Irrational drugs prescription has been ...

  16. Biology, genome organization and evolution of parvoviruses in marine shrimp

    Science.gov (United States)

    A number of parvoviruses are now know to infect marine shrimp, and these viruses alone or in combination with other viruses have the potential to cause major losses in shrimp aquaculture globally. This review provides a comprehensive overview of the biology, genome organization, gene expression, and...

  17. Novel Parvovirus and Related Variant in Human Plasma

    Science.gov (United States)

    Fryer, Jacqueline F.; Kapoor, Amit; Minor, Philip D.; Delwart, Eric

    2006-01-01

    We report a novel parvovirus (PARV4) and related variants in pooled human plasma used in the manufacture of plasma-derived medical products. Viral DNA was detected by using highly selective polymerase chain reaction assays; 5% of pools tested positive, and amounts of DNA ranged from 106 copies/mL plasma. PMID:16494735

  18. Detection of a Novel Porcine Parvovirus in Chinese Swine Herds

    Science.gov (United States)

    To determine whether the recently reported novel porcine parvovirus type 4 (PPV4) is prevalent in China, a set of PPV4 specific primers were designed and used for the molecular survey of PPV4 among clinical samples. The results indicated a positive detection for PPV4 in Chinese swine herds of 1.84% ...

  19. A Common Parvovirus in Deer from California, USA.

    Science.gov (United States)

    Li, Linlin; Woods, Leslie; Gerstenberg, Greg; Deng, Xutao; Delwart, Eric

    2016-10-01

    We characterize the genome of the first reported deer parvovirus, Ungulate tetraparvovirus 5, which we detected by PCR in multiple tissues from 2/9 California mule deer ( Odocoileus hemionus californicus) with hair loss syndrome (HLS) and in 4/12 deer without HLS, suggesting this common infection does not cause HLS.

  20. First identification of porcine parvovirus 6 in Poland.

    Science.gov (United States)

    Cui, Jin; Fan, Jinghui; Gerber, Priscilla F; Biernacka, Kinga; Stadejek, Tomasz; Xiao, Chao-Ting; Opriessnig, Tanja

    2017-02-01

    Porcine parvovirus type 1 is a major causative agent of swine reproductive failure. During the past decade, several new parvoviruses have been discovered in pigs. Porcine parvovirus type 6 (PPV6), recently identified, has been reported in pigs in China and in the USA while the PPV6 status in the European pig population remains undetermined. In the present study, PPV6 DNA was identified in serum samples collected from domestic pigs in Poland. In investigated herds, the prevalence of PPV6 was 14.9 % (15/101 samples). Sequencing was conducted, and 11 nearly complete PPV6 genomes were obtained. Phylogenetic analysis indicated that PPV6 sequences cluster into four distinct groups, and the Polish PPV6 strains from three individual farms were present in three of these four groups. In addition, the Polish PPV6 strain P15-1 was identified as a putative recombination of an ORF1 from US stains and an ORF2 from Chinese strains. This is the first identification of PPV6 in Europe, and this finding will encourage future epidemiological studies on parvoviruses in European pigs.

  1. Molecular characterisation of canine parvovirus strains circulating in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-07-19

    Jul 19, 2010 ... Canine parvovirus (CPV) was first isolated at 1978 in the USA. Analysis of ... Japan, Australia, Italy and Africa although the proportions of CPV-2a ... T/A clone PCR product cloning Kit (Takara, DaLian, China). Sequencing was ...

  2. Parvovirus induced alterations in nuclear architecture and dynamics.

    Directory of Open Access Journals (Sweden)

    Teemu O Ihalainen

    2009-06-01

    Full Text Available The nucleus of interphase eukaryotic cell is a highly compartmentalized structure containing the three-dimensional network of chromatin and numerous proteinaceous subcompartments. DNA viruses induce profound changes in the intranuclear structures of their host cells. We are applying a combination of confocal imaging including photobleaching microscopy and computational methods to analyze the modifications of nuclear architecture and dynamics in parvovirus infected cells. Upon canine parvovirus infection, expansion of the viral replication compartment is accompanied by chromatin marginalization to the vicinity of the nuclear membrane. Dextran microinjection and fluorescence recovery after photobleaching (FRAP studies revealed the homogeneity of this compartment. Markedly, in spite of increase in viral DNA content of the nucleus, a significant increase in the protein mobility was observed in infected compared to non-infected cells. Moreover, analysis of the dynamics of photoactivable capsid protein demonstrated rapid intranuclear dynamics of viral capsids. Finally, quantitative FRAP and cellular modelling were used to determine the duration of viral genome replication. Altogether, our findings indicate that parvoviruses modify the nuclear structure and dynamics extensively. Intranuclear crowding of viral components leads to enlargement of the interchromosomal domain and to chromatin marginalization via depletion attraction. In conclusion, parvoviruses provide a useful model system for understanding the mechanisms of virus-induced intranuclear modifications.

  3. DETECTION OF CANINE PARVOVIRUS ANTIGEN IN DOGS IN KUMASI, GHANA.

    Science.gov (United States)

    Folitse, R D; Kodie, D O; Amemor, E; Dei, D; Tasiame, W; Burimuah, V; Emikpe, B O

    2018-01-01

    Canine Parvovirus (CPV) in dogs has been documented in many countries. However, evidence of the infection is scanty in Ghana. This study was conducted to detect canine parvovirus antigen in dogs presented with diarrhoea to the Government Veterinary Clinic in Kumasi, Ghana. Faecal samples from 72 dogs presented with diarrhoea were tested for the presence of canine parvovirus antigen using commercially available rapid test kit (BIT ® Rapid Colour Canine Parvovirus Ag Test Kit, BIOINDIST Co. Ltd, Korea) based on the principle of immunochromatography. Influence of breed, sex, age, vaccination history and the nature of diarrhoea were assessed. Data obtained was analysed with SPSS and subjected to the chi-square test. Significance was at α 0.05 . We found 61.11% tested positive (44/72) for CPV. Based on sex, 61.54% of males (20/33) and 60.61% of females tested positive (24/39). A total of 65.67% of samples from puppies below 6 months were positive. 56.25% of CPV vaccinated dogs and 70.83% of unvaccinated dogs were positive respectively. 69.05% of samples from haemorrhagic diarrhoeic dogs and 50.00% from non-haemorrhagic diarrhoeic dogs were positive of CPV. The study is the first documented evidence of the existence of CPV in Ghana. It also revealed that absence of bloody diarrhoea does not necessarily rule out CPV infection.

  4. seroprevalence of parvovirus bi9 antibody in blood donors

    African Journals Online (AJOL)

    boaz

    immunological and infectious complications. Accurate epidemiologic data on the frequency of. Parvovirus ... chronic illness e.g. Hypertension, Diabetes, Asthma; commercial sex workers and Intravenous drug users. Inclusion ..... reported 0% in Spanish blood donors (20). The seroprevalence of PVB 19 may vary with the.

  5. Risk Factors Associated With Canine Parvovirus Enteritis In Vom ...

    African Journals Online (AJOL)

    Risk Factors Associated With Canine Parvovirus Enteritis In Vom And Environs. J G Mohammed, AO Ogbe, NJ Zwandor, JU Umoh. Abstract. No Abstract. Animal Research International Vol. 2 (3) 2005 pp. 366-368. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  6. Parvovirus B19-akut hepatitis hos immunkompetent patient

    DEFF Research Database (Denmark)

    Larsen, Lykke

    2011-01-01

    This article describes a case of acute hepatitis in an adult person without subsequent complications caused by parvovirus B19 (PVB19). The diagnosis was made by detection of PVB19 IgM and IgG antibody in the blood using ELISA. There was not made any affirmative polymerase chain reaction for DNA...

  7. DETECTION OF CANINE PARVOVIRUS ANTIGEN IN DOGS IN KUMASI, GHANA

    Science.gov (United States)

    Folitse, R. D; Kodie, D.O; Amemor, E.; Dei, D.; Tasiame, W.; Burimuah, V.; Emikpe, B.O

    2018-01-01

    Background: Canine Parvovirus (CPV) in dogs has been documented in many countries. However, evidence of the infection is scanty in Ghana. This study was conducted to detect canine parvovirus antigen in dogs presented with diarrhoea to the Government Veterinary Clinic in Kumasi, Ghana. Materials and Methods: Faecal samples from 72 dogs presented with diarrhoea were tested for the presence of canine parvovirus antigen using commercially available rapid test kit (BIT® Rapid Colour Canine Parvovirus Ag Test Kit, BIOINDIST Co. Ltd, Korea) based on the principle of immunochromatography. Influence of breed, sex, age, vaccination history and the nature of diarrhoea were assessed. Data obtained was analysed with SPSS and subjected to the chi-square test. Significance was at α0.05 Results: We found 61.11% tested positive (44/72) for CPV. Based on sex, 61.54% of males (20/33) and 60.61% of females tested positive (24/39). A total of 65.67% of samples from puppies below 6 months were positive. 56.25% of CPV vaccinated dogs and 70.83% of unvaccinated dogs were positive respectively. 69.05% of samples from haemorrhagic diarrhoeic dogs and 50.00% from non-haemorrhagic diarrhoeic dogs were positive of CPV. Conclusion: The study is the first documented evidence of the existence of CPV in Ghana. It also revealed that absence of bloody diarrhoea does not necessarily rule out CPV infection. PMID:29302647

  8. Genome sequence of Chinese porcine parvovirus strain PPV2010.

    Science.gov (United States)

    Cui, Jin; Wang, Xin; Ren, Yudong; Cui, Shangjin; Li, Guangxing; Ren, Xiaofeng

    2012-02-01

    Porcine parvovirus (PPV) isolate PPV2010 has recently emerged in China. Herein, we analyze the complete genome sequence of PPV2010. Our results indicate that the genome of PPV2010 bears mixed characteristics of virulent PPV and vaccine strains. Importantly, PPV2010 has the potential to be a naturally attenuated candidate vaccine strain.

  9. Genome Sequence of Chinese Porcine Parvovirus Strain PPV2010

    OpenAIRE

    Cui, Jin; Wang, Xin; Ren, Yudong; Cui, Shangjin; Li, Guangxing; Ren, Xiaofeng

    2012-01-01

    Porcine parvovirus (PPV) isolate PPV2010 has recently emerged in China. Herein, we analyze the complete genome sequence of PPV2010. Our results indicate that the genome of PPV2010 bears mixed characteristics of virulent PPV and vaccine strains. Importantly, PPV2010 has the potential to be a naturally attenuated candidate vaccine strain.

  10. Parvovirus B19 Infection in Children With Arterial Ischemic Stroke.

    Science.gov (United States)

    Fullerton, Heather J; Luna, Jorge M; Wintermark, Max; Hills, Nancy K; Tokarz, Rafal; Li, Ying; Glaser, Carol; DeVeber, Gabrielle A; Lipkin, W Ian; Elkind, Mitchell S V

    2017-10-01

    Case-control studies suggest that acute infection transiently increases the risk of childhood arterial ischemic stroke. We hypothesized that an unbiased pathogen discovery approach utilizing MassTag-polymerase chain reaction would identify pathogens in the blood of childhood arterial ischemic stroke cases. The multicenter international VIPS study (Vascular Effects of Infection in Pediatric Stroke) enrolled arterial ischemic stroke cases, and stroke-free controls, aged 29 days through 18 years. Parental interview included questions on recent infections. In this pilot study, we used MassTag-polymerase chain reaction to test the plasma of the first 161 cases and 34 controls enrolled for a panel of 28 common bacterial and viral pathogens. Pathogen DNA was detected in no controls and 14 cases (8.7%): parvovirus B19 (n=10), herpesvirus 6 (n=2), adenovirus (n=1), and rhinovirus 6C (n=1). Parvovirus B19 infection was confirmed by serologies in all 10; infection was subclinical in 8. Four cases with parvovirus B19 had underlying congenital heart disease, whereas another 5 had a distinct arteriopathy involving a long-segment stenosis of the distal internal carotid and proximal middle cerebral arteries. Using MassTag-polymerase chain reaction, we detected parvovirus B19-a virus known to infect erythrocytes and endothelial cells-in some cases of childhood arterial ischemic stroke. This approach can generate new, testable hypotheses about childhood stroke pathogenesis. © 2017 American Heart Association, Inc.

  11. 77 FR 3284 - Comment Request for Information Collection for the H-1B Technical Skills Training (H-1B) and the...

    Science.gov (United States)

    2012-01-23

    ... concerning the collection of data about H-1B Technical Skills Training (H-1B) [SGA/DFA PY-10-13] and H-1B... DEPARTMENT OF LABOR Comment Request for Information Collection for the H-1B Technical Skills Training (H-1B) and the H-1B Jobs and Innovation Accelerator Challenge (JIAC) Grant Programs, New...

  12. Acute diarrhea in West African children: diverse enteric viruses and a novel parvovirus genus.

    Science.gov (United States)

    Phan, Tung G; Vo, Nguyen P; Bonkoungou, Isidore J O; Kapoor, Amit; Barro, Nicolas; O'Ryan, Miguel; Kapusinszky, Beatrix; Wang, Chunling; Delwart, Eric

    2012-10-01

    Parvoviruses cause a variety of mild to severe symptoms or asymptomatic infections in humans and animals. During a viral metagenomic analysis of feces from children with acute diarrhea in Burkina Faso, we identified in decreasing prevalence nucleic acids from anelloviruses, dependoviruses, sapoviruses, enteroviruses, bocaviruses, noroviruses, adenoviruses, parechoviruses, rotaviruses, cosavirus, astroviruses, and hepatitis B virus. Sequences from a highly divergent parvovirus, provisionally called bufavirus, were also detected whose NS1 and VP1 proteins showed parvoviruses. Four percent of the fecal samples were PCR positive for this new parvovirus, including a related bufavirus species showing only 72% identity in VP1. The high degree of genetic divergence of these related genomes from those of other parvoviruses indicates the presence of a proposed new Parvoviridae genus containing at least two species. Studies of the tropism and pathogenicity of these novel parvoviruses will be facilitated by the availability of their genome sequences.

  13. Parvovirus B19 infection in hospital workers: community or hospital acquisition?

    Science.gov (United States)

    Dowell, S F; Török, T J; Thorp, J A; Hedrick, J; Erdman, D D; Zaki, S R; Hinkle, C J; Bayer, W L; Anderson, L J

    1995-10-01

    A suspected nosocomial outbreak of parvovirus B19 infection in a maternity ward was investigated in February 1994. Questionnaires were administered and sera collected from maternity ward staff (n = 91), other ward staff in the same hospital (n = 101), and maternity ward staff at a nearby hospital (n = 81). Blood donors (n = 265) were used as community controls. Recent infection (parvovirus B19 IgM positivity) in susceptible persons (parvovirus B19 IgG-negative or IgM-positive) was common among all 4 groups (23%-30%). This high rate of recent infection occurred during a large community outbreak of fifth disease. Environmental samples collected from a room where a stillborn parvovirus B19-infected fetus was delivered were positive for parvovirus B19 DNA. Thus, this suspected nosocomial outbreak actually reflected transmission outside the hospital, but contaminated environmental surfaces were identified as one potential source for transmission of parvovirus B19.

  14. Hematologic improvement in dogs with parvovirus infection treated with recombinant canine granulocyte-colony stimulating factor.

    Science.gov (United States)

    Duffy, A; Dow, S; Ogilvie, G; Rao, S; Hackett, T

    2010-08-01

    Previously, dogs with canine parvovirus-induced neutropenia have not responded to treatment with recombinant human granulocyte-colony stimulating factor (rhG-CSF). However, recombinant canine G-CSF (rcG-CSF) has not been previously evaluated for treatment of parvovirus-induced neutropenia in dogs. We assessed the effectiveness of rcG-CSF in dogs with parvovirus-induced neutropenia with a prospective, open-label, nonrandomized clinical trial. Endpoints of our study were time to recovery of WBC and neutrophil counts, and duration of hospitalization. 28 dogs with parvovirus and neutropenia were treated with rcG-CSF and outcomes were compared to those of 34 dogs with parvovirus and neutropenia not treated with rcG-CSF. We found that mean WBC and neutrophil counts were significantly higher (P parvovirus infection, but indicate the need for additional studies to evaluate overall safety of the treatment.

  15. Influenza A (H1N1) organising pneumonia.

    Science.gov (United States)

    Torrego, Alfons; Pajares, Virginia; Mola, Anna; Lerma, Enrique; Franquet, Tomás

    2010-04-27

    In November 2009, countries around the world reported confirmed cases of pandemic influenza H1N1, including over 6000 deaths. No peak in activity has been seen. The most common causes of death are pneumonia and acute respiratory distress syndrome. We report a case of a 55-year-old woman who presented with organising pneumonia associated with influenza A (H1N1) infection confirmed by transbronchial lung biopsy. Organising pneumonia should also be considered as a possible complication of influenza A (H1N1) infection, given that these patients can benefit from early diagnosis and appropriate specific management.

  16. Novel 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives: a patent review (2008 - 2011).

    Science.gov (United States)

    Ferreira, Vitor F; da Rocha, David R; da Silva, Fernando C; Ferreira, Patrícia G; Boechat, Núbia A; Magalhães, Jorge L

    2013-03-01

    The triazoles represent a class of five-membered heterocyclic compounds of great importance for the preparation of new drugs with diverse biological activities because they may present several structural variations with the same numbers of carbon and nitrogen atoms. Due to the success of various triazoles that entered the pharmaceutical market and are still being used in medicines, many companies and research groups have shown interest in developing new methods of synthesis and biological evaluation of potential uses for these compounds. In this review, the authors explored aspects of patents for the 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole families, including prototypes being considered in clinical studies between 2008 and 2011. The triazoles have been studied for over a century as an important class of heterocyclic compounds and still attract considerable attention due to their broad range of biological activities. More recently, there has been considerable interest in the development of novel triazoles with anti-inflammatory, antiplatelet, antimicrobial, antimycobacterial, antitumoral and antiviral properties and activity against several neglected diseases. This review emphasizes recent perspective and advances in the therapeutically active 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivative patents between 2008 and 2011, covering the development of new chemical entities and new pharmaceuticals. Many studies have focused on these compounds as target structures and evaluated them in several biological targets. The preparation of 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives brings to light several issues. There is a need to find new, more efficient preparations for these triazoles that take into consideration current issues in green chemistry, energy saving and sustainability. New diseases are discovered and new viruses and bacteria continue to challenge mankind, so it is imperative to find new prototypes for these

  17. Application of interferon modulators to overcome partial resistance of human ovarian cancers to VSV-GP oncolytic viral therapy

    Directory of Open Access Journals (Sweden)

    Catherine Dold

    2016-01-01

    Full Text Available Previously, we described an oncolytic vesicular stomatitis virus variant pseudotyped with the nonneurotropic glycoprotein of the lymphocytic choriomeningitis virus, VSV-GP, which was highly effective in glioblastoma. Here, we tested its potency for the treatment of ovarian cancer, a leading cause of death from gynecological malignancies. Effective oncolytic activity of VSV-GP could be demonstrated in ovarian cancer cell lines and xenografts in mice; however, remission was temporary in most mice. Analysis of the innate immune response revealed that ovarian cancer cell lines were able to respond to and produce type I interferon, inducing an antiviral state upon virus infection. This is in stark contrast to published data for other cancer cell lines, which were mostly found to be interferon incompetent. We showed that in vitro this antiviral state could be reverted by combining VSV-GP with the JAK1/2-inhibitor ruxolitinib. In addition, for the first time, we report the in vivo enhancement of oncolytic virus treatment by ruxolitinib, both in subcutaneous as well as in orthotopic xenograft mouse models, without causing significant additional toxicity. In conclusion, VSV-GP has the potential to be a potent and safe oncolytic virus to treat ovarian cancer, especially when combined with an inhibitor of the interferon response.

  18. Cyclophosphamide increases transgene expression mediated by an oncolytic adenovirus in glioma-bearing mice monitored by bioluminescence imaging

    NARCIS (Netherlands)

    Lamfers, Martine L. M.; Fulci, Giulia; Gianni, Davide; Tang, Yi; Kurozumi, Kazuhiko; Kaur, Balveen; Moeniralm, Sharif; Saeki, Yoshinaga; Carette, Jan E.; Weissleder, Ralph; Vandertop, W. Peter; van Beusechem, Victor W.; Dirven, Clemens M. F.; Chiocca, E. Antonio

    2006-01-01

    Approaches to improve the oncolytic potency of replication-competent adenoviruses include the insertion of therapeutic transgenes into the viral genome. Little is known about the levels and duration of in vivo transgene expression by cells infected with such "armed" viruses. Using a tumor-selective

  19. Pediatric cancer gone viral. Part II: potential clinical application of oncolytic herpes simplex virus-1 in children

    Directory of Open Access Journals (Sweden)

    Gregory K Friedman

    Full Text Available Oncolytic engineered herpes simplex viruses (HSVs possess many biologic and functional attributes that support their use in clinical trials in children with solid tumors. Tumor cells, in an effort to escape regulatory mechanisms that would impair their growth and progression, have removed many mechanisms that would have protected them from virus infection and eventual virus-mediated destruction. Viruses engineered to exploit this weakness, like mutant HSV, can be safely employed as tumor cell killers, since normal cells retain these antiviral strategies. Many preclinical studies and early phase trials in adults demonstrated that oncolytic HSV can be safely used and are highly effective in killing tumor cells that comprise pediatric malignancies, without generating the toxic side effects of nondiscriminatory chemotherapy or radiation therapy. A variety of engineered viruses have been developed and tested in numerous preclinical models of pediatric cancers and initial trials in patients are underway. In Part II of this review series, we examine the preclinical evidence to support the further advancement of oncolytic HSV in the pediatric population. We discuss clinical advances made to date in this emerging era of oncolytic virotherapy.

  20. Ex Vivo Oncolytic Virotherapy with Myxoma Virus Arms Multiple Allogeneic Bone Marrow Transplant Leukocytes to Enhance Graft versus Tumor

    NARCIS (Netherlands)

    Lilly, Cameron L.; Villa, Nancy Y.; Lemos de Matos, Ana; Ali, Haider M.; Dhillon, Jess-Karan S.; Hofland, Tom; Rahman, Masmudur M.; Chan, Winnie; Bogen, Bjarne; Cogle, Christopher; McFadden, Grant

    2017-01-01

    Allogeneic stem cell transplant-derived T cells have the potential to seek and eliminate sites of residual cancer that escaped primary therapy. Oncolytic myxoma virus (MYXV) exhibits potent anti-cancer efficacy against human cancers like multiple myeloma (MM) and can arm transplant-derived T cells

  1. Comparison of canine parvovirus with mink enteritis virus by restriction site mapping.

    OpenAIRE

    McMaster, G K; Tratschin, J D; Siegl, G

    1981-01-01

    The genomes of canine parvovirus and mink enteritis virus were compared by restriction enzyme analysis of their replicative-form DNAs. Of 79 mapped sites, 68, or 86%, were found to be common for both types of DNA, indicating that canine parvovirus and mink enteritis virus are closely related viruses. Whether they evolved from a common precursor or whether canine parvovirus is derived from mink enteritis virus, however, cannot be deduced from our present data.

  2. Studies on the inactivation of human parvovirus 4.

    Science.gov (United States)

    Baylis, Sally A; Tuke, Philip W; Miyagawa, Eiji; Blümel, Johannes

    2013-10-01

    Human parvovirus 4 (PARV4) is a novel parvovirus, which like parvovirus B19 (B19V) can be a contaminant of plasma pools used to prepare plasma-derived medicinal products. Inactivation studies of B19V have shown that it is more sensitive to virus inactivation strategies than animal parvoviruses. However, inactivation of PARV4 has not yet been specifically addressed. Treatment of parvoviruses by heat or low-pH conditions causes externalization of the virus genome. Using nuclease treatment combined with real-time polymerase chain reaction, the extent of virus DNA externalization was used as an indirect measure of the inactivation of PARV4, B19V, and minute virus of mice (MVM) by pasteurization of albumin and by low-pH treatment. Infectivity studies were performed in parallel for B19V and MVM. PARV4 showed greater resistance to pasteurization and low-pH treatment than B19V, although PARV4 was not as resistant as MVM. There was a 2- to 3-log reduction of encapsidated PARV4 DNA after pasteurization and low-pH treatment. In contrast, B19V was effectively inactivated while MVM was stable under these conditions. Divalent cations were found to have a stabilizing effect on PARV4 capsids. In the absence of divalent cations, even at neutral pH, there was a reduction of PARV4 titer, an effect not observed for B19V or MVM. In the case of heat treatment and incubation at low pH, PARV4 shows intermediate resistance when compared to B19V and MVM. Divalent cations seem important for stabilizing PARV4 virus particles. © 2013 American Association of Blood Banks.

  3. Cap-dependent translational control of oncolytic measles virus infection in malignant mesothelioma.

    Science.gov (United States)

    Jacobson, Blake A; Sadiq, Ahad A; Tang, Shaogeng; Jay-Dixon, Joe; Patel, Manish R; Drees, Jeremy; Sorenson, Brent S; Russell, Stephen J; Kratzke, Robert A

    2017-09-08

    Malignant mesothelioma has a poor prognosis for which there remains an urgent need for successful treatment approaches. Infection with the Edmonston vaccine strain (MV-Edm) derivative of measles virus results in lysis of cancer cells and has been tested in clinical trials for numerous tumor types including mesothelioma. Many factors play a role in MV-Edm tumor cell selectivity and cytopathic activity while also sparing non-cancerous cells. The MV-Edm receptor CD46 (cluster of differentiation 46) was demonstrated to be significantly higher in mesothelioma cells than in control cells. In contrast, mesothelioma cells are not reliant upon the alternative MV-Edm receptor nectin-4 for entry. MV-Edm treatment of mesothelioma reduced cell viability and also invoked apoptotic cell death. Forced expression of eIF4E or translation stimulation following IGF-I (insulin-like growth factor 1) exposure strengthened the potency of measles virus oncolytic activity. It was also shown that repression of cap-dependent translation by treatment with agents [4EASO, 4EGI-1] that suppress host cell translation or by forcing cells to produce an activated repressor protein diminishes the strength of oncolytic viral efficacy.

  4. Treatment of colon cancer with oncolytic herpes simplex virus in preclinical models.

    Science.gov (United States)

    Yang, H; Peng, T; Li, J; Wang, Y; Zhang, W; Zhang, P; Peng, S; Du, T; Li, Y; Yan, Q; Liu, B

    2016-05-01

    Cancer stem cells (CSCs), which are a rare population in any type of cancer, including colon cancer, are tumorigenic and responsible for cancer recurrence and metastasis. CSCs have been isolated from a number of different solid tumors recently, although the isolation of CSCs in colon cancer is still challenging. We cultured colon cancer cells in stem cell medium to obtain colonosphere cells. These cells possessed the characteristics of CSCs, with a high capacity of tumorigenicity, migration and invasion in vitro and in vivo. The isolation and identification of CSCs have provided new targets for the therapeutics. Oncolytic herpes simplex viruses (oHSV) are an effective strategy for killing colon cancer cells in preclinical models. Here, we examined the efficacy of an oncolytic herpes simplex virus type 2 (oHSV2) in killing colon cancer cells and colon cancer stem-like cells (CSLCs). oHSV2 was found to be highly cytotoxic to the adherent and sphere cells in vitro, and oHSV2 treatment in vivo significantly inhibited tumor growth. This study demonstrates that oHSV2 is effective against colon cancer cells and colon CSLCs and could be a promising strategy for treating colon cancer patients.

  5. Genetically engineered oncolytic Newcastle disease virus mediates cytolysis of prostate cancer stem like cells.

    Science.gov (United States)

    Raghunath, Shobana; Pudupakam, Raghavendra Sumanth; Allen, Adria; Biswas, Moanaro; Sriranganathan, Nammalwar

    2017-10-20

    Oncolytic virotherapy is a promising novel approach that overcomes the limitations posed by radiation and chemotherapy. In this study, the oncolytic efficacy of a recombinant Newcastle disease virus (rNDV) BC-KLQL-GFP, against prostate cancer stem-like/tumor initiating cells was evaluated. Xenograft derived prostaspheres (XPS) induced tumor more efficiently than monolayer cell derived prostaspheres (MCPS) in nude mice. Primary and secondary XPS show enhanced self-renewal and clonogenic potential compared to MCPS. XPS also expressed embryonic stem cell markers, such as Nanog, CD44 and Nestin. Further, prostate specific antigen (PSA) activated recombinant Newcastle Disease Virus (rNDV) was selectively cytotoxic to tumor derived DU145 prostaspheres. An effective concentration (EC 50 ) of 0.11-0.14 multiplicity of infection was sufficient to cause prostasphere cell death in serum free culture. DU145 tumor xenograft derived prostaspheres were used as tumor surrogates as they were enriched for a putative tumor initiating cell population. PSA activated rNDV was efficient in inducing cell death of cells and prostaspheres derived from primary xenografts ex-vivo, thus signifying a potential in vivo efficacy. The EC 50 (∼0.1 MOI) for cytolysis of tumor initiating cells was slightly higher than that was required for the parental cell line, but within the therapeutic margin for safety and efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A double-regulated oncolytic adenovirus with improved safety for adenocarcinoma therapy

    International Nuclear Information System (INIS)

    Wei, Na; Fan, Jun Kai; Gu, Jin Fa; He, Ling Feng; Tang, Wen Hao; Cao, Xin; Liu, Xin Yuan

    2009-01-01

    Safety and efficiency are equally important to be considered in developing oncolytic adenovirus. Previously, we have reported that ZD55, an oncolytic adenovirus with the deletion of E1B-55K gene, exhibited potent antitumor activity. In this study, to improve the safety of ZD55, we utilized MUC1 promoter to replace the native promoter of E1A on the basis of ZD55, and generated a double-regulated adenovirus, named MUD55. Our data demonstrated that the expression of early and late genes of MUD55 was both reduced in MUC1-negative cells, resulting in its stricter glandular-tumor selective progeny production. The cytopathic effect of MUD55 was about 10-fold lower than mono-regulated adenovirus ZD55 or Ad.MUC1 in normal cells and not obviously attenuated in glandular tumor cells. Moreover, MUD55 showed the least liver toxicity when administrated by intravenous injection in nude mice. These results indicate that MUD55 could be a promising candidate for the treatment of adenocarcinoma.

  7. High titer oncolytic measles virus production process by integration of dielectric spectroscopy as online monitoring system.

    Science.gov (United States)

    Grein, Tanja A; Loewe, Daniel; Dieken, Hauke; Salzig, Denise; Weidner, Tobias; Czermak, Peter

    2018-05-01

    Oncolytic viruses offer new hope to millions of patients with incurable cancer. One promising class of oncolytic viruses is Measles virus, but its broad administration to cancer patients is currently hampered by the inability to produce the large amounts of virus needed for treatment (10 10 -10 12 virus particles per dose). Measles virus is unstable, leading to very low virus titers during production. The time of infection and time of harvest are therefore critical parameters in a Measles virus production process, and their optimization requires an accurate online monitoring system. We integrated a probe based on dielectric spectroscopy (DS) into a stirred tank reactor to characterize the Measles virus production process in adherent growing Vero cells. We found that DS could be used to monitor cell adhesion on the microcarrier and that the optimal virus harvest time correlated with the global maximum permittivity signal. In 16 independent bioreactor runs, the maximum Measles virus titer was achieved approximately 40 hr after the permittivity maximum. Compared to an uncontrolled Measles virus production process, the integration of DS increased the maximum virus concentration by more than three orders of magnitude. This was sufficient to achieve an active Measles virus concentration of > 10 10 TCID 50 ml -1 . © 2017 Wiley Periodicals, Inc.

  8. Permissivity of the NCI-60 cancer cell lines to oncolytic Vaccinia Virus GLV-1h68

    International Nuclear Information System (INIS)

    Ascierto, Maria Libera; Bedognetti, Davide; Uccellini, Lorenzo; Rossano, Fabio; Ascierto, Paolo A; Stroncek, David F; Restifo, Nicholas P; Wang, Ena; Szalay, Aladar A; Marincola, Francesco M; Worschech, Andrea; Yu, Zhiya; Adams, Sharon; Reinboth, Jennifer; Chen, Nanhai G; Pos, Zoltan; Roychoudhuri, Rahul; Di Pasquale, Giovanni

    2011-01-01

    Oncolytic viral therapy represents an alternative therapeutic strategy for the treatment of cancer. We previously described GLV-1h68, a modified Vaccinia Virus with exclusive tropism for tumor cells, and we observed a cell line-specific relationship between the ability of GLV-1h68 to replicate in vitro and its ability to colonize and eliminate tumor in vivo. In the current study we surveyed the in vitro permissivity to GLV-1h68 replication of the NCI-60 panel of cell lines. Selected cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain. In order to identify correlates of permissity to viral infection, we measured transcriptional profiles of the cell lines prior infection. We observed highly heterogeneous permissivity to VACV infection amongst the cell lines. The heterogeneity of permissivity was independent of tissue with the exception of B cell derivation. Cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain and a significant correlation was found suggesting a common permissive phenotype. While no clear transcriptional pattern could be identified as predictor of permissivity to infection, some associations were observed suggesting multifactorial basis permissivity to viral infection. Our findings have implications for the design of oncolytic therapies for cancer and offer insights into the nature of permissivity of tumor cells to viral infection

  9. Newly Characterized Murine Undifferentiated Sarcoma Models Sensitive to Virotherapy with Oncolytic HSV-1 M002

    Directory of Open Access Journals (Sweden)

    Eric K. Ring

    2017-12-01

    Full Text Available Despite advances in conventional chemotherapy, surgical techniques, and radiation, outcomes for patients with relapsed, refractory, or metastatic soft tissue sarcomas are dismal. Survivors often suffer from lasting morbidity from current treatments. New targeted therapies with less toxicity, such as those that harness the immune system, and immunocompetent murine sarcoma models to test these therapies are greatly needed. We characterized two new serendipitous murine models of undifferentiated sarcoma (SARC-28 and SARC-45 and tested their sensitivity to virotherapy with oncolytic herpes simplex virus 1 (HSV-1. Both models expressed high levels of the primary HSV entry molecule nectin-1 (CD111 and were susceptible to killing by interleukin-12 (IL-12 producing HSV-1 M002 in vitro and in vivo. M002 resulted in a significant intratumoral increase in effector CD4+ and CD8+ T cells and activated monocytes, and a decrease in myeloid-derived suppressor cells (MDSCs in immunocompetent mice. Compared to parent virus R3659 (no IL-12 production, M002 resulted in higher CD8:MDSC and CD8:T regulatory cell (Treg ratios, suggesting that M002 creates a more favorable immune tumor microenvironment. These data provide support for clinical trials targeting sarcomas with oncolytic HSV-1. These models provide an exciting opportunity to explore combination therapies for soft tissue sarcomas that rely on an intact immune system to reach full therapeutic potential.

  10. Cancer-Targeted Oncolytic Adenoviruses for Modulation of the Immune System.

    Science.gov (United States)

    Cerullo, Vincenzo; Capasso, Cristian; Vaha-Koskela, Markus; Hemminki, Otto; Hemminki, Akseli

    2018-01-01

    Adenovirus is one of the most commonly used vectors for gene therapy and it is the first approved virus-derived drug for treatment of cancer. As an oncolytic agent, it can induce lysis of infected cells, but it can also engage the immune system, promoting activation and maturation of antigen- presenting cells (APCs). In essence, oncolysis combined with the associated immunostimulatory actions result in a "personalized in situ vaccine" for each patient. In order to take full advantage of these features, we should try to understand how adenovirus interacts with the immune system, what are the receptors involved in triggering subsequent signals and which kind of responses they elicit. Tackling these questions will give us further insight in how to manipulate adenovirus-mediated immune responses for enhancement of anti-tumor efficacy. In this review, we first highlight how oncolytic adenovirus interacts with the innate immune system and its receptors such as Toll-like receptors, nucleotide-binding and oligomerization domain (NOD)- like receptors and other immune sensors. Then we describe the effect of these interactions on the adaptive immune system and its cells, especially B and T lymphocytes. Finally, we summarize the most significant preclinical and clinical results in the field of gene therapy where researchers have engineered adenovirus to manipulate the host immune system by expressing cytokines and signalingmediators. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer.

    Science.gov (United States)

    Marelli, Giulia; Howells, Anwen; Lemoine, Nicholas R; Wang, Yaohe

    2018-01-01

    Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system. Tumors are an immuno-suppressive environment in which the immune system is silenced in order to avoid the immune response against cancer cells. The delivery of OVs into the tumor wakes up the immune system so that it can facilitate a strong and durable response against the tumor itself. Both innate and adaptive immune responses contribute to this process, producing an immune response against tumor antigens and facilitating immunological memory. However, viruses are recognized by the immune system as pathogens and the consequent anti-viral response could represent a big hurdle for OVs. Finding a balance between anti-tumor and anti-viral immunity is, under this new light, a priority for researchers. In this review, we provide an overview of the various ways in which different components of the immune system can be allied with OVs. We have analyzed the different immune responses in order to highlight the new and promising perspectives leading to increased anti-tumor response and decreased immune reaction to the OVs.

  12. The potential application of a transcriptionally regulated oncolytic herpes simplex virus for human cancer therapy

    Science.gov (United States)

    Miao, L; Fraefel, C; Sia, K C; Newman, J P; Mohamed-Bashir, S A; Ng, W H; Lam, P Y P

    2014-01-01

    Background: Emerging studies have shown the potential benefit of arming oncolytic viruses with therapeutic genes. However, most of these therapeutic genes are placed under the regulation of ubiquitous viral promoters. Our goal is to generate a safer yet potent oncolytic herpes simplex virus type-1 (HSV-1) for cancer therapy. Methods: Using bacterial artificial chromosome (BAC) recombineering, a cell cycle-regulatable luciferase transgene cassette was replaced with the infected cell protein 6 (ICP6) coding region (encoded for UL39 or large subunit of ribonucleotide reductase) of the HSV-1 genome. These recombinant viruses, YE-PC8, were further tested for its proliferation-dependent luciferase gene expression. Results: The ability of YE-PC8 to confer proliferation-dependent transgene expression was demonstrated by injecting similar amount of viruses into the tumour-bearing region of the brain and the contralateral normal brain parenchyma of the same mouse. The results showed enhanced levels of luciferase activities in the tumour region but not in the normal brain parenchyma. Similar findings were observed in YE-PC8-infected short-term human brain patient-derived glioma cells compared with normal human astrocytes. intratumoural injection of YE-PC8 viruses resulted in 77% and 80% of tumour regression in human glioma and human hepatocellular carcinoma xenografts, respectively. Conclusion: YE-PC8 viruses confer tumour selectivity in proliferating cells and may be developed further as a feasible approach to treat human cancers. PMID:24196790

  13. H-1NF: Australian national fusion plasma research facility

    International Nuclear Information System (INIS)

    Blackwell, B.D.; Borg, G.G.; Dewar, R.L.; Howard, J.; Gardner, H.J.; Rudakov, D.L.; Sharp, L.E.; Shats, M.G.; Warr, G.B.

    1997-01-01

    The H-1 heliac is a helical axis stellarator of moderate size and novel, flexible configuration. Since commissioning, H-1 has operated in quasi-continuous mode at low magnetic field. For higher fields ≤1T an ECRH heating system (28GHz, 200kW) has been installed under a collaborative agreement between ANU and NIFS. H-1 has recently been promoted to national facility status (H-1NF), which will include upgrades of the rf and ech heating systems to megawatt powers, and power supply and diagnostic and data system enhancements. This facilitates collaborative research locally (through the Australian Fusion Research Group consortium) and internationally. Results of a number of basic experiments in quasi-continuous mode are presented. (author)

  14. Early Detection of Pandemic (H1N1) 2009, Bangladesh

    Science.gov (United States)

    Rahman, Mustafizur; Al Mamun, Abdullah; Haider, Mohammad Sabbir; Zaman, Rashid Uz; Karmakar, Polash Chandra; Nasreen, Sharifa; Muneer, Syeda Mah-E; Homaira, Nusrat; Goswami, Doli Rani; Ahmed, Be-Nazir; Husain, Mohammad Mushtuq; Jamil, Khondokar Mahbuba; Khatun, Selina; Ahmed, Mujaddeed; Chakraborty, Apurba; Fry, Alicia; Widdowson, Marc-Alain; Bresee, Joseph; Azim, Tasnim; Alamgir, A.S.M.; Brooks, Abdullah; Hossain, Mohamed Jahangir; Klimov, Alexander; Rahman, Mahmudur; Luby, Stephen P.

    2012-01-01

    To explore Bangladesh’s ability to detect novel influenza, we examined a series of laboratory-confirmed pandemic (H1N1) 2009 cases. During June–July 2009, event-based surveillance identified 30 case-patients (57% travelers); starting July 29, sentinel sites identified 252 case-patients (1% travelers). Surveillance facilitated response weeks before the spread of pandemic (H1N1) 2009 infection to the general population. PMID:22257637

  15. Measurement of electric fields in the H-1NF heliac

    International Nuclear Information System (INIS)

    James, B.W.; Howard, J.

    1999-01-01

    There are a number of laser induced fluorescence techniques which can be used to measure internal plasma electric fields. It is planned to use a technique based on Stark mixing of energy levels in a supersonic beam containing metastable helium atoms to measure radial electric fields in H-1NF. Enhanced values of radial electric field are associated with improved confinement modes in H-1NF and other magnetically confined plasmas

  16. Data logging and online reconstruction in H1

    International Nuclear Information System (INIS)

    Fuhrmann, P.; Gerhards, R.; Kruener-Marquis, U.; Olsson, J.E.; Szkutnik, Z.

    1994-01-01

    In spring 1992, the H1 detector at the HERA electron proton collider at DESY came into operation. The high bunch crossing rate and, correspondingly, the large data volumes are placing demanding requirements on the data logging and event reconstruction. Both tasks are performed on an SGI Challenge series computer. This note reviews the development and the experience with the data logging and online reconstruction in H1

  17. Assessment of the Na/I symporter as a reporter gene to visualize oncolytic adenovirus propagation in peritoneal tumours

    International Nuclear Information System (INIS)

    Merron, Andrew; McNeish, Iain A.; Baril, Patrick; Tran, Lucile; Vassaux, Georges; Martin-Duque, Pilar; Vieja, Antonio de la; Briat, Arnaud; Harrington, Kevin J.

    2010-01-01

    In vivo imaging of the spread of oncolytic viruses using the Na/I symporter (NIS) has been proposed. Here, we assessed whether the presence of NIS in the viral genome affects the therapeutic efficacy of the oncolytic adenovirus dl922-947 following intraperitoneal administration, in a mouse model of peritoneal ovarian carcinoma. We generated AdAM7, a dl922-947 oncolytic adenovirus encoding the NIS coding sequence. Iodide uptake, NIS expression, infectivity and cell-killing activity of AdAM7, as well as that of relevant controls, were determined in vitro. In vivo, the propagation of this virus in the peritoneal cavity of tumour-bearing mice was determined using SPECT/CT imaging and its therapeutic efficacy was evaluated. In vitro infection of ovarian carcinoma IGROV-1 cells with ADAM7 led to functional expression of NIS. However, the insertion of NIS into the viral genome resulted in a loss of efficacy of the virus in terms of replication and cytotoxicity. In vivo, on SPECT/CT imaging AdAM7 was only detectable in the peritoneal cavity of animals bearing peritoneal ovarian tumours for up to 5 days after intraperitoneal administration. Therapeutic experiments in vivo demonstrated that AdAM7 is as potent as its NIS-negative counterpart. This study demonstrated that despite the detrimental effect observed in vitro, insertion of the reporter gene NIS in an oncolytic adenovirus did not affect its therapeutic efficacy in vivo. We conclude that NIS is a highly relevant reporter gene to monitor the fate of oncolytic adenovectors in live subjects. (orig.)

  18. Assessment of the Na/I symporter as a reporter gene to visualize oncolytic adenovirus propagation in peritoneal tumours

    Energy Technology Data Exchange (ETDEWEB)

    Merron, Andrew; McNeish, Iain A. [Queen Mary' s School of Medicine and Dentistry, Centre for Molecular Oncology, Institute of Cancer, London (United Kingdom); Baril, Patrick; Tran, Lucile; Vassaux, Georges [CHU Hotel Dieu, INSERM, Nantes (France); CHU de Nantes, Institut des Maladies de l' Appareil Digestif, Nantes (France); Martin-Duque, Pilar [Instituto Aragones de Ciencias de la Salud, Zaragoza (Spain); Vieja, Antonio de la [Instituto de Investigaciones Biomedicas, Madrid (Spain); Briat, Arnaud [INSERM U877, Grenoble (France); Harrington, Kevin J. [Chester Beatty Laboratories, Institute of Cancer Research, London (United Kingdom)

    2010-07-15

    In vivo imaging of the spread of oncolytic viruses using the Na/I symporter (NIS) has been proposed. Here, we assessed whether the presence of NIS in the viral genome affects the therapeutic efficacy of the oncolytic adenovirus dl922-947 following intraperitoneal administration, in a mouse model of peritoneal ovarian carcinoma. We generated AdAM7, a dl922-947 oncolytic adenovirus encoding the NIS coding sequence. Iodide uptake, NIS expression, infectivity and cell-killing activity of AdAM7, as well as that of relevant controls, were determined in vitro. In vivo, the propagation of this virus in the peritoneal cavity of tumour-bearing mice was determined using SPECT/CT imaging and its therapeutic efficacy was evaluated. In vitro infection of ovarian carcinoma IGROV-1 cells with ADAM7 led to functional expression of NIS. However, the insertion of NIS into the viral genome resulted in a loss of efficacy of the virus in terms of replication and cytotoxicity. In vivo, on SPECT/CT imaging AdAM7 was only detectable in the peritoneal cavity of animals bearing peritoneal ovarian tumours for up to 5 days after intraperitoneal administration. Therapeutic experiments in vivo demonstrated that AdAM7 is as potent as its NIS-negative counterpart. This study demonstrated that despite the detrimental effect observed in vitro, insertion of the reporter gene NIS in an oncolytic adenovirus did not affect its therapeutic efficacy in vivo. We conclude that NIS is a highly relevant reporter gene to monitor the fate of oncolytic adenovectors in live subjects. (orig.)

  19. [Advances in Parvovirus Non-structural Protein NS1 Induced Apoptosis].

    Science.gov (United States)

    Tu, Mengyu; Liu, Fei; Chen, Shun; Wang, Mingshu; Cheng, Anchun

    2015-11-01

    Until now, more than seventeen parvovirus have been reported which can infect mammals and poultries. The infected cells appeared different properties of apoptosis and death, present a typical cytopathic effect. NS1 is a major nonstructural protein of parvovirus, with a conservative structure and function, which plays an important role in the viral life cycle. In addition to the influence on viral replication, the NS1 also participates in apoptosis induced by viruses. Parvovirus induced apoptosis which is mainly mediated by mitochondrial pathway, this review summarized the latest research progresses of parvovirus induced apoptosis.

  20. Influenza B pneumonia with Staphylococcus aureus superinfection associated with parvovirus B19 and concomitant agranulocytosis.

    Science.gov (United States)

    Krell, S; Adams, I; Arnold, U; Kalinski, T; Aumann, V; König, W; König, B

    2003-10-01

    An 11-year-old patient with anamnestic fever for 3 days and signs of upper respiratory tract infection underwent fulminant Staphylococcus aureus pneumonia with concomitant agranulocytosis. From autopsia influenza B virus and parvovirus B19 were detected by nucleic acid amplification technique (NAT). Specific IgG but no IgM points to preexisting parvovirus B19 infection. Whether in this case agranulocytosis can be interpreted as early manifestation of reactivated parvovirus B19 infection is under discussion. Therefore, parvovirus B19 could have provoked a foudroyant course of influenza B pneumonia which was superinfected with S. aureus.

  1. Novel B19-like parvovirus in the brain of a harbor seal.

    Directory of Open Access Journals (Sweden)

    Rogier Bodewes

    Full Text Available Using random PCR in combination with next-generation sequencing, a novel parvovirus was detected in the brain of a young harbor seal (Phoca vitulina with chronic non-suppurative meningo-encephalitis that was rehabilitated at the Seal Rehabilitation and Research Centre (SRRC in the Netherlands. In addition, two novel viruses belonging to the family Anelloviridae were detected in the lungs of this animal. Phylogenetic analysis of the coding sequence of the novel parvovirus, tentatively called Seal parvovirus, indicated that this virus belonged to the genus Erythrovirus, to which human parvovirus B19 also belongs. Although no other seals with similar signs were rehabilitated in SRRC in recent years, a prevalence study of tissues of seals from the same area collected in the period 2008-2012 indicated that the Seal parvovirus has circulated in the harbor seal population at least since 2008. The presence of the Seal parvovirus in the brain was confirmed by real-time PCR and in vitro replication. Using in situ hybridization, we showed for the first time that a parvovirus of the genus Erythrovirus was present in the Virchow-Robin space and in cerebral parenchyma adjacent to the meninges. These findings showed that a parvovirus of the genus Erythrovirus can be involved in central nervous system infection and inflammation, as has also been suspected but not proven for human parvovirus B19 infection.

  2. Parvovirus B19 infection in a child with acute lymphoblastic leukemia during induction therapy.

    Science.gov (United States)

    McNall, R Y; Head, D R; Pui, C H; Razzouk, B I

    2001-01-01

    Immunocompromised children, including those undergoing chemotherapy treatment of malignant disease, are at particular risk for infection with parvovirus B19. However, these patients' attenuated immune responses may obscure the serologic and clinical manifestations of the infection. The authors describe a patient undergoing induction therapy for acute lymphoblastic leukemia whose parvovirus B19 infection was identified by the incidental detection of giant pronormoblasts and absence of normal mature erythroid precursors, characteristic of parvovirus infection, on a routine bone marrow examination. Intravenous immunoglobulin was administered and the patient's aplastic anemia resolved completely within 3 weeks. This highlights the importance of alertness to the possibility of parvovirus infection in children with cancer.

  3. Novel B19-like parvovirus in the brain of a harbor seal.

    Science.gov (United States)

    Bodewes, Rogier; Rubio García, Ana; Wiersma, Lidewij C M; Getu, Sarah; Beukers, Martijn; Schapendonk, Claudia M E; van Run, Peter R W A; van de Bildt, Marco W G; Poen, Marjolein J; Osinga, Nynke; Sánchez Contreras, Guillermo J; Kuiken, Thijs; Smits, Saskia L; Osterhaus, Albert D M E

    2013-01-01

    Using random PCR in combination with next-generation sequencing, a novel parvovirus was detected in the brain of a young harbor seal (Phoca vitulina) with chronic non-suppurative meningo-encephalitis that was rehabilitated at the Seal Rehabilitation and Research Centre (SRRC) in the Netherlands. In addition, two novel viruses belonging to the family Anelloviridae were detected in the lungs of this animal. Phylogenetic analysis of the coding sequence of the novel parvovirus, tentatively called Seal parvovirus, indicated that this virus belonged to the genus Erythrovirus, to which human parvovirus B19 also belongs. Although no other seals with similar signs were rehabilitated in SRRC in recent years, a prevalence study of tissues of seals from the same area collected in the period 2008-2012 indicated that the Seal parvovirus has circulated in the harbor seal population at least since 2008. The presence of the Seal parvovirus in the brain was confirmed by real-time PCR and in vitro replication. Using in situ hybridization, we showed for the first time that a parvovirus of the genus Erythrovirus was present in the Virchow-Robin space and in cerebral parenchyma adjacent to the meninges. These findings showed that a parvovirus of the genus Erythrovirus can be involved in central nervous system infection and inflammation, as has also been suspected but not proven for human parvovirus B19 infection.

  4. Fusion plasma physics research on the H-1 national facility

    International Nuclear Information System (INIS)

    Harris, J.

    1998-01-01

    Full text: Australia has a highly leveraged fusion plasma research program centred on the H-1 National Facility device at the ANU. H-1 is a heliac, a novel helical axis stellarator that was experimentally pioneered in Australia, but has a close correlation with the worldwide research program on toroidal confinement of fusion grade plasma. Experiments are conducted on H-1 by university researchers from the Australian Fusion Research Group (comprising groups from the ANU, the Universities of Sydney, Western Sydney, Canberra, New England, and Central Queensland University) under the aegis of AINSE; the scientists also collaborate with fusion researchers from Japan and the US. Recent experiments on H-1 have focused on improved confinement modes that can be accessed at very low powers in H-1, but allow the study of fundamental physics effects seen on much larger machines at higher powers. H-1 is now being upgraded in magnetic field and heating power, and will be able to confine hotter plasmas beginning in 1999, offering greatly enhanced research opportunities for Australian plasma scientists and engineers, with substantial spillover of ideas from fusion research into other areas of applied physics and engineering

  5. Germline-specific H1 variants: the "sexy" linker histones.

    Science.gov (United States)

    Pérez-Montero, Salvador; Carbonell, Albert; Azorín, Fernando

    2016-03-01

    The eukaryotic genome is packed into chromatin, a nucleoprotein complex mainly formed by the interaction of DNA with the abundant basic histone proteins. The fundamental structural and functional subunit of chromatin is the nucleosome core particle, which is composed by 146 bp of DNA wrapped around an octameric protein complex formed by two copies of each core histone H2A, H2B, H3, and H4. In addition, although not an intrinsic component of the nucleosome core particle, linker histone H1 directly interacts with it in a monomeric form. Histone H1 binds nucleosomes near the exit/entry sites of linker DNA, determines nucleosome repeat length and stabilizes higher-order organization of nucleosomes into the ∼30 nm chromatin fiber. In comparison to core histones, histone H1 is less well conserved through evolution. Furthermore, histone H1 composition in metazoans is generally complex with most species containing multiple variants that play redundant as well as specific functions. In this regard, a characteristic feature is the presence of specific H1 variants that replace somatic H1s in the germline and during early embryogenesis. In this review, we summarize our current knowledge about their structural and functional properties.

  6. Molecular treatment of the ion-pair formation reaction in H(1s) + H(1s) collisions

    International Nuclear Information System (INIS)

    Borondo, F.; Martin, F.; Yaez, M.

    1987-01-01

    All the available theoretical calculations of the cross section for the ion-pair formation reaction H(1s)+H(1s)→H + H - (1s 2 ) have been performed using methods that are only valid at high collision energies. They get good agreement with the experiments for impact energies greater than 25 keV, but fail completely at smaller energies. In this work we report the cross section for this reaction at impact energies less than 10 keV, calculated in the framework of the impact-parameter approximation and using the molecular method with a common translation factor

  7. Expression of RNA interference triggers from an oncolytic herpes simplex virus results in specific silencing in tumour cells in vitro and tumours in vivo

    International Nuclear Information System (INIS)

    Anesti, Anna-Maria; Simpson, Guy R; Price, Toby; Pandha, Hardev S; Coffin, Robert S

    2010-01-01

    Delivery of small interfering RNA (siRNA) to tumours remains a major obstacle for the development of RNA interference (RNAi)-based therapeutics. Following the promising pre-clinical and clinical results with the oncolytic herpes simplex virus (HSV) OncoVEX GM-CSF , we aimed to express RNAi triggers from oncolytic HSV, which although has the potential to improve treatment by silencing tumour-related genes, was not considered possible due to the highly oncolytic properties of HSV. To evaluate RNAi-mediated silencing from an oncolytic HSV backbone, we developed novel replicating HSV vectors expressing short-hairpin RNA (shRNA) or artificial microRNA (miRNA) against the reporter genes green fluorescent protein (eGFP) and β-galactosidase (lacZ). These vectors were tested in non-tumour cell lines in vitro and tumour cells that are moderately susceptible to HSV infection both in vitro and in mice xenografts in vivo. Silencing was assessed at the protein level by fluorescent microscopy, x-gal staining, enzyme activity assay, and western blotting. Our results demonstrate that it is possible to express shRNA and artificial miRNA from an oncolytic HSV backbone, which had not been previously investigated. Furthermore, oncolytic HSV-mediated delivery of RNAi triggers resulted in effective and specific silencing of targeted genes in tumour cells in vitro and tumours in vivo, with the viruses expressing artificial miRNA being comprehensibly more effective. This preliminary data provide the first demonstration of oncolytic HSV-mediated expression of shRNA or artificial miRNA and silencing of targeted genes in tumour cells in vitro and in vivo. The vectors developed in this study are being adapted to silence tumour-related genes in an ongoing study that aims to improve the effectiveness of oncolytic HSV treatment in tumours that are moderately susceptible to HSV infection and thus, potentially improve response rates seen in human clinical trials

  8. Ion chemistry of 1H-1,2,3-triazole.

    Science.gov (United States)

    Ichino, Takatoshi; Andrews, Django H; Rathbone, G Jeffery; Misaizu, Fuminori; Calvi, Ryan M D; Wren, Scott W; Kato, Shuji; Bierbaum, Veronica M; Lineberger, W Carl

    2008-01-17

    A combination of experimental methods, photoelectron-imaging spectroscopy, flowing afterglow-photoelectron spectroscopy and the flowing afterglow-selected ion flow tube technique, and electronic structure calculations at the B3LYP/6-311++G(d,p) level of density functional theory (DFT) have been employed to study the mechanism of the reaction of the hydroxide ion (HO-) with 1H-1,2,3-triazole. Four different product ion species have been identified experimentally, and the DFT calculations suggest that deprotonation by HO- at all sites of the triazole takes place to yield these products. Deprotonation of 1H-1,2,3-triazole at the N1-H site gives the major product ion, the 1,2,3-triazolide ion. The 335 nm photoelectron-imaging spectrum of the ion has been measured. The electron affinity (EA) of the 1,2,3-triazolyl radical has been determined to be 3.447 +/- 0.004 eV. This EA and the gas-phase acidity of 2H-1,2,3-triazole are combined in a negative ion thermochemical cycle to determine the N-H bond dissociation energy of 2H-1,2,3-triazole to be 112.2 +/- 0.6 kcal mol-1. The 363.8 nm photoelectron spectroscopic measurements have identified the other three product ions. Deprotonation of 1H-1,2,3-triazole at the C5 position initiates fragmentation of the ring structure to yield a minor product, the ketenimine anion. Another minor product, the iminodiazomethyl anion, is generated by deprotonation of 1H-1,2,3-triazole at the C4 position, followed by N1-N2 bond fission. Formation of the other minor product, the 2H-1,2,3-triazol-4-ide ion, can be rationalized by initial deprotonation of 1H-1,2,3-triazole at the N1-H site and subsequent proton exchanges within the ion-molecule complex. The EA of the 2H-1,2,3-triazol-4-yl radical is 1.865 +/- 0.004 eV.

  9. Release of canine parvovirus from endocytic vesicles

    International Nuclear Information System (INIS)

    Suikkanen, Sanna; Antila, Mia; Jaatinen, Anne; Vihinen-Ranta, Maija; Vuento, Matti

    2003-01-01

    Canine parvovirus (CPV) is a small nonenveloped virus with a single-stranded DNA genome. CPV enters cells by clathrin-mediated endocytosis and requires an acidic endosomal step for productive infection. Virion contains a potential nuclear localization signal as well as a phospholipase A 2 like domain in N-terminus of VP1. In this study we characterized the role of PLA 2 activity on CPV entry process. PLA 2 activity of CPV capsids was triggered in vitro by heat or acidic pH. PLA 2 inhibitors inhibited the viral proliferation suggesting that PLA 2 activity is needed for productive infection. The N-terminus of VP1 was exposed during the entry, suggesting that PLA 2 activity might have a role during endocytic entry. The presence of drugs modifying endocytosis (amiloride, bafilomycin A 1 , brefeldin A, and monensin) caused viral proteins to remain in endosomal/lysosomal vesicles, even though the drugs were not able to inhibit the exposure of VP1 N-terminal end. These results indicate that the exposure of N-terminus of VP1 alone is not sufficient to allow CPV to proliferate. Some other pH-dependent changes are needed for productive infection. In addition to blocking endocytic entry, amiloride was able to block some postendocytic steps. The ability of CPV to permeabilize endosomal membranes was demonstrated by feeding cells with differently sized rhodamine-conjugated dextrans together with the CPV in the presence or in the absence of amiloride, bafilomycin A 1 , brefeldin A, or monensin. Dextran with a molecular weight of 3000 was released from vesicles after 8 h of infection, while dextran with a molecular weight of 10,000 was mainly retained in vesicles. The results suggest that CPV infection does not cause disruption of endosomal vesicles. However, the permeability of endosomal membranes apparently changes during CPV infection, probably due to the PLA 2 activity of the virus. These results suggest that parvoviral PLA 2 activity is essential for productive infection and

  10. H1N1, globalization and the epidemiology of inequality.

    Science.gov (United States)

    Sparke, Matthew; Anguelov, Dimitar

    2012-07-01

    This paper examines the lessons learned from the 2009 H1N1 pandemic in relation to wider work on globalization and the epidemiology of inequality. The media attention and economic resources diverted to the threats posed by H1N1 were significant inequalities themselves when contrasted with weaker responses to more lethal threats posed by other diseases associated with global inequality. However, the multiple inequalities revealed by H1N1 itself in 2009 still provide important insights into the future of global health in the context of market-led globalization. These lessons relate to at least four main forms of inequality: (1) inequalities in blame for the outbreak in the media; (2) inequalities in risk management; (3) inequalities in access to medicines; and (4) inequalities encoded in the actual emergence of new flu viruses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Characteristics of the mouse genomic histamine H1 receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Isao; Taniuchi, Ichiro; Kitamura, Daisuke [Kyushu Univ., Fukuoka (Japan)] [and others

    1996-08-15

    We report here the molecular cloning of a mouse histamine H1 receptor gene. The protein deduced from the nucleotide sequence is composed of 488 amino acid residues with characteristic properties of GTP binding protein-coupled receptors. Our results suggest that the mouse histamine H1 receptor gene is a single locus, and no related sequences were detected. Interspecific backcross analysis indicated that the mouse histamine H1 receptor gene (Hrh1) is located in the central region of mouse Chromosome 6 linked to microphthalmia (Mitfmi), ras-related fibrosarcoma oncogene 1 (Raf1), and ret proto-oncogene (Ret) in a region of homology with human chromosome 3p. 12 refs., 3 figs.

  12. A hypoxia- and {alpha}-fetoprotein-dependent oncolytic adenovirus exhibits specific killing of hepatocellular carcinomas.

    Science.gov (United States)

    Kwon, Oh-Joon; Kim, Pyung-Hwan; Huyn, Steven; Wu, Lily; Kim, Minjung; Yun, Chae-Ok

    2010-12-15

    Oncolytic adenoviruses (Ad) constitute a new promising modality of cancer gene therapy that displays improved efficacy over nonreplicating Ads. We have previously shown that an E1B 19-kDa-deleted oncolytic Ad exhibits a strong cell-killing effect but lacks tumor selectivity. To achieve hepatoma-restricted cytotoxicity and enhance replication of Ad within the context of tumor microenvironment, we used a modified human α-fetoprotein (hAFP) promoter to control the replication of Ad with a hypoxia response element (HRE). We constructed Ad-HRE(6)/hAFPΔ19 and Ad-HRE(12)/hAFPΔ19 that incorporated either 6 or 12 copies of HRE upstream of promoter. The promoter activity and specificity to hepatoma were examined by luciferase assay and fluorescence-activated cell sorting analysis. In addition, the AFP expression- and hypoxia-dependent in vitro cytotoxicity of Ad-HRE(6)/hAFPΔ19 and Ad-HRE(12)/hAFPΔ19 was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and cytopathic effect assay. In vivo tumoricidal activity on subcutaneous and liver orthotopic model was monitored by noninvasive molecular imaging. Ad-HRE(12)/hAFPΔ19 exhibited enhanced tumor selectivity and cell-killing activity when compared with Ad-hAFPΔ19. The tumoricidal activity of Ad-HRE(12)/hAFPΔ19 resulted in significant inhibition of tumor growth in both subcutaneous and orthotopic models. Histologic examination of the primary tumor after treatment confirmed accumulation of viral particles near hypoxic areas. Furthermore, Ad-HRE(12)/hAFPΔ19 did not cause severe inflammatory immune response and toxicity after systemic injection. The results presented here show the advantages of incorporating HREs into a hAFP promoter-driven oncolytic virus. This system is unique in that it acts in both a tissue-specific and tumor environment-selective manner. The greatly enhanced selectivity and tumoricidal activity of Ad-HRE(12)/hAFPΔ19 make it a promising therapeutic agent in the treatment

  13. Parainfluenza Virus Infection Sensitizes Cancer Cells to DNA-Damaging Agents: Implications for Oncolytic Virus Therapy.

    Science.gov (United States)

    Fox, Candace R; Parks, Griffith D

    2018-04-01

    A parainfluenza virus 5 (PIV5) with mutations in the P/V gene (P/V-CPI - ) is restricted for spread in normal cells but not in cancer cells in vitro and is effective at reducing tumor burdens in mouse model systems. Here we show that P/V-CPI - infection of HEp-2 human laryngeal cancer cells results in the majority of the cells dying, but unexpectedly, over time, there is an emergence of a population of cells that survive as P/V-CPI - persistently infected (PI) cells. P/V-CPI - PI cells had elevated levels of basal caspase activation, and viability was highly dependent on the activity of cellular inhibitor-of-apoptosis proteins (IAPs) such as Survivin and XIAP. In challenge experiments with external inducers of apoptosis, PI cells were more sensitive to cisplatin-induced DNA damage and cell death. This increased cisplatin sensitivity correlated with defects in DNA damage signaling pathways such as phosphorylation of Chk1 and translocation of damage-specific DNA binding protein 1 (DDB1) to the nucleus. Cisplatin-induced killing of PI cells was sensitive to the inhibition of wild-type (WT) p53-inducible protein 1 (WIP1), a phosphatase which acts to terminate DNA damage signaling pathways. A similar sensitivity to cisplatin was seen with cells during acute infection with P/V-CPI - as well as during acute infections with WT PIV5 and the related virus human parainfluenza virus type 2 (hPIV2). Our results have general implications for the design of safer paramyxovirus-based vectors that cannot establish PI as well as the potential for combining chemotherapy with oncolytic RNA virus vectors. IMPORTANCE There is intense interest in developing oncolytic viral vectors with increased potency against cancer cells, particularly those cancer cells that have gained resistance to chemotherapies. We have found that infection with cytoplasmically replicating parainfluenza virus can result in increases in the killing of cancer cells by agents that induce DNA damage, and this is linked

  14. Synergistic effects of oncolytic reovirus and docetaxel chemotherapy in prostate cancer

    Directory of Open Access Journals (Sweden)

    Prestwich Robin

    2011-06-01

    Full Text Available Abstract Background Reovirus type 3 Dearing (T3D has demonstrated oncolytic activity in vitro, in in vivo murine models and in early clinical trials. However the true potential of oncolytic viruses may only be realized fully in combination with other modalities such as chemotherapy, targeted therapy and radiotherapy. In this study, we examine the oncolytic activity of reovirus T3D and chemotherapeutic agents against human prostate cancer cell lines, with particular focus on the highly metastatic cell line PC3 and the chemotherapeutic agent docetaxel. Docetaxel is the standard of care for metastatic prostate cancer and acts by disrupting the normal process of microtubule assembly and disassembly. Reoviruses have been shown to associate with microtubules and may require this association for efficient viral replication. Methods The effects of reovirus and chemotherapy on in vitro cytotoxicity were investigated in PC3 and Du 145 cells and the interactions between agents were assessed by combination index analysis. An Annexin V/propidium iodide fluorescence-activated cell sorting-based assay was used to determine mode of cell death. The effects of reovirus and docetaxel administered as single agent or combination therapy were tested in vivo in a murine model. The effects of docetaxel and reovirus, alone and together, on microtubule stabilisation were investigated by Western blot analysis. Results Variable degrees of synergistic cytotoxicity were observed in PC3 and Du 145 cells exposed to live reovirus and several chemotherapy agents. Combination of reovirus infection with docetaxel exposure led to increased late apoptotic/necrotic cell populations. Reovirus/docetaxel combined therapy led to reduced tumour growth and increased survival in a PC3 tumour bearing mouse model. Microtubule stabilization was enhanced in PC3 cells treated with reovirus/docetaxel combined therapy compared to other reovirus/chemotherapy combinations. Conclusions The co

  15. Treatment and Prevention of Pandemic H1N1 Influenza.

    Science.gov (United States)

    Rewar, Suresh; Mirdha, Dashrath; Rewar, Prahlad

    2015-01-01

    Swine influenza is a respiratory infection common to pigs worldwide caused by type A influenza viruses, principally subtypes H1N1, H1N2, H2N1, H3N1, H3N2, and H2N3. Swine influenza viruses also can cause moderate to severe illness in humans and affect persons of all age groups. People in close contact with swine are at especially high risk. Until recently, epidemiological study of influenza was limited to resource-rich countries. The World Health Organization declared an H1N1 pandemic on June 11, 2009, after more than 70 countries reported 30,000 cases of H1N1 infection. In 2015, incidence of swine influenza increased substantially to reach a 5-year high. In India in 2015, 10,000 cases of swine influenza were reported with 774 deaths. The Centers for Disease Control and Prevention recommend real-time polymerase chain reaction as the method of choice for diagnosing H1N1. Antiviral drugs are the mainstay of clinical treatment of swine influenza and can make the illness milder and enable the patient to feel better faster. Antiviral drugs are most effective when they are started within the first 48 hours after the clinical signs begin, although they also may be used in severe or high-risk cases first seen after this time. The Centers for Disease Control and Prevention recommends use of oseltamivir (Tamiflu, Genentech) or zanamivir (Relenza, GlaxoSmithKline). Prevention of swine influenza has 3 components: prevention in swine, prevention of transmission to humans, and prevention of its spread among humans. Because of limited treatment options, high risk for secondary infection, and frequent need for intensive care of individuals with H1N1 pneumonia, environmental control, including vaccination of high-risk populations and public education are critical to control of swine influenza out breaks. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Lower and upper chromatic numbers for BSTSs(2h - 1

    Directory of Open Access Journals (Sweden)

    Marco Buratti

    2001-08-01

    Full Text Available In [Discrete Math. 174, (1997 247-259] an infinite class of STSs(2h - 1 was found with the upper chromatic number not(χ=h. We prove that in this class, for all STSs(2h - 1 with h<10, the lower chromatic number coincides with the upper chromatic number, i.e. χ=not(χ=h and moreover, there exists a infinite sub-class of STSs with χ=not(χ=h for any value of h.

  17. Narcolepsy: Association with H1N1 Infection and Vaccination

    Directory of Open Access Journals (Sweden)

    Ji Hyun Song

    2016-12-01

    Full Text Available Epidemiological studies have demonstrated an association between H1N1 influenza infection and vaccinations. This article reviews the various studies, and suggests the biological mechanisms explaining why and how H1N1 influenza infection or vaccine stimulates the autoimmune response, thereby resulting in narcolepsy. Among the vaccines, the effect of Pandemrix was scrutinized more than other vaccines, due to its higher association with an increase of narcolepsy onset. The consequences of using other vaccines which contain same or different adjuvants as Pandemrix, were also analyzed.

  18. Seroprevalence of Canine Parvovirus in Dogs in Lusaka District, Zambia.

    Science.gov (United States)

    Saasa, Ngonda; Nalubamba, King Shimumbo; M'kandawire, Ethel; Siwila, Joyce

    2016-01-01

    Canine parvovirus (CPV) enteritis is a highly contagious enteric disease of young dogs. Limited studies have been done in Zambia to investigate the prevalence of CPV in dogs. Blood was collected from dogs from three veterinary clinics (clinic samples, n = 174) and one township of Lusaka (field samples, n = 56). Each dog's age, sex, breed, and vaccination status were recorded. A haemagglutination assay using pig erythrocytes and modified live parvovirus vaccine as the antigen was used. Antibodies to CPV were detected in 100% of dogs (unvaccinated or vaccinated). The titres ranged from 160 to 10240 with a median of 1280. Vaccinated dogs had significantly higher antibody titres compared to unvaccinated ( p vaccination status were significant predictors of antibody titres. The presence of antibody in all dogs suggests that the CPV infection is ubiquitous and the disease is endemic, hence the need for research to determine the protection conferred by vaccination and natural exposure to the virus under local conditions.

  19. Characterization of Canine parvovirus 2 variants circulating in Greece.

    Science.gov (United States)

    Ntafis, Vasileios; Xylouri, Eftychia; Kalli, Iris; Desario, Costantina; Mari, Viviana; Decaro, Nicola; Buonavoglia, Canio

    2010-09-01

    The aim of the present study was to characterize Canine parvovirus 2 (CPV-2) variants currently circulating in Greece. Between March 2008 and March 2009, 167 fecal samples were collected from diarrheic dogs from different regions of Greece. Canine parvovirus 2 was detected by standard polymerase chain reaction, whereas minor groove binder probe assays were used to distinguish genetic variants and discriminate between vaccine and field strains. Of 84 CPV-2-positive samples, 81 CPV-2a, 1 CPV-2b, and 2 CPV-2c were detected. Vaccine strains were not detected in any sample. Sequence analysis of the VP2 gene of the 2 CPV-2c viruses revealed up to 100% amino acid identity with the CPV-2c strains previously detected in Europe. The results indicated that, unlike other European countries, CPV-2a remains the most common variant in Greece, and that the CPV-2c variant found in Europe is also present in Greece.

  20. Parvovirus B19 reactivation presenting as neutropenia after rituximab treatment.

    Science.gov (United States)

    Klepfish, A; Rachmilevitch, E; Schattner, A

    2006-11-01

    A patient with primary biliary cirrhosis and associated refractory immune thrombocytopenic purpura was treated with 4 weekly courses of rituximab, a monoclonal antibody targeting B-cell surface antigen CD20. Her thrombocyte count and even cholestatic liver function tests improved. However, 17 weeks after rituximab treatment, she developed severe neutropenia (absolute neutrophil count 0.23x10(3)/mul) and recurrent thrombocytopenia with abnormal bone marrow of all three lineages. Although delayed-onset neutropenia has been reported after rituximab, reactivated viral infections have also been encountered. Parvovirus B19 was suspected and confirmed as the cause of neutropenia in our patient. The patient was supported by GCSF treatment and recovered uneventfully after several weeks. Neutropenia after rituximab can also be the predominant manifestation of reactivated parvovirus B19 infection and have a favorable prognosis.

  1. Large scale production and downstream processing of a recombinant porcine parvovirus vaccine

    NARCIS (Netherlands)

    Maranga, L.; Rueda, P.; Antonis, A.F.G.; Vela, C.; Langeveld, J.P.M.; Casal, J.I.; Carrondo, M.J.T.

    2002-01-01

    Porcine parvovirus (PPV) virus-like particles (VLPs) constitute a potential vaccine for prevention of parvovirus-induced reproductive failure in gilts. Here we report the development of a large scale (25 l) production process for PPV-VLPs with baculovirus-infected insect cells. A low multiplicity of

  2. Development of an Enzyme Linked Immunosorbent Assay to Detect Chicken Parvovirus Specific Antibodies

    Science.gov (United States)

    Here we report the development and application of an enzyme linked immunosorbent assay to detect parvovirus-specific antibodies in chicken sera. We used an approach previously described for other parvoviruses to clone and express viral structural proteins in insect cells from recombinant baculovirus...

  3. Enteric disease in broiler chickens following experimental infection with chicken parvovirus

    Science.gov (United States)

    Day-old broiler chickens were inoculated orally with the chicken parvovirus strain, chicken parvovirus-P1. In four independent experiments, characteristic clinical signs of enteric disease including watery, mustard color diarrhea and growth retardation were observed following infection. The virus wa...

  4. Long-term outcome after fetal transfusion for hydrops associated with parvovirus B19 infection

    NARCIS (Netherlands)

    Nagel, Hélène T. C.; de Haan, Timo R.; Vandenbussche, Frank P. H. A.; Oepkes, Dick; Walther, Frans J.

    2007-01-01

    To evaluate neurodevelopmental status of children treated with intrauterine red blood cell and platelet transfusion for fetal hydrops caused by parvovirus B19. Maternal and neonatal records of all intrauterine transfusions for congenital parvovirus B19 infection in our center between 1997 and 2005

  5. Population-based study on the seroprevalence of parvovirus B19 in Amsterdam

    NARCIS (Netherlands)

    van Rijckevorsel, G. G. C.; Sonder, G. J. B.; Schim van der Loeff, M. F.; van den Hoek, J. A. R.

    2009-01-01

    A study was undertaken to estimate the seroprevalence of parvovirus B19 infection in the general adult population of Amsterdam, The Netherlands. To our knowledge this is the first study testing parvovirus B19 in a random sample of the Dutch adult population. The study was a cross-sectional survey,

  6. Canine parvovirus effect on wolf population change and pup survival

    Science.gov (United States)

    Mech, L.D.; Goyal, S.M.

    1993-01-01

    Canine parvovirus infected wild canids more than a decade ago, but no population effect has been documented. In wild Minnesota wolves (Canis lupus) over a 12-yr period, the annual percent population increase and proportion of pups each were inversely related to the percentage of wolves serologically positive to the disease. Although these effects did not seem to retard this large extant population, similar relationships in more isolated wolf populations might hinder recovery of this endangered and threatened species.

  7. Increased suppression of oncolytic adenovirus carrying mutant k5 on colorectal tumor

    International Nuclear Information System (INIS)

    Fan Junkai; Xiao Tian; Gu Jinfa; Wei Na; He Lingfeng; Ding Miao; Liu Xinyuan

    2008-01-01

    Angiogenesis plays a key role in the development of a wide variety of malignant tumors. The approach of targeting antiangiogenesis has become an important field of cancer gene therapy. In this study, the antiangiogenesis protein K5 (the kringle 5 of human plasminogen) has been mutated by changing leucine71 to arginine to form mK5. Then the ZD55-mK5, which is an oncolytic adenovirus expressing mK5, was constructed. It showed stronger inhibition on proliferation of human umbilical vein endothelial cell. Moreover, in tube formation and embryonic chorioallantoic membrane assay, ZD55-mK5 exhibited more effective antiangiogenesis than ZD55-K5. In addition, ZD55-mK5 generated obvious suppression on the growth of colorectal tumor xenografts and prolonged the life span of nude mice. These results indicate that ZD55-mK5 is a potent agent for inhibiting the tumor angiogenesis and tumor growth

  8. Characterization of the Antiglioma Effect of the Oncolytic Adenovirus VCN-01.

    Directory of Open Access Journals (Sweden)

    Beatriz Vera

    Full Text Available Despite the recent advances in the development of antitumor therapies, the prognosis for patients with malignant gliomas remains dismal. Therapy with tumor-selective viruses is emerging as a treatment option for this devastating disease. In this study we characterize the anti-glioma effect of VCN-01, an improved hyaluronidase-armed pRB-pathway-selective oncolytic adenovirus that has proven safe and effective in the treatment of several solid tumors. VCN-01 displayed a significant cytotoxic effect on glioma cells in vitro. In vivo, in two different orthotopic glioma models, a single intra-tumoral administration of VCN-01 increased overall survival significantly and led to long-term survivors free of disease.

  9. Combination of Vaccine-Strain Measles and Mumps Viruses Enhances Oncolytic Activity against Human Solid Malignancies.

    Science.gov (United States)

    Son, Ho Anh; Zhang, LiFeng; Cuong, Bui Khac; Van Tong, Hoang; Cuong, Le Duy; Hang, Ngo Thu; Nhung, Hoang Thi My; Yamamoto, Naoki; Toan, Nguyen Linh

    2018-02-07

    Oncolytic measles and mumps viruses (MeV, MuV) have a potential for anti-cancer treatment. We examined the anti-tumor activity of MeV, MuV, and MeV-MuV combination (MM) against human solid malignancies (HSM). MeV, MuV, and MM targeted and significantly killed various cancer cell lines of HSM but not normal cells. MM demonstrated a greater anti-tumor effect and prolonged survival in a human prostate cancer xenograft tumor model compared to MeV and MuV. MeV, MuV, and MM significantly induced the expression of immunogenic cell death markers and enhanced spleen-infiltrating immune cells. In conclusion, MM combination significantly improves the treatment of human solid malignancies.

  10. The data acquisition system for the HERA H1 experiment

    International Nuclear Information System (INIS)

    Haynes, W.J.

    1990-06-01

    The HERA ep collider will set new challenges for the acquisition of data from large particle physics experiments. Short bunch-crossing times combined with high data rates imply sophisticated designs based on current technology. This paper describes how a multi-microprocessor system is being used at the H1 experiment. (author)

  11. The H^{-1}-norm of tubular neighbourhoods of curves

    NARCIS (Netherlands)

    Gennip, van Y.; Peletier, M.A.

    2011-01-01

    We study the H^{-1}-norm of the function 1 on tubular neighbourhoods of curves in R^2. We take the limit of small thickness epsilon, and we prove two different asymptotic results. The first is an asymptotic development for a fixed curve in the limit epsilon to 0, containing contributions from the

  12. Spread of H1N1 within Households

    Centers for Disease Control (CDC) Podcasts

    This podcast describes an investigation into how H1N1 was spreading within households during the initial days of the pandemic in Texas. CDC's Dr. Oliver Morgan discusses what investigators learned about the role that children played in introducing the virus into households and spreading flu.

  13. Influenza A (H1N1) pneumonia: HRCT findings

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Viviane Brandao; Rodrigues, Rosana Souza; Barreto, Miriam Menna; Marchiori, Edson, E-mail: edmarchiori@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Zanetti, Glaucia [Escola de Medicina de Petropolis, RJ (Brazil); Hochhegger, Bruno [Santa Casa de Misericordia de Porto Alegre, RS (Brazil)

    2013-11-01

    Objective: to describe aspects found on HRCT scans of the chest in patients infected with the influenza A (H1N1) virus. Methods: we retrospectively analyzed the HRCT scans of 71 patients (38 females and 33 males) with H1N1 infection, confirmed through laboratory tests, between July and September of 2009. The HRCT scans were interpreted by two thoracic radiologists independently, and in case of disagreement, the decisions were made by consensus. Results: the most common HRCT findings were ground-glass opacities (85%), consolidation (64%), or a combination of ground-glass opacities and consolidation (58%). Other findings were airspace nodules (25%), bronchial wall thickening (25%), interlobular septal thickening (21%), crazy-paving pattern (15%), perilobular pattern (3%), and air trapping (3%). The findings were frequently bilateral (89%), with a random distribution (68%). Pleural effusion, when observed, was typically minimal. No lymphadenopathy was identified. Conclusions: the most common findings were ground-glass opacities and consolidations, or a combination of both. Involvement was commonly bilateral with no axial or cranio caudal predominance in the distribution. Although the major tomographic findings in H1N1 infection are nonspecific, it is important to recognize such findings in order to include infection with the H1N1 virus in the differential diagnosis of respiratory symptoms. (author)

  14. Charge transfer in H2+-H(1s) collisions

    International Nuclear Information System (INIS)

    Errea, L.F.; Macias, A.; Mendez, L.; Rabadan, I.; Riera, A.

    2005-01-01

    We present an ab initio study of H 2 + +H(1s) collisions at H 2 + impact energies between 0.4 and 50keV. Cross sections are obtained within the sudden approximation for rotation and vibration of the diatomic molecule. We have found that anisotropy effects are crucial to correctly describe this system in this energy range

  15. H1N1 Influenza A hos mennesker og svin

    DEFF Research Database (Denmark)

    Larsen, Lars Erik

    2009-01-01

    Den nye pandemiske influenza A stamme H1N1 er hovedsagelig et nyt virus, som spredes mellem mennesker, men virusset er formodentlig opstået ved blanding af to svineinfluenza-virus og har derfor bibeholdt evnen til at kunne smitte fra mennesker til svin og fra svin til svin. Det er derfor vigtigt...

  16. Pneumococcal Pneumonia and Pandemic H1N1

    Centers for Disease Control (CDC) Podcasts

    2012-06-06

    Dr. George Nelson, a CDC medical officer, discusses the relationship between pneumococcal pneumonia and Pandemic H1N1.  Created: 6/6/2012 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 6/6/2012.

  17. Development of the H1 backward silicon strip detector

    International Nuclear Information System (INIS)

    Eick, W.; Hansen, K.; Lange, W.; Prell, S.; Zimmermann, W.; Bullough, M.A.; Greenwood, N.M.; Lucas, A.D.; Newton, A.M.; Wilburn, C.D.; Horisberger, R.; Pitzl, D.; Haynes, W.J.; Noyes, G.

    1996-10-01

    The development and first results are described of a silicon strip detector telescope for the HERA experiment H1 designed to measure the polar angle of deep inelastic scattered electrons at small Bjorken x and low momentum transfers Q 2 . (orig.)

  18. Development of the H1 backward silicon strip detector

    International Nuclear Information System (INIS)

    Eick, W.; Hansen, K.; Lange, W.; Prell, S.; Zimmermann, W.; Bullough, M.A.; Greenwood, N.M.; Lucas, A.D.; Newton, A.M.; Wilburn, C.D.; Horisberger, R.; Pitzl, D.; Haynes, W.J.; Noyes, G.

    1997-01-01

    The development and first results are described of a silicon strip detector telescope for the HERA experiment H1 designed to measure the polar angle of deep inelastic scattered electrons at small Bjorken x and low momentum transfers Q 2 . (orig.)

  19. Identification of swine H1N2/pandemic H1N1 reassortant influenza virus in pigs, United States.

    Science.gov (United States)

    Ali, Ahmed; Khatri, Mahesh; Wang, Leyi; Saif, Yehia M; Lee, Chang-Won

    2012-07-06

    In October and November 2010, novel H1N2 reassortant influenza viruses were identified from pigs showing mild respiratory signs that included cough and depression. Sequence and phylogenetic analysis showed that the novel H1N2 reassortants possesses HA and NA genes derived from recent H1N2 swine isolates similar to those isolated from Midwest. Compared to the majority of reported reassortants, both viruses preserved human-like host restrictive and putative antigenic sites in their HA and NA genes. The four internal genes, PB2, PB1, PA, and NS were similar to the contemporary swine triple reassortant viruses' internal genes (TRIG). Interestingly, NP and M genes of the novel reassortants were derived from the 2009 pandemic H1N1. The NP and M proteins of the two isolates demonstrated one (E16G) and four (G34A, D53E, I109T, and V313I) amino acid changes in the M2 and NP proteins, respectively. Similar amino acid changes were also noticed upon incorporation of the 2009 pandemic H1N1 NP in other reassortant viruses reported in the U.S. Thus the role of those amino acids in relation to host adaptation need to be further investigated. The reassortments of pandemic H1N1 with swine influenza viruses and the potential of interspecies transmission of these reassortants from swine to other species including human indicate the importance of systematic surveillance of swine population to determine the origin, the prevalence of similar reassortants in the U.S. and their impact on both swine production and public health. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Generation of a parvovirus B19 vaccine candidate.

    Science.gov (United States)

    Chandramouli, Sumana; Medina-Selby, Angelica; Coit, Doris; Schaefer, Mary; Spencer, Terika; Brito, Luis A; Zhang, Pu; Otten, Gillis; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Settembre, Ethan C

    2013-08-20

    Parvovirus B19 is the causative agent of fifth disease in children, aplastic crisis in those with blood dyscrasias, and hydrops fetalis. Previous parvovirus B19 virus-like-particle (VLP) vaccine candidates were produced by co-infection of insect cells with two baculoviruses, one expressing wild-type VP1 and the other expressing VP2. In humans, the VLPs were immunogenic but reactogenic. We have developed new VLP-based parvovirus B19 vaccine candidates, produced by co-expressing VP2 and either wild-type VP1 or phospholipase-negative VP1 in a regulated ratio from a single plasmid in Saccharomyces cerevisiae. These VLPs are expressed efficiently, are very homogeneous, and can be highly purified. Although VP2 alone can form VLPs, in mouse immunizations, VP1 and the adjuvant MF59 are required to elicit a neutralizing response. Wild-type VLPs and those with phospholipase-negative VP1 are equivalently potent. The purity, homogeneity, yeast origin, and lack of phospholipase activity of these VLPs address potential causes of previously observed reactogenicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. p21 promotes oncolytic adenoviral activity in ovarian cancer and is a potential biomarker

    Directory of Open Access Journals (Sweden)

    Lockley Michelle

    2010-07-01

    Full Text Available Abstract The oncolytic adenovirus dl922-947 replicates selectively within and lyses cells with a dysregulated Rb pathway, a finding seen in > 90% human cancers. dl922-947 is more potent than wild type adenovirus and the E1B-deletion mutant dl1520 (Onyx-015. We wished to determine which host cell factors influence cytotoxicity. SV40 large T-transformed MRC5-VA cells are 3-logs more sensitive to dl922-947 than isogenic parental MRC5 cells, confirming that an abnormal G1/S checkpoint increases viral efficacy. The sensitivity of ovarian cancer cells to dl922-947 varied widely: IC50 values ranged from 51 (SKOV3ip1 to 0.03 pfu/cell (TOV21G. Cells sensitive to dl922-947 had higher S phase populations and supported earlier E1A expression. Cytotoxicity correlated poorly with both infectivity and replication, but well with expression of p21 by microarray and western blot analyses. Matched p21+/+ and -/- Hct116 cells confirmed that p21 influences dl922-947 activity in vitro and in vivo. siRNA-mediated p21 knockdown in sensitive TOV21G cells decreases E1A expression and viral cytotoxicity, whilst expression of p21 in resistant A2780CP cells increases virus activity in vitro and in intraperitoneal xenografts. These results highlight that host cell factors beyond simple infectivity can influence the efficacy of oncolytic adenoviruses. p21 expression may be an important biomarker of response in clinical trials.

  2. Hepatoma targeting peptide conjugated bio-reducible polymer complexed with oncolytic adenovirus for cancer gene therapy.

    Science.gov (United States)

    Choi, Joung-Woo; Kim, Hyun Ah; Nam, Kihoon; Na, Youjin; Yun, Chae-Ok; Kim, SungWan

    2015-12-28

    Despite adenovirus (Ad) vector's numerous advantages for cancer gene therapy, such as high ability of endosomal escape, efficient nuclear entry mechanism, and high transduction, and therapeutic efficacy, tumor specific targeting and antiviral immune response still remain as a critical challenge in clinical setting. To overcome these obstacles and achieve cancer-specific targeting, we constructed tumor targeting bioreducible polymer, an arginine grafted bio-reducible polymer (ABP)-PEG-HCBP1, by conjugating PEGylated ABP with HCBP1 peptides which has high affinity and selectivity towards hepatoma. The ABP-PEG-HCBP1-conjugated replication incompetent GFP-expressing ad, (Ad/GFP)-ABP-PEG-HCBP1, showed a hepatoma cancer specific uptake and transduction compared to either naked Ad/GFP or Ad/GFP-ABP. Competition assays demonstrated that Ad/GFP-ABP-PEG-HCBP1-mediated transduction was specifically inhibited by HCBP1 peptide rather than coxsackie and adenovirus receptor specific antibody. In addition, ABP-PEG-HCBP1 can protect biological activity of Ad against serum, and considerably reduced both innate and adaptive immune response against Ad. shMet-expressing oncolytic Ad (oAd; RdB/shMet) complexed with ABP-PEG-HCBP1 delivered oAd efficiently into hepatoma cancer cells. The oAd/ABP-PEG-HCBP1 demonstrated enhanced cancer cell killing efficacy in comparison to oAd/ABP complex. Furthermore, Huh7 and HT1080 cancer cells treated with oAd/shMet-ABP-PEG-HCBP1 complex had significantly decreased Met and VEGF expression in hepatoma cancer, but not in non-hepatoma cancer. In sum, these results suggest that HCBP1-conjugated bioreducible polymer could be used to deliver oncolytic Ad safely and efficiently to treat hepatoma. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A dynamical systems model for combinatorial cancer therapy enhances oncolytic adenovirus efficacy by MEK-inhibition.

    Science.gov (United States)

    Bagheri, Neda; Shiina, Marisa; Lauffenburger, Douglas A; Korn, W Michael

    2011-02-01

    Oncolytic adenoviruses, such as ONYX-015, have been tested in clinical trials for currently untreatable tumors, but have yet to demonstrate adequate therapeutic efficacy. The extent to which viruses infect targeted cells determines the efficacy of this approach but many tumors down-regulate the Coxsackievirus and Adenovirus Receptor (CAR), rendering them less susceptible to infection. Disrupting MAPK pathway signaling by pharmacological inhibition of MEK up-regulates CAR expression, offering possible enhanced adenovirus infection. MEK inhibition, however, interferes with adenovirus replication due to resulting G1-phase cell cycle arrest. Therefore, enhanced efficacy will depend on treatment protocols that productively balance these competing effects. Predictive understanding of how to attain and enhance therapeutic efficacy of combinatorial treatment is difficult since the effects of MEK inhibitors, in conjunction with adenovirus/cell interactions, are complex nonlinear dynamic processes. We investigated combinatorial treatment strategies using a mathematical model that predicts the impact of MEK inhibition on tumor cell proliferation, ONYX-015 infection, and oncolysis. Specifically, we fit a nonlinear differential equation system to dedicated experimental data and analyzed the resulting simulations for favorable treatment strategies. Simulations predicted enhanced combinatorial therapy when both treatments were applied simultaneously; we successfully validated these predictions in an ensuing explicit test study. Further analysis revealed that a CAR-independent mechanism may be responsible for amplified virus production and cell death. We conclude that integrated computational and experimental analysis of combinatorial therapy provides a useful means to identify treatment/infection protocols that yield clinically significant oncolysis. Enhanced oncolytic therapy has the potential to dramatically improve non-surgical cancer treatment, especially in locally advanced

  4. Current good manufacturing practice production of an oncolytic recombinant vesicular stomatitis viral vector for cancer treatment.

    Science.gov (United States)

    Ausubel, L J; Meseck, M; Derecho, I; Lopez, P; Knoblauch, C; McMahon, R; Anderson, J; Dunphy, N; Quezada, V; Khan, R; Huang, P; Dang, W; Luo, M; Hsu, D; Woo, S L C; Couture, L

    2011-04-01

    Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 10(9) plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 10(10) PFU/ml (total yield, 1 × 10(13) PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC.

  5. Molecular treatment of the ion-pair formation reaction in H(1s) + H(1s) collisions

    Energy Technology Data Exchange (ETDEWEB)

    Borondo, F.; Martin, F.; Yaez, M.

    1987-01-01

    All the available theoretical calculations of the cross section for the ion-pair formation reaction H(1s)+H(1s)..-->..H/sup +/H/sup -/(1s/sup 2/) have been performed using methods that are only valid at high collision energies. They get good agreement with the experiments for impact energies greater than 25 keV, but fail completely at smaller energies. In this work we report the cross section for this reaction at impact energies less than 10 keV, calculated in the framework of the impact-parameter approximation and using the molecular method with a common translation factor.

  6. Antiviral effect of lithium chloride on infection of cells by canine parvovirus.

    Science.gov (United States)

    Zhou, Pei; Fu, Xinliang; Yan, Zhongshan; Fang, Bo; Huang, San; Fu, Cheng; Hong, Malin; Li, Shoujun

    2015-11-01

    Canine parvovirus type 2 causes significant viral disease in dogs, with high morbidity, high infectivity, and high mortality. Lithium chloride is a potential antiviral drug for viruses. We determined the antiviral effect of Lithium Chloride on canine parvovirus type 2 in feline kidney cells. The viral DNA and proteins of canine parvovirus were suppressed in a dose-dependent manner by lithium chloride. Further investigation verified that viral entry into cells was inhibited in a dose-dependent manner by lithium chloride. These results indicated that lithium chloride could be a potential antiviral drug for curing dogs with canine parvovirus infection. The specific steps of canine parvovirus entry into cells that are affected by lithium chloride and its antiviral effect in vivo should be explored in future studies.

  7. Chipmunk parvovirus is distinct from members in the genus Erythrovirus of the family Parvoviridae.

    Directory of Open Access Journals (Sweden)

    Zhaojun Chen

    2010-12-01

    Full Text Available The transcription profile of chipmunk parvovirus (ChpPV, a tentative member of the genus Erythrovirus in the subfamily Parvovirinae of the family Parvoviridae, was characterized by transfecting a nearly full-length genome. We found that it is unique from the profiles of human parvovirus B19 and simian parvovirus, the members in the genus Erythrovirus so far characterized, in that the small RNA transcripts were not processed for encoding small non-structural proteins. However, like the large non-structural protein NS1 of the human parvovirus B19, the ChpPV NS1 is a potent inducer of apoptosis. Further phylogenetic analysis of ChpPV with other parvoviruses in the subfamily Parvovirinae indicates that ChpPV is distinct from the members in genus Erythrovirus. Thus, we conclude that ChpPV may represent a new genus in the family Parvoviridae.

  8. Imaging MOSS tomographic system for H-1NF

    International Nuclear Information System (INIS)

    Glass, F.; Howard, J.

    1999-01-01

    A tomographic diagnostic utilising the Modulated Optical Solid-State spectrometer (MOSS) is planned for the H-1NF stellarator at the ANU. It is designed to create two-dimensional temperature or velocity maps of a poloidal cross-section of the high temperature plasma of H-1NF. The introduction of the MOSS spectrometers has enabled the development of several diagnostics to be used on the H-1NF stellerator. The MOSS spectrometer allows calculations of the plasma temperature and bulk velocity based on a line-integrated measurement of light emitted from electronic transitions within the plasma. A tomographic system utilising a rotatable multi-view ring apparatus and spatial multiplexing through a MOSS spectrometer is currently being developed. The ring apparatus is placed inside the H-1NF vessel and encircles the plasma. Multiple line-of-sight views collect light through a poloidal cross-section of the plasma and the emitted light is coupled into large core optical fibres. The transmitted light, via the optical fibre bundle, is then imaged through a large aperture MOSS spectrometer and onto another optical fibre array. Each fibre is then fed into a photomultiplier tube for signal detection. Characterisation of the properties of the lithium niobate (LiNbO 3 ) crystal used for modulation in the MOSS spectrometer is being undertaken to account for ray divergence in the imaging system. Tomographic techniques enable the construction of a temperature or velocity map of the poloidal cross-section. Rotating the ring apparatus to a new viewing position for the next pulse of plasma should allow an accurate picture to be built up based on the reproducibility of the plasma pulses. It is expected that initial testing of the system will begin in May when H-1NF begins operations at 0.5 Telsa field strength

  9. Original Research: Parvovirus B19 infection in children with sickle cell disease in the hydroxyurea era

    Science.gov (United States)

    Penkert, Rhiannon R; Lavoie, Paul; Tang, Li; Sun, Yilun; Hurwitz, Julia L

    2016-01-01

    Parvovirus B19 infection causes transient aplastic crisis in sickle cell disease (SCD) due to a temporary interruption in the red blood cell production. Toxicity from hydroxyurea includes anemia and reticulocytopenia, both of which also occur during a transient aplastic crisis event. Hydroxyurea inhibits proliferation of hematopoietic cells and may be immunosuppressive. We postulated that hydroxyurea could exacerbate parvovirus B19-induced aplastic crisis and inhibit the development of specific immune responses in children with SCD. We conducted a retrospective review of parvovirus B19 infection in 330 children with SCD. Altogether there were 120 known cases of aplastic crisis attributed to parvovirus B19 infection, and 12% of children were on hydroxyurea treatment during the episode. We evaluated hematological and immune responses. Children with HbSS or HbSβ0-thalassemia treated with hydroxyurea, when compared with untreated children, required fewer transfusions and had higher Hb concentration nadir during transient aplastic crisis. Duration of hospital stays was no different between hydroxyurea-treated and untreated groups. Children tested within a week following aplastic crisis were positive for parvovirus-specific IgG. Immune responses lasted for the duration of the observation period, up to 13 years after transient aplastic crisis, and there were no repeat aplastic crisis episodes. The frequencies of parvovirus-specific antibodies in all children with SCD increased with age, as expected due to the increased likelihood of a parvovirus exposure, and were comparable to frequencies reported for healthy children. Approximately one-third of children had a positive parvovirus B19-specific IgG test without a documented history of transient aplastic crisis, and 64% of them were treated with hydroxyurea. Hydroxyurea may reduce requirements for blood transfusions and may attenuate symptoms during transient aplastic crisis episodes caused by parvovirus B19 infections

  10. Original Research: Parvovirus B19 infection in children with sickle cell disease in the hydroxyurea era.

    Science.gov (United States)

    Hankins, Jane S; Penkert, Rhiannon R; Lavoie, Paul; Tang, Li; Sun, Yilun; Hurwitz, Julia L

    2016-04-01

    Parvovirus B19 infection causes transient aplastic crisis in sickle cell disease (SCD) due to a temporary interruption in the red blood cell production. Toxicity from hydroxyurea includes anemia and reticulocytopenia, both of which also occur during a transient aplastic crisis event. Hydroxyurea inhibits proliferation of hematopoietic cells and may be immunosuppressive. We postulated that hydroxyurea could exacerbate parvovirus B19-induced aplastic crisis and inhibit the development of specific immune responses in children with SCD. We conducted a retrospective review of parvovirus B19 infection in 330 children with SCD. Altogether there were 120 known cases of aplastic crisis attributed to parvovirus B19 infection, and 12% of children were on hydroxyurea treatment during the episode. We evaluated hematological and immune responses. Children with HbSS or HbSβ(0)-thalassemia treated with hydroxyurea, when compared with untreated children, required fewer transfusions and had higher Hb concentration nadir during transient aplastic crisis. Duration of hospital stays was no different between hydroxyurea-treated and untreated groups. Children tested within a week following aplastic crisis were positive for parvovirus-specific IgG. Immune responses lasted for the duration of the observation period, up to 13 years after transient aplastic crisis, and there were no repeat aplastic crisis episodes. The frequencies of parvovirus-specific antibodies in all children with SCD increased with age, as expected due to the increased likelihood of a parvovirus exposure, and were comparable to frequencies reported for healthy children. Approximately one-third of children had a positive parvovirus B19-specific IgG test without a documented history of transient aplastic crisis, and 64% of them were treated with hydroxyurea. Hydroxyurea may reduce requirements for blood transfusions and may attenuate symptoms during transient aplastic crisis episodes caused by parvovirus B19 infections

  11. [Detection of human parvovirus B19, human bocavirus and human parvovirus 4 infections in blood samples among 95 patients with liver disease in Nanjing by nested PCR].

    Science.gov (United States)

    Tong, Rui; Zhou, Wei-Min; Liu, Xi-Jun; Wang, Yue; Lou, Yong-Liang; Tan, Wen-Jie

    2013-04-01

    To analyze the infection of human parvovirus B19, human bocavirus (HBoV) and human parvovirus 4 (PARV4) in blood samples among patients with liver disease in Nanjing by molecular detection. Nested PCR assays were designed and validated to detect B19, HBoV and PARV4, respectively. The assays were used to screen three parvoviruses in blood samples from 95 patients with different liver disease in Nanjing. The parvovirus infection was analyzed statistically. The detection limits were 10 copies of genomic DNA equivalents per reaction for each assays and the good specificity were observed. The frequency of B19 and HBoV were 2/95 (2.1%) and 9/95 (9.5%) in blood samples respectively. No PARV4 was detected. HBoV was detected in 3/5 patients with drug-induced hepatitis. Both B19 and HBoV infection were detected in blood from patients with liver disease.

  12. E4orf1 Limits the Oncolytic Potential of the E1B-55K Deletion Mutant Adenovirus▿

    Science.gov (United States)

    Thomas, Michael A.; Broughton, Robin S.; Goodrum, Felicia D.; Ornelles, David A.

    2009-01-01

    Clinical trials have shown oncolytic adenoviruses to be tumor selective with minimal toxicity toward normal tissue. The virus ONYX-015, in which the gene encoding the early region 1B 55-kDa (E1B-55K) protein is deleted, has been most effective when used in combination with either chemotherapy or radiation therapy. Therefore, improving the oncolytic nature of tumor-selective adenoviruses remains an important objective for improving this form of cancer therapy. Cells infected during the G1 phase of the cell cycle with the E1B-55K deletion mutant virus exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less efficiently killed than cells infected during the S phase. Here we demonstrate that the G1 restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1). E4orf1 has been reported to signal through the phosphatidylinositol 3′-kinase pathway leading to the activation of Akt, mTOR, and p70 S6K. Evidence presented here shows that E4orf1 may also induce the phosphorylation of Akt and p70 S6K in a manner that depends on Rac1 and its guanine nucleotide exchange factor Tiam1. Accordingly, agents that have been reported to disrupt the Tiam1-Rac1 interaction or to prevent phosphorylation of the ribosomal S6 kinase partially alleviated the E4orf1 restriction to late viral protein synthesis and enhanced tumor cell killing by the E1B-55K mutant virus. These results demonstrate that E4orf1 limits the oncolytic nature of a conditionally replicating adenovirus such as ONYX-015. The therapeutic value of similar oncolytic adenoviruses may be improved by abrogating E4orf1 function. PMID:19129452

  13. E4orf1 limits the oncolytic potential of the E1B-55K deletion mutant adenovirus.

    Science.gov (United States)

    Thomas, Michael A; Broughton, Robin S; Goodrum, Felicia D; Ornelles, David A

    2009-03-01

    Clinical trials have shown oncolytic adenoviruses to be tumor selective with minimal toxicity toward normal tissue. The virus ONYX-015, in which the gene encoding the early region 1B 55-kDa (E1B-55K) protein is deleted, has been most effective when used in combination with either chemotherapy or radiation therapy. Therefore, improving the oncolytic nature of tumor-selective adenoviruses remains an important objective for improving this form of cancer therapy. Cells infected during the G(1) phase of the cell cycle with the E1B-55K deletion mutant virus exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less efficiently killed than cells infected during the S phase. Here we demonstrate that the G(1) restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1). E4orf1 has been reported to signal through the phosphatidylinositol 3'-kinase pathway leading to the activation of Akt, mTOR, and p70 S6K. Evidence presented here shows that E4orf1 may also induce the phosphorylation of Akt and p70 S6K in a manner that depends on Rac1 and its guanine nucleotide exchange factor Tiam1. Accordingly, agents that have been reported to disrupt the Tiam1-Rac1 interaction or to prevent phosphorylation of the ribosomal S6 kinase partially alleviated the E4orf1 restriction to late viral protein synthesis and enhanced tumor cell killing by the E1B-55K mutant virus. These results demonstrate that E4orf1 limits the oncolytic nature of a conditionally replicating adenovirus such as ONYX-015. The therapeutic value of similar oncolytic adenoviruses may be improved by abrogating E4orf1 function.

  14. Selectivity and Efficiency of Late Transgene Expression by Transcriptionally Targeted Oncolytic Adenoviruses Are Dependent on the Transgene Insertion Strategy

    OpenAIRE

    Quirin, Christina; Rohmer, Stanimira; Fernández-Ulibarri, Inés; Behr, Michael; Hesse, Andrea; Engelhardt, Sarah; Erbs, Philippe; Enk, Alexander H.; Nettelbeck, Dirk M.

    2010-01-01

    Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show t...

  15. The oncolytic peptide LTX-315 induces cell death and DAMP release by mitochondria distortion in human melanoma cells

    Science.gov (United States)

    Eike, Liv-Marie; Yang, Nannan; Rekdal, Øystein; Sveinbjørnsson, Baldur

    2015-01-01

    Host defense peptides (HDPs) are naturally occurring molecules found in most species, in which they play a significant role in the first line defense against intruding pathogens, and several HDPs have been shown to possess anticancer activity. Structure-activity relationship studies on the HDP bovine lactoferricin revealed a de novo design of a nonamer peptide LTX-315, with oncolytic properties. In the present study, we investigated the oncolytic activity of LTX-315 in human melanoma cells (A375). LTX-315 induced a rapid plasma membrane disruption and cell death within 2 hours. At a low concentration, fluorescence-labeled LTX-315 was internalized and accumulated in cytoplasmic vacuoles in close proximity to the mitochondria. The mitochondrial membrane potential was shown to depolarize as a consequence of LTX-315 treatment and at ultrastructural level, the mitochondria morphology was significantly altered. Release of danger signals (DAMPs) such as ATP, Cytochrome C and HMGB1 into the cell supernatant of cultured cells was evident minutes after peptide treatment. The oncolytic effect of LTX-315 involving perturbation of both the cell membrane and the mitochondria with subsequent release of DAMPs may highlight the ability of LTX-315 to induce complete regression and long-term protective immune responses as previously reported in experimental animal models. PMID:26472184

  16. The in vivo therapeutic efficacy of the oncolytic adenovirus Delta24-RGD is mediated by tumor-specific immunity.

    Directory of Open Access Journals (Sweden)

    Anne Kleijn

    Full Text Available The oncolytic adenovirus Delta24-RGD represents a new promising therapeutic agent for patients with a malignant glioma and is currently under investigation in clinical phase I/II trials. Earlier preclinical studies showed that Delta24-RGD is able to effectively lyse tumor cells, yielding promising results in various immune-deficient glioma models. However, the role of the immune response in oncolytic adenovirus therapy for glioma has never been explored. To this end, we assessed Delta24-RGD treatment in an immune-competent orthotopic mouse model for glioma and evaluated immune responses against tumor and virus. Delta24-RGD treatment led to long-term survival in 50% of mice and this effect was completely lost upon administration of the immunosuppressive agent dexamethasone. Delta24-RGD enhanced intra-tumoral infiltration of F4/80+ macrophages, CD4+ and CD8+ T-cells, and increased the local production of pro-inflammatory cytokines and chemokines. In treated mice, T cell responses were directed to the virus as well as to the tumor cells, which was reflected in the presence of protective immunological memory in mice that underwent tumor rechallenge. Together, these data provide evidence that the immune system plays a vital role in the therapeutic efficacy of oncolytic adenovirus therapy of glioma, and may provide angles to future improvements on Delta24-RGD therapy.

  17. Enhanced lysis by bispecific oncolytic measles viruses simultaneously using HER2/neu or EpCAM as target receptors

    Directory of Open Access Journals (Sweden)

    Jan RH Hanauer

    2016-01-01

    Full Text Available To target oncolytic measles viruses (MV to tumors, we exploit the binding specificity of designed ankyrin repeat proteins (DARPins. These DARPin-MVs have high tumor selectivity while maintaining excellent oncolytic potency. Stability, small size, and efficacy of DARPins allowed the generation of MVs simultaneously targeted to tumor marker HER2/neu and cancer stem cell (CSC marker EpCAM. For optimization, the linker connecting both DARPins was varied in flexibility and length. Flexibility had no impact on fusion helper activity whereas length had. MVs with bispecific MV-H are genetically stable and revealed the desired double-target specificity. In vitro, the cytolytic activity of bispecific MVs was superior or comparable to mono-targeted viruses depending on the target cells. In vivo, therapeutic efficacy of the bispecific viruses was validated in an orthotopic ovarian carcinoma model revealing an effective reduction of tumor mass. Finally, the power of bispecific targeting was demonstrated on cocultures of different tumor cells thereby mimicking tumor heterogeneity in vitro, more closely reflecting real tumors. Here, bispecific excelled monospecific viruses in efficacy. DARPin-based targeting domains thus allow the generation of efficacious oncolytic viruses with double specificity, with the potential to handle intratumoral variation of antigen expression and to simultaneously target CSCs and the bulk tumor mass.

  18. Oncolytic Vesicular Stomatitis Virus as a Viro-Immunotherapy: Defeating Cancer with a “Hammer” and “Anvil”

    Directory of Open Access Journals (Sweden)

    Michael Karl Melzer

    2017-02-01

    Full Text Available Oncolytic viruses have gained much attention in recent years, due, not only to their ability to selectively replicate in and lyse tumor cells, but to their potential to stimulate antitumor immune responses directed against the tumor. Vesicular stomatitis virus (VSV, a negative-strand RNA virus, is under intense development as an oncolytic virus due to a variety of favorable properties, including its rapid replication kinetics, inherent tumor specificity, and its potential to elicit a broad range of immunomodulatory responses to break immune tolerance in the tumor microenvironment. Based on this powerful platform, a multitude of strategies have been applied to further improve the immune-stimulating potential of VSV and synergize these responses with the direct oncolytic effect. These strategies include: 1. modification of endogenous virus genes to stimulate interferon induction; 2. virus-mediated expression of cytokines or immune-stimulatory molecules to enhance anti-tumor immune responses; 3. vaccination approaches to stimulate adaptive immune responses against a tumor antigen; 4. combination with adoptive immune cell therapy for potentially synergistic therapeutic responses. A summary of these approaches will be presented in this review.

  19. Attenuated, oncolytic, but not wild-type measles virus infection has pleiotropic effects on human neutrophil function.

    Science.gov (United States)

    Zhang, Yu; Patel, Bella; Dey, Aditi; Ghorani, Ehsan; Rai, Lena; Elham, Mohammed; Castleton, Anna Z; Fielding, Adele K

    2012-02-01

    We previously showed that neutrophils play a role in regression of human tumor xenografts in immunodeficient mice following oncolytic vaccine measles virus (MV-Vac) treatment. In this study, we sought, using normal human neutrophils, to identify potential neutrophil-mediated mechanisms for the attenuated MV-Vac induced effects seen in vivo, by comparison with those consequent on wild-type (WT-MV) infection. Both MV-Vac and WT-MV infected and replicated within neutrophils, despite lack of SLAM expression. In both cases, neutrophils survived longer ex vivo postinfection. Furthermore, MV-Vac (but not WT-MV) infection activated neutrophils and stimulated secretion of several specific antitumor cytokines (IL-8, TNF-α, MCP-1, and IFN-α) via induction of de novo RNA and protein synthesis. In addition, MV-Vac (but not WT-MV) infection caused TRAIL secretion in the absence of de novo synthesis by triggering release of prefabricated TRAIL, via a direct effect upon degranulation. The differences between the outcome of infection by MV-Vac and WT-MV were not entirely explained by differential infection and replication of the viruses within neutrophils. To our knowledge, this is the first demonstration of potential mechanisms of oncolytic activity of an attenuated MV as compared with its WT parent. Furthermore, our study suggests that neutrophils have an important role to play in the antitumor effects of oncolytic MV.

  20. Citrullination regulates pluripotency and histone H1 binding to chromatin

    DEFF Research Database (Denmark)

    Christophorou, Maria A; Castelo-Branco, Gonçalo; Halley-Stott, Richard P

    2014-01-01

    citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune...... and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel...... PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic...

  1. Data storage and data access at H1

    International Nuclear Information System (INIS)

    Gerhards, R.; Kleinwort, C.; Kruener-Marquis, U.; Niebergall, F.

    1996-01-01

    The electron proton collider HERA at the DESY laboratory in Hamburg and the H1 experiment are now in successful operation for more than three years. The H1 experiment is logging data at an average rate of 500KB/s which results in a yearly raw data volume of several Terabytes. The data are reconstructed with a delay of only a few hours, also yielding several Terabytes of reconstructed data after physics oriented event classification. Physics analysis is performed on a SGI Challenge computer, equipped with about 500 GB of disk and, since a couple of months, direct access to a Storage Tek ACS 4400 silo. The disk space is mainly devoted to store the reconstructed data in very compressed format (typically 5 to 10 KB per event). This allows for very efficient and fast physics analysis. Monte Carlo data, on the other hand, are kept in the ACS silo and staged to disk on demand. (author)

  2. The readout system of the new H1 silicon detectors

    International Nuclear Information System (INIS)

    Buerger, J.; Hansen, K.; Lange, W.; Prell, S.; Zimmermann, W.; Henschel, H.; Haynes, W.J.; Noyes, G.W.; Joensson, L.; Gabathuler, K.; Horisberger, R.; Wagener, M.; Eichler, R.; Erdmann, W.; Niggli, H.; Pitzl, D.

    1995-03-01

    The H1 detector at HERA at DESY undergoes presently a major upgrade. In this context silicon strip detectors have been installed at beginning of 1995. The high bunch crossing frequency of HERA (10.4 MHz) demands a novel readout architecture which includes pipelining, signal processing and data reduction at a very early stage. The front end readout is hierarchically organized. The detector elements are read out by the APC chip which contains an analog pipeline and performs first background subtraction. Up to five readout chips are controlled by a Decoder Chip. The readout processor module (OnSiRoC) operates the detectors, controls the Decoder Chips and performs a first level data reduction. The paper describes the readout architecture of the H1 Silicon Detectors and performance data of the complete readout chain. (orig.)

  3. Ten years of Object-Oriented analysis on H1

    International Nuclear Information System (INIS)

    Laycock, Paul

    2012-01-01

    Over a decade ago, the H1 Collaboration decided to embrace the object-oriented paradigm and completely redesign its data analysis model and data storage format. The event data model, based on the ROOT framework, consists of three layers - tracks and calorimeter clusters, identified particles and finally event summary data - with a singleton class providing unified access. This original solution was then augmented with a fourth layer containing user-defined objects. This contribution will summarise the history of the solutions used, from modifications to the original design, to the evolution of the high-level end-user analysis object framework which is used by H1 today. Several important issues are addressed - the portability of expert knowledge to increase the efficiency of data analysis, the flexibility of the framework to incorporate new analyses, the performance and ease of use, and lessons learned for future projects.

  4. Results from the H1 experiment at HERA

    International Nuclear Information System (INIS)

    Krasny, M.W.

    1993-01-01

    Results obtained by the H1 collaboration at HERA from the analysis of the data collected in 1992 - the first year of HERA operation are presented. Measurements of the total photoproduction cross-section and the inclusive jet cross-section in γp scattering, the structure function F 2 (x,Q 2 ) and the jet rates in deep inelastic ep scattering, and results of direct searches for leptoquarks are discussed. (author) 37 refs., 6 figs

  5. Underreporting of 2009 H1N1 Influenza Cases

    Centers for Disease Control (CDC) Podcasts

    Influenza cases are difficult to track because many people don't go to the doctor or get tested for flu when they're sick. The first months of the 2009 H1N1 influenza pandemic were no different. In this podcast, CDC's Dr. Carrie Reed discusses a study in the December issue of Emerging Infectious Diseases that looked at the actual number of cases reported and estimated the true number of cases when correcting for underreporting.

  6. Spread of H1N1 within Households

    Centers for Disease Control (CDC) Podcasts

    2010-03-29

    This podcast describes an investigation into how H1N1 was spreading within households during the initial days of the pandemic in Texas. CDC's Dr. Oliver Morgan discusses what investigators learned about the role that children played in introducing the virus into households and spreading flu.  Created: 3/29/2010 by Emerging Infectious Diseases.   Date Released: 3/29/2010.

  7. Contextualizing ethics: ventilators, H1N1 and marginalized populations.

    Science.gov (United States)

    Silva, Diego S; Nie, Jason X; Rossiter, Kate; Sahni, Sachin; Upshur, Ross E G

    2010-01-01

    If the H1N1 pandemic worsens, there may not be enough ventilated beds to care for all persons with respiratory failure. To date, researchers who explicitly discuss the ethics of intensive care unit admission and the allocation of ventilators during an influenza pandemic have based criteria predominantly on the principles of utility and efficiency, that is, promoting actions that maximize the greatest good for the greatest number of people. However, haphazardly applying utility and efficiency potentially disadvantages marginalized populations who might be at increased risk of severe reactions to H1N1. In Canada, Aboriginals represent 3% of Canadians, yet 11% of H1N1 cases requiring hospitalization involve Aboriginal persons. Aboriginal persons suffer from high rates of obesity due to socio-economic inequalities. Obesity is also a risk factor for severe H1N1 reactions. Yet, since obesity is found to increase the duration of stay in ventilated beds and a long stay is not considered an optimal use of ventilators, applying the principles of utility and efficiency may magnify existing social inequalities. Although promoting utility and efficiency is important, other ethical principles, such as equity and need, require thoughtful consideration and implementation. Furthermore, since public resources are being used to address a public health hazard, the viewpoints of the public, and specifically stakeholders who will be disproportionately affected, should inform decision-makers. Finally, giving attention to the needs and rights of marginalized populations means that ventilators should not be allocated based on criteria that exacerbate the social injustices faced by these groups of people.

  8. The H1 calorimetry: Performance and upgrade program

    International Nuclear Information System (INIS)

    Borras, K.

    1995-04-01

    The energies of particles are measured in the H1 detector with four different calorimeters. Their designs, which are optimized for their particular requirements, are briefly described. Their performance is characterized in terms of their operational stability, the precision of their energy scale and their trigger functionality. The most important among the four calorimeters is the large liquid argon calorimeter and therefore most emphasis is given to the description of this component. (orig.)

  9. The H1 SPACAL time-to-digital converter system

    International Nuclear Information System (INIS)

    Eisenhandler, E.; Landon, M.; Thompson, G.

    1995-01-01

    This paper describes a pipelined 1,400-channel Time-to-Digital Converter (TDC) system for the H1 Scintillating Fiber Calorimeter, which will soon be installed in the H1 experiment at DESY. The main task of the TDC system is to determine the time of arrival of energy depositions, and send this information from bunch crossings that satisfy the event trigger into the H1 data acquisition system. In addition, the TDC system must monitor the timing trigger, which vetoes bunch crossings that contain too much background energy. Products of the interaction are separated from background on the basis of their different times of arrival with respect to the bunch crossing clock. For this monitoring the TDC system uses automatic on-board histogramming hardware that produces a family of histograms for each of 1,400 channels. The TDC function is performed by the TMC1004 ASIC. The system digitizes over a range of 32ns per bunch crossing with 1ns bins and a precision of 1ns. Because of the way the TMC1004 is designed, it is possible to vary the size of the bins between 0.6ns and 3ns by trading off measurement range for bin size. The system occupies two 9U VME crates

  10. Severe anemia and hydrops in a neonate with parvovirus B19 infection: a case report

    Directory of Open Access Journals (Sweden)

    Negar Sajjadian

    2013-12-01

    Full Text Available Background: Anemia at the time of birth may cause some problem like asphyxia, heart failure shock or even death in a neonate. Different etiologies can be considered for this problem. Parvovirus B19, as a viral organism, can cause hydrops fetalis and neonatal anemia and consequent complications. We present here a case of newborn infant with severe anemia who had human parvovirus B19 infection.Case Presentation: A male newborn with gestational age of 36 week was born from a mother with poor prenatal care and history of contact with domestic animal. The neonate was very pale with Apgar score 2 at 1 min and received resuscitation, mechanical ventilation and repeated blood transfusion The hemoglobin level was significantly low. Analysis was made based on the clinical presentations. According to the case history, physical and laboratory findings, neonatal severe anemia induced by parvovirus B19 infection was suggested and Laboratory work up documented his infection with parovirus B19.Conclusion: Parvovirus B19 (B19 virus is the smallest single strand linear DNA virus in animal viruses, which is the only strain of parvovirus that is pathogenic in humans. Human parvovirus B19 may cross the placenta and result in fetal infection, morbidity and death. Parvovirus is an uncommon cause of neonatal anemia and hydrops fetalis so this etiology must be considered in differential diagnosis of anemia at birth.

  11. The seroprevalence of Parvovirus B19 among kidney transplant recipients: a single-center study.

    Science.gov (United States)

    Khameneh, Zakieh Rostamzadeh; Sepehrvand, Nariman; Sohrabi, Vahid; Ghasemzadeh, Nazafarin

    2014-01-01

    Parvovirus B19 is a DNA virus that is responsible for causing several diseases in humans. Parvovirus B19-induced persistent anemia is one of its manifestations that is relatively common in transplant recipients. This study was aimed to investigate the seroprevalence of parvovirus B19 among kidney transplant recipients. Ninety-one transplant recipients were selected randomly and were investigated for several variables including age, gender, educational status, history of hemodialysis (HD), history of blood transfusion and immunosuppressive therapy. Two milliliters of blood samples were collected via venipuncture and evaluated for anti-Parvovirus B19 IgG antibody using enzyme-linked immunosorbent assay. All recipients were anemic, with 72.5% of them suffering from severe anemia (Hb ≤ 11 in men and ≤ 10 in women). Sixty-three patients (69.2%) were seropositive for Parvovirus B19. There was no significant difference in age, sex, educational status, history of blood transfusion, history of HD and immunosuppressive therapy between seropositive and seronegative groups. The seroprevalence of Parvovirus B19 was relatively high in kidney transplant recipients in Urmia, Iran. Our study failed to find a correlation between the severity of anemia and the seropositivity of Parvovirus B19.

  12. The seroprevalence of parvovirus B19 among kidney transplant recipients: A single-center study

    Directory of Open Access Journals (Sweden)

    Zakieh Rostamzadeh Khameneh

    2014-01-01

    Full Text Available Parvovirus B19 is a DNA virus that is responsible for causing several diseases in humans. Parvovirus B19-induced persistent anemia is one of its manifestations that is relatively common in transplant recipients. This study was aimed to investigate the seroprevalence of parvovirus B19 among kidney transplant recipients. Ninety-one transplant recipients were selected randomly and were investigated for several variables including age, gender, educational status, history of hemodialysis (HD, history of blood transfusion and immunosuppressive therapy. Two milliliters of blood samples were collected via venipuncture and evaluated for anti-Parvovirus B19 IgG antibody using enzyme-linked immunosorbent assay. All recipients were anemic, with 72.5% of them suffering from severe anemia (Hb ≤ 11 in men and ≤ 10 in women. Sixty-three patients (69.2% were seropositive for Parvovirus B19. There was no significant difference in age, sex, educational status, history of blood transfusion, history of HD and immunosuppressive therapy between seropositive and seronegative groups. The seroprevalence of Parvovirus B19 was relatively high in kidney transplant recipients in Urmia, Iran. Our study failed to find a correlation between the severity of anemia and the seropositivity of Parvovirus B19.

  13. Genetic complexity and multiple infections with more Parvovirus species in naturally infected cats

    Directory of Open Access Journals (Sweden)

    Battilani Mara

    2011-03-01

    Full Text Available Abstract Parvoviruses of carnivores include three closely related autonomous parvoviruses: canine parvovirus (CPV, feline panleukopenia virus (FPV and mink enteritis virus (MEV. These viruses cause a variety of serious diseases, especially in young patients, since they have a remarkable predilection for replication in rapidly dividing cells. FPV is not the only parvovirus species which infects cats; in addition to MEV, the new variants of canine parvovirus, CPV-2a, 2b and 2c have also penetrated the feline host-range, and they are able to infect and replicate in cats, causing diseases indistinguishable from feline panleukopenia. Furthermore, as cats are susceptible to both CPV-2 and FPV viruses, superinfection and co-infection with multiple parvovirus strains may occur, potentially facilitating recombination and high genetic heterogeneity. In the light of the importance of cats as a potential source of genetic diversity for parvoviruses and, since feline panleukopenia virus has re-emerged as a major cause of mortality in felines, the present study has explored the molecular characteristics of parvovirus strains circulating in cat populations. The most significant findings reported in this study were (a the detection of mixed infection FPV/CPV with the presence of one parvovirus variant which is a true intermediate between FPV/CPV and (b the quasispecies cloud size of one CPV sample variant 2c. In conclusion, this study provides new important results about the evolutionary dynamics of CPV infections in cats, showing that CPV has presumably started a new process of readaptation in feline hosts.

  14. Pulmonary function in patients with pandemic H1N1

    Directory of Open Access Journals (Sweden)

    Soraia Koppe

    Full Text Available Abstract Introduction: The influenza A (H1N1 was responsible for the 2009 pandemic, especially with severe pulmonary complications. Objective: To describe characteristics of patients in a university hospital in Curitiba - PR with laboratory diagnosis of influenza A (H1N1 and its post hospital discharge in the 2009 lung function pandemic. Methodology: A retrospective observational study. It was used as a data source the institution Epidemiology Service (SEPIH and spirometry tests of patients who were admitted in 2009, 18 years without lung disease associated and non-pregnant. Descriptive statistics were used and applied Fisher's exact test for relationship between comorbidity and spirometry tests. Results: There were 84 confirmed cases, of these 11 were eligible for the study with a mean age of 44.27 years (± 9.63 and 63.63% males. 54.54% of the 11 patients had comorbidities associated with systemic arterial hypertension (54.54%, diabetes (18.18% and late postoperative period of kidney transplantation (18.18% were the most frequent. Most patients (81.81% had BMI ≥ 25kg / m². The Spirometry test was performed approximately 40.09 (± 15.27 days after discharge, of these, 5 had restrictive pattern and all had abnormal chest radiograph results. There was no statistically significant difference between the results of Spirometry and comorbidities (p=0.24. Conclusions: The group evaluated in this research did not show a direct relationship between Spirometry and comorbidities, but changes in Spirometry in some patients after hospital discharge stood out, suggesting changes in lung function due to influenza A (H1N1.

  15. The H1 forward proton spectrometer at HERA

    International Nuclear Information System (INIS)

    Esch, P. van; Kapichine, M.; Morozov, A.; Spaskov, V.; Bartel, W.; List, B.; Mahlke-Krueger, H.; Schroeder, V.; Wilksen, T.; Buesser, F.W.; Geske, K.; Karschnik, O.; Niebergall, F.; Riege, H.; Schuett, J.; Staa, R. van; Wittek, C.; Dau, D.; Newton, D.; Kotelnikov, S.K.; Lebedev, A.; Rusakov, S.; Astvatsatourov, A.; Baehr, J.; Harder, U.; Hiller, K.; Hoffmann, B.; Luedecke, H.; Nahnhauer, R.

    2000-01-01

    The forward proton spectrometer is part of the H1 detector at the HERA collider. Protons with energies above 500 GeV and polar angles below 1 mrad can be detected by this spectrometer. The main detector components are scintillating fiber detectors read out by position-sensitive photo-multipliers. These detectors are housed in the so-called Roman Pots which allow them to be moved close to the circulating proton beam. Four Roman Pot stations are located at distances between 60 and 90 m from the interaction point

  16. The H1 forward proton spectrometer at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Esch, P. van; Kapichine, M.; Morozov, A.; Spaskov, V.; Bartel, W.; List, B.; Mahlke-Krueger, H.; Schroeder, V.; Wilksen, T.; Buesser, F.W.; Geske, K.; Karschnik, O.; Niebergall, F.; Riege, H.; Schuett, J.; Staa, R. van; Wittek, C.; Dau, D.; Newton, D.; Kotelnikov, S.K.; Lebedev, A.; Rusakov, S.; Astvatsatourov, A.; Baehr, J.; Harder, U.; Hiller, K. E-mail: hiller@ifh.de; Hoffmann, B.; Luedecke, H.; Nahnhauer, R

    2000-05-21

    The forward proton spectrometer is part of the H1 detector at the HERA collider. Protons with energies above 500 GeV and polar angles below 1 mrad can be detected by this spectrometer. The main detector components are scintillating fiber detectors read out by position-sensitive photo-multipliers. These detectors are housed in the so-called Roman Pots which allow them to be moved close to the circulating proton beam. Four Roman Pot stations are located at distances between 60 and 90 m from the interaction point.

  17. Underreporting of 2009 H1N1 Influenza Cases

    Centers for Disease Control (CDC) Podcasts

    2009-12-08

    Influenza cases are difficult to track because many people don't go to the doctor or get tested for flu when they're sick. The first months of the 2009 H1N1 influenza pandemic were no different. In this podcast, CDC's Dr. Carrie Reed discusses a study in the December issue of Emerging Infectious Diseases that looked at the actual number of cases reported and estimated the true number of cases when correcting for underreporting.  Created: 12/8/2009 by Emerging Infectious Diseases.   Date Released: 12/8/2009.

  18. [DIAGNOSTIC VALUE OF COMBINED USE OF COMBINED METHOD OF ENZYME IMMUNOASSAY AND POLYMERASE CHAIN REACTION TO DETECT OF INTRAUTERINE FETAL INFECTION BY PARVOVIRUS B19].

    Science.gov (United States)

    Bondarenko, N P; Lakatosh, V P; Lakatosh, P V; Malanchuk, O B; Poladich, I V

    2015-01-01

    The combined method of diagnosis parvovirus infection during pregnancy by maternal serum enzyme immunoassay and deoxyribonucleic acid isolation parvovirus B19 polymerase chain reaction in amnniotic fluid and fetal cord blood newborns, can diagnose vertical transmission and anticipate a negative effect on the fetus parvovirus. Lack of maternal IgM antibodies in serum due to parvovirus seroconversion during pregnancy does not exclude the persistence of the virus in the fetus. To analyze the diagnostic value of the method for determining the LHP parvovirus B19 DNA in the amniotic fluid, umbilical cord blood of newborns to determine vertical transmission of parvovirus infection when infected mothers B19 during pregnancy.

  19. Identification and genomic characterization of a novel porcine parvovirus (PPV6) in China.

    Science.gov (United States)

    Ni, Jianqiang; Qiao, Caixia; Han, Xue; Han, Tao; Kang, Wenhua; Zi, Zhanchao; Cao, Zhen; Zhai, Xinyan; Cai, Xuepeng

    2014-12-02

    Parvoviruses are classified into two subfamilies based on their host range: the Parvovirinae, which infect vertebrates, and the Densovirinae, which mainly infect insects and other arthropods. In recent years, a number of novel parvoviruses belonging to the subfamily Parvovirinae have been identified from various animal species and humans, including human parvovirus 4 (PARV4), porcine hokovirus, ovine partetravirus, porcine parvovirus 4 (PPV4), and porcine parvovirus 5 (PPV5). Using sequence-independent single primer amplification (SISPA), a novel parvovirus within the subfamily Parvovirinae that was distinct from any known parvoviruses was identified and five full-length genome sequences were determined and analyzed. A novel porcine parvovirus, provisionally named PPV6, was initially identified from aborted pig fetuses in China. Retrospective studies revealed the prevalence of PPV6 in aborted pig fetuses and piglets(50% and 75%, respectively) was apparently higher than that in finishing pigs and sows (15.6% and 3.8% respectively). Furthermore, the prevalence of PPV6 in finishing pig was similar in affected and unaffected farms (i.e. 16.7% vs. 13.6%-21.7%). This finding indicates that animal age, perhaps due to increased innate immune resistance, strongly influences the level of PPV6 viremia. Complete genome sequencing and multiple alignments have shown that the nearly full-length genome sequences were approximately 6,100 nucleotides in length and shared 20.5%-42.6% DNA sequence identity with other members of the Parvovirinae subfamily. Phylogenetic analysis showed that PPV6 was significantly distinct from other known parvoviruses and was most closely related to PPV4. Our findings and review of published parvovirus sequences suggested that a novel porcine parvovirus is currently circulating in China and might be classified into the novel genus Copiparvovirus within the subfamily Parvovirinae. However, the clinical manifestations of PPV6 are still unknown in that the

  20. Detection and genetic characterization of a novel parvovirus distantly related to human bufavirus in domestic pigs.

    Science.gov (United States)

    Hargitai, Renáta; Pankovics, Péter; Kertész, Attila Mihály; Bíró, Hunor; Boros, Ákos; Phan, Tung Gia; Delwart, Eric; Reuter, Gábor

    2016-04-01

    In this study, a novel parvovirus (strain swine/Zsana3/2013/HUN, KT965075) was detected in domestic pigs and genetically characterized by viral metagenomics and PCR methods. The novel parvovirus was distantly related to the human bufaviruses and was detected in 19 (90.5 %) of the 21 and five (33.3 %) of the 15 faecal samples collected from animals with and without cases of posterior paraplegia of unknown etiology from five affected farms and one control farm in Hungary, respectively. Swine/Zsana3/2013/HUN is highly prevalent in domestic pigs and potentially represents a novel parvovirus species in the subfamily Parvovirinae.

  1. [Biological characteristics of a chimeric rabies virus expressing canine parvovirus VP2 protein].

    Science.gov (United States)

    Niu, Xue-Feng; Liu, Xiao-Hui; Sun, Zhao-Jin; Shi, He-He; Chen, Jing; Jiang, Bido; Sun, Jing-Chen; Guo, Xiao-Feng

    2009-09-01

    To obtain a bivalence vaccine against canine rabies virus and canine parvovirus, a chimeric rabies virus expressing canine parvovirus VP2 protein was generated by the technique of reverse genetics. It was shown that the chimeric virus designated as HEP-Flury (VP2) grew well on BHK-21 cells and the VP2 gene could still be stably expressed after ten passages on BHK-21 cells. Experiments on the mice immunized with the chimeric virus HEP-Flury (VP2) demonstrated that specific antibodies against rabies virus and canine parvovirus were induced in immunized mice after vaccination with the live chimeric virus.

  2. Human parvovirus B19-induced anaemia in pre-school children in Ilorin, Nigeria

    Science.gov (United States)

    Agbede, Olajide O.; Omoare, Adesuyi A.; Ernest, Samuel K.

    2018-01-01

    Sera collected from 57 anaemic and 115 non-anaemic age-matched pre-school children in Ilorin, Nigeria, between November 2014 and December 2015 were assayed for human parvovirus B19-specific IgM antibodies by using the enzyme linked immunosorbent assay technique. A total of 17 (29.8%) anaemic children and 18 (15.7%) non-anaemic children were positive for parvovirus B19 infection. Infection with parvovirus B19 is common in this population, and screening for the virus during differential diagnosis is recommended. PMID:29850435

  3. Occurrence of human bocaviruses and parvovirus 4 in solid tissues.

    Science.gov (United States)

    Norja, Päivi; Hedman, Lea; Kantola, Kalle; Kemppainen, Kaisa; Suvilehto, Jari; Pitkäranta, Anne; Aaltonen, Leena-Maija; Seppänen, Mikko; Hedman, Klaus; Söderlund-Venermo, Maria

    2012-08-01

    Human bocaviruses 1-4 (HBoV1-4) and parvovirus 4 (PARV4) are recently discovered human parvoviruses. HBoV1 is associated with respiratory infections of young children, while HBoV2-4 are enteric viruses. The clinical manifestations of PARV4 remain unknown. The objective of this study was to determine whether the DNAs of HBoV1-4 and PARV4 persist in human tissues long after primary infection. Biopsies of tonsillar tissue, skin, and synovia were examined for HBoV1-4 DNA and PARV4 DNA by PCR. Serum samples from the tissue donors were assayed for HBoV1 and PARV4 IgG and IgM antibodies. To obtain species-specific seroprevalences for HBoV1 and for HBoV2/3 combined, the sera were analyzed after virus-like particle (VLP) competition. While HBoV1 DNA was detected exclusively in the tonsillar tissues of 16/438 individuals (3.7%), all of them ≤8 years of age. HBoV2-4 and PARV4 DNAs were absent from all tissue types. HBoV1 IgG seroprevalence was 94.9%. No subject had HBoV1 or PARV4 IgM, nor did they have PARV4 IgG. The results indicate that HBoV1 DNA occurred in a small proportion of tonsils of young children after recent primary HBoV1 infection, but did not persist long in the other tissue types studied, unlike parvovirus B19 DNA. The results obtained by the PARV4 assays are in line with previous results on PARV4 epidemiology. Copyright © 2012 Wiley Periodicals, Inc.

  4. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly

    Science.gov (United States)

    Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.

    2015-01-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life

  5. Parvovirus B19 infections serological diagnostics in rheumatic diseases

    Directory of Open Access Journals (Sweden)

    L P Ananjeva

    2005-01-01

    Full Text Available Objective. To study contamination with parvovirus B19 of a group of patients with rheumatic diseases (RD. Methods. 77 pts with RD (mean age 42,5 years, 79% female admitted to Institute of Rheumatology of RAMS were examined. 34 of them had rheumatoid arthritis (RA, 11 - systemic lupus erythematosus (SLE and Sjogren's disease (SD, 15 with osteoarthritis (OA and seronegative spondyloarthritides (SS and 17 with early (before a year undifferentiated arthritis (EUA. Quantitative determination of IgM and IgG serum antibodies to parvovirus BI9 was performed by I FA with IBL kits (Hamburg, Germany. Results. Anti-B19 IgG antibodies were found in 52% of pts, IgM antibodies - only in one case. Mean antibodies values in pts with RD of disease duration less then 6 months were significantly higher then in pts with longer disease duration (21,5+36 U/ml and 8,4+14.7 U/ml respectively, p<0,05. Anti-B 19 antibodies were present in 62% of pts with RA, 53% of pts with EUA, 45% of pts with SD, 33% of pts with OA and SS. High levels of antibodies (4-10 times higher positivity threshold were revealed in 13 pts with different RD with short duration of joint syndrome (6,3±7,6 months and fever at presentation. A case of B19 parvovirus infection in a boy of 3 years age accompanied by symptoms of Still's disease is described.

  6. Complex spatial dynamics of oncolytic viruses in vitro: mathematical and experimental approaches.

    Directory of Open Access Journals (Sweden)

    Dominik Wodarz

    Full Text Available Oncolytic viruses replicate selectively in tumor cells and can serve as targeted treatment agents. While promising results have been observed in clinical trials, consistent success of therapy remains elusive. The dynamics of virus spread through tumor cell populations has been studied both experimentally and computationally. However, a basic understanding of the principles underlying virus spread in spatially structured target cell populations has yet to be obtained. This paper studies such dynamics, using a newly constructed recombinant adenovirus type-5 (Ad5 that expresses enhanced jellyfish green fluorescent protein (EGFP, AdEGFPuci, and grows on human 293 embryonic kidney epithelial cells, allowing us to track cell numbers and spatial patterns over time. The cells are arranged in a two-dimensional setting and allow virus spread to occur only to target cells within the local neighborhood. Despite the simplicity of the setup, complex dynamics are observed. Experiments gave rise to three spatial patterns that we call "hollow ring structure", "filled ring structure", and "disperse pattern". An agent-based, stochastic computational model is used to simulate and interpret the experiments. The model can reproduce the experimentally observed patterns, and identifies key parameters that determine which pattern of virus growth arises. The model is further used to study the long-term outcome of the dynamics for the different growth patterns, and to investigate conditions under which the virus population eliminates the target cells. We find that both the filled ring structure and disperse pattern of initial expansion are indicative of treatment failure, where target cells persist in the long run. The hollow ring structure is associated with either target cell extinction or low-level persistence, both of which can be viewed as treatment success. Interestingly, it is found that equilibrium properties of ordinary differential equations describing the

  7. First molecular characterization of canine parvovirus strains in Sardinia, Italy.

    Science.gov (United States)

    Dei Giudici, S; Cubeddu, T; Giagu, A; Sanna, G; Rocca, S; Oggiano, A

    2017-11-01

    Canine parvovirus type 2 (CPV-2) is responsible of acute hemorrhagic gastroenteritis in young dogs. CPV-2 emerged in 1978 in the USA, but new antigenic types, CPV-2a, 2b and 2c, have completely replaced the original type. In this study, we analyzed 81 animals collected in Sardinia, Italy. The VP2 sequence analysis of 27 positive samples showed that all antigenic CPV-2 types are circulating. CPV-2b seems to be the most widespread variant, followed by CPV-2a. Furthermore, 12 CPV-2b strains displayed further amino acid substitutions and formed a separate cluster in a phylogenetic tree, indicating regional genetic variation.

  8. First detection of canine parvovirus type 2c in Brazil.

    OpenAIRE

    Streck, André Felipe; Souza, Carine Kunzler; Gonçalves, K. R.; Zang, Luciana; Pinto, Luciane Dubina; Canal, Cláudio Wageck

    2009-01-01

    The presence of canine parvovirus type 2 (CPV-2), 2a and 2b has been described in Brazil, however, the type 2c had not been reported until now. In the current study, seven out of nine samples from dogs with diarrhea were characterized as CPV-2c, indicating that this virus is already circulating in the Brazilian canine population.No Brasil, a presença do parvovírus canino do tipo 2 (CPV-2), 2a e 2b já havia sido descrita, contudo, ainda não havia sido verificada a presença do tipo 2c. No prese...

  9. Parvovirus-associated syndrome (Aleutian disease) in two ferrets.

    Science.gov (United States)

    Palley, L S; Corning, B F; Fox, J G; Murphy, J C; Gould, D H

    1992-07-01

    There is a paucity of information regarding natural Aleutian disease, caused by a parvovirus in ferrets. With the increasing popularity of ferrets as household pets and laboratory animals, and with the advent of a USDA-approved rabies vaccine, the occurrence and the etiopathogenesis of naturally acquired diseases in ferrets needs to be documented. We present the clinical and laboratory findings associated with Aleutian disease in 2 domestic ferrets, one with the chronic wasting form of the disease and one with the central nervous system form.

  10. The H1 lead/scintillating-fibre calorimeter

    International Nuclear Information System (INIS)

    Appuhn, R.D.; Arndt, C.; Barrelet, E.

    1996-08-01

    The backward region of the H1 detector has been upgraded in order to provide improved measurement of the scattered electron in deep inelastic scattering events. The centerpiece of the upgrade is a high-resolution lead/scintillating-fibre calorimeter. The main design goals of the calorimeter are: good coverage of the region close to the beam pipe, high angular resolution and energy resolution of better than 2% for 30 GeV electrons. The calorimeter should be capable of providing coarse hadronic energy measurement and precise time information to suppress out-of-time background events at the first trigger level. It must be compact due to space restrictions. These requirements were fulfilled by constructing two separate calorimeter sections. The inner electromagnetic section is made of 0.5 mm scintillating plastic fibres embedded in a lead matrix. Its lead-to-fibre ratio is 2.3:1 by volume. The outer hadronic section consists of 1.0 mm diameter fibres with a lead-to-fibre ratio of 3.4:1. The mechanical construction of the new calorimeter and its assembly in the H1 detector are described. (orig.)

  11. The H1 lead/scintillating-fibre calorimeter

    International Nuclear Information System (INIS)

    Appuhn, R.-D.; Arndt, C.; Barrelet, E.

    1997-01-01

    The backward region of the H1 detector has been upgraded in order to provide improved measurement of the scattered electron in deep inelastic scattering events. The centerpiece of the upgrade is a high-resolution lead/scintillating-fibre calorimeter. The main design goals of the calorimeter are: good coverage of the region close to the beam pipe, high angular resolution and energy resolution of better than 2% for 30 GeV electrons. The calorimeter should be capable of providing coarse hadronic energy measurement and precise time information to suppress out-of-time background events at the first trigger level. It must be compact due to space restrictions. These requirements were fulfilled by constructing two separate calorimeter sections. The inner electromagnetic section is made of 0.5 mm scintillating plastic fibres embedded in a lead matrix. Its lead-to-fibre ratio is 2.3:1 by volume. The outer hadronic section consists of 1.0 mm diameter fibres with a lead-to-fibre ratio of 3.4:1. The mechanical construction of the new calorimeter and its assembly in the H1 detector are described. (orig.)

  12. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses

    OpenAIRE

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-01-01

    Background The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. Findings The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decrease...

  13. Molecular characterization of a novel Muscovy duck parvovirus isolate: evidence of recombination between classical MDPV and goose parvovirus strains.

    Science.gov (United States)

    Wang, Jianye; Ling, Jueyi; Wang, Zhixian; Huang, Yu; Zhu, Jianzhong; Zhu, Guoqiang

    2017-11-09

    Muscovy duck parvovirus (MDPV) and Goose parvovirus (GPV) are important etiological agents for Muscovy duck parvoviral disease and Derzsy's disease, respectively; both of which can cause substantial economic losses in waterfowl industry. In contrast to GPV, the complete genomic sequence data of MDPV isolates are still limited and their phylogenetic relationships largely remain unknown. In this study, the entire genome of a pathogenic MDPV strain ZW, which was isolated from a deceased Muscovy duckling in 2006 in China, was cloned, sequenced, and compared with that of other classical MDPV and GPV strains. The genome of strain ZW comprises of 5071 nucleotides; this genome was shorter than that of the pathogenic MDPV strain YY (5075 nt). All the four deleted nucleotides produced in strain ZW are located at the base-pairing positions in the palindromic stem of inverted terminal repeats (ITR) without influencing the formation of a hairpin structure. Recombination analysis revealed that strain ZW originated from genetic recombination between the classical MDPV and GPV strain. The YY strain of MDPV acts as the major parent, whereas the virulent strains YZ99-6 and B and the vaccine strain SYG61v of GPV act as the minor parents in varying degrees. Two recombination sites were detected in strain ZW, with the small recombination site surrounding the P9 promoter, and the large recombination site situated in the middle of the VP3 gene. The SYG61V strain is a vaccine strain used for preventing goose parvoviral disease. This strain was found to be solely involved in the recombination event detected in the P9 promoter region. Phylogenetic analyses between strain ZW and other classical strains of MDPV and GPV were performed. The results supported the in silico recombination analysis conclusion. MDPV Strain ZW is a novel recombinant parvovirus, and the bulk of its genome originates from the classical MDPV strain. Two virulent strains and a vaccine strain of GPV were involved in the

  14. About a significance of the avian linker histone (H1) polymorphic ...

    Indian Academy of Sciences (India)

    60

    structural disorder may specify histone H1 interaction with both DNA and partnering proteins through ... from the studies conducted on mammalian model, including the human H1 variants. However ..... Thus, the disparate layout of histone H1.

  15. Probing the Oncolytic and Chemosensitizing Effects of Dihydrotanshinone in an In Vitro Glioblastoma Model.

    Science.gov (United States)

    Kumar, Varun; Radin, Daniel; Leonardi, Donna

    2017-11-01

    Temozolomide is the primary chemotherapeutic agent used to treat glioblastoma. However, many tumors are initially resistant to or develop resistance to temozolomide, mainly due to high levels of O 6 -methylguanine DNA transferase (MGMT) which repairs DNA damage traditionally caused by temozolomide. Dihydrotanshinone (DHT) is extracted from Salvia miltiorrhiza, a Chinese medicinal plant, and has also been shown to have antiproliferative effects on various cancer cell lines. DHT has been to shown to induce apoptosis via induction endoplasmic reticulum stress, that can reportedly sensitize cells to temozolomide. MTS cellular proliferation assays or trypan blue viability assays were used to determine the effects of DHT/temozolomide combinatorial treatment. Enzyme-linked immunosorbent assay (ELISA) was used to determine effects on MGMT and P-glycoprotein levels after singular and combinatorial treatment. DHT had a synergistic oncolytic effect in a MGMT-deficient cell line and a sensitizing effect in a MGMT-expressing cell line. Cytotoxicity due to DHT was shown to be reactive oxygen species-dependent, while the combinatorial effect of DHT and temozolomide synergistically reduced MGMT and P-glycoprotein levels. DHT was shown to augment temozolomide efficacy, indicating that, since DHT can penetrate the blood-brain barrier, temozolomide in combination with DHT may represent a promising therapeutic option for glioblastoma. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Preclinical Safety Studies of Enadenotucirev, a Chimeric Group B Human-Specific Oncolytic Adenovirus

    Directory of Open Access Journals (Sweden)

    Sam Illingworth

    2017-06-01

    Full Text Available Enadenotucirev is an oncolytic group B adenovirus identified by a process of bio-selection for the ability to selectively propagate in and rapidly kill carcinoma cells. It is resistant to inactivation by human blood components, potentially enabling intravenous dosing in patients with metastatic cancer. However, there are no known permissive animal models described for group B adenoviruses that could facilitate a conventional approach to preclinical safety studies. In this manuscript, we describe our tailored preclinical strategy designed to evaluate the key biological properties of enadenotucirev. As enadenotucirev does not replicate in animal cells, a panel of primary human cells was used to evaluate enadenotucirev replication selectivity in vitro, demonstrating that virus genome levels were >100-fold lower in normal cells relative to tumor cells. Acute intravenous tolerability in mice was used to assess virus particle-mediated toxicology and effects on innate immunity. These studies showed that particle toxicity could be ameliorated by dose fractionation, using an initial dose of virus to condition the host such that cytokine responses to subsequent doses were significantly attenuated. This, in turn, supported the initiation of a phase I intravenous clinical trial with a starting dose of 1 × 1010 virus particles given on days 1, 3, and 5.

  17. Oncolytic Immunotherapy: Dying the Right Way is a Key to Eliciting Potent Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Zong Sheng eGuo

    2014-04-01

    Full Text Available Oncolytic viruses (OVs are novel immunotherapeutic agents whose anticancer effects come from both oncolysis and elicited antitumor immunity. OVs induce mostly immunogenic cancer cell death (ICD, including immunogenic apoptosis, necrosis/necroptosis, pyroptosis and autophagic cell death, leading to exposure of calreticulin and heat-shock proteins to the cell surface, and/or released ATP, high mobility group box-1 [HMGB1], uric acid, and other DAMPs as well as PAMPs as danger signals, along with tumor-associated antigens, to activate dendritic cells (DCs and elicit adaptive antitumor immunity. Dying the right way may greatly potentiate adaptive antitumor immunity. The mode of cancer cell death may be modulated by individual OVs and cancer cells as they often encode and express genes that inhibit/promote apoptosis, necroptosis or autophagic cell death. We can genetically engineer OVs with death-pathway-modulating genes and thus skew the infected cancer cells towards certain death pathways for the enhanced immunogenicity. Strategies combining with some standard therapeutic regimens may also change the immunological consequence of cancer cell death. In this review, we discuss recent advances in our understanding of danger signals, modes of cancer cell death induced by OVs, the induced danger signals and functions in eliciting subsequent antitumor immunity. We also discuss potential combination strategies to target cells into specific modes of ICD and enhance cancer immunogenicity, including blockade of immune checkpoints, in order to break immune tolerance, improve antitumor immunity and thus the overall therapeutic efficacy.

  18. Histone deacetylase inhibitors improve the replication of oncolytic herpes simplex virus in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    James J Cody

    Full Text Available New therapies are needed for metastatic breast cancer patients. Oncolytic herpes simplex virus (oHSV is an exciting therapy being developed for use against aggressive tumors and established metastases. Although oHSV have been demonstrated safe in clinical trials, a lack of sufficient potency has slowed the clinical application of this approach. We utilized histone deacetylase (HDAC inhibitors, which have been noted to impair the innate antiviral response and improve gene transcription from viral vectors, to enhance the replication of oHSV in breast cancer cells. A panel of chemically diverse HDAC inhibitors were tested at three different doses (LD50 for their ability to modulate the replication of oHSV in breast cancer cells. Several of the tested HDAC inhibitors enhanced oHSV replication at low multiplicity of infection (MOI following pre-treatment of the metastatic breast cancer cell line MDA-MB-231 and the oHSV-resistant cell line 4T1, but not in the normal breast epithelial cell line MCF10A. Inhibitors of class I HDACs, including pan-selective compounds, were more effective for increasing oHSV replication compared to inhibitors that selectively target class II HDACs. These studies demonstrate that select HDAC inhibitors increase oHSV replication in breast cancer cells and provides support for pre-clinical evaluation of this combination strategy.

  19. Cavitation-enhanced delivery of a replicating oncolytic adenovirus to tumors using focused ultrasound.

    Science.gov (United States)

    Bazan-Peregrino, Miriam; Rifai, Bassel; Carlisle, Robert C; Choi, James; Arvanitis, Costas D; Seymour, Leonard W; Coussios, Constantin C

    2013-07-10

    Oncolytic viruses (OV) and ultrasound-enhanced drug delivery are powerful novel technologies. OV selectively self-amplify and kill cancer cells but their clinical use has been restricted by limited delivery from the bloodstream into the tumor. Ultrasound has been previously exploited for targeted release of OV in vivo, but its use to induce cavitation, microbubble oscillations, for enhanced OV tumor extravasation and delivery has not been previously reported. By identifying and optimizing the underlying physical mechanism, this work demonstrates that focused ultrasound significantly enhances the delivery and biodistribution of systemically administered OV co-injected with microbubbles. Up to a fiftyfold increase in tumor transgene expression was achieved, without any observable tissue damage. Ultrasound exposure parameters were optimized as a function of tumor reperfusion time to sustain inertial cavitation, a type of microbubble activity, throughout the exposure. Passive detection of acoustic emissions during treatment confirmed inertial cavitation as the mechanism responsible for enhanced delivery and enabled real-time monitoring of successful viral delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Differentiation of minute virus of mice and mouse parvovirus by high resolution melting curve analysis.

    Science.gov (United States)

    Rao, Dan; Wu, Miaoli; Wang, Jing; Yuan, Wen; Zhu, Yujun; Cong, Feng; Xu, Fengjiao; Lian, Yuexiao; Huang, Bihong; Wu, Qiwen; Chen, Meili; Zhang, Yu; Huang, Ren; Guo, Pengju

    2017-12-01

    Murine parvovirus is one of the most prevalent infectious pathogens in mouse colonies. A specific primer pair targeting the VP2 gene of minute virus of mice (MVM) and mouse parvovirus (MPV) was utilized for high resolution melting (HRM) analysis. The resulting melting curves could distinguish these two virus strains and there was no detectable amplification of the other mouse pathogens which included rat parvovirus (KRV), ectromelia virus (ECT), mouse adenovirus (MAD), mouse cytomegalovirus (MCMV), polyoma virus (Poly), Helicobactor hepaticus (H. hepaticus) and Salmonella typhimurium (S. typhimurium). The detection limit of the standard was 10 copies/μL. This study showed that the PCR-HRM assay could be an alternative useful method with high specificity and sensitivity for differentiating murine parvovirus strains MVM and MPV. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Novel duck parvovirus identified in Cherry Valley ducks (Anas platyrhynchos domesticus), China.

    Science.gov (United States)

    Li, Chuanfeng; Li, Qi; Chen, Zongyan; Liu, Guangqing

    2016-10-01

    An unknown infectious disease in Cherry Valley ducks (Anas platyrhynchos domesticus) characterized by short beak and strong growth retardation occurred in China during 2015. The causative agent of this disease, tentatively named duck short beak and dwarfism syndrome (DSBDS), as well as the evolutionary relationships between this causative agent and all currently known avian-origin parvoviruses were clarified by virus isolation, transmission electron microscope (TEM) observation, analysis of nuclear acid type, (RT-)PCR identification, whole genome sequencing, and NS1 protein sequences-based phylogenetic analyses. The results indicated that the causative agent of DSBDS is closely related with the goose parvovirus-like virus, which is divergent from all currently known avian-origin parvoviruses and should be a novel duck parvovirus (NDPV). Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Parvovirus B19 infection as a cause of acute myositis in an adult.

    Science.gov (United States)

    Cakirca, Mustafa; Karatoprak, Cumali; Ugurlu, Serdal; Zorlu, Mehmet; Kıskaç, Muharrem; Çetin, Güven

    2015-01-01

    Parvovirus B19 infection is often asymptomatic, but clinical expressions may include transient aplastic crisis, erythema infectiosum, non-immune hydrops fetalis, and chronic red cell aplasia. This virus has also been associated with rheumatoid arthritis and other autoimmune connective tissue diseases; however, we could not identify any acute adult myositis case developed after a Parvovirus B19 infection in the literature. For this reason, we would like to present a rare case of acute myositis developed after Parvovirus B19 infection. In patients presenting with symptoms of fever, rash on the legs and myositis, viral infections such as Parvovirus B19 should be kept in mind. Copyright © 2013 Elsevier Editora Ltda. All rights reserved.

  3. Anaemia and fever in kidney transplant. The role of human parvovirus B19

    Directory of Open Access Journals (Sweden)

    Yanet Parodis López

    2017-03-01

    We report the case of a 65 year-old man with a history of deceased donor renal transplant in September 2014. At 38 days after the transplant, the patient presented progressive anaemia that was resistant to erythropoiesis-stimulating agents. At 64 days after transplant, hyperthermia occurred with progressive deterioration of the patient's general condition. The viral serology and the first blood PCR for human parvovirus B19 were both negative. At 4 months and 19 days after, a bone marrow biopsy was conducted, showing giant erythroblasts with nuclear viral inclusions that were compatible with parvovirus; a PCR in the tissue confirmed the diagnosis. A second blood PCR was positive for parvovirus. After treatment with intravenous immunoglobulin and the temporary discontinuation of mycophenolate mofetil, a complete remission of the disease occurred, although the blood PCR for parvovirus B19 remained positive, so monitoring is necessary for future likely recurrence.

  4. THE ROLE OF PARVOVIRUS B19 IN THE DEVELOPMENT OF INFLAMMATORY CARDIOMYOPATHY

    Directory of Open Access Journals (Sweden)

    A. Yu. Shchedrina

    2013-01-01

    Full Text Available The problem of inflammatory cardiomyopathy is discussed. The etiology, pathogenesis, diagnosis and treatment of inflammatory cardiomyopathy are considered with focus on the role of parvovirus B19.

  5. PREVALENCE OF ANTIBODIES TO HUMAN PARVOVIRUS B19 IN SAUDI WOMEN OF CHILDBEARING AGE IN MAKKAH

    Science.gov (United States)

    Ghazi, Hani O.

    2007-01-01

    Objectives: To determine the seroprevalence rate of immunoglobulin G (IgG) and immunoglobulin M (IgM) to parvovirus B19 in pregnant Saudi women in Makkah. Subjects and Methods: Using enzyme-linked immunosorbent assay (ELISA), a total of 1200 serum samples were tested for antibodies to parvovirus B19 known to cause a variety of clinical syndromes in women and newborn infants. Results: Parvovirus B19 IgG antibodies detected in 46.6% and IgM antibodies were found in 2.25% of different age groups. Conclusion: The previous exposure to parvovirus B19 was determined, and 560 (46.6%) of 1200 pregnant Saudi women tested at their first antenatal visit were seropositive for specific IgG. The rate of maternal infection in susceptible pregnancies was 2.25%. These results were in accordance with previous studies performed in other countries. PMID:23012138

  6. Experiences at HERA with the H1 data acquisition system

    International Nuclear Information System (INIS)

    Haynes, W.J.

    1992-09-01

    The recently commissioned HERA collider provides a significant pointer to the problems that have to be surmounted in data acquisition systems at the next generation of hadron machines. With bunch crossings, between 30 GeV electrons and 820 GeV protons, 96 nanoseconds apart, the H1 experiment illustrates the application of sophisticated pipelining solutions in the readout of several hundred thousand electronic channels. A modular, multiprocessor design structure emphasis the architectural concepts necessary to cope with large data throughput and yet remain flexible enough to exploit ongoing technological advances in both hardware and software. The range of techniques implemented will be surveyed, covering various digitisation solutions at the front-end through to embedded microprocessor arrays in standard busses controlled by graphics-based stations executing object- orientated code. The experiences gained in developing such a system are also discussed. (orig.)

  7. H1N1 pandemic preparedness and business continuity plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    SaskPower's H1N1 pandemic preparedness and business continuity plan was designed to prepare SaskPower employees for elevated levels of absenteeism during a potential pandemic. Emergency management and business continuity will be facilitated if critical duties and essential services are maintained without interruption. A layered approach was used to develop a range of response measures designed to meet a range of possible pandemic threats. The plan identified essential activities, tasks and functions and outlined methods of mitigating supply disruptions and possible shortages. Methods of minimizing illness in employees were discussed, as well as methods of maintaining a safe and secure work environment. The measures were developed in accordance with the World Health Organization (WHO) 6 phases of pandemic alert. The plan was also designed to be read by SaskPower's key suppliers in order to ensure their pandemic readiness. 5 tabs.

  8. Results from the H1 experiment at HERA

    International Nuclear Information System (INIS)

    Roeck, A. de

    1994-01-01

    New results from the H1 experiment at HERA on photoproduction, deep inelastic scattering and search for exotic particles are presented. Clear evidence is found for hard scattering in photoproduction interactions. Jets have been observed and used to examine the x γ distribution, indicating the need for a gluonic component in the photon. Hadronic final states and jet cross sections have been measured in deep inelastic scattering. A class of deep inelastic events with diffractive characteristics has been observed. The proton structure function F 2 (x, Q 2 ) has been measured in the new Bjorken-x region 10 -4 -2 and is found to rise with decreasing x. New limits for leptoquarks, squarks and excited electrons have been deduced. (orig.)

  9. Technicon H*1 Hematology System: Optical Design Considerations

    Science.gov (United States)

    Colella, G. M.; Tycko, D. H.; Groner, W.

    1988-06-01

    The Technicon H*1 systemTM is a clinical laboratory flow cytometer which performs a complete hematology profile, providing quantitative information on the various types of cells in a blood sample. A light-scattering method, using a HeNe laser, determines in a single flow channel the red cell count, platelet count, and the distributions of red cell volume, red cell hemoglobin concentration, and platelet volume. To accomplish this the scattered light from each red cell in the sample is measured in real time at two angular intervals. The cell volume and the hemoglobin concentration within the cell are derived from these two measurements. Severe accuracy and precision specifications are placed on the medically important red cell count (RBC) and the mean red cell volume (MCV). From the point of view of optical system design, the dominant factor is the requirement that RBC and MCV have precision and accuracy of the order of 2%. Signal-to-noise and scattering-angle definition requirements dictated the choice of a HeNe laser light source. The optics includes an illumination system for producing a sharply defined, uniformly illuminated scattering region and a detection system which must accurately define the accepted scattering angles. In previous cytometric methods for determining MCV only a single quantity was measured for each cell. Such methods cannot disentangle the independent effects of cell size and hemoglobin concentration on the measurement, thus compromising MCV accuracy. The present double-angle scattering method overcomes this accuracy problem. The H*1 red cell method, the supporting optical design and data demonstrating that the use of this technique eliminates interference between the observed red cell indices are presented.

  10. Ophthalmic antihistamines and H1-H4 receptors.

    Science.gov (United States)

    Wade, Laurie; Bielory, Leonard; Rudner, Shara

    2012-10-01

    Antihistamines exert pharmacologic effects by binding to four histamine receptors (H1-H4) at different affinities, producing variable effects depending on the receptor they predominantly bind to. This review's purpose is to determine the relative potency of antihistamines by comparing their binding affinities to these receptors. Studies on binding affinities of antihistamines to histamine receptors were reviewed and the dissociation constant for inhibitor binding (Ki) analyzed to determine the most and least potent antihistamine for each receptor. We retrieved the binding affinities for nineteen antihistamines. For H1 receptors, pyrilamine exhibited the highest affinity (Ki = 0.8 nM), and thioperamide the lowest (Ki = 280, 000 nM). For H2 receptors, ranitidine exhibited the highest affinity (Ki = 187 nM), and olopatadine the lowest (Ki = 100 ,000 nM). For the recently discovered H3 and H4 receptors, thioperamide exhibited the highest affinity (Ki = 1.1 nM), and olopatadine exhibited the lowest (Ki = 79 ,400 nM), to H3. Data on binding affinities to the H4 receptor exist for: ketotifen, pheniramine, ranitidine, cimetidine and thioperamide. Of these, thioperamide exhibited the highest affinity (Ki = 27 nM), whereas cimetidine and ranitidine exhibited the lowest affinity (Ki = >10, 000 nM) for H4 receptors. This review summarizes the relative potency of antihistamines based on their binding affinities to the four histamine receptors. Although data on binding affinities of antihistamines to the H4 receptor are sparse, it is apparent that further research on these histamine subtypes may open new venues for more direct treatment with a higher therapeutic efficacy on allergic disorders including those affecting the ocular surface.

  11. First identification of porcine parvovirus 7 in China.

    Science.gov (United States)

    Xing, Xiulin; Zhou, Han; Tong, Ling; Chen, Yao; Sun, Yankuo; Wang, Heng; Zhang, Guihong

    2018-01-01

    Porcine parvovirus (PPV) are small, non-enveloped and single-stranded DNA viruses, taxonomically classifiable within the family Parvoviridae. Seven PPV genotypes (PPV1 to PPV7) have been identified to date. PPV7, the most recently discovered PPV genotype, was first reported in US pigs in 2016. To explore PPV7 status in Chinese pig populations a total of 64 serum samples collected from two commercial farms in Guangdong province in 2014 were analyzed. PPV7 DNA was detected in 32.8% (21/64) of tested samples. On the porcine circovirus type 2 (PCV2) positive farm, the prevalence rate of PPV7 was 65.5% (19/29) which was significantly higher than that on the PCV2 negative farm (2/35, 5.7%), indicating a possible association between PCV2 and PPV7 infections. The sequences of three PPV7 strains were determined. Phylogenetic analysis revealed that the identified PPV7 strains circulating in China shared 98.7%-99.7% nucleotide homology with the US strain. Further sequence comparison analysis indicated that GD-2014-2 and GD-2014-3 possess a consecutive 9-nt deletion in the VP gene. This is the first report of the existence of PPV7 in China and this finding will strengthen understanding of the epidemiology of porcine parvovirus in Chinese pigs.

  12. Seroprevalence of Canine Parvovirus in Dogs in Lusaka District, Zambia

    Science.gov (United States)

    2016-01-01

    Canine parvovirus (CPV) enteritis is a highly contagious enteric disease of young dogs. Limited studies have been done in Zambia to investigate the prevalence of CPV in dogs. Blood was collected from dogs from three veterinary clinics (clinic samples, n = 174) and one township of Lusaka (field samples, n = 56). Each dog's age, sex, breed, and vaccination status were recorded. A haemagglutination assay using pig erythrocytes and modified live parvovirus vaccine as the antigen was used. Antibodies to CPV were detected in 100% of dogs (unvaccinated or vaccinated). The titres ranged from 160 to 10240 with a median of 1280. Vaccinated dogs had significantly higher antibody titres compared to unvaccinated (p < 0.001). There was a significant difference in titres of clinic samples compared to field samples (p < 0.0001) but not within breed (p = 0.098) or sex (p = 0.572). Multiple regression analysis showed that only age and vaccination status were significant predictors of antibody titres. The presence of antibody in all dogs suggests that the CPV infection is ubiquitous and the disease is endemic, hence the need for research to determine the protection conferred by vaccination and natural exposure to the virus under local conditions. PMID:27699205

  13. Canine parvovirus in vaccinated dogs: a field study.

    Science.gov (United States)

    Miranda, C; Thompson, G

    2016-04-16

    The authors report a field study that investigated the canine parvovirus (CPV) strains present in dogs that developed the disease after being vaccinated. Faecal samples of 78 dogs that have been vaccinated against CPV and later presented with clinical signs suspected of parvovirus infection were used. Fifty (64.1 per cent) samples tested positive by PCR for CPV. No CPV vaccine type was detected. The disease by CPV-2b occurred in older and female dogs when compared with that by CPV-2c. The clinical signs presented by infected dogs were similar when any of both variants were involved. In most cases of disease, the resulting infection by field variants occurred shortly after CPV vaccination. Two dogs that had been subjected to a complete vaccination schedule and presented with clinical signs after 10 days of vaccination, had the CPV-2c variant associated. The phylogenetic studies showed a close relationship of the isolates in vaccinated dogs to European field strains. Despite the limited sample size in this study, the findings point to the significance of the continuous molecular typing of the virus as a tool to monitor the prevalent circulating CPV strains and access the efficacy of current vaccines. Adjustments on the vaccine types to be used may have to be evaluated again according to each epidemiological situation in order to achieve the dog's optimal immune protection against CPV.

  14. Seroprevalence of Canine Parvovirus in Dogs in Lusaka District, Zambia

    Directory of Open Access Journals (Sweden)

    Ngonda Saasa

    2016-01-01

    Full Text Available Canine parvovirus (CPV enteritis is a highly contagious enteric disease of young dogs. Limited studies have been done in Zambia to investigate the prevalence of CPV in dogs. Blood was collected from dogs from three veterinary clinics (clinic samples, n=174 and one township of Lusaka (field samples, n=56. Each dog’s age, sex, breed, and vaccination status were recorded. A haemagglutination assay using pig erythrocytes and modified live parvovirus vaccine as the antigen was used. Antibodies to CPV were detected in 100% of dogs (unvaccinated or vaccinated. The titres ranged from 160 to 10240 with a median of 1280. Vaccinated dogs had significantly higher antibody titres compared to unvaccinated (p<0.001. There was a significant difference in titres of clinic samples compared to field samples (p<0.0001 but not within breed (p=0.098 or sex (p=0.572. Multiple regression analysis showed that only age and vaccination status were significant predictors of antibody titres. The presence of antibody in all dogs suggests that the CPV infection is ubiquitous and the disease is endemic, hence the need for research to determine the protection conferred by vaccination and natural exposure to the virus under local conditions.

  15. Molecular characterization of canine parvovirus in Vientiane, Laos.

    Science.gov (United States)

    Vannamahaxay, Soulasack; Vongkhamchanh, Souliya; Intanon, Montira; Tangtrongsup, Sahatchai; Tiwananthagorn, Saruda; Pringproa, Kidsadagon; Chuammitri, Phongsakorn

    2017-05-01

    The global emergence of canine parvovirus type 2c (CPV-2c) has been well documented. In the present study, 139 rectal swab samples collected from diarrheic dogs living in Vientiane, Laos, in 2016 were tested for the presence of the canine parvovirus (CPV) VP2 gene by PCR. The results showed that 82.73% (115/139) of dogs were CPV positive by PCR. The partial VP2 gene was sequenced in 94 of the positive samples; 91 samples belonged to CPV-2c (426Glu) subtype, while 3 samples belonged to the CPV-2a (426Asn) subtype. Notably, phylogenetic analysis of amino acid sequences revealed a close relationship between Laotian isolates and novel Chinese CPV-2c isolates. In Laotian CPV isolates, aligned protein sequences indicated a high rate of residue substitutions at positions 305, 324, 345, 370, 375, and 426 in the GH loop. The mutation at residue 370 (Q370R), a single mutation, was characterized as a unique mutant residue specific to the Laotian CPV-2c variant.

  16. Update of the human parvovirus B19 biology.

    Science.gov (United States)

    Servant-Delmas, A; Morinet, F

    2016-02-01

    Since its discovery, the human parvovirus B19 (B19V) has been associated with many clinical situations in addition to the prototype clinical manifestations, i.e. erythema infectiosum and erythroblastopenia crisis. The clinical significance of the viral B19V DNA persistence in sera after acute infection remains largely unknown. Such data may constitute a new clinical entity and is discussed in this manuscript. In 2002, despite the genetic diversity among B19V viruses has been reported to be very low, the description of markedly distinct sequences showed a new organization into three genotypes. The most recent common ancestor for B19V genotypes was estimated at early 1800s. B19V replication is enhanced by hypoxia and this might to explain the high viral load detected by quantitative PCR in the sera of infected patients. The minimum infectious dose necessary to transmit B19V infection by the transfusion of labile blood products remains unclear. At the opposite, the US Food and Drug Administration proposed a limit of 10(4)IU/mL of viral DNA in plasma pools used for the production of plasma derivatives. Recently, a new human parvovirus (PARV4) has been discovered. The consequences on blood transfusion of this blood-borne agent and its pathogenicity are still unknown. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. New Parvovirus Associated with Serum Hepatitis in Horses after Inoculation of Common Biological Product

    OpenAIRE

    Divers, Thomas J.; Tennant, Bud C.; Kumar, Arvind; McDonough, Sean; Cullen, John; Bhuva, Nishit; Jain, Komal; Chauhan, Lokendra Singh; Scheel, Troels Kasper Høyer; Lipkin, W. Ian; Laverack, Melissa; Trivedi, Sheetal; Srinivasa, Satyapramod; Beard, Laurie; Rice, Charles M.

    2018-01-01

    Equine serum hepatitis (i.e., Theiler’s disease) is a serious and often life-threatening disease of unknown etiology that affects horses. A horse in Nebraska, USA, with serum hepatitis died 65 days after treatment with equine-origin tetanus antitoxin. We identified an unknown parvovirus in serum and liver of the dead horse and in the administered antitoxin. The equine parvovirus-hepatitis (EqPV-H) shares

  18. Identification of co-infection by rotavirus and parvovirus in dogs with gastroenteritis in Mexico

    Directory of Open Access Journals (Sweden)

    Ariadna Flores Ortega

    Full Text Available ABSTRACT This is the first report on circulating canine rotavirus in Mexico. Fifty samples from dogs with gastroenteritis were analyzed used polymerase chain reaction and reverse transcription polymerase chain reaction in order to identify parvovirus and rotavirus, respectively; 7% of dogs were infected with rotavirus exclusively, while 14% were co-infected with both rotavirus and parvovirus; clinical signs in co-infected dogs were more severe.

  19. Prevalence of parvovirus B19 specific antibody in pregnant women with spontaneous abortion.

    Science.gov (United States)

    Rahbar, Nahid; Vali Zadeh, Saeid; Ghorbani, Raheb; Kheradmand, Pegah

    2015-01-01

    Human parvovirus B19 is a very common viral infection especially in school-aged children. The infection during pregnancy can affect the fetus due to lack of mother's immunity. Although, there is still no evidence of fetal teratogenic effects with parvovirus B19, but non-immune fetal hydrops and abortion may be caused by vertical transmission of the virus during pregnancy. This study was aimed to assess the prevalence of parvovirus B19-specific antibody (IgM) in pregnant women who had a spontaneous abortion. This cross-sectional study was carried out in all pregnant women who referred due to a spontaneous abortion. All demographic information such as age, occupation, and gestational age, last history of abortion, gravity, and presence of children below the age of six was recorded and a blood sample was provided for all the women. Then, the blood samples were tested to assay parvovirus B19-specific antibody (IgM) by EuroImmune ELISA kit. Among 94 pregnant women with the mean age of 28.4 years who had a spontaneous abortion, parvovirus B19 specific antibody (IgM) was detected in 17 participants (18.1%). Meanwhile, 14 women (14.9%) were suspected for presence of the antibody in their blood sample. There was no significant difference between the presence of antibody and age of pregnant women, occupation, gestational age, number of previous abortion, presence of children below the age of six and number of pregnancy. These findings revealed that a high percentage of pregnant women are probably non-immune against parvovirus B19, and also there might be a number of spontaneous abortions in which parvovirus infection caused fetal death.  However, more studies are needed to prove the absolute role of parvovirus B19 in these abortions.

  20. Identification of co-infection by rotavirus and parvovirus in dogs with gastroenteritis in Mexico.

    Science.gov (United States)

    Ortega, Ariadna Flores; Martínez-Castañeda, José Simón; Bautista-Gómez, Linda G; Muñoz, Raúl Fajardo; Hernández, Israel Quijano

    This is the first report on circulating canine rotavirus in Mexico. Fifty samples from dogs with gastroenteritis were analyzed used polymerase chain reaction and reverse transcription polymerase chain reaction in order to identify parvovirus and rotavirus, respectively; 7% of dogs were infected with rotavirus exclusively, while 14% were co-infected with both rotavirus and parvovirus; clinical signs in co-infected dogs were more severe. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. Safety studies on intravenous administration of oncolytic recombinant vesicular stomatitis virus in purpose-bred beagle dogs.

    Science.gov (United States)

    LeBlanc, Amy K; Naik, Shruthi; Galyon, Gina D; Jenks, Nathan; Steele, Mike; Peng, Kah-Whye; Federspiel, Mark J; Donnell, Robert; Russell, Stephen J

    2013-12-01

    VSV-IFNβ-NIS is a novel recombinant oncolytic vesicular stomatitis virus (VSV) with documented efficacy and safety in preclinical murine models of cancer. To facilitate clinical translation of this promising oncolytic therapy in patients with disseminated cancer, we are utilizing a comparative oncology approach to gather data describing the safety and efficacy of systemic VSV-IFNβ-NIS administration in dogs with naturally occurring cancer. In support of this, we executed a dose-escalation study in purpose-bred dogs to determine the maximum tolerated dose (MTD) of systemic VSV-hIFNβ-NIS, characterize the adverse event profile, and describe routes and duration of viral shedding in healthy, immune-competent dogs. The data indicate that an intravenous dose of 10(10) TCID50 is well tolerated in dogs. Expected adverse events were mild to moderate fever, self-limiting nausea and vomiting, lymphopenia, and oral mucosal lesions. Unexpected adverse events included prolongation of partial thromboplastin time, development of bacterial urinary tract infection, and scrotal dermatitis, and in one dog receiving 10(11) TCID50 (10 × the MTD), the development of severe hepatotoxicity and symptoms of shock leading to euthanasia. Viral shedding data indicate that detectable viral genome in blood diminishes rapidly with anti-VSV neutralizing antibodies detectable in blood as early as day 5 postintravenous virus administration. While low levels of viral genome copies were detectable in plasma, urine, and buccal swabs of dogs treated at the MTD, no infectious virus was detectable in plasma, urine, or buccal swabs at any of the doses tested. These studies confirm that VSV can be safely administered systemically in dogs, justifying the use of oncolytic VSV as a novel therapy for the treatment of canine cancer.

  2. A novel combination treatment of armed oncolytic adenovirus expressing IL-12 and GM-CSF with radiotherapy in murine hepatocarcinoma

    International Nuclear Information System (INIS)

    Kim, Wonwoo; Seong, Jinsil; Oh, Hae-Jin; Koom, Woong-Sub; Choi, Kyung-Joo; Yun, Chae-Ok

    2011-01-01

    In this study, a novel combination treatment of armed oncolytic adenovirus expressing interleukin 12 (IL-12) and granulocyte-macrophage colony-stimulating factor (GM-CSF) with radiation was investigated for antitumor and antimetastatic effect in a murine hepatic cancer (HCa-I) model. Tumor bearing syngeneic mice were treated with radiation, armed oncolytic virus Ad-ΔE1Bmt7 (dB7) expressing both IL-12 and GM-CSF (armed dB7), or a combination of both. The adenovirus was administered by intratumoral injection 1 x 10 8 plaque forming units (PFU) per tumor in 50 μl of phosphate buffered saline (PBS) four times every other day. Tumor response to treatment was determined by a tumor growth delay assay. Metastatic potential was evaluated by a lung metastasis model. To understand the underlying mechanism, the level of apoptosis was examined as well as the change in microvessel density and expression of immunological markers: CD4+, CD8+ and Cd11c. The combination of armed dB7 and radiation resulted in significant growth delay of murine hepatic cancer, HCa-1, with an enhancement factor of 4.3. The combination treatment also resulted in significant suppression of lung metastasis. Increase of apoptosis level as well as decrease of microvessel density was shown in the combination treatment, suggesting an underlying mechanism for the enhancement of antitumor effect. Expression of immunological markers: CD4+, CD8+ and Cd11c also increased in the combination treatment. This study showed that a novel combination treatment of radiotherapy with armed oncolytic adenovirus expressing IL-12 and GM-CSF was effective in suppressing primary tumor growth. (author)

  3. Identification and phylogenetic diversity of parvovirus circulating in commercial chicken and turkey flocks in Croatia.

    Science.gov (United States)

    Bidin, M; Lojkić, I; Bidin, Z; Tiljar, M; Majnarić, D

    2011-12-01

    Phylogenetic diversity of parvovirus detected in commercial chicken and turkey flocks is described. Nine chicken and six turkey flocks from Croatian farms were tested for parvovirus presence. Intestinal samples from one turkey and seven chicken flocks were found positive, and were sequenced. Natural parvovirus infection was more frequently detected in chickens than in turkeys examined in this study. Sequence analysis of 400 nucleotide fragments of the nonstructural gene (NS) showed that our sequences had more similarity with chicken parvovirus (ChPV) (92.3%-99.7%) than turkey parvovirus (TuPV) (89.5%-98.9%) strains. Phylogenetic analysis grouped our sequences in two clades. Also, the higher prevalence of ChPV than TuPV in tested flocks was defined. The necropsy findings suggested a malabsorption syndrome followed by a preascitic condition. Further research of parvovirus infection, pathogenesis, and the possibility of its association with poult enteritis and mortality syndrome (PEMS) and runting and stunting syndrome (RSS) is needed to clarify its significance as an agent of enteric disease.

  4. Human parvovirus B19 in patients with beta thalassemia major from Tehran, Iran.

    Science.gov (United States)

    Arabzadeh, Seyed Ali Mohammad; Alizadeh, Farideh; Tavakoli, Ahmad; Mollaei, Hamidreza; Bokharaei-Salim, Farah; Karimi, Gharib; Farahmand, Mohammad; Mortazavi, Helya Sadat; Monavari, Seyed Hamidreza

    2017-03-01

    Due to the tropism of human parvovirus B19 to erythroid progenitor cells, infection in patients with an underlying hemolytic disorder such as beta-thalassemia major leads to suppression of erythrocyte formation, referred to as transient aplasia crisis (TAC), which may be life-threatening. We investigated the prevalence of parvovirus B19 among patients with beta thalassemia major attending the Zafar Adult Thalassemia Clinic in Tehran, Iran. This cross-sectional study was performed to determine the presence of parvovirus B19 DNA in blood samples and parvovirus B19 genotypes in plasma samples of patients with thalassemia major. The population consisted of 150 patients with beta-thalassemia major who attended the Zafar clinic in Tehran. Specimens were studied using a real-time polymerase chain reaction assay. The prevalence of parvovirus B19 in our study population was 4%. Of 150 patients with thalassemia, six (4%) were positive for B19 DNA. There was no significant correlation between blood transfusion frequency and B19 DNA positivity. Finally, phylogenetic analysis of human parvovirus B19 revealed genotype I in these six patients. In this study, acute B19 infections were detected in patients with beta thalassemia major. Screening of such high-risk groups can considerably reduce the incidence and prevalence of B19 infection; thus, screening is required for epidemiologic surveillance and disease-prevention measures.

  5. Human parvovirus B19 in childhood acute lymphoblastic leukaemia in Basrah.

    Science.gov (United States)

    Ibrahem, Wijdan Nazar; Hasony, Hassan Jaber; Hassan, Jenan Ghulam

    2014-01-01

    To investigate the association of human parvovirus B19 infection with the onset of acute lymphoblastic leukaemia and its effect on TEL-AML-1 fusion gene and the presence of mutant P53. The case-control study was conducted at Basrah Hospital for Paediatrics and Gynaecology, Basrah, Iraq, from May 2009 to April 2010. A total of 100 blood samples were collected from 40 newly diagnosed cases and 60 healthy children to serve as control matched by age and gender. Human parvovirus B19-IgG and anti-P53 antibody were detected by enzyme-linked immunosorbent assay and TEL-AML-1 fusion gene was detected by reverse transcriptase-polymerase chain reaction on extracted ribonucleic acid from fresh blood samples using specified primers. SPSS 15 was used for statistical analysis. A higher proportion of human parvovirus B19-positive cases was found in leukaemic patients (n=19; 47.5%) compared to 12 (20%) in the control group (pparvovirus-B19 infection as 10 (71.4%) of TEL-AML-1 translocation-positive cases had human parvovirus-B19 IgG. On the other hand, there was no association between such infections and P53 gene mutation in the patients. Human parvovirus-B19 infection is common in the population, with higher prevalence among leukaemic patients with significant association between human parvovirus-B19 and TEL-AML-1 fusion gene in patients of acute lymphoblastic leukaemia.

  6. [Reactivation of parvovirus B19 infection in an HIV-infected woman].

    Science.gov (United States)

    Sterpu, R; Ichou, H; Mahé, I; Mortier, E

    2014-06-01

    Infection by human parvovirus B19 (erythrovirus B19) is common and usually asymptomatic during childhood conferring lasting protection against a new infection. Parvovirus B19 infection may cause erythema infectiosum (5th disease) and aplastic crisis. Secondary symptomatic parvovirus B19 infection in the same patient is rare and its physiopathology is not always clear. A 48-year-old HIV-infected female patient presented within 5 years two acute episodes of parvovirus B19 infection although her CD4 cells count was above 500/mm(3). Absence of specific antibodies production after the first episode and persisting parvovirus viremia suggested viral reactivation rather than re-infection. During the second episode, specific antibodies were produced. Similarly to most DNA viruses, parvovirus B19 reactivation is possible in HIV-infected patients while effectively treated by antiretroviral therapy. Copyright © 2013 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  7. Detection of Parvovirus B19 Infection in Thalasemic Patients in Isfahan Province, Iran.

    Science.gov (United States)

    Nikoozad, Razieh; Mahzounieh, Mohammad Reza; Ghorani, Mohammad Reza

    2015-11-01

    Parvovirus B19, a member of the Erythrovirus genus of Parvoviridae family, causes various clinical illnesses including infectious erythema, arthropathy, hydrops fetalis or congenital anemia, and transient aplastic crises. The B19 virus can be transmitted through respiratory secretions, blood products, and blood transfusion. The aim of this study was to detect the B19 virus in thalassemia patients in Isfahan, Iran. The prevalence of parvovirus B19 infection was compared between thalassemia major patients and healthy subjects. Plasma samples were collected from 30 thalassemia patients from Isfahan, Iran. Thirty patients without any blood complications were considered as the control group. After DNA extraction from the plasma samples, polymerase chain reaction was performed for parvovirus B19 detection. The parvovirus B19-specific nucleotide sequence was detected in 6 patients (20%). None of the samples obtained from the 30 control subjects tested positive for B19. In this study B19-Parvovirus infection were detected in patients with hematologic disorders in comparison with control subjects. Screening of patients with a high risk of parvovirus B19 infection can considerably reduce the incidence and prevalence of B19 infection.

  8. La influenza A (H1N1: estado actual del conocimiento Influenza A (H1N1 virus: current information

    Directory of Open Access Journals (Sweden)

    Laura Margarita González Valdés

    2010-03-01

    Full Text Available Se revisó la bibliografía actualizada sobre el tema a partir de los principales buscadores, y reuniones internacionales realizadas sobre la pandemia de la influenza A (H1N1. Se tratan los aspectos relacionados con la historia, la aparición de la pandemia, la biología de la enfermedad, la epidemiología, el cuadro clínico, el tratamiento y el pronóstico y la prevención. La gripe A (H1N1 es una pandemia causada por una variante nueva del virus de la Influenza A que ha sufrido cambios antigénicos en la hemaglutinina y la neuraminidasa. Esto hace que la población sea altamente vulnerable a la infección y produce una sobrecarga temporal enorme a los servicios de salud. El virus se trasmite como otros virus Influenza. Su letalidad es similar a la de la influenza estacional, pero puede incrementarse en personas con factores de riesgo y en adultos jóvenes sanos. El asma y el embarazo parecen ser condiciones de base importantes para incrementar la severidad de la infección. Puede existir cierta protección por inmunidad cruzada con cepas que circularon en el pasado. El espectro clínico va desde personas asintomáticas hasta las formas graves que requieren internación en cuidados intensivos, con rápido deterioro hasta llegar a la insuficiencia respiratoria en un plazo de 24 horas. La vacunación durante la pandemia no parece ser suficientemente efectiva. Son necesarios antivirales (oseltamivir y zanamivir, y las medidas preventivas higiénico-sanitarias son muy eficaces.An updated review using the main search motors and international meetings already celebrated related to Influenza A H1N1 pandemics. Items related to the history, the appearance of the pandemics, the biology of the disease, its epidemiology, clinics, treatment, prognosis and prevention. Grippe A H1N1 is a pandemic caused by a new variant of the Influenza A virus that has suffered antigenic changes in haemaglutinin and neuraminidase. This turns populations more susceptible to

  9. Identification of Human H1N2 and Human-Swine Reassortant H1N2 and H1N1 Influenza A Viruses among Pigs in Ontario, Canada (2003 to 2005)†

    OpenAIRE

    Karasin, Alexander I.; Carman, Suzanne; Olsen, Christopher W.

    2006-01-01

    Since 2003, three novel genotypes of H1 influenza viruses have been recovered from Canadian pigs, including a wholly human H1N2 virus and human-swine reassortants. These isolates demonstrate that human-lineage H1N2 viruses are infectious for pigs and that viruses with a human PB1/swine PA/swine PB2 polymerase complex can replicate in pigs.

  10. Physics from the first year of H1 at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Kiesling, C. [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    1994-12-01

    In this report the author summarizes the results from the H1 experiment at HERA, using the data from the first year of running, 1992, when an integrated luminosity of 25 nb{sup {minus}1} has been recorded. These results include photoproduction, the measurement of the deep inelastic scattering, both for neutral current reactions and the search for physics beyond the Standard Model. Apart from the measurement of a moderate rise in the total photoproduction cross section, clear evidence is seen for hard interactions in single particle spectra and jet production, requiring a {open_quotes}resolved{close_quotes} photon as expected in QCD. The investigation of the global properties of hadronic final states in deep inelastic scattering demonstrates the need for further improvement of present QCD models. Evidence is found for a class of events with diffractive characteristics, exhibiting a large gap of hadronic energy flow about the proton direction. The proton structure function F{sub 2}{sup p}(x, Q{sup 2}) has been measured for neutral current events for Bjorken x in the range 10{sup {minus}4} - 10{sup {minus}2} and Q{sup 2} > 5 GeV{sup 2}, showing a steep rise towards small x. Furthermore, using 1993 data, a measurement of the cross section for charged current events is presented, clearly demonstrating, for the first time, the propagator effect of the W boson. Finally, new limits on leptoquarks, leptogluons, and excited electrons have been determined.

  11. Data acquisition system realization for H1 experiment

    International Nuclear Information System (INIS)

    Del Buono, L.

    1989-06-01

    The acquisition and trigger system for H1 liquid argon calorimeter deals with severe constraints which have to be taken into account. We describe the system which results from these constraints, emphasizing the solutions adopted to meet the specificities of the detector and the difficult experimental conditions at HERA: high physical background (10 4-5 Hz), physics and background events pile up (10%), large crossing frequency of proton and electron bunches (10.4 MHz). Next, we present a detailed description of the acquisition and online control scheme used during the calorimetry tests in SPS beam, at CERN. This test system, prefiguring the final one (which will start to work at the end of 1989), includes a fast frontal processor CAB (taking charge of the electronics read out and sequencing, and furthermore producing simple histograms). The CAB is controlled by a Micro Vax computer which realizes the user interface, allowing a quick visualisation and verification of the acquired data, these functions being performed in multitasking environment [fr

  12. Physics from the first year of H1 at HERA

    International Nuclear Information System (INIS)

    Kiesling, C.

    1994-08-01

    In this report we summarize the results from the H1 experiment at HERA, using the data from the first year of running, 1992, where an integrated luminosity of 25 nb -1 has been recorded. These results include photoproduction, the measurement of the deep inelastic scattering, both for neutral current reactions, and the search for physics beyond the standard model. Apart from the measurement of a moderate rise in the total photoproduction cross section, clear evidence is seen for hard interactions in single particle spectra and jet production, requiring a ''resolved'' photon as expected is QCD. The investigation of the global properties of hadronic final states in deep inelastic scattering demonstrates the need for further improvement of present QCD models. Evidence is found for a class of events with diffractive characteristics, exhibiting a large gap of hadronic energy flow about the proton direction. The proton structure function F 2 p (x,Q 2 ) has been measured for neutral current events for Bjorken x in the range 10 -4 - 10 -2 and Q 2 > 5 GeV 2 , showing a steep rise towards small x. Furthermore, using 1993 data, a measurement of the cross section for charged current events is presented, clearly demonstrating, for the first time, the propagator effect of the W boson. Finally, new limits on leptoquarks, leptogluons, and excited electrons have been determined. (orig.)

  13. Recent results from the H1 collaboration at HERA

    International Nuclear Information System (INIS)

    Feltesse, J.

    1994-01-01

    New results from the H1 experiment at the electron-proton collider HERA are reported. Evidence for hard scattering in gamma diffraction in photoproduction events is presented. The hadronic final state in low x deep inelastic scattering (DIS) events has been analyzed. Transverse energy flow and cross section for production of jets at high x j are compared to the expectations of present Monte Carlo programs and to analytical calculations based on the BFKL evolution equation. DIS interactions with no hadronic energy flow in a large interval of rapidity around the incident proton direction are presented. The data are compared to models based on deep inelastic pomeron scattering or on MVD contributions. Measured cross sections for the production of multijet in DIS events at HERA are used to provide a preliminary measurement of the strong coupling constant alpha s , together with the first direct measurement of the gluon density in the proton. The cross section of the charged current process e - p → ν e + hadrons is measured. The effects of the W propagator term is visible for the first time. New limits on leptoquarks, leptogluons, Squarks from R-parity violating supersymmetry and on excited leptons are given. (author). 20 figs., 34 refs

  14. Production of mink enteritis parvovirus empty capsids by expression in a baculovirus vector system: a recombinant vaccine for mink enteritis parvovirus in mink

    DEFF Research Database (Denmark)

    Christensen, J; Alexandersen, Søren; Bloch, B.

    1994-01-01

    The VP-2 gene of mink enteritis parvovirus (MEV) was amplified by the polymerase chain reaction using MEV DNA isolated from the faeces of a naturally infected mink. Subsequently the VP-2 gene was cloned into a baculovirus expression vector. Recombinant baculo-viruses were isolated and the MEV VP-2...... protein was able to form parvovirus-like particles, which had haemagglutinating properties comparable with the wild-type MEV. The cloned VP-2 gene was sequenced and only five nucleotide differences were found after alignment with the known sequences of the MEV type 1 and type 2 isolates. Surprisingly...

  15. Prevalence of Parvovirus B19 and Parvovirus V9 DNA and Antibodies in Paired Bone Marrow and Serum Samples from Healthy Individuals

    OpenAIRE

    Heegaard, Erik D.; Petersen, Bodil Laub; Heilmann, Carsten J.; Hornsleth, Allan

    2002-01-01

    Parvovirus B19 (hereafter referred to as B19) exhibits a marked tropism to human bone marrow (BM), and infection may lead to erythema infectiosum, arthropathy, hydrops fetalis, and various hematologic disorders. Recently, a distinct parvovirus isolate termed V9 with an unknown clinical spectrum was discovered. In contrast to the many studies of B19 serology and viremia, valid information on the frequency of B19 or V9 DNA in the BM of healthy individuals is limited. To develop a reference valu...

  16. Risk factors and long-term outcomes of parvovirus B19 infection in kidney transplant patients.

    Science.gov (United States)

    Baek, Chung Hee; Kim, Hyosang; Yang, Won Seok; Han, Duck Jong; Park, Su-Kil

    2017-10-01

    Parvovirus B19 is a small, non-enveloped, single-stranded DNA virus with a special affinity for the erythroid progenitor cells of the bone marrow. The first case of parvovirus B19 infection in a kidney transplant recipient (KTR) was reported in 1986. Data on the risk factors and specific clinical characteristics of parvovirus B19 infection remain insufficient. We screened 602 KTRs for parvovirus B19 infection using parvovirus B19 polymerase chain reaction (PCR) from January 1990 to April 2016, and the clinical characteristics of patients with positive results were compared to those of age- and gender-matched patients with negative PCR results. A total of 39 KTRs tested positive for parvovirus B19, and they were compared to 78 age- and gender-matched patients among 563 KTRs who had negative PCR results. In all, 89.7% of positive cases were reported within the first year after kidney transplantation. In multivariate analyses, deceased-donor kidney transplantation (odds ratio [OR] 9.067, 95% confidence interval [CI] 1.668-49.275, P = .011), use of tacrolimus (OR 3.607, 95% CI 1.024-12.706, P = .046), PCR test within 1 year of kidney transplantation (OR 12.456, 95% CI 2.674-58.036, P = .001), and hemoglobin levels (OR 0.559, 95% CI 0.351-0.889, P = .014) showed significant correlations with parvovirus B19 infection. Graft survival did not differ between the two groups during the follow-up period of 111.68 ± 54.54 months (P = .685 by log-rank test). The identification of factors related to positive parvovirus B19 PCR results may promote the early detection of parvovirus B19 infection. Further studies are needed to elucidate the characteristics of parvovirus B19 infection in kidney transplantation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. A monoclonal antibody-based ELISA for differential diagnosis of 2009 pandemic H1N1

    Science.gov (United States)

    The swine-origin 2009 pandemic H1N1 virus (pdmH1N1) is genetically related to North American swine H1 influenza viruses and unrelated to human seasonal H1 viruses. Currently, specific diagnosis of pdmH1N1 relies on RT-PCR. In order to develop an assay that does not rely in amplification of the viral...

  18. IL-12 Expressing oncolytic herpes simplex virus promotes anti-tumor activity and immunologic control of metastatic ovarian cancer in mice.

    Science.gov (United States)

    Thomas, Eric D; Meza-Perez, Selene; Bevis, Kerri S; Randall, Troy D; Gillespie, G Yancey; Langford, Catherine; Alvarez, Ronald D

    2016-10-27

    Despite advances in surgical aggressiveness and conventional chemotherapy, ovarian cancer remains the most lethal cause of gynecologic cancer mortality; consequently there is a need for new therapeutic agents and innovative treatment paradigms for the treatment of ovarian cancer. Several studies have demonstrated that ovarian cancer is an immunogenic disease and immunotherapy represents a promising and novel approach that has not been completely evaluated in ovarian cancer. Our objective was to evaluate the anti-tumor activity of an oncolytic herpes simplex virus "armed" with murine interleukin-12 and its ability to elicit tumor-specific immune responses. We evaluated the ability of interleukin-12-expressing and control oncolytic herpes simplex virus to kill murine and human ovarian cancer cell lines in vitro. We also administered interleukin-12-expressing oncolytic herpes simplex virus to the peritoneal cavity of mice that had developed spontaneous, metastatic ovarian cancer and determined overall survival and tumor burden at 95 days. We used flow cytometry to quantify the tumor antigen-specific CD8 + T cell response in the omentum and peritoneal cavity. All ovarian cancer cell lines demonstrated susceptibility to oncolytic herpes simplex virus in vitro. Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus demonstrated a more robust tumor antigen-specific CD8 + T-cell immune response in the omentum (471.6 cells vs 33.1 cells; p = 0.02) and peritoneal cavity (962.3 cells vs 179.5 cells; p = 0.05). Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus were more likely to control ovarian cancer metastases (81.2 % vs 18.2 %; p = 0.008) and had a significantly longer overall survival (p = 0.02). Finally, five of 6 mice treated with interleukin-12-expressing oHSV had no evidence of metastatic tumor when euthanized at 6 months, compared to two of 4 mice treated with

  19. Targeting human breast cancer cells by an oncolytic adenovirus using microRNA-targeting strategy.

    Science.gov (United States)

    Shayestehpour, Mohammad; Moghim, Sharareh; Salimi, Vahid; Jalilvand, Somayeh; Yavarian, Jila; Romani, Bizhan; Mokhtari-Azad, Talat

    2017-08-15

    MicroRNA-targeting strategy is a promising approach that enables oncolytic viruses to replicate in tumor cells but not in normal cells. In this study, we targeted adenoviral replication toward breast cancer cells by inserting ten complementary binding sites for miR-145-5p downstream of E1A gene. In addition, we evaluated the effect of increasing miR-145 binding sites on inhibition of virus replication. Ad5-control and adenoviruses carrying five or ten copies of miR145-5p target sites (Ad5-5miR145T, Ad5-10miR145T) were generated and inoculated into MDA-MB-453, BT-20, MCF-7 breast cancer cell lines and human mammary epithelial cells (HMEpC). Titer of Ad5-10miR145T in HMEpC was significantly lower than Ad5-control titer. Difference between the titer of these two viruses at 12, 24, 36, and 48h after infection was 1.25, 2.96, 3.06, and 3.77 log TCID 50 . No significant difference was observed between the titer of both adenoviruses in MDA-MB-453, BT-20 and MCF-7 cells. The infectious titer of adenovirus containing 10 miR-145 binding sites in HMEpC cells at 24, 36, and 48h post-infection was 1.7, 2.08, and 4-fold, respectively, lower than the titer of adenovirus carrying 5 miR-145 targets. Our results suggest that miR-145-targeting strategy provides selectivity for adenovirus replication in breast cancer cells. Increasing the number of miRNA binding sites within the adenoviral genome confers more selectivity for viral replication in cancer cells. Copyright © 2017. Published by Elsevier B.V.

  20. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses.

    Science.gov (United States)

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-09-24

    The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decreased. Both the H1N1 and H1N2 infected pigs lacked gross lesions at PID 2, but they showed moderate to severe pneumonia on PID 4, 7 and 14. The pigs infected with H1N1 had significant scores of gross and histopathological lesions when compared with the other pigs infected with H1N2, H3N2, and mock at PID 14. Mean SIV antigen-positive scores were rarely detected for pigs infected with H1N2 and H3N2 from PID 7, whereas a significantly increased amount of viral antigens were found in the bronchioles and alveolar epithelium of the H1N1infected pigs at PID 14. We demonstrated that Korean SIV subtypes had different pulmonary pathologic patterns. The Korean H3N2 rapidly induced acute lung lesions such as broncho-interstitial pneumonia, while the Korean H1N1 showed longer course of infection as compared to other strains.

  1. Genetic Characterization of H1N1 and H1N2 Influenza A Viruses Circulating in Ontario Pigs in 2012.

    Science.gov (United States)

    Grgić, Helena; Costa, Marcio; Friendship, Robert M; Carman, Susy; Nagy, Éva; Poljak, Zvonimir

    2015-01-01

    The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada) in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1)pdm09). One H1N2 isolate had hemagglutinin (HA), polymerase A (PA) and non-structural (NS) genes closely related to A(H1N1)pdm09, and neuraminidase (NA), matrix (M), polymerase B1 (PB1), polymerase B2 (PB2), and nucleoprotein (NP) genes originating from a triple-reassortant H3N2 virus (tr H3N2). The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1)pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa) changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors.

  2. Genetic Characterization of H1N1 and H1N2 Influenza A Viruses Circulating in Ontario Pigs in 2012.

    Directory of Open Access Journals (Sweden)

    Helena Grgić

    Full Text Available The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1pdm09. One H1N2 isolate had hemagglutinin (HA, polymerase A (PA and non-structural (NS genes closely related to A(H1N1pdm09, and neuraminidase (NA, matrix (M, polymerase B1 (PB1, polymerase B2 (PB2, and nucleoprotein (NP genes originating from a triple-reassortant H3N2 virus (tr H3N2. The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors.

  3. In vitro reassortment between endemic H1N2 and 2009 H1N1 pandemic swine influenza viruses generates attenuated viruses.

    Directory of Open Access Journals (Sweden)

    Ben M Hause

    Full Text Available The pandemic H1N1 (pH1N1 influenza virus was first reported in humans in the spring of 2009 and soon thereafter was identified in numerous species, including swine. Reassortant viruses, presumably arising from the co-infection of pH1N1 and endemic swine influenza virus (SIV, were subsequently identified from diagnostic samples collected from swine. In this study, co-infection of swine testicle (ST cells with swine-derived endemic H1N2 (MN745 and pH1N1 (MN432 yielded two reassortant H1N2 viruses (R1 and R2, both possessing a matrix gene derived from pH1N1. In ST cells, the reassortant viruses had growth kinetics similar to the parental H1N2 virus and reached titers approximately 2 log(10 TCID(50/mL higher than the pH1N1 virus, while in A549 cells these viruses had similar growth kinetics. Intranasal challenge of pigs with H1N2, pH1N1, R1 or R2 found that all viruses were capable of infecting and transmitting between direct contact pigs as measured by real time reverse transcription PCR of nasal swabs. Lung samples were also PCR-positive for all challenge groups and influenza-associated microscopic lesions were detected by histology. Interestingly, infectious virus was detected in lung samples for pigs challenged with the parental H1N2 and pH1N1 at levels significantly higher than either reassortant virus despite similar levels of viral RNA. Results of our experiment suggested that the reassortant viruses generated through in vitro cell culture system were attenuated without gaining any selective growth advantage in pigs over the parental lineages. Thus, reassortant influenza viruses described in this study may provide a good system to study genetic basis of the attenuation and its mechanism.

  4. Prevention of EBV lymphoma development by oncolytic myxoma virus in a murine xenograft model of post-transplant lymphoproliferative disease

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Manbok, E-mail: manbok66@dankook.ac.kr [Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610 (United States); Rahman, Masmudur M. [Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610 (United States); Cogle, Christopher R. [Department of Hematology/Oncology, University of Florida, Gainesville, FL 32610 (United States); McFadden, Grant [Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610 (United States)

    2015-07-10

    Epstein–Barr virus (EBV) has been associated with a variety of epithelial and hematologic malignancies, including B-, T- and NK cell-lymphomas, Hodgkin's disease (HD), post-transplant lymphoproliferative diseases (LPDs), nasopharyngeal and gastric carcinomas, smooth muscle tumors, and HIV-associated lymphomas. Currently, treatment options for EBV-associated malignancies are limited. We have previously shown that myxoma virus specifically targets various human solid tumors and leukemia cells in a variety of animal models, while sparing normal human or murine tissues. Since transplant recipients of bone marrow or solid organs often develop EBV-associated post-transplant LPDs and lymphoma, myxoma virus may be of utility to prevent EBV-associated malignancies in immunocompromised transplant patients where treatment options are frequently limited. In this report, we demonstrate the safety and efficacy of myxoma virus purging as a prophylactic strategy for preventing post-transplant EBV-transformed human lymphomas, using a highly immunosuppressed mouse xenotransplantation model. This provides support for developing myxoma virus as a potential oncolytic therapy for preventing EBV-associated LPDs following transplantation of bone marrow or solid organ allografts. - Highlights: • Myxoma virus effectively infects and purges EBV lymphoma cells in vivo. • Oncolytic myxoma virus effectively eradicates oncogenic EBV tumorigenesis. • Ex vivo pre-treatment of myxoma virus can be effective as a preventive treatment modality for post-transplant lymphoproliferative diseases.

  5. ATN-224 enhances antitumor efficacy of oncolytic herpes virus against both local and metastatic head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ji Young Yoo

    Full Text Available Head and neck squamous cell carcinoma (HNSCC is the sixth most frequent cancer worldwide, and the 5-year survival rates are among the worst of the major cancers. Oncolytic herpes simplex viruses (oHSV have the potential to make a significant impact in the targeted treatment of these patients. Here, we tested antitumor efficacy of RAMBO, an oHSV armed with the antiangiogenic Vstat120, alone and in conjunction with ATN-224, a copper chelator against HNSCC in vitro and in vivo animal models. We found that all tested HNSCC cells responded well to virus treatment and were sensitive to RAMBO-mediated oncolytic destruction. In vivo, RAMBO had a significant antiangiogenic and antitumorigenic effect. Physiologic levels of copper inhibited viral replication and HNSCC cell killing. Chelation of copper using ATN-224 treatment significantly improved serum stability of RAMBO and permitted systemic delivery in HNSCC tumor xenografts models. Furthermore, our results show that the combination of ATN-224 and RAMBO strongly inhibits lung metastases in a mouse model of HNSCC. These findings suggest that combining ATN-224 with RAMBO has potential for clinical trials in both early and advanced HNSCC patients.

  6. Prevention of EBV lymphoma development by oncolytic myxoma virus in a murine xenograft model of post-transplant lymphoproliferative disease

    International Nuclear Information System (INIS)

    Kim, Manbok; Rahman, Masmudur M.; Cogle, Christopher R.; McFadden, Grant

    2015-01-01

    Epstein–Barr virus (EBV) has been associated with a variety of epithelial and hematologic malignancies, including B-, T- and NK cell-lymphomas, Hodgkin's disease (HD), post-transplant lymphoproliferative diseases (LPDs), nasopharyngeal and gastric carcinomas, smooth muscle tumors, and HIV-associated lymphomas. Currently, treatment options for EBV-associated malignancies are limited. We have previously shown that myxoma virus specifically targets various human solid tumors and leukemia cells in a variety of animal models, while sparing normal human or murine tissues. Since transplant recipients of bone marrow or solid organs often develop EBV-associated post-transplant LPDs and lymphoma, myxoma virus may be of utility to prevent EBV-associated malignancies in immunocompromised transplant patients where treatment options are frequently limited. In this report, we demonstrate the safety and efficacy of myxoma virus purging as a prophylactic strategy for preventing post-transplant EBV-transformed human lymphomas, using a highly immunosuppressed mouse xenotransplantation model. This provides support for developing myxoma virus as a potential oncolytic therapy for preventing EBV-associated LPDs following transplantation of bone marrow or solid organ allografts. - Highlights: • Myxoma virus effectively infects and purges EBV lymphoma cells in vivo. • Oncolytic myxoma virus effectively eradicates oncogenic EBV tumorigenesis. • Ex vivo pre-treatment of myxoma virus can be effective as a preventive treatment modality for post-transplant lymphoproliferative diseases

  7. Capitalizing on Cancer Specific Replication: Oncolytic Viruses as a Versatile Platform for the Enhancement of Cancer Immunotherapy Strategies

    Directory of Open Access Journals (Sweden)

    Donald Bastin

    2016-08-01

    Full Text Available The past decade has seen considerable excitement in the use of biological therapies in treating neoplastic disease. In particular, cancer immunotherapy and oncolytic virotherapy have emerged as two frontrunners in this regard with the first FDA approvals for agents in both categories being obtained in the last 5 years. It is becoming increasingly apparent that these two approaches are not mutually exclusive and that much of the therapeutic benefit obtained from the use of oncolytic viruses (OVs is in fact the result of their immunotherapeutic function. Indeed, OVs have been shown to recruit and activate an antitumor immune response and much of the current work in this field centers around increasing this activity through strategies such as engineering genes for immunomodulators into OV backbones. Because of their broad immunostimulatory functions, OVs can also be rationally combined with a variety of other immunotherapeutic approaches including cancer vaccination strategies, adoptive cell transfer and checkpoint blockade. Therefore, while they are important therapeutics in their own right, the true power of OVs may lie in their ability to enhance the effectiveness of a wide range of immunotherapies.

  8. Human parvovirus PARV4 in plasma pools of Chinese origin.

    Science.gov (United States)

    Ma, Y-Y; Guo, Y; Zhao, X; Wang, Z; Lv, M-M; Yan, Q-P; Zhang, J-G

    2012-10-01

    Human parvovirus 4 (PARV4) is present in blood and blood products. As the presence and levels of PARV4 in Chinese source plasma pools have never been determined, we implemented real-time quantitative PCR to investigate the presence of PARV4 in source plasma pools in China. Results showed that 26·15% (51/195) of lots tested positive for PARV4. The amounts of DNA ranged from 2·83 × 10(3) copies/ml to 2·35×10(7) copies/ml plasma. The high level of PARV4 in plasma pools may pose a potential risk to recipients. Further studies on the pathogenesis of PARV4 are urgently required. © 2012 The Author(s). Vox Sanguinis © 2012 International Society of Blood Transfusion.

  9. Canine parvovirus (CPV-2) variants circulating in Nigerian dogs

    Science.gov (United States)

    Apaa, T. T.; Daly, J. M.; Tarlinton, R. E.

    2016-01-01

    Canine parvovirus type 2 (CPV-2) is a highly contagious viral disease with three variants (CPV-2a, CPV-2b and CPV-2c) currently circulating in dogs worldwide. The main aim of this study was to determine the prevalent CPV-2 variant in faecal samples from 53 dogs presenting with acute gastroenteritis suspected to be and consistent with CPV-2 to Nigerian Veterinary Clinics in 2013–2014. Seventy-five per cent of these dogs tested positive for CPV-2 in a commercial antigen test and/or by PCR. Partial sequencing of the VP2 gene of six of these demonstrated them to be CPV-2a. Most of the dogs (60 per cent) were vaccinated, with 74 per cent of them puppies less than six months old. PMID:27933190

  10. Prevalence of canine parvovirus infection in Grand Tunis, Tunisia

    Directory of Open Access Journals (Sweden)

    Ghada Tagorti

    2018-03-01

    Results: The overall prevalence of CPV-2 was 32.14% (n=54/168. A total number of 54 young dogs, aging 1 to 7 months, of American Staffordshire terrier, German shepherd, Rottweiler and Spaniel breeds were affected. There was no sex predisposition and German shepherd was the over-represented breed (n=33/54; 61.11%. The prevalence of clinical cases below the three months old was 70.37% (n=38/54 with autumn (n=27/54; 50% as the most common season of infection. Furthermore, the study showed that 87.04% (n=47/54 of CPV-2 unvaccinated young dogs were positive. Conclusion: This work was a new descriptive study concerning canine parvovirus infection in the Grand Tunis; further studies are required to better characterize the epidemiology of CPV-2 infection in Tunisia. [J Adv Vet Anim Res 2018; 5(1.000: 93-97

  11. Genetic characterization of canine parvovirus from dogs in Pakistan.

    Science.gov (United States)

    Shabbir, M Z; Sohail, M U; Chaudhary, U N; Yaqub, W; Rashid, I; Saleem, M H; Munir, M

    Canine parvoviruses (CPV) exist as antigenic variants with varying frequencies and genetic variabilities across the globe. Given the endemicity and high prevalence in Pakistan, we characterized the CPVs originating from dogs-population to elucidate viral diversity and evolution. Fecal samples from clinically diseased pups (n = 17) of different breeds and age (2-6 months) were processed for hemagglutination assay (HA), and later for partial amplification of VP2 gene sequence and amino acid analysis. A total of 11 samples (64.71%) were found positive both in hemagglutination and PCR assays. Phylogenetic and evolutionary analysis demonstrated higher genetic heterogeneity in studied strains and constituted seven clusters within the CPV-2a group, however, they shared high level of identity with Chinese strains. Further studies are necessary to elucidate genetic analysis and epidemiology of CPV variants across a wide geographical area of the country.

  12. [Adenovirus-mediated canine interferon-gamma expression and its antiviral activity against canine parvovirus].

    Science.gov (United States)

    Zhang, Kao; Jin, Huijun; Zhong, Fei; Li, Xiujin; Neng, Changai; Chen, Huihui; Li, Wenyan; Wen, Jiexia

    2012-11-04

    To construct recombinant adenovirus containing canine interferon-gamma (cIFN-gamma) gene and to investigate its antiviral activity against canine parvovirus in Madin-Darby canine kidney cells (MDCK). [Methods] The cIFN-gamma gene was inserted into adenovirus shuttle plasmid to construct pShuttle3-cIFN-gamma expression vector, from which the cIFN-gamma expression cassette was transferred into the adenovirus genomic plasmid pAdeno-X by specific restriction sites to generate recombinant adenovirus genomic plasmid pAd-cIFN-gamma. The pAd-cIFN-gamma plasmid was linearized by digestion and transfected into human embryonic kidney (HEK) 293T cells to generate the replication-defective cIFN-gamma recombinant adenovirus (Ad-cIFN-gamma). To analyze its anti-canine parvovirus activity, the MDCK cells were pre-infected by Ad-cIFN-gamma recombinant adenovirus, and then infected by canine parvovirus. The antiviral activity of the Ad-cIFN-gamma recombinant adenovirus against parvovirus was analyzed. The recombinant adenovirus containing cIFN-gamma gene was constructed by the ligation method. The recombinant adenovirus could mediates recombinant cIFN-gamma secretory expression in MDCK cells. The Ad-cIFN-gamma recombinant adenovirus could significantly inhibit canine parvovirus replication in MDCK cells pre-infected with the recombinant adenovirus. These results indicate that the Ad-cIFN-gamma recombinant adenovirus has the potent antiviral activity against canine parvovirus. The Ad-cIFN-gamma recombinant adenovirus was successfully constructed by the ligation method and possessed a powerful antiviral activity against canine parvovirus.

  13. Human Parvovirus B19 in childhood acute lymphoblastic leukaemia in basrah

    International Nuclear Information System (INIS)

    Ibrahem, W.N.; Hasony, H.J.; Hassan, J.G.

    2014-01-01

    Objective: To investigate the association of human parvovirus B19 infection with the onset of acute lymphoblastic leukaemia and its effect on TEL-AML-1 fusion gene and the presence of mutant P53. Methods: The case-control study was conducted at Basrah Hospital for Paediatrics and Gynaecology, Basrah, Iraq, from May 2009 to April 2010. A total of 100 blood samples were collected from 40 newly diagnosed cases and 60 healthy children to serve as control matched by age and gender. Human parvovirus B19-IgG and anti-P53 antibody were detected by enzyme-linked immunosorbent assay and TEL-AML-1 fusion gene was detected by reverse transcriptase-polymerase chain reaction on extracted ribonucleic acid from fresh blood samples using specified primers. SPSS 15 was used for statistical analysis. Results: A higher proportion of human parvovirus B19-positive cases was found in leukaemic patients (n=19; 47.5%) compared to 12 (20%) in the control group (p<0.05). There was significant association between Tel-Amyl-1 translocation and human parvovirus-B19 infection as 10 (71.4%) of TEL-AML-1 translocation-positive cases had human parvovirus-B19 IgG. On the other hand, there was no association between such infections and P53 gene mutation in the patients. Conclusion: Human parvovirus-B19 infection is common in the population, with higher prevalence among leukaemic patients with significant association between human parvovirus-B19 and TEL-AML-1 fusion gene in patients of acute lymphoblastic leukaemia. (author)

  14. Myocardial Parvovirus B19 Persistence: Lack of Association with Clinicopathologic Phenotype in Adults with Heart Failure

    Science.gov (United States)

    Stewart, Garrick C.; Lopez-Molina, Javier; Gottumukkala, Raju V.; Rosner, Gregg F.; Anello, Mary S.; Hecht, Jonathan L.; Winters, Gayle L.; Padera, Robert F.; Baughman, Kenneth L.; Lipes, Myra A.

    2011-01-01

    Background Multiple viruses have been isolated from the heart, but their significance remains controversial. We sought to determine the prevalence of cardiotropic viruses in endomyocardial biopsy (EMB) samples from adult heart failure (HF) patients and to define the clinicopathologic profile of patients exhibiting viral positivity. Methods and Results EMB from 100 patients (median EF 30%, IQR 20–45%) presenting for cardiomyopathy evaluation (median symptom duration 5 months, IQR 1–13 months) were analyzed by polymerase chain reaction for adenovirus, cytomegalovirus, enteroviruses, Epstein-Barr virus, and parvovirus B19. Each isolate was sequenced and viral load was determined. Parvovirus B19 was the only virus detected in EMB samples (12% of subjects). No subject had anti-parvovirus IgM antibodies, but all had IgG antibodies, suggesting viral persistence. The clinical presentation of parvovirus-positive patients was markedly heterogeneous, with both acute and chronic HF, variable ventricular function, and ischemic cardiomyopathy. No subject met Dallas histopathological criteria for active or borderline myocarditis. Two patients with a positive cardiac MRI and presumed “parvomyocarditis” had similar viral loads as autopsy controls without heart disease. The oldest parvovirus-positive subjects were positive for genotype 2, suggesting lifelong persistence in heart tissue. Conclusions Parvovirus B19 was the only virus isolated from EMB samples in this series of adult HF patients from the United States. Positivity was associated with a wide array of clinical presentations and heart failure phenotypes. Our studies do not support a causative role for parvovirus B19 persistence in HF and therefore advocate against the use of antiviral therapy for these patients. PMID:21097605

  15. Generalized petechial rashes in children during a parvovirus B19 outbreak.

    Science.gov (United States)

    Edmonson, M Bruce; Riedesel, Erica L; Williams, Gary P; Demuri, Gregory P

    2010-04-01

    Human parvovirus B19 infection is associated not only with erythema infectiosum (fifth disease) but also, rarely, with purpuric or petechial rashes. Most reports of these atypical rashes describe sporadic cases with skin lesions that have distinctively focal distributions. During a community outbreak of fifth disease, we investigated a cluster of illnesses in children with generalized petechial rashes to determine whether parvovirus was the causative agent and, if so, to describe more fully the clinical spectrum of petechial rashes that are associated with this virus. Systematic evaluation was conducted by general pediatricians of children with petechial rashes for evidence of acute parvovirus infection. During the outbreak, acute parvovirus infection was confirmed in 13 (76%) of 17 children who were evaluated for petechial rash. Confirmed case patients typically had mild constitutional symptoms, and most (11 [85%] of 13) had fever. Petechiae were typically dense and widely distributed; sometimes accentuated in the distal extremities, axillae, or groin; and usually absent from the head/neck. Most case patients had leukopenia, and several had thrombocytopenia. Parvovirus immunoglobulin M was detected in 8 (73%) of 11 acute-phase serum specimens, and immunoglobulin G was detectable only in convalescent specimens. Parvovirus DNA was detected in all 7 tested serum specimens, including 2 acute-phase specimens that were immunoglobulin M-negative. All case patients had brief, uncomplicated illnesses, but 6 were briefly hospitalized and 1 underwent a bone marrow examination. Two case patients developed erythema infectiosum during convalescence. During an outbreak of fifth disease, parvovirus proved to be a common cause of petechial rash in children, and this rash was typically more generalized than described in case reports. Associated clinical features, hematologic abnormalities, and serologic test results are consistent with a viremia-associated illness that is distinct

  16. Failure of orally administered attenuated goose parvovirus strain B to induce a humoral immune response in adult geese.

    Science.gov (United States)

    Kisary, J; Kelemen, M

    1981-01-01

    Two-month-old geese responded with the production of virus neutralising antibodies against virulent goose parvovirus strain B administered either per os or intramuscularly. They were shedding the virus within a short period after exposure. Humoral immune response in geese of the same age was induced by the attenuated goose parvovirus strain B only by intramuscular injection but not with per os administration.

  17. Incidence of parvovirus B 19 infection. among an unselected population of pregnant women in the Netherlands : A prospective study

    NARCIS (Netherlands)

    van Gessel, Peter H.; Gaytant, Michael A.; Vossen, Ann C. T. M.; Galama, Joep M. D.; Ursem, Nicolette T. C.; Steegers, Eric A. P.; Wildschut, Hajo I. J.

    2006-01-01

    Objective: To evaluate seroprevalence of anti-parvovirus B19 IgG immunoglobulins and the rate of seroconversion in seronegative pregnant women. Design: Prospective assessment of anti-parvovirus B19 IgG immunoglobulins in an unselected population of pregnant women booked for antenatal care from 1998

  18. Seroprevalence of parvovirus B19 IgG and IgM antibodies among pregnant women in Oyo State, Nigeria.

    Science.gov (United States)

    Abiodun, Iyanda; Opaleye, Oluyinka Oladele; Ojurongbe, Olusola; Fagbami, Ademola Hezekiah

    2013-12-15

    Human parvovirus B19 causes a wide range of complications in pregnant women including abortion, severe fetal anemia, non-immune hydrops fetalis, and even intrauterine fetal death. However, there is a dearth of information on the prevalence of the virus among pregnant women in southwestern Nigeria. Blood samples were collected from 231 pregnant women and screened for antibodies to human parvovirus B19 IgM and IgG using an enzyme immunosorbent assay kits. Of the 231 women, 31 were in their first trimester, 146 were in their second trimester, and 54 were in their third trimester. Forty-five (20%) were positive for parvovirus B19 IgG antibodies, 10 (4%) were positive for parvovirus B19 IgM antibodies, and 176 (76%) had no detectable parvovirus B19 antibodies. Twenty-eight (19%) of the 146 pregnant women in their second trimester were positive for parvovirus B19 IgG antibody while three (2%) of the 146 were positive for parvovirus B19 IgM antibody. It is evident that there is a high prevalence of human parvovirus B19 among pregnant women in south-western Nigeria. This suggests that there is an active transmission of the virus in the community; it is therefore necessary to conduct more studies on the virus in pregnant women in Nigeria to ascertain its effect on the fetus.

  19. Incidence of parvovirus B19 infection among an unselected population of pregnant women in the Netherlands: A prospective study.

    NARCIS (Netherlands)

    Gessel, P.H. van; Gaytant, M.A.; Vossen, A.C.; Galama, J.M.D.; Ursem, N.T.; Steegers, E.A.P.; Wildschut, H.I.J.

    2006-01-01

    OBJECTIVE: To evaluate seroprevalence of anti-parvovirus B19 IgG immunoglobulins and the rate of seroconversion in seronegative pregnant women. DESIGN: Prospective assessment of anti-parvovirus B19 IgG immunoglobulins in an unselected population of pregnant women booked for antenatal care from 1998

  20. Seroprevalence of H1N1, H3N2 and H1N2 influenza viruses in pigs in seven European countries in 2002-2003.

    Science.gov (United States)

    Van Reeth, Kristien; Brown, Ian H; Dürrwald, Ralf; Foni, Emanuela; Labarque, Geoffrey; Lenihan, Patrick; Maldonado, Jaime; Markowska-Daniel, Iwona; Pensaert, Maurice; Pospisil, Zdenek; Koch, Guus

    2008-05-01

    Avian-like H1N1 and human-like H3N2 swine influenza viruses (SIV) have been considered widespread among pigs in Western Europe since the 1980s, and a novel H1N2 reassortant with a human-like H1 emerged in the mid 1990s. This study, which was part of the EC-funded 'European Surveillance Network for Influenza in Pigs 1', aimed to determine the seroprevalence of the H1N2 virus in different European regions and to compare the relative prevalences of each SIV between regions. Laboratories from Belgium, the Czech Republic, Germany, Italy, Ireland, Poland and Spain participated in an international serosurvey. A total of 4190 sow sera from 651 farms were collected in 2002-2003 and examined in haemagglutination inhibition tests against H1N1, H3N2 and H1N2. In Belgium, Germany, Italy and Spain seroprevalence rates to each of the three SIV subtypes were high (> or =30% of the sows seropositive) to very high (> or =50%), except for a lower H1N2 seroprevalence rate in Italy (13.8%). Most sows in these countries with high pig populations had antibodies to two or three subtypes. In Ireland, the Czech Republic and Poland, where swine farming is less intensive, H1N1 was the dominant subtype (8.0-11.7% seropositives) and H1N2 and H3N2 antibodies were rare (0-4.2% seropositives). Thus, SIV of H1N1, H3N2 and H1N2 subtype are enzootic in swine producing regions of Western Europe. In Central Europe, SIV activity is low and the circulation of H3N2 and H1N2 remains to be confirmed. The evolution and epidemiology of SIV throughout Europe is being further monitored through a second 'European Surveillance Network for Influenza in Pigs'.

  1. Seroprevalence of H1N1, H3N2 and H1N2 influenza viruses in pigs in seven European countries in 2002-2003

    NARCIS (Netherlands)

    Reeth, K.; Brown, I.H.; Durrwald, R.; Foni, E.; Labarque, G.; Lenihan, P.; Maldonado, J.; Markowska-Daniel, I.; Pensaert, M.; Pospisil, Z.; Koch, G.

    2008-01-01

    Objectives Avian-like H1N1 and human-like H3N2 swine influenza viruses (SIV) have been considered widespread among pigs in Western Europe since the 1980s, and a novel H1N2 reassortant with a human-like H1 emerged in the mid 1990s. This study, which was part of the EC-funded 'European Surveillance

  2. Novel reassortant influenza A(H1N2) virus derived from A(H1N1)pdm09 virus isolated from swine, Japan, 2012.

    Science.gov (United States)

    Kobayashi, Miho; Takayama, Ikuyo; Kageyama, Tsutomu; Tsukagoshi, Hiroyuki; Saitoh, Mika; Ishioka, Taisei; Yokota, Yoko; Kimura, Hirokazu; Tashiro, Masato; Kozawa, Kunihisa

    2013-12-01

    We isolated a novel influenza virus A(H1N2) strain from a pig on January 13, 2012, in Gunma Prefecture, Japan. Phylogenetic analysis showed that the strain was a novel type of double-reassortant virus derived from the swine influenza virus strains H1N1pdm09 and H1N2, which were prevalent in Gunma at that time.

  3. Regioselectivity in the Thermal Rearrangement of Unsymmetrical 4-Methyl-4H-1,2,4-triazoles to 1-Methyl-1H-1,2,4-triazoles

    Directory of Open Access Journals (Sweden)

    Per H.J. Carlsen

    2001-11-01

    Full Text Available The rearrangement of 4-methyl-3,5-diaryl-4H-1,2,4-triazoles to the corresponding 1-methyl-3,5-diaryl-1H-1,2,4-triazoles showed regioselectivity comparable to that observed for the alkylation of 3,5-diaryl-1H-1,2,4-triazoles. This lends support to a proposed mechanism for the rearrangement that involves consecutive nucleophilic displacements steps.

  4. Experimental infection with H1N1 European swine influenza virus protects pigs from an infection with the 2009 pandemic H1N1 human influenza virus.

    Science.gov (United States)

    Busquets, Núria; Segalés, Joaquim; Córdoba, Lorena; Mussá, Tufaria; Crisci, Elisa; Martín-Valls, Gerard E; Simon-Grifé, Meritxell; Pérez-Simó, Marta; Pérez-Maíllo, Monica; Núñez, Jose I; Abad, Francesc X; Fraile, Lorenzo; Pina, Sonia; Majó, Natalia; Bensaid, Albert; Domingo, Mariano; Montoya, María

    2010-01-01

    The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains. © INRA, EDP Sciences, 2010.

  5. Characterization of a newly emerged genetic cluster of H1N1 and H1N2 swine influenza virus in the United States.

    Science.gov (United States)

    Vincent, Amy L; Ma, Wenjun; Lager, Kelly M; Gramer, Marie R; Richt, Juergen A; Janke, Bruce H

    2009-10-01

    H1 influenza A viruses that were distinct from the classical swine H1 lineage were identified in pigs in Canada in 2003–2004; antigenic and genetic characterization identified the hemagglutinin (HA) as human H1 lineage. The viruses identified in Canadian pigs were human lineage in entirety or double (human–swine) reassortants. Here, we report the whole genome sequence analysis of four human-like H1 viruses isolated from U.S. swine in 2005 and 2007. All four isolates were characterized as triple reassortants with an internal gene constellation similar to contemporary U.S. swine influenza virus (SIV), with HA and neuraminidase (NA) most similar to human influenza virus lineages. A 2007 human-like H1N1 was evaluated in a pathogenesis and transmission model and compared to a 2004 reassortant H1N1 SIV isolate with swine lineage HA and NA. The 2007 isolate induced disease typical of influenza virus and was transmitted to contact pigs; however, the kinetics and magnitude differed from the 2004 H1N1 SIV. This study indicates that the human-like H1 SIV can efficiently replicate and transmit in the swine host and now co-circulates with contemporary SIVs as a distinct genetic cluster of H1 SIV.

  6. Genetic characterization of a potentially novel goose parvovirus circulating in Muscovy duck flocks in Fujian Province, China.

    Science.gov (United States)

    Wang, Shao; Cheng, Xiao-Xia; Chen, Shao-Ying; Zhu, Xiao-Li; Chen, Shi-Long; Lin, Feng-Qiang; Li, Zhao-Long

    2013-01-01

    We report a novel goose parvovirus (MDGPV/PT) isolated from an affected Muscovy duck in Fujian Province, China. In this study, the NS1 sequence analyses indicated a close genetic relationship between MDGPV/PT and Muscovy duck parvovirus (MDPV) strains, although MDGPV/DY, which was isolated from a Muscovy duck in 2006 in Sichuan Province, could be divided into GPV-related groups. Phylogenetic analysis showed that except for differences in the NS1 gene, MDGPV strains PT and DY are closely related to a parvovirus that infects domestic waterfowls. This is the first demonstration of recombination between goose and Muscovy duck parvoviruses in nature, and MDGPV/PT might have led to the generation of a novel waterfowl parvovirus strain circulating in Muscovy duck flocks in China.

  7. Parvovirus B19 infection presenting concurrently as papular-purpuric gloves-and-socks syndrome and bathing-trunk eruption.

    Science.gov (United States)

    Vázquez-Osorio, I; Mallo-García, S; Rodríguez-Díaz, E; Gonzalvo-Rodríguez, P; Requena, L

    2017-01-01

    Parvovirus B19 infection can cause a wide range of cutaneous manifestations, including papular-purpuric gloves-and-socks syndrome (PPGSS) and petechial bathing trunk eruption. We report a case of an immunocompetent woman with a primary parvovirus B19 infection presenting as concurrent PPGSS and petechial bathing trunk eruption. Parvovirus B19 seroconversion was confirmed several days after the onset of the clinical manifestations. The coexistence of these two cutaneous manifestations of primary parvovirus B19 infection has rarely been reported in the literature. It is important to recognize parvovirus B19 infection early, based on the cutaneous manifestations, to avoid potentially serious systemic complications in susceptible individuals. © 2016 British Association of Dermatologists.

  8. Human parvovirus PARV4 DNA in tissues from adult individuals: a comparison with human parvovirus B19 (B19V

    Directory of Open Access Journals (Sweden)

    Rotellini Matteo

    2010-10-01

    Full Text Available Abstract Background PARV4 is a new member of the Parvoviridae family not closely related to any of the known human parvoviruses. Viremia seems to be a hallmark of PARV4 infection and viral DNA persistence has been demonstrated in a few tissues. Till now, PARV4 has not been associated with any disease and its prevalence in human population has not been clearly established. This study was aimed to assess the tissue distribution and the ability to persist of PARV4 in comparison to parvovirus B19 (B19V. Results PARV4 and B19V DNA detection was carried out in various tissues of individuals without suspect of acute viral infection, by a real time PCR and a nested PCR, targeting the ORF2 and the ORF1 respectively. Low amount of PARV4 DNA was found frequently (>40% in heart and liver of adults individuals, less frequently in lungs and kidneys (23,5 and 18% respectively and was rare in bone marrow, skin and synovium samples (5,5%, 4% and 5%, respectively. By comparison, B19V DNA sequences were present in the same tissues with a higher frequency (significantly higher in myocardium, skin and bone marrow except than in liver where the frequency was the same of PARV4 DNA and in plasma samples where B19V frequency was significantly lower than that of PARV4 Conclusions The particular tropism of PARV4 for liver and heart, here emerged, suggests to focus further studies on these tissues as possible target for viral replication and on the possible role of PARV4 infection in liver and heart diseases. Neither bone marrow nor kidney seem to be a common target of viral replication.

  9. High prevalence of human parvovirus 4 infection in HBV and HCV infected individuals in shanghai.

    Science.gov (United States)

    Yu, Xuelian; Zhang, Jing; Hong, Liang; Wang, Jiayu; Yuan, Zhengan; Zhang, Xi; Ghildyal, Reena

    2012-01-01

    Human parvovirus 4 (PARV4) has been detected in blood and diverse tissues samples from HIV/AIDS patients who are injecting drug users. Although B19 virus, the best characterized human parvovirus, has been shown to co-infect patients with hepatitis B or hepatitis C virus (HBV, HCV) infection, the association of PARV4 with HBV or HCV infections is still unknown.The aim of this study was to characterise the association of viruses belonging to PARV4 genotype 1 and 2 with chronic HBV and HCV infection in Shanghai.Serum samples of healthy controls, HCV infected subjects and HBV infected subjects were retrieved from Shanghai Center for Disease Control and Prevention (SCDC) Sample Bank. Parvovirus-specific nested-PCR was performed and results confirmed by sequencing. Sequences were compared with reference sequences obtained from Genbank to derive phylogeny trees.The frequency of parvovirus molecular detection was 16-22%, 33% and 41% in healthy controls, HCV infected and HBV infected subjects respectively, with PARV4 being the only parvovirus detected. HCV infected and HBV infected subjects had a significantly higher PARV4 prevalence than the healthy population. No statistical difference was found in PARV4 prevalence between HBV or HCV infected subjects. PARV4 sequence divergence within study groups was similar in healthy subjects, HBV or HCV infected subjects.Our data clearly demonstrate that PARV4 infection is strongly associated with HCV and HBV infection in Shanghai but may not cause increased disease severity.

  10. Discovery of parvovirus-related sequences in an unexpected broad range of animals.

    Science.gov (United States)

    François, S; Filloux, D; Roumagnac, P; Bigot, D; Gayral, P; Martin, D P; Froissart, R; Ogliastro, M

    2016-09-07

    Our knowledge of the genetic diversity and host ranges of viruses is fragmentary. This is particularly true for the Parvoviridae family. Genetic diversity studies of single stranded DNA viruses within this family have been largely focused on arthropod- and vertebrate-infecting species that cause diseases of humans and our domesticated animals: a focus that has biased our perception of parvovirus diversity. While metagenomics approaches could help rectify this bias, so too could transcriptomics studies. Large amounts of transcriptomic data are available for a diverse array of animal species and whenever this data has inadvertently been gathered from virus-infected individuals, it could contain detectable viral transcripts. We therefore performed a systematic search for parvovirus-related sequences (PRSs) within publicly available transcript, genome and protein databases and eleven new transcriptome datasets. This revealed 463 PRSs in the transcript databases of 118 animals. At least 41 of these PRSs are likely integrated within animal genomes in that they were also found within genomic sequence databases. Besides illuminating the ubiquity of parvoviruses, the number of parvoviral sequences discovered within public databases revealed numerous previously unknown parvovirus-host combinations; particularly in invertebrates. Our findings suggest that the host-ranges of extant parvoviruses might span the entire animal kingdom.

  11. Clinical and epidemiological aspects of parvovirus B19 infections in Ireland, January 1996-June 2008.

    LENUS (Irish Health Repository)

    Nicolay, N

    2009-01-01

    Parvovirus B19 infection may be mistakenly reported as measles or rubella if laboratory testing is not performed. As Europe is seeking to eliminate measles, an accurate diagnosis of fever\\/rash illnesses is needed. The main purpose of this study was to describe the epidemiological pattern of parvovirus B19, a common cause of rash, in Ireland between January 1996 and June 2008, using times series analysis of laboratory diagnostic data from the National Virus Reference Laboratory. Most diagnostic tests for presumptive parvovirus B19 infection were done in children under the age of five years and in women of child-bearing age (between 20-39 years-old). As a consequence, most of the acute diagnoses of B19 infection were made in these populations. The most commonly reported reasons for testing were: clinical presentation with rash, acute arthritis, influenza-like symptoms or pregnancy. The time series analysis identified seasonal trends in parvovirus B19 infection, with annual cycles peaking in late winter\\/spring and a six-year cycle for parvovirus B19 outbreaks in Ireland.

  12. Relation between parvovirus B19 infection and fetal mortality and spontaneous abortion.

    Science.gov (United States)

    Shabani, Zahra; Esghaei, Maryam; Keyvani, Hossein; Shabani, Fateme; Sarmadi, Fateme; Mollaie, Hamidreza; Monavari, Seyed Hamidreza

    2015-01-01

    Infection with parvovirus B19 may cause fetal losses including spontaneous abortion, intrauterine fetal death and non-immune hydrops fetalis. The aim of this study is to determine the frequency of parvovirus B19 in formalin fixed placental tissues in lost fetuses using real-time PCR method. In this cross-sectional study, 100 formalin fixed placental tissues with unknown cause of fetal death were determined using real-time PCR method after DNA extraction. Six out of 100 cases (6%) were positive for parvovirus B19 using real-time PCR. Gestational age of all positive cases was less than 20 weeks with a mean of 12.3 weeks. Three cases have a history of abortion and all of positive cases were collected in spring. Mean age of positive cases were 28 years. Parvovirus B19 during pregnancy can infect red precursor cells and induces apoptosis or lyses these cells that resulting in anemia and congestive heart failure leading to fetal death. Management of parvovirus B19 infection in pregnant women is important because immediate diagnosis and transfusion in hydropsic fetuses can decrease the risk of fetal death.

  13. Post-infectious acute glomerulonephritis with podocytopathy induced by parvovirus B19 infection.

    Science.gov (United States)

    Hara, Satoshi; Hirata, Masayoshi; Ito, Kiyoaki; Mizushima, Ichiro; Fujii, Hiroshi; Yamada, Kazunori; Nagata, Michio; Kawano, Mitsuhiro

    2018-03-01

    Human parvovirus B19 infection causes a variety of glomerular diseases such as post-infectious acute glomerulonephritis and collapsing glomerulopathy. Although each of these appears independently, it has not been fully determined why parvovirus B19 provokes such a variety of different glomerular phenotypes. Here, we report a 68-year-old Japanese man who showed endocapillary proliferative glomerulonephritis admixed with podocytopathy in association with parvovirus B19 infection. The patient showed acute onset of heavy proteinuria, microscopic hematuria and kidney dysfunction with arthralgia and oliguria after close contact with a person suffering from erythema infectiosum. In the kidney biopsy specimen, glomeruli revealed diffuse and global endocapillary infiltration of inflammatory cells, with some also showing tuft collapse with aberrant vacuolation, swelling, and hyperplasia of glomerular epithelial cells. Immunofluorescence revealed dense granular C3 deposition that resembled the "starry sky pattern". Intravenous glucocorticoid pulse therapy followed by oral prednisolone and cyclosporine combination therapy resulted in considerable amelioration of the kidney dysfunction and urinary abnormalities. The present case reveals that parvovirus B19 infection can induce different glomerular phenotypes even in the same kidney structure. This finding may provide hints useful for the further elucidation of the pathogenesis of parvovirus B19-induced glomerular lesions. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  14. Different patterns of skin manifestations associated with parvovirus B19 primary infection in adults.

    Science.gov (United States)

    Mage, Valentia; Lipsker, Dan; Barbarot, Sébastien; Bessis, Didier; Chosidow, Olivier; Del Giudice, Pascal; Aractingi, Sélim; Avouac, Jérôme; Bernier, Claire; Descamps, Vincent; Dupin, Nicolas

    2014-07-01

    Skin involvement is reported during primary parvovirus B19 infection in adults. We sought to describe the cutaneous presentations associated with parvovirus B19 primary infection in adults. We conducted a descriptive, retrospective, multicenter study. The patients included (>18 years old) had well-established primary infections with parvovirus B19. Twenty-nine patients were identified between 1992 and 2013 (17 women, 12 men). The elementary dermatologic lesions were mostly erythematous (86%) and often purpuric (69%). Pruritus was reported in 48% of cases. The rash predominated on the legs (93%), trunk (55%), and arms (45%), with a lower frequency of facial involvement (20%). Four different but sometimes overlapping patterns were identified (45%): exanthema, which was reticulated and annular in some cases (80%); the gloves-and-socks pattern (24%); the periflexural pattern (28%); and palpable purpura (24%). The limitations of this study were its retrospective design and possible recruitment bias in tertiary care centers. Our findings suggest that primary parvovirus B19 infection is associated with polymorphous skin manifestations with 4 predominant, sometimes overlapping, patterns. The acral or periflexural distribution of the rash and the presence of purpuric or annular/reticulate lesions are highly suggestive of parvovirus B19 infection. Copyright © 2014 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  15. Anaemia and fever in Kidney transplant. The role of human parvovirus B19.

    Science.gov (United States)

    Parodis López, Yanet; Santana Estupiñán, Raquel; Marrero Robayna, Silvia; Gallego Samper, Roberto; Henríquez Palop, Fernando; Rivero Vera, José Carlos; Camacho Galán, Rafael; Pena López, María José; Sablón González, Nery; González Cabrera, Fayna; Oliva Dámaso, Elena; Vega Díaz, Nicanor; Rodríguez Pérez, José Carlos

    Infections remain an issue of particular relevance in renal transplant patients, particularly viral infections. Human parvovirus B19 infection causes severe refractory anaemia, pancytopenia and thrombotic microangiopathy. Its presence is recognized by analysing blood polymerase chain reaction (PCR) and by the discovery of typical giant proerythroblasts in the bone marrow. We report the case of a 65 year-old man with a history of deceased donor renal transplant in September 2014. At 38 days after the transplant, the patient presented progressive anaemia that was resistant to erythropoiesis-stimulating agents. At 64 days after transplant, hyperthermia occurred with progressive deterioration of the patient's general condition. The viral serology and the first blood PCR for human parvovirus B19 were both negative. At 4 months and 19 days after, a bone marrow biopsy was conducted, showing giant erythroblasts with nuclear viral inclusions that were compatible with parvovirus; a PCR in the tissue confirmed the diagnosis. A second blood PCR was positive for parvovirus. After treatment with intravenous immunoglobulin and the temporary discontinuation of mycophenolate mofetil, a complete remission of the disease occurred, although the blood PCR for parvovirus B19 remained positive, so monitoring is necessary for future likely recurrence. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  16. Focal seizure associated with human parvovirus B19 infection in a non-encephalopathic child.

    Science.gov (United States)

    Samanta, Debopam; Willis, Erin

    2016-02-01

    The incidence of acute symptomatic (at the time of documented brain insult) seizures and single unprovoked seizures are 29-39 and 23-61 per 100 000 per year, respectively. After stabilization of the patient, finding the etiology of the seizure is of paramount importance. A careful history and physical examination may allow a diagnosis without need for further evaluation. In the literature, severe central nervous system involvement has been reported from human parvovirus B19 infection. We reported a previously healthy 7-year-old girl who presented after an episode of focal seizure. She was afebrile and didn't have any focal neurological abnormalities. She had erythematous malar rash along with reticulating pattern of rash over her both upper extremities. Parvovirus infection was suspected due to the characteristic erythematous malar rash. Serum human parvovirus B19 DNA polymerase chain reaction was positive which was consistent with acute parvovirus infection. Further confirmation of current infection was done with Sandwich enzyme immunoassays showing positive anti-B19 IgM Index (>1.1). IgG index was equivocal (0.9-1.1). We report an extremely rare presentation of non-febrile seizure from acute parvovirus infection in a child without encephalopathy who had an excellent recovery. Timely diagnosis can provide counselling regarding future seizure recurrence risk, curtail expenditure from expensive diagnostic work up and provide additional recommendations about potential risks to a pregnant caregiver.

  17. Short beak and dwarfism syndrome of mule duck is caused by a distinct lineage of goose parvovirus.

    Science.gov (United States)

    Palya, Vilmos; Zolnai, Anna; Benyeda, Zsófia; Kovács, Edit; Kardi, Veronika; Mató, Tamás

    2009-04-01

    From the early 1970s to the present, numerous cases of short beak and dwarfism syndrome (SBDS) have been reported in mule ducks from France. The animals showed strong growth retardation with smaller beak and tarsus. It was suggested that the syndrome was caused by goose parvovirus on the basis of serological investigation, but the causative agent has not been isolated and the disease has not so far been reproduced by experimental infection. The aim of the present study was to characterize the virus strains isolated from field cases of SBDS, and to reproduce the disease experimentally. Phylogenetic analysis proved that the parvovirus isolates obtained from SBDS of mule duck belonged to a distinct lineage of goose parvovirus-related group of waterfowl parvoviruses. The authors carried out experimental infections of 1-day-old, 2-week-old and 3-week-old mule ducks by the oral route with three different parvovirus strains: strain D17/99 of goose parvovirus from Derzsy's disease, strain FM of Muscovy duck parvovirus from the parvovirus disease of Muscovy ducks, and strain D176/02 isolated from SBDS of mule duck. The symptoms of SBDS of the mule duck could only be reproduced with the mule duck isolate (strain D176/02) following 1-day-old inoculation. Infection with a genetically different strain of goose parvovirus isolated from classical Derzsy's disease (D17/99) or with the Muscovy duck parvovirus strain (FM) did not cause any clinical symptoms or pathological lesions in mule ducks.

  18. 20 CFR 655.705 - What Federal agencies are involved in the H-1B and H-1B1 programs, and what are the...

    Science.gov (United States)

    2010-04-01

    ... Employers Seeking To Employ Nonimmigrants on H-1b Visas in Specialty Occupations and as Fashion Models, and... whether the individual is a fashion model of distinguished merit and ability, and whether the... § 655.700(d)(4). Each employer seeking an H-1B nonimmigrant in a specialty occupation or as a fashion...

  19. Antigenic variation of H1N1, H1N2 and H3N2 swine influenza viruses in Japan and Vietnam.

    Science.gov (United States)

    Takemae, Nobuhiro; Nguyen, Tung; Ngo, Long Thanh; Hiromoto, Yasuaki; Uchida, Yuko; Pham, Vu Phong; Kageyama, Tsutomu; Kasuo, Shizuko; Shimada, Shinichi; Yamashita, Yasutaka; Goto, Kaoru; Kubo, Hideyuki; Le, Vu Tri; Van Vo, Hung; Do, Hoa Thi; Nguyen, Dang Hoang; Hayashi, Tsuyoshi; Matsuu, Aya; Saito, Takehiko

    2013-04-01

    The antigenicity of the influenza A virus hemagglutinin is responsible for vaccine efficacy in protecting pigs against swine influenza virus (SIV) infection. However, the antigenicity of SIV strains currently circulating in Japan and Vietnam has not been well characterized. We examined the antigenicity of classical H1 SIVs, pandemic A(H1N1)2009 (A(H1N1)pdm09) viruses, and seasonal human-lineage SIVs isolated in Japan and Vietnam. A hemagglutination inhibition (HI) assay was used to determine antigenic differences that differentiate the recent Japanese H1N2 and H3N2 SIVs from the H1N1 and H3N2 domestic vaccine strains. Minor antigenic variation between pig A(H1N1)pdm09 viruses was evident by HI assay using 13 mAbs raised against homologous virus. A Vietnamese H1N2 SIV, whose H1 gene originated from a human strain in the mid-2000s, reacted poorly with post-infection ferret serum against human vaccine strains from 2000-2010. These results provide useful information for selection of optimal strains for SIV vaccine production.

  20. H1DS: A new web-based data access system

    Energy Technology Data Exchange (ETDEWEB)

    Pretty, D.G., E-mail: david.pretty@anu.edu.au; Blackwell, B.D.

    2014-05-15

    Highlights: • We present H1DS, a new RESTful web service for accessing fusion data. • We examine the scalability and extensibility of H1DS. • We present a fast and user friendly web browser client for the H1DS web service. • A summary relational database is presented as an application of the H1DS API. - Abstract: A new data access system, H1DS, has been developed and deployed for the H-1 Heliac at the Australian Plasma Fusion Research Facility. The data system provides access to fusion data via a RESTful web service. With the URL acting as the API to the data system, H1DS provides a scalable and extensible framework which is intuitive to new users, and allows access from any internet connected device. The H1DS framework, originally designed to work with MDSplus, has a modular design which can be extended to provide access to alternative data storage systems.

  1. H1DS: A new web-based data access system

    International Nuclear Information System (INIS)

    Pretty, D.G.; Blackwell, B.D.

    2014-01-01

    Highlights: • We present H1DS, a new RESTful web service for accessing fusion data. • We examine the scalability and extensibility of H1DS. • We present a fast and user friendly web browser client for the H1DS web service. • A summary relational database is presented as an application of the H1DS API. - Abstract: A new data access system, H1DS, has been developed and deployed for the H-1 Heliac at the Australian Plasma Fusion Research Facility. The data system provides access to fusion data via a RESTful web service. With the URL acting as the API to the data system, H1DS provides a scalable and extensible framework which is intuitive to new users, and allows access from any internet connected device. The H1DS framework, originally designed to work with MDSplus, has a modular design which can be extended to provide access to alternative data storage systems

  2. Isolation and genetic characterization of avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China.

    Science.gov (United States)

    Yu, Hai; Zhang, Peng-Chao; Zhou, Yan-Jun; Li, Guo-Xin; Pan, Jie; Yan, Li-Ping; Shi, Xiao-Xiao; Liu, Hui-Li; Tong, Guang-Zhi

    2009-08-21

    As pigs are susceptible to both human and avian influenza viruses, they have been proposed to be intermediate hosts or mixing vessels for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we reported avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Homology and phylogenetic analyses showed that the H1N1 virus (A/swine/Zhejiang/1/07) was closely to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses, which was for the first time reported in China; and the two H1N2 viruses (A/swine/Shanghai/1/07 and A/swine/Guangxi/13/06) were novel ressortant H1N2 influenza viruses containing genes from the classical swine (HA, NP, M and NS), human (NA and PB1) and avian (PB2 and PA) lineages, which indicted that the reassortment among human, avian, and swine influenza viruses had taken place in pigs in China and resulted in the generation of new viruses. The isolation of avian-like H1N1 influenza virus originated from the European swine H1N1 viruses, especially the emergence of two novel ressortant H1N2 influenza viruses provides further evidence that pigs serve as intermediate hosts or "mixing vessels", and swine influenza virus surveillance in China should be given a high priority.

  3. Syntheses and modulations in the chromatin contents of histones H1/sup o/ and H1 during G1 and S phases in Chinese hamsters cells

    International Nuclear Information System (INIS)

    D'Anna, J.A.; Gurley, L.R.; Tobey, R.A.

    1982-01-01

    Flow cytometry, conventional autoradiography, and autoradiography employing high concentrations of high specific activity [ 3 H]thymidine indicate that (1) treatment of Chinese hamster ovary (line CHO) cells with butyrate truly blocks cells in G 1 and (2) cells blocked in G 1 by isoleucine deprivation remain blocked in G 1 when they are released into complete medium containing butyrate. Measurements of H1/sup o/ content relative to core histones and H1/sup o/:H1 ratios indicate that H1/sup o/ is enhanced somewhat in G 1 cells arrested by isoleucine deprivation; however, (1) treatment with butyrate greatly increases the H1/sup o/ content in G 1 -blocked cells, and (2) the enhancement is very sensitive to butyrate concentration. Measurements of relative histone contents in the isolated chromatin of synchronized cultures also suggest that the acid-soluble content of histone H1 (relative to core histones) becomes greatly depleted in the isolated chromatin when synchronized cells are blocked in early S phase by sequential use of isoleucine deprivation and hydroxyurea blockade. We also have measured [ 3 H]lysine incorporation, various protein ratios, and relative rates of deposition of newly synthesized H1/sup o/, H1, and H4 onto chromatin during G 1 and S in the absence of butyrate. The results suggest a dynamic picture of chromatin organization in which (1) newly synthesized histone H1/sup o/ binds to chromatin during traverse of G 1 and S phases and (2) histone H1 dissociates from (or becomes loosely bound to) chromatin during prolonged early S-phase block with hydroxyurea

  4. Parvovirus B19-triggered acute hemolytic anemia and thrombocytopenia in a child with Evans syndrome

    Directory of Open Access Journals (Sweden)

    ELPIS MANTADAKIS

    2018-03-01

    Full Text Available Background: Human parvovirus B19 (HPV-B19 is the etiologic agent of erythema infectiosum, of transient aplastic crises in individuals with underlying chronic hemolytic disorders, and of chronic pure red cell aplasia in immunocompromised individuals. Case report. We describe a 14-year-old girl with long-standing Evans syndrome, who presented with severe anemia, reticulocytopenia and thromocytopenia. A bone marrow aspirate revealed severe erythroid hypoplasia along with presence of giant pronormoblasts, while serological studies and real-time PCR of whole blood were positive for acute parvovirus B19 infection. The patient was initially managed with corticosteroids, but both cytopenias resolved only after administration of intravenous gamma globulin 0.8g/kg. Conclusion: Acute parvovirus B19 infection should be suspected in patients with immunologic diseases, who present with reticulocytopenic hemolytic anemia and thrombocytopenia. In this setting, intravenous gamma globulin is effective for both cytopenias.

  5. Adeno-associated virus type 2 enhances goose parvovirus replication in embryonated goose eggs

    International Nuclear Information System (INIS)

    Malkinson, Mertyn; Winocour, Ernest

    2005-01-01

    The autonomous goose parvovirus (GPV) and the human helper-dependent adeno-associated virus type 2 (AAV2) share a high degree of homology. To determine if this evolutionary relationship has a biological impact, we studied viral replication in human 293 cells and in embryonated goose eggs coinfected with both viruses. Similar experiments were performed with the minute virus of mice (MVM), an autonomous murine parvovirus with less homology to AAV2. In human 293 cells, both GPV and MVM augmented AAV2 replication. In contrast, AAV2 markedly enhanced GPV replication in embryonated goose eggs under conditions where a similar effect was not observed with MVM. AAV2 did not replicate in embryonated goose eggs and AAV2 inactivated by UV-irradiation also enhanced GPV replication. To our knowledge, this is the first report that a human helper-dependent member of the Parvoviridae can provide helper activity for an autonomous parvovirus in a natural host

  6. Evidence of canine parvovirus transmission to a civet cat (Paradoxurus musangus in Singapore

    Directory of Open Access Journals (Sweden)

    Ian H. Mendenhall

    2016-12-01

    Full Text Available Cross-species transmission can often lead to deleterious effects in incidental hosts. Parvoviruses have a wide host range and primarily infect members of the order Carnivora. Here we describe juvenile common palm civet cats (Paradoxurus musangus that were brought to the Singapore zoo and fell ill while quarantined. The tissues of two individual civets that died tested PCR-positive for parvovirus infection. Phylogenetic analysis revealed this parvovirus strain falls in a basal position to a clade of CPV that have infected dogs in China and Uruguay, suggesting cross-species transmission from domestic to wild animals. Our analysis further identified these viruses as genotype CPV-2a that is enzootic in carnivores. The ubiquity of virus infection in multiple tissues suggests this virus is pathogenic to civet cats. Here we document the cross-species transmission from domestic dogs and cats to wild civet populations, highlighting the vulnerability of wildlife to infectious agents in companion animals.

  7. Preservative Monitoring of a Greek Woman with Hydrops Fetalis due to Parvovirus B19 Infection

    Directory of Open Access Journals (Sweden)

    Zacharias Fasoulakis

    2017-01-01

    Full Text Available Primate erythroparvovirus 1 (parvovirus B19 is a member of the Erythrovirus genus of the Parvoviridae family and it is one of the few members of the family known to be pathogenic in human. B19 infection is common and widespread with the virus being associated with numerous rheumatologic and haematologic manifestations. More specifically, maternal infection with parvovirus B19 during pregnancy can cause severe anemia which may lead to nonimmune hydrops or fetal demise, as a result of fetal erythroid progenitor cells infection with shortened half-life of erythrocytes. We present a rare case reported in the Greek population, of subclinical transient reticulocytopenia due to B19 parvovirus infection, in an asymptomatic pregnant woman, without medical history of hemoglobinopathy, and with the presence of hydrops fetalis during the third trimester of her pregnancy.

  8. Parvovirus B19-triggered Acute Hemolytic Anemia and Thrombocytopenia in a Child with Evans Syndrome.

    Science.gov (United States)

    Zikidou, Panagiota; Grapsa, Anastassia; Bezirgiannidou, Zoe; Chatzimichael, Athanassios; Mantadakis, Elpis

    2018-01-01

    Human parvovirus B19 (HPV-B19) is the etiologic agent of erythema infectiosum, of transient aplastic crises in individuals with underlying chronic hemolytic disorders, and of chronic pure red cell aplasia in immunocompromised individuals. We describe a 14-year-old girl with long-standing Evans syndrome, who presented with severe anemia, reticulocytopenia and thrombocytopenia. A bone marrow aspirate revealed severe erythroid hypoplasia along with the presence of giant pronormoblasts, while serological studies and real-time PCR of whole blood were positive for acute parvovirus B19 infection. The patient was initially managed with corticosteroids, but both cytopenias resolved only after administration of intravenous gamma globulin 0.8g/kg. Acute parvovirus B19 infection should be suspected in patients with immunologic diseases, who present reticulocytopenic hemolytic anemia and thrombocytopenia. In this setting, intravenous gamma globulin is effective for both cytopenias.

  9. High frequency of parvovirus B19 DNA in bone marrow samples from rheumatic patients

    DEFF Research Database (Denmark)

    Lundqvist, Anders; Isa, Adiba; Tolfvenstam, Thomas

    2005-01-01

    BACKGROUND: Human parvovirus B19 (B19) polymerase chain reaction (PCR) is now a routine analysis and serves as a diagnostic marker as well as a complement or alternative to B19 serology. The clinical significance of a positive B19 DNA finding is however dependent on the type of tissue or body fluid...... analysed and of the immune status of the patient. OBJECTIVES: To analyse the clinical significance of B19 DNA positivity in bone marrow samples from rheumatic patients. STUDY DESIGN: Parvovirus B19 DNA was analysed in paired bone marrow and serum samples by nested PCR technique. Serum was also analysed...... negative group. A high frequency of parvovirus B19 DNA was thus detected in bone marrow samples in rheumatic patients. The clinical data does not support a direct association between B19 PCR positivity and rheumatic disease manifestation. Therefore, the clinical significance of B19 DNA positivity in bone...

  10. 26 CFR 1.1402(h)-1 - Members of certain religious groups opposed to insurance.

    Science.gov (United States)

    2010-04-01

    ... insurance. 1.1402(h)-1 Section 1.1402(h)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Tax on Self-Employment Income § 1.1402(h)-1... 1402(h) and this section refer does not include liability insurance of a kind that provides only for...

  11. 26 CFR 1.643(h)-1 - Distributions by certain foreign trusts through intermediaries.

    Science.gov (United States)

    2010-04-01

    ... intermediaries. 1.643(h)-1 Section 1.643(h)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Estates, Trusts, and Beneficiaries § 1.643(h)-1... section, FT is deemed to have distributed XYZ stock with a value of 85X to C on December 1, 2001. (h...

  12. 76 FR 62455 - Announcement of Updated Funding Availability for H-1B Technical Skills Training Grants

    Science.gov (United States)

    2011-10-07

    ... 10-13] Announcement of Updated Funding Availability for H-1B Technical Skills Training Grants AGENCY... the availability of $240 million for the H-1B Technical Skills Training Grants to be awarded through a... additional applicants to apply for the H-1B Technical Skills Training Grants competition that will close on...

  13. Factors Influencing School Closure and Dismissal Decisions: Influenza A (H1N1), Michigan 2009

    Science.gov (United States)

    Dooyema, Carrie A.; Copeland, Daphne; Sinclair, Julie R.; Shi, Jianrong; Wilkins, Melinda; Wells, Eden; Collins, Jim

    2014-01-01

    Background: In fall 2009, many US communities experienced school closures during the influenza A H1N1 pandemic (pH1N1) and the state of Michigan reported 567 closures. We conducted an investigation in Michigan to describe pH1N1-related school policies, practices, and identify factors related to school closures. Methods: We distributed an online…

  14. Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States.

    Science.gov (United States)

    Rajao, Daniela S; Anderson, Tavis K; Kitikoon, Pravina; Stratton, Jered; Lewis, Nicola S; Vincent, Amy L

    2018-05-01

    Several lineages of influenza A viruses (IAV) currently circulate in North American pigs. Genetic diversity is further increased by transmission of IAV between swine and humans and subsequent evolution. Here, we characterized the genetic and antigenic evolution of contemporary swine H1N1 and H1N2 viruses representing clusters H1-α (1A.1), H1-β (1A.2), H1pdm (1A.3.3.2), H1-γ (1A.3.3.3), H1-δ1 (1B.2.2), and H1-δ2 (1B.2.1) currently circulating in pigs in the United States. The δ1-viruses diversified into two new genetic clades, H1-δ1a (1B.2.2.1) and H1-δ1b (1B.2.2.2), which were also antigenically distinct from the earlier H1-δ1-viruses. Further characterization revealed that a few key amino acid changes were associated with antigenic divergence in these groups. The continued genetic and antigenic evolution of contemporary H1 viruses might lead to loss of vaccine cross-protection that could lead to significant economic impact to the swine industry, and represents a challenge to public health initiatives that attempt to minimize swine-to-human IAV transmission. Published by Elsevier Inc.

  15. Data of evolutionary structure change: 1CR9H-1RUPH [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1CR9H-1RUPH 1CR9 1RUP H H KVKLQQSGAELVRSGASVKLSCTASGFNIKDY-YIQWVK...ine> TYR CA 299 TRP CA 347 1RUP... H 1RUPH YCAGLLWYDGGAGS...2550649642944336 1 1RUP H 1RUPH GYINY-SGFTS

  16. Parvovirus B19 infection during pregnancy and risks to the fetus.

    Science.gov (United States)

    Ornoy, Asher; Ergaz, Zivanit

    2017-03-15

    Parvovirus B19 infects 1 to 5% of pregnant women, generally with normal pregnancy outcomes. During epidemics, the rate of infection is higher. Major congenital anomalies among offspring of infected mothers are rare, as the virus does not appear to be a significant teratogen. However, parvovirus B19 infection may cause significant fetal damage, and in rare cases, brain anomalies and neurodevelopmental insults, especially if infection occurs in the first 20 weeks of pregnancy. Parvovirus B19 is also an important cause of fetal loss, especially in the second half of pregnancy when spontaneous fetal loss from other causes is relatively rare. Parvovirus B19 infection may affect many fetal organs and can cause severe anemia, following fetal erythroid progenitor cells infection and apoptosis, especially in fetuses, that have shortened half-life of erythrocytes. Severe anemia may cause high output cardiac failure and nonimmune hydrops fetalis. In addition, parvovirus B19 may directly infect myocardial cells and produce myocarditis that further aggravates the cardiac failure. Intrauterine fetal transfusion is commonly used for the treatment of severe fetal anemia with survival rates of 75 to 90% and significant reduction of fetal morbidity. Only 66 cases were evaluated neurodevelopmentally, of which 10 (16%) had slight or severe neurodevelopmental problems. Because parvovirus B19 infection can cause severe fetal morbidity and mortality, it should be part of the routine work-up of pregnant women who have been exposed to the virus or of pregnancies with suspected fetal hydrops. Assessment for maternal infection during pregnancy is especially important during epidemics, when sero-conversion rates are high. Birth Defects Research 109:311-323, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Safety and immunogenicity of a recombinant parvovirus B19 vaccine formulated with MF59C.1.

    Science.gov (United States)

    Ballou, W Ripley; Reed, Jennifer L; Noble, William; Young, Neal S; Koenig, Scott

    2003-02-15

    A recombinant human parvovirus B19 vaccine (MEDI-491; MedImmune) composed of the VP1 and VP2 capsid proteins and formulated with MF59C.1 adjuvant was evaluated in a randomized, double-blind, phase 1 trial. Parvovirus B19-seronegative adults (n=24) received either 2.5 or 25 microg MEDI-491 at 0, 1, and 6 months. MEDI-491 was safe and immunogenic. All volunteers developed neutralizing antibody titers that peaked after the third immunization and were sustained through study day 364.

  18. Parvovirus-derived endogenous viral elements in two South American rodent genomes.

    Science.gov (United States)

    Arriagada, Gloria; Gifford, Robert J

    2014-10-01

    We describe endogenous viral elements (EVEs) derived from parvoviruses (family Parvoviridae) in the genomes of the long-tailed chinchilla (Chinchilla lanigera) and the degu (Octodon degus). The novel EVEs include dependovirus-related elements and representatives of a clearly distinct parvovirus lineage that also has endogenous representatives in marsupial genomes. In the degu, one dependovirus-derived EVE was found to carry an intact reading frame and was differentially expressed in vivo, with increased expression in the liver. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Molecular characterization of canine parvovirus (CPV) infection in dogs in Turkey.

    Science.gov (United States)

    Timurkan, Mehmet; Oğuzoğlu, Tuba

    2015-01-01

    This study provides data about canine parvovirus (CPV) types circulating among dogs in Turkey. Sixty-five samples from dogs with and without clinical signs of parvovirus infection were collected between April 2009 and February 2010. The samples were subsequently tested for CPV using polymerase chain reaction (PCR). Twenty-five samples (38.4%) were positive; when positive samples were characterized by sequence analysis, results showed that both CPV-2a (17/25, 68%) and CPV-2b (8/25, 32%) strains are circulating among domestic dogs in Turkey. This is the first molecular characterization study of CPVs from dogs based on partial VP2 gene sequences in Turkey.

  20. Frequent cross-species transmission of parvoviruses among diverse carnivore hosts

    Science.gov (United States)

    Allison, Andrew B.; Kohler, Dennis J.; Fox, Karen A.; Brown, Justin D.; Gerhold, Richard W.; Shearn-Bochsler, Valerie I.; Dubovi, Edward J.; Parrish, Colin R.; Holmes, Edward C.

    2013-01-01

    Although parvoviruses are commonly described in domestic carnivores, little is known about their biodiversity in nondomestic species. A phylogenetic analysis of VP2 gene sequences from puma, coyote, gray wolf, bobcat, raccoon, and striped skunk revealed two major groups related to either feline panleukopenia virus (“FPV-like”) or canine parvovirus (“CPV-like”). Cross-species transmission was commonplace, with multiple introductions into each host species but, with the exception of raccoons, relatively little evidence for onward transmission in nondomestic species.

  1. Sustained CD8+ T-cell responses induced after acute parvovirus B19 infection in humans

    DEFF Research Database (Denmark)

    Norbeck, Oscar; Isa, Adiba; Pöhlmann, Christoph

    2005-01-01

    Murine models have suggested that CD8+ T-cell responses peak early in acute viral infections and are not sustained, but no evidence for humans has been available. To address this, we longitudinally analyzed the CD8+ T-cell response to human parvovirus B19 in acutely infected individuals. We...... observed striking CD8+ T-cell responses, which were sustained or even increased over many months after the resolution of acute disease, indicating that CD8+ T cells may play a prominent role in the control of parvovirus B19 and other acute viral infections of humans, including potentially those generated...

  2. T-lineage acute lymphoblastic leukemia and parvovirus infection in a child with neurofibromastosis-1

    Directory of Open Access Journals (Sweden)

    Pallavi Agarwal

    2013-01-01

    Full Text Available Neurofibromatosis (NF-1 patients have an increased risk of developing malignancies most commonly rhabdomyosarcomas, optic gliomas, brain tumors and non-lymphocytic leukemias. Acute lymphoblastic leukemia (ALL has been infrequently reported in association with NF-1. We describe a rare association of NF-1, T-lineage ALL and parvovirus infection in a 12-year-old child. In addition, it is also to emphasize that a high index of suspicion should be kept for parvovirus B19 infection as a cause of bicytopenia/pancytopenia in ALL patients following induction chemotherapy.

  3. Acute generalized exanthematous pustulosis to amoxicillin associated with parvovirus B19 reactivation.

    Science.gov (United States)

    Calistru, Ana Maria; Lisboa, Carmen; Cunha, Ana Paula; Bettencourt, Herberto; Azevedo, Filomena

    2012-09-01

    We report the case of a 22-year-old male patient with 2 episodes, 4 months apart, of acute generalized exanthematous pustulosis (AGEP) associated with oral intake of amoxicillin and simultaneous reactivation of parvovirus B19 infection proven by positive polymerase chain reaction test in the skin fragment and blood sample and elevation of the IgG antibodies titer. To our knowledge, this is the first report of AGEP resulting from the interaction between drug hypersensitivity and the reactivation of parvovirus B19. A combination of an immunological reaction to the drug and virus infection could be responsible for the clinical picture.

  4. Identification of the ENT1 antagonists dipyridamole and dilazep as amplifiers of oncolytic herpes simplex virus-1 replication.

    Science.gov (United States)

    Passer, Brent J; Cheema, Tooba; Zhou, Bingsen; Wakimoto, Hiroaki; Zaupa, Cecile; Razmjoo, Mani; Sarte, Jason; Wu, Shulin; Wu, Chin-lee; Noah, James W; Li, Qianjun; Buolamwini, John K; Yen, Yun; Rabkin, Samuel D; Martuza, Robert L

    2010-05-15

    Oncolytic herpes simplex virus-1 (oHSV) vectors selectively replicate in tumor cells, where they kill through oncolysis while sparing normal cells. One of the drawbacks of oHSV vectors is their limited replication and spread to neighboring cancer cells. Here, we report the outcome of a high-throughput chemical library screen to identify small-molecule compounds that augment the replication of oHSV G47Delta. Of the 2,640-screened bioactives, 6 compounds were identified and subsequently validated for enhanced G47Delta replication. Two of these compounds, dipyridamole and dilazep, interfered with nucleotide metabolism by potently and directly inhibiting the equilibrative nucleoside transporter-1 (ENT1). Replicative amplification promoted by dipyridamole and dilazep were dependent on HSV mutations in ICP6, the large subunit of ribonucleotide reductase. Our results indicate that ENT1 antagonists augment oHSV replication in tumor cells by increasing cellular ribonucleoside activity. (c)2010 AACR.

  5. Cell-based delivery of oncolytic viruses: a new strategic alliance for a biological strike against cancer.

    Science.gov (United States)

    Power, Anthony T; Bell, John C

    2007-04-01

    Recent years have seen tremendous advances in the development of exquisitely targeted replicating virotherapeutics that can safely destroy malignant cells. Despite this promise, clinical advancement of this powerful and unique approach has been hindered by vulnerability to host defenses and inefficient systemic delivery. However, it now appears that delivery of oncolytic viruses within carrier cells may offer one solution to this critical problem. In this review, we compare the advantages and limitations of the numerous cell lineages that have been investigated as delivery platforms for viral therapeutics, and discuss examples showing how combined cell-virus biotherapeutics can be used to achieve synergistic gains in antitumor activity. Finally, we highlight avenues for future preclinical research that might be taken in order to refine cell-virus biotherapeutics in preparation for human trials.

  6. Epigenetics and autism spectrum disorder: A report of an autism case with mutation in H1 linker histone HIST1H1e and literature review.

    Science.gov (United States)

    Duffney, Lara J; Valdez, Purnima; Tremblay, Martine W; Cao, Xinyu; Montgomery, Sarah; McConkie-Rosell, Allyn; Jiang, Yong-Hui

    2018-04-27

    Genetic mutations in genes encoding proteins involved in epigenetic machinery have been reported in individuals with autism spectrum disorder (ASD), intellectual disability, congenital heart disease, and other disorders. H1 histone linker protein, the basic component in nucleosome packaging and chromatin organization, has not been implicated in human disease until recently. We report a de novo deleterious mutation of histone cluster 1 H1 family member e (HIST1H1E; c.435dupC; p.Thr146Hisfs*50), encoding H1 histone linker protein H1.4, in a 10-year-old boy with autism and intellectual disability diagnosed through clinical whole exome sequencing. The c.435dupC at the 3' end of the mRNA leads to a frameshift and truncation of the positive charge in the carboxy-terminus of the protein. An expression study demonstrates the mutation leads to reduced protein expression, supporting haploinsufficiency of HIST1H1E protein and loss of function as an underlying mechanism of dysfunction in the brain. Taken together with other recent cases with mutations of HIST1H1E in intellectual disability, the evidence supporting the link to causality in disease is strong. Our finding implicates the deficiency of H1 linker histone protein in autism. The systematic review of candidate genes implicated in ASD revealed that 42 of 215 (19.5%) genes are directly involved in epigenetic regulations and the majority of these genes belong to histone writers, readers, and erasers. While the mechanism of how haploinsufficiency of HIST1H1E causes autism is entirely unknown, our report underscores the importance of further study of the function of this protein and other histone linker proteins in brain development. © 2018 Wiley Periodicals, Inc.

  7. G1- and S-phase syntheses of histones H1 and H1o in mitotically selected CHO cells: utilization of high-performance liquid chromatography

    International Nuclear Information System (INIS)

    D'Anna, J.A.; Thayer, M.M.; Tobey, R.A.; Gurley, L.R.

    1985-01-01

    The authors have employed high-performance liquid chromatography (HPLC) to investigate the syntheses of histones H1 and H1o as synchronized cells traverse from mitosis to S phase. Chinese hamster (line CHO) cells were synchronized by mitotic selection, and, at appropriate times, they were pulse labeled for 1 h with [ 3 H]lysine. Histones H1 and H1o were extracted by blending radiolabeled and carrier cells directly in 0.83 M HC1O 4 ; the total HC1O 4 -soluble, Cl 3 CCO 2 H-precipitable proteins were then separated by a modification of an HPLC system employing three mu Bondapak reversed-phase columns. These procedures (1) produce minimally perturbed populations of synchronized proliferating cells and (2) maximize the recovery of radiolabeled histones during isolation and analysis. Measurements of rates of synthesis indicate that the rate of H1 synthesis increases as cells traverse from early to mid G1; as cells enter S phase, the rate of H1 synthesis increases an additional congruent to 22-fold and is proportional to the number of S-phase cells. In contrast to H1, the rate of H1o synthesis is nearly constant throughout G1. As cells progress into S phase, the rate of H1o synthesis increases so that it also appears to be proportional to the number of S-phase cells. Except for the first 1-2 h after mitotic selection, these results are similar to those obtained when cells are synchronized in G1 with the isoleucine deprivation procedure

  8. Influenza A (H1N1) neuraminidase inhibitors from Vitis amurensis

    DEFF Research Database (Denmark)

    Nguyen, Ngoc Anh; Dao, Trong Tuan; Tung, Bui Thanh

    2011-01-01

    Recently, a novel H1N1 influenza A virus (H1N1/09 virus) was identified and considered a strong candidate for a novel influenza pandemic. As part of an ongoing anti-influenza screening programme on natural products, eight oligostilbenes were isolated as active principles from the methanol extract...... of Vitis amurensis. This manuscript reports the isolation, structural elucidation, and anti-viral activities of eight compounds on various neuraminidases from influenza A/PR/8/34 (H1N1), novel swine-origin influenza A (H1N1), and oseltamivir-resistant novel H1N1 (H274Y) expressed in 293T cells...

  9. The hTERT promoter enhances the antitumor activity of an oncolytic adenovirus under a hypoxic microenvironment.

    Directory of Open Access Journals (Sweden)

    Yuuri Hashimoto

    Full Text Available Hypoxia is a microenvironmental factor that contributes to the invasion, progression and metastasis of tumor cells. Hypoxic tumor cells often show more resistance to conventional chemoradiotherapy than normoxic tumor cells, suggesting the requirement of novel antitumor therapies to efficiently eliminate the hypoxic tumor cells. We previously generated a tumor-specific replication-competent oncolytic adenovirus (OBP-301: Telomelysin, in which the human telomerase reverse transcriptase (hTERT promoter drives viral E1 expression. Since the promoter activity of the hTERT gene has been shown to be upregulated by hypoxia, we hypothesized that, under hypoxic conditions, the antitumor effect of OBP-301 with the hTERT promoter would be more efficient than that of the wild-type adenovirus 5 (Ad5. In this study, we investigated the antitumor effects of OBP-301 and Ad5 against human cancer cells under a normoxic (20% oxygen or a hypoxic (1% oxygen condition. Hypoxic condition induced nuclear accumulation of the hypoxia-inducible factor-1α and upregulation of hTERT promoter activity in human cancer cells. The cytopathic activity of OBP-301 was significantly higher than that of Ad5 under hypoxic condition. Consistent with their cytopathic activity, the replication of OBP-301 was significantly higher than that of Ad5 under the hypoxic condition. OBP-301-mediated E1A was expressed within hypoxic areas of human xenograft tumors in mice. These results suggest that the cytopathic activity of OBP-301 against hypoxic tumor cells is mediated through hypoxia-mediated activation of the hTERT promoter. Regulation of oncolytic adenoviruses by the hTERT promoter is a promising antitumor strategy, not only for induction of tumor-specific oncolysis, but also for efficient elimination of hypoxic tumor cells.

  10. Treatment of medulloblastoma using an oncolytic measles virus encoding the thyroidal sodium iodide symporter shows enhanced efficacy with radioiodine

    International Nuclear Information System (INIS)

    Hutzen, Brian; Pierson, Christopher R; Russell, Stephen J; Galanis, Evanthia; Raffel, Corey; Studebaker, Adam W

    2012-01-01

    Medulloblastoma is the most common malignant brain tumor of childhood. Although the clinical outcome for medulloblastoma patients has improved significantly, children afflicted with the disease frequently suffer from debilitating side effects related to the aggressive nature of currently available therapy. Alternative means for treating medulloblastoma are desperately needed. We have previously shown that oncolytic measles virus (MV) can selectively target and destroy medulloblastoma tumor cells in localized and disseminated models of the disease. MV-NIS, an oncolytic measles virus that encodes the human thyroidal sodium iodide symporter (NIS), has the potential to deliver targeted radiotherapy to the tumor site and promote a localized bystander effect above and beyond that achieved by MV alone. We evaluated the efficacy of MV-NIS against medulloblastoma cells in vitro and examined their ability to incorporate radioiodine at various timepoints, finding peak uptake at 48 hours post infection. The effects of MV-NIS were also evaluated in mouse xenograft models of localized and disseminated medulloblastoma. Athymic nude mice were injected with D283med-Luc medulloblastoma cells in the caudate putamen (localized disease) or right lateral ventricle (disseminated disease) and subsequently treated with MV-NIS. Subsets of these mice were given a dose of 131 I at 24, 48 or 72 hours later. MV-NIS treatment, both by itself and in combination with 131 I, elicited tumor stabilization and regression in the treated mice and significantly extended their survival times. Mice given 131 I were found to concentrate radioiodine at the site of their tumor implantations. In addition, mice with localized tumors that were given 131 I either 24 or 48 hours after MV-NIS treatment exhibited a significant survival advantage over mice given MV-NIS alone. These data suggest MV-NIS plus radioiodine may be a potentially useful therapy for the treatment of medulloblastoma

  11. Potent efficacy signals from systemically administered oncolytic herpes simplex virus (HSV1716 in hepatocellular carcinoma xenograft models

    Directory of Open Access Journals (Sweden)

    Braidwood L

    2014-10-01

    Full Text Available Lynne Braidwood, Kirsty Learmonth, Alex Graham, Joe Conner Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK Abstract: Oncolytic herpes simplex virus (HSV1716, lacking the neurovirulence factor ICP34.5, has highly selective replication competence for cancer cells and has been used in clinical studies of glioma, melanoma, head and neck squamous cell carcinoma, pediatric non-central nervous system solid tumors, and malignant pleural mesothelioma. To date, 88 patients have received HSV1716 and the virus is well tolerated, with selective replication in tumor cells and no spread to surrounding normal tissue. We assessed the potential value of HSV1716 in preclinical studies with two human hepatocellular carcinoma cell lines, HuH7 and HepG2-luc. HSV1716 displayed excellent replication kinetics in vitro in HepG2-luc cells, a cell line engineered to express luciferase, and virus-mediated cell killing correlated with loss of light emissions from the cells. In vivo, the HepG2-luc cells readily formed light-emitting xenografts that were easily visualized by an in vivo imaging system and efficiently eliminated by HSV1716 oncolysis after intratumoral injection. HSV1716 also demonstrated strong efficacy signals in subcutaneous HuH7 xenografts in nude mice after intravenous administration of virus. In the HuH7 model, the intravenously injected virus replicated prolifically immediately after efficient tumor localization, resulting in highly significant reductions in tumor growth and enhanced survival. Our preclinical results demonstrate excellent tumor uptake of HSV1716, with prolific replication and potent oncolysis. These observations warrant a clinical study of HSV1716 in hepatocellular carcinoma. Keywords: oncolytic herpes simplex virus, HSV1716, hepatocellular carcinoma, xenografts, efficacy 

  12. Treatment of medulloblastoma using an oncolytic measles virus encoding the thyroidal sodium iodide symporter shows enhanced efficacy with radioiodine

    Directory of Open Access Journals (Sweden)

    Hutzen Brian

    2012-11-01

    Full Text Available Abstract Background Medulloblastoma is the most common malignant brain tumor of childhood. Although the clinical outcome for medulloblastoma patients has improved significantly, children afflicted with the disease frequently suffer from debilitating side effects related to the aggressive nature of currently available therapy. Alternative means for treating medulloblastoma are desperately needed. We have previously shown that oncolytic measles virus (MV can selectively target and destroy medulloblastoma tumor cells in localized and disseminated models of the disease. MV-NIS, an oncolytic measles virus that encodes the human thyroidal sodium iodide symporter (NIS, has the potential to deliver targeted radiotherapy to the tumor site and promote a localized bystander effect above and beyond that achieved by MV alone. Methods We evaluated the efficacy of MV-NIS against medulloblastoma cells in vitro and examined their ability to incorporate radioiodine at various timepoints, finding peak uptake at 48 hours post infection. The effects of MV-NIS were also evaluated in mouse xenograft models of localized and disseminated medulloblastoma. Athymic nude mice were injected with D283med-Luc medulloblastoma cells in the caudate putamen (localized disease or right lateral ventricle (disseminated disease and subsequently treated with MV-NIS. Subsets of these mice were given a dose of 131I at 24, 48 or 72 hours later. Results MV-NIS treatment, both by itself and in combination with 131I, elicited tumor stabilization and regression in the treated mice and significantly extended their survival times. Mice given 131I were found to concentrate radioiodine at the site of their tumor implantations. In addition, mice with localized tumors that were given 131I either 24 or 48 hours after MV-NIS treatment exhibited a significant survival advantage over mice given MV-NIS alone. Conclusions These data suggest MV-NIS plus radioiodine may be a potentially useful therapy for

  13. Selectivity and Efficiency of Late Transgene Expression by Transcriptionally Targeted Oncolytic Adenoviruses Are Dependent on the Transgene Insertion Strategy

    Science.gov (United States)

    Quirin, Christina; Rohmer, Stanimira; Fernández-Ulibarri, Inés; Behr, Michael; Hesse, Andrea; Engelhardt, Sarah; Erbs, Philippe; Enk, Alexander H.

    2011-01-01

    Abstract Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show that promoter control of E1A facilitates highly selective expression of transgenes inserted into the late transcription unit. This, however, required multistep optimization of late transgene expression. Transgene insertion via internal ribosome entry site (IRES), splice acceptor (SA), or viral 2A sequences resulted in replication-dependent expression. Unexpectedly, analyses in appropriate substrates and with matching control viruses revealed that IRES and SA, but not 2A, facilitated indirect transgene targeting via tyrosinase promoter control of E1A. Transgene expression via SA was more selective (up to 1,500-fold) but less effective than via IRES. Notably, we also revealed transgene-dependent interference with splicing. Hence, the prodrug convertase FCU1 (a cytosine deaminase–uracil phosphoribosyltransferase fusion protein) was expressed only after optimizing the sequence surrounding the SA site and mutating a cryptic splice site within the transgene. The resulting tyrosinase promoter-regulated and FCU1-encoding adenovirus combined effective oncolysis with targeted prodrug activation therapy of melanoma. Thus, prodrug activation showed potent bystander killing and increased cytotoxicity of the virus up to 10-fold. We conclude that armed oncolytic viruses can be improved substantially by comparing and optimizing strategies for targeted transgene expression, thereby implementing selective and multimodal cancer therapies. PMID:20939692

  14. Identification of reassortant pandemic H1N1 influenza virus in Korean pigs.

    Science.gov (United States)

    Han, Jae Yeon; Park, Sung Jun; Kim, Hye Kwon; Rho, Semi; Nguyen, Giap Van; Song, Daesub; Kang, Bo Kyu; Moon, Hyung Jun; Yeom, Min Joo; Park, Bong Kyun

    2012-05-01

    Since the 2009 pandemic human H1N1 influenza A virus emerged in April 2009, novel reassortant strains have been identified throughout the world. This paper describes the detection and isolation of reassortant strains associated with human pandemic influenza H1N1 and swine influenza H1N2 (SIV) viruses in swine populations in South Korea. Two influenza H1N2 reassortants were detected, and subtyped by PCR. The strains were isolated using Madin- Darby canine kidney (MDCK) cells, and genetically characterized by phylogenetic analysis for genetic diversity. They consisted of human, avian, and swine virus genes that were originated from the 2009 pandemic H1N1 virus and a neuraminidase (NA) gene from H1N2 SIV previously isolated in North America. This identification of reassortment events in swine farms raises concern that reassortant strains may continuously circulate within swine populations, calling for the further study and surveillance of pandemic H1N1 among swine.

  15. Prevalence of nucleic acid sequences specific for human parvoviruses, hepatitis A and hepatitis E viruses in coagulation factor concentrates.

    Science.gov (United States)

    Modrow, S; Wenzel, J J; Schimanski, S; Schwarzbeck, J; Rothe, U; Oldenburg, J; Jilg, W; Eis-Hübinger, A M

    2011-05-01

    Due to their high resistance to inactivation procedures, nonenveloped viruses such as parvovirus B19, human bocavirus (HBoV), human parvovirus 4 (PARV4), hepatitis A (HAV) and hepatitis E virus (HEV) pose a particular threat to blood products. Virus transmission to patients treated with blood products presents an additional burden to disease. We determined the frequency and the amount of nucleic acid specific for nonenveloped viruses in recently manufactured preparations of commercial coagulation factor concentrates. At least three different batches of each of 13 different plasma-derived and recombinant coagulation factor products were tested for the presence and the amount of nucleic acid for parvovirus B19, HBoV, human parvovirus 4, hepatitis A virus and HEV by using quantitative polymerase chain reaction. Whereas none of the recombinant products tested positive for any of these viruses, parvovirus B19 DNA with amounts ranging between 2×10(1) and 1.3×10(3) genome equivalents/ml was detected in five plasma-derived products. In addition to parvovirus B19 genotype 1, genotypes 2 and 3 were observed in two batches of a factor VIII/von-Willebrand factor product. In two products (one factor VIII concentrate and one activated prothrombin complex concentrate), a combination of both genotypes 1 and 2 of parvovirus B19 was detected. The data show that nucleic acids from several relevant nonenveloped viruses are not found at detectable levels in coagulation factor concentrates. In some cases, parvovirus B19 DNA was detectable at low levels. Testing of the plasma pools for the full range of parvovirus genotypes is advocated for ensuring product safety. © 2010 The Author(s). Vox Sanguinis © 2010 International Society of Blood Transfusion.

  16. Histone H1x is highly expressed in human neuroendocrine cells and tumours

    International Nuclear Information System (INIS)

    Warneboldt, Julia; Haller, Florian; Horstmann, Olaf; Danner, Bernhard C; Füzesi, László; Doenecke, Detlef; Happel, Nicole

    2008-01-01

    Histone H1x is a ubiquitously expressed member of the H1 histone family. H1 histones, also called linker histones, stabilize compact, higher order structures of chromatin. In addition to their role as structural proteins, they actively regulate gene expression and participate in chromatin-based processes like DNA replication and repair. The epigenetic contribution of H1 histones to these mechanisms makes it conceivable that they also take part in malignant transformation. Based on results of a Blast data base search which revealed an accumulation of expressed sequence tags (ESTs) of H1x in libraries from neuroendocrine tumours (NETs), we evaluated the expression of H1x in NETs from lung and the gastrointestinal tract using immunohistochemisty. Relative protein and mRNA levels of H1x were analysed by Western blot analysis and quantitative real-time RT-PCR, respectively. Since several reports describe a change of the expression level of the replacement subtype H1.0 during tumourigenesis, the analysis of this subtype was included in this study. We found an increased expression of H1x but not of H1.0 in NET tissues in comparison to corresponding normal tissues. Even though the analysed NETs were heterogenous regarding their grade of malignancy, all except one showed a considerably higher protein amount of H1x compared with corresponding non-neoplastic tissue. Furthermore, double-labelling of H1x and chromogranin A in sections of pancreas and small intestine revealed that H1x is highly expressed in neuroendocrine cells of these tissues. We conclude that the high expression of histone H1x in NETs is probably due to the abundance of this protein in the cells from which these tumours originate

  17. The N-terminal domain determines the affinity and specificity of H1 binding to chromatin

    International Nuclear Information System (INIS)

    Öberg, Christine; Belikov, Sergey

    2012-01-01

    Highlights: ► wt Human histone H1.4 and hH1.4 devoid of N-terminal domain, ΔN-hH1.4, were compared. ► Both histones bind to chromatin, however, ΔN-hH1.4 displays lower binding affinity. ► Interaction of ΔN-hH1.4 with chromatin includes a significant unspecific component. ► N-terminal domain is a determinant of specificity of histone H1 binding to chromatin. -- Abstract: Linker histone H1, one of the most abundant nuclear proteins in multicellular eukaryotes, is a key component of the chromatin structure mainly due to its role in the formation and maintenance of the 30 nm chromatin fiber. It has a three-domain structure; a central globular domain flanked by a short N-terminal domain and a long, highly basic C-terminal domain. Previous studies have shown that the binding abilities of H1 are at large determined by the properties of the C-terminal domain; much less attention has been paid to role of the N-terminal domain. We have previously shown that H1 can be reconstituted via cytoplasmic mRNA injection in Xenopus oocytes, cells that lack somatic H1. The heterologously expressed H1 proteins are incorporated into in vivo assembled chromatin at specific sites and the binding event is monitored as an increase in nucleosomal repeat length (NRL). Using this setup we have here compared the binding properties of wt-H1.4 and hH1.4 devoid of its N-terminal domain (ΔN-hH1.4). The ΔN-hH1.4 displays a drastically lower affinity for chromatin binding as compared to the wild type hH1.4. Our data also indicates that ΔN-hH1.4 is more prone to unspecific chromatin binding than the wild type. We conclude that the N-terminal domain of H1 is an important determinant of affinity and specificity of H1-chromatin interactions.

  18. Slovenian recommendations for parvovirus B19 infection in pregnancy

    Directory of Open Access Journals (Sweden)

    Nina Osvald Avguštin

    2018-03-01

    Full Text Available Parvovirus B19 (B19V causes a mild disease called erythema infectiosum, also known as the fifh disease that affects mostly children and young adults. The virus can be transferred to the fetus during pregnancy in 31 to 51 % of the cases and can cause severe anaemia, non-immune hydrops fetalis or fetal death due to inhibition of erythropoiesis. It also affects the heart muscle, central nervous system, bones, and most likely can cause a subsequent arrest in children’s neurological development. It is estimated that 25–45 % of pregnant women are seronegative with a high risk of infection during pregnancy. A B19V infection in pregnant women is determined by detecting specific IgM and IgG antibodies, and in case of doubt, by using PCR method to detect viral DNA. Fetal infection with B19V is confirmed by detecting viral DNA in the amniotic fluid. In the case of either a suspected or confirmed fetal infection we monitor the fetus by ultrasound screening in a tertiary centre. We treat the fetus with an intrauterine transfusion at the first signs of anaemia or hydrops. To prevent fresh infections with B19V during pregnancy we should raise awareness amongst women and healthcare workers about the risks it poses for the fetus. The recommendations for management of women who are exposed to, are at risk of developing, or have developed B19V infection in pregnancy are published in this article.

  19. A modified live canine parvovirus vaccine. II. Immune response.

    Science.gov (United States)

    Carmichael, L E; Joubert, J C; Pollock, R V

    1983-01-01

    The safety and efficacy of an attenuated canine parvovirus (A-CPV) vaccine was evaluated in both experimental and in field dogs. After parenteral vaccination, seronegative dogs developed hemagglutination-inhibition (HI) antibody titers as early as postvaccination (PV) day 2. Maximal titers occurred within 1 week. Immunity was associated with the persistence of HI antibody titers (titers greater than 80) that endured at least 2 years. Immune dogs challenged with virulent CPV did not shed virus in their feces. The A-CPV vaccine did not cause illness alone or in combination with living canine distemper (CD) and canine adenovirus type-2 (CAV-2) vaccines, nor did it interfere with the immune response to the other viruses. A high rate (greater than 98%) of immunity was engendered in seronegative pups. In contrast, maternal antibody interfered with the active immune response to the A-CPV. More than 95% of the dogs with HI titers less than 10 responded to the vaccine, but only 50% responded when titers were approximately 20. No animal with a titer greater than 80 at the time of vaccination became actively immunized. Susceptibility to virulent CPV during that period when maternal antibody no longer protects against infection, but still prevents active immunization, is the principal cause of vaccinal failure in breeding kennels where CPV is present. Reduction, but not complete elimination, of CPV disease in large breeding kennels occurred within 1-2 months of instituting an A-CPV vaccination program.

  20. Hydroxyurea inhibits parvovirus B19 replication in erythroid progenitor cells.

    Science.gov (United States)

    Bonvicini, Francesca; Bua, Gloria; Conti, Ilaria; Manaresi, Elisabetta; Gallinella, Giorgio

    2017-07-15

    Parvovirus B19 (B19V) infection is restricted to erythroid progenitor cells (EPCs) of the human bone marrow, leading to transient arrest of erythropoiesis and severe complications mainly in subjects with underlying hematological disorders or with immune system deficits. Currently, there are no specific antiviral drugs for B19V treatment, but identification of compounds inhibiting B19V replication can be pursued by a drug repositioning strategy. In this frame, the present study investigates the activity of hydroxyurea (HU), the only disease-modifying therapy approved for sickle cell disease (SCD), towards B19V replication in the two relevant cellular systems, the UT7/EpoS1 cell line and EPCs. Results demonstrate that HU inhibits B19V replication with EC 50 values of 96.2µM and 147.1µM in UT7/EpoS1 and EPCs, respectively, providing experimental evidence of the antiviral activity of HU towards B19V replication, and confirming the efficacy of a drug discovery process by drug repositioning strategy. The antiviral activity occurs in vitro at concentrations lower than those affecting cellular DNA replication and viability, and at levels measured in plasma samples of SCD patients undergoing HU therapy. HU might determine a dual beneficial effect on SCD patients, not only for the treatment of the disease but also towards a virus responsible for severe complications. Copyright © 2017 Elsevier Inc. All rights reserved.