WorldWideScience

Sample records for oncolytic herpes virus

  1. Designing herpes viruses as oncolytics

    Directory of Open Access Journals (Sweden)

    Cole Peters

    Full Text Available Oncolytic herpes simplex virus (oHSV was one of the first genetically-engineered oncolytic viruses. Because HSV is a natural human pathogen that can cause serious disease, it is incumbent that it can be genetically-engineered or significantly attenuated for safety. Here, we present a detailed explanation of the functions of HSV-1 genes frequently mutated to endow oncolytic activity. These genes are nonessential for growth in tissue culture cells but are important for growth in postmitotic cells, interfering with intrinsic antiviral and innate immune responses or causing pathology, functions dispensable for replication in cancer cells. Understanding the function of these genes leads to informed creation of new oHSVs with better therapeutic efficacy. Virus infection and replication can also be directed to cancer cells through tumor-selective receptor binding and transcriptional- or post-transcriptional miRNA-targeting, respectively. In addition to the direct effects of oHSV on infected cancer cells and tumors, oHSV can be “armed” with transgenes that are: reporters, to track virus replication and spread; cytotoxic, to kill uninfected tumor cells; immune modulatory, to stimulate antitumor immunity; or tumor microenvironment altering, to enhance virus spread or to inhibit tumor growth. In addition to HSV-1, other alphaherpesviruses are also discussed for their oncolytic activity.

  2. Designing herpes viruses as oncolytics

    Science.gov (United States)

    Peters, Cole; Rabkin, Samuel D

    2015-01-01

    Oncolytic herpes simplex virus (oHSV) was one of the first genetically-engineered oncolytic viruses. Because HSV is a natural human pathogen that can cause serious disease, it is incumbent that it can be genetically-engineered or significantly attenuated for safety. Here, we present a detailed explanation of the functions of HSV-1 genes frequently mutated to endow oncolytic activity. These genes are nonessential for growth in tissue culture cells but are important for growth in postmitotic cells, interfering with intrinsic antiviral and innate immune responses or causing pathology, functions dispensable for replication in cancer cells. Understanding the function of these genes leads to informed creation of new oHSVs with better therapeutic efficacy. Virus infection and replication can also be directed to cancer cells through tumor-selective receptor binding and transcriptional- or post-transcriptional miRNA-targeting, respectively. In addition to the direct effects of oHSV on infected cancer cells and tumors, oHSV can be “armed” with transgenes that are: reporters, to track virus replication and spread; cytotoxic, to kill uninfected tumor cells; immune modulatory, to stimulate antitumor immunity; or tumor microenvironment altering, to enhance virus spread or to inhibit tumor growth. In addition to HSV-1, other alphaherpesviruses are also discussed for their oncolytic activity. PMID:26462293

  3. Oncolytic herpes viruses, chemotherapeutics, and other cancer drugs

    Directory of Open Access Journals (Sweden)

    Braidwood L

    2013-12-01

    Full Text Available Lynne Braidwood,1 Sheila V Graham,2 Alex Graham,1 Joe Conner11Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK; 2MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Jarrett Building, University of Glasgow, Glasgow, UKAbstract: Oncolytic viruses are emerging as a potential new way of treating cancers. They are selectively replication-competent viruses that propagate only in actively dividing tumor cells but not in normal cells and, as a result, destroy the tumor cells by consequence of lytic infection. At least six different oncolytic herpes simplex viruses (oHSVs have undergone clinical trials worldwide to date, and they have demonstrated an excellent safety profile and intimations of efficacy. The first pivotal Phase III trial with an oHSV, talimogene laherparepvec (T-Vec [OncoVexGM-CSF], is almost complete, with extremely positive early results reported. Intuitively, therapeutically beneficial interactions between oHSV and chemotherapeutic and targeted therapeutic drugs would be limited as the virus requires actively dividing cells for maximum replication efficiency and most anticancer agents are cytotoxic or cytostatic. However, combinations of such agents display a range of responses, with antagonistic, additive, or, perhaps most surprisingly, synergistic enhancement of antitumor activity. When synergistic interactions in cancer cell killing are observed, chemotherapy dose reductions that achieve the same overall efficacy may be possible, resulting in a valuable reduction of adverse side effects. Therefore, the combination of an oHSV with “standard-of-care” drugs makes a logical and reasonable approach to improved therapy, and the addition of a targeted oncolytic therapy with “standard-of-care” drugs merits further investigation, both preclinically and in the clinic. Numerous publications report

  4. A Fusogenic Oncolytic Herpes Simplex Virus for Therapy of Advanced Ovarian Cancer

    National Research Council Canada - National Science Library

    Zhang, Xiaoliu

    2004-01-01

    The tasks that were originally planned for the first year of this 3 year project are to demonstrate that the fusogenic oncolytic herpes simplex viruses are potent anti-tumor agents for advanced ovarian cancer...

  5. Oncolytic Herpes Simplex Virus Vectors Fully Retargeted to Tumor- Associated Antigens.

    Science.gov (United States)

    Uchida, Hiroaki; Hamada, Hirofumi; Nakano, Kenji; Kwon, Heechung; Tahara, Hideaki; Cohen, Justus B; Glorioso, Joseph C

    2018-01-01

    Oncolytic virotherapy is a novel therapeutic modality for malignant diseases that exploits selective viral replication in cancer cells. Herpes simplex virus (HSV) is a promising agent for oncolytic virotherapy due to its broad cell tropism and the identification of mutations that favor its replication in tumor over normal cells. However, these attenuating mutations also tend to limit the potency of current oncolytic HSV vectors that have entered clinical studies. As an alternative, vector retargeting to novel entry receptors has the potential to achieve tumor specificity at the stage of virus entry, eliminating the need for replication-attenuating mutations. Here, we summarize the molecular mechanism of HSV entry and recent advances in the development of fully retargeted HSV vectors for oncolytic virotherapy. Retargeted HSV vectors offer an attractive platform for the creation of a new generation of oncolytic HSV with improved efficacy and specificity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Oncolytic virotherapy using herpes simplex virus: how far have we come?

    Directory of Open Access Journals (Sweden)

    Sokolowski NAS

    2015-11-01

    Full Text Available Nicolas AS Sokolowski,1 Helen Rizos,2 Russell J Diefenbach1 1Centre for Virus Research, Westmead Millennium Institute for Medical Research, The University of Sydney, 2Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia Abstract: Oncolytic virotherapy exploits the properties of human viruses to naturally cause cytolysis of cancer cells. The human pathogen herpes simplex virus (HSV has proven particularly amenable for use in oncolytic virotherapy. The relative safety of HSV coupled with extensive knowledge on how HSV interacts with the host has provided a platform for manipulating HSV to enhance the targeting and killing of human cancer cells. This has culminated in the approval of talimogene laherparepvec for the treatment of melanoma. This review focuses on the development of HSV as an oncolytic virus and where the field is likely to head in the future. Keywords: herpes simplex virus, cancer, immunity, combination therapy, oncolysis

  7. Presage of oncolytic virotherapy for oral cancer with herpes simplex virus

    Directory of Open Access Journals (Sweden)

    Yoshiaki Yura

    2017-05-01

    Full Text Available A virus is a pathogenic organism that causes a number of infectious diseases in humans. The oral cavity is the site at which viruses enter and are excreted from the human body. Herpes simplex virus type 1 (HSV-1 produces the primary infectious disease, gingivostomatitis, and recurrent disease, labial herpes. HSV-1 is one of the most extensively investigated viruses used for cancer therapy. In principle, HSV-1 infects epithelial cells and neuronal cells and exhibits cytotoxicity due to its cytopathic effects on these cells. If the replication of the virus occurs in tumor cells, but not normal cells, the virus may be used as an antitumor agent. Therefore, HSV-1 genes have been modified by genetic engineering, and in vitro and in vivo studies with the oncolytic virus have demonstrated its efficiency against head and neck cancer including oral cancer. The oncolytic abilities of other viruses such as adenovirus and reovirus have also been demonstrated. In clinical trials, HSV-1 is the top runner and is now available for the treatment of patients with advanced melanoma. Thus, melanoma in the oral cavity is the target of oncolytic HSV-1. Oncolytic virotherapy is a hopeful and realistic modality for the treatment of oral cancer.

  8. Pediatric cancer gone viral. Part I: strategies for utilizing oncolytic herpes simplex virus-1 in children

    Science.gov (United States)

    Cripe, Timothy P; Chen, Chun-Yu; Denton, Nicholas L; Haworth, Kellie B; Hutzen, Brian; Leddon, Jennifer L; Streby, Keri A; Wang, Pin-Yi; Markert, James M; Waters, Alicia M; Gillespie, George Yancey; Beierle, Elizabeth A; Friedman, Gregory K

    2015-01-01

    Progress for improving outcomes in pediatric patients with solid tumors remains slow. In addition, currently available therapies are fraught with numerous side effects, often causing significant life-long morbidity for long-term survivors. The use of viruses to kill tumor cells based on their increased vulnerability to infection is gaining traction, with several viruses moving through early and advanced phase clinical testing. The prospect of increased efficacy and decreased toxicity with these agents is thus attractive for pediatric cancer. In part I of this two-part review, we focus on strategies for utilizing oncolytic engineered herpes simplex virus (HSV) to target pediatric malignancies. We discuss mechanisms of action, routes of delivery, and the role of preexisting immunity on antitumor efficacy. Challenges to maximizing oncolytic HSV in children are examined, and we highlight how these may be overcome through various arming strategies. We review the preclinical and clinical evidence demonstrating safety of a variety of oncolytic HSVs. In Part II, we focus on the antitumor efficacy of oncolytic HSV in pediatric tumor types, pediatric clinical advances made to date, and future prospects for utilizing HSV in pediatric patients with solid tumors. PMID:26436135

  9. Pediatric cancer gone viral. Part I: strategies for utilizing oncolytic herpes simplex virus-1 in children

    Directory of Open Access Journals (Sweden)

    Timothy P Cripe

    Full Text Available Progress for improving outcomes in pediatric patients with solid tumors remains slow. In addition, currently available therapies are fraught with numerous side effects, often causing significant life-long morbidity for long-term survivors. The use of viruses to kill tumor cells based on their increased vulnerability to infection is gaining traction, with several viruses moving through early and advanced phase clinical testing. The prospect of increased efficacy and decreased toxicity with these agents is thus attractive for pediatric cancer. In part I of this two-part review, we focus on strategies for utilizing oncolytic engineered herpes simplex virus (HSV to target pediatric malignancies. We discuss mechanisms of action, routes of delivery, and the role of preexisting immunity on antitumor efficacy. Challenges to maximizing oncolytic HSV in children are examined, and we highlight how these may be overcome through various arming strategies. We review the preclinical and clinical evidence demonstrating safety of a variety of oncolytic HSVs. In Part II, we focus on the antitumor efficacy of oncolytic HSV in pediatric tumor types, pediatric clinical advances made to date, and future prospects for utilizing HSV in pediatric patients with solid tumors.

  10. The potential application of a transcriptionally regulated oncolytic herpes simplex virus for human cancer therapy

    Science.gov (United States)

    Miao, L; Fraefel, C; Sia, K C; Newman, J P; Mohamed-Bashir, S A; Ng, W H; Lam, P Y P

    2014-01-01

    Background: Emerging studies have shown the potential benefit of arming oncolytic viruses with therapeutic genes. However, most of these therapeutic genes are placed under the regulation of ubiquitous viral promoters. Our goal is to generate a safer yet potent oncolytic herpes simplex virus type-1 (HSV-1) for cancer therapy. Methods: Using bacterial artificial chromosome (BAC) recombineering, a cell cycle-regulatable luciferase transgene cassette was replaced with the infected cell protein 6 (ICP6) coding region (encoded for UL39 or large subunit of ribonucleotide reductase) of the HSV-1 genome. These recombinant viruses, YE-PC8, were further tested for its proliferation-dependent luciferase gene expression. Results: The ability of YE-PC8 to confer proliferation-dependent transgene expression was demonstrated by injecting similar amount of viruses into the tumour-bearing region of the brain and the contralateral normal brain parenchyma of the same mouse. The results showed enhanced levels of luciferase activities in the tumour region but not in the normal brain parenchyma. Similar findings were observed in YE-PC8-infected short-term human brain patient-derived glioma cells compared with normal human astrocytes. intratumoural injection of YE-PC8 viruses resulted in 77% and 80% of tumour regression in human glioma and human hepatocellular carcinoma xenografts, respectively. Conclusion: YE-PC8 viruses confer tumour selectivity in proliferating cells and may be developed further as a feasible approach to treat human cancers. PMID:24196790

  11. Treatment of colon cancer with oncolytic herpes simplex virus in preclinical models.

    Science.gov (United States)

    Yang, H; Peng, T; Li, J; Wang, Y; Zhang, W; Zhang, P; Peng, S; Du, T; Li, Y; Yan, Q; Liu, B

    2016-05-01

    Cancer stem cells (CSCs), which are a rare population in any type of cancer, including colon cancer, are tumorigenic and responsible for cancer recurrence and metastasis. CSCs have been isolated from a number of different solid tumors recently, although the isolation of CSCs in colon cancer is still challenging. We cultured colon cancer cells in stem cell medium to obtain colonosphere cells. These cells possessed the characteristics of CSCs, with a high capacity of tumorigenicity, migration and invasion in vitro and in vivo. The isolation and identification of CSCs have provided new targets for the therapeutics. Oncolytic herpes simplex viruses (oHSV) are an effective strategy for killing colon cancer cells in preclinical models. Here, we examined the efficacy of an oncolytic herpes simplex virus type 2 (oHSV2) in killing colon cancer cells and colon cancer stem-like cells (CSLCs). oHSV2 was found to be highly cytotoxic to the adherent and sphere cells in vitro, and oHSV2 treatment in vivo significantly inhibited tumor growth. This study demonstrates that oHSV2 is effective against colon cancer cells and colon CSLCs and could be a promising strategy for treating colon cancer patients.

  12. Pediatric cancer gone viral. Part II: potential clinical application of oncolytic herpes simplex virus-1 in children

    Directory of Open Access Journals (Sweden)

    Gregory K Friedman

    Full Text Available Oncolytic engineered herpes simplex viruses (HSVs possess many biologic and functional attributes that support their use in clinical trials in children with solid tumors. Tumor cells, in an effort to escape regulatory mechanisms that would impair their growth and progression, have removed many mechanisms that would have protected them from virus infection and eventual virus-mediated destruction. Viruses engineered to exploit this weakness, like mutant HSV, can be safely employed as tumor cell killers, since normal cells retain these antiviral strategies. Many preclinical studies and early phase trials in adults demonstrated that oncolytic HSV can be safely used and are highly effective in killing tumor cells that comprise pediatric malignancies, without generating the toxic side effects of nondiscriminatory chemotherapy or radiation therapy. A variety of engineered viruses have been developed and tested in numerous preclinical models of pediatric cancers and initial trials in patients are underway. In Part II of this review series, we examine the preclinical evidence to support the further advancement of oncolytic HSV in the pediatric population. We discuss clinical advances made to date in this emerging era of oncolytic virotherapy.

  13. Histone deacetylase inhibitors improve the replication of oncolytic herpes simplex virus in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    James J Cody

    Full Text Available New therapies are needed for metastatic breast cancer patients. Oncolytic herpes simplex virus (oHSV is an exciting therapy being developed for use against aggressive tumors and established metastases. Although oHSV have been demonstrated safe in clinical trials, a lack of sufficient potency has slowed the clinical application of this approach. We utilized histone deacetylase (HDAC inhibitors, which have been noted to impair the innate antiviral response and improve gene transcription from viral vectors, to enhance the replication of oHSV in breast cancer cells. A panel of chemically diverse HDAC inhibitors were tested at three different doses (LD50 for their ability to modulate the replication of oHSV in breast cancer cells. Several of the tested HDAC inhibitors enhanced oHSV replication at low multiplicity of infection (MOI following pre-treatment of the metastatic breast cancer cell line MDA-MB-231 and the oHSV-resistant cell line 4T1, but not in the normal breast epithelial cell line MCF10A. Inhibitors of class I HDACs, including pan-selective compounds, were more effective for increasing oHSV replication compared to inhibitors that selectively target class II HDACs. These studies demonstrate that select HDAC inhibitors increase oHSV replication in breast cancer cells and provides support for pre-clinical evaluation of this combination strategy.

  14. IL-12 Expressing oncolytic herpes simplex virus promotes anti-tumor activity and immunologic control of metastatic ovarian cancer in mice.

    Science.gov (United States)

    Thomas, Eric D; Meza-Perez, Selene; Bevis, Kerri S; Randall, Troy D; Gillespie, G Yancey; Langford, Catherine; Alvarez, Ronald D

    2016-10-27

    Despite advances in surgical aggressiveness and conventional chemotherapy, ovarian cancer remains the most lethal cause of gynecologic cancer mortality; consequently there is a need for new therapeutic agents and innovative treatment paradigms for the treatment of ovarian cancer. Several studies have demonstrated that ovarian cancer is an immunogenic disease and immunotherapy represents a promising and novel approach that has not been completely evaluated in ovarian cancer. Our objective was to evaluate the anti-tumor activity of an oncolytic herpes simplex virus "armed" with murine interleukin-12 and its ability to elicit tumor-specific immune responses. We evaluated the ability of interleukin-12-expressing and control oncolytic herpes simplex virus to kill murine and human ovarian cancer cell lines in vitro. We also administered interleukin-12-expressing oncolytic herpes simplex virus to the peritoneal cavity of mice that had developed spontaneous, metastatic ovarian cancer and determined overall survival and tumor burden at 95 days. We used flow cytometry to quantify the tumor antigen-specific CD8 + T cell response in the omentum and peritoneal cavity. All ovarian cancer cell lines demonstrated susceptibility to oncolytic herpes simplex virus in vitro. Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus demonstrated a more robust tumor antigen-specific CD8 + T-cell immune response in the omentum (471.6 cells vs 33.1 cells; p = 0.02) and peritoneal cavity (962.3 cells vs 179.5 cells; p = 0.05). Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus were more likely to control ovarian cancer metastases (81.2 % vs 18.2 %; p = 0.008) and had a significantly longer overall survival (p = 0.02). Finally, five of 6 mice treated with interleukin-12-expressing oHSV had no evidence of metastatic tumor when euthanized at 6 months, compared to two of 4 mice treated with

  15. Potent efficacy signals from systemically administered oncolytic herpes simplex virus (HSV1716 in hepatocellular carcinoma xenograft models

    Directory of Open Access Journals (Sweden)

    Braidwood L

    2014-10-01

    Full Text Available Lynne Braidwood, Kirsty Learmonth, Alex Graham, Joe Conner Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK Abstract: Oncolytic herpes simplex virus (HSV1716, lacking the neurovirulence factor ICP34.5, has highly selective replication competence for cancer cells and has been used in clinical studies of glioma, melanoma, head and neck squamous cell carcinoma, pediatric non-central nervous system solid tumors, and malignant pleural mesothelioma. To date, 88 patients have received HSV1716 and the virus is well tolerated, with selective replication in tumor cells and no spread to surrounding normal tissue. We assessed the potential value of HSV1716 in preclinical studies with two human hepatocellular carcinoma cell lines, HuH7 and HepG2-luc. HSV1716 displayed excellent replication kinetics in vitro in HepG2-luc cells, a cell line engineered to express luciferase, and virus-mediated cell killing correlated with loss of light emissions from the cells. In vivo, the HepG2-luc cells readily formed light-emitting xenografts that were easily visualized by an in vivo imaging system and efficiently eliminated by HSV1716 oncolysis after intratumoral injection. HSV1716 also demonstrated strong efficacy signals in subcutaneous HuH7 xenografts in nude mice after intravenous administration of virus. In the HuH7 model, the intravenously injected virus replicated prolifically immediately after efficient tumor localization, resulting in highly significant reductions in tumor growth and enhanced survival. Our preclinical results demonstrate excellent tumor uptake of HSV1716, with prolific replication and potent oncolysis. These observations warrant a clinical study of HSV1716 in hepatocellular carcinoma. Keywords: oncolytic herpes simplex virus, HSV1716, hepatocellular carcinoma, xenografts, efficacy 

  16. ATN-224 enhances antitumor efficacy of oncolytic herpes virus against both local and metastatic head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ji Young Yoo

    Full Text Available Head and neck squamous cell carcinoma (HNSCC is the sixth most frequent cancer worldwide, and the 5-year survival rates are among the worst of the major cancers. Oncolytic herpes simplex viruses (oHSV have the potential to make a significant impact in the targeted treatment of these patients. Here, we tested antitumor efficacy of RAMBO, an oHSV armed with the antiangiogenic Vstat120, alone and in conjunction with ATN-224, a copper chelator against HNSCC in vitro and in vivo animal models. We found that all tested HNSCC cells responded well to virus treatment and were sensitive to RAMBO-mediated oncolytic destruction. In vivo, RAMBO had a significant antiangiogenic and antitumorigenic effect. Physiologic levels of copper inhibited viral replication and HNSCC cell killing. Chelation of copper using ATN-224 treatment significantly improved serum stability of RAMBO and permitted systemic delivery in HNSCC tumor xenografts models. Furthermore, our results show that the combination of ATN-224 and RAMBO strongly inhibits lung metastases in a mouse model of HNSCC. These findings suggest that combining ATN-224 with RAMBO has potential for clinical trials in both early and advanced HNSCC patients.

  17. Identification of the ENT1 antagonists dipyridamole and dilazep as amplifiers of oncolytic herpes simplex virus-1 replication.

    Science.gov (United States)

    Passer, Brent J; Cheema, Tooba; Zhou, Bingsen; Wakimoto, Hiroaki; Zaupa, Cecile; Razmjoo, Mani; Sarte, Jason; Wu, Shulin; Wu, Chin-lee; Noah, James W; Li, Qianjun; Buolamwini, John K; Yen, Yun; Rabkin, Samuel D; Martuza, Robert L

    2010-05-15

    Oncolytic herpes simplex virus-1 (oHSV) vectors selectively replicate in tumor cells, where they kill through oncolysis while sparing normal cells. One of the drawbacks of oHSV vectors is their limited replication and spread to neighboring cancer cells. Here, we report the outcome of a high-throughput chemical library screen to identify small-molecule compounds that augment the replication of oHSV G47Delta. Of the 2,640-screened bioactives, 6 compounds were identified and subsequently validated for enhanced G47Delta replication. Two of these compounds, dipyridamole and dilazep, interfered with nucleotide metabolism by potently and directly inhibiting the equilibrative nucleoside transporter-1 (ENT1). Replicative amplification promoted by dipyridamole and dilazep were dependent on HSV mutations in ICP6, the large subunit of ribonucleotide reductase. Our results indicate that ENT1 antagonists augment oHSV replication in tumor cells by increasing cellular ribonucleoside activity. (c)2010 AACR.

  18. Expression of RNA interference triggers from an oncolytic herpes simplex virus results in specific silencing in tumour cells in vitro and tumours in vivo

    International Nuclear Information System (INIS)

    Anesti, Anna-Maria; Simpson, Guy R; Price, Toby; Pandha, Hardev S; Coffin, Robert S

    2010-01-01

    Delivery of small interfering RNA (siRNA) to tumours remains a major obstacle for the development of RNA interference (RNAi)-based therapeutics. Following the promising pre-clinical and clinical results with the oncolytic herpes simplex virus (HSV) OncoVEX GM-CSF , we aimed to express RNAi triggers from oncolytic HSV, which although has the potential to improve treatment by silencing tumour-related genes, was not considered possible due to the highly oncolytic properties of HSV. To evaluate RNAi-mediated silencing from an oncolytic HSV backbone, we developed novel replicating HSV vectors expressing short-hairpin RNA (shRNA) or artificial microRNA (miRNA) against the reporter genes green fluorescent protein (eGFP) and β-galactosidase (lacZ). These vectors were tested in non-tumour cell lines in vitro and tumour cells that are moderately susceptible to HSV infection both in vitro and in mice xenografts in vivo. Silencing was assessed at the protein level by fluorescent microscopy, x-gal staining, enzyme activity assay, and western blotting. Our results demonstrate that it is possible to express shRNA and artificial miRNA from an oncolytic HSV backbone, which had not been previously investigated. Furthermore, oncolytic HSV-mediated delivery of RNAi triggers resulted in effective and specific silencing of targeted genes in tumour cells in vitro and tumours in vivo, with the viruses expressing artificial miRNA being comprehensibly more effective. This preliminary data provide the first demonstration of oncolytic HSV-mediated expression of shRNA or artificial miRNA and silencing of targeted genes in tumour cells in vitro and in vivo. The vectors developed in this study are being adapted to silence tumour-related genes in an ongoing study that aims to improve the effectiveness of oncolytic HSV treatment in tumours that are moderately susceptible to HSV infection and thus, potentially improve response rates seen in human clinical trials

  19. Oncolytic Herpes Virus rRp450 Shows Efficacy in Orthotopic Xenograft Group 3/4 Medulloblastomas and Atypical Teratoid/Rhabdoid Tumors

    Directory of Open Access Journals (Sweden)

    Adam W. Studebaker

    2017-09-01

    Full Text Available Pediatric brain tumors including medulloblastoma and atypical teratoid/rhabdoid tumor are associated with significant mortality and treatment-associated morbidity. While medulloblastoma tumors within molecular subgroups 3 and 4 have a propensity to metastasize, atypical teratoid/rhabdoid tumors frequently afflict a very young patient population. Adjuvant treatment options for children suffering with these tumors are not only sub-optimal but also associated with many neurocognitive obstacles. A potentially novel treatment approach is oncolytic virotherapy, a developing therapeutic platform currently in early-phase clinical trials for pediatric brain tumors and recently US Food and Drug Administration (FDA-approved to treat melanoma in adults. We evaluated the therapeutic potential of the clinically available oncolytic herpes simplex vector rRp450 in cell lines derived from medulloblastoma and atypical teratoid/rhabdoid tumor. Cells of both tumor types were supportive of virus replication and virus-mediated cytotoxicity. Orthotopic xenograft models of medulloblastoma and atypical teratoid/rhabdoid tumors displayed significantly prolonged survival following a single, stereotactic intratumoral injection of rRp450. Furthermore, addition of the chemotherapeutic prodrug cyclophosphamide (CPA enhanced rRp450’s in vivo efficacy. In conclusion, oncolytic herpes viruses with the ability to bioactivate the prodrug CPA within the tumor microenvironment warrant further investigation as a potential therapy for pediatric brain tumors.

  20. A Potent Oncolytic Herpes Simplex Virus for Therapy of Advanced Prostate Cancer

    National Research Council Canada - National Science Library

    Zhang, Xiaoliu

    2005-01-01

    ... only. Therefore fusogenic oncolytic HSV should be no more toxic than its parental construct. Nonetheless, we proposed in the year 2 of this funded project to conduct extensive studies in animal models...

  1. A Potent Oncolytic Herpes Simplex Virus for the Therapy of Advanced Prostate

    National Research Council Canada - National Science Library

    Zhang, Xiaoliu

    2006-01-01

    .... WE PROPOSED IN THE AIM 3 OF THIS FUNDED PROJECT TO ADDRESS THIS ISSUE WITH TWO STRATEGIES: 1) TO DELIVER ONCOLYTIC HSVS THROUGH LIPOSOME-FORMULATED VIRAL DNA INSTEAD OF THE TRADITIONAL VIRAL PARTICLES AND 2...

  2. Utility of a Herpes Oncolytic Virus for the Detection of Neural Invasion By Cancer

    Directory of Open Access Journals (Sweden)

    Ziv Gil

    2008-04-01

    Full Text Available Prostate, pancreatic, and head and neck carcinomas have a high propensity to invade nerves. Surgical resection is a treatment modality for these patients, but it may incur significant deficits. The development of an imaging method able to detect neural invasion (NI by cancer cells may guide surgical resection and facilitate preservation of normal nerves. We describe an imaging method for the detection of NI using a herpes simplex virus, NV1066, carrying tyrosine kinase and enhanced green fluorescent protein (eGFP. Infection of pancreatic (MiaPaCa2, prostate (PC3 and DU145, and adenoid cystic carcinoma (ACC3 cell lines with NV1066 induced a high expression of eGFP in vitro. An in vivo murine model of NI was established by implanting tumors into the sciatic nerves of nude mice. Nerves were then injected with NV1066, and infection was confirmed by polymerase chain reaction. Positron emission tomography with [18F]-2′-fluoro-2′-deoxyarabinofuranosyl-5-ethyluracil performed showed significantly higher uptake in NI than in control animals. Intraoperative fluorescent stereoscopic imaging revealed eGFP signal in NI treated with NV1066. These findings show that NV1066 may be an imaging method to enhance the detection of nerves infiltrated by cancer cells. This method may improve the diagnosis and treatment of patients with neurotrophic cancers by reducing injury to normal nerves and facilitating identification of infiltrated nerves requiring resection.

  3. Oncolytic Herpes Simplex Viral Therapy: A Stride toward Selective Targeting of Cancer Cells.

    Science.gov (United States)

    Sanchala, Dhaval S; Bhatt, Lokesh K; Prabhavalkar, Kedar S

    2017-01-01

    Oncolytic viral therapy, which makes use of replication-competent lytic viruses, has emerged as a promising modality to treat malignancies. It has shown meaningful outcomes in both solid tumor and hematologic malignancies. Advancements during the last decade, mainly genetic engineering of oncolytic viruses have resulted in improved specificity and efficacy of oncolytic viruses in cancer therapeutics. Oncolytic viral therapy for treating cancer with herpes simplex virus-1 has been of particular interest owing to its range of benefits like: (a) large genome and power to infiltrate in the tumor, (b) easy access to manipulation with the flexibility to insert multiple transgenes, (c) infecting majority of the malignant cell types with quick replication in the infected cells and (d) as Anti-HSV agent to terminate HSV replication. This review provides an exhaustive list of oncolytic herpes simplex virus-1 along with their genetic alterations. It also encompasses the major developments in oncolytic herpes simplex-1 viral therapy and outlines the limitations and drawbacks of oncolytic herpes simplex viral therapy.

  4. New frontiers in oncolytic viruses: optimizing and selecting for virus strains with improved efficacy

    Directory of Open Access Journals (Sweden)

    Lundstrom K

    2018-02-01

    Full Text Available Kenneth Lundstrom PanTherapeutics, Lutry, Switzerland Abstract: Oncolytic viruses have demonstrated selective replication and killing of tumor cells. Different types of oncolytic viruses – adenoviruses, alphaviruses, herpes simplex viruses, Newcastle disease viruses, rhabdoviruses, Coxsackie viruses, and vaccinia viruses – have been applied as either naturally occurring or engineered vectors. Numerous studies in animal-tumor models have demonstrated substantial tumor regression and prolonged survival rates. Moreover, clinical trials have confirmed good safety profiles and therapeutic efficacy for oncolytic viruses. Most encouragingly, the first cancer gene-therapy drug – Gendicine, based on oncolytic adenovirus type 5 – was approved in China. Likewise, a second-generation oncolytic herpes simplex virus-based drug for the treatment of melanoma has been registered in the US and Europe as talimogene laherparepvec. Keywords: immunotherapy, viral vectors, clinical trials, drug approval

  5. Oncolytic viruses as anticancer vaccines

    Directory of Open Access Journals (Sweden)

    Norman eWoller

    2014-07-01

    Full Text Available Oncolytic virotherapy has shown impressive results in preclinical studies and first promising therapeutic outcomes in clinical trials as well. Since viruses are known for a long time as excellent vaccination agents, oncolytic viruses are now designed as novel anticancer agents combining the aspect of lysis-dependent cytoreductive activity with concomitant induction of antitumoral immune responses. Antitumoral immune activation by oncolytic virus infection of tumor tissue comprises both, immediate effects of innate immunity and also adaptive responses for long lasting antitumoral activity which is regarded as the most prominent challenge in clinical oncology. To date, the complex effects of a viral tumor infection on the tumor microenvironment and the consequences for the tumor-infiltrating immune cell compartment are poorly understood. However, there is more and more evidence that a tumor infection by an oncolytic virus opens up a number of options for further immunomodulating interventions such as systemic chemotherapy, generic immunostimulating strategies, dendritic cell-based vaccines, and antigenic libraries to further support clinical efficacy of oncolytic virotherapy.

  6. Pediatric medulloblastoma xenografts including molecular subgroup 3 and CD133+ and CD15+ cells are sensitive to killing by oncolytic herpes simplex viruses.

    Science.gov (United States)

    Friedman, Gregory K; Moore, Blake P; Nan, Li; Kelly, Virginia M; Etminan, Tina; Langford, Catherine P; Xu, Hui; Han, Xiaosi; Markert, James M; Beierle, Elizabeth A; Gillespie, G Yancey

    2016-02-01

    Childhood medulloblastoma is associated with significant morbidity and mortality that is compounded by neurotoxicity for the developing brain caused by current therapies, including surgery, craniospinal radiation, and chemotherapy. Innate therapeutic resistance of some aggressive pediatric medulloblastoma has been attributed to a subpopulation of cells, termed cancer-initiating cells or cancer stemlike cells (CSCs), marked by the surface protein CD133 or CD15. Brain tumors characteristically contain areas of pathophysiologic hypoxia, which has been shown to drive the CSC phenotype leading to heightened invasiveness, angiogenesis, and metastasis. Novel therapies that target medulloblastoma CSCs are needed to improve outcomes and decrease toxicity. We hypothesized that oncolytic engineered herpes simplex virus (oHSV) therapy could effectively infect and kill pediatric medulloblastoma cells, including CSCs marked by CD133 or CD15. Using 4 human pediatric medulloblastoma xenografts, including 3 molecular subgroup 3 tumors, which portend worse patient outcomes, we determined the expression of CD133, CD15, and the primary HSV-1 entry molecule nectin-1 (CD111) by fluorescence activated cell sorting (FACS) analysis. Infectability and cytotoxicity of clinically relevant oHSVs (G207 and M002) were determined in vitro and in vivo by FACS, immunofluorescent staining, cytotoxicity assays, and murine survival studies. We demonstrate that hypoxia increased the CD133+ cell fraction, while having the opposite effect on CD15 expression. We established that all 4 xenografts, including the CSCs, expressed CD111 and were highly sensitive to killing by G207 or M002. Pediatric medulloblastoma, including Group 3 tumors, may be an excellent target for oHSV virotherapy, and a clinical trial in medulloblastoma is warranted. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Oncolytic Viruses: Therapeutics With an Identity Crisis

    Directory of Open Access Journals (Sweden)

    Caroline J. Breitbach

    2016-07-01

    Full Text Available Oncolytic viruses (OV are replicating viral therapeutics for the treatment of cancer and have been in laboratory development for about twenty years. Recently, the FDA approved Imlygic, a herpes virus based therapeutic for the treatment of melanoma and thus OVs have entered a new era where they are a weapon in the armament of the oncologist. OVs are unique therapeutics with multiple mechanisms of therapeutic activity. The exact path for their development and eventual uptake by pharmaceutical companies is somewhat clouded by an uncertain identity. Are they vaccines, tumour lysing therapeutics, inducers of innate immunity, gene therapy vectors, anti-vascular agents or all of the above? Should they be developed as stand-alone loco-regional therapeutics, systemically delivered tumour hunters or immune modulators best tested as combination therapeutics? We summarize data here supporting the idea, depending upon the virus, that OVs can be any or all of these things. Pursuing a “one-size fits all” approach is counter-productive to their clinical development and instead as a field we should build on the strengths of individual virus platforms.

  8. Adaptive T cell responses induced by oncolytic Herpes Simplex Virus-granulocyte macrophage-colony-stimulating factor therapy expanded by dendritic cell and cytokine-induced killer cell adoptive therapy.

    Science.gov (United States)

    Ren, Jun; Gwin, William R; Zhou, Xinna; Wang, Xiaoli; Huang, Hongyan; Jiang, Ni; Zhou, Lei; Agarwal, Pankaj; Hobeika, Amy; Crosby, Erika; Hartman, Zachary C; Morse, Michael A; H Eng, Kevin; Lyerly, H Kim

    2017-01-01

    Purpose : Although local oncolytic viral therapy (OVT) may enhance tumor lysis, antigen release, and adaptive immune responses, systemic antitumor responses post-therapy are limited. Adoptive immunotherapy with autologous dendritic cells (DC) and cytokine-induced killer cells (DC-CIK) synergizes with systemic therapies. We hypothesized that OVT with Herpes Simplex Virus-granulocyte macrophage-colony-stimulating factor (HSV-GM-CSF) would induce adaptive T cell responses that could be expanded systemically with sequential DC-CIK therapy. Patients and Methods : We performed a pilot study of intratumoral HSV-GM-CSF OVT followed by autologous DC-CIK cell therapy. In addition to safety and clinical endpoints, we monitored adaptive T cell responses by quantifying T cell receptor (TCR) populations in pre-oncolytic therapy, post-oncolytic therapy, and after DC-CIK therapy. Results : Nine patients with advanced malignancy were treated with OVT (OrienX010), of whom seven experienced stable disease (SD). Five of the OVT treated patients underwent leukapheresis, generation, and delivery of DC-CIKs, and two had SD, whereas three progressed. T cell receptor sequencing of TCR β sequences one month after OVT therapy demonstrates a dynamic TCR repertoire in response to OVT therapy in the majority of patients with the systematic expansion of multiple T cell clone populations following DC-CIK therapy. This treatment was well tolerated and long-term event free and overall survival was observed in six of the nine patients. Conclusions : Strategies inducing the local activation of tumor-specific immune responses can be combined with adoptive cellular therapies to expand the adaptive T cell responses systemically and further studies are warranted.

  9. Molecular Characterization of Prostate Cancer Cell Oncolysis by Herpes Simplex Virus ICP0 Mutants

    National Research Council Canada - National Science Library

    Mossman, Karen

    2005-01-01

    .... Briefly, the goals of the proposal were to characterize the oncolytic capacity of Herpes simplex virus type 1 ICPO mutants in prostate cancer cells given the relationship between ICPO and two tumor...

  10. Molecular Characterization of Prostate Cancer Cell Oncolysis by Herpes Simplex Virus ICP0 Mutants

    National Research Council Canada - National Science Library

    Mossman, Karen

    2006-01-01

    .... Briefly, the goals of the proposal were to characterize the oncolytic capacity of Herpes simplex virus type 1 ICP0 mutants in prostate cancer cells given the relationship between ICP0 and two tumor...

  11. Chimeric HCMV/HSV-1 and Δγ134.5 oncolytic herpes simplex virus elicit immune mediated antigliomal effect and antitumor memory

    Directory of Open Access Journals (Sweden)

    Mohammed G. Ghonime

    2018-02-01

    Full Text Available Malignant gliomas are the most common primary brain tumor and are characterized by rapid and highly invasive growth. Because of their poor prognosis, new therapeutic strategies are needed. Oncolytic virotherapy (OV is a promising strategy for treating cancer that incorporates both direct viral replication mediated and immune mediated mechanisms to kill tumor cells. C134 is a next generation Δγ134.5 oHSV-1 with improved intratumoral viral replication. It remains safe in the CNS environment by inducing early IFN signaling which restricts its replication in non-malignant cells. We sought to identify how C134 performed in an immunocompetent tumor model that restricts its replication advantage over first generation viruses. To achieve this we identified tumors that have intact IFN signaling responses that restrict C134 and first generation virus replication similarly. Our results show that both viruses elicit a T cell mediated anti-tumor effect and improved animal survival but that subtle difference exist between the viruses effect on median survival despite equivalent in vivo viral replication. To further investigate this we examined the anti-tumor activity in immunodeficient mice and in syngeneic models with re-challenge. These studies show that the T cell response is integral to C134 replication independent anti-tumor response and that OV therapy elicits a durable and circulating anti-tumor memory. The studies also show that repeated intratumoral administration can extend both OV anti-tumor effects and induce durable anti-tumor memory that is superior to tumor antigen exposure alone.

  12. Oncolytic viruses: a step into cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Pol JG

    2011-12-01

    Full Text Available Jonathan G Pol, Julien Rességuier, Brian D LichtyMcMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, CanadaAbstract: Oncolytic virotherapy is currently under investigation in phase I–III clinical trials for approval as a new cancer treatment. Oncolytic viruses (OVs selectively infect, replicate in, and kill tumor cells. For a long time, the therapeutic efficacy was thought to depend on the direct viral oncolysis (virocentric view. The host immune system was considered as a brake that impaired virus delivery and spread. Attention was paid primarily to approaches enhancing virus tumor selectivity and cytotoxicity and/or that limited antiviral responses. Thinking has changed over the past few years with the discovery that OV therapy was also inducing indirect oncolysis mechanisms. Among them, induction of an antitumor immunity following OV injection appeared to be a key factor for an efficient therapeutic activity (immunocentric view. Indeed, tumor-specific immune cells persist post-therapy and can search and destroy any tumor cells that escape the OVs, and thus immune memory may prevent relapse of the disease. Various strategies, which are summarized in this manuscript, have been developed to enhance the efficacy of OV therapy with a focus on its immunotherapeutic aspects. These include genetic engineering and combination with existing cancer treatments. Several are currently being evaluated in human patients and already display promising efficacy.Keywords: oncolytic virus, cancer immunotherapy, tumor antigen, cancer vaccine, combination strategies

  13. Oncolytic Maraba Virus MG1 as a Treatment for Sarcoma.

    Science.gov (United States)

    Le Boeuf, Fabrice; Selman, Mohammed; Son, Hwan Hee; Bergeron, Anabel; Chen, Andrew; Tsang, Jovian; Butterwick, Derek; Arulanandam, Rozanne; Forbes, Nicole E; Tzelepis, Fanny; Bell, John C; Werier, Joel; Abdelbary, Hesham; Diallo, Jean-Simon

    2017-09-15

    The poor prognosis of patients with advanced bone and soft-tissue sarcoma has not changed in the past several decades, highlighting the necessity for new therapeutic approaches. Immunotherapies, including oncolytic viral (OV) therapy, have shown great promise in a number of clinical trials for a variety of tumor types. However, the effective application of OV in treating sarcoma still remains to be demonstrated. Although few pre-clinical studies using distinct OVs have been performed and demonstrated therapeutic benefit in sarcoma models, a side-by-side comparison of clinically relevant OV platforms has not been performed. Four clinically relevant OV platforms (Reovirus, Vaccinia virus, Herpes-simplex virus and Rhabdovirus) were screened for their ability to infect and kill human and canine sarcoma cell lines in vitro, and human sarcoma specimens ex vivo. In vivo treatment efficacy was tested in a murine model. The rhabdovirus MG1 demonstrated the highest potency in vitro. Ex vivo, MG1 productively infected more than 80% of human sarcoma tissues tested, and treatment in vivo led to a significant increase in long-lasting cures in sarcoma-bearing mice. Importantly, MG1 treatment induced the generation of memory immune response that provided protection against a subsequent tumor challenge. This study opens the door for the use of MG1-based oncolytic immunotherapy strategies as treatment for sarcoma or as a component of a combined therapy. © 2017 UICC.

  14. High-throughput screening to enhance oncolytic virus immunotherapy

    Directory of Open Access Journals (Sweden)

    Allan KJ

    2016-04-01

    Full Text Available KJ Allan,1,2 David F Stojdl,1–3 SL Swift1 1Children’s Hospital of Eastern Ontario (CHEO Research Institute, 2Department of Biology, Microbiology and Immunology, 3Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada Abstract: High-throughput screens can rapidly scan and capture large amounts of information across multiple biological parameters. Although many screens have been designed to uncover potential new therapeutic targets capable of crippling viruses that cause disease, there have been relatively few directed at improving the efficacy of viruses that are used to treat disease. Oncolytic viruses (OVs are biotherapeutic agents with an inherent specificity for treating malignant disease. Certain OV platforms – including those based on herpes simplex virus, reovirus, and vaccinia virus – have shown success against solid tumors in advanced clinical trials. Yet, many of these OVs have only undergone minimal engineering to solidify tumor specificity, with few extra modifications to manipulate additional factors. Several aspects of the interaction between an OV and a tumor-bearing host have clear value as targets to improve therapeutic outcomes. At the virus level, these include delivery to the tumor, infectivity, productivity, oncolysis, bystander killing, spread, and persistence. At the host level, these include engaging the immune system and manipulating the tumor microenvironment. Here, we review the chemical- and genome-based high-throughput screens that have been performed to manipulate such parameters during OV infection and analyze their impact on therapeutic efficacy. We further explore emerging themes that represent key areas of focus for future research. Keywords: oncolytic, virus, screen, high-throughput, cancer, chemical, genomic, immunotherapy

  15. Use of an oncolytic virus secreting GM-CSF as combined oncolytic and immunotherapy for treatment of colorectal and hepatic adenocarcinomas.

    Science.gov (United States)

    Malhotra, Sandeep; Kim, Teresa; Zager, Jonathan; Bennett, Joseph; Ebright, Michael; D'Angelica, Michael; Fong, Yuman

    2007-04-01

    Oncolytic cancer therapy using herpes simplex viruses (HSV) that have direct tumoricidal effects and cancer immunotherapy using the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) have each been effective in preclinical testing. NV1034 is a multimutated oncolytic HSV carrying the gene for murine GM-CSF that attempts to combine these 2 anticancer strategies. The purpose of this study was to compare NV1034 to NV1023, the parent HSV mutants lacking GM-CSF, to determine if such combined oncolytic and immunotherapy using a single vector has advantages over oncolytic therapy alone. Expression GM-CSF in vitro did not alter the infectivity, cytotoxicity, or replication of NV1034 compared to the noncytokine-secreting control. Tumors infected with NV1034 produced GM-CSF in picogram quantities. In vivo efficacy of the viruses against murine colorectal carcinoma CT26 and murine hepatoma Hepa l-6 was then tested in subcutaneous tumors in syngeneic Balb/c and C57 L/J mice, respectively. In these immune-competent models, NV1034 and NV1023 each demonstrated potent antitumor activity. Treatment with NV1034 had significantly better antitumor effect compared to treatment with NV1023. Furthermore, there was no difference in the antitumor efficacy of these viruses in mice depleted of CD4+ and CD8+ T lymphocytes. Viral vectors combining oncolytic and immunotherapy are promising agents in treatment of colorectal carcinoma and hepatoma.

  16. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus.

    Directory of Open Access Journals (Sweden)

    Yonatan Y Mahller

    Full Text Available Although disease remission can frequently be achieved for patients with neuroblastoma, relapse is common. The cancer stem cell theory suggests that rare tumorigenic cells, resistant to conventional therapy, are responsible for relapse. If true for neuroblastoma, improved cure rates may only be achieved via identification and therapeutic targeting of the neuroblastoma tumor initiating cell. Based on cues from normal stem cells, evidence for tumor populating progenitor cells has been found in a variety of cancers.Four of eight human neuroblastoma cell lines formed tumorspheres in neural stem cell media, and all contained some cells that expressed neurogenic stem cell markers including CD133, ABCG2, and nestin. Three lines tested could be induced into multi-lineage differentiation. LA-N-5 spheres were further studied and showed a verapamil-sensitive side population, relative resistance to doxorubicin, and CD133+ cells showed increased sphere formation and tumorigenicity. Oncolytic viruses, engineered to be clinically safe by genetic mutation, are emerging as next generation anticancer therapeutics. Because oncolytic viruses circumvent typical drug-resistance mechanisms, they may represent an effective therapy for chemotherapy-resistant tumor initiating cells. A Nestin-targeted oncolytic herpes simplex virus efficiently replicated within and killed neuroblastoma tumor initiating cells preventing their ability to form tumors in athymic nude mice.These results suggest that human neuroblastoma contains tumor initiating cells that may be effectively targeted by an oncolytic virus.

  17. Herpes Simplex Virus (Cold Sores)

    Science.gov (United States)

    ... Print Share Cold Sores in Children: About the Herpes Simplex Virus Page Content ​A child's toddler and ... Cold sores (also called fever blisters or oral herpes) start as small blisters that form around the ...

  18. Therapeutic potential of oncolytic Newcastle disease virus: a critical review.

    Science.gov (United States)

    Tayeb, Shay; Zakay-Rones, Zichria; Panet, Amos

    2015-01-01

    Newcastle disease virus (NDV) features a natural preference for replication in many tumor cells compared with normal cells. The observed antitumor effect of NDV appears to be a result of both selective killing of tumor cells and induction of immune responses. Genetic manipulations to change viral tropism and arming the virus with genes encoding for cytokines improved the oncolytic capacity of NDV. Several intracellular proteins in tumor cells, including antiapoptotic proteins (Livin) and oncogenic proteins (H-Ras), are relevant for the oncolytic activity of NDV. Defects in the interferon system, found in some tumor cells, also contribute to the oncolytic selectivity of NDV. Notwithstanding, NDV displays effective oncolytic activity in many tumor types, despite having intact interferon signaling. Taken together, several cellular systems appear to dictate the selective oncolytic activity of NDV. Some barriers, such as neutralizing antibodies elicited during NDV treatment and the extracellular matrix in tumor tissue appear to interfere with spread of NDV and reduce oncolysis. To further understand the oncolytic activity of NDV, we compared two NDV strains, ie, an attenuated virus (NDV-HUJ) and a pathogenic virus (NDV-MTH-68/H). Significant differences in amino acid sequence were noted in several viral proteins, including the fusion precursor (F0) glycoprotein, an important determinant of replication and pathogenicity. However, no difference in the oncolytic activity of the two strains was noted using human tumor tissues maintained as organ cultures or in mouse tumor models. To optimize virotherapy in clinical trials, we describe here a unique organ culture methodology, using a biopsy taken from a patient's tumor before treatment for ex vivo infection with NDV to determine the oncolytic potential on an individual basis. In conclusion, oncolytic NDV is an excellent candidate for cancer therapy, but more knowledge is needed to ensure success in clinical trials.

  19. Oncolytic Sendai virus-based virotherapy for cancer: recent advances

    Directory of Open Access Journals (Sweden)

    Saga K

    2015-10-01

    Full Text Available Kotaro Saga, Yasufumi Kaneda Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Osaka, Japan Abstract: Many drugs have been developed and optimized for the treatment of cancer; however, it is difficult to completely cure cancer with anticancer drugs alone. Therefore, the development of new therapeutic technologies, in addition to new anticancer drugs, is necessary for more effective oncotherapy. Oncolytic viruses are one potential new anticancer strategy. Various oncolytic viruses have been developed for safe and effective oncotherapy. Recently, Sendai virus-based oncotherapy has been reported by several groups, and attention has been drawn to its unique anticancer mechanisms, which are different from those of the conventional oncolytic viruses that kill cancer cells by cancer cell-selective replication. Here, we introduce Sendai virus-based virotherapy and its anticancer mechanisms. Keywords: HVJ-E, cancer therapy, apoptosis, necroptosis, anticancer immunity 

  20. Genital herpes simplex virus infections.

    Science.gov (United States)

    Rosenthal, M S

    1979-09-01

    In recent years, a great increase in interest in genital herpes has been stimulated partly by the rising prevalence of this disease and partly by observations suggesting that genital herpes is a cause of cervical cancer. The clinical pictures produced by genital herpes simplex virus infections are similar in men and women. In contrast to recurrent attacks, initial episodes of infection are generally more extensive, last longer, and are more often associated with regional lymphadenopathy and systemic symptoms. Genital herpes in pregnancy may pose a serious threat to the newborn infant. Although the data suggesting genital herpes simplex virus infection is a cause of cervical cancer are quite extensive, the evidence is largely circumstantial. In spite of these more serious aspects of genital herpes simplex virus infection, episodes of genital herpes are almost always self-limited and benign. Frequent recurrences pose the major therapeutic and management problem. At present, there is no satisfactory treatment for recurrent genital herpes simplex virus in fection. Many of the suggested therapies, although some sound very promising, are potentially dangerous and should be used only under carefully controlled conditions.

  1. Oncolytic virus delivery: from nano-pharmacodynamics to enhanced oncolytic effect

    Directory of Open Access Journals (Sweden)

    Yokoda R

    2017-11-01

    Full Text Available Raquel Yokoda,1 Bolni M Nagalo,1 Brent Vernon,2 Rahmi Oklu,3 Hassan Albadawi,3 Thomas T DeLeon,1 Yumei Zhou,1 Jan B Egan,1 Dan G Duda,4 Mitesh J Borad1 1Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale, 2Department of Biomedical Engineering, Arizona State University, Tempe, 3Division of Vascular and Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, AZ, 4Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA Abstract: With the advancement of a growing number of oncolytic viruses (OVs to clinical development, drug delivery is becoming an important barrier to overcome for optimal therapeutic benefits. Host immunity, tumor microenvironment and abnormal vascularity contribute to inefficient vector delivery. A number of novel approaches for enhanced OV delivery are under evaluation, including use of nanoparticles, immunomodulatory agents and complex viral–particle ligands along with manipulations of the tumor microenvironment. This field of OV delivery has quickly evolved to bioengineering of complex nanoparticles that could be deposited within the tumor using minimal invasive image-guided delivery. Some of the strategies include ultrasound (US-mediated cavitation-enhanced extravasation, magnetic viral complexes delivery, image-guided infusions with focused US and targeting photodynamic virotherapy. In addition, strategies that modulate tumor microenvironment to decrease extracellular matrix deposition and increase viral propagation are being used to improve tumor penetration by OVs. Some involve modification of the viral genome to enhance their tumoral penetration potential. Here, we highlight the barriers to oncolytic viral delivery, and discuss the challenges to improving it and the perspectives of establishing new modes of active delivery to achieve enhanced oncolytic effects. Keywords: oncolytic viruses, oncolytic virotherapy, drug delivery systems, tumor

  2. Oncolytic viruses for cancer therapy II. Cell-internal factors for conditional growth in neoplastic cells.

    Science.gov (United States)

    Campbell, Stephanie A; Gromeier, Matthias

    2005-04-01

    Recent advances in our understanding of virus-host interactions have fueled new studies in the field of oncolytic viruses. The first part of this review explained how cell-external factors, such as cellular receptors, influence tumor tropism and specificity of oncolytic virus candidates. In the second part of this review, we focus on cellinternal factors that mediate tumor-specific virus growth. An oncolytic virus must be able to replicate within cancerous cells and kill them without collateral damage to healthy surrounding cells. This desirable property is inherent to some proposed oncolytic viral agents or has been achieved by genetic manipulation in others.

  3. Genetic Modification of Oncolytic Newcastle Disease Virus for Cancer Therapy.

    Science.gov (United States)

    Cheng, Xing; Wang, Weijia; Xu, Qi; Harper, James; Carroll, Danielle; Galinski, Mark S; Suzich, JoAnn; Jin, Hong

    2016-06-01

    Clinical development of a mesogenic strain of Newcastle disease virus (NDV) as an oncolytic agent for cancer therapy has been hampered by its select agent status due to its pathogenicity in avian species. Using reverse genetics, we have generated a lead candidate oncolytic NDV based on the mesogenic NDV-73T strain that is no longer classified as a select agent for clinical development. This recombinant NDV has a modification at the fusion protein (F) cleavage site to reduce the efficiency of F protein cleavage and an insertion of a 198-nucleotide sequence into the HN-L intergenic region, resulting in reduced viral gene expression and replication in avian cells but not in mammalian cells. In mammalian cells, except for viral polymerase (L) gene expression, viral gene expression is not negatively impacted or increased by the HN-L intergenic insertion. Furthermore, the virus can be engineered to express a foreign gene while still retaining the ability to grow to high titers in cell culture. The recombinant NDV selectively replicates in and kills tumor cells and is able to drive potent tumor growth inhibition following intratumoral or intravenous administration in a mouse tumor model. The candidate is well positioned for clinical development as an oncolytic virus. Avian paramyxovirus type 1, NDV, has been an attractive oncolytic agent for cancer virotherapy. However, this virus can cause epidemic disease in poultry, and concerns about the potential environmental and economic impact of an NDV outbreak have precluded its clinical development. Here we describe generation and characterization of a highly potent oncolytic NDV variant that is unlikely to cause Newcastle disease in its avian host, representing an essential step toward moving NDV forward as an oncolytic agent. Several attenuation mechanisms have been genetically engineered into the recombinant NDV that reduce chicken pathogenicity to a level that is acceptable worldwide without impacting viral production in

  4. Immune cells: more than simple carriers for systemic delivery of oncolytic viruses

    Directory of Open Access Journals (Sweden)

    Eisenstein S

    2014-11-01

    Full Text Available Samuel Eisenstein,1 Shu-Hsia Chen,2 Ping-Ying Pan21Department of Surgery, 2Department of Oncological Sciences and Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USAAbstract: Oncolytic virotherapy on its own has numerous drawbacks, including an inability of the virus to actively target tumor cells and systemic toxicities at the high doses necessary to effectively treat tumors. Addition of immune cell-based carriers of oncolytic viruses holds promise as a technique in which oncolytic virus can be delivered directly to tumors in smaller and less toxic doses. Interestingly, the cell carriers themselves have also demonstrated antitumor effects, which can be augmented further by tailoring the appropriate oncolytic virus to the appropriate cell type. This review discusses the multiple factors that go into devising an effective, cell-based delivery system for oncolytic viruses.Keywords: oncolytic virus, cell carrier, immune cells, cancer therapy, myeloid-derived suppressor cells

  5. antibodies against Herpes simplex virus

    African Journals Online (AJOL)

    171. 5. Celum, C. L. The Interaction between Herpes Sim- plex Virus and Human Immunodeficiency Virus. Her- pes, 2004; 1: 36A-44A. 6. Brown, Z.A., Selke, S., Zeh, J., Kopelman, J., Maslow,. A., Ashley, R.L., Watts, D.H., Berry, S., Herd, M. and.

  6. Measles to the Rescue: A Review of Oncolytic Measles Virus

    Directory of Open Access Journals (Sweden)

    Sarah Aref

    2016-10-01

    Full Text Available Oncolytic virotherapeutic agents are likely to become serious contenders in cancer treatment. The vaccine strain of measles virus is an agent with an impressive range of oncolytic activity in pre-clinical trials with increasing evidence of safety and efficacy in early clinical trials. This paramyxovirus vaccine has a proven safety record and is amenable to careful genetic modification in the laboratory. Overexpression of the measles virus (MV receptor CD46 in many tumour cells may direct the virus to preferentially enter transformed cells and there is increasing awareness of the importance of nectin-4 and signaling lymphocytic activation molecule (SLAM in oncolysis. Successful attempts to retarget MV by inserting genes for tumour-specific ligands to antigens such as carcinoembryonic antigen (CEA, CD20, CD38, and by engineering the virus to express synthetic microRNA targeting sequences, and “blinding” the virus to the natural viral receptors are exciting measures to increase viral specificity and enhance the oncolytic effect. Sodium iodine symporter (NIS can also be expressed by MV, which enables in vivo tracking of MV infection. Radiovirotherapy using MV-NIS, chemo-virotherapy to convert prodrugs to their toxic metabolites, and immune-virotherapy including incorporating antibodies against immune checkpoint inhibitors can also increase the oncolytic potential. Anti-viral host immune responses are a recognized barrier to the success of MV, and approaches such as transporting MV to the tumour sites by carrier cells, are showing promise. MV Clinical trials are producing encouraging preliminary results in ovarian cancer, myeloma and cutaneous non-Hodgkin lymphoma, and the outcome of currently open trials in glioblastoma multiforme, mesothelioma and squamous cell carcinoma are eagerly anticipated.

  7. Advances in the design and development of oncolytic measles viruses

    Directory of Open Access Journals (Sweden)

    Hutzen B

    2015-08-01

    Full Text Available Brian Hutzen,1 Corey Raffel,2 Adam W Studebaker1 1Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA; 2Department of Neurological Surgery and Pediatrics, University of California, San Francisco, San Francisco, CA, USA Abstract: A successful oncolytic virus is one that selectively propagates and destroys cancerous tissue without causing excessive damage to the normal surrounding tissue. Oncolytic measles virus (MV is one such virus that exhibits this characteristic and thus has rapidly emerged as a potentially useful anticancer modality. Derivatives of the Edmonston MV vaccine strain possess a remarkable safety record in humans. Promising results in preclinical animal models and evidence of biological activity in early phase trials contribute to the enthusiasm. Genetic modifications have enabled MV to evolve from a vaccine agent to a potential anticancer therapy. Specifically, alterations of the MV genome have led to improved tumor selectivity and delivery, therapeutic potency, and immune system modulation. In this article, we will review the advancements that have been made in the design and development of MV that have led to its use as a cancer therapy. In addition, we will discuss the evidence supporting its use, as well as the challenges associated with MV as a potential cancer therapeutic. Keywords: virotherapy, measles virus, oncolytic therapy

  8. Immunostimulatory Gene Therapy Using Oncolytic Viruses as Vehicles

    Directory of Open Access Journals (Sweden)

    Angelica Loskog

    2015-11-01

    Full Text Available Immunostimulatory gene therapy has been developed during the past twenty years. The aim of immunostimulatory gene therapy is to tilt the suppressive tumor microenvironment to promote anti-tumor immunity. Hence, like a Trojan horse, the gene vehicle can carry warriors and weapons into enemy territory to combat the tumor from within. The most promising immune stimulators are those activating and sustaining Th1 responses, but even if potent effects were seen in preclinical models, many clinical trials failed to show objective responses in cancer patients. However, with new tools to control ongoing immunosuppression in cancer patients, immunostimulatory gene therapy is now emerging as an interesting option. In parallel, oncolytic viruses have been shown to be safe in patients. To prolong immune stimulation and to increase efficacy, these two fields are now merging and oncolytic viruses are armed with immunostimulatory transgenes. These novel agents are racing towards approval as established cancer immunotherapeutics.

  9. Construction of Various γ34.5 Deleted Fluorescent-Expressing Oncolytic herpes Simplex type 1 (oHSV) for Generation and Isolation of HSV-Based Vectors

    Science.gov (United States)

    Abdoli, Shahriyar; Roohvand, Farzin; Teimoori-Toolabi, Ladan; Shokrgozar, Mohammad Ali; Bahrololoumi, Mina; Azadmanesh, Kayhan

    2017-07-01

    Oncolytic herpes simplex virus (oHSV)-based vectors lacking γ34.5 gene, are considered as ideal templates to construct efficient vectors for (targeted) cancer gene therapy. Herein, we reported the construction of three single/dually-flourescence labeled and γ34.5-deleted, recombinant HSV-1 vectors for rapid generation and easy selection/isolation of different HSV-Based vectors. Generation of recombinant viruses was performed with conventional homologous recombination methods using green fluorescent protein (GFP) and BleCherry harboring shuttle vectors. Viruses were isolated by direct fluorescence observation and standard plaque purifying methods and confirmed by PCR and sequencing and flow cytometry. XTT and plaque assay titration were performed on Vero, U87MG, and T98 GBM cell lines. We generated three recombinant viruses, HSV-GFP, HSV-GR (Green-Red), and HSV-Red. The HSV-GFP showed two log higher titer (1010 PFU) than wild type (108 PFU). In contrast, HSV-GR and HSV-Red showed one log lower titer (107 PFU) than parental HSV. Cytotoxicity analysis showed that HSV-GR and HSV-Red can lyse target tumor cells at multiplicity of infection of 10 and 1 (Pidentification via fluorescence activated cell sorting. These vectors can also be used for tracing the efficacy of therapeutic agents on target cells, imaging of neural or tumoral cells in vitro/in vivo and as oncolytic agents in cancer therapy.

  10. Herpes simplex virus following stab phlebectomy.

    Science.gov (United States)

    Hicks, Caitlin W; Lum, Ying Wei; Heller, Jennifer A

    2017-03-01

    Herpes simplex virus infection following surgery is an unusual postoperative phenomenon. Many mechanisms have been suggested, with the most likely explanation related to latent virus reactivation due to a proinflammatory response in the setting of local trauma. Here, we present a case of herpes simplex virus reactivation in an immunocompetent female following a conventional right lower extremity stab phlebectomy. Salient clinical and physical examination findings are described, and management strategies for herpes simplex virus reactivation are outlined. This is the first known case report of herpes simplex virus reactivation following lower extremity phlebectomy.

  11. Measles virus: Background and oncolytic virotherapy

    OpenAIRE

    Sankhajit Bhattacharjee; Pramod Kumar Yadava

    2018-01-01

    Measles is a highly transmissible disease caused by measles virus and remains a major cause of child mortality in developing countries. Measles virus nucleoprotein (N) encapsidates the RNA genome of the virus for providing protection from host cell endonucleases and for specific recognition of viral RNA as template for transcription and replication. This protein is over-expressed at the time of viral replication. The C-terminal of N protein is intrinsically disordered, which enables this prot...

  12. Oncolytic effects of a novel influenza A virus expressing interleukin-15 from the NS reading frame.

    Directory of Open Access Journals (Sweden)

    Marijke van Rikxoort

    Full Text Available Oncolytic influenza A viruses with deleted NS1 gene (delNS1 replicate selectively in tumour cells with defective interferon response and/or activated Ras/Raf/MEK/ERK signalling pathway. To develop a delNS1 virus with specific immunostimulatory properties, we used an optimised technology to insert the interleukin-15 (IL-15 coding sequence into the viral NS gene segment (delNS1-IL-15. DelNS1 and delNS1-IL-15 exerted similar oncolytic effects. Both viruses replicated and caused caspase-dependent apoptosis in interferon-defective melanoma cells. Virus replication was required for their oncolytic activity. Cisplatin enhanced the oncolytic activity of delNS1 viruses. The cytotoxic drug increased delNS1 replication and delNS1-induced caspase-dependent apoptosis. Interference with MEK/ERK signalling by RNAi-mediated depletion or the MEK inhibitor U0126 did not affect the oncolytic effects of the delNS1 viruses. In oncolysis sensitive melanoma cells, delNS1-IL-15 (but not delNS1 infection resulted in the production of IL-15 levels ranging from 70 to 1140 pg/mL in the cell culture supernatants. The supernatants of delNS1-IL-15-infected (but not of delNS1-infected melanoma cells induced primary human natural killer cell-mediated lysis of non-infected tumour cells. In conclusion, we constructed a novel oncolytic influenza virus that combines the oncolytic activity of delNS1 viruses with immunostimulatory properties through production of functional IL-15. Moreover, we showed that the oncolytic activity of delNS1 viruses can be enhanced in combination with cytotoxic anti-cancer drugs.

  13. Neonatal Herpes Simplex Virus Infection.

    Science.gov (United States)

    James, Scott H; Kimberlin, David W

    2015-09-01

    Herpes simplex virus (HSV) 1 and HSV-2 infections are highly prevalent worldwide and are characterized by establishing lifelong infection with periods of latency interspersed with periodic episodes of reactivation. Acquisition of HSV by an infant during the peripartum or postpartum period results in neonatal HSV disease, a rare but significant infection that can be associated with severe morbidity and mortality, especially if there is dissemination or central nervous system involvement. Diagnostic and therapeutic advances have led to improvements in mortality and, to a lesser extent, neurodevelopmental outcomes, but room exists for further improvement. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Neonatal herpes simplex virus infections.

    Science.gov (United States)

    Pinninti, Swetha G; Kimberlin, David W

    2018-04-01

    Neonatal herpes simplex virus (HSV) is an uncommon but devastating infection in the newborn, associated with significant morbidity and mortality. The use of PCR for identification of infected infants and acyclovir for treatment has significantly improved the prognosis for affected infants. The subsequent use of suppressive therapy with oral acyclovir following completion of parenteral treatment of acute disease has further enhanced the long-term prognosis for these infants. This review article will discuss the epidemiology, risk factors and routes of acquisition, clinical presentation, and evaluation of an infant suspected to have the infection, and treatment of proven neonatal HSV disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. ONCOLYTIC VIRUS-MEDIATED REVERSAL OF IMPAIRED TUMOR ANTIGEN PRESENTATION

    Directory of Open Access Journals (Sweden)

    Shashi Ashok Gujar

    2014-04-01

    Full Text Available Anti-tumor immunity can eliminate existing cancer cells and also maintain a constant surveillance against possible relapse. Such an antigen-specific adaptive response begins when tumor-specific T cells become activated. T cell activation requires two signals on antigen presenting cells (APCs: antigen presentation through MHC molecules and co-stimulation. In the absence of one or both of these signals, T cells remain inactivated or can even become tolerized. Cancer cells and their associated microenvironment strategically hinder the processing and presentation of tumor antigens and consequently prevent the development of anti-tumor immunity. Many studies, however, demonstrate that interventions that overturn tumor-associated immune evasion mechanisms can establish anti-tumor immune responses of therapeutic potential. One such intervention is oncolytic virus (OV-based anti-cancer therapy. Here we discuss how OV-induced immunological events override tumor-associated antigen presentation impairment and promote appropriate T cell:APC interaction. Detailed understanding of this phenomenon is pivotal for devising the strategies that will enhance the efficacy of OV-based anti-cancer therapy by complementing its inherent oncolytic

  16. Attacking Postoperative Metastases using Perioperative Oncolytic Viruses and Viral Vaccines

    Science.gov (United States)

    Tai, Lee-Hwa; Auer, Rebecca

    2014-01-01

    Surgical resection of solid primary malignancies is a mainstay of therapy for cancer patients. Despite being the most effective treatment for these tumors, cancer surgery has been associated with impaired metastatic clearance due to immunosuppression. In preclinical surgery models and human cancer patients, we and others have demonstrated a profound suppression of both natural killer (NK) and T cell function in the postoperative period and this plays a major role in the enhanced development of metastases following surgery. Oncolytic viruses (OV) were originally designed to selectively infect and replicate in tumors, with the primary objective of directly lysing cancer cells. It is becoming increasingly clear, however, that OV infection results in a profound inflammatory reaction within the tumor, initiating innate and adaptive immune responses against it that is critical for its therapeutic benefit. This anti-tumor immunity appears to be mediated predominantly by NK and cytotoxic T cells. In preclinical models, we found that preoperative OV prevents postoperative NK cell dysfunction and attenuates tumor dissemination. Due to theoretical safety concerns of administering live virus prior to surgery in cancer patients, we characterized safe, attenuated versions of OV, and viral vaccines that could stimulate NK cells and reduce metastases when administered in the perioperative period. In cancer patients, we observed that in vivo infusion with oncolytic vaccinia virus and ex vivo stimulation with viral vaccines promote NK cell activation. These preclinical studies provide a novel and clinically relevant setting for OV therapy. Our challenge is to identify safe and promising OV therapies that will activate NK and T cells in the perioperative period preventing the establishment of micrometastatic disease in cancer patients. PMID:25161958

  17. Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses

    Directory of Open Access Journals (Sweden)

    Guy Ungerechts

    2016-01-01

    Full Text Available Oncolytic viruses (OVs are unique anticancer agents based on their pleotropic modes of action, which include, besides viral tumor cell lysis, activation of antitumor immunity. A panel of diverse viruses, often genetically engineered, has advanced to clinical investigation, including phase 3 studies. This diversity of virotherapeutics not only offers interesting opportunities for the implementation of different therapeutic regimens but also poses challenges for clinical translation. Thus, manufacturing processes and regulatory approval paths need to be established for each OV individually. This review provides an overview of clinical-grade manufacturing procedures for OVs using six virus families as examples, and key challenges are discussed individually. For example, different virus features with respect to particle size, presence/absence of an envelope, and host species imply specific requirements for measures to ensure sterility, for handling, and for determination of appropriate animal models for toxicity testing, respectively. On the other hand, optimization of serum-free culture conditions, increasing virus yields, development of scalable purification strategies, and formulations guaranteeing long-term stability are challenges common to several if not all OVs. In light of the recent marketing approval of the first OV in the Western world, strategies for further upscaling OV manufacturing and optimizing product characterization will receive increasing attention.

  18. Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses.

    Science.gov (United States)

    Ungerechts, Guy; Bossow, Sascha; Leuchs, Barbara; Holm, Per S; Rommelaere, Jean; Coffey, Matt; Coffin, Rob; Bell, John; Nettelbeck, Dirk M

    2016-01-01

    Oncolytic viruses (OVs) are unique anticancer agents based on their pleotropic modes of action, which include, besides viral tumor cell lysis, activation of antitumor immunity. A panel of diverse viruses, often genetically engineered, has advanced to clinical investigation, including phase 3 studies. This diversity of virotherapeutics not only offers interesting opportunities for the implementation of different therapeutic regimens but also poses challenges for clinical translation. Thus, manufacturing processes and regulatory approval paths need to be established for each OV individually. This review provides an overview of clinical-grade manufacturing procedures for OVs using six virus families as examples, and key challenges are discussed individually. For example, different virus features with respect to particle size, presence/absence of an envelope, and host species imply specific requirements for measures to ensure sterility, for handling, and for determination of appropriate animal models for toxicity testing, respectively. On the other hand, optimization of serum-free culture conditions, increasing virus yields, development of scalable purification strategies, and formulations guaranteeing long-term stability are challenges common to several if not all OVs. In light of the recent marketing approval of the first OV in the Western world, strategies for further upscaling OV manufacturing and optimizing product characterization will receive increasing attention.

  19. Herpes Simplex Virus-1 and Bell's Palsy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2008-05-01

    Full Text Available The association between herpes simplex virus-1 (HSV-1 infection and Bell palsy was determined in 47 children studied at Children's Hospital at Montefiore, Bronx, NY. Swabs of saliva and conjunctiva were taken for PCR testing.

  20. Oncolytic Viruses-Interaction of Virus and Tumor Cells in the Battle to Eliminate Cancer.

    Science.gov (United States)

    Howells, Anwen; Marelli, Giulia; Lemoine, Nicholas R; Wang, Yaohe

    2017-01-01

    Oncolytic viruses (OVs) are an emerging treatment option for many cancer types and have recently been the focus of extensive research aiming to develop their therapeutic potential. The ultimate aim is to design a virus which can effectively replicate within the host, specifically target and lyse tumor cells and induce robust, long lasting tumor-specific immunity. There are a number of viruses which are either naturally tumor-selective or can be modified to specifically target and eliminate tumor cells. This means they are able to infect only tumor cells and healthy tissue remains unharmed. This specificity is imperative in order to reduce the side effects of oncolytic virotherapy. These viruses can also be modified by various methods including insertion and deletion of specific genes with the aim of improving their efficacy and safety profiles. In this review, we have provided an overview of the various virus species currently being investigated for their oncolytic potential and the positive and negative effects of a multitude of modifications used to increase their infectivity, anti-tumor immunity, and treatment safety, in particular focusing on the interaction of tumor cells and OVs.

  1. Proof-of-principle that a decoy virus protects oncolytic measles virus against neutralizing antibodies

    OpenAIRE

    Xu C; Goß AV; Dorneburg C; Debatin KM; Wei J; Beltinger C

    2018-01-01

    Chun Xu,1,2,* Annika Verena Goß,1,* Carmen Dorneburg,1 Klaus-Michael Debatin,1 Jiwu Wei,2 Christian Beltinger1 1Department of Pediatrics and Adolescent Medicine, Section of Experimental Pediatric Oncology, University Medical Center Ulm, Ulm, Germany; 2Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, China *These authors contributed equally to this work Background: Attenuated oncolytic measles virus (OMV) is a promising antitumor agent in early-phase cl...

  2. Oncolytic viral therapy: targeting cancer stem cells

    Directory of Open Access Journals (Sweden)

    Smith TT

    2014-02-01

    Full Text Available Tyrel T Smith,1 Justin C Roth,1 Gregory K Friedman,1 G Yancey Gillespie2 1Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA; 2Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, AL, USA Abstract: Cancer stem cells (CSCs are defined as rare populations of tumor-initiating cancer cells that are capable of both self-renewal and differentiation. Extensive research is currently underway to develop therapeutics that target CSCs for cancer therapy, due to their critical role in tumorigenesis, as well as their resistance to chemotherapy and radiotherapy. To this end, oncolytic viruses targeting unique CSC markers, signaling pathways, or the pro-tumor CSC niche offer promising potential as CSCs-destroying agents/therapeutics. We provide a summary of existing knowledge on the biology of CSCs, including their markers and their niche thought to comprise the tumor microenvironment, and then we provide a critical analysis of the potential for targeting CSCs with oncolytic viruses, including herpes simplex virus-1, adenovirus, measles virus, reovirus, and vaccinia virus. Specifically, we review current literature regarding first-generation oncolytic viruses with their innate ability to replicate in CSCs, as well as second-generation viruses engineered to enhance the oncolytic effect and CSC-targeting through transgene expression. Keywords: oncolytic virotherapy, cancer stem cell niche

  3. Expression of DAI by an oncolytic vaccinia virus boosts the immunogenicity of the virus and enhances antitumor immunity

    Directory of Open Access Journals (Sweden)

    Mari Hirvinen

    2016-01-01

    Full Text Available In oncolytic virotherapy, the ability of the virus to activate the immune system is a key attribute with regard to long-term antitumor effects. Vaccinia viruses bear one of the strongest oncolytic activities among all oncolytic viruses. However, its capacity for stimulation of antitumor immunity is not optimal, mainly due to its immunosuppressive nature. To overcome this problem, we developed an oncolytic VV that expresses intracellular pattern recognition receptor DNA-dependent activator of IFN-regulatory factors (DAI to boost the innate immune system and to activate adaptive immune cells in the tumor. We showed that infection with DAI-expressing VV increases expression of several genes related to important immunological pathways. Treatment with DAI-armed VV resulted in significant reduction in the size of syngeneic melanoma tumors in mice. When the mice were rechallenged with the same tumor, DAI-VV-treated mice completely rejected growth of the new tumor, which indicates immunity established against the tumor. We also showed enhanced control of growth of human melanoma tumors and elevated levels of human T-cells in DAI-VV-treated mice humanized with human peripheral blood mononuclear cells. We conclude that expression of DAI by an oncolytic VV is a promising way to amplify the vaccine potency of an oncolytic vaccinia virus to trigger the innate—and eventually the long-lasting adaptive immunity against cancer.

  4. Genome-wide RNAi Screening to Identify Host Factors That Modulate Oncolytic Virus Therapy.

    Science.gov (United States)

    Allan, Kristina J; Mahoney, Douglas J; Baird, Stephen D; Lefebvre, Charles A; Stojdl, David F

    2018-04-03

    High-throughput genome-wide RNAi (RNA interference) screening technology has been widely used for discovering host factors that impact virus replication. Here we present the application of this technology to uncovering host targets that specifically modulate the replication of Maraba virus, an oncolytic rhabdovirus, and vaccinia virus with the goal of enhancing therapy. While the protocol has been tested for use with oncolytic Maraba virus and oncolytic vaccinia virus, this approach is applicable to other oncolytic viruses and can also be utilized for identifying host targets that modulate virus replication in mammalian cells in general. This protocol describes the development and validation of an assay for high-throughput RNAi screening in mammalian cells, the key considerations and preparation steps important for conducting a primary high-throughput RNAi screen, and a step-by-step guide for conducting a primary high-throughput RNAi screen; in addition, it broadly outlines the methods for conducting secondary screen validation and tertiary validation studies. The benefit of high-throughput RNAi screening is that it allows one to catalogue, in an extensive and unbiased fashion, host factors that modulate any aspect of virus replication for which one can develop an in vitro assay such as infectivity, burst size, and cytotoxicity. It has the power to uncover biotherapeutic targets unforeseen based on current knowledge.

  5. 21 CFR 866.3305 - Herpes simplex virus serological assays.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Herpes simplex virus serological assays. 866.3305... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3305 Herpes simplex virus serological assays. (a) Identification. Herpes simplex virus serological assays are devices...

  6. Effect of ultrasound on herpes simplex virus infection in cell culture

    Directory of Open Access Journals (Sweden)

    Iwai Soichi

    2011-09-01

    Full Text Available Abstract Background Ultrasound has been shown to increase the efficiency of gene expression from retroviruses, adenoviruses and adeno-associated viruses. The effect of ultrasound to stimulate cell membrane permeabilization on infection with an oncolytic herpes simplex virus type 1 (HSV-1 was examined. Results Vero monkey kidney cells were infected with HSV-1 and exposed to 1 MHz ultrasound after an adsorption period. The number of plaques was significantly greater than that of the untreated control. A combination of ultrasound and microbubbles further increased the plaque number. Similar results were obtained using a different type of HSV-1 and oral squamous cell carcinoma (SCC cells. The appropriate intensity, duty cycle and time of ultrasound to increase the plaque number were 0.5 W/cm2, 20% duty cycle and 10 sec, respectively. Ultrasound with microbubbles at an intensity of 2.0 W/cm2, at 50% duty cycle, or for 40 sec reduced cell viability. Conclusion These results indicate that ultrasound promotes the entry of oncolytic HSV-1 into cells. It may be useful to enhance the efficiency of HSV-1 infection in oncolytic virotherapy.

  7. Targeting an Oncolytic Influenza A Virus to Tumor Tissue by Elastase

    Directory of Open Access Journals (Sweden)

    Irina Kuznetsova

    2017-12-01

    Full Text Available Oncolytic viruses are currently established as a novel type of immunotherapy. The challenge is to safely target oncolytic viruses to tumors. Previously, we have generated influenza A viruses (IAVs containing deletions in the viral interferon antagonist. Those deletions have attenuated the virus in normal tissue but allowed replication in tumor cells. IAV entry is mediated by hemagglutinin (HA, which needs to be activated by a serine protease, for example, through trypsin. To further target the IAV to tumors, we have changed the trypsin cleavage site to an elastase cleavage site. We chose this cleavage site because elastase is expressed in the tumor microenvironment. Moreover, the exchange of the cleavage site previously has been shown to attenuate viral growth in lungs. Newly generated elastase-activated influenza viruses (AE viruses grew to similar titers in tumor cells as the trypsin-activated counterparts (AT viruses. Intratumoral injection of AE viruses into syngeneic B16f1 melanoma-derived tumors in mice reduced tumor growth similar to AT viruses and had a better therapeutic effect in heterologous human PANC-1-derived tumors. Therefore, the introduction of the attenuation marker “elastase cleavage site” in viral HA allows for safe, effective oncolytic virus therapy.

  8. Oncolytic viruses in head and neck cancer: a new ray of hope in the ...

    African Journals Online (AJOL)

    This paper intends to highlight the different types of oncolytic viruses (OVs), mechanism of tumor specificity, its safety, and various obstacles in the design of treatment and combination therapy utilizing oncotherapy. Search was conducted using the internet‑based search engines and scholarly bibliographic databases with ...

  9. Treatment of medulloblastoma with oncolytic measles viruses expressing the angiogenesis inhibitors endostatin and angiostatin

    International Nuclear Information System (INIS)

    Hutzen, Brian; Bid, Hemant Kumar; Houghton, Peter J; Pierson, Christopher R; Powell, Kimerly; Bratasz, Anna; Raffel, Corey; Studebaker, Adam W

    2014-01-01

    Medulloblastoma is the most common type of pediatric brain tumor. Although numerous factors influence patient survival rates, more than 30% of all cases will ultimately be refractory to conventional therapies. Current standards of care are also associated with significant morbidities, giving impetus for the development of new treatments. We have previously shown that oncolytic measles virotherapy is effective against medulloblastoma, leading to significant prolongation of survival and even cures in mouse xenograft models of localized and metastatic disease. Because medulloblastomas are known to be highly vascularized tumors, we reasoned that the addition of angiogenesis inhibitors could further enhance the efficacy of oncolytic measles virotherapy. Toward this end, we have engineered an oncolytic measles virus that express a fusion protein of endostatin and angiostatin, two endogenous and potent inhibitors of angiogenesis. Oncolytic measles viruses encoding human and mouse variants of a secretable endostatin/angiostatin fusion protein were designed and rescued according to established protocols. These viruses, known as MV-hE:A and MV-mE:A respectively, were then evaluated for their anti-angiogenic potential and efficacy against medulloblastoma cell lines and orthotopic mouse models of localized disease. Medulloblastoma cells infected by MV-E:A readily secrete endostatin and angiostatin prior to lysis. The inclusion of the endostatin/angiostatin gene did not negatively impact the measles virus’ cytotoxicity against medulloblastoma cells or alter its growth kinetics. Conditioned media obtained from these infected cells was capable of inhibiting multiple angiogenic factors in vitro, significantly reducing endothelial cell tube formation, viability and migration compared to conditioned media derived from cells infected by a control measles virus. Mice that were given a single intratumoral injection of MV-E:A likewise showed reduced numbers of tumor-associated blood

  10. Herpes viruses, cytokines, and altered hemostasis in vital exhaustion.

    NARCIS (Netherlands)

    Ven, A.J.A.M. van der; Diest, R. van; Hamulyak, K.; Maes, M.; Bruggeman, C.A.; Appels, A.

    2003-01-01

    OBJECTIVE: Infections with herpes viruses have been implicated in the pathogenesis of atherosclerosis. We tested the hypothesis that vital exhaustion (VE) is associated with multiple herpesvirus infections, such as herpes simplex virus, varicella-zoster virus, Epstein-Barr virus, and

  11. Preventing herpes simplex virus in the newborn.

    Science.gov (United States)

    Pinninti, Swetha G; Kimberlin, David W

    2014-12-01

    Genital herpes simplex virus (HSV) infections are very common worldwide. Approximately 22% of pregnant women are infected genitally with HSV, and most of them are unaware of this. The most devastating consequence of maternal genital herpes is HSV disease in the newborn. Although neonatal HSV infections remain uncommon, due to the significant morbidity and mortality associated with the infection, HSV infection in the newborn is often considered in the differential diagnosis of ill neonates. This review summarizes the epidemiology and management of neonatal HSV infections and discusses strategies to prevent HSV infection in the newborn. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Silk-elastin-like protein polymer matrix for intraoperative delivery of an oncolytic vaccinia virus.

    Science.gov (United States)

    Price, Daniel L; Li, Pingdong; Chen, Chun-Hao; Wong, Danni; Yu, Zhenkun; Chen, Nanhai G; Yu, Yong A; Szalay, Aladar A; Cappello, Joseph; Fong, Yuman; Wong, Richard J

    2016-02-01

    Oncolytic viral efficacy may be limited by the penetration of the virus into tumors. This may be enhanced by intraoperative application of virus immediately after surgical resection. Oncolytic vaccinia virus GLV-1h68 was delivered in silk-elastin-like protein polymer (SELP) in vitro and in vivo in anaplastic thyroid carcinoma cell line 8505c in nude mice. GLV-1h68 in SELP infected and lysed anaplastic thyroid cancer cells in vitro equally as effectively as in phosphate-buffered saline (PBS), and at 1 week retains a thousand fold greater infectious plaque-forming units. In surgical resection models of residual tumor, GLV-1h68 in SELP improves tumor control and shows increased viral β-galactosidase expression as compared to PBS. The use of SELP matrix for intraoperative oncolytic viral delivery protects infectious viral particles from degradation, facilitates sustained viral delivery and transgene expression, and improves tumor control. Such optimization of methods of oncolytic viral delivery may enhance therapeutic outcomes. © 2014 Wiley Periodicals, Inc.

  13. A novel, polymer-coated oncolytic measles virus overcomes immune suppression and induces robust antitumor activity

    Directory of Open Access Journals (Sweden)

    Kaname Nosaki

    2016-01-01

    Full Text Available Although various therapies are available to treat cancers, including surgery, chemotherapy, and radiotherapy, cancer has been the leading cause of death in Japan for the last 30 years, and new therapeutic modalities are urgently needed. As a new modality, there has recently been great interest in oncolytic virotherapy, with measles virus being a candidate virus expected to show strong antitumor effects. The efficacy of virotherapy, however, was strongly limited by the host immune response in previous clinical trials. To enhance and prolong the antitumor activity of virotherapy, we combined the use of two newly developed tools: the genetically engineered measles virus (MV-NPL and the multilayer virus-coating method of layer-by-layer deposition of ionic polymers. We compared the oncolytic effects of this polymer-coated MV-NPL with the naked MV-NPL, both in vitro and in vivo. In the presence of anti-MV neutralizing antibodies, the polymer-coated virus showed more enhanced oncolytic activity than did the naked MV-NPL in vitro. We also examined antitumor activities in virus-treated mice. Complement-dependent cytotoxicity and antitumor activities were higher in mice treated with polymer-coated MV-NPL than in mice treated with the naked virus. This novel, polymer-coated MV-NPL is promising for clinical cancer therapy in the future.

  14. High titer oncolytic measles virus production process by integration of dielectric spectroscopy as online monitoring system.

    Science.gov (United States)

    Grein, Tanja A; Loewe, Daniel; Dieken, Hauke; Salzig, Denise; Weidner, Tobias; Czermak, Peter

    2018-05-01

    Oncolytic viruses offer new hope to millions of patients with incurable cancer. One promising class of oncolytic viruses is Measles virus, but its broad administration to cancer patients is currently hampered by the inability to produce the large amounts of virus needed for treatment (10 10 -10 12 virus particles per dose). Measles virus is unstable, leading to very low virus titers during production. The time of infection and time of harvest are therefore critical parameters in a Measles virus production process, and their optimization requires an accurate online monitoring system. We integrated a probe based on dielectric spectroscopy (DS) into a stirred tank reactor to characterize the Measles virus production process in adherent growing Vero cells. We found that DS could be used to monitor cell adhesion on the microcarrier and that the optimal virus harvest time correlated with the global maximum permittivity signal. In 16 independent bioreactor runs, the maximum Measles virus titer was achieved approximately 40 hr after the permittivity maximum. Compared to an uncontrolled Measles virus production process, the integration of DS increased the maximum virus concentration by more than three orders of magnitude. This was sufficient to achieve an active Measles virus concentration of > 10 10 TCID 50 ml -1 . © 2017 Wiley Periodicals, Inc.

  15. EPIDEMIOLOGY OF THE HERPES SIMPLEX VIRUS INFECTION

    Directory of Open Access Journals (Sweden)

    Ljiljana Kostadinović

    2002-07-01

    Full Text Available Over 150 sorts of viruses are capable of causing diseases of the respiratory ways. The virus infections have become the cost to be paid for urbanization and industrialization. The acute virus infections jeopardize mankind by their complications with numerous consequences. They open up the way to super infections, they provoke endogenous infections and lead to insufficiency of the vital organs. The viruses penetrate the organism mainly through the respiratory ways, digestive and urinary-sexual organs and skin. Some viruses immediately at the place of their entrance into the organism find receptive cells in which they can multiply (herpes virus and etc.. Some viruses must get through the blood, through the lymph or the nerve fibers to the target organs that they have affinity for.The changes that primarily occur in the mouth with manifest lymphadenopathy of the surrounding area emerge with respect to the type of the acute infection dis-ease.The human herpes viruses are responsible for a great number of diseases in people; that is why it can be said that the infections they induce are a very frequent cause of people's diseases in the world. Man is natural and the only host for the types I and II of the herpes simplex virus (HSV; that is why the infected person is regarded as the source of infection. The infection transmission can be by direct contact or over the contaminated secretions during the sexual intercourse. The age and the socioeconomic status (living conditions, level of medical culture, habits, etc. affect to agreat extent epidemiology of the HSV infection. The HSV distribution in the region of Niš in the five-year period (from 1987 to 1992 was the highest in the early and late summer (June and September.

  16. Targeting Poxvirus Decapping Enzymes and mRNA Decay to Generate an Effective Oncolytic Virus

    Directory of Open Access Journals (Sweden)

    Hannah Burgess

    2018-03-01

    Full Text Available Through the action of two virus-encoded decapping enzymes (D9 and D10 that remove protective caps from mRNA 5′-termini, Vaccinia virus (VACV accelerates mRNA decay and limits activation of host defenses. D9- or D10-deficient VACV are markedly attenuated in mice and fail to counter cellular double-stranded RNA-responsive innate immune effectors, including PKR. Here, we capitalize upon this phenotype and demonstrate that VACV deficient in either decapping enzyme are effective oncolytic viruses. Significantly, D9- or D10-deficient VACV displayed anti-tumor activity against syngeneic mouse tumors of different genetic backgrounds and human hepatocellular carcinoma xenografts. Furthermore, D9- and D10-deficient VACV hyperactivated the host anti-viral enzyme PKR in non-tumorigenic cells compared to wild-type virus. This establishes a new genetic platform for oncolytic VACV development that is deficient for a major pathogenesis determinant while retaining viral genes that support robust productive replication like those required for nucleotide metabolism. It further demonstrates how VACV mutants unable to execute a fundamental step in virus-induced mRNA decay can be unexpectedly translated into a powerful anti-tumor therapy. Keywords: oncolytic virus, mRNA decay, decapping

  17. Parainfluenza Virus Infection Sensitizes Cancer Cells to DNA-Damaging Agents: Implications for Oncolytic Virus Therapy.

    Science.gov (United States)

    Fox, Candace R; Parks, Griffith D

    2018-04-01

    A parainfluenza virus 5 (PIV5) with mutations in the P/V gene (P/V-CPI - ) is restricted for spread in normal cells but not in cancer cells in vitro and is effective at reducing tumor burdens in mouse model systems. Here we show that P/V-CPI - infection of HEp-2 human laryngeal cancer cells results in the majority of the cells dying, but unexpectedly, over time, there is an emergence of a population of cells that survive as P/V-CPI - persistently infected (PI) cells. P/V-CPI - PI cells had elevated levels of basal caspase activation, and viability was highly dependent on the activity of cellular inhibitor-of-apoptosis proteins (IAPs) such as Survivin and XIAP. In challenge experiments with external inducers of apoptosis, PI cells were more sensitive to cisplatin-induced DNA damage and cell death. This increased cisplatin sensitivity correlated with defects in DNA damage signaling pathways such as phosphorylation of Chk1 and translocation of damage-specific DNA binding protein 1 (DDB1) to the nucleus. Cisplatin-induced killing of PI cells was sensitive to the inhibition of wild-type (WT) p53-inducible protein 1 (WIP1), a phosphatase which acts to terminate DNA damage signaling pathways. A similar sensitivity to cisplatin was seen with cells during acute infection with P/V-CPI - as well as during acute infections with WT PIV5 and the related virus human parainfluenza virus type 2 (hPIV2). Our results have general implications for the design of safer paramyxovirus-based vectors that cannot establish PI as well as the potential for combining chemotherapy with oncolytic RNA virus vectors. IMPORTANCE There is intense interest in developing oncolytic viral vectors with increased potency against cancer cells, particularly those cancer cells that have gained resistance to chemotherapies. We have found that infection with cytoplasmically replicating parainfluenza virus can result in increases in the killing of cancer cells by agents that induce DNA damage, and this is linked

  18. Pathogenesis of herpes simplex virus infections of the cornea

    NARCIS (Netherlands)

    J. Maertzdorf (Jeroen)

    2002-01-01

    textabstractThe identification of human herpes virus (HHV) infections can be traced back to ancient Greece where Herpes simplex vims (HSV) infections in humans were first documented. Hippocrates used the word "herpes", meaning to creep or crawl, to describe spreading skin lesions. Although the

  19. Two step culture for production of recombinant herpes simplex virus ...

    African Journals Online (AJOL)

    Herpes simplex virus type 2 (HSV-2) was the major cause of genital herpes in humans. The HSV-2 glycoprotein D (gD2) had been proved to be a potentially effective vaccine for treatment of genital herpes. The present study was to develop a two step culture to express the recombinant gD2 protein using the immobilized ...

  20. Preclinical evaluation of oncolytic vaccinia virus for therapy of canine soft tissue sarcoma.

    Directory of Open Access Journals (Sweden)

    Ivaylo Gentschev

    Full Text Available Virotherapy using oncolytic vaccinia virus (VACV strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.1 and GLV-1h68 strains against CSTS. Cell culture data demonstrated that both tested VACV strains efficiently infected and destroyed cells of the canine soft tissue sarcoma line STSA-1. In addition, in our new canine sarcoma tumor xenograft mouse model, systemic administration of LIVP1.1.1 or GLV-1h68 viruses led to significant inhibition of tumor growth compared to control mice. Furthermore, LIVP1.1.1 mediated therapy resulted in almost complete tumor regression and resulted in long-term survival of sarcoma-bearing mice. The replication of the tested VACV strains in tumor tissues led to strong oncolytic effects accompanied by an intense intratumoral infiltration of host immune cells, mainly neutrophils. These findings suggest that the direct viral oncolysis of tumor cells and the virus-dependent activation of tumor-associated host immune cells could be crucial parts of anti-tumor mechanism in STSA-1 xenografts. In summary, the data showed that both tested vaccinia virus strains and especially LIVP1.1.1 have great potential for effective treatment of CSTS.

  1. Bovine herpes virus infections in cattle.

    Science.gov (United States)

    Nandi, S; Kumar, Manoj; Manohar, M; Chauhan, R S

    2009-06-01

    Bovine herpes virus 1 (BHV-1) is primarily associated with clinical syndromes such as rhinotracheitis, pustular vulvovaginitis and balanoposthitis, abortion, infertility, conjunctivitis and encephalitis in bovine species. The main sources of infection are the nasal exudates and the respiratory droplets, genital secretions, semen, fetal fluids and tissues. The BHV-1 virus can become latent following a primary infection with a field isolate or vaccination with an attenuated strain. The viral genomic DNA has been demonstrated in the sensory ganglia of the trigeminal nerve in infectious bovine rhinotracheitis (IBR) and in sacral spinal ganglia in pustular vulvovaginitis and balanoposthitis cases. BHV-1 infections can be diagnosed by detection of virus or virus components and antibody by serological tests or by detection of genomic DNA by polymerase chain reaction (PCR), nucleic acid hybridization and sequencing. Inactivated vaccines and modified live virus vaccines are used for prevention of BHV-1 infections in cattle; subunit vaccines and marker vaccines are under investigation.

  2. Oncorine, the World First Oncolytic Virus Medicine and its Update in China.

    Science.gov (United States)

    Liang, Min

    2018-01-01

    The oncolytic viruses now hold a promise of new therapeutic strategy for cancer. Its concept has inspired a wave of commercial research and development activities for the products of this category in China since 1998. The first commercialized oncolytic virus product in the world, Oncorine (H101), developed by Shanghai Sunway Biotech Co., Ltd since 1999, was approved by Chinese SFDA in November, 2005 for nasopharyngeal carcinoma in combination with chemotherapy after the phase III clinical trial, and finally acquired GMP certificate in August, 2006. This review introduces how Oncorine was successfully developed in China, and how the Chinese market responded after it was launched into the market in 2006. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Herpes simplex encephalitis : from virus to therapy.

    Science.gov (United States)

    Rozenberg, Flore; Deback, Claire; Agut, Henri

    2011-06-01

    Herpes simplex virus (HSV) is the cause of herpes simplex encephalitis (HSE), a devastating human disease which occurs in 2-4 cases per million/year. HSE results either from a primary infection or virus reactivation, in accordance with the common pattern of HSV infection which is a chronic lifelong process. However its pathophysiology remains largely unknown and its poor prognosis is in contrast with the usually good tolerance of most clinical herpetic manifestations. HSE is due to HSV type 1 (HSV-1) in most cases but HSV type 2 (HSV-2) may be also implicated, especially in infants in the context of neonatal herpes. Polymerase chain reaction detection of HSV DNA in cerebrospinal fluid is the diagnosis of choice for HSE. Acyclovir, a nucleoside analogue which inhibits viral DNA polymerase activity, is the reference treatment of HSE while foscarnet constitutes an alternative therapy and the efficacy of cidofovir is currently uncertain in that context. The emergence of HSV resistance to acyclovir, a phenomenon which is mainly observed among immunocompromised patients, is a current concern although no case of HSE due to an acyclovir-resistant HSV strain has been reported to date. Nevertheless the identification and development of novel therapeutic strategies against HSV appears to be a non dispensable objective for future research in virology.

  4. Herpes simplex-virus type 1 påvist hos patient med herpes zoster

    DEFF Research Database (Denmark)

    Danielsen, Patricia Louise; Schønning, Kristian; Larsen, Helle Kiellberg

    2012-01-01

    In this case report we present an otherwise healthy 63 year-old male patient with herpes zoster corresponding to the 2nd left branch of the trigeminal nerve. Real time-polymerase chain reaction analyses were positive for both herpes simplex virus (HSV) type 1 and varicella zoster virus (VZV......). The most probable explanation is that this reflects asymptomatic, latent expression of HSV-1 in a herpes zoster patient with no clinical relevance. Another hypothesis is that reactivation of a neurotropic herpes virus can reactivate another neurotropic virus if both types are present in the same ganglion....... If co-infection with HSV/VZV is suspected the treatment regimen for herpes zoster will sufficiently treat a possible HSV infection also....

  5. Promising oncolytic agents for metastatic breast cancer treatment

    Directory of Open Access Journals (Sweden)

    Cody JJ

    2015-06-01

    Full Text Available James J Cody,1 Douglas R Hurst2 1ImQuest BioSciences, Frederick, MD, 2Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA Abstract: New therapies for metastatic breast cancer patients are urgently needed. The long-term survival rates remain unacceptably low for patients with recurrent disease or disseminated metastases. In addition, existing therapies often cause a variety of debilitating side effects that severely impact quality of life. Oncolytic viruses constitute a developing therapeutic modality in which interest continues to build due to their ability to spare normal tissue while selectively destroying tumor cells. A number of different viruses have been used to develop oncolytic agents for breast cancer, including herpes simplex virus, adenovirus, vaccinia virus, measles virus, reovirus, and others. In general, clinical trials for several cancers have demonstrated excellent safety records and evidence of efficacy. However, the impressive tumor responses often observed in preclinical studies have yet to be realized in the clinic. In order for the promise of oncolytic virotherapy to be fully realized for breast cancer patients, effectiveness must be demonstrated in metastatic disease. This review provides a summary of oncolytic virotherapy strategies being developed to target metastatic breast cancer. Keywords: oncolytic virus, virotherapy, breast cancer, metastasis 

  6. Herpes Simplex Virus Type-2 and Human Immunodeficiency Virus ...

    African Journals Online (AJOL)

    Objectives: To estimate the seroprevalence of Herpes Simplex Type 2 (HSV-2) and its association with Human Immunodeficiency Virus type 1 (HIV-1) infections in rural Kilimanjaro Tanzania. Methods: A cross-sectional survey was conducted in Oria village from March to June 2005 involving all individuals aged 15-44 years ...

  7. Selective replication of oncolytic virus M1 results in a bystander killing effect that is potentiated by Smac mimetics.

    Science.gov (United States)

    Cai, Jing; Lin, Yuan; Zhang, Haipeng; Liang, Jiankai; Tan, Yaqian; Cavenee, Webster K; Yan, Guangmei

    2017-06-27

    Oncolytic virotherapy is a treatment modality that uses native or genetically modified viruses that selectively replicate in and kill tumor cells. Viruses represent a type of pathogen-associated molecular pattern and thereby induce the up-regulation of dozens of cytokines via activating the host innate immune system. Second mitochondria-derived activator of caspases (Smac) mimetic compounds (SMCs), which antagonize the function of inhibitor of apoptosis proteins (IAPs) and induce apoptosis, sensitize tumor cells to multiple cytokines. Therefore, we sought to determine whether SMCs sensitize tumor cells to cytokines induced by the oncolytic M1 virus, thus enhancing a bystander killing effect. Here, we report that SMCs potentiate the oncolytic effect of M1 in vitro, in vivo, and ex vivo. This strengthened oncolytic efficacy resulted from the enhanced bystander killing effect caused by the M1 virus via cytokine induction. Through a microarray analysis and subsequent validation using recombinant cytokines, we identified IL-8, IL-1A, and TRAIL as the key cytokines in the bystander killing effect. Furthermore, SMCs increased the replication of M1, and the accumulation of virus protein induced irreversible endoplasmic reticulum stress- and c-Jun N-terminal kinase-mediated apoptosis. Nevertheless, the combined treatment with M1 and SMCs had little effect on normal and human primary cells. Because SMCs selectively and significantly enhance the bystander killing effect and the replication of oncolytic virus M1 specifically in cancer cells, this combined treatment may represent a promising therapeutic strategy.

  8. The impact of hypoxia on oncolytic virotherapy

    Directory of Open Access Journals (Sweden)

    Guo ZS

    2011-11-01

    Full Text Available Z Sheng GuoUniversity of Pittsburgh Cancer Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USAAbstract: The hypoxic tumor microenvironment plays significant roles in tumor cell metabolism and survival, tumor growth, and progression. Hypoxia modulates target genes in target cells mainly through an oxygen-sensing signaling pathway mediated by hypoxia-inducible factor of transcription factors. As a result, hypoxic tumor cells are resistant to conventional therapeutics such as radiation and chemotherapy. Oncolytic virotherapy may be a promising novel therapeutic for hypoxic cancer. Some oncolytic viruses are better adapted than others to the hypoxic tumor environment. Replication of adenoviruses from both groups B and C is inhibited, yet replication of herpes simplex virus is enhanced. Hypoxia seems to exert little or no effect on the replication of other oncolytic viruses. Vaccinia virus displayed increased cytotoxicity in some hypoxic cancer cells even though viral protein synthesis and transgene expression were not affected. Vesicular stomatitis virus replicated to similar levels in both hypoxic and normoxic conditions, and is effective for killing hypoxic cancer cells. However, vesicular stomatitis virus and reovirus, but not encephalomyocarditis virus, are sensitive to elevated levels of hypoxia-inducible factor-1α in renal cancer cells with the loss of von Hippel–Lindau tumor suppressor protein, because elevated hypoxia-inducible factor activity confers dramatically enhanced resistance to cytotoxicity mediated by vesicular stomatitis virus or reovirus. A variety of hypoxia-selective and tumor-type-specific oncolytic adenoviruses, generated by incorporating hypoxia-responsive elements into synthetic promoters to control essential genes for viral replication or therapeutic genes, have been shown to be safe and efficacious. Hypoxic tumor-homing macrophages can function effectively as carrier

  9. Reovirus FAST Protein Enhances Vesicular Stomatitis Virus Oncolytic Virotherapy in Primary and Metastatic Tumor Models

    Directory of Open Access Journals (Sweden)

    Fabrice Le Boeuf

    2017-09-01

    Full Text Available The reovirus fusion-associated small transmembrane (FAST proteins are the smallest known viral fusogens (∼100–150 amino acids and efficiently induce cell-cell fusion and syncytium formation in multiple cell types. Syncytium formation enhances cell-cell virus transmission and may also induce immunogenic cell death, a form of apoptosis that stimulates immune recognition of tumor cells. These properties suggest that FAST proteins might serve to enhance oncolytic virotherapy. The oncolytic activity of recombinant VSVΔM51 (an interferon-sensitive vesicular stomatitis virus [VSV] mutant encoding the p14 FAST protein (VSV-p14 was compared with a similar construct encoding GFP (VSV-GFP in cell culture and syngeneic BALB/c tumor models. Compared with VSV-GFP, VSV-p14 exhibited increased oncolytic activity against MCF-7 and 4T1 breast cancer spheroids in culture and reduced primary 4T1 breast tumor growth in vivo. VSV-p14 prolonged survival in both primary and metastatic 4T1 breast cancer models, and in a CT26 metastatic colon cancer model. As with VSV-GFP, VSV-p14 preferentially replicated in vivo in tumors and was cleared rapidly from other sites. Furthermore, VSV-p14 increased the numbers of activated splenic CD4, CD8, natural killer (NK, and natural killer T (NKT cells, and increased the number of activated CD4 and CD8 cells in tumors. FAST proteins may therefore provide a multi-pronged approach to improving oncolytic virotherapy via syncytium formation and enhanced immune stimulation.

  10. Management of herpes simplex virus epithelial keratitis.

    Science.gov (United States)

    Roozbahani, Mehdi; Hammersmith, Kristin M

    2018-04-24

    To review recent advancements in the management of herpes simplex virus (HSV) epithelial keratitis. Trifluridine eye drop, acyclovir (ACV) ointment, ganciclovir gel, and oral ACV are still the main therapeutic agents. Cryopreserved amniotic membrane has been recently used as an adjuvant treatment. Resistance to ACV has become a concerning issue. The animal models of HSV vaccine are able to reduce HSV keratitis. New antivirals are under development. Current cases of HSV epithelial keratitis are manageable with available medications, but new advancements are required to decrease disease burden in the future. HSV vaccine can be revolutionary.

  11. Permissivity of the NCI-60 cancer cell lines to oncolytic Vaccinia Virus GLV-1h68

    International Nuclear Information System (INIS)

    Ascierto, Maria Libera; Bedognetti, Davide; Uccellini, Lorenzo; Rossano, Fabio; Ascierto, Paolo A; Stroncek, David F; Restifo, Nicholas P; Wang, Ena; Szalay, Aladar A; Marincola, Francesco M; Worschech, Andrea; Yu, Zhiya; Adams, Sharon; Reinboth, Jennifer; Chen, Nanhai G; Pos, Zoltan; Roychoudhuri, Rahul; Di Pasquale, Giovanni

    2011-01-01

    Oncolytic viral therapy represents an alternative therapeutic strategy for the treatment of cancer. We previously described GLV-1h68, a modified Vaccinia Virus with exclusive tropism for tumor cells, and we observed a cell line-specific relationship between the ability of GLV-1h68 to replicate in vitro and its ability to colonize and eliminate tumor in vivo. In the current study we surveyed the in vitro permissivity to GLV-1h68 replication of the NCI-60 panel of cell lines. Selected cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain. In order to identify correlates of permissity to viral infection, we measured transcriptional profiles of the cell lines prior infection. We observed highly heterogeneous permissivity to VACV infection amongst the cell lines. The heterogeneity of permissivity was independent of tissue with the exception of B cell derivation. Cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain and a significant correlation was found suggesting a common permissive phenotype. While no clear transcriptional pattern could be identified as predictor of permissivity to infection, some associations were observed suggesting multifactorial basis permissivity to viral infection. Our findings have implications for the design of oncolytic therapies for cancer and offer insights into the nature of permissivity of tumor cells to viral infection

  12. Identification and typing of herpes simplex viruses with monoclonal antibodies.

    OpenAIRE

    Balachandran, N; Frame, B; Chernesky, M; Kraiselburd, E; Kouri, Y; Garcia, D; Lavery, C; Rawls, W E

    1982-01-01

    Monoclonal antibodies which reacted with type-specific antigens of herpes simplex virus type 2 or with antigens shared by herpes simplex virus types 1 and 2 were used in an indirect immunofluorescence assay to type virus isolates and to detect viral antigens in cells obtained from herpetic lesions. Complete concordance was obtained for 42 isolates typed by endonuclease restriction analysis of viral DNA and by indirect immunofluorescence with monoclonal antibodies. Examination of a limited num...

  13. Herpes Simplex Virus: Beyond the Basics.

    Science.gov (United States)

    Kobty, Magidah

    2015-01-01

    One of the most common sexually transmitted infections is the herpes simplex virus (HSV) Type 2. Although the incidence of newborn infection is not as common as in adults, approximately 1,500 neonates are diagnosed annually with HSV infection. HSV can be detrimental to the life of a newborn, with morbidity and mortality rates of up to 65 percent. This article addresses the maternal and fetal complications of HSV and the impact of HSV on the newborn along with diagnostic evaluation methods. In addition, treatment options and evidence-based practices regarding HSV are defined. Despite growing technology and medical treatment for early identification of HSV, this virus remains challenging and can deeply impact the life of an infant and his or her family. Early diagnosis, treatment, and intervention of an infant with HSV are crucial to ensure the livelihood of the newborn.

  14. Expression of varicella-zoster virus and herpes simplex virus in normal human trigeminal ganglia

    International Nuclear Information System (INIS)

    Vafai, A.; Wellish, M.; Devlin, M.; Gilden, D.H.; Murray, R.S.

    1988-01-01

    Lysates of radiolabeled explants from four human trigeminal ganglia were immunoprecipitated with antibodies to varicella-zoster virus (VZV) and to herpes simplex virus. Both herpes simplex virus- and VZV-specific proteins were detected in lysates of all four ganglia. Absence of reactivity in ganglion explants with monoclonal antibodies suggested that herpes simplex virus and VZV were not reactivated during the culture period. In situ hybridization studies demonstrated the presence of RNA transcripts from the VZV immediate early gene 63. This approach to the detection of herpes simplex virus and VZV expression in human ganglia should facilitate analysis of viral RNA and proteins in human sensory ganglia

  15. Glutamine supplementation suppresses herpes simplex virus reactivation.

    Science.gov (United States)

    Wang, Kening; Hoshino, Yo; Dowdell, Kennichi; Bosch-Marce, Marta; Myers, Timothy G; Sarmiento, Mayra; Pesnicak, Lesley; Krause, Philip R; Cohen, Jeffrey I

    2017-06-30

    Chronic viral infections are difficult to treat, and new approaches are needed, particularly those aimed at reducing reactivation by enhancing immune responses. Herpes simplex virus (HSV) establishes latency and reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and proliferation of activated T cells requires increased metabolism of glutamine. Here, we found that supplementation with oral glutamine reduced virus reactivation in latently HSV-1-infected mice and HSV-2-infected guinea pigs. Transcriptome analysis of trigeminal ganglia from latently HSV-1-infected, glutamine-treated WT mice showed upregulation of several IFN-γ-inducible genes. In contrast to WT mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in latently HSV-1-infected IFN-γ-KO mice. Mice treated with glutamine also had higher numbers of HSV-specific IFN-γ-producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ-associated immune response and reduce the rate of reactivation of latent virus infection.

  16. Herpes simplex virus encephalitis: neuroradiological diagnosis

    International Nuclear Information System (INIS)

    Struffert, T.; Reith, W.

    2000-01-01

    Herpes simplex virus encephalitis (HSE) is the most frequent viral encephalitis, as a rule with the starting point and centre within the temporal lobe. If untreated, HSE is usually fatal, thus diagnosis has to be established rapidly. Treatment with Acyclovir should begin as soon possible. As MRI is extremely sensitive in detecting the early inflammatory changes, it should be initially performed, especially as in the early stadium CT may be unspecific. We recommend the following examination protocol: coronar T1-weighted MR imaging before and after administration of gadopentetate dimeglumine, coronar FLAIR sequence and axial T2-weighted imaging. The diagnostic proof is to show the evidence of viral DNA by polymerase chain reaction (PCR) in cerebrospinal liquor. (orig.) [de

  17. Ex Vivo Oncolytic Virotherapy with Myxoma Virus Arms Multiple Allogeneic Bone Marrow Transplant Leukocytes to Enhance Graft versus Tumor

    NARCIS (Netherlands)

    Lilly, Cameron L.; Villa, Nancy Y.; Lemos de Matos, Ana; Ali, Haider M.; Dhillon, Jess-Karan S.; Hofland, Tom; Rahman, Masmudur M.; Chan, Winnie; Bogen, Bjarne; Cogle, Christopher; McFadden, Grant

    2017-01-01

    Allogeneic stem cell transplant-derived T cells have the potential to seek and eliminate sites of residual cancer that escaped primary therapy. Oncolytic myxoma virus (MYXV) exhibits potent anti-cancer efficacy against human cancers like multiple myeloma (MM) and can arm transplant-derived T cells

  18. Utilizing ras signaling pathway to direct selective replication of herpes simplex virus-1.

    Directory of Open Access Journals (Sweden)

    Weihong Pan

    Full Text Available Re-engineering the tropism of viruses is an attractive translational strategy for targeting cancer cells. The Ras signal transduction pathway is a central hub for a variety of pro-oncogenic events with a fundamental role in normal and neoplastic physiology. In this work we were interested in linking Ras activation to HSV-1 replication in a direct manner in order to generate a novel oncolytic herpes virus which can target cancer cells. To establish such link, we developed a mutant HSV-1 in which the expression of ICP4 (infected cell protein-4, a viral protein necessary for replication is controlled by activation of ELK, a transcription factor down-stream of the Ras pathway and mainly activated by ERK (extracellular signal-regulated kinase, an important Ras effector pathway. This mutant HSV-1 was named as Signal-Smart 1 (SS1. A series of prostate cells were infected with the SS1 virus. Cells with elevated levels of ELK activation were preferentially infected by the SS1 virus, as demonstrated by increased levels of viral progeny, herpetic glycoprotein C and overall SS1 viral protein production. Upon exposure to SS1, the proliferation, invasiveness and colony formation capabilities of prostate cancer cells with increased ELK activation were significantly decreased (p<0.05, while the rate of apoptosis/necrosis in these cells was increased. Additionally, high Ras signaling cells infected with SS1 showed a prominent arrest in the G1 phase of the cell cycle as compared to cells exposed to parental HSV-1. The results of this study reveal the potential for re-modeling the host-herpes interaction to specifically interfere with the life of cancer cells with increased Ras signaling. SS1 also serves as a "prototype" for development of a family of signal-smart viruses which can target cancer cells on the basis of their signaling portfolio.

  19. Recidiverende erythema multiforme udløst af herpes simplex-virus

    DEFF Research Database (Denmark)

    Vestergård Grejsen, Dorthe; Henningsen, Emil

    2012-01-01

    We describe two cases of recurrent erythema multiforme, both associated to infection with herpes simplex virus. The importance of subclinical herpes is illustrated. Antiviral and additional treatment is described.......We describe two cases of recurrent erythema multiforme, both associated to infection with herpes simplex virus. The importance of subclinical herpes is illustrated. Antiviral and additional treatment is described....

  20. Cap-dependent translational control of oncolytic measles virus infection in malignant mesothelioma.

    Science.gov (United States)

    Jacobson, Blake A; Sadiq, Ahad A; Tang, Shaogeng; Jay-Dixon, Joe; Patel, Manish R; Drees, Jeremy; Sorenson, Brent S; Russell, Stephen J; Kratzke, Robert A

    2017-09-08

    Malignant mesothelioma has a poor prognosis for which there remains an urgent need for successful treatment approaches. Infection with the Edmonston vaccine strain (MV-Edm) derivative of measles virus results in lysis of cancer cells and has been tested in clinical trials for numerous tumor types including mesothelioma. Many factors play a role in MV-Edm tumor cell selectivity and cytopathic activity while also sparing non-cancerous cells. The MV-Edm receptor CD46 (cluster of differentiation 46) was demonstrated to be significantly higher in mesothelioma cells than in control cells. In contrast, mesothelioma cells are not reliant upon the alternative MV-Edm receptor nectin-4 for entry. MV-Edm treatment of mesothelioma reduced cell viability and also invoked apoptotic cell death. Forced expression of eIF4E or translation stimulation following IGF-I (insulin-like growth factor 1) exposure strengthened the potency of measles virus oncolytic activity. It was also shown that repression of cap-dependent translation by treatment with agents [4EASO, 4EGI-1] that suppress host cell translation or by forcing cells to produce an activated repressor protein diminishes the strength of oncolytic viral efficacy.

  1. Genetically engineered oncolytic Newcastle disease virus mediates cytolysis of prostate cancer stem like cells.

    Science.gov (United States)

    Raghunath, Shobana; Pudupakam, Raghavendra Sumanth; Allen, Adria; Biswas, Moanaro; Sriranganathan, Nammalwar

    2017-10-20

    Oncolytic virotherapy is a promising novel approach that overcomes the limitations posed by radiation and chemotherapy. In this study, the oncolytic efficacy of a recombinant Newcastle disease virus (rNDV) BC-KLQL-GFP, against prostate cancer stem-like/tumor initiating cells was evaluated. Xenograft derived prostaspheres (XPS) induced tumor more efficiently than monolayer cell derived prostaspheres (MCPS) in nude mice. Primary and secondary XPS show enhanced self-renewal and clonogenic potential compared to MCPS. XPS also expressed embryonic stem cell markers, such as Nanog, CD44 and Nestin. Further, prostate specific antigen (PSA) activated recombinant Newcastle Disease Virus (rNDV) was selectively cytotoxic to tumor derived DU145 prostaspheres. An effective concentration (EC 50 ) of 0.11-0.14 multiplicity of infection was sufficient to cause prostasphere cell death in serum free culture. DU145 tumor xenograft derived prostaspheres were used as tumor surrogates as they were enriched for a putative tumor initiating cell population. PSA activated rNDV was efficient in inducing cell death of cells and prostaspheres derived from primary xenografts ex-vivo, thus signifying a potential in vivo efficacy. The EC 50 (∼0.1 MOI) for cytolysis of tumor initiating cells was slightly higher than that was required for the parental cell line, but within the therapeutic margin for safety and efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Radiation enhanced reactivation of herpes simplex virus: effect of caffeine.

    Science.gov (United States)

    Hellman, K B; Lytle, C D; Bockstahler, L E

    1976-09-01

    Ultaviolet enhanced (Weigle) reactivation of UV-irradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cell monolayers was decreased by caffeine. X-ray enhanced reactivation of UV-irradiated virus in X-irradiated monolayers (X-ray reactivation) and UV- or X-ray-inactivated capacity of the cells to support unirradiated virus plaque formation were unaffected by caffeine. The results suggest that a caffeine-sensitive process is necessary for the expression of Weigle reactivation for herpes virus. Since cafeine did not significantly affect X-ray reactivation, different mechanisms may be responsible for the expression of Weigle reactivation and X-ray reactivation.

  3. Radiation enhaced reactivation of herpes simplex virus: effect of caffeine

    International Nuclear Information System (INIS)

    Hellman, K.B.; Lytle, C.D.; Bockstahler, L.E.

    1976-01-01

    Ultraviolet enhanced (Weigle) reactivation of UV-irradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cell monolayers was decreased by caffeine. X-ray enhanced reactivation of UV-irradiated virus in X-irradiated monolayers (X-ray reactivation) and UV- or X-ray-inactivated capacity of the cells to support unirradiated virus plaque formation were unaffected by caffeine. The results suggest that a caffeine-sensitive process is necessary for the expression of Weigle reactivation for herpes virus. Since caffeine did not significantly affect X-ray reactivation, different mechanisms may be responsible for the expression of Weigle reactivation and X-ray reactivation

  4. Clinical and biological differences between recurrent herpes simplex virus and varicella-zoster virus infections

    International Nuclear Information System (INIS)

    Straus, S.E.

    1989-01-01

    The major features that distinguish recurrent herpes simplex virus infections from zoster are illustrated in this article by two case histories. The clinical and epidemiologic features that characterize recurrent herpes simplex virus and varicella-zoster virus infections are reviewed. It is noted that herpesvirus infections are more common and severe in patients with cellular immune deficiency. Each virus evokes both humoral and cellular immune response in the course of primary infection. DNA hybridization studies with RNA probes labelled with sulfur-35 indicate that herpes simplex viruses persist within neurons, and that varicella-zoster virus is found in the satellite cells that encircle the neurons

  5. Pityriasis Lichenoides Chronica Associated with Herpes Simplex Virus Type 2

    Directory of Open Access Journals (Sweden)

    Antonio Javier González Rodríguez

    2012-01-01

    Full Text Available Introduction. Pityriasis lichenoides is a rare, acquired spectrum of skin conditions of an unknown etiology. Case Report. A 28-year-old man presented with recurrent outbreaks of herpes simplex virus associated with the onset of red-to-brown maculopapules located predominantly in trunk in each recurrence. Positive serologies to herpes simplex virus type 2 were detected. Histopathological examination of one of the lesions was consistent with a diagnosis of pityriasis lichenoides chronica. Discussion. Pityriasis lichenoides is a rare cutaneous entity of an unknown cause which includes different clinical presentations. A number of infectious agents have been implicated based on the clustering of multiple outbreaks and elevated serum titers to specific pathogens (human immunodeficiency virus, cytomegalovirus, Epstein-Barr virus, Toxoplasma gondii, and herpes simplex virus. In our patient, resolution of cutaneous lesions coincided with the administration of antiviral drugs and clinical improvement in each genital herpes recurrence. In conclusion, we report a case in which cutaneous lesions of pityriasis lichenoides chronica and a herpes simplex virus-type 2-mediated disease have evolved concomitantly.

  6. Tumor-selective replication herpes simplex virus-based technology significantly improves clinical detection and prognostication of viable circulating tumor cells

    DEFF Research Database (Denmark)

    Zhang, Wen; Bao, Li; Yang, Shaoxing

    2016-01-01

    Detection of circulating tumor cells remains a significant challenge due to their vast physical and biological heterogeneity. We developed a cell-surface-marker-independent technology based on telomerase-specific, replication-selective oncolytic herpes-simplex-virus-1 that targets telomerase......-reverse-transcriptase-positive cancer cells and expresses green-fluorescent-protein that identifies viable CTCs from a broad spectrum of malignancies. Our method recovered 75.5-87.2% of tumor cells spiked into healthy donor blood, as validated by different methods, including single cell sequencing. CTCs were detected in 59-100% of 326...

  7. Genital herpes simplex virus infection: clinical course and attempted therapy.

    Science.gov (United States)

    Davis, L G; Keeney, R E

    1981-06-01

    The epidemiology, clinical course, diagnosis, and attempted treatments of herpes genitalis are reviewed. Herpes genitalis is an increasingly common sexually transmitted disease for which there is no effective treatment. It can occur in either sex and is mot commonly first found in patients 14 to 29 years old. Initial exposure to the virus may result in prolonged local symptoms (pain, itching, discharge) and signs (ulcerative lesions) as well as fever, malaise, myalgias, and fatigue. After the initial exposure, the virus may be found in a latent stage in the dorsal nerve root ganglia in the sacral area, and recurrences of disease may ensue. The frequency and clinical course of recurrent genital herpes can be of varying duration and severity. Although antiviral substances, immune potentiators, topical surfactants, and photodynamic inactivation have been used to treat genital herpes infections, there is no proven effective therapy.

  8. Oncolytic Vesicular Stomatitis Virus as a Viro-Immunotherapy: Defeating Cancer with a “Hammer” and “Anvil”

    Directory of Open Access Journals (Sweden)

    Michael Karl Melzer

    2017-02-01

    Full Text Available Oncolytic viruses have gained much attention in recent years, due, not only to their ability to selectively replicate in and lyse tumor cells, but to their potential to stimulate antitumor immune responses directed against the tumor. Vesicular stomatitis virus (VSV, a negative-strand RNA virus, is under intense development as an oncolytic virus due to a variety of favorable properties, including its rapid replication kinetics, inherent tumor specificity, and its potential to elicit a broad range of immunomodulatory responses to break immune tolerance in the tumor microenvironment. Based on this powerful platform, a multitude of strategies have been applied to further improve the immune-stimulating potential of VSV and synergize these responses with the direct oncolytic effect. These strategies include: 1. modification of endogenous virus genes to stimulate interferon induction; 2. virus-mediated expression of cytokines or immune-stimulatory molecules to enhance anti-tumor immune responses; 3. vaccination approaches to stimulate adaptive immune responses against a tumor antigen; 4. combination with adoptive immune cell therapy for potentially synergistic therapeutic responses. A summary of these approaches will be presented in this review.

  9. Unusual presentation of herpes simplex virus infection in a boxer: 'Boxing glove herpes'.

    Science.gov (United States)

    García-García, Begoña; Galache-Osuna, Cristina; Coto-Segura, Pablo; Suárez-Casado, Héctor; Mallo-García, Susana; Jiménez, Jorge Santos-Juanes

    2013-02-01

    Herein, we describe a patient with lesions of cutaneous herpes simplex virus 1 (HSV-1) infection over the knuckles of both hands in the context of an outbreak among boxers. Interestingly, the infection had an unusually long duration (4 weeks), and was not acquired directly through skin-to-skin contact, as it usually does among athletes (herpes gladiatorum). In our case, transmission was acquired through the use of shared boxing gloves contaminated by HSV-1. To the best of our knowledge, herpes gladiatorum, or wrestler's herpes, has not been described previously in boxers and infection over the knuckles is not commonly reported. © 2011 The Authors. Australasian Journal of Dermatology © 2011 The Australasian College of Dermatologists.

  10. Herpes Simplex Virus type 2 Infection among Females in Enugu ...

    African Journals Online (AJOL)

    Herpes simplex virus type 2 has recently been found to have synergistic effect with human immunodeficiency virus (HIV) and co-infection of the two presents more severe burden to the immunity of the victim. This leads to much morbidity and mortality with negative economic impact. In this study, we set out to determine ...

  11. Sequencing and phylogenetic analysis of Herpes simplex virus type ...

    African Journals Online (AJOL)

    momtaz

    2012-01-19

    Jan 19, 2012 ... Herpes simplex virus type 2 (HSV-2) is the main cause of recurrent genital infection (Slomka, 1996). Most infections are asymptomatic. The virus establishes latent infection in the local ganglia and is reactivated and shed frequently. Antibodies to HSV infections become detectable in serum samples (Koelle ...

  12. The biology of herpes simplex virus infection in humans.

    Science.gov (United States)

    Baringer, J R

    1976-01-01

    Herpes simplex virus is a frequent cause of recurrent ocular, oral, genital or cutaneous eruptions in man. Lesions are highly localized and tend to recur at the same site. Among the most consistent factors provoking recurrence is root section of the trigeminal nerve. Clinical and experimental data suggest that herpes simplex virus is commonly resident within the trigeminal ganglia of man, where it may be responsible for recurrent oral or lip lesions, and is less frequently a resident of the second or third sacral ganglia where it might be responsible for genital eruptions. Generally, the trigeminal virus is type 1 and the sacral virus is type 2; the virus is only rarely recoverable from other sensory ganglia. Factors provoking the reactivation from the virus' latent site and the mechanism for reactivation remain largely unknown. Further study is needed to understand the behavior of HSV and other viruses in nervous system tissue.

  13. Complex spatial dynamics of oncolytic viruses in vitro: mathematical and experimental approaches.

    Directory of Open Access Journals (Sweden)

    Dominik Wodarz

    Full Text Available Oncolytic viruses replicate selectively in tumor cells and can serve as targeted treatment agents. While promising results have been observed in clinical trials, consistent success of therapy remains elusive. The dynamics of virus spread through tumor cell populations has been studied both experimentally and computationally. However, a basic understanding of the principles underlying virus spread in spatially structured target cell populations has yet to be obtained. This paper studies such dynamics, using a newly constructed recombinant adenovirus type-5 (Ad5 that expresses enhanced jellyfish green fluorescent protein (EGFP, AdEGFPuci, and grows on human 293 embryonic kidney epithelial cells, allowing us to track cell numbers and spatial patterns over time. The cells are arranged in a two-dimensional setting and allow virus spread to occur only to target cells within the local neighborhood. Despite the simplicity of the setup, complex dynamics are observed. Experiments gave rise to three spatial patterns that we call "hollow ring structure", "filled ring structure", and "disperse pattern". An agent-based, stochastic computational model is used to simulate and interpret the experiments. The model can reproduce the experimentally observed patterns, and identifies key parameters that determine which pattern of virus growth arises. The model is further used to study the long-term outcome of the dynamics for the different growth patterns, and to investigate conditions under which the virus population eliminates the target cells. We find that both the filled ring structure and disperse pattern of initial expansion are indicative of treatment failure, where target cells persist in the long run. The hollow ring structure is associated with either target cell extinction or low-level persistence, both of which can be viewed as treatment success. Interestingly, it is found that equilibrium properties of ordinary differential equations describing the

  14. Enhanced lysis by bispecific oncolytic measles viruses simultaneously using HER2/neu or EpCAM as target receptors

    Directory of Open Access Journals (Sweden)

    Jan RH Hanauer

    2016-01-01

    Full Text Available To target oncolytic measles viruses (MV to tumors, we exploit the binding specificity of designed ankyrin repeat proteins (DARPins. These DARPin-MVs have high tumor selectivity while maintaining excellent oncolytic potency. Stability, small size, and efficacy of DARPins allowed the generation of MVs simultaneously targeted to tumor marker HER2/neu and cancer stem cell (CSC marker EpCAM. For optimization, the linker connecting both DARPins was varied in flexibility and length. Flexibility had no impact on fusion helper activity whereas length had. MVs with bispecific MV-H are genetically stable and revealed the desired double-target specificity. In vitro, the cytolytic activity of bispecific MVs was superior or comparable to mono-targeted viruses depending on the target cells. In vivo, therapeutic efficacy of the bispecific viruses was validated in an orthotopic ovarian carcinoma model revealing an effective reduction of tumor mass. Finally, the power of bispecific targeting was demonstrated on cocultures of different tumor cells thereby mimicking tumor heterogeneity in vitro, more closely reflecting real tumors. Here, bispecific excelled monospecific viruses in efficacy. DARPin-based targeting domains thus allow the generation of efficacious oncolytic viruses with double specificity, with the potential to handle intratumoral variation of antigen expression and to simultaneously target CSCs and the bulk tumor mass.

  15. Combination of Vaccine-Strain Measles and Mumps Viruses Enhances Oncolytic Activity against Human Solid Malignancies.

    Science.gov (United States)

    Son, Ho Anh; Zhang, LiFeng; Cuong, Bui Khac; Van Tong, Hoang; Cuong, Le Duy; Hang, Ngo Thu; Nhung, Hoang Thi My; Yamamoto, Naoki; Toan, Nguyen Linh

    2018-02-07

    Oncolytic measles and mumps viruses (MeV, MuV) have a potential for anti-cancer treatment. We examined the anti-tumor activity of MeV, MuV, and MeV-MuV combination (MM) against human solid malignancies (HSM). MeV, MuV, and MM targeted and significantly killed various cancer cell lines of HSM but not normal cells. MM demonstrated a greater anti-tumor effect and prolonged survival in a human prostate cancer xenograft tumor model compared to MeV and MuV. MeV, MuV, and MM significantly induced the expression of immunogenic cell death markers and enhanced spleen-infiltrating immune cells. In conclusion, MM combination significantly improves the treatment of human solid malignancies.

  16. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods.

    Science.gov (United States)

    Oldfield, Lauren M; Grzesik, Peter; Voorhies, Alexander A; Alperovich, Nina; MacMath, Derek; Najera, Claudia D; Chandra, Diya Sabrina; Prasad, Sanjana; Noskov, Vladimir N; Montague, Michael G; Friedman, Robert M; Desai, Prashant J; Vashee, Sanjay

    2017-10-17

    Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOS YA , replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats.

  17. Genital herpes simplex virus infections in adults.

    Science.gov (United States)

    Mertz, G; Corey, L

    1984-02-01

    With the decline in prevalence of childhood-acquired oral-labial herpes simplex type 1 infections in some populations and the increasing incidence of genital herpes infections in adults, clinicians are more likely to see patients with severe primary, first-episode genital herpes infections. Complications of these primary infections may include aseptic meningitis and urine retention secondary to sacral radiculopathy or autonomic dysfunction. Presented are the clinical course of first-episode and recurrent infections, complications, diagnostic laboratory methods, and results of controlled clinical trials evaluating the efficacy of topical, intravenous, and oral preparations of acyclovir.

  18. Toxicology and Biodistribution Studies for MGH2.1, an Oncolytic Virus that Expresses Two Prodrug-activating Genes, in Combination with Prodrugs

    Directory of Open Access Journals (Sweden)

    Kazue Kasai

    2013-01-01

    Full Text Available MGH2.1 is a herpes simplex virus type 1 (HSV1 oncolytic virus that expresses two prodrug-activating transgenes: the cyclophosphamide (CPA-activating cytochrome P4502B1 (CYP2B1 and the CPT11-activating secreted human intestinal carboxylesterase (shiCE. Toxicology and biodistribution of MGH2.1 in the presence/absence of prodrugs was evaluated in mice. MGH2.1 ± prodrugs was cytotoxic to human glioma cells, but not to normal cells. Pharmacokinetically, intracranial MGH2.1 did not significantly alter the metabolism of intraperitoneally (i.p. administered prodrugs in mouse plasma, brain, or liver. MGH2.1 did not induce an acute inflammatory reaction. MGH2.1 DNA was detected in brains of mice inoculated with 108 pfus for up to 60 days. However, only one animal showed evidence of viral gene expression at this time. Expression of virally encoded genes was restricted to brain. Intracranial inoculation of MGH2.1 did not induce lethality at 108 pfus in the absence of prodrugs and at 106 pfus in the presence of prodrugs. This study provides safety and toxicology data justifying a possible clinical trial of intratumoral injection of MGH2.1 with peripheral administration of CPA and/or CPT11 prodrugs in humans with malignant gliomas.

  19. Improving immunogenicity and efficacy of vaccines for genital herpes containing herpes simplex virus glycoprotein D.

    Science.gov (United States)

    Awasthi, Sita; Shaw, Carolyn; Friedman, Harvey

    2014-12-01

    No vaccines are approved for prevention or treatment of genital herpes. The focus of genital herpes vaccine trials has been on prevention using herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) alone or combined with glycoprotein B. These prevention trials did not achieve their primary end points. However, subset analyses reported some positive outcomes in each study. The most recent trial was the Herpevac Trial for Women that used gD2 with monophosphoryl lipid A and alum as adjuvants in herpes simplex virus type 1 (HSV-1) and HSV-2 seronegative women. Unexpectedly, the vaccine prevented genital disease by HSV-1 but not HSV-2. Currently, HSV-1 causes more first episodes of genital herpes than HSV-2, highlighting the importance of protecting against HSV-1. The scientific community is conflicted between abandoning vaccine efforts that include gD2 and building upon the partial successes of previous trials. We favor building upon success and present approaches to improve outcomes of gD2-based subunit antigen vaccines.

  20. Resistance to Two Heterologous Neurotropic Oncolytic Viruses, Semliki Forest Virus and Vaccinia Virus, in Experimental Glioma

    Science.gov (United States)

    Le Boeuf, Fabrice; Lemay, Chantal; De Silva, Naomi; Diallo, Jean-Simon; Cox, Julie; Becker, Michelle; Choi, Youngmin; Ananth, Abhirami; Sellers, Clara; Breton, Sophie; Roy, Dominic; Falls, Theresa; Brun, Jan; Hemminki, Akseli; Hinkkanen, Ari; Bell, John C.

    2013-01-01

    Attenuated Semliki Forest virus (SFV) may be suitable for targeting malignant glioma due to its natural neurotropism, but its replication in brain tumor cells may be restricted by innate antiviral defenses. We attempted to facilitate SFV replication in glioma cells by combining it with vaccinia virus, which is capable of antagonizing such defenses. Surprisingly, we found parenchymal mouse brain tumors to be refractory to both viruses. Also, vaccinia virus appears to be sensitive to SFV-induced antiviral interference. PMID:23221568

  1. Urinary retention due to herpes virus infections.

    Science.gov (United States)

    Yamanishi, T; Yasuda, K; Sakakibara, R; Hattori, T; Uchiyama, T; Minamide, M; Ito, H

    1998-01-01

    Urinary retention is uncommon in patients with herpes zoster and anogenital herpes simplex. Seven patients (four men, three women) with a mean age of 68.1 years (range, 35-84) with urinary retention due to herpes zoster (n = 6) or anogenital herpes simplex (n = 1) were studied. Six patients had unilateral skin eruption in the saddle area (S2-4 dermatome) and one patient with herpes zoster had a skin lesion in the L4-5 dermatome. All patients had detrusor areflexia without bladder sensation, and two of them had inactive external sphincter on electromyography at presentation. Clean intermittent catheterization was performed, and voiding function was recovered in 4-6 weeks (average, 5.4) in all patients. Urodynamic study was repeated after recovery of micturition in three patients, and they returned to normal on cystometrography and external sphincter electromyography. Acute urinary retention associated with anogenital herpes infection has been thought to occur when the meninges or sacral spinal ganglia were involved, and, in conclusion, this condition may be considered to be reversible.

  2. Prevention of EBV lymphoma development by oncolytic myxoma virus in a murine xenograft model of post-transplant lymphoproliferative disease

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Manbok, E-mail: manbok66@dankook.ac.kr [Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610 (United States); Rahman, Masmudur M. [Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610 (United States); Cogle, Christopher R. [Department of Hematology/Oncology, University of Florida, Gainesville, FL 32610 (United States); McFadden, Grant [Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610 (United States)

    2015-07-10

    Epstein–Barr virus (EBV) has been associated with a variety of epithelial and hematologic malignancies, including B-, T- and NK cell-lymphomas, Hodgkin's disease (HD), post-transplant lymphoproliferative diseases (LPDs), nasopharyngeal and gastric carcinomas, smooth muscle tumors, and HIV-associated lymphomas. Currently, treatment options for EBV-associated malignancies are limited. We have previously shown that myxoma virus specifically targets various human solid tumors and leukemia cells in a variety of animal models, while sparing normal human or murine tissues. Since transplant recipients of bone marrow or solid organs often develop EBV-associated post-transplant LPDs and lymphoma, myxoma virus may be of utility to prevent EBV-associated malignancies in immunocompromised transplant patients where treatment options are frequently limited. In this report, we demonstrate the safety and efficacy of myxoma virus purging as a prophylactic strategy for preventing post-transplant EBV-transformed human lymphomas, using a highly immunosuppressed mouse xenotransplantation model. This provides support for developing myxoma virus as a potential oncolytic therapy for preventing EBV-associated LPDs following transplantation of bone marrow or solid organ allografts. - Highlights: • Myxoma virus effectively infects and purges EBV lymphoma cells in vivo. • Oncolytic myxoma virus effectively eradicates oncogenic EBV tumorigenesis. • Ex vivo pre-treatment of myxoma virus can be effective as a preventive treatment modality for post-transplant lymphoproliferative diseases.

  3. Prevention of EBV lymphoma development by oncolytic myxoma virus in a murine xenograft model of post-transplant lymphoproliferative disease

    International Nuclear Information System (INIS)

    Kim, Manbok; Rahman, Masmudur M.; Cogle, Christopher R.; McFadden, Grant

    2015-01-01

    Epstein–Barr virus (EBV) has been associated with a variety of epithelial and hematologic malignancies, including B-, T- and NK cell-lymphomas, Hodgkin's disease (HD), post-transplant lymphoproliferative diseases (LPDs), nasopharyngeal and gastric carcinomas, smooth muscle tumors, and HIV-associated lymphomas. Currently, treatment options for EBV-associated malignancies are limited. We have previously shown that myxoma virus specifically targets various human solid tumors and leukemia cells in a variety of animal models, while sparing normal human or murine tissues. Since transplant recipients of bone marrow or solid organs often develop EBV-associated post-transplant LPDs and lymphoma, myxoma virus may be of utility to prevent EBV-associated malignancies in immunocompromised transplant patients where treatment options are frequently limited. In this report, we demonstrate the safety and efficacy of myxoma virus purging as a prophylactic strategy for preventing post-transplant EBV-transformed human lymphomas, using a highly immunosuppressed mouse xenotransplantation model. This provides support for developing myxoma virus as a potential oncolytic therapy for preventing EBV-associated LPDs following transplantation of bone marrow or solid organ allografts. - Highlights: • Myxoma virus effectively infects and purges EBV lymphoma cells in vivo. • Oncolytic myxoma virus effectively eradicates oncogenic EBV tumorigenesis. • Ex vivo pre-treatment of myxoma virus can be effective as a preventive treatment modality for post-transplant lymphoproliferative diseases

  4. Polymerase chain reaction to search for Herpes viruses in uveitic ...

    African Journals Online (AJOL)

    Objective: To analyse aqueous polymerase chain reaction (PCR) results in patients diagnosed with undifferentiated uveitis ... Cite as: Laaks D, Smit DP, Harvey J. Polymerase chain reaction to search for Herpes viruses in uveitic and healthy eyes: a South African ... may be mild and patients do not seek medical attention.

  5. SEROPREVALENCE OF HUMAN HERPES VIRUS 8 (HHV8 ...

    African Journals Online (AJOL)

    Praise

    SEROPREVALENCE OF HUMAN HERPES VIRUS 8 (HHV8) INFECTION. AMONG COMMERCIAL SEX WORKERS IN JOS. Zakari1, H., Nimzing2, L., Agabi1, Y. A., Amagam3, P. and Dashen,1 M. M.. 1Department of Microbiology, Faculty of Natural Sciences, University o f Jos, Nigeria. 2Department of Medical Microbiology, ...

  6. Determination of human herpes simplex virus in clear cerebrospinal ...

    African Journals Online (AJOL)

    The purpose of this study was to test CSF obtained from different regions of Rwanda for herpes simplex viruses (HSV) type 1 and 2 using a commercial multiplex PCR kit. CSF samples were obtained from patients with clinical suspicion of meningitis and encephalitis which may be caused by different microorganisms ...

  7. Monoclonal antibodies to Herpes Simplex Virus Type 2

    International Nuclear Information System (INIS)

    McLean-Pieper, C.S.

    1982-01-01

    In this thesis the production and characterisation of monoclonal antibodies to Herpes Simplex Virus Type 2 is described. The development of a suitable radioimmunoassay for the detection of anti-HSV-2 antibodies, and the selection of an optimal immunisation schedule, is given. Three assay systems are described and their reliability and sensitivity compared. (Auth.)

  8. Recurrent herpes simplex virus keratitis in a young Nigerian male ...

    African Journals Online (AJOL)

    A comprehensive case history and slit lamp examination revealed the presence of dendritic ulcer in the left eye of the patient. The patient was diagnosed with recurrent herpes simplex virus keratitis. An aggressive multi-treatment plan involving the use of antiviral, antibiotics, and anti inflammatory drugs was administered to ...

  9. Mucosal Herpes Immunity and Immunopathology to Ocular and Genital Herpes Simplex Virus Infections

    Science.gov (United States)

    Chentoufi, Aziz Alami; BenMohamed, Lbachir

    2012-01-01

    Herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2) are amongst the most common human infectious viral pathogens capable of causing serious clinical diseases at every stage of life, from fatal disseminated disease in newborns to cold sores genital ulcerations and blinding eye disease. Primary mucocutaneous infection with HSV-1 & HSV-2 is followed by a lifelong viral latency in the sensory ganglia. In the majority of cases, herpes infections are clinically asymptomatic. However, in symptomatic individuals, the latent HSV can spontaneously and frequently reactivate, reinfecting the muco-cutaneous surfaces and causing painful recurrent diseases. The innate and adaptive mucosal immunities to herpes infections and disease remain to be fully characterized. The understanding of innate and adaptive immune mechanisms operating at muco-cutaneous surfaces is fundamental to the design of next-generation herpes vaccines. In this paper, the phenotypic and functional properties of innate and adaptive mucosal immune cells, their role in antiherpes immunity, and immunopathology are reviewed. The progress and limitations in developing a safe and efficient mucosal herpes vaccine are discussed. PMID:23320014

  10. Mucosal Herpes Immunity and Immunopathology to Ocular and Genital Herpes Simplex Virus Infections

    Directory of Open Access Journals (Sweden)

    Aziz Alami Chentoufi

    2012-01-01

    Full Text Available Herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2 are amongst the most common human infectious viral pathogens capable of causing serious clinical diseases at every stage of life, from fatal disseminated disease in newborns to cold sores genital ulcerations and blinding eye disease. Primary mucocutaneous infection with HSV-1 & HSV-2 is followed by a lifelong viral latency in the sensory ganglia. In the majority of cases, herpes infections are clinically asymptomatic. However, in symptomatic individuals, the latent HSV can spontaneously and frequently reactivate, reinfecting the muco-cutaneous surfaces and causing painful recurrent diseases. The innate and adaptive mucosal immunities to herpes infections and disease remain to be fully characterized. The understanding of innate and adaptive immune mechanisms operating at muco-cutaneous surfaces is fundamental to the design of next-generation herpes vaccines. In this paper, the phenotypic and functional properties of innate and adaptive mucosal immune cells, their role in antiherpes immunity, and immunopathology are reviewed. The progress and limitations in developing a safe and efficient mucosal herpes vaccine are discussed.

  11. Pediatric herpes simplex virus infections: an evidence-based approach to treatment.

    Science.gov (United States)

    Sanders, Jennifer E; Garcia, Sylvia E

    2014-01-01

    Herpes simplex virus is a common virus that causes a variety of clinical presentations ranging from mild to life-threatening. Orolabial and genital herpes are common disorders that can often be managed in an outpatient setting; however, some patients do present to the emergency department with those conditions, and emergency clinicians should be aware of possible complications in the pediatric population. Neonatal herpes is a rare disorder, but prompt recognition and initiation of antiviral therapy is imperative, as the morbidity and mortality of the disease is high. Herpes encephalitis is an emergency that also requires a high index of suspicion to diagnose. Herpes simplex virus is also responsible for a variety of other clinical presentations, including herpes gladiatorum, herpetic whitlow, eczema herpeticum, and ocular herpes. This issue reviews the common clinical presentations of the herpes simplex virus, the life-threatening infections that require expedient identification and management, and recommended treatment regimens.

  12. Herpes

    Science.gov (United States)

    ... Links Patient Resources For Health Professionals Subscribe Search Herpes Testing Send Us Your Feedback Choose Topic At ... Content View Sources Ask Us Also Known As Herpes Culture Herpes Simplex Viral Culture HSV DNA HSV ...

  13. Attenuated, oncolytic, but not wild-type measles virus infection has pleiotropic effects on human neutrophil function.

    Science.gov (United States)

    Zhang, Yu; Patel, Bella; Dey, Aditi; Ghorani, Ehsan; Rai, Lena; Elham, Mohammed; Castleton, Anna Z; Fielding, Adele K

    2012-02-01

    We previously showed that neutrophils play a role in regression of human tumor xenografts in immunodeficient mice following oncolytic vaccine measles virus (MV-Vac) treatment. In this study, we sought, using normal human neutrophils, to identify potential neutrophil-mediated mechanisms for the attenuated MV-Vac induced effects seen in vivo, by comparison with those consequent on wild-type (WT-MV) infection. Both MV-Vac and WT-MV infected and replicated within neutrophils, despite lack of SLAM expression. In both cases, neutrophils survived longer ex vivo postinfection. Furthermore, MV-Vac (but not WT-MV) infection activated neutrophils and stimulated secretion of several specific antitumor cytokines (IL-8, TNF-α, MCP-1, and IFN-α) via induction of de novo RNA and protein synthesis. In addition, MV-Vac (but not WT-MV) infection caused TRAIL secretion in the absence of de novo synthesis by triggering release of prefabricated TRAIL, via a direct effect upon degranulation. The differences between the outcome of infection by MV-Vac and WT-MV were not entirely explained by differential infection and replication of the viruses within neutrophils. To our knowledge, this is the first demonstration of potential mechanisms of oncolytic activity of an attenuated MV as compared with its WT parent. Furthermore, our study suggests that neutrophils have an important role to play in the antitumor effects of oncolytic MV.

  14. Herpes simplex virus type 1 is the leading cause of genital herpes in New Brunswick.

    Science.gov (United States)

    Garceau, Richard; Leblanc, Danielle; Thibault, Louise; Girouard, Gabriel; Mallet, Manon

    2012-01-01

    Little is known about the role of herpes simplex virus (HSV) type 1 (HSV1) in the epidemiology of genital herpes in Canada. Data on herpes viral cultures for two consecutive years obtained from L'Hôpital Dr GL Dumont, which performs all the viral culture testing in New Brunswick, were reviewed. It was hypothesized that HSV1 was the main cause of genital herpes in New Brunswick. Samples of genital origin sent to the laboratory for HSV culture testing between July 2006 and June 2008 were analyzed. Samples from an unspecified or a nongenital source were excluded from analysis. Multiple positive samples collected from the same patient were pooled into a single sample. HSV was isolated from 764 different patients. HSV1 was isolated in 62.6% of patients (male, 55%; female, 63.8%). HSV1 was isolated in 73.2% of patients 10 to 39 years of age and in 32% of patients ≥40 years of age. The difference in rates of HSV1 infection between the 10 to 39 years of age group and the ≥40 years of age group was statistically significant (Pgenital site. Significant rate differences were demonstrated between the groups 10 to 39 years of age and ≥40 years of age. Little is known about the role of herpes simplex virus (HSV) type 1 (HSV1) in the epidemiology of genital herpes in Canada. Data on herpes viral cultures for two consecutive years obtained from L’Hôpital Dr GL Dumont, which performs all the viral culture testing in New Brunswick, were reviewed. It was hypothesized that HSV1 was the main cause of genital herpes in New Brunswick. Samples of genital origin sent to the laboratory for HSV culture testing between July 2006 and June 2008 were analyzed. Samples from an unspecified or a nongenital source were excluded from analysis. Multiple positive samples collected from the same patient were pooled into a single sample. HSV was isolated from 764 different patients. HSV1 was isolated in 62.6% of patients (male, 55%; female, 63.8%). HSV1 was isolated in 73.2% of patients 10 to

  15. Herpes Simplex Virus Infections of the Central Nervous System.

    Science.gov (United States)

    Whitley, Richard J

    2015-12-01

    This article summarizes knowledge of herpes simplex virus (HSV) infections of the central nervous system (CNS). Disease pathogenesis, detection of DNA polymerase chain reaction (PCR) for diagnosis and prognosis, and approaches to therapy warrant consideration. HSV infection of the CNS is one of few treatable viral diseases. Clinical trials indicate that outcome following neonatal herpes simplex virus type 2 (HSV-2) infections of the CNS is significantly improved when 6 months of suppressive oral acyclovir therapy follows IV antiviral therapy. In contrast, herpes simplex virus type 1 (HSV-1) infections of the brain do not benefit from extended oral antiviral therapy. This implies a difference in disease pathogenesis between HSV-2 and HSV-1 infections of the brain. PCR detection of viral DNA in the CSF is the gold standard for diagnosis. Use of PCR is now being adopted as a basis for determining the duration of therapy in the newborn. HSV infections are among the most common encountered by humans; seropositivity occurs in 50% to 90% of adult populations. Herpes simplex encephalitis, however, is an uncommon result of this infection. Since no new antiviral drugs have been introduced in nearly 3 decades, much effort has focused on learning how to better use acyclovir and how to use existing databases to establish earlier diagnosis.

  16. The molecular basis of herpes simplex virus latency

    Science.gov (United States)

    Nicoll, Michael P; Proença, João T; Efstathiou, Stacey

    2012-01-01

    Herpes simplex virus type 1 is a neurotropic herpesvirus that establishes latency within sensory neurones. Following primary infection, the virus replicates productively within mucosal epithelial cells and enters sensory neurones via nerve termini. The virus is then transported to neuronal cell bodies where latency can be established. Periodically, the virus can reactivate to resume its normal lytic cycle gene expression programme and result in the generation of new virus progeny that are transported axonally back to the periphery. The ability to establish lifelong latency within the host and to periodically reactivate to facilitate dissemination is central to the survival strategy of this virus. Although incompletely understood, this review will focus on the mechanisms involved in the regulation of latency that centre on the functions of the virus-encoded latency-associated transcripts (LATs), epigenetic regulation of the latent virus genome and the molecular events that precipitate reactivation. This review considers current knowledge and hypotheses relating to the mechanisms involved in the establishment, maintenance and reactivation herpes simplex virus latency. PMID:22150699

  17. Evasion of Early Antiviral Responses by Herpes Simplex Viruses

    Science.gov (United States)

    Suazo, Paula A.; Ibañez, Francisco J.; Retamal-Díaz, Angello R.; Paz-Fiblas, Marysol V.; Bueno, Susan M.; Kalergis, Alexis M.; González, Pablo A.

    2015-01-01

    Besides overcoming physical constraints, such as extreme temperatures, reduced humidity, elevated pressure, and natural predators, human pathogens further need to overcome an arsenal of antimicrobial components evolved by the host to limit infection, replication and optimally, reinfection. Herpes simplex virus-1 (HSV-1) and herpes simplex virus-2 (HSV-2) infect humans at a high frequency and persist within the host for life by establishing latency in neurons. To gain access to these cells, herpes simplex viruses (HSVs) must replicate and block immediate host antiviral responses elicited by epithelial cells and innate immune components early after infection. During these processes, infected and noninfected neighboring cells, as well as tissue-resident and patrolling immune cells, will sense viral components and cell-associated danger signals and secrete soluble mediators. While type-I interferons aim at limiting virus spread, cytokines and chemokines will modulate resident and incoming immune cells. In this paper, we discuss recent findings relative to the early steps taking place during HSV infection and replication. Further, we discuss how HSVs evade detection by host cells and the molecular mechanisms evolved by these viruses to circumvent early antiviral mechanisms, ultimately leading to neuron infection and the establishment of latency. PMID:25918478

  18. The Laboratory Diagnosis of Herpes Simplex Virus Infections

    Directory of Open Access Journals (Sweden)

    Ameeta Singh

    2005-01-01

    Full Text Available Herpes simplex virus (HSV types 1 and 2 cause genital herpes infections and are the most common cause of genital ulcer disease in industrialized nations. Although these infections are very common, the majority of them remain underdiagnosed because they are asymptomatic or unrecognized. A clinical diagnosis of genital herpes should always be confirmed by laboratory testing; this can be accomplished through the use of direct tests for viral isolation, the detection of antigen or, more recently, the detection of HSV DNA using molecular diagnostic techniques. Testing for serotypes is recommended because of the different prognostic and counselling implications. Type-specific HSV serology is becoming more readily available and will enhance the ability to make the diagnosis and guide clinical management in select patients.

  19. The Changing Epidemiology of Herpes Simplex Virus Type 1 Infection: The Associated Effects on the Incidence of Ocular Herpes

    Directory of Open Access Journals (Sweden)

    Abedi Kiasari, B.

    2016-07-01

    Full Text Available Herpes simplex virus type 1 (HSV-1 with a worldwide distribution has been reported in all human populations, resulting in a clinical spectrum of infections. Although HSV type 2 (HSV-2 is known as the most common cause of genital herpes, an increasing number of cases with genital herpes are caused by HSV-1. The present study aimed to discuss the changes in the epidemiology of HSV-1 infection including the decline in the general incidence of HSV-1 infection in childhood and the increased rate of genital herpes, caused by HSV-1. Moreover, changes in the epidemiology of ocular herpes, i.e., the reduced rate of primary ocular herpes in children and increased incidence of ocular HSV infection in adults, were discussed.

  20. Photodynamic treatment of Herpes simplex virus infection in vitro

    International Nuclear Information System (INIS)

    Lytle, C.D.; Hester, L.D.

    1976-01-01

    The effects of photodynamic action on in vitro herpes simplex virus infections of CV-1 monkey kidney fibroblasts or human skin fibroblasts were determined using proflavine sulfate and white fluorescent lamps. Photodynamic treatment of confluent cell monolayers prior to virus infection inactivated cell capacity, i.e. the capacity of the treated cells to support subsequent virus growth as measured by plaque formation. The capacity of human cells was more sensitive to inactivation than the capacity of monkey cells when 6 μM proflavine was used. Treated cell monolayers recovered the capacity to support virus plaque formation when virus infection was delayed four days after the treatment. Experiments in which the photodynamically treated monolayers were infected with UV-irradiated virus demonstrated that this treatment induced Weigle reactivation in both types of cells. This reactivation occurred for virus infection just after treatment or 4 days later. A Luria-Latarjet-type experiment was also performed in which cultures infected with unirradiated virus were photodynamically treated at different times after the start of infection. The results showed that for the first several hours of the virus infection the infected cultures were more sensitive to inactivation by photodynamic treatment than cell capacity. By the end of the eclipse period the infected cultures were less sensitive to inactivation than cell capacity. Results from extracellular inactivation of virus growth in monkey cells at 6 μM proflavine indicated that at physiological pH the virus has a sensitivity to photodynamic inactivation similar to that for inactivation of cell capacity. The combined data indicated that photodynamic treatment of the cell before or after virus infection could prevent virus growth. Thus, photodynamic inactivation of infected and uninfected cells may be as important as inactivation of virus particles when considering possible mechanisms in clinical photodynamic therapy for herpes

  1. Genital herpes simplex virus infections: clinical manifestations, course, and complications.

    Science.gov (United States)

    Corey, L; Adams, H G; Brown, Z A; Holmes, K K

    1983-06-01

    The clinical course and complications of 268 patients with first episodes and 362 with recurrent episodes of genital herpes infection were reviewed. Symptoms of genital herpes were more severe in women than in men. Primary first-episode genital herpes was accompanied by systemic symptoms (67%), local pain and itching (98%), dysuria (63%), and tender adenopathy (80%). Patients presented with several bilaterally distributed postular ulcerative lesions that lasted a mean of 19.0 days. Herpes simplex virus was isolated from the urethra, cervix, and pharynx of 82%, 88%, and 13% of women with first-episode primary genital herpes, and the urethra and pharynx of 28% and 7% of men. Complications included aseptic meningitis (8%), sacral autonomic nervous system dysfunction (2%), development of extragenital lesions (20%), and secondary yeast infections (11%). Recurrent episodes were characterized by small vesicular or ulcerative unilaterally distributed lesions that lasted a mean of 10.1 days. Systemic symptoms were uncommon and 25% of recurrent episodes were asymptomatic. The major concerns of patients were the frequency of recurrences and fear of transmitting infection to partners or infants.

  2. Heat shock and herpes virus: enhanced reactivation without untargeted mutagenesis

    International Nuclear Information System (INIS)

    Lytle, C.D.; Carney, P.G.

    1988-01-01

    Enhanced reactivation of Ultraviolet-irradiated virus has been reported to occur in heat-shocked host cells. Since enhanced virus reactivation is often accompanied by untargeted mutagenesis, we investigated whether such mutagenesis would occur for herpes simplex virus (HSV) in CV-1 monkey kidney cells subjected to heat shock. In addition to expressing enhanced reactivation, the treated cells were transiently more susceptible to infection by unirradiated HSV. No mutagenesis of unirradiated HSV was found whether infection occurred at the time of increased susceptibility to infection or during expression of enhanced viral reactivation

  3. Computed tomography in young children with herpes simplex virus encephalitis

    International Nuclear Information System (INIS)

    Sugimoto, T.; Woo, M.; Okazaki, H.; Nishida, N.; Hara, T.; Yasuhara, A.; Kasahara, M.; Kobayashi, Y.

    1985-01-01

    Computed tomographic (CT) scans were obtained from eight infants and young children with herpes simplex virus encephalitis. In two cases the initial scan showed diffuse edematous changes as a mass effect without laterality. Unilateral localized low attenuation in the initial scan was evident 4 days after the onset in one patient, and high attenuation in the initial scan appeared on the 6th day in another patient, but in general, it was not possible to establish an early diagnosis of herpes simplex virus encephalitis from CT scan. In the longitudinal study the calcification with ventriculomegaly appeared in 3 of 5 survivors, and gyriform calcification in 2 of 3 patients, respectively. The appearance of multicystic encephalomalacia was evident in one patient 6 months after the onset of neonatal herpes simplex encephalitis. It is shown that the CT findings of neonates and young children with herpes simplex encephalitis are different from those of older children and adults, and the importance of longitudinal CT studies was stressed in clarifying the pathophysiology of the central nervous system involvement in survivors. (orig.)

  4. Pregnancy and herpes

    Science.gov (United States)

    ... and may pass the virus to their baby. Herpes type 2 (genital herpes) is the most common cause of herpes infection ... prenatal visit if you have a history of genital herpes. If you have frequent herpes outbreaks, you'll ...

  5. Exploiting Herpes Simplex Virus Entry for Novel Therapeutics

    Directory of Open Access Journals (Sweden)

    Deepak Shukla

    2013-06-01

    Full Text Available Herpes Simplex virus (HSV is associated with a variety of diseases such as genital herpes and numerous ocular diseases. At the global level, high prevalence of individuals who are seropositive for HSV, combined with its inconspicuous infection, remains a cause for major concern. At the molecular level, HSV entry into a host cell involves multiple steps, primarily the interaction of viral glycoproteins with various cell surface receptors, many of which have alternate substitutes. The molecular complexity of the virus to enter a cell is also enhanced by the existence of different modes of viral entry. The availability of many entry receptors, along with a variety of entry mechanisms, has resulted in a virus that is capable of infecting virtually all cell types. While HSV uses a wide repertoire of viral and host factors in establishing infection, current therapeutics aimed against the virus are not as diversified. In this particular review, we will focus on the initial entry of the virus into the cell, while highlighting potential novel therapeutics that can control this process. Virus entry is a decisive step and effective therapeutics can translate to less virus replication, reduced cell death, and detrimental symptoms.

  6. Further Characterization of the UL37 Protein of Herpes Simplex Virus Type 1 and its Interaction with ICP8, the Major DNA-Binding Protein of Herpes Simplex Virus

    Science.gov (United States)

    1994-01-01

    Baringer, J.R. 1974. Recovery of herpes simplex virus from human sacral ganglions. N. Eng!. J. Med. 291:828-830. Baringer, J.R. 1976. The biology of herpes ...UL37 Protein of Herpes Simplex Virus Type 1 and its Interaction with [CPS, the Major DNA~Binding Protein of Herpes Simplex Virus" beyond brief...Protein of Herpes Simplex Virus Type 1 and its Interaction with [CPS, the Major DNA-Binding Protein of Herpes Simplex Virus Allen G. Albright Doctor of

  7. Neonatal herpes simplex virus infection: epidemiology and treatment.

    Science.gov (United States)

    James, Scott H; Kimberlin, David W

    2015-03-01

    Herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) are highly prevalent viruses capable of establishing lifelong infection. Genital herpes in women of childbearing age represents a major risk for mother-to-child transmission (MTCT) of HSV infection, with primary and first-episode genital HSV infections posing the highest risk. The advent of antiviral therapy with parenteral acyclovir has led to significant improvement in neonatal HSV disease mortality. Further studies are needed to improve the clinician's ability to identify infants at increased risk for HSV infection and prevent MTCT, and to develop novel antiviral agents with increased efficacy in infants with HSV infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Autophagy interaction with herpes simplex virus type-1 infection

    Science.gov (United States)

    O'Connell, Douglas; Liang, Chengyu

    2016-01-01

    abstract More than 50% of the U.S. population is infected with herpes simplex virus type-I (HSV-1) and global infectious estimates are nearly 90%. HSV-1 is normally seen as a harmless virus but debilitating diseases can arise, including encephalitis and ocular diseases. HSV-1 is unique in that it can undermine host defenses and establish lifelong infection in neurons. Viral reactivation from latency may allow HSV-1 to lay siege to the brain (Herpes encephalitis). Recent advances maintain that HSV-1 proteins act to suppress and/or control the lysosome-dependent degradation pathway of macroautophagy (hereafter autophagy) and consequently, in neurons, may be coupled with the advancement of HSV-1-associated pathogenesis. Furthermore, increasing evidence suggests that HSV-1 infection may constitute a gradual risk factor for neurodegenerative disorders. The relationship between HSV-1 infection and autophagy manipulation combined with neuropathogenesis may be intimately intertwined demanding further investigation. PMID:26934628

  9. Combined Therapy at Persistent Herpes Virus Infection in Sickly Children

    Directory of Open Access Journals (Sweden)

    F. S. Kharlamova

    2012-01-01

    Full Text Available We examined 40 sickly children with recurrent croup (RC — 28 and bronchial obstruction (ROB — 8, (RC + ROB — 4 aged from 18 months till 14 years. We found that high frequency of persistent herpes viruses usually occurs as associations with CMV, EBV and human herpes virus 6 type. We substantiated anti viral and immune corrective therapy in two schemes compared in efficacy: the 1st group was administered monotherapy with Viferon, and the 2nd group received combined therapy Viferon + Arbidol in doses according to the age during three months. We received a more expressed clinical immunologic effect from the therapy with decreased antigenic load and frequency of recurrence of RC and ROB with Viferon application in suppositories in combination with Arbidol per orally in the intermittent scheme during three months. 

  10. Genital Herpes

    Science.gov (United States)

    Genital herpes is a sexually transmitted disease (STD) caused by a herpes simplex virus (HSV). It can cause sores on ... also infect their babies during childbirth. Symptoms of herpes are called outbreaks. You usually get sores near ...

  11. Secondary Hemophagocytic Syndrome Associated with Herpes Virus Infections

    Directory of Open Access Journals (Sweden)

    S. R. Rodionovskaya

    2015-01-01

    Full Text Available Hemophagocytic syndrome is one of the complications of herpes virus infections. Here, we describe the case of a 8—year-old male with secondary hemophagocytic syndrome. The disease was diagnosed in the early stages. The patient received treatment with dexamethasone, intravenous immunoglobulin, which has led to a weakening of the ignition and the suppression of the disease with rapid treatment.

  12. Herpes simplex virus bronchiolitis in a cannabis user

    Directory of Open Access Journals (Sweden)

    Daniel H. Libraty

    2014-01-01

    Full Text Available Herpes simplex virus (HSV lower respiratory tract infections in adults are uncommon. We present a case of HSV bronchiolitis and pneumonitis in an immunocompetent individual, likely linked to chronic habitual marijuana use and a herpetic orolabial ulcer. The case serves as a reminder to consider HSV as a potential unusual cause of lower respiratory tract infection/inflammation in individuals with chronic habitual marijuana use.

  13. Safety studies on intravenous administration of oncolytic recombinant vesicular stomatitis virus in purpose-bred beagle dogs.

    Science.gov (United States)

    LeBlanc, Amy K; Naik, Shruthi; Galyon, Gina D; Jenks, Nathan; Steele, Mike; Peng, Kah-Whye; Federspiel, Mark J; Donnell, Robert; Russell, Stephen J

    2013-12-01

    VSV-IFNβ-NIS is a novel recombinant oncolytic vesicular stomatitis virus (VSV) with documented efficacy and safety in preclinical murine models of cancer. To facilitate clinical translation of this promising oncolytic therapy in patients with disseminated cancer, we are utilizing a comparative oncology approach to gather data describing the safety and efficacy of systemic VSV-IFNβ-NIS administration in dogs with naturally occurring cancer. In support of this, we executed a dose-escalation study in purpose-bred dogs to determine the maximum tolerated dose (MTD) of systemic VSV-hIFNβ-NIS, characterize the adverse event profile, and describe routes and duration of viral shedding in healthy, immune-competent dogs. The data indicate that an intravenous dose of 10(10) TCID50 is well tolerated in dogs. Expected adverse events were mild to moderate fever, self-limiting nausea and vomiting, lymphopenia, and oral mucosal lesions. Unexpected adverse events included prolongation of partial thromboplastin time, development of bacterial urinary tract infection, and scrotal dermatitis, and in one dog receiving 10(11) TCID50 (10 × the MTD), the development of severe hepatotoxicity and symptoms of shock leading to euthanasia. Viral shedding data indicate that detectable viral genome in blood diminishes rapidly with anti-VSV neutralizing antibodies detectable in blood as early as day 5 postintravenous virus administration. While low levels of viral genome copies were detectable in plasma, urine, and buccal swabs of dogs treated at the MTD, no infectious virus was detectable in plasma, urine, or buccal swabs at any of the doses tested. These studies confirm that VSV can be safely administered systemically in dogs, justifying the use of oncolytic VSV as a novel therapy for the treatment of canine cancer.

  14. Herpes Simplex Virus Infection Mimicking Bullous Disease in an Immunocompromised Patient

    Directory of Open Access Journals (Sweden)

    Anne L.Y. Lecluse

    2010-06-01

    Full Text Available Immunodeficient patients are at risk of developing extended or atypical herpes simplex virus infections, which can be easily misdiagnosed. We present the case of a 79-year-old, treatment-induced (oral corticosteroid, immunocompromised female with an extensive atypical herpes simplex virus infection. This patient presented with multiple erosions and vesicles on the trunk with a subacute onset. The clinical differential diagnosis was herpes simplex infection, herpes zoster infection, pemphigus vulgaris or bullous pemphigoid. Due to the atypical clinical presentation and negative Tzanck test, suspicion of viral infection was low. High-dose steroid treatment was initiated. Subsequent histopathology, however, showed a herpes simplex virus infection. After discontinuing steroid treatment and initiating antiviral treatment, the patient recovered within a week. Emphasis must be placed on the importance of clinical awareness of extended and clinically atypical herpes simplex infections in immunocompromised patients. A negative Tzanck test does not rule out the possibility of a herpes infection.

  15. Identification and Characterization of the UL37 Protein of Herpes Simplex Virus Type 1 and Demonstration that it Interacts with ICP8, the Major DNA Binding Protein of Herpes Simplex Virus

    Science.gov (United States)

    1992-10-20

    R . 1974 . Recovery of herpes simplex virus from human sacral gangl ions. N. Engl. J. Med. 291 :828-830. Baringer, J.R . 1975. Herpes simplex virus...AII’I fORCE MEDICAL C(NTEIt Title of Dissertation : "Ideatification and Characterization of the UL37 Protein of Herpes Simplex Virus Type 1 and...Demonstration that It Interacts with reps. the Major DNA Binding Protein of Herpes Simplex Virus" Name of Candidate: Lisa Shelton Doctor of

  16. Herpes viruses and human papilloma virus in nasal polyposis and controls

    Directory of Open Access Journals (Sweden)

    Dimitrios Ioannidis

    2015-12-01

    Full Text Available ABSTRACT INTRODUCTION: Chronic rhinosinusitis with nasal polyps is a multifactorial disease entity with an unclear pathogenesis. Contradictory data exist in the literature on the potential implication of viral elements in adult patients with chronic rhinosinusitis. OBJECTIVE: To compare the prevalence of human herpes viruses (1-6 and Human Papilloma Virus in adult patients with chronic rhinosinusitis with nasal polyps and healthy controls. METHODS: Viral DNA presence was evaluated by real-time polymerase chain reaction application to nasal polyps specimens from 91 chronic rhinosinusitis with nasal polyps patients and nasal turbinate mucosa from 38 healthy controls. RESULTS: Epstein-Barr virus positivity was higher in nasal polyps (24/91; 26.4% versus controls (4/38; 10.5%, but the difference did not reach significance (p = 0.06. Human herpes virus-6 positivity was lower in nasal polyps (13/91; 14.29% versus controls (10/38; 26.32%,p = 0.13. In chronic rhinosinusitis with nasal polyps group, 1 sample was herpes simplex virus-1-positive (1/91; 1.1%, and another was cytomegalovirus-positive (1/91; 1.1%, versus none in controls. No sample was positive for herpes simplex virus-2, varicella-zoster virus, high-risk-human papilloma viruses (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and low-risk-human papilloma viruses (6, 11. CONCLUSION: Differences in Epstein-Barr virus and human herpes virus-6 positivity among patients with chronic rhinosinusitis with nasal polyps and healthy controls are not statistically significant, weakening the likelihood of their implication in chronic rhinosinusitis with nasal polyps pathogenesis.

  17. Herpes viruses and human papilloma virus in nasal polyposis and controls.

    Science.gov (United States)

    Ioannidis, Dimitrios; Lachanas, Vasileios A; Florou, Zoe; Bizakis, John G; Petinaki, Efthymia; Skoulakis, Charalampos E

    2015-01-01

    Chronic rhinosinusitis with nasal polyps is a multifactorial disease entity with an unclear pathogenesis. Contradictory data exist in the literature on the potential implication of viral elements in adult patients with chronic rhinosinusitis. To compare the prevalence of human herpes viruses (1-6) and Human Papilloma Virus in adult patients with chronic rhinosinusitis with nasal polyps and healthy controls. Viral DNA presence was evaluated by real-time polymerase chain reaction application to nasal polyps specimens from 91 chronic rhinosinusitis with nasal polyps patients and nasal turbinate mucosa from 38 healthy controls. Epstein-Barr virus positivity was higher in nasal polyps (24/91; 26.4%) versus controls (4/38; 10.5%), but the difference did not reach significance (p=0.06). Human herpes virus-6 positivity was lower in nasal polyps (13/91; 14.29%) versus controls (10/38; 26.32%, p=0.13). In chronic rhinosinusitis with nasal polyps group, 1 sample was herpes simplex virus-1-positive (1/91; 1.1%), and another was cytomegalovirus-positive (1/91; 1.1%), versus none in controls. No sample was positive for herpes simplex virus-2, varicella-zoster virus, high-risk-human papilloma viruses (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59) and low-risk-human papilloma viruses (6, 11). Differences in Epstein-Barr virus and human herpes virus-6 positivity among patients with chronic rhinosinusitis with nasal polyps and healthy controls are not statistically significant, weakening the likelihood of their implication in chronic rhinosinusitis with nasal polyps pathogenesis. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  18. Safety and biodistribution of a double-deleted oncolytic vaccinia virus encoding CD40 ligand in laboratory Beagles

    Directory of Open Access Journals (Sweden)

    Karoliina Autio

    2014-01-01

    Full Text Available We evaluated adverse events, biodistribution and shedding of oncolytic vaccinia virus encoding CD40 ligand in two Beagles, in preparation for a phase 1 trial in canine cancer patients. Dog 1 received one dose of vaccinia virus and was euthanized 24 hours afterwards, while dog 2 received virus four times once weekly and was euthanized 7 days after that. Dogs were monitored for adverse events and underwent a detailed postmortem examination. Blood, saliva, urine, feces, and organs were collected for virus detection. Dog 1 had mild fever and lethargy while dog 2 experienced a possible seizure 5.5 hours after first virus administration. Viral DNA declined quickly in the blood after virus administration in both dogs but was still detectable 1 week later by quantitative polymerase chain reaction. Only samples taken directly after virus infusion contained infectious virus. Small amounts of viral DNA, but no infectious virus, were detected in a few saliva and urine samples. Necropsies did not reveal any relevant pathological changes and virus DNA was detected mainly in the spleen. The dogs in the study did not have cancer, and thus adverse events could be more common and viral load higher in dogs with tumors which allow viral amplification.

  19. Isolation of a new herpes virus from human CD4+ T cells

    International Nuclear Information System (INIS)

    Frenkel, N.; Schirmer, E.C.; Wyatt, L.S.; Katsafanas, G.; Roffman, E.; Danovich, R.M.; June, C.H.

    1990-01-01

    A new human herpes virus has been isolated from CD4 + T cells purified from peripheral blood mononuclear cells of a healthy individual (RK), following incubation of the cells under conditions promoting T-cell activation. The virus could not be recovered from nonactivated cells. Cultures of lymphocytes infected with the RK virus exhibited a cytopathic effect, and electron microscopic analyses revealed a characteristic herpes virus structure. RK virus DNA did not hybridize with large probes derived from herpes simplex virus, Epstein-Barr virus, varicella-zoster virus, and human cytomegalovirus. The genetic relatedness of the RK virus to the recently identified T-lymphotropic human herpes virus 6 (HHV-6) was investigated by restriction enzyme analyses using 21 different enzymes and by blot hydridization analyses using 11 probes derived from two strains of HHV-6 (Z29 and U1102). Whereas the two HHV-6 strains exhibited only limited restriction enzyme polymorphism, cleavage of the RK virus DNA yielded distinct patterns. Of the 11 HHV-6 DNA probes tested, only 6 cross-hybridized with DNA fragments derived from the RK virus. Taken together, the maximal homology amounted to 31 kilobases of the 75 kilobases tested. The authors conclude that the RK virus is distinct from previously characterized human herpesviruses. The authors propose to designate it as the prototype of a new herpes virus, the seventh human herpes virus identified to date

  20. Cell-based delivery of oncolytic viruses: a new strategic alliance for a biological strike against cancer.

    Science.gov (United States)

    Power, Anthony T; Bell, John C

    2007-04-01

    Recent years have seen tremendous advances in the development of exquisitely targeted replicating virotherapeutics that can safely destroy malignant cells. Despite this promise, clinical advancement of this powerful and unique approach has been hindered by vulnerability to host defenses and inefficient systemic delivery. However, it now appears that delivery of oncolytic viruses within carrier cells may offer one solution to this critical problem. In this review, we compare the advantages and limitations of the numerous cell lineages that have been investigated as delivery platforms for viral therapeutics, and discuss examples showing how combined cell-virus biotherapeutics can be used to achieve synergistic gains in antitumor activity. Finally, we highlight avenues for future preclinical research that might be taken in order to refine cell-virus biotherapeutics in preparation for human trials.

  1. Association of human endogenous retroviruses with multiple sclerosis and possible interactions with herpes viruses

    DEFF Research Database (Denmark)

    Christensen, Tove

    2005-01-01

    may be members of the Herpesviridae. Several herpes viruses, such as HSV-1, VZV, EBV and HHV-6, have been associated with MS pathogenesis, and retroviruses and herpes viruses have complex interactions. The current understanding of HERVs, and specifically the investigations of HERV activation...... and expression in MS are the major subjects of this review, which also proposes to synergise the herpes and HERV findings, and presents several possible pathogenic mechanisms for HERVs in MS. Copyright (c) 2005 ...

  2. RNA interference inhibits herpes simplex virus type 1 isolated from saliva samples and mucocutaneous lesions.

    Science.gov (United States)

    Silva, Amanda Perse da; Lopes, Juliana Freitas; Paula, Vanessa Salete de

    2014-01-01

    The aim of this study was to evaluate the use of RNA interference to inhibit herpes simplex virus type-1 replication in vitro. For herpes simplex virus type-1 gene silencing, three different small interfering RNAs (siRNAs) targeting the herpes simplex virus type-1 UL39 gene (sequence si-UL 39-1, si-UL 39-2, and si-UL 39-3) were used, which encode the large subunit of ribonucleotide reductase, an essential enzyme for DNA synthesis. Herpes simplex virus type-1 was isolated from saliva samples and mucocutaneous lesions from infected patients. All mucocutaneous lesions' samples were positive for herpes simplex virus type-1 by real-time PCR and by virus isolation; all herpes simplex virus type-1 from saliva samples were positive by real-time PCR and 50% were positive by virus isolation. The levels of herpes simplex virus type-1 DNA remaining after siRNA treatment were assessed by real-time PCR, whose results demonstrated that the effect of siRNAs on gene expression depends on siRNA concentration. The three siRNA sequences used were able to inhibit viral replication, assessed by real-time PCR and plaque assays and among them, the sequence si-UL 39-1 was the most effective. This sequence inhibited 99% of herpes simplex virus type-1 replication. The results demonstrate that silencing herpes simplex virus type-1 UL39 expression by siRNAs effectively inhibits herpes simplex virus type-1 replication, suggesting that siRNA based antiviral strategy may be a potential therapeutic alternative. Copyright © 2014. Published by Elsevier Editora Ltda.

  3. Current Immunotherapeutic Strategies to Enhance Oncolytic Virotherapy

    Directory of Open Access Journals (Sweden)

    Daniel E. Meyers

    2017-06-01

    Full Text Available Oncolytic viruses (OV represent a promising strategy to augment the spectrum of cancer therapeutics. For efficacy, they rely on two general mechanisms: tumor-specific infection/cell-killing, followed by subsequent activation of the host’s adaptive immune response. Numerous OV genera have been utilized in clinical trials, ultimately culminating in the 2015 Food and Drug Administration approval of a genetically engineered herpes virus, Talminogene laherparepvec (T-VEC. It is generally accepted that OV as monotherapy have only modest clinical efficacy. However, due to their ability to elicit specific antitumor immune responses, they are prime candidates to be paired with other immune-modulating strategies in order to optimize therapeutic efficacy. Synergistic strategies to enhance the efficacy of OV include augmenting the host antitumor response through the insertion of therapeutic transgenes such as GM-CSF, utilization of the prime-boost strategy, and combining OV with immune-modulatory drugs such as cyclophosphamide, sunitinib, and immune checkpoint inhibitors. This review provides an overview of these immune-based strategies to improve the clinical efficacy of oncolytic virotherapy.

  4. CLINICAL AND VIROLOGIC FOUNDATION FOR PATHOGENETIC THERAPY OF HUMAN HERPES VIRUS TYPE 6 INFECTION IN CHILDREN

    Directory of Open Access Journals (Sweden)

    N.A. Myukke

    2006-01-01

    Full Text Available Information about an infection caused by human herpes virus type 6, its' epidemiology, pathogenesis and clinical variants, is reviewed. Clinical cases, diagnosed at a time of study, are briefly reviewed.Key words: human herpes virus type 6, exanthema subitum (roseola infantum, fever of unknown origin, mononucleosis like syndrome, meningoencephalitis, children.

  5. Differential in situ hybridization for herpes simplex virus typing in routine skin biopsies

    NARCIS (Netherlands)

    Botma, H. J.; Dekker, H.; van Amstel, P.; Cairo, I.; van den Berg, F. M.

    1995-01-01

    A herpes simplex virus (HSV) type 2 specific recombinant plasmid probe designated pH2S3 was constructed from non-HSV-1 crossreactive regions of the HSV-2 genome. DNA in situ hybridization on in vitro reconstructed tissue samples of sheep collagen matrix impregnated with herpes virus-infected human

  6. Detection of Human Herpes Virus 8 in Kaposi's sarcoma tissues at ...

    African Journals Online (AJOL)

    Introduction: Human herpes virus-8, a γ2-herpes virus, is the aetiological agent of Kaposi sarcoma. Recently, Kaposi's sarcoma cases have increased in Zambia. However, the diagnosis of this disease is based on morphological appearance of affected tissues using histological techniques, and the association with its ...

  7. Association between psychopathic disorder and serum antibody to herpes simplex virus (type 1).

    Science.gov (United States)

    Cleobury, J F; Skinner, G R; Thouless, M E; Wildy, P

    1971-02-20

    The sera of a small of patients has been examined for herpes simplex virus antibody. Three clinically-defined groups of patients were compared: (a) aggressive psychopaths, (b) psychiatric controls, and (c) general hospital patients. The first group had an unusually high average kinetic neutralization constant against type 1 herpes simplex virus.

  8. [The differential diagnosis of amyotrophic lateral sclerosis and subacute herpes virus myelitis].

    Science.gov (United States)

    Levitsky, G N; Zavalishin, E E; Chub, R V; Morozova, E A; Serkov, S V

    2016-01-01

    Differential diagnosis of incurable and potentially curable neurological diseases is an urgent problem of modern neurology. The authors present a case report of subacute herpes virus myelitis, a rare complication of herpes infection by Varicella-Zoster virus. The differential diagnosis with amyotrophic lateral sclerosis is described.

  9. UV radiation and mouse models of herpes simplex virus infection

    International Nuclear Information System (INIS)

    Norval, Mary; El-Ghorr, A.A.

    1996-01-01

    Orolabial human infections with herpes simplex virus type 1 (HSV-1) are very common; following the primary epidermal infection, the virus is retained in a latent form in the trigeminal ganglia from where it can reactivate and cause a recrudescent lesion. Recrudescences are triggered by various stimuli including exposure to sunlight. In this review three categories of mouse models are used to examine the effects of UV irradiation on HSV infections: these are UV exposure prior to primary infection, UV exposure as a triggering event for recrudescence and UV exposure prior to challenge with virus is mice already immunized to HSV. In each of these models immunosuppression occurs, which is manifest, in some instances, in increased morbidity or an increased rate of recrudescence. Where known, the immunological mechanisms involved in the models are summarized and their relevance to human infections considered. (Author)

  10. Rapid Detection of Herpes Viruses for Clinical Applications

    Science.gov (United States)

    Pierson, Duane; Mehta, Satish

    2013-01-01

    There are eight herpes viruses that infect humans, causing a wide range of diseases resulting in considerable morbidity and associated costs. Varicella zoster virus (VZV) is a human herpes virus that causes chickenpox in children and shingles in adults. Approximately 1,000,000 new cases of shingles occur each year; post-herpetic neuralgia (PHN) follows shingles in 100,000 to 200,000 people annually. PHN is characterized by debilitating, nearly unbearable pain for weeks, months, and even years. The onset of shingles is characterized by pain, followed by the zoster rash, leading to blisters and severe pain. The problem is that in the early stages, shingles can be difficult to diagnose; chickenpox in adults can be equally difficult to diagnose. As a result, both diseases can be misdiagnosed (false positive/negative). A molecular assay has been adapted for use in diagnosing VZV diseases. The polymerase chain reaction (PCR) assay is a non-invasive, rapid, sensitive, and highly specific method for VZV DNA detection. It provides unequivocal results and can effectively end misdiagnoses. This is an approximately two-hour assay that allows unequivocal diagnosis and rapid antiviral drug intervention. It has been demonstrated that rapid intervention can prevent full development of the disease, resulting in reduced likelihood of PHN. The technology was extended to shingles patients and demonstrated that VZV is shed in saliva and blood of all shingles patients. The amount of VZV in saliva parallels the medical outcome.

  11. Herpes simplex virus 1 pneumonia: conventional chest radiograph pattern

    International Nuclear Information System (INIS)

    Umans, U.; Golding, R.P.; Duraku, S.; Manoliu, R.A.

    2001-01-01

    The aim of this study was to describe the findings on plain chest radiographs in patients with herpes simplex virus pneumonia (HSVP). The study was based on 17 patients who at a retrospective search have been found to have a monoinfection with herpes simplex virus. The diagnosis was established by isolation of the virus from material obtained during fiberoptic bronchoscopy (FOB) which also included broncho-alveolar lavage and tissue sampling. Fourteen patients had a chest radiograph performed within 24 h of the date of the FOB. Two radiographs showed no abnormalities of the lung parenchyma. The radiographs of the other 12 patients showed lung opacification, predominantly lobar or more extensive and always bilateral. Most patients presented with a mixed airspace and interstitial pattern of opacities, but 11 of 14 showed at least an airspace consolidation. Lobar, segmental, or subsegmental atelectasis was present in 7 patients, and unilateral or bilateral pleural effusion in 8 patients, but only in 1 patient was it a large amount. In contradiction to the literature which reports a high correlation between HSVP and acute respiratory distress syndrome (ARDS), 11 of 14 patients did not meet the pathophysiological criteria for ARDS. The radiologist may suggest the diagnosis of HSVP when bilateral airspace consolidation or mixed opacities appear in a susceptible group of patients who are not thought to have ARDS or pulmonary edema. The definite diagnosis of HSV pneumonia can be established only on the basis of culture of material obtained by broncho-alveolar lavage. (orig.)

  12. [Meningoradiculitis caused by herpes simplex virus type 2].

    Science.gov (United States)

    Bollen, A E; Venema, A W; Veldkamp, K E

    2007-10-27

    A 24-year-old immune-competent woman was admitted to hospital with a three-day history of fever and headache. On examination bilateral facial nerve palsy, lumbosacral radicular pain, reduced sacral sensibility and urinary retention were found. Open perianal lesions were suspect for genital herpes. The symptoms were compatible with a meningoradiculitis including a sacral polyradiculitis. On testing, cerebrospinal fluid was found to be abnormal with a lymphocytic cell reaction. Polymerase chain reaction (PCR) of cerebrospinal fluid and of the perianal lesions was positive for herpes simplex virus type 2 (HSV-2). An MRI scan showed colouration of part of the cauda equina. The patient was treated by intravenous injections of acyclovir 10 mg/kg t.i.d. for 21 days, after which she completely recovered. HSV-2 infection of the nervous system can cause lymphocytic, and sometimes recurrent meningitis as well as sacral polyradiculitis. It may also occur without any symptomatic genital herpes infection. A positive result from a PCR test of the cerebrospinal fluid confirms this diagnosis. Treatment with acyclovir should be started as soon as possible.

  13. Burning mouth syndrome due to herpes simplex virus type 1.

    Science.gov (United States)

    Nagel, Maria A; Choe, Alexander; Traktinskiy, Igor; Gilden, Don

    2015-04-01

    Burning mouth syndrome is characterised by chronic orofacial burning pain. No dental or medical cause has been found. We present a case of burning mouth syndrome of 6 months duration in a healthy 65-year-old woman, which was associated with high copy numbers of herpes simplex virus type 1 (HSV-1) DNA in the saliva. Her pain resolved completely after antiviral treatment with a corresponding absence of salivary HSV-1 DNA 4 weeks and 6 months later. 2015 BMJ Publishing Group Ltd.

  14. Ganciclovir nucleotides accumulate in mitochondria of rat liver cells expressing the herpes simplex virus thymidine kinase gene

    NARCIS (Netherlands)

    van der Eb, Marjolijn M.; Geutskens, Sacha B.; van Kuilenburg, André B. P.; van Lenthe, Henk; van Dierendonck, Jan-Hein; Kuppen, Peter J. K.; van Ormondt, Hans; van de Velde, Cornelis J. H.; Wanders, Ronald J. A.; van Gennip, Albert H.; Hoeben, Rob C.

    2003-01-01

    BACKGROUND: Ganciclovir exhibits broad-spectrum activity against DNA viruses such as cytomegaloviruses, herpes simplex viruses, varicella-zoster virus, Epstein-Barr virus and human herpes virus-6. Ganciclovir is widely applied for anti-herpetic treatment, cytomegalovirus prophylaxis after organ

  15. Capitalizing on Cancer Specific Replication: Oncolytic Viruses as a Versatile Platform for the Enhancement of Cancer Immunotherapy Strategies

    Directory of Open Access Journals (Sweden)

    Donald Bastin

    2016-08-01

    Full Text Available The past decade has seen considerable excitement in the use of biological therapies in treating neoplastic disease. In particular, cancer immunotherapy and oncolytic virotherapy have emerged as two frontrunners in this regard with the first FDA approvals for agents in both categories being obtained in the last 5 years. It is becoming increasingly apparent that these two approaches are not mutually exclusive and that much of the therapeutic benefit obtained from the use of oncolytic viruses (OVs is in fact the result of their immunotherapeutic function. Indeed, OVs have been shown to recruit and activate an antitumor immune response and much of the current work in this field centers around increasing this activity through strategies such as engineering genes for immunomodulators into OV backbones. Because of their broad immunostimulatory functions, OVs can also be rationally combined with a variety of other immunotherapeutic approaches including cancer vaccination strategies, adoptive cell transfer and checkpoint blockade. Therefore, while they are important therapeutics in their own right, the true power of OVs may lie in their ability to enhance the effectiveness of a wide range of immunotherapies.

  16. Surgical excision for recurrent herpes simplex virus 2 (HSV-2) anogenital infection in a patient with human immunodeficiency virus (HIV).

    Science.gov (United States)

    Arinze, Folasade; Shaver, Aaron; Raffanti, Stephen

    2017-10-01

    Recurrent anogenital herpes simplex virus infections are common in patients with human immunodeficiency virus (HIV), of whom approximately 5% develop resistance to acyclovir. We present a case of a 49-year-old man with HIV who had an 8-year history of recurrent left inguinal herpes simplex virus type 2 ulcerations. He initially responded to oral acyclovir, but developed resistance to acyclovir and eventually foscarnet. The lesion progressed to a large hypertrophic mass that required surgical excision, which led to resolution without recurrences. Our case highlights the importance of surgical excision as a treatment option in refractory herpes simplex virus anogenital infections.

  17. Inhibition of herpes simplex virus replication by tobacco extracts.

    Science.gov (United States)

    Hirsch, J M; Svennerholm, B; Vahlne, A

    1984-05-01

    Herpes simplex virus type 1 (HSV-1) has been associated with the genesis of leukoplakias, epithelial atypia, and oral cancer. Tobacco habits, such as snuff dipping, are also definitely correlated with this type of lesion. The normal cytolytic HSV-1 infection can, after in vitro inactivation, transform cells. Extracts of snuff were prepared and assayed for their ability to inhibit HSV-1 replication. Plaque formation assays of HSV-1 in the presence of snuff extract showed that a reduced number of plaques was formed. Different batches of one brand of snuff were tested for inhibition of herpes simplex virus (HSV) production. More than 99% inhibition of 24-hr HSV production was obtained with undiluted batches. The 1:5 dilutions of snuff had an inhibitory effect of 85% and 1:25 dilutions, 39%. In agreement, the attachment of the virus to the host cell and penetration of the virus to the cell nuclei were found to be inhibited as was the synthesis of viral DNA. Nicotine had an inhibitory effect, while aromatic additions to snuff were found to have no major inhibitory effect on HSV replication. Snuff extracts were prepared from different brands of snuff reported to contain high and low quantities of tobacco-specific N-nitrosamines. Brands with reported high levels of tobacco-specific N-nitrosamines had significantly greater ability to inhibit HSV replication. In conclusion, this study has shown that extracts of snuff have inhibitory effects on the production of cytolytic HSV-1 infections. A chronic snuff dipper keeps tobacco in the mouth for the major part of the day. Thus, virus shed in the oral cavity in connection with a reactivated latent HSV-1 infection has great possibilities of being affected by snuff or derivatives of snuff. It is suggested that an interaction between tobacco products and HSV-1 might be involved in the development of dysplastic lesions in the oral cavity.

  18. Rapid Generation of Multiple Loci-Engineered Marker-free Poxvirus and Characterization of a Clinical-Grade Oncolytic Vaccinia Virus

    Directory of Open Access Journals (Sweden)

    Zong Sheng Guo

    2017-12-01

    Full Text Available Recombinant poxviruses, utilized as vaccine vectors and oncolytic viruses, often require manipulation at multiple genetic loci in the viral genome. It is essential for viral vectors to possess no adventitious mutations and no (antibiotic selection marker in the final product for human patients in order to comply with the guidance from the regulatory agencies. Rintoul et al. have previously developed a selectable and excisable marker (SEM system for the rapid generation of recombinant vaccinia virus. In the current study, we describe an improved methodology for rapid creation and selection of recombinant poxviruses with multiple genetic manipulations solely based on expression of a fluorescent protein and with no requirement for drug selection that can lead to cellular stress and the risk of adventitious mutations throughout the viral genome. Using this improved procedure combined with the SEM system, we have constructed multiple marker-free oncolytic poxviruses expressing different cytokines and other therapeutic genes. The high fidelity of inserted DNA sequences validates the utility of this improved procedure for generation of therapeutic viruses for human patients. We have created an oncolytic poxvirus expressing human chemokine CCL5, designated as vvDD-A34R-hCCL5, with manipulations at two genetic loci in a single virus. Finally, we have produced and purified this virus in clinical grade for its use in a phase I clinical trial and presented data on initial in vitro characterization of the virus.

  19. Indirect micro-immunofluorescence test for detecting type-specific antibodies to herpes simplex virus.

    Science.gov (United States)

    Forsey, T; Darougar, S

    1980-02-01

    A rapid indirect micro-immunofluorescence test capable of detecting and differentiating type-specific antibodies to herpes simplex virus is described. The test proved highly sensitive and, in 80 patients with active herpes ocular infection, antibody was detected in 94%. No anti-herpes antibody was detected in a control group of 20 patients with adenovirus infections. Testing of animal sera prepared against herpes simplex virus types 1 and 2 and of human sera from cases of ocular and genital herpes infections showed that the test can differentiate antibodies to the infecting serotypes. Specimens of whole blood, taken by fingerprick, and eye secretions, both collected on cellulose sponges, could be tested by indirect micro-immunofluorescence. Anti-herpes IgG, IgM, and IgA can also be detected.

  20. Pediatric glioma stem cells: biologic strategies for oncolytic HSV virotherapy

    Directory of Open Access Journals (Sweden)

    Gregory K Friedman

    2013-02-01

    Full Text Available While glioblastoma multiforme (GBM is the most common adult malignant brain tumor, GBMs in childhood represent less than 10% of pediatric malignant brain tumors and are phenotypically and molecularly distinct from adult GBMs. Similar to adult patients, outcomes for children with high-grade gliomas (HGGs remain poor. Furthermore, the significant morbidity and mortality yielded by pediatric GBM is compounded by neurotoxicity for the developing brain caused by current therapies. Poor outcomes have been attributed to a subpopulation of chemotherapy and radiotherapy resistant cells, termed ‘glioma stem cells’ (GSCs, ‘glioma progenitor cells’, or ‘glioma-initiating cells', which have the ability to initiate and maintain the tumor and to repopulate the recurring tumor after conventional therapy. Future innovative therapies for pediatric HGGs must be able to eradicate these therapy-resistant GSCs. Oncolytic herpes simplex viruses, genetically engineered to be safe for normal cells and to express diverse foreign anti-tumor therapeutic genes, have been demonstrated in preclinical studies to infect and kill GSCs and tumor cells equally while sparing normal brain cells. In this review, we discuss the unique aspects of pediatric GSCs, including markers to identify them, the microenvironment they reside in, signaling pathways that regulate them, mechanisms of cellular resistance, and approaches to target GSCs, with a focus on the promising therapeutic, genetically engineered oncolytic herpes simplex virus (HSV.

  1. Prevalence of herpes simplex, Epstein Barr and human papilloma viruses in oral lichen planus.

    Science.gov (United States)

    Yildirim, Benay; Sengüven, Burcu; Demir, Cem

    2011-03-01

    The aim of the present study was to assess the prevalence of Herpes Simplex virus, Epstein Barr virus and Human Papilloma virus -16 in oral lichen planus cases and to evaluate whether any clinical variant, histopathological or demographic feature correlates with these viruses. The study was conducted on 65 cases. Viruses were detected immunohistochemically. We evaluated the histopathological and demographic features and statistically analysed correlation of these features with Herpes Simplex virus, Epstein Barr virus and Human Papilloma virus-16 positivity. Herpes Simplex virus was positive in six (9%) cases and this was not statistically significant. The number of Epstein Barr virus positive cases was 23 (35%) and it was statistically significant. Human Papilloma virus positivity in 14 cases (21%) was statistically significant. Except basal cell degeneration in Herpes Simplex virus positive cases, we did not observe any significant correlation between virus positivity and demographic or histopathological features. However an increased risk of Epstein Barr virus and Human Papilloma virus infection was noted in oral lichen planus cases. Taking into account the oncogenic potential of both viruses, oral lichen planus cases should be detected for the presence of these viruses.

  2. Unusual Initial Presentation of Herpes Simplex Virus as Inguinal Lymphadenopathy

    Directory of Open Access Journals (Sweden)

    Sarah A. Fleming

    2015-01-01

    Full Text Available Genital herpes simplex virus (HSV infections are a common cause of inguinal lymphadenopathy. However, surgical excision of enlarged inguinal nodes is almost never performed to initially diagnose genital herpes simplex virus, due to the distinct external presentation of genital herpetic vesicles that usually occur with the first symptoms of infection. Therefore, the histologic and immunophenotypic features of HSV-associated inguinal lymphadenopathy are unfamiliar to most pathologists. The current report describes the lymph node pathology of two immunocompetent patients, whose initial HSV diagnosis was established through surgical excision of enlarged inguinal lymph nodes. Histologic examination showed features consistent with viral lymphadenopathy, including florid follicular hyperplasia, monocytoid B-cell hyperplasia, and paracortical hyperplasia without extensive necrosis. Immunohistochemical stains for HSV antigens, using polyclonal anti-HSV I and II antibodies, demonstrate strong immunoreactivity for HSV in a small number of cells in the subcapsular sinuses, especially in areas with monocytoid B-cell hyperplasia. Rare scattered HSV-positive cells also are identified in paracortical areas and germinal centers. We conclude that an initial diagnosis of genital HSV infection may be established by inguinal lymph node biopsy.

  3. Virus specific antigens in mammalian cells infected with herpes simplex virus

    Science.gov (United States)

    Watson, D. H.; Shedden, W. I. H.; Elliot, A.; Tetsuka, T.; Wildy, P.; Bourgaux-Ramoisy, D.; Gold, E.

    1966-01-01

    Antisera to specific proteins in herpes simplex infected cells were produced by immunization of rabbits with infected rabbit kidney cells. These antisera were highly virus specific and produced up to twelve lines in immunodiffusion tests against infected cell extracts. Acrylamide electrophoresis and immunoelectrophoresis revealed up to ten virus specific proteins of varying size. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5 PMID:4288648

  4. Serum herpes simplex antibodies

    Science.gov (United States)

    ... causes cold sores (oral herpes). HSV-2 causes genital herpes. How the Test is Performed A blood sample ... person has ever been infected with oral or genital herpes . It looks for antibodies to herpes simplex virus ...

  5. Concomitant herpes simplex virus colitis and hepatitis in a man with ulcerative colitis

    Science.gov (United States)

    Phadke, Varun K.; Friedman-Moraco, Rachel J.; Quigley, Brian C.; Farris, Alton B.; Norvell, J. P.

    2016-01-01

    Abstract Background: Herpesvirus infections often complicate the clinical course of patients with inflammatory bowel disease; however, invasive disease due to herpes simplex virus is distinctly uncommon. Methods: We present a case of herpes simplex virus colitis and hepatitis, review all the previously published cases of herpes simplex virus colitis, and discuss common clinical features and outcomes. We also discuss the epidemiology, clinical manifestations, diagnosis, and management of herpes simplex virus infections, focusing specifically on patients with inflammatory bowel disease. Results: A 43-year-old man with ulcerative colitis, previously controlled with an oral 5-aminosalicylic agent, developed symptoms of a colitis flare that did not respond to treatment with systemic corticosteroid therapy. One week later he developed orolabial ulcers and progressive hepatic dysfunction, with markedly elevated transaminases and coagulopathy. He underwent emergent total colectomy when imaging suggested bowel micro-perforation. Pathology from both the colon and liver was consistent with herpes simplex virus infection, and a viral culture of his orolabial lesions and a serum polymerase chain reaction assay also identified herpes simplex virus. He was treated with systemic antiviral therapy and made a complete recovery. Conclusions: Disseminated herpes simplex virus infection with concomitant involvement of the colon and liver has been reported only 3 times in the published literature, and to our knowledge this is the first such case in a patient with inflammatory bowel disease. The risk of invasive herpes simplex virus infections increases with some, but not all immunomodulatory therapies. Optimal management of herpes simplex virus in patients with inflammatory bowel disease includes targeted prophylactic therapy for patients with evidence of latent infection, and timely initiation of antiviral therapy for those patients suspected to have invasive disease. PMID:27759636

  6. Prediction of conserved sites and domains in glycoproteins B, C and D of herpes viruses.

    Science.gov (United States)

    Rasheed, Muhammad Asif; Ansari, Abdur Rahman; Ihsan, Awais; Navid, Muhammad Tariq; Ur-Rehman, Shahid; Raza, Sohail

    2018-03-01

    Glycoprotein B (gB), C (gC) and D (gD) of herpes simplex virus are implicated in virus adsorption and penetration. The gB, gC and gD are glycoproteins for different processes of virus binding and attachment to the host cells. Moreover, their expression is necessary and sufficient to induce cell fusion in the absence of other glycoproteins. Egress of herpes simplex virus (HSV) and other herpes viruses from cells involves extensive modification of cellular membranes and sequential envelopment, de-envelopment and re-envelopment steps. Viral glycoproteins are important in these processes, and frequently two or more glycoproteins can largely suffice in any step. Hence, we target the 3 important glycoproteins (B, C and D) of eight different herpes viruses of different species. These species include human (HSV1 and 2), bovine (BHV1), equine (EHV1 and 4), chicken (ILT1 and MDV2) and pig (PRV1). By applying different bioinformatics tools, we highlighted the conserved sites in these glycoproteins which might be most significant regarding attachment and infection of the viruses. Moreover the conserved domains in these glycoproteins are also highlighted. From this study, we will able to analyze the role of different viral glycoproteins of different species during herpes virus adsorption and penetration. Moreover, this study will help to construct the antivirals that target the glycoproteins of different herpes viruses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Type C virus activation in nontransformed mouse cells by uv-irradiated herpes simplex virus

    International Nuclear Information System (INIS)

    Hampar, B.; Hatanaka, M.; Aulakh, G.; Derge, J.G.; Lee, L.; Showalter, S.

    1977-01-01

    Infection of nontransformed mouse cells with uv-irradiated herpes simplex virus (uv-HSV) resulted in the activation of an endogenous xenotropic (x-tropic) type C virus. Synthesis of type C virus persisted for only a few days, with most of the virus remaining cell associated. The levels of type C virus activated by uv-HSV varied depending on the multiplicity of infection (m.o.i.) and the uv dose. At low uv doses, where cell killing occurred, little or no type C virus synthesis was observed. Maximum levels of type C virus synthesis were observed with the minimum uv dose which eliminated cell killing by HSV. Synthesis of type C virus, albeit at lower levels, was still observed at uv doses beyond those required to prevent cell killing

  8. Type C virus activation in nontransformed mouse cells by uv-irradiated herpes simplex virus

    Energy Technology Data Exchange (ETDEWEB)

    Hampar, B. (National Institutes of Health, Bethesda, MD); Hatanaka, M.; Aulakh, G.; Derge, J.G.; Lee, L.; Showalter, S.

    1977-02-01

    Infection of nontransformed mouse cells with uv-irradiated herpes simplex virus (uv-HSV) resulted in the activation of an endogenous xenotropic (x-tropic) type C virus. Synthesis of type C virus persisted for only a few days, with most of the virus remaining cell associated. The levels of type C virus activated by uv-HSV varied depending on the multiplicity of infection (m.o.i.) and the uv dose. At low uv doses, where cell killing occurred, little or no type C virus synthesis was observed. Maximum levels of type C virus synthesis were observed with the minimum uv dose which eliminated cell killing by HSV. Synthesis of type C virus, albeit at lower levels, was still observed at uv doses beyond those required to prevent cell killing.

  9. Latency in vitro using irradiated Herpes simplex virus

    International Nuclear Information System (INIS)

    Nishiyama, Y.; Rapp, F.

    1981-01-01

    Human embryonic fibroblasts infected with u.v.-irradiated herpes simplex virus type 2 (HSV-2, strain 186) and maintained at 40.5 0 C did not yield detectable virus. Virus synthesis was induced by temperature shift-down to 36.5 0 C. The induced virus grew very poorly and was inactivated very rapidly at 40.5 0 C. Non-irradiated virus failed to establish latency at 40.5 0 C in infected cells. Enhanced reactivation of HSV-2 was observed when latently infected cultures were superinfected with human cytomegalovirus (HCMV) or irradiated with a small dose of u.v. light at the time of temperature shift-down. HCMV did not enhance synthesis of HSV-2 during a normal growth cycle but did enhance synthesis of u.v.-irradiated HSV-2. These observations suggest that in this in vitro latency system, some HSV genomes damaged by u.v. irradiation were maintained in a non-replicating state without being destroyed or significantly repaired. (author)

  10. Radioimmunoassay of Herpes simplex virus antibody: correlation with ganglionic infection

    International Nuclear Information System (INIS)

    Forghani, B.; Klassen, T.; Baringer, J.R.

    1977-01-01

    Results of herpes simplex virus (HSV) isolation from a series of human post-mortem trigeminal thoracic and sacral ganglia were correlated with HSV antibody type(s) detected in the sera by radioimmunoassay (RIA). HSV type I was isolated from trigeminal ganglia of 44 out of 90 individuals, from thoracic ganglia of 1 out of 25, and from sacral ganglia of 1 out of 68 cases. HSV type was recovered from sacral ganglia of 8 out of 68 individuals. In all cases in which an HSV was isolated from ganglia and was available for testing, homologous, type-specific antibody was demonstrable, and in a few instances antibody to the heterologous HSV was also detected. In those individuals in which HSV type I was isolated from trigeminal ganglia and HSV type 2 from sacral ganglia, antibody to both virus types was present in the sera, indicating that simultaneous latent infections with each of the two viruses can occur, and that antibody is produced to each virus independently. Antibody to HSV type 1, 2 or both types was demonstrated in 8 out of 10 cases in which virus isolation attempts were negative, suggesting either a higher sensitivity of RIA for detecting HSV infection, or the presence of latent HSV at some other site in the body which was not sampled. (author)

  11. Imaging characteristics, tissue distribution, and spread of a novel oncolytic vaccinia virus carrying the human sodium iodide symporter.

    Directory of Open Access Journals (Sweden)

    Dana Haddad

    Full Text Available INTRODUCTION: Oncolytic viruses show promise for treating cancer. However, to assess therapy and potential toxicity, a noninvasive imaging modality is needed. This study aims to determine the in vivo biodistribution, and imaging and timing characteristics of a vaccinia virus, GLV-1h153, encoding the human sodium iodide symporter (hNIS. METHODS: GLV-1h153 was modified from GLV-1h68 to encode the hNIS gene. Timing of cellular uptake of radioiodide (131I in human pancreatic carcinoma cells PANC-1 was assessed using radiouptake assays. Viral biodistribution was determined in nude mice bearing PANC-1 xenografts, and infection in tumors confirmed histologically and optically via Green Fluorescent Protein (GFP and bioluminescence. Timing characteristics of enhanced radiouptake in xenografts were assessed via (124I-positron emission tomography (PET. Detection of systemic administration of virus was investigated with both (124I-PET and 99m-technecium gamma-scintigraphy. RESULTS: GLV-1h153 successfully facilitated time-dependent intracellular uptake of (131I in PANC-1 cells with a maximum uptake at 24 hours postinfection (P<0.05. In vivo, biodistribution profiles revealed persistence of virus in tumors 5 weeks postinjection at 10(9 plaque-forming unit (PFU/gm tissue, with the virus mainly cleared from all other major organs. Tumor infection by GLV-1h153 was confirmed via optical imaging and histology. GLV-1h153 facilitated imaging virus replication in tumors via PET even at 8 hours post radiotracer injection, with a mean %ID/gm of 3.82 ± 0.46 (P<0.05 2 days after intratumoral administration of virus, confirmed via tissue radiouptake assays. One week post systemic administration, GLV-1h153-infected tumors were detected via (124I-PET and 99m-technecium-scintigraphy. CONCLUSION: GLV-1h153 is a promising oncolytic agent against pancreatic cancer with a promising biosafety profile. GLV-1h153 facilitated time-dependent hNIS-specific radiouptake in pancreatic

  12. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans.

    Science.gov (United States)

    Efstathiou, S; Minson, A C; Field, H J; Anderson, J R; Wildy, P

    1986-02-01

    Herpes simplex virus-specific DNA sequences have been detected by Southern hybridization analysis in both central and peripheral nervous system tissues of latently infected mice. We have detected virus-specific sequences corresponding to the junction fragment but not the genomic termini, an observation first made by Rock and Fraser (Nature [London] 302:523-525, 1983). This "endless" herpes simplex virus DNA is both qualitatively and quantitatively stable in mouse neural tissue analyzed over a 4-month period. In addition, examination of DNA extracted from human trigeminal ganglia has shown herpes simplex virus DNA to be present in an "endless" form similar to that found in the mouse model system. Further restriction enzyme analysis of latently infected mouse brainstem and human trigeminal DNA has shown that this "endless" herpes simplex virus DNA is present in all four isomeric configurations.

  13. Immunization against Genital Herpes with a Vaccine Virus That has Defects in Productive and Latent Infection

    Science.gov (United States)

    da Costa, Xavier J.; Jones, Cheryl A.; Knipe, David M.

    1999-06-01

    An effective vaccine for genital herpes has been difficult to achieve because of the limited efficacy of subunit vaccines and the safety concerns about live viruses. As an alternative approach, mutant herpes simplex virus strains that are replication-defective can induce protective immunity. To increase the level of safety and to prove that replication was not needed for immunization, we constructed a mutant herpes simplex virus 2 strain containing two deletion mutations, each of which eliminated viral replication. The double-mutant virus induces protective immunity that can reduce acute viral shedding and latent infection in a mouse genital model, but importantly, the double-mutant virus shows a phenotypic defect in latent infection. This herpes vaccine strain, which is immunogenic but has defects in both productive and latent infection, provides a paradigm for the design of vaccines and vaccine vectors for other sexually transmitted diseases, such as AIDS.

  14. Seroprevalences of herpes simplex virus type 1 and type 2 among pregnant women in the Netherlands

    NARCIS (Netherlands)

    Gaytant, Michael A.; Steegers, Eric A. P.; van Laere, Marloes; Semmekrot, Ben A.; Groen, Jan; Weel, Jan F.; van der Meijden, Willem I.; Boer, Kees; Galama, Jochem M. D.

    2002-01-01

    BACKGROUND: In the Netherlands 73% of cases of neonatal herpes are caused by herpes simplex virus type 1 (HSV-1), whereas in the United States a majority are caused by HSV type 2 (HSV-2). GOAL To understand this difference we undertook a seroepidemiological study on the prevalence of HSV-1 and HSV-2

  15. Treatment of medulloblastoma using an oncolytic measles virus encoding the thyroidal sodium iodide symporter shows enhanced efficacy with radioiodine

    International Nuclear Information System (INIS)

    Hutzen, Brian; Pierson, Christopher R; Russell, Stephen J; Galanis, Evanthia; Raffel, Corey; Studebaker, Adam W

    2012-01-01

    Medulloblastoma is the most common malignant brain tumor of childhood. Although the clinical outcome for medulloblastoma patients has improved significantly, children afflicted with the disease frequently suffer from debilitating side effects related to the aggressive nature of currently available therapy. Alternative means for treating medulloblastoma are desperately needed. We have previously shown that oncolytic measles virus (MV) can selectively target and destroy medulloblastoma tumor cells in localized and disseminated models of the disease. MV-NIS, an oncolytic measles virus that encodes the human thyroidal sodium iodide symporter (NIS), has the potential to deliver targeted radiotherapy to the tumor site and promote a localized bystander effect above and beyond that achieved by MV alone. We evaluated the efficacy of MV-NIS against medulloblastoma cells in vitro and examined their ability to incorporate radioiodine at various timepoints, finding peak uptake at 48 hours post infection. The effects of MV-NIS were also evaluated in mouse xenograft models of localized and disseminated medulloblastoma. Athymic nude mice were injected with D283med-Luc medulloblastoma cells in the caudate putamen (localized disease) or right lateral ventricle (disseminated disease) and subsequently treated with MV-NIS. Subsets of these mice were given a dose of 131 I at 24, 48 or 72 hours later. MV-NIS treatment, both by itself and in combination with 131 I, elicited tumor stabilization and regression in the treated mice and significantly extended their survival times. Mice given 131 I were found to concentrate radioiodine at the site of their tumor implantations. In addition, mice with localized tumors that were given 131 I either 24 or 48 hours after MV-NIS treatment exhibited a significant survival advantage over mice given MV-NIS alone. These data suggest MV-NIS plus radioiodine may be a potentially useful therapy for the treatment of medulloblastoma

  16. Treatment of medulloblastoma using an oncolytic measles virus encoding the thyroidal sodium iodide symporter shows enhanced efficacy with radioiodine

    Directory of Open Access Journals (Sweden)

    Hutzen Brian

    2012-11-01

    Full Text Available Abstract Background Medulloblastoma is the most common malignant brain tumor of childhood. Although the clinical outcome for medulloblastoma patients has improved significantly, children afflicted with the disease frequently suffer from debilitating side effects related to the aggressive nature of currently available therapy. Alternative means for treating medulloblastoma are desperately needed. We have previously shown that oncolytic measles virus (MV can selectively target and destroy medulloblastoma tumor cells in localized and disseminated models of the disease. MV-NIS, an oncolytic measles virus that encodes the human thyroidal sodium iodide symporter (NIS, has the potential to deliver targeted radiotherapy to the tumor site and promote a localized bystander effect above and beyond that achieved by MV alone. Methods We evaluated the efficacy of MV-NIS against medulloblastoma cells in vitro and examined their ability to incorporate radioiodine at various timepoints, finding peak uptake at 48 hours post infection. The effects of MV-NIS were also evaluated in mouse xenograft models of localized and disseminated medulloblastoma. Athymic nude mice were injected with D283med-Luc medulloblastoma cells in the caudate putamen (localized disease or right lateral ventricle (disseminated disease and subsequently treated with MV-NIS. Subsets of these mice were given a dose of 131I at 24, 48 or 72 hours later. Results MV-NIS treatment, both by itself and in combination with 131I, elicited tumor stabilization and regression in the treated mice and significantly extended their survival times. Mice given 131I were found to concentrate radioiodine at the site of their tumor implantations. In addition, mice with localized tumors that were given 131I either 24 or 48 hours after MV-NIS treatment exhibited a significant survival advantage over mice given MV-NIS alone. Conclusions These data suggest MV-NIS plus radioiodine may be a potentially useful therapy for

  17. Oncolytic Adenoviruses in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Ramon Alemany

    2014-02-01

    Full Text Available The therapeutic use of viruses against cancer has been revived during the last two decades. Oncolytic viruses replicate and spread inside tumors, amplifying their cytotoxicity and simultaneously reversing the tumor immune suppression. Among different viruses, recombinant adenoviruses designed to replicate selectively in tumor cells have been clinically tested by intratumoral or systemic administration. Limited efficacy has been associated to poor tumor targeting, intratumoral spread, and virocentric immune responses. A deeper understanding of these three barriers will be required to design more effective oncolytic adenoviruses that, alone or combined with chemotherapy or immunotherapy, may become tools for oncologists.

  18. Pneumomediastinum and Pneumothorax Associated with Herpes Simplex Virus (HSV) Pneumonia.

    Science.gov (United States)

    López-Rivera, Fermín; Colón Rivera, Xavier; González Monroig, Hernán A; Garcia Puebla, Juan

    2018-01-30

    BACKGROUND Pneumonia is one of the most common causes of death from infectious disease in the United States (US). Although most cases of community-acquired pneumonia (CAP) are secondary to bacterial infection, up to one-third of cases are secondary to viral infection, most commonly due to rhinovirus and influenza virus. Pneumonia due to herpes simplex virus (HSV) is rare, and there is limited knowledge of the pathogenesis and clinical complications. This report is of a fatal case of HSV pneumonia associated with bilateral pneumothorax and pneumomediastinum. CASE REPORT A 36-year-old homeless male Hispanic patient, who was a chronic smoker, with a history of intravenous drug abuse and a medical history of chronic hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infection, not on highly active antiretroviral therapy (HAART), was admitted to hospital as an emergency with a seven-day history of productive purulent cough. The patient was admitted to the medical intensive care unit (MICU) with a diagnosis of CAP, with intubation and mechanical ventilation. Broncho-alveolar lavage (BAL) was performed and was positive for HSV. The patient developed bilateral pneumothorax with pneumomediastinum, which was fatal, despite aggressive clinical management. CONCLUSIONS Pneumonia due to HSV infection is uncommon but has a high mortality. Although HSV pneumonia has been described in immunocompromised patients, further studies are required to determine the pathogenesis, early detection, identification of patients who are at risk and to determine the most effective approaches to prophylaxis and treatment for HSV pneumonia.

  19. Herpes simplex virus type 1-derived recombinant and amplicon vectors.

    Science.gov (United States)

    Fraefel, Cornel; Marconi, Peggy; Epstein, Alberto L

    2011-01-01

    Herpes simplex virus type 1 (HSV-1) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153 kbp double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes (1) the two approaches most commonly used to prepare recombinant vectors through homologous recombination, either in eukaryotic cells or in bacteria, and (2) the two methodologies currently used to generate helper-free amplicon vectors, either using a bacterial artificial chromosome (BAC)-based approach or a Cre/loxP site-specific recombination strategy.

  20. DNA immunization against experimental genital herpes simplex virus infection.

    Science.gov (United States)

    Bourne, N; Stanberry, L R; Bernstein, D I; Lew, D

    1996-04-01

    A nucleic acid vaccine, expressing the gene encoding herpes simplex virus (HSV) type 2 glycoprotein D (gD2) under control of the cytomegalovirus immediate-early gene promoter, was used to immunize guinea pigs against genital HSV-2 infection. The vaccine elicited humoral immune responses comparable to those seen after HSV-2 infection. Immunized animals exhibited protection from primary genital HSV-2 disease with little or no development of vesicular skin lesions and significantly reduced HSV-2 replication in the genital tract. After recovery from primary infection, immunized guinea pigs experienced significantly fewer recurrences and had significantly less HSV-2 genomic DNA detected in the sacral dorsal root ganglia compared with control animals. Thus, immunization reduced the burden of latent infection resulting from intravaginal HSV-2 challenge, and a nucleic acid vaccine expressing the HSV-2 gD2 antigen protected guinea pigs against genital herpes, limiting primary infection and reducing the magnitude of latent infection and the frequency of recurrent disease.

  1. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    OpenAIRE

    Li-Li Dong; Ru Tang; Yu-Jia Zhai; Tejsu Malla; Kai Hu

    2017-01-01

    AIM: To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1) glycoprotein C (gC) and glycoprotein D (gD) will achieve better protective effect against herpes simplex keratitis (HSK) than DNA vaccine encoding gD alone. METHODS: DNA vaccine expressing gD or gC combined gD (gD.gC) were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice w...

  2. Reactivation of herpes simplex virus in a cell line inducible for simian virus 40 synthesis

    International Nuclear Information System (INIS)

    Zamansky, G.B.; Kleinman, L.F.; Black, P.H.; Kaplan, J.C.

    1980-01-01

    The reactivation of UV-irradiated herpes simplex virus (HSV) was investigated in irradiated and unirradiated transformed hamster cells in which infectious simian virus 40(SV40) can be induced. Reactivation was enhanced when the cells were treated with UV light or mitomycin C prior to infection with HSV. The UV dose-response curve of this enhanced reactivation was strikingly similar to that found for induction of SV40 virus synthesis in cells treated under identical conditions. This is the first time that two SOS functions described in bacteria have been demonstrated in a single mammalian cell line. (orig.)

  3. Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model

    International Nuclear Information System (INIS)

    Perna, J.J.; Mannix, M.L.; Rooney, J.F.; Notkins, A.L.; Straus, S.E.

    1987-01-01

    Infection with herpes simplex virus often results in a latent infection of local sensory ganglia and a disease characterized by periodic viral reactivation and mucocutaneous lesions. The factors that trigger reactivation in humans are still poorly defined. In our study, five patients with documented histories of recurrent herpes simplex virus infection on the buttocks or sacrum were exposed to three times their minimal erythema dose of ultraviolet light. Site-specific cutaneous herpes simplex virus infection occurred at 4.4 +/- 0.4 days after exposure to ultraviolet light in 8 of 13 attempts at reactivation. We conclude that ultraviolet light can reactivate herpes simplex virus under experimentally defined conditions. This model in humans should prove useful in evaluating the pathophysiology and prevention of viral reactivation

  4. Superficial herpes simplex virus wound infection following lung transplantation.

    Science.gov (United States)

    Karolak, Wojtek; Wojarski, Jacek; Zegleń, Sławomir; Ochman, Marek; Urlik, Maciej; Hudzik, Bartosz; Wozniak-Grygiel, Elzbieta; Maruszewski, Marcin

    2017-08-01

    Surgical site infections (SSIs) are infections of tissues, organs, or spaces exposed by surgeons during performance of an invasive procedure. SSIs are classified into superficial, which are limited to skin and subcutaneous tissues, and deep. The incidence of deep SSIs in lung transplant (LTx) patients is estimated at 5%. No reports have been published as to the incidence of superficial SSIs specifically in LTx patients. Common sense would dictate that the majority of superficial SSIs would be bacterial. Uncommonly, fungal SSIs may occur, and we believe that no reports exist as to the incidence of viral wound infections in LTx patients, or in any solid organ transplant patients. We report a de novo superficial wound infection with herpes simplex virus following lung transplantation, its possible source, treatment, and resolution. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Neonatal herpes simplex virus infections: where are we now?

    Science.gov (United States)

    Thompson, Clara; Whitley, Richard

    2011-01-01

    Neonatal herpes simplex virus (HSV) infection continues to cause significant morbidity and mortality despite advances in diagnosis and treatment. Prior to antiviral therapy, 85% of patients with disseminated HSV disease and 50% of patients with central nervous system disease died within 1 year. The advent of antiviral therapy has dramatically improved the prognosis of neonatal HSV with initially vidarabine and subsequently acyclovir increasing the survival rate of infected neonates and improving long-term developmental outcomes. More recently, polymerase chain reaction has allowed earlier identification of HSV infection and provided a quantitative guide to treatment. Current advances in the treatment of neonatal HSV infections are looking toward the role of prolonged oral suppression therapy in reducing the incidence of recurrent disease. Of concern, however, are increasing reports of acyclovir-resistant HSV isolates in patients following prolonged therapy.

  6. Herpes simplex virus 1 induces de novo phospholipid synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, Esther [Electron Microscopy, Institute of Veterinary Anatomy, University of Zuerich (Switzerland); Oliveira, Anna Paula de; Tobler, Kurt [Electron microscopy, Institute of Virology, University of Zuerich (Switzerland); Schraner, Elisabeth M. [Electron Microscopy, Institute of Veterinary Anatomy, University of Zuerich (Switzerland); Sonda, Sabrina [Institute of Parasitology, University of Zuerich (Switzerland); Kaech, Andres [Center for Microscopy and Image Analysis, University of Zuerich (Switzerland); Lucas, Miriam S. [Electron Microscopy ETH Zuerich (EMEZ), Swiss Federal Institute of Technology, Zuerich (Switzerland); Ackermann, Mathias [Electron microscopy, Institute of Virology, University of Zuerich (Switzerland); Wild, Peter, E-mail: pewild@access.uzh.ch [Electron Microscopy, Institute of Veterinary Anatomy, University of Zuerich (Switzerland)

    2012-08-01

    Herpes simplex virus type 1 capsids bud at nuclear membranes and Golgi membranes acquiring an envelope composed of phospholipids. Hence, we measured incorporation of phospholipid precursors into these membranes, and quantified changes in size of cellular compartments by morphometric analysis. Incorporation of [{sup 3}H]-choline into both nuclear and cytoplasmic membranes was significantly enhanced upon infection. [{sup 3}H]-choline was also part of isolated virions even grown in the presence of brefeldin A. Nuclei expanded early in infection. The Golgi complex and vacuoles increased substantially whereas the endoplasmic reticulum enlarged only temporarily. The data suggest that HSV-1 stimulates phospholipid synthesis, and that de novo synthesized phospholipids are inserted into nuclear and cytoplasmic membranes to i) maintain membrane integrity in the course of nuclear and cellular expansion, ii) to supply membrane constituents for envelopment of capsids by budding at nuclear membranes and Golgi membranes, and iii) to provide membranes for formation of transport vacuoles.

  7. Genome sequence of herpes simplex virus 1 strain KOS.

    Science.gov (United States)

    Macdonald, Stuart J; Mostafa, Heba H; Morrison, Lynda A; Davido, David J

    2012-06-01

    Herpes simplex virus type 1 (HSV-1) strain KOS has been extensively used in many studies to examine HSV-1 replication, gene expression, and pathogenesis. Notably, strain KOS is known to be less pathogenic than the first sequenced genome of HSV-1, strain 17. To understand the genotypic differences between KOS and other phenotypically distinct strains of HSV-1, we sequenced the viral genome of strain KOS. When comparing strain KOS to strain 17, there are at least 1,024 small nucleotide polymorphisms (SNPs) and 172 insertions/deletions (indels). The polymorphisms observed in the KOS genome will likely provide insights into the genes, their protein products, and the cis elements that regulate the biology of this HSV-1 strain.

  8. Insertion of the human sodium iodide symporter to facilitate deep tissue imaging does not alter oncolytic or replication capability of a novel vaccinia virus

    Directory of Open Access Journals (Sweden)

    Mittra Arjun

    2011-03-01

    Full Text Available Abstract Introduction Oncolytic viruses show promise for treating cancer. However, to assess therapeutic efficacy and potential toxicity, a noninvasive imaging modality is needed. This study aimed to determine if insertion of the human sodium iodide symporter (hNIS cDNA as a marker for non-invasive imaging of virotherapy alters the replication and oncolytic capability of a novel vaccinia virus, GLV-1h153. Methods GLV-1h153 was modified from parental vaccinia virus GLV-1h68 to carry hNIS via homologous recombination. GLV-1h153 was tested against human pancreatic cancer cell line PANC-1 for replication via viral plaque assays and flow cytometry. Expression and transportation of hNIS in infected cells was evaluated using Westernblot and immunofluorescence. Intracellular uptake of radioiodide was assessed using radiouptake assays. Viral cytotoxicity and tumor regression of treated PANC-1tumor xenografts in nude mice was also determined. Finally, tumor radiouptake in xenografts was assessed via positron emission tomography (PET utilizing carrier-free 124I radiotracer. Results GLV-1h153 infected, replicated within, and killed PANC-1 cells as efficiently as GLV-1h68. GLV-1h153 provided dose-dependent levels of hNIS expression in infected cells. Immunofluorescence detected transport of the protein to the cell membrane prior to cell lysis, enhancing hNIS-specific radiouptake (P In vivo, GLV-1h153 was as safe and effective as GLV-1h68 in regressing pancreatic cancer xenografts (P 124I-PET. Conclusion Insertion of the hNIS gene does not hinder replication or oncolytic capability of GLV-1h153, rendering this novel virus a promising new candidate for the noninvasive imaging and tracking of oncolytic viral therapy.

  9. Herpes simplex virus type 2: Cluster of unrelated cases in an intensive care unit.

    Science.gov (United States)

    Troché, Gilles; Marque Juillet, Stephanie; Burrel, Sonia; Boutolleau, David; Bédos, Jean-Pierre; Legriel, Stephane

    2016-10-01

    Herpes simplex viruses, which are associated with various clinical manifestations, can be transmitted to critically ill patients from other patients or health care staff. We report an apparent outbreak of mucocutaneous herpes simplex virus 2 infections (5 cases in 10 weeks). An epidemiologic investigation and genotype analysis showed no connections among the 5 cases. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  10. Atypical oral presentation of herpes simplex virus infection in a patient after orthotopic liver transplantation.

    Science.gov (United States)

    Burke, E M; Karp, D L; Wu, T C; Corio, R L

    1994-01-01

    An atypical oral presentation of herpes simplex virus infection in a 49-year-old woman after orthotopic liver transplantation is reported. Clinically, the differential diagnosis included chronic hyperplastic candidiasis, nodular leukoplakia of undetermined etiology, and malignant neoplasm. An excisional biopsy revealed herpesvirus infection, and immunoperoxidase staining confirmed herpes simplex virus infection. This report describes the clinical and histologic appearance of these lesions and the course and treatment of the patient.

  11. Herpes zoster could be an early manifestation of undiagnosed human immunodeficiency virus infection.

    Science.gov (United States)

    Lai, Shih-Wei; Lin, Cheng-Li; Liao, Kuan-Fu; Chen, Wen-Chi

    2016-05-01

    No formal epidemiological research based on systematic analysis has focused on the relationship between herpes zoster and immunodeficiency virus (HIV) infection in Taiwan. Our aim was to explore whether herpes zoster is an early manifestation of undiagnosed human HIV infection in Taiwan. This was a retrospective cohort study using the database of the Taiwan National Health Insurance Program. A total of 35,892 individuals aged ≤ 84 years with newly diagnosed herpes zoster from 1998 to 2010 were assigned to the herpes zoster group, whereas 143,568 sex-matched and age-matched, randomly selected individuals without herpes zoster served as the non-herpes zoster group. The incidence of HIV diagnosis at the end of 2011 was estimated in both groups. The multivariable Cox proportional hazards regression model was used to estimate the hazard ratio and 95% confidence interval (CI) for risk of HIV diagnosis associated with herpes zoster and other comorbidities including drug dependence and venereal diseases. The overall incidence of HIV diagnosis was 4.19-fold greater in the herpes zoster group than that in the non-herpes zoster group (3.33 per 10,000 person-years vs. 0.80 per 10,000 person-years, 95% CI 4.04-4.35). The multivariable Cox proportional hazards regression analysis revealed that the adjusted hazard ratio of HIV diagnosis was 4.37 (95% CI 3.10-6.15) for individuals with herpes zoster and without comorbidities, as compared with individuals without herpes zoster and without comorbidities. Herpes zoster is associated with HIV diagnosis. Patients who have risk behaviors of HIV infection should receive regular surveillance for undiagnosed HIV infection when they present with herpes zoster. Copyright © 2015. Published by Elsevier B.V.

  12. Oncolytic measles virus enhances antitumour responses of adoptive CD8+NKG2D+ cells in hepatocellular carcinoma treatment.

    Science.gov (United States)

    Chen, Aiping; Zhang, Yonghui; Meng, Gang; Jiang, Dengxu; Zhang, Hailin; Zheng, Meihong; Xia, Mao; Jiang, Aiqin; Wu, Junhua; Beltinger, Christian; Wei, Jiwu

    2017-07-12

    There is an urgent need for novel effective treatment for hepatocellular carcinoma (HCC). Oncolytic viruses (OVs) not only directly lyse malignant cells, but also induce potent antitumour immune responses. The potency and precise mechanisms of antitumour immune activation by attenuated measles virus remain unclear. In this study, we investigated the potency of the measles virus vaccine strain Edmonston (MV-Edm) in improving adoptive CD8 + NKG2D + cells for HCC treatment. We show that MV-Edm-infected HCC enhanced the antitumour activity of CD8 + NKG2D + cells, mediated by at least three distinct mechanisms. First, MV-Edm infection compelled HCC cells to express the specific NKG2D ligands MICA/B, which may contribute to the activation of CD8 + NKG2D + cells. Second, MV-Edm-infected HCC cells stimulated CD8 + NKG2D + cells to express high level of FasL resulting in enhanced induction of apoptosis. Third, intratumoural administration of MV-Edm enhanced infiltration of intravenously injected CD8 + NKG2D + cells. Moreover, we found that MV-Edm and adoptive CD8 + NKG2D + cells, either administered alone or combined, upregulated the immune suppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1) in HCC. Elimination of IDO1 by fludarabine enhanced antitumour responses. Taken together, our data provide a novel and clinically relevant strategy for treatment of HCC.

  13. Chemovirotherapy for head and neck squamous cell carcinoma with EGFR-targeted and CD/UPRT-armed oncolytic measles virus.

    Science.gov (United States)

    Zaoui, K; Bossow, S; Grossardt, C; Leber, M F; Springfeld, C; Plinkert, P K; Kalle, C von; Ungerechts, G

    2012-03-01

    First-line treatment of recurrent and/or refractory head and neck squamous cell carcinoma (HNSCC) is based on platinum, 5-fluorouracil (5-FU) and the monoclonal antiEGFR antibody cetuximab. However, in most cases this chemoimmunotherapy does not cure the disease, and more than 50% of HNSCC patients are dying because of local recurrence of the tumors. In the majority of cases, HNSCC overexpress the epidermal growth factor receptor (EGFR), and its presence is associated with a poor outcome. In this study, we engineered an EGFR-targeted oncolytic measles virus (MV), armed with the bifunctional enzyme cytosine deaminase/uracil phosphoribosyltransferase (CD/UPRT). CD/UPRT converts 5-fluorocytosine (5-FC) into the chemotherapeutic 5-FU, a mainstay of HNSCC chemotherapy. This virus efficiently replicates in and lyses primary HNSCC cells in vitro. Arming with CD/UPRT mediates efficient prodrug activation with high bystander killing of non-infected tumor cells. In mice bearing primary HNSCC xenografts, intratumoral administration of MV-antiEGFR resulted in statistically significant tumor growth delay and prolongation of survival. Importantly, combination with 5-FC is superior to virus-only treatment leading to significant tumor growth inhibition. Thus, chemovirotherapy with EGFR-targeted and CD/UPRT-armed MV is highly efficacious in preclinical settings with direct translational implications for a planned Phase I clinical trial of MV for locoregional treatment of HNSCC.

  14. The Oncolytic Virus MG1 Targets and Eliminates Cells Latently Infected With HIV-1: Implications for an HIV Cure.

    Science.gov (United States)

    Ranganath, Nischal; Sandstrom, Teslin S; Burke Schinkel, Stephanie C; Côté, Sandra C; Angel, Jonathan B

    2018-02-14

    Cells latently infected with human immunodeficiency virus (HIV) evade immune- and drug-mediated clearance. These cells harbor intracellular signaling defects, including impairment of the antiviral type I interferon response. Such defects have also been observed in several cancers and have been exploited for the development of therapeutic oncolytic viruses, including the recombinant Maraba virus (MG1). We therefore hypothesized that MG1 would infect and eliminate cells latently infected with HIV-1, while sparing healthy uninfected cells. Preferential infection and elimination by MG1 was first demonstrated in cell lines latently infected with HIV-1. Following this, a reduction in HIV-1 DNA and inducible HIV-1 replication was observed following MG1 infection of latently infected, resting CD4+ T cells generated using an in vitro model of latency. Last, MG1 infection resulted in a reduction in HIV-1 DNA and inducible HIV-1 replication in memory CD4+ T cells isolated from effectively treated, HIV-1-infected individuals. Our results therefore highlight a novel approach to eliminate the latent HIV-1 reservoir. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  15. Bioreactor production of recombinant herpes simplex virus vectors.

    Science.gov (United States)

    Knop, David R; Harrell, Heather

    2007-01-01

    Serotypical application of herpes simplex virus (HSV) vectors to gene therapy (type 1) and prophylactic vaccines (types 1 and 2) has garnered substantial clinical interest recently. HSV vectors and amplicons have also been employed as helper virus constructs for manufacture of the dependovirus adeno-associated virus (AAV). Large quantities of infectious HSV stocks are requisite for these therapeutic applications, requiring a scalable vector manufacturing and processing platform comprised of unit operations which accommodate the fragility of HSV. In this study, production of a replication deficient rHSV-1 vector bearing the rep and cap genes of AAV-2 (denoted rHSV-rep2/cap2) was investigated. Adaptation of rHSV production from T225 flasks to a packed bed, fed-batch bioreactor permitted an 1100-fold increment in total vector production without a decrease in specific vector yield (pfu/cell). The fed-batch bioreactor system afforded a rHSV-rep2/cap2 vector recovery of 2.8 x 10(12) pfu. The recovered vector was concentrated by tangential flow filtration (TFF), permitting vector stocks to be formulated at greater than 1.5 x 10(9) pfu/mL.

  16. Herpes simplex virus triggers activation of calcium-signaling pathways

    Science.gov (United States)

    Cheshenko, Natalia; Del Rosario, Brian; Woda, Craig; Marcellino, Daniel; Satlin, Lisa M.; Herold, Betsy C.

    2003-01-01

    The cellular pathways required for herpes simplex virus (HSV) invasion have not been defined. To test the hypothesis that HSV entry triggers activation of Ca2+-signaling pathways, the effects on intracellular calcium concentration ([Ca2+]i) after exposure of cells to HSV were examined. Exposure to virus results in a rapid and transient increase in [Ca2+]i. Pretreatment of cells with pharmacological agents that block release of inositol 1,4,5-triphosphate (IP3)–sensitive endoplasmic reticulum stores abrogates the response. Moreover, treatment of cells with these pharmacological agents inhibits HSV infection and prevents focal adhesion kinase (FAK) phosphorylation, which occurs within 5 min after viral infection. Viruses deleted in glycoprotein L or glycoprotein D, which bind but do not penetrate, fail to induce a [Ca2+]i response or trigger FAK phosphorylation. Together, these results support a model for HSV infection that requires activation of IP3-responsive Ca2+-signaling pathways and that is associated with FAK phosphorylation. Defining the pathway of viral invasion may lead to new targets for anti-viral therapy. PMID:14568989

  17. Analysis of contributions of herpes simplex virus type 1 UL43 protein ...

    African Journals Online (AJOL)

    Purpose: To investigate whether UL43 protein, which is highly conserved in alpha- and gamma herpes viruses, and a non-glycosylated transmembrane protein, is involved in virus entry and virus-induced cell fusion. Methods: Mutagenesis was accomplished by a markerless two-step Red recombination mutagenesis system ...

  18. Prevalence of herpes simplex, Epstein Barr and human papilloma viruses in oral lichen planus

    OpenAIRE

    Yildirim, Benay; Sengüven, Burcu; Demir, Cem

    2011-01-01

    Objectives: The aim of the present study was to assess the prevalence of Herpes Simplex virus, Epstein Barr virus and Human Papilloma virus -16 in oral lichen planus cases and to evaluate whether any clinical variant, histopathological or demographic feature correlates with these viruses. Study Design: The study was conducted on 65 cases. Viruses were detected immunohistochemically. We evaluated the histopathological and demographic features and statistically analysed correlation of these...

  19. The role of human papilloma virus and herpes viruses in the etiology of nasal polyposis.

    Science.gov (United States)

    Koçoğlu, Mücahide Esra; Mengeloğlu, Fırat Zafer; Apuhan, Tayfun; Özsoy, Şeyda; Yilmaz, Beyhan

    2016-02-17

    The aim of this study was to investigate the etiological role of human papilloma virus (HPV), herpes simplex virus (HSV), varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), and human herpes virus-6 (HHV-6) and -7 (HHV-7) in the occurrence of nasal polyposis. Nasal polyp samples from 30 patients with nasal polyposis and normal nasal mucosa from 10 patients without nasal polyps were obtained. DNA was extracted from tissues. Real-time polymerase chain reaction was performed for all runs. No HSV-1, HSV-2, or VZV was detected in the samples. Among the patient samples, EBV and HHV-7 DNA were detected in 18 (60%), HHV-6 was detected in 20 (66.7%), and HPV was detected in 4 (13.3%) samples. Among the controls, CMV DNA was positive in one (10%). EBV was positive in 5 (50%), HHV-6 and HHV-7 were positive in 7 (70%), and HPV was positive in 2 (20%) samples. No significant difference was found among the groups with any test in terms of positivity. The association of Herpesviridae and HPV with the pathogenesis of nasal polyps was investigated in this study and no relationship was found. Thus, these viruses do not play a significant role in the formation of nasal polyps.

  20. T cell-macrophage interaction in arginase-mediated resistance to herpes simplex virus.

    Science.gov (United States)

    Bonina, L; Nash, A A; Arena, A; Leung, K N; Wildy, P

    1984-09-01

    Peritoneal macrophages activated by-products derived from a herpes simplex virus-specific helper T cell clone were used to investigate intrinsic and extrinsic resistance mechanisms to herpes simplex virus type 1 infection in vitro. T cell-activated macrophages produced fewer infective centres, indicating enhanced intrinsic resistance, and markedly reduced the growth of virus in a permissive cell line. The reduction in virus growth correlated with the depletion of arginine in the support medium, presumably resulting from increased arginase production by activated macrophages. The significance of these findings for antiviral immunity in vivo is discussed.

  1. Preparation of herpes simplex virus-infected primary neurons for transmission electron microscopy.

    Science.gov (United States)

    Miranda-Saksena, Monica; Boadle, Ross; Cunningham, Anthony L

    2014-01-01

    Transmission electron microscopy (TEM) provides the resolution necessary to identify both viruses and subcellular components of cells infected with many types of viruses, including herpes simplex virus. Recognized as a powerful tool in both diagnostic and research-based virology laboratories, TEM has made possible the identification of new viruses and has contributed to the elucidation of virus life cycle and virus-host cell interaction. Whilst there are many sample preparation techniques for TEM, conventional processing using chemical fixation and resin embedding remains a useful technique, available in virtually all EM laboratories, for studying virus/cell ultrastructure. In this chapter, we describe the preparation of herpes simplex virus-infected primary neurons, grown on plastic cover slips, to allow sectioning of neurons and axons in their growth plane. This technique allows TEM examination of cell bodies, axons, growth cones, and varicosities, providing powerful insights into virus-cell interaction.

  2. Detection of Herpes Simplex Virus DNA in Pseudoexfoliation Syndrome

    Directory of Open Access Journals (Sweden)

    Masoomeh Eghtedari

    2009-06-01

    Full Text Available Background: Pseudoexfoliation syndrome is one of the mostcommon identifiable causes of open angle glaucoma. It hasunknown etiology and pathogenesis. Infection, possibly viral,is one of the proposed pathogenic mechanisms in this condition.In the present study the presence of herpes simplex virus(HSV in specimens of anterior lens capsule of patients withpseudoexfoliation syndrome has been assessed.Methods: The presence of HSV- DNA was searched by usingpolymerase chain reaction method in specimens of anteriorlens capsule (5 mm diameter of 50 patients with pseudoexfoliationsyndrome (study group and 50 age-matchedpatients without the disease (control group who underwentcataract or combined cataract and glaucoma surgery duringa one-year (2006-2007 period in Khalili Hospital, Shiraz,Iran. The results were compared statistically with Chisquaretest and independent samples t test using SPSS software(version 11.5.Results: HSV type I DNA was detected in 18% of the patientsin the study group compared with 2% in the control group (Chisquare test, P = 0.008. The difference between the ranges ofintraocular pressure in the two groups was not statistically significant.Conclusion: The presence of HSV type I DNA suggests thepossible relationship between the virus and pseudoexfoliationsyndrome. It may be a treatable etiology in this multi-factorialdisorder and may help to future management of patients; especiallyto prevent some of the complications in this syndrome.

  3. Hospital risk management of cutaneous herpes simplex virus infection.

    Science.gov (United States)

    Zhu, F; Zhang, J; Feng, J; Yang, H

    2016-10-01

    The epidemiology of cutaneous herpes simplex infection (CHSI) has dramatically changed over the past several decades. Valaciclovir is one of a new generation of antiviral medications that has expanded treatment options for the most common cutaneous manifestations of herpes simplex virus. However, the efficacy and safety of formulations with different doses of valaciclovir remain unclear. To carry out hospital risk management by ascertaining the incidence and risk of CHSI in patients during treatment with varying doses of valaciclovir. The PubMed, MEDLINE and Web of Science electronic databases were systematically searched from database inception to date of searching. Efficacy of drug treatment was measured by average easement score (AES). Safety was characterized as the proportion of patients with drug adverse reactions (DARs) such as fever, dizziness, headache, anxiety, irritability and yellowing of the skin. Outcomes for continuous and dichotomous data were estimated by standard mean difference (SMD) and risk ratio (RR), respectively. Five randomized controlled trials involving 1753 randomized participants for efficacy assessment and 1874 randomized participants for safety assessment were identified. Valaciclovir dose increasing from 1000 mg/day improved AES only moderately, but significantly promoted the incidence of DARs. Twice-daily treatment showed no increase in therapeutic effect but greatly increased DAR incidence. The valaciclovir dose that produced a reduction in AES was 1000 mg/day: SMD = -0.73 (95% CI -0.98 to 0.48; P < 0.01) and RR = 0.95 (95% CI 0.81-1.09; P < 0.002). Increasing the daily dose of valaciclovir does not substantially improve therapeutic efficacy for CHSI but may raise DAR incidence. Drug doses of 1000 and 2000 mg/day show no significant difference in efficacy scores, but the latter exhibits a higher incidence of DARs. The dose-dependent, long-term efficacy and safety of valaciclovir remain to be explored. © 2016 British Association of

  4. Improving CART-Cell Therapy of Solid Tumors with Oncolytic Virus-Driven Production of a Bispecific T-cell Engager.

    Science.gov (United States)

    Wing, Anna; Fajardo, Carlos Alberto; Posey, Avery D; Shaw, Carolyn; Da, Tong; Young, Regina M; Alemany, Ramon; June, Carl H; Guedan, Sonia

    2018-05-01

    T cells expressing chimeric antigen receptors (CART) have shown significant promise in clinical trials to treat hematologic malignancies, but their efficacy in solid tumors has been limited. Oncolytic viruses have the potential to act in synergy with immunotherapies due to their immunogenic oncolytic properties and the opportunity of incorporating therapeutic transgenes in their genomes. Here, we hypothesized that an oncolytic adenovirus armed with an EGFR-targeting, bispecific T-cell engager (OAd-BiTE) would improve the outcome of CART-cell therapy in solid tumors. We report that CART cells targeting the folate receptor alpha (FR-α) successfully infiltrated preestablished xenograft tumors but failed to induce complete responses, presumably due to the presence of antigen-negative cancer cells. We demonstrated that OAd-BiTE-mediated oncolysis significantly improved CART-cell activation and proliferation, while increasing cytokine production and cytotoxicity, and showed an in vitro favorable safety profile compared with EGFR-targeting CARTs. BiTEs secreted from infected cells redirected CART cells toward EGFR in the absence of FR-α, thereby addressing tumor heterogeneity. BiTE secretion also redirected CAR-negative, nonspecific T cells found in CART-cell preparations toward tumor cells. The combinatorial approach improved antitumor efficacy and prolonged survival in mouse models of cancer when compared with the monotherapies, and this was the result of an increased BiTE-mediated T-cell activation in tumors. Overall, these results demonstrated that the combination of a BiTE-expressing oncolytic virus with adoptive CART-cell therapy overcomes key limitations of CART cells and BiTEs as monotherapies in solid tumors and encourage its further evaluation in human trials. Cancer Immunol Res; 6(5); 605-16. ©2018 AACR . ©2018 American Association for Cancer Research.

  5. Oncolytic targeting of androgen-sensitive prostate tumor by the respiratory syncytial virus (RSV): consequences of deficient interferon-dependent antiviral defense

    International Nuclear Information System (INIS)

    Echchgadda, Ibtissam; Chang, Te-Hung; Sabbah, Ahmed; Bakri, Imad; Ikeno, Yuji; Hubbard, Gene B; Chatterjee, Bandana; Bose, Santanu

    2011-01-01

    Oncolytic virotherapy for cancer treatment utilizes viruses for selective infection and death of cancer cells without any adverse effect on normal cells. We previously reported that the human respiratory syncytial virus (RSV) is a novel oncolytic virus against androgen-independent PC-3 human prostate cancer cells. The present study extends the result to androgen-dependent prostate cancer, and explores the underlying mechanism that triggers RSV-induced oncolysis of prostate cancer cells. The oncolytic effect of RSV on androgen-sensitive LNCaP human prostate cancer cells and on androgen-independent RM1 murine prostate cancer cells was studied in vitro in culture and in vivo in a xenograft or allograft tumor model. In vitro, cell viability, infectivity and apoptosis were monitored by MTT assay, viral plaque assay and annexin V staining, respectively. In vivo studies involved virus administration to prostate tumors grown in immune compromised nude mice and in syngeneic immune competent C57BL/6J mice. Anti-tumorogenic oncolytic activity was monitored by measuring tumor volume, imaging bioluminescent tumors in live animals and performing histopathological analysis and TUNEL assay with tumors We show that RSV imposes a potent oncolytic effect on LNCaP prostate cancer cells. RSV infectivity was markedly higher in LNCaP cells compared to the non-tumorigenic RWPE-1 human prostate cells. The enhanced viral burden led to LNCaP cell apoptosis and growth inhibition of LNCaP xenograft tumors in nude mice. A functional host immune response did not interfere with RSV-induced oncolysis, since growth of xenograft tumors in syngeneic C57BL/6J mice from murine RM1 cells was inhibited upon RSV administration. LNCaP cells failed to activate the type-I interferon (IFNα/β)-induced transcription factor STAT-1, which is required for antiviral gene expression, although these cells could produce IFN in response to RSV infection. The essential role of IFN in restricting infection was further

  6. [Herpes simplex virus and malignancies of female genital organs].

    Science.gov (United States)

    Cokić-Damjanović, J; Horvat, E; Balog, A

    2001-01-01

    Primary herpes simplex virus (HSV) infections of female genital tract usually end with remission, while the virus remains in the organism--almost in the sacral ganglion in a latent form, protected from humoral and cellular immunity. Stress induces the virus and the result is recurrent genital infection. Frequent exacerbations damage some parts of vital cellular structures without cytolysis, but stimulate malignant transformations. Vulvar (portio vaginalis uteri) and endometrial tumor tissue samples were analyzed for HSV by direct and indirect fluorescent antibody technique (FAT). Pre and postoperative sera samples were analyzed for presence of anti-HSV antibodies--IgM and IgG by Elisa-Enzygnost method. Acellular filtrates obtained by ultrasonic destruction of malignant tissues were used as inoculum for rabbit corneal scarification. Out of 63 tissue samples, 42 were positive for HSV antigen i.e. 67.3%. According to location 50% of vulvar, 76% PVU and 65% of endometrial tissues were positive. This antigen induces production of virus specific antibodies. Two types of antigens are known: the so-called T-antigen persisting in the cell nucleus and cell-surface antigen--product of the viral genome and can be evidenced by immunofluorescence method. Anti HSV antibodies were present in 63 preoperative serum samples and belonged to IgG group, but not one to IgM, implying a long and chronic course of infection excluding acute primary. Out of 38 postoperative serums the titer of antibodies decreased in 36 evidently, but in two samples remained unchanged. Two samples of endometrial and one from PVU origin contained HSV antigen type one. In the remaining 16 samples HSV 2 antigen was present. Rabbit corneal scarification was the proof of complete infectious virus in malignant tissues. Acellular filtrate of malignant tissues served as inoculum. Corneas of examined rabbits showed a mild inflammation after 24 hours which disappeared in the next 24 hours. We could not isolate the

  7. Piroxicam inhibits herpes simplex virus type 1 infection in vitro.

    Science.gov (United States)

    Astani, A; Albrecht, U; Schnitzler, P

    2015-05-01

    Piroxicam is a potent, nonsteroidal, anti-inflammatory agent (NSAID) which also exhibits antipyretic activity. The antiviral effect of piroxicam against herpes simplex virus type 1 (HSV-1) was examined in vitro on RC-37 monkey kidney cells using a plaque reduction assay. Piroxicam was dissolved in ethanol or dimethylsulfoxide (DMSO) and the 50% inhibitory concentration (IC50) was determined at 4 μg/ml and 75 μg/ml, respectively. The IC50 for the standard antiherpetic drug acyclovir was determined at 1.6 μM. At non-cytotoxic concentrations of these piroxicam solutions, plaque formation was significantly reduced by 62.4% for ethanolic piroxicam and 72.8% for piroxicam in DMSO. The mode of antiviral action of these drugs was assessed by time-on-addition assays. No antiviral effect was observed when cells were incubated with piroxicam prior to infection with HSV-1 or when HSV-1 infected cells were treated with dissolved piroxicam. Herpesvirus infection was, however, significantly inhibited when HSV-1 was incubated with piroxicam prior to the infection of cells. These results indicate that piroxicam affected the virus before adsorption, but not after penetration into the host cell, suggesting that piroxicam exerts a direct antiviral effect on HSV-1. Free herpesvirus was sensitive to piroxicam in a concentration-dependent manner and the inhibition of HSV-1 appears to occur before entering the cell but not after penetration of the virus into the cell. Considering the lipophilic nature of piroxicam, which enables it to penetrate the skin, it might be suitable for topical treatment of herpetic infections.

  8. Ultraviolet irradiation of herpes simplex virus (type 1): delayed transcription and comparative sensitivites of virus functions.

    Science.gov (United States)

    Eglin, R P; Gugerli, P; Wildy, P

    1980-07-01

    The delay in the replication of herpes simplex virus surviving u.v. irradiation occurs after the uncoating of virus, as judged by sensitivity to DNase. It occurs before translation, judged by the kinetics of appearance of various virus-specific proteins, and before transcription, judged by the detection of virus-specific RNA by in situ hybridization. Since the delays in both transcription and translation are reversed by photoreactivation, the simplest hypothesis is that pyrimidine dimers directly obstruct transcription;unless these are broken by photoreactivating enzymes, there will be transcriptional delay until reactivating processes have repaired the lesion. The u.v. sensitivities of the abilities to induce various enzymes (thymidine kinase, DNase and DNA polymerase) were only about four times less than that of infectivity. The The ability to induce the three enzymes was three times less sensitive than that of the structural antigen (Band II).

  9. Ultraviolet irradiation of herpes simplex virus (type 1): delayed transcription and comparative sensitivities of virus functions

    International Nuclear Information System (INIS)

    Eglin, R.P.; Gugerli, P.; Wildy, P.

    1980-01-01

    The delay in the replication of herpes simplex virus surviving u.v. irradiation occurs after the uncoating of virus, as judged by sensitivity to DNase. It occurs before translation, judged by the kinetics of appearance of various virus-specific proteins, and before transcription, judged by the detection of virus-specific RNA by in situ hybridization. Since the delays in both transcription and translation are reversed by photoreactivation, the simplest hypothesis is that pyrimidine dimers directly obstruct transcription; unless these are broken by photoreactivating enzymes, there will be transcriptional delay until reactivating processes have repaired the lesion. The u.v. sensitivities of the abilities to induce various enzymes (thymidine kinase, DNase and DNA polymerase) were only about four times less than that of infectivity. The ability to induce the three enzymes was three times less sensitive than that of the structural antigen (Band II). (U.K.)

  10. Isolation of herpes simplex virus from the genital tract during symptomatic recurrence on the buttocks.

    Science.gov (United States)

    Kerkering, Katrina; Gardella, Carolyn; Selke, Stacy; Krantz, Elizabeth; Corey, Lawrence; Wald, Anna

    2006-10-01

    To estimate the frequency of isolation of herpes simplex virus (HSV) from the genital tract when recurrent herpes lesions were present on the buttocks. Data were extracted from a prospectively observed cohort attending a research clinic for genital herpes infections between 1975 and 2001. All patients with a documented herpes lesion on the buttocks, upper thigh or gluteal cleft ("buttock recurrence") and concomitant viral cultures from genital sites including the perianal region were eligible. We reviewed records of 237 subjects, 151 women and 86 men, with a total of 572 buttock recurrences. Of the 1,592 days with genital culture information during a buttock recurrence, participants had concurrent genital lesions on 311 (20%, 95% confidence interval [CI] 14-27%) of these days. Overall, HSV was isolated from the genital region on 12% (95% CI 8-17%) of days during a buttock recurrence. In the absence of genital lesions, HSV was isolated from the genital area on 7% (95% CI 4%-11%) of days during a buttock recurrence and, among women, from the vulvar or cervical sites on 1% of days. Viral shedding of herpes simplex virus from the genital area is a relatively common occurrence during a buttock recurrence of genital herpes, even without concurrent genital lesions, reflecting perhaps reactivation from concomitant regions of the sacral neural ganglia. Patients with buttock herpes recurrences should be instructed about the risk of genital shedding during such recurrences. II-2.

  11. Transmission of herpes simplex virus type 2 among factory workers in Ethiopia

    NARCIS (Netherlands)

    Kebede, Yenew; Dorigo-Zetsma, Wendelien; Mengistu, Yohannes; Mekonnen, Yared; Schaap, Ab; Wolday, Dawit; Sanders, Eduard J.; Messele, Tsehaynesh; Coutinho, Roel A.; Dukers, Nicole H. T. M.

    2004-01-01

    The herpes simplex virus type 2 (HSV-2) and human immunodeficiency virus (HIV) epidemics are believed to fuel each other, especially in sub-Saharan countries. In Ethiopia during 1997 - 2002, a retrospective study was conducted to examine risk factors for infection and transmission of HSV-2, in a

  12. [Reactivation of herpes zoster infection by varicella-zoster virus].

    Science.gov (United States)

    Cvjetković, D; Jovanović, J; Hrnjaković-Cvjetković, I; Brkić, S; Bogdanović, M

    1999-01-01

    ), secondary bacterial infection of vesicles. Immunocompromised patients often develop more severe disease lasting up to two weeks, skin lesions are more numerous and often with hemorrhagic base and there is a high possibility for cutaneous dissemination and visceral involvement including viral pneumonia, encephalitis and hepatitis. Chronic shingles may also be found in immunocompromised hosts, particularly in those with a diagnosis of HIV infection. In patients with HIV infection, shingles is often characterised by radicular pain and itching several days before appearance of skin lesions. Those patients may have two or more dermatomes involved and recurrences of shingles cannot be quite infrequent in those patients. But visceral involvement is rarer than in other immunocompromised patients. Shingles may occur in the second half of pregnancy and usually have a mild course. However, congenital abnormalities has been described in few cases. The diagnosis of shingles is usually made by history and physical examination. Exceptionally, for example in zoster sine herpete and atypical forms of shingles, virus isolation and serological tests must be used. Some other diseases may cause similar skin lesions and rash (varicella, erysipelas, impetigo, enteroviral infections, herpes simplex infections). These diseases are excluded by using detailed history taking and physical examination, laboratory findings, virus isolation and commercially available serological tests. The vast majority of immunocompetent persons with shingles should be treated only by symptomatic therapy. Predominantly it is directed toward reduction of fever and avoiding secondary bacterial skin infection in immunocompetent hosts. Acute neuritis and post-herpetic neuralgia require administration of various analgesics, even like amitriptyline hydrochloride and fluphenazine hydrochloride. Acyclovir therapy is limited to ophthal

  13. Protein sequences clustering of herpes virus by using Tribe Markov clustering (Tribe-MCL)

    Science.gov (United States)

    Bustamam, A.; Siswantining, T.; Febriyani, N. L.; Novitasari, I. D.; Cahyaningrum, R. D.

    2017-07-01

    The herpes virus can be found anywhere and one of the important characteristics is its ability to cause acute and chronic infection at certain times so as a result of the infection allows severe complications occurred. The herpes virus is composed of DNA containing protein and wrapped by glycoproteins. In this work, the Herpes viruses family is classified and analyzed by clustering their protein-sequence using Tribe Markov Clustering (Tribe-MCL) algorithm. Tribe-MCL is an efficient clustering method based on the theory of Markov chains, to classify protein families from protein sequences using pre-computed sequence similarity information. We implement the Tribe-MCL algorithm using an open source program of R. We select 24 protein sequences of Herpes virus obtained from NCBI database. The dataset consists of three types of glycoprotein B, F, and H. Each type has eight herpes virus that infected humans. Based on our simulation using different inflation factor r=1.5, 2, 3 we find a various number of the clusters results. The greater the inflation factor the greater the number of their clusters. Each protein will grouped together in the same type of protein.

  14. Evolution and Diversity in Human Herpes Simplex Virus Genomes

    Science.gov (United States)

    Gatherer, Derek; Ochoa, Alejandro; Greenbaum, Benjamin; Dolan, Aidan; Bowden, Rory J.; Enquist, Lynn W.; Legendre, Matthieu; Davison, Andrew J.

    2014-01-01

    Herpes simplex virus 1 (HSV-1) causes a chronic, lifelong infection in >60% of adults. Multiple recent vaccine trials have failed, with viral diversity likely contributing to these failures. To understand HSV-1 diversity better, we comprehensively compared 20 newly sequenced viral genomes from China, Japan, Kenya, and South Korea with six previously sequenced genomes from the United States, Europe, and Japan. In this diverse collection of passaged strains, we found that one-fifth of the newly sequenced members share a gene deletion and one-third exhibit homopolymeric frameshift mutations (HFMs). Individual strains exhibit genotypic and potential phenotypic variation via HFMs, deletions, short sequence repeats, and single-nucleotide polymorphisms, although the protein sequence identity between strains exceeds 90% on average. In the first genome-scale analysis of positive selection in HSV-1, we found signs of selection in specific proteins and residues, including the fusion protein glycoprotein H. We also confirmed previous results suggesting that recombination has occurred with high frequency throughout the HSV-1 genome. Despite this, the HSV-1 strains analyzed clustered by geographic origin during whole-genome distance analysis. These data shed light on likely routes of HSV-1 adaptation to changing environments and will aid in the selection of vaccine antigens that are invariant worldwide. PMID:24227835

  15. Radioimmunoassay for herpes simplex virus (HSV) thymidine kinase

    International Nuclear Information System (INIS)

    McGuirt, P.V.; Keller, P.M.; Elion, G.B.

    1982-01-01

    A sensitive RIA for HSV-1 thymidine kinase (TK) has been developed. This assay is based on competition for the binding site of a rabbit antibody against purified HSV-1 TK, between a purified 3 H-labeled HSV-1 TK and a sample containing an unknown amount of viral TK. The assay is capable of detecting 8 ng or more of the HSV enzyme. Purified HSV-1 TK denatured to <1% of its original kinase activity is as effective in binding to the antibody as is native HSV-1 TK. Viral TK is detectable at ranges of 150-460 ng/mg protein of cell extract from infected cells or cells transformed by HSV or HSV genetic material. HSV-2 TK appears highly cross-reactive, VZV TK is slightly less so, and the vaccinia TK shows little or no cross-reactivity. This RIA may serve as a tool for monitoring the expression of the HSV TK during an active herpes virus infection, a latent ganglionic infection, or in neoplastic cells which may have arisen by viral transformation

  16. Stabilising the Herpes Simplex Virus capsid by DNA packaging

    Science.gov (United States)

    Wuite, Gijs; Radtke, Kerstin; Sodeik, Beate; Roos, Wouter

    2009-03-01

    Three different types of Herpes Simplex Virus type 1 (HSV-1) nuclear capsids can be distinguished, A, B and C capsids. These capsids types are, respectively, empty, contain scaffold proteins, or hold DNA. We investigate the physical properties of these three capsids by combining biochemical and nanoindentation techniques. Atomic Force Microscopy (AFM) experiments show that A and C capsids are mechanically indistinguishable whereas B capsids already break at much lower forces. By extracting the pentamers with 2.0 M GuHCl or 6.0 M Urea we demonstrate an increased flexibility of all three capsid types. Remarkably, the breaking force of the B capsids without pentamers does not change, while the modified A and C capsids show a large drop in their breaking force to approximately the value of the B capsids. This result indicates that upon DNA packaging a structural change at or near the pentamers occurs which mechanically reinforces the capsids structure. The reported binding of proteins UL17/UL25 to the pentamers of the A and C capsids seems the most likely candidate for such capsids strengthening. Finally, the data supports the view that initiation of DNA packaging triggers the maturation of HSV-1 capsids.

  17. Ribonucleotides Linked to DNA of Herpes Simplex Virus Type 1

    Science.gov (United States)

    Hirsch, Ivan; Vonka, Vladimír

    1974-01-01

    Cells of a continuous cell line derived from rabbit embryo fibroblasts were infected with herpes simplex type 1 virus (HSV-1) and maintained in the presence of either [5-3H]uridine or [methyl-3H]thymidine or 32PO43−. Nucleocapsids were isolated from the cytoplasmic fraction, partially purified, and treated with DNase and RNase. From the pelleted nucleocapsids, DNA was extracted and purified by centrifugation in sucrose and cesium sulfate gradients. The acid-precipitable radioactivity of [5-3H]uridine-labeled DNA was partially susceptible to pancreatic RNase and alkaline treatment; the susceptibility to the enzyme decreased with increasing salt concentration. No drop of activity of DNA labeled with [3H]thymidine was observed either after RNase or alkali treatment. Base composition analysis of [5-3H]uridine-labeled DNA showed that the radioactivity was recovered as uracil and cytosine. In the cesium sulfate gradient, the purified [5-3H]uridine-labeled DNA banded at the same position as the 32P-labeled DNA. The present data tend to suggest that ribonucleotide sequences are present in HSV DNA, that they are covalently attached to the viral DNA, and that they can form double-stranded structures. PMID:4364894

  18. Whole Blood Polymerase Chain Reaction in a Neonate with Disseminated Herpes Simplex Virus Infection and Liver Failure

    Directory of Open Access Journals (Sweden)

    Jennifer A. Scoble

    2013-10-01

    Full Text Available A late preterm neonate born by cesarean section with intact membranes presented at 9 days of life with shock and liver failure. Surface cultures were negative but whole blood polymerase chain reaction was positive for herpes simplex virus type 2, underscoring the value of this test in early diagnosis of perinatally acquired disseminated herpes simplex virus infection without skin lesions.

  19. The human herpes virus 8-encoded chemokine receptor is required for angioproliferation in a murine model of Kaposi's sarcoma

    DEFF Research Database (Denmark)

    Jensen, Kristian K; Manfra, Denise J; Grisotto, Marcos G

    2005-01-01

    Kaposi's sarcoma (KS)-associated herpesvirus or human herpes virus 8 is considered the etiological agent of KS, a highly vascularized neoplasm that is the most common tumor affecting HIV/AIDS patients. The KS-associated herpesvirus/human herpes virus 8 open reading frame 74 encodes a constitutively...

  20. Recombination Promoted by DNA Viruses: Phage λ to Herpes Simplex Virus

    Science.gov (United States)

    Weller, Sandra K.; Sawitzke, James A.

    2015-01-01

    The purpose of this review is to explore recombination strategies in DNA viruses. Homologous recombination is a universal genetic process that plays multiple roles in the biology of all organisms, including viruses. Recombination and DNA replication are interconnected, with recombination being essential for repairing DNA damage and supporting replication of the viral genome. Recombination also creates genetic diversity, and viral recombination mechanisms have important implications for understanding viral origins as well as the dynamic nature of viral-host interactions. Both bacteriophage λ and herpes simplex virus (HSV) display high rates of recombination, both utilizing their own proteins and commandeering cellular proteins to promote recombination reactions. We focus primarily on λ and HSV, as they have proven amenable to both genetic and biochemical analysis and have recently been shown to exhibit some surprising similarities that will guide future studies. PMID:25002096

  1. Bovine lactoferrin and lactoferricin interfere with intracellular trafficking of Herpes simplex virus-1.

    Science.gov (United States)

    Marr, A K; Jenssen, H; Moniri, M Roshan; Hancock, R E W; Panté, N

    2009-01-01

    Although both lactoferrin (Lf), a component of the innate immune system of living organisms, and its N-terminal pepsin cleavage product lactoferricin (Lfcin) have anti-herpes activity, the precise mechanisms by which Lf and Lfcin bring about inhibition of herpes infections are not fully understood. In the present study, experiments were carried out to characterize the activity of bovine Lf and Lfcin (BLf and BLfcin) against the Herpes simplex virus-1 (HSV-1). HSV-1 cellular uptake and intracellular trafficking were studied by immunofluorescence microscopy. In comparison to the untreated infected control cells, both the BLf- and BLfcin-treated cells showed a significant reduction in HSV-1 cellular uptake. The few virus particles that were internalized appeared to have a delayed intracellular trafficking. Thus, in addition to their interference with the uptake of the virus into host cells, Lf and Lfcin also exert their antiviral effect intracellularly.

  2. Electrochemical direct immobilization of DNA sequences for label-free herpes virus detection

    Science.gov (United States)

    Tam, Phuong Dinh; Trung, Tran; Tuan, Mai Anh; Chien, Nguyen Duc

    2009-09-01

    DNA sequences/bio-macromolecules of herpes virus (5'-AT CAC CGA CCC GGA GAG GGA C-3') were directly immobilized into polypyrrole matrix by using the cyclic voltammetry method, and grafted onto arrays of interdigitated platinum microelectrodes. The morphology surface of the obtained PPy/DNA of herpes virus composite films was investigated by a FESEM Hitachi-S 4800. Fourier transform infrared spectroscopy (FTIR) was used to characterize the PPy/DNA film and to study the specific interactions that may exist between DNA biomacromolecules and PPy chains. Attempts are made to use these PPy/DNA composite films for label-free herpes virus detection revealed a response time of 60 s in solutions containing as low as 2 nM DNA concentration, and self life of six months when immerged in double distilled water and kept refrigerated.

  3. Electrochemical direct immobilization of DNA sequences for label-free herpes virus detection

    International Nuclear Information System (INIS)

    Phuong Dinh Tam; Mai Anh Tuan; Tran Trung; Nguyen Duc Chien

    2009-01-01

    DNA sequences/bio-macromolecules of herpes virus (5'-AT CAC CGA CCC GGA GAG GGA C-3') were directly immobilized into polypyrrole matrix by using the cyclic voltammetry method, and grafted onto arrays of interdigitated platinum microelectrodes. The morphology surface of the obtained PPy/DNA of herpes virus composite films was investigated by a FESEM Hitachi-S 4800. Fourier transform infrared spectroscopy (FTIR) was used to characterize the PPy/DNA film and to study the specific interactions that may exist between DNA biomacromolecules and PPy chains. Attempts are made to use these PPy/DNA composite films for label-free herpes virus detection revealed a response time of 60 s in solutions containing as low as 2 nM DNA concentration, and self life of six months when emerged in double distilled water and kept refrigerated.

  4. Electrochemical direct immobilization of DNA sequences for label-free herpes virus detection

    Energy Technology Data Exchange (ETDEWEB)

    Phuong Dinh Tam; Mai Anh Tuan [International Training Institute for Materials Science (Viet Nam); Tran Trung [Department of Electrochemistry, Hung-Yen University of Technology and Education (Viet Nam); Nguyen Duc Chien [Institute of Engineering Physics, Hanoi University of Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam)], E-mail: tr_trunghut@yahoo.com

    2009-09-01

    DNA sequences/bio-macromolecules of herpes virus (5'-AT CAC CGA CCC GGA GAG GGA C-3') were directly immobilized into polypyrrole matrix by using the cyclic voltammetry method, and grafted onto arrays of interdigitated platinum microelectrodes. The morphology surface of the obtained PPy/DNA of herpes virus composite films was investigated by a FESEM Hitachi-S 4800. Fourier transform infrared spectroscopy (FTIR) was used to characterize the PPy/DNA film and to study the specific interactions that may exist between DNA biomacromolecules and PPy chains. Attempts are made to use these PPy/DNA composite films for label-free herpes virus detection revealed a response time of 60 s in solutions containing as low as 2 nM DNA concentration, and self life of six months when emerged in double distilled water and kept refrigerated.

  5. Refining criteria for diagnosis of cutaneous infections caused by herpes viruses through correlation of morphology with molecular pathology

    Directory of Open Access Journals (Sweden)

    Böer Almut

    2006-01-01

    Full Text Available BACKGROUND: Infections of the skin by herpes viruses do not always present themselves in typical fashion. Early diagnosis, however, is crucial for appropriate treatment. Polymerase chain reaction (PCR allows diagnosis and differential diagnosis of herpes virus infections, but the method is not yet available in large parts of the world, where diagnosis is made based on morphology alone. AIM: To refine criteria for the diagnosis of herpes virus infections of the skin by way of correlation of clinical and histopathologic findings with results of PCR studies. METHODS: We studied 75 clinically diagnosed patients of "zoster," "varicella," and "herpes simplex", to correlate clinical and histopathological findings with results of PCR studies on paraffin embedded biopsy specimens. RESULTS: Clinical suspicion of infection by herpes viruses was confirmed by histopathology in 37% of the cases and by PCR studies in 65% of the cases. Zoster was frequently misdiagnosed as infection with herpes simplex viruses (30%. When diagnostic signs of herpes virus infection were encountered histopathologically, PCR confirmed the diagnosis in 94%. By way of correlation with results of PCR studies, initial lesions of herpes virus infections could be identified to have a distinctive histopathological pattern. Herpetic folliculitis appeared to be a rather common finding in zoster, it occurring in 28% of the cases. CONCLUSION: We conclude that correlation of clinical and histopathological features with results of PCR studies on one and the same paraffin embedded specimen permits identification of characteristic morphologic patterns and helps to refine criteria for diagnosis both clinically and histopathologically.

  6. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation.

    Science.gov (United States)

    Kennedy, Peter G E; Rovnak, Joel; Badani, Hussain; Cohrs, Randall J

    2015-07-01

    Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an 'end-less' state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is increasing

  7. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation

    Science.gov (United States)

    Kennedy, Peter G. E.; Rovnak, Joel; Badani, Hussain

    2015-01-01

    Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an ‘end-less’ state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is

  8. Estudio de sensibilidad antiviral de Virus Herpes simplex en pacientes trasplantados Antiviral sensitivity of Herpes simplex virus in immunocompromised patients

    Directory of Open Access Journals (Sweden)

    H. Illán

    2004-06-01

    Full Text Available La resistencia de virus Herpes simplex (VHS a Aciclovir (ACV ocurre en aproximadamente un 5% de los pacientes inmunocomprometidos. El tratamiento con análogos de nucleósidos, provoca la aparición de cepas VHS-ACV resistentes (ACVr. El mecanismo responsable de la resistencia a ACV son las mutaciones en los genes que codifican las enzimas timidina quinasa y/o ADN- polimerasa. En un estudio de aislamientos clinicos de pacientes inmunodeficientes, se encontró que el 96% de los VHS ACVr son debidos a una baja producción o ausencia de la enzima y un4% son cepas con alteración de la especificidad por el sustrato, casi no se obtuvieron cepas mutantes en la ADN-polimerasa (15. Los análogos de Pirofosfatos generan resistencia por mutación en el gen de la ADN-polimerasa. En este trabajo se presenta la metodología empleada para el estudio de los perfiles de sensibilidad a ACV y a Foscarnet (PFA en una población de inmunosuprimidos. Se estudiaron 46 aislamientos de VHS en fibroblastos humanos, provenientes de muestras de trasplantados con lesiones vesiculares. De los 46 aislamientos, 26 resultaron VHS-1 y 20 VHS-2, tipificados por Inmunofluorescencia (IF con anticuerpos monoclonales. Posteriormente se amplificaron y se les determinó su perfíl de sensibilidad en células Vero, utilizando 100 Dosis infectivas en cultivo de tejidos 50% (DICT50 de cada cepa viral y las drogas antivirales en diferentes concentraciones. La concentración inhibitoria 50%(CI50 se calculó a partir del porcentaje de inhibición del efecto citopático en función de la concentración de la droga. Ninguno de los aislamientos resultó resistente al PFA y solo dos de ellos, uno de VHS-1 y uno de VHS-2, fueron resistentesa ACV.The Herpes simplex Virus (HSV resistance to acyclovir (ACV occurs in a 5% of the inmunocompromised patients, approximately. The treatment with analogs of nucleosides, causes the appearance of resistent HSV-ACV stocks(ACVr which can be produced by

  9. Burden of herpes simplex virus encephalitis in the United States.

    Science.gov (United States)

    Modi, S; Mahajan, Abhimanyu; Dharaiya, D; Varelas, P; Mitsias, P

    2017-06-01

    Herpes simplex virus encephalitis (HSVE) is a disease of public health concern, but its burden on the healthcare of United States has not been adequately assessed recently. We aimed to define the incidence, complications and outcomes of HSVE in the recent decade by analyzing data from a nationally representative database. Healthcare Cost and Utilization Project databases were utilized to identify patients with primary discharge diagnosis of HSVE. Annual hospitalization rate was estimated and several preselected inpatient complications were identified. Regression analyses were used to identify mortality predictors. Key epidemiological factors were compared with those from other countries. Total 4871 patients of HSVE were included in our study. The annual hospitalization rate was 10.3 ± 2.2 cases/million in neonates, 2.4 ± 0.3 cases/million in children and 6.4 ± 0.4 cases/million in adults. Median age was 57 years and male:female incidence ratio was 1:1. Rates of some central nervous system complications were seizures (38.4%), status epilepticus (5.5%), acute respiratory failure (20.1%), ischemic stroke (5.6%) and intracranial hemorrhage (2.7%), all of which were significantly associated with mortality. In-hospital mortality in neonates, children and adults were 6.9, 1.2 and 7.7%, respectively. HSVE still remains a potentially lethal infectious disease with high morbidity and mortality. Most recent epidemiological data in this study may help understanding this public health disease, and the patient outcome data may have prognostic significance.

  10. Imaging findings of neonatal herpes simplex virus type 2 encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Vossough, Arastoo; Zimmerman, Robert A.; Bilaniuk, Larissa T.; Schwartz, Erin M. [University of Pennsylvania, Children' s Hospital of Philadelphia, Philadelphia, PA (United States)

    2008-04-15

    The CT, MR, and diffusion-weighted initial and follow-up imaging findings in neonatal herpes simplex virus type 2 (HSV-2) encephalitis were assessed. The clinical, laboratory and imaging findings in 12 patients (eight girls and four boys) with proven neonatal HSV-2 encephalitis with follow-up were retrospectively reviewed. Patterns of brain involvement and distribution of lesions were studied and the contribution of diffusion-weighted imaging to the imaging diagnosis of this disease was explored. A total of 24 CT and 22 MRI studies were performed with a mean follow-up time of 38 months. Neonatal HSV-2 encephalitis can be multifocal or limited to only the temporal lobes, brainstem, or cerebellum. The deep gray matter structures were involved in 57% of patients, and hemorrhage was seen in more than half of the patients. CT images were normal or showed mild abnormalities in the early stages of the disease. Conventional MR images may be normal in the early stages of the disease. Lesions were initially seen only by diffusion-weighted imaging in 20% of the patients and this modality showed a substantially more extensive disease distribution in an additional 50% of patients. In 40% of patients, watershed distribution ischemic changes were observed in addition to areas of presumed direct herpetic necrosis. Neonatal HSV-2 encephalitis has a variable imaging appearance. Diffusion-weighted MRI is an important adjunct in the imaging evaluation of this disease. Watershed distribution ischemia in areas remote from the primary herpetic lesions may be seen. (orig.)

  11. [Herpes simplex virus infections, an update for the practitioner].

    Science.gov (United States)

    Meylan, Pascal

    2011-04-27

    The herpesviruses HSV-1 and -2 classically infect the oral and genital area respectively. They descend from a common ancestor but have evolved separately since several million years, getting each adapted to these areas. Thus, while both can infect either site, HSV-1 reactivates often orally, while HSV-2 does so in the genital area. The followings facts are stressed, because we think they are new, or worth attention regarding HSV epidemiology (plateauing of the HSV-2 epidemic in the US, growing share of HSV-1 as a genital herpes agent), clinical expression (extra-oral and extra-genital lesions, severity of gingivostomatitis), diagnosis (confusing herpes and zoster in the trigeminal and sacral areas) and treatment (relative worth of suppressive and episodic treatments of genital herpes, as well as shortening of these latter, and treatment of gingivostomatitis and herpes labialis).

  12. Mediators and mechanisms of herpes simplex virus entry into ocular cells.

    Science.gov (United States)

    Farooq, Asim V; Valyi-Nagy, Tibor; Shukla, Deepak

    2010-06-01

    The entry of herpes simplex virus into cells was once thought to be a general process. It is now understood that the virus is able to use multiple mechanisms for entry and spread, including the use of receptors and co-receptors that have been determined to be cell-type specific. This is certainly true for ocular cell types, which is important as the virus may use different mechanisms to gain access to multiple anatomic structures in close proximity, leading to various ocular diseases. There are some patterns that may be utilized by the virus in the eye and elsewhere, including surfing along filopodia in moving from cell to cell. There are common themes as well as intriguing differences in the entry mechanisms of herpes simplex virus into ocular cells. We discuss these issues in the context of conjunctivitis, keratitis, acute retinal necrosis, and other ocular diseases.

  13. Structural basis for the antibody neutralization of Herpes simplex virus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheng-Chung; Lin, Li-Ling [Academia Sinica, Taipei 115, Taiwan (China); Academia Sinica, Taipei 115, Taiwan (China); Chan, Woan-Eng [Development Center for Biotechnology, New Taipei City 221, Taiwan (China); Ko, Tzu-Ping [Academia Sinica, Taipei 115, Taiwan (China); Academia Sinica, Taipei 115, Taiwan (China); Lai, Jiann-Shiun [Development Center for Biotechnology, New Taipei City 221, Taiwan (China); Ministry of Economic Affairs, Taipei 100, Taiwan (China); Wang, Andrew H.-J., E-mail: ahjwang@gate.sinica.edu.tw [Academia Sinica, Taipei 115, Taiwan (China); Academia Sinica, Taipei 115, Taiwan (China); Taipei Medical University, Taipei 110, Taiwan (China)

    2013-10-01

    The gD–E317-Fab complex crystal revealed the conformational epitope of human mAb E317 on HSV gD, providing a molecular basis for understanding the viral neutralization mechanism. Glycoprotein D (gD) of Herpes simplex virus (HSV) binds to a host cell surface receptor, which is required to trigger membrane fusion for virion entry into the host cell. gD has become a validated anti-HSV target for therapeutic antibody development. The highly inhibitory human monoclonal antibody E317 (mAb E317) was previously raised against HSV gD for viral neutralization. To understand the structural basis of antibody neutralization, crystals of the gD ectodomain bound to the E317 Fab domain were obtained. The structure of the complex reveals that E317 interacts with gD mainly through the heavy chain, which covers a large area for epitope recognition on gD, with a flexible N-terminal and C-terminal conformation. The epitope core structure maps to the external surface of gD, corresponding to the binding sites of two receptors, herpesvirus entry mediator (HVEM) and nectin-1, which mediate HSV infection. E317 directly recognizes the gD–nectin-1 interface and occludes the HVEM contact site of gD to block its binding to either receptor. The binding of E317 to gD also prohibits the formation of the N-terminal hairpin of gD for HVEM recognition. The major E317-binding site on gD overlaps with either the nectin-1-binding residues or the neutralizing antigenic sites identified thus far (Tyr38, Asp215, Arg222 and Phe223). The epitopes of gD for E317 binding are highly conserved between two types of human herpesvirus (HSV-1 and HSV-2). This study enables the virus-neutralizing epitopes to be correlated with the receptor-binding regions. The results further strengthen the previously demonstrated therapeutic and diagnostic potential of the E317 antibody.

  14. The Diagnosis of Genital Herpes – Beyond Culture: An Evidence-Based Guide for the Utilization of Polymerase Chain Reaction and Herpes Simplex Virus Type-Specific Serology

    Directory of Open Access Journals (Sweden)

    S Ratnam

    2007-01-01

    Full Text Available Accurate identification of persons with genital herpes is necessary for optimal patient management and prevention of transmission. Because of inherent inaccuracies, clinical diagnosis of genital herpes should be confirmed by laboratory testing for the causative agents herpes simplex virus type 1 (HSV-1 and HSV type 2 (HSV-2. Further identification of the HSV type is valuable for counselling on the natural history of infection and risk of transmission. Laboratory methods include antigen detection, culture, polymerase chain reaction (PCR and conventional and type-specific serology (TSS. PCR has, by far, the greater sensitivity and should be the test of choice for symptomatic cases. HSV-2 TSS is indicated for patients with genital lesions in whom antigen detection, culture or PCR fail to detect HSV, and for patients who are asymptomatic but have a history suggestive of genital herpes. HSV-2 TSS is further indicated for patients infected with HIV. HSV-2 TSS along with HSV-1 TSS may be considered, as appropriate, in evaluating infection and/or immune status in couples discordant for genital herpes, women who develop their first clinical episode of genital herpes during pregnancy, asymptomatic pregnant women whose partners have a history of genital herpes or HIV infection, and women contemplating pregnancy or considering sexual partnership with those with a history of genital herpes. The above should be performed in conjunction with counselling of infected persons and their sex partners.

  15. Ultrasound-induced cavitation enhances the delivery and therapeutic efficacy of an oncolytic virus in an in vitro model.

    Science.gov (United States)

    Bazan-Peregrino, Miriam; Arvanitis, Costas D; Rifai, Bassel; Seymour, Leonard W; Coussios, Constantin-C

    2012-01-30

    We investigated whether ultrasound-induced cavitation at 0.5 MHz could improve the extravasation and distribution of a potent breast cancer-selective oncolytic adenovirus, AdEHE2F-Luc, to tumour regions that are remote from blood vessels. We developed a novel tumour-mimicking model consisting of a gel matrix containing human breast cancer cells traversed by a fluid channel simulating a tumour blood vessel, through which the virus and microbubbles could be made to flow. Ultrasonic pressures were chosen to maximize either broadband emissions, associated with inertial cavitation, or ultraharmonic emissions, associated with stable cavitation, while varying duty cycle to keep the total acoustic energy delivered constant for comparison across exposures. None of the exposure conditions tested affected cell viability in the absence of the adenovirus. When AdEHE2F-Luc was delivered via the vessel, inertial cavitation increased transgene expression in tumour cells by up to 200 times. This increase was not observed in the absence of Coxsackie and Adenovirus Receptor cell expression, discounting sonoporation as the mechanism of action. In the presence of inertial cavitation, AdEHE2F-Luc distribution was greatly improved in the matrix surrounding the vessel, particularly in the direction of the ultrasound beam; this enabled AdEHE2F-Luc to kill up to 80% of cancer cells within the ultrasound focal volume in the gel 24 hours after delivery, compared to 0% in the absence of cavitation. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. The "Knife-Cut Sign" Revisited: A Distinctive Presentation of Linear Erosive Herpes Simplex Virus Infection in Immunocompromised Patients.

    Science.gov (United States)

    Cohen, Philip R

    2015-10-01

    The "knife-cut sign" is a distinctive presentation of linear erosive herpes simplex virus infection in immunocompromised patients. To describe a man whose herpes simplex virus infection-related skin lesions demonstrated the "knife-cut sign" and to review the characteristics of reported immunosuppressed individuals with "knife-cut" cutaneous herpes simplex virus lesions. A man with multiple myeloma and post-stem cell transplant cutaneous graft-versus-host disease managed with systemic prednisone and sirolimus developed disseminated cutaneous herpes simplex virus infection with virus-associated linear ulcers of the inguinal folds and the area between his ear and scalp; the lesions at both sites had a distinctive "knife-cut" appearance. Using the PubMed database, an extensive literature search was performed on herpes simplex virus, immunocompromised patient, and "knife-cut sign". Herpes simplex virus infection-associated skin lesions that demonstrate the "knife-cut sign" present in patients who are immunosuppressed secondary to either an underlying medical condition or a systemic therapy or both. The distinctive virus-related cutaneous lesions appear as linear ulcers and fissures in intertriginous areas, such as the folds in the inguinal area, the vulva, and the abdomen; in addition, other sites include beneath the breast, within the gluteal cleft, and the area between the ear and the scalp. Not only herpes simplex virus-2, but also herpes simplex virus-1 has been observed as the causative viral serotype; indeed, herpes simplex virus-1 has been associated with genital and inframammary lesions in addition to those above the neck. Direct fluorescent antibody testing is a rapid method for confirming the clinically suspected viral infection; however, since false-negative direct fluorescent antibody testing occurred in some of the patients, it may be prudent to also perform viral cultures and possibly lesional skin biopsies to establish the diagnosis. The herpes simplex

  17. Concomitant herpes simplex virus colitis and hepatitis in a man with ulcerative colitis: Case report and review of the literature.

    Science.gov (United States)

    Phadke, Varun K; Friedman-Moraco, Rachel J; Quigley, Brian C; Farris, Alton B; Norvell, J P

    2016-10-01

    Herpesvirus infections often complicate the clinical course of patients with inflammatory bowel disease; however, invasive disease due to herpes simplex virus is distinctly uncommon. We present a case of herpes simplex virus colitis and hepatitis, review all the previously published cases of herpes simplex virus colitis, and discuss common clinical features and outcomes. We also discuss the epidemiology, clinical manifestations, diagnosis, and management of herpes simplex virus infections, focusing specifically on patients with inflammatory bowel disease. A 43-year-old man with ulcerative colitis, previously controlled with an oral 5-aminosalicylic agent, developed symptoms of a colitis flare that did not respond to treatment with systemic corticosteroid therapy. One week later he developed orolabial ulcers and progressive hepatic dysfunction, with markedly elevated transaminases and coagulopathy. He underwent emergent total colectomy when imaging suggested bowel micro-perforation. Pathology from both the colon and liver was consistent with herpes simplex virus infection, and a viral culture of his orolabial lesions and a serum polymerase chain reaction assay also identified herpes simplex virus. He was treated with systemic antiviral therapy and made a complete recovery. Disseminated herpes simplex virus infection with concomitant involvement of the colon and liver has been reported only 3 times in the published literature, and to our knowledge this is the first such case in a patient with inflammatory bowel disease. The risk of invasive herpes simplex virus infections increases with some, but not all immunomodulatory therapies. Optimal management of herpes simplex virus in patients with inflammatory bowel disease includes targeted prophylactic therapy for patients with evidence of latent infection, and timely initiation of antiviral therapy for those patients suspected to have invasive disease.

  18. Attitudes and Willingness to Assume Risk of Experimental Therapy to Eradicate Genital Herpes Simplex Virus Infection.

    Science.gov (United States)

    Oseso, Linda; Magaret, Amalia S; Jerome, Keith R; Fox, Julie; Wald, Anna

    2016-09-01

    Current treatment of genital herpes is focused on ameliorating signs and symptoms but is not curative. However, as potential herpes simplex virus (HSV) cure approaches are tested in the laboratory, we aimed to assess the interest in such studies by persons with genital herpes and the willingness to assume risks associated with experimental therapy. We constructed an anonymous online questionnaire that was posted on websites that provide information regarding genital herpes. The questions collected demographic and clinical information on adults who self-reported as having genital herpes, and assessed attitudes toward and willingness to participate in HSV cure clinical research. Seven hundred eleven participants provided sufficient responses to be included in the analysis. Sixty-six percent were women; the median age was 37 years, and the median time since genital HSV diagnosis was 4.7 years. The willingness to participate in trials increased from 59.0% in phase 1 to 68.5% in phase 2, and 81.2% in phase 3 trials, and 40% reported willingness to participate even in the absence of immediate, personal benefits. The most desirable outcome was the elimination of risk for transmission to sex partner or neonate. The mean perceived severity of receiving a diagnosis of genital HSV-2 was 4.2 on a scale of 1 to 5. Despite suppressive therapy available, persons with genital herpes are interested in participating in clinical research aimed at curing HSV, especially in more advanced stages of development.

  19. Antiviral Activity of Crude Hydroethanolic Extract from Schinus terebinthifolia against Herpes simplex Virus Type 1.

    Science.gov (United States)

    Nocchi, Samara Requena; Companhoni, Mychelle Vianna Pereira; de Mello, João Carlos Palazzo; Dias Filho, Benedito Prado; Nakamura, Celso Vataru; Carollo, Carlos Alexandre; Silva, Denise Brentan; Ueda-Nakamura, Tânia

    2017-04-01

    Herpes simplex virus infections persist throughout the lifetime of the host and affect more than 80 % of the humans worldwide. The intensive use of available therapeutic drugs has led to undesirable effects, such as drug-resistant strains, prompting the search for new antiherpetic agents. Although diverse bioactivities have been identified in Schinus terebinthifolia , its antiviral activity has not attracted much attention. The present study evaluated the antiherpetic effects of a crude hydroethanolic extract from the stem bark of S. terebinthifolia against Herpes simplex virus type 1 in vitro and in vivo as well as its genotoxicity in bone marrow in mammals and established the chemical composition of the crude hydroethanolic extract based on liquid chromatography-diode array detector-mass spectrometry and MS/MS. The crude hydroethanolic extract inhibited all of the tested Herpes simplex virus type 1 strains in vitro and was effective in the attachment and penetration stages, and showed virucidal activity, which was confirmed by transmission electron microscopy. The micronucleus test showed that the crude hydroethanolic extract had no genotoxic effect at the concentrations tested. The crude hydroethanolic extract afforded protection against lesions that were caused by Herpes simplex virus type 1 in vivo . Liquid chromatography-diode array detector-mass spectrometry and MS/MS identified 25 substances, which are condensed tannins mainly produced by a B-type linkage and prodelphinidin and procyanidin units. Georg Thieme Verlag KG Stuttgart · New York.

  20. Liquid-phase and solid-phase radioimmunoassay with herpes simplex virus type 1 nucleocapsids

    International Nuclear Information System (INIS)

    Bystricka, M.; Rajcani, J.; Libikova, H.; Sabo, A.; Foeldes, O.; Sadlon, J.

    1985-01-01

    Liquid-phase radioimmunoassay and solid-phase radioimmunoassay are described using 125 I-labelled or immobilized nucleocapsids (NC) of herpes simplex virus (HSV) type1. These techniques appeared sensitive and specific for quantitation of HSV-NC antigens and corresponding antibodies. (author)

  1. Molecular requirement for sterols in herpes simplex virus entry and infectivity

    Science.gov (United States)

    Herpes simplex virus 1 (HSV-1) required cholesterol for virion-induced membrane fusion. HSV successfully entered DHCR24-/-cells, which lack a desmosterol-to-cholesterol conversion enzyme, indicating entry can occur independently of cholesterol. Depletion of desmosterol from these cells resulted in d...

  2. Herpes Simplex Virus (HSV-1 Encephalitis Mimicking Glioblastoma: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Burke A. Cunha

    2014-12-01

    Full Text Available Glioblastoma multiforme (GBM often presents as a brain mass with encephalitis. In a patient with GBM, subsequent presentation with new onset encephalitis may be due to another GBM or Herpes simplex virus 1 (HSV-1 encephalitis. We present a case of HSV-1 encephalitis mimicking GBM in a patient with previous GBM.

  3. Monitoring of herpes simplex virus thymidine kinase enzyme activity using positron emission tomography

    NARCIS (Netherlands)

    Hospers, GAP; Calogero, Anna; van Waarde, A; Doze, P; Vaalburg, W; Mulder, NH; de Vries, EFJ

    2000-01-01

    9-[(1-[F-18]Fluoro-3-hydroxy-2-propoxy)methyl]guanine ([F-18]FHPG) wasevaluated as a tracer for noninvasive positron emission tomography (PET) imaging of herpes simplex virus type 1 thymidine kinase (HSV-tk) gene expression. C6 rat glioma cells with and without the HSV-tk gene were incubated with

  4. 75 FR 59611 - Microbiology Devices; Reclassification of Herpes Simplex Virus Types 1 and 2 Serological Assays...

    Science.gov (United States)

    2010-09-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2009-N-0344] Microbiology Devices; Reclassification of Herpes Simplex Virus Types 1 and 2 Serological Assays; Confirmation of Effective Date AGENCY: Food and Drug Administration, HHS. ACTION: Direct...

  5. 76 FR 48715 - Immunology and Microbiology Devices; Reclassification of the Herpes Simplex Virus Serological...

    Science.gov (United States)

    2011-08-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2010-N-0429] Immunology and Microbiology Devices; Reclassification of the Herpes Simplex Virus... CFR part 866 is amended as follows: PART 866--IMMUNOLOGY AND MICROBIOLOGY DEVICES 0 1. The authority...

  6. 75 FR 59670 - Immunology and Microbiology Devices; Reclassification of the Herpes Simplex Virus Serological...

    Science.gov (United States)

    2010-09-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2010-N-0429] Immunology and Microbiology Devices; Reclassification of the Herpes Simplex Virus... proposed that 21 CFR part 866 be amended as follows: PART 866--IMMUNOLOGY AND MICROBIOLOGY DEVICES 1. The...

  7. Elimination of the truncated message from the herpes simplex virus thymidine kinase suicide gene

    NARCIS (Netherlands)

    Chalmers, D; Ferrand, C; Apperley, JF; Melo, JV; Ebeling, S; Newton, [No Value; Duperrier, A; Hagenbeek, A; Garrett, E; Tiberghien, P; Garin, M

    Introduction of the Herpes simplex virus thymidine kinase (HSV-tk) gene into target cells renders them susceptible to killing by ganciclovir (GCV). We are studying the use of HSV-tk-transduced T lymphocytes in the context of hematopoietic stem cell transplantation. We have previously shown, in vitro

  8. Epizootic guinea pig herpes-like virus infection in a breeding colony.

    Science.gov (United States)

    Connelly, B L; Keller, G L; Myers, M G

    1987-01-01

    A breeding colony of strain-2 guinea pigs which had been relatively free of indigenous caviid herpesviruses experienced an explosive outbreak of guinea pig herpes-like virus apparently as a consequence of intermixing groups and contamination of the water supply. A new breeding colony has been established and has been maintained apparently free of recognized caviid herpesviruses.

  9. Amino-terminal sequence of glycoprotein D of herpes simplex virus types 1 and 2

    International Nuclear Information System (INIS)

    Eisenberg, R.J.; Long, D.; Hogue-Angeletti, R.; Cohen, G.H.

    1984-01-01

    Glycoprotein D (gD) of herpes simplex virus is a structural component of the virion envelope which stimulates production of high titers of herpes simplex virus type-common neutralizing antibody. The authors caried out automated N-terminal amino acid sequencing studies on radiolabeled preparations of gD-1 (gD of herpes simplex virus type 1) and gD-2 (gD of herpes simplex virus type 2). Although some differences were noted, particularly in the methionine and alanine profiles for gD-1 and gD-2, the amino acid sequence of a number of the first 30 residues of the amino terminus of gD-1 and gD-2 appears to be quite similar. For both proteins, the first residue is a lysine. When we compared out sequence data for gD-1 with those predicted by nucleic acid sequencing, the two sequences could be aligned (with one exception) starting at residue 26 (lysine) of the predicted sequence. Thus, the first 25 amino acids of the predicted sequence are absent from the polypeptides isolated from infected cells

  10. Herpes Simplex Virus Infection in a University Health Population: Clinical Manifestations, Epidemiology, and Implications

    Science.gov (United States)

    Horowitz, Robert; Aierstuck, Sara; Williams, Elizabeth A.; Melby, Bernette

    2010-01-01

    Objective: The authors described clinical presentations of oral and genital herpes simplex virus (HSV) infections in a university health population and implications of these findings. Participants and Methods: Using a standardized data collection tool, 215 records of patients with symptomatic culture-positive HSV infections were reviewed. Results:…

  11. Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids

    NARCIS (Netherlands)

    Roos, W.H.; Radtke, K.; Kniesmeijer, E.G.R.; Geertsema, H.J.; Sodeik, B.; Wuite, G.J.L.

    2009-01-01

    Herpes simplex virus type 1 (HSV1) capsids undergo extensive structural changes during maturation and DNA packaging. As a result, they become more stable and competent for nuclear egress. To further elucidate this stabilization process, we used biochemical and nanoindentation approaches to analyze

  12. Scaffold expulsion and genome packaging trigger stabilization of Herpes Simplex Virus capsids

    NARCIS (Netherlands)

    Roos, W.H.; Radtke, K.; Kniesmeijer, E.; Geertsema, H.J.; Sodeik, B.; Wuite, G.J.L.

    2009-01-01

    Herpes simplex virus type 1 (HSV1) capsids undergo extensive structural changes during maturation and DNA packaging. As a result, they become more stable and competent for nuclear egress. To further elucidate this stabilization process, we used biochemical and nanoindentation approaches to analyze

  13. Characterization of glycoprotein C of HSZP strain of herpes simplex virus 1

    NARCIS (Netherlands)

    Oravcova, [No Value; Kudelova, M; Mlcuchova, J; Matis, J; Bystricka, M; Westra, DF; Welling-Wester, S; Rajcani, J

    Sequences of UL44 genes of strains HSZP, KOS and 17 of herpes simplex virus 1 (HSV-1) were determined and the amino acid sequences of corresponding glycoproteins (gC) were deduced. In comparison with the 17 strain, the HSZP strain showed specific changes in 3 nucleotides and in 2 amino acids (aa 139

  14. Seroprevalence of IgG Antibodies to Herpes Simplex Virus Type-1 in ...

    African Journals Online (AJOL)

    Background: Herpes simplex virus type-1 (HSV-1) can cause chronic ulcerative infection in immunosuppressed children leading to latency with subsequent reactivate in the conjunctiva resulting in scarring, thickening of the cornea and blindness. They are also common cause of fatal sporadic encephalitis in 70% of ...

  15. Anti-herpes simplex virus activity of extracts from the culinary herbs ...

    African Journals Online (AJOL)

    This study demonstrates anti-herpes simplex virus activity of dichloromethane and methanol extracts of Ocimum sanctum L., Ocimum basilicum L. and Ocimum americanum L. Green monkey kidney cells were protected from HSV-2 infection by the dichloromethane extract of O. americanum L. and the methanol extract of O.

  16. Evaluation of mixed infection cases with both herpes simplex virus types 1 and 2.

    Science.gov (United States)

    Kaneko, Hisatoshi; Kawana, Takashi; Ishioka, Ken; Ohno, Shigeaki; Aoki, Koki; Suzutani, Tatsuo

    2008-05-01

    Herpes simplex virus type 1 (HSV-1) is isolated principally from the upper half of the body innervated by the trigeminal ganglia whereas herpes simplex virus type 2 (HSV-2) is generally isolated from the lower half of the body innervated by the sacral ganglia. However, recent reports suggest that HSV-1 and HSV-2 can each infect both the upper and lower half of the body causing a variety of symptoms and there is a possibility that HSV-1 and HSV-2 infections can occur simultaneously with both causing symptoms. HSV type in clinical isolates from 87 patients with genital herpes and 57 with ocular herpes was determined by the polymerase chain reaction (PCR), and six cases of mixed infection with both HSV-1 and HSV-2 were identified. Of the six cases, three were patients with genital herpes and three were ocular herpes patients. Analysis of the copy number of the HSV-1 and HSV-2 genome by a quantitative real time PCR demonstrated that HSV-1 was dominant at a ratio of approximately 100:1 in the ocular infections. In contrast, the HSV-2 genome was present at a 4-40 times higher frequency in isolates from genital herpes patients. There was no obvious difference between the clinical course of mixed infection and those of single HSV-1 or HSV-2 infections. This study indicated that the frequency of mixed infection with both HSV-1 and HSV-2 is comparatively higher than those of previous reports. The genome ratio of HSV-1 and HSV-2 reflects the preference of each HSV type for the target organ.

  17. No evidence of parvovirus B19, Chlamydia pneumoniae or human herpes virus infection in temporal artery biopsies in patients with giant cell arteritis

    DEFF Research Database (Denmark)

    Helweg-Larsen, J; Tarp, B; Obel, N

    2002-01-01

    conditions. DNA was extracted from frozen biopsies and PCR was used to amplify genes from Chlamydia pneumoniae, parvovirus B19 and each of the eight human herpes viruses: herpes simplex viruses HSV-1 and 2, Epstein-Barr virus, cytomegalovirus, varicella zoster virus and human herpes viruses HHV-6, -7 and -8......OBJECTIVES: Recent studies have suggested that infective agents may be involved in the pathogenesis of giant cell arteritis (GCA), in particular Chlamydia pneumoniae and parvovirus B19. We investigated temporal arteries from patients with GCA for these infections as well as human herpes viruses....... RESULTS: In all 30 biopsies, PCR was negative for DNAs of parvovirus B19, each of the eight human herpes viruses and C. pneumoniae. CONCLUSIONS: We found no evidence of DNA from parvovirus B19, human herpes virus or C. pneumoniae in any of the temporal arteries. These agents do not seem to play a unique...

  18. CD11c controls herpes simplex virus 1 responses to limit virus replication during primary infection.

    Science.gov (United States)

    Allen, Sariah J; Mott, Kevin R; Chentoufi, Aziz A; BenMohamed, Lbachir; Wechsler, Steven L; Ballantyne, Christie M; Ghiasi, Homayon

    2011-10-01

    CD11c is expressed on the surface of dendritic cells (DCs) and is one of the main markers for identification of DCs. DCs are the effectors of central innate immune responses, but they also affect acquired immune responses to infection. However, how DCs influence the efficacy of adaptive immunity is poorly understood. Here, we show that CD11c(+) DCs negatively orchestrate both adaptive and innate immunity against herpes simplex virus type 1 (HSV-1) ocular infection. The effectiveness and quantity of virus-specific CD8(+) T cell responses are increased in CD11c-deficient animals. In addition, the levels of CD83, CD11b, alpha interferon (IFN-α), and IFN-β, but not IFN-γ, were significantly increased in CD11c-deficient animals. Higher levels of IFN-α, IFN-β, and CD8(+) T cells in the CD11c-deficient mice may have contributed to lower virus replication in the eye and trigeminal ganglia (TG) during the early period of infection than in wild-type mice. However, the absence of CD11c did not influence survival, severity of eye disease, or latency. Our studies provide for the first time evidence that CD11c expression may abrogate the ability to reduce primary virus replication in the eye and TG via higher activities of type 1 interferon and CD8(+) T cell responses.

  19. Immunobiology of herpes simplex virus and cytomegalovirus infections of the fetus and newborn

    OpenAIRE

    Muller, William J.; Jones, Cheryl A.; Koelle, David M.

    2010-01-01

    Immunologic “immaturity” is often blamed for the increased susceptibility of newborn humans to infection, but the precise mechanisms and details of immunologic development remain somewhat obscure. Herpes simplex virus (HSV) and cytomegalovirus (CMV) are two of the more common severe infectious agents of the fetal and newborn periods. HSV infection in the newborn most commonly occurs after exposure to the virus during delivery, and can lead to a spectrum of clinical disease ranging from isolat...

  20. Detection systems for antibody responses against herpes B virus

    OpenAIRE

    Pöhlmann, Stefan; Krüger, Astrid; Hafezi, Wali; Schneider, Stefan; Gruber, Jens; Winkler, Michael; Kaul, Artur

    2017-01-01

    Herpes B virus (BV) infection is highly prevalent among adult Asian macaques and rarely causes severe disease in infected animals. In contrast, BV infection of humans can induce fatal encephalitis in the absence of treatment. Therefore, the development of diagnostic tests for specific and sensitive detection of antibodies against BV is an important task. The cross-reactivity of antibodies against BV with related simplex viruses of other primates may afford an opportunity to ...

  1. A Strategy for O-Glycoproteomics of Enveloped Viruses-the O-Glycoproteome of Herpes Simplex Virus Type 1

    DEFF Research Database (Denmark)

    Bagdonaite, Ieva; Nordén, Rickard; Joshi, Hiren J

    2015-01-01

    present a novel proteome-wide discovery strategy for O-glycosylation sites on viral envelope proteins using herpes simplex virus type 1 (HSV-1) as a model. We identified 74 O-linked glycosylation sites on 8 out of the 12 HSV-1 envelope proteins. Two of the identified glycosites found in glycoprotein B...

  2. Interleukin-33 is expressed in the lesional epidermis in herpes virus infection but not in verruca vulgaris.

    Science.gov (United States)

    Jin, Meijuan; Komine, Mayumi; Tsuda, Hidetoshi; Oshio, Tomoyuki; Ohtsuki, Mamitaro

    2018-04-25

    Interleukin (IL)-33 is released on cell injury and activates the immune reaction. IL-33 is involved in antiviral reaction in herpes virus infection, but the source that secretes IL-33 has not been identified. We speculate that keratinocytes injured in herpes virus infection secrete IL-33. In order to detect IL-33 in the lesional epidermis of patients with herpes virus infection, we immunostained several cutaneous herpes virus infection samples with an anti-IL-33 antibody, and compared them with cutaneous human papilloma virus (HPV) infection samples. We observed strong nuclear and mild cytoplasmic staining in epidermal keratinocytes of the lesional skin samples with herpes simplex virus and varicella zoster virus infections. However, staining was not observed in the epidermis of verruca vulgaris (VV) samples. We assumed that the strong immune reaction to herpes virus infection may depend on strong IL-33 expression in the epidermis, while very weak immune reaction in samples from patients with VV may be due to low or no expression of IL-33 in the lesional epidermis. © 2018 Japanese Dermatological Association.

  3. Enhanced tumor control of human Glioblastoma Multiforme xenografts with the concomitant use of radiotherapy and an attenuated herpes simplex-1 virus (ASTRO research fellowship)

    International Nuclear Information System (INIS)

    Song, Paul Y.; Sibley, Gregory S.; Advani, Sunil; Hallahan, Dennis; Hyland, John; Kufe, Donald W.; Chou, Joany; Roizman, Bernard; Weichselbaum, Ralph R.

    1996-01-01

    Purpose: Glioblastoma Multiforme remains one of the most incurable of human tumors. The current treatment outcomes are dismal. There are several recent reports which suggest that some human glioblastoma xenografts implanted in the brains of athymic mice may be potentially cured with the use of an attenuated herpes simplex-1 virus alone. We have chosen a replication competent, non-neurovirulent HSV-1 mutant, designated R3616 to determine whether there is an interactive cell killing and enhanced tumor control with radiotherapy in the treatment of a human glioblastoma xenograft. Materials and Methods: In vivo, 1 mm 3 pieces of U-87 human glioblastoma cell line xenografts were implanted into the right hind limb of athymic mice and grown to > 200 mm 3 . A total of 112 mice were then equally distributed within four treatment arms (see chart below) based upon tumor volume. Xenografts selected to receive virus as part of the therapy were inoculated with three injections of 2 x 10 7 plaque forming units (PFU) of R3616 virus given on day 1, 2, and 3 for a total dose of 6 x 10 7 PFU. R3616 is a non-neurovirulent HSV-1 mutant created by the deletion of the γ 34.5 gene. Local field irradiation was delivered on day 2 (20 Gy) and day 3 (25 Gy). The mice were then followed for 60 days during which time the xenografts were measured twice weekly. A clinically non-palpable tumor (< 10% original volume) was scored as a cure. In addition percent-fractional tumor volume (FTV) and mean tumor volume (MTV) were calculated for each group. Results: Conclusion: While our tumor control with R3616 alone is similar to that reported in the literature, we have seen significantly enhanced tumor control and cell killing with the addition of RT suggesting a synergistic interaction between an oncolytic virus and radiation in the treatment of human glioblastoma multiforme xenografts

  4. Oncolytic Viruses in Head and Neck Cancer: A New Ray of Hope in ...

    African Journals Online (AJOL)

    radiotherapy, immunotherapy, and gene therapy. All the treatment modalities currently employed are associated with potential adverse effects. Hence, there is an urgent need of a treatment modality that targets cancer cell and has minimal side-effects. One such upcoming approach is the use of viruses to kill cancer cells.

  5. Engineered measles virus Edmonston strain used as a novel oncolytic viral system against human hepatoblastoma

    International Nuclear Information System (INIS)

    Zhang, Shu-Cheng; Wang, Wei-Lin; Cai, Wei-Song; Jiang, Kai-Lei; Yuan, Zheng-Wei

    2012-01-01

    Hepatoblastoma (HB) is the most common primary, malignant pediatric liver tumor in children. The treatment results for affected children have markedly improved in recent decades. However, the prognosis for high-risk patients who have extrahepatic extensions, invasion of the large hepatic veins, distant metastases and very high alpha-fetoprotein (AFP) serum levels remains poor. There is an urgent need for the development of novel therapeutic approaches. An attenuated strain of measles virus, derived from the Edmonston vaccine lineage, was genetically engineered to produce carcinoembryonic antigen (CEA). We investigated the antitumor potential of this novel viral agent against human HB both in vitro and in vivo. Infection of the Hep2G and HUH6 HB cell lines, at multiplicities of infection (MOIs) ranging from 0.01 to 1, resulted in a significant cytopathic effect consisting of extensive syncytia formation and massive cell death at 72–96 h after infection. Both of the HB lines overexpressed the measles virus receptor CD46 and supported robust viral replication, which correlated with CEA production. The efficacy of this approach in vivo was examined in murine Hep2G xenograft models. Flow cytometry assays indicated an apoptotic mechanism of cell death. Intratumoral administration of MV-CEA resulted in statistically significant delay of tumor growth and prolongation of survival. The engineered measles virus Edmonston strain MV-CEA has potent therapeutic efficacy against HB cell lines and xenografts. Trackable measles virus derivatives merit further exploration in HB treatment

  6. Bullous Variant of Sweet’s Syndrome after Herpes Zoster Virus Infection

    OpenAIRE

    Yuichiro Endo; Miki Tanioka; Hideaki Tanizaki; Minako Mori; Hiroshi Kawabata; Yoshiki Miyachi

    2011-01-01

    Aim: Cutaneous manifestations of Sweet’s syndrome (SS) are typically painful plaque-forming erythematous papules, while bullae are quite uncommon. We present a case of bullous variant of SS in acute myeloid leukaemia. In this case, herpes infection of the left mandible had preceded the development of SS. Case Report: A 75-year-old male with myelodysplastic syndrome first presented with herpes zoster virus infection-like bullae and erosive plaques on the left side of the face and neck. Treatme...

  7. Lister vaccine strain of vaccinia virus armed with the endostatin-angiostatin fusion gene: an oncolytic virus superior to dl1520 (ONYX-015) for human head and neck cancer.

    Science.gov (United States)

    Tysome, James R; Wang, Pengju; Alusi, Ghassan; Briat, Arnaud; Gangeswaran, Rathi; Wang, Jiwei; Bhakta, Vipul; Fodor, Istvan; Lemoine, Nick R; Wang, Yaohe

    2011-09-01

    Oncolytic viral therapy represents a promising strategy for the treatment of head and neck squamous cell carcinoma (HNSCC), with dl1520 (ONYX-015) the most widely used oncolytic adenovirus in clinical trials. This study aimed to determine the effectiveness of the Lister vaccine strain of vaccinia virus as well as a vaccinia virus armed with the endostatin-angiostatin fusion gene (VVhEA) as a novel therapy for HNSCC and to compare them with dl1520. The potency and replication of the Lister strain and VVhEA and the expression and function of the fusion protein were determined in human HNSCC cells in vitro and in vivo. Finally, the efficacy of VVhEA was compared with dl1520 in vivo in a human HNSCC model. The Lister vaccine strain of vaccinia virus was more effective than the adenovirus against all HNSCC cell lines tested in vitro. Although the potency of VVhEA was attenuated in vitro, the expression and function of the endostatin-angiostatin fusion protein was confirmed in HNSCC models both in vitro and in vivo. This novel vaccinia virus (VVhEA) demonstrated superior antitumor potency in vivo compared with both dl1520 and the control vaccinia virus. This study suggests that the Lister strain vaccinia virus armed with an endostatin-angiostatin fusion gene may be a potential therapeutic agent for HNSCC.

  8. Mimicking herpes simplex virus 1 and herpes simplex virus 2 mucosal behavior in a well-characterized human genital organ culture.

    Science.gov (United States)

    Steukers, Lennert; Weyers, Steven; Yang, Xiaoyun; Vandekerckhove, Annelies P; Glorieux, Sarah; Cornelissen, Maria; Van den Broeck, Wim; Temmerman, Marleen; Nauwynck, Hans J

    2014-07-15

    We developed and morphologically characterized a human genital mucosa explant model (endocervix and ectocervix/vagina) to mimic genital herpes infections caused by herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). Subsequent analysis of HSV entry receptor expression throughout the menstrual cycle in genital tissues was performed, and the evolution of HSV-1/-2 mucosal spread over time was assessed. Nectin-1 and -2 were expressed in all tissues during the entire menstrual cycle. Herpesvirus entry mediator expression was limited mainly to some connective tissue cells. Both HSV-1 and HSV-2 exhibited a plaque-wise mucosal spread across the basement membrane and induced prominent epithelial syncytia. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Gene expression of herpes simplex virus. II. Uv radiological analysis of viral transcription units

    International Nuclear Information System (INIS)

    Millette, R. L.; Klaiber, R.

    1980-01-01

    The transcriptional organization of the genome of herpes simplex virus type 1 was analyzed by measuring the sensitivity of viral polypeptide synthesis to uv irradiation of the infecting virus. Herpes simplex virus type 1 was irradiated with various doses of uv light and used to infect xeroderma pigmentosum fibroblasts. Immediate early transcription units were analyzed by having cycloheximide present throughout the period of infection, removing the drug at 8 h postinfection, and pulse-labeling proteins with [355]methionine. Delayed early transcription units were analyzed in similar studies by having 9-beta-D-arabinofuranosyladenine present during the experiment to block replication of the input irradiated genome. The results indicate that none of the immediate early genes analyzed can be cotranscribed, whereas some of the delayed early genes might be cotranscribed. No evidence was found for the existence of large, multigene transcription units

  10. Combination of the oral histone deacetylase inhibitor resminostat with oncolytic measles vaccine virus as a new option for epi-virotherapeutic treatment of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Benjamin Ruf

    Full Text Available Epigenetic therapies such as histone deacetylase inhibitors (HDACi not only have the capability to decrease tumor cell proliferation and to induce tumor cell death but also to silence antiviral response genes. Here, we investigated whether the combination of an oncolytic measles vaccine virus (MeV with the novel oral HDACi resminostat (Res, being in clinical testing in patients with hepatocellular carcinoma (HCC, results in an enhanced efficacy of this epi-virotherapeutic approach compared to any of the two corresponding monotherapies. When testing a panel of human hepatoma cell lines, we found (i a significantly improved rate of primary infections when using oncolytic MeV under concurrent treatment with resminostat, (ii a boosted cytotoxic effect of the epi-virotherapeutic combination (Res + MeV with enhanced induction of apoptosis, and, quite importantly, (iii an absence of any resminostat-induced impairment of MeV replication and spread. Beyond that, we could also show that (iv resminostat, after hepatoma cell stimulation with exogenous human interferon (IFN-β, is able to prevent the induction of IFN-stimulated genes, such as IFIT-1. This finding outlines the possible impact of resminostat on cellular innate immunity, being instrumental in overcoming resistances to MeV-mediated viral oncolysis. Thus, our results support the onset of epi-virotherapeutic clinical trials in patients exhibiting advanced stages of HCC.

  11. JST Thesaurus Headwords and Synonyms: herpes simplex virus [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term herpes simplex virus 名詞 一般 * * * ...* 単純ヘルペスウイルス タンジュンヘルペスウイルス タンジュンヘルペスーイルス Thesaurus2015 200906069987991310 C LS07 UNKNOWN_2 herpes simplex virus

  12. Herpes Simplex Virus-2 Esophagitis in a Young Immunocompetent Adult

    Directory of Open Access Journals (Sweden)

    Deepak K. Kadayakkara

    2016-01-01

    Full Text Available Herpes simplex esophagitis (HSE is commonly identified in immunosuppressed patients. It is rare among immunocompetent patients and almost all of the reported cases are due to HSV-1 infection. HSV-2 esophagitis is extremely rare. We report the case of a young immunocompetent male who presented with dysphagia, odynophagia, and epigastric pain. Endoscopy showed multitudes of white nummular lesions in the distal esophagus initially suspected to be candida esophagitis. However, classic histopathological findings of multinucleated giant cells with eosinophilic intranuclear inclusions and positive HSV-2 IgM confirmed the diagnosis of HSV-2 esophagitis. The patient rapidly responded to acyclovir treatment. Although HSV-2 is predominantly associated with genital herpes, it can cause infections in other parts of the body previously attributed to only HSV-1 infection.

  13. Analysis of nucleotide sequence variations in herpes simplex virus types 1 and 2, and varicella-zoster virus

    International Nuclear Information System (INIS)

    Chiba, A.; Suzutani, T.; Koyano, S.; Azuma, M.; Saijo, M.

    1998-01-01

    To analyze the difference in the degree of divergence between genes from identical herpes virus species, we examined the nucleotide sequence of genes from the herpes simplex virus type 1 (HSV-l ) strains VR-3 and 17 encoding thymidine kinase (TK), deoxyribonuclease (DNase), protein kinase (PK; UL13) and virion-associated host shut off (vhs) protein (UL41). The frequency of nucleotide substitutions per 1 kb in TK gene was 2.5 to 4.3 times higher than those in the other three genes. To prove that the polymorphism of HSV-1 TK gene is common characteristic of herpes virus TK genes, we compared the diversity of TK genes among eight HSV-l , six herpes simplex virus type 2 (HSV-2) and seven varicella-zoster virus (VZV) strains. The average frequency of nucleotide substitutions per 1 kb in the TK gene of HSV-l strains was 4-fold higher than that in the TK gene of HSV-2 strains. The VZV TK gene was highly conserved and only two nucleotide changes were evident in VZV strains. However, the rate of non-synonymous substitutions in total nucleotide substitutions was similar among the TK genes of the three viruses. This result indicated that the mutational rates differed, but there were no significant differences in selective pressure. We conclude that HSV-l TK gene is highly diverged and analysis of variations in the gene is a useful approach for understanding the molecular evolution of HSV-l in a short period. (authors)

  14. Herpes simplex type 2 virus deleted in glycoprotein D protects against vaginal, skin and neural disease

    OpenAIRE

    Petro, Christopher; Gonz?lez, Pablo A; Cheshenko, Natalia; Jandl, Thomas; Khajoueinejad, Nazanin; B?nard, Ang?le; Sengupta, Mayami; Herold, Betsy C; Jacobs, William R

    2015-01-01

    eLife digest Herpes simplex virus 2 (or HSV-2) infects millions of people worldwide and is the leading cause of genital diseases. The virus initially infects skin cells, but then spreads to nerve cells where it persists for life. Often, the virus remains in a dormant state for long periods of time and does not cause any symptoms. However, HSV-2 can periodically re-activate, leading to repeated infections; this can be life-threatening in patients who suffer from a weak immune system. There is ...

  15. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice.

    Science.gov (United States)

    Field, H J; Wildy, P

    1978-10-01

    The pathogenicity for mice of two mutants of herpes simplex virus (type 1 and type 2), which fail to induce thymidine kinase, were compared with their respective parent strains. The mutants were much less virulent than the parents following either intracerebral or peripheral inoculation. The replication of the virus at the site of inoculation and its progression into the nervous system were studied. Following a very large inoculum in the ear, the type 1 mutant was found to establish a latent infection in the cervical dorsal root ganglia. Mice inoculated intracerebrally with small doses of the mutant viruses were solidly immune to challenge with lethal doses of the parent strain.

  16. The morphogenesis of herpes simplex virus type 1 in infected parental mouse L fibroblasts and mutant gro29 cells

    DEFF Research Database (Denmark)

    Jensen, Helle Lone; Norrild, Bodil

    2003-01-01

    Mutants of cell lines and viruses are important biological tools. The pathway of herpesvirus particle maturation and egress are contentious issues. The mutant gro29 line of mouse L cells is defective for egress of herpes simplex virus type 1 (HSV-1) virions, and a candidate for studies of virus...

  17. Natural and adoptive T-cell immunity against herpes family viruses after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Thomas, Simone; Herr, Wolfgang

    2011-06-01

    Reactivated infections with herpes family-related cytomegalovirus, Epstein-Barr virus and varicella zoster virus are serious and sometimes life-threatening complications for patients undergoing allogeneic hematopoietic stem cell transplantation. The pathogenesis of these infections critically involves the slow and inefficient recovery of antiviral T-cell immunity after transplantation. Although efficient drugs to decrease viral load during this vulnerable period have been developed, long-term control of herpes viruses and protection from associated diseases require the sufficient reconstitution of virus-specific memory T cells. To heal the deficiency by immunotherapeutic means, numerous research groups have developed antiviral vaccines and strategies based on the adoptive transfer of virus-specific T cells. This article summarizes the substantial progress made in this field during the past two decades and gives future perspectives about challenges that need to be addressed before antigen-specific immunotherapy against herpes family viruses can be implemented in general clinical practice.

  18. Herpes Simplex Virus Suppressive Therapy in Herpes Simplex Virus-2/Human Immunodeficiency Virus-1 Coinfected Women Is Associated With Reduced Systemic CXCL10 But Not Genital Cytokines.

    Science.gov (United States)

    Andersen-Nissen, Erica; Chang, Joanne T; Thomas, Katherine K; Adams, Devin; Celum, Connie; Sanchez, Jorge; Coombs, Robert W; McElrath, M Juliana; Baeten, Jared M

    2016-12-01

    Herpes simplex virus type-2 (HSV-2) may heighten immune activation and increase human immunodeficiency virus 1 (HIV-1) replication, resulting in greater infectivity and faster HIV-1 disease progression. An 18-week randomized, placebo-controlled crossover trial of 500 mg valacyclovir twice daily in 20 antiretroviral-naive women coinfected with HSV-2 and HIV-1 was conducted and HSV-2 suppression was found to significantly reduce both HSV-2 and HIV-1 viral loads both systemically and the endocervical compartment. To determine the effect of HSV-2 suppression on systemic and genital mucosal inflammation, plasma specimens, and endocervical swabs were collected weekly from volunteers in the trial and cryopreserved. Plasma was assessed for concentrations of 31 cytokines and chemokines; endocervical fluid was eluted from swabs and assayed for 14 cytokines and chemokines. Valacyclovir significantly reduced plasma CXCL10 but did not significantly alter other cytokine concentrations in either compartment. These data suggest genital tract inflammation in women persists despite HSV-2 suppression, supporting the lack of effect on transmission seen in large scale efficacy trials. Alternative therapies are needed to reduce persistent mucosal inflammation that may enhance transmission of HSV-2 and HIV-1.

  19. Herpes virus and viral DNA synthesis in ultraviolet light-irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Coppey, J; Nocentini, S [Institut du Radium, 75 - Paris (France). Lab. Curie

    1976-07-01

    The rate of virus DNA synthesis and the production of infectious virus are impaired in stationary monkey kidney CV-I cells irradiated with u.v. before infection with herpes simplex virus (HSV). The inhibition of HSV multiplication is due to u.v.-induced damage in cell DNA. CV-I cells recover their capacity to support HSV growth during the 40 to 48 h after irradiation, and the final virus yield is enhanced by factor of 10. The time course of the recovery is similar to that of the excision repair process occurring in u.v.-irradiated mammalian cells. Caffeine, hydroxyurea and cycloheximide inhibit the recovery. Fluorodeoxyuridine is without effect. A small but significant amount of labelled dThd coming from irradiated cell DNA is incorporated into virus DNA. HSV specified thymidine kinase seems to be more effective for virus DNA synthesis in irradiated than in control cells.

  20. Acute lymphocytic crisis following herpes simplex type 1 virus hepatitis in a nonimmunocompromised man: a case report

    Directory of Open Access Journals (Sweden)

    Plastiras Sotiris

    2009-08-01

    Full Text Available Abstract Introduction An increase in circulating lymphocytes can be seen following infections such as infectious mononucleosis and pertussis, or in lymphoproliferative disorders such as acute and chronic lymphocytic leukemia. Acute lymphocytic crisis following herpes simplex virus hepatitis has not been described in the literature. Case presentation A 52-year-old man was admitted to our hospital reporting low-grade fever for the previous seven days, and fatigue. During the fifth day of hospitalization, the patient developed a lymphocytic crisis and, after further tests the patient was diagnosed as having herpes simplex virus hepatitis. Conclusion This case report shows that herpes simplex virus type 1 is a possible cause of an acute lymphocytic crisis similar to other well known infectious agents such as Epstein–Barr virus, cytomegalovirus, human immunodeficiency virus, human herpes virus type 6, adenovirus, toxoplasma and human T-cell lymphotropic virus. Furthermore, this case report expands the clinical spectrum of herpes simplex virus hepatitis, since it is reported in a nonimmunocompromised patient presenting with atypical acute lymphocytic syndrome.

  1. Herpes simplex virus type 1 and type 2 in the Netherlands : seroprevalence, risk factors and changes during a 12-year period

    NARCIS (Netherlands)

    Woestenberg, Petra J; Tjhie, Jeroen H T; de Melker, Hester E; van der Klis, Fiona R M; van Bergen, Jan E A M; van der Sande, Marianne A B; van Benthem, Birgit H B

    2016-01-01

    BACKGROUND: Genital herpes results in considerable morbidity, including risk of neonatal herpes, and is increasingly being caused by Herpes Simplex Virus (HSV) type 1. Possibly children are less often HSV-1 infected, leaving them susceptible until sexual debut. We assessed changes in the Dutch HSV-1

  2. Herpes simplex virus type 1 and type 2 in the Netherlands: seroprevalence, risk factors and changes during a 12-year period

    NARCIS (Netherlands)

    Woestenberg, Petra J.; Tjhie, Jeroen H. T.; de Melker, Hester E.; van der Klis, Fiona R. M.; van Bergen, Jan E. A. M.; van der Sande, Marianne A. B.; van Benthem, Birgit H. B.

    2016-01-01

    Genital herpes results in considerable morbidity, including risk of neonatal herpes, and is increasingly being caused by Herpes Simplex Virus (HSV) type 1. Possibly children are less often HSV-1 infected, leaving them susceptible until sexual debut. We assessed changes in the Dutch HSV-1 and HSV-2

  3. Prevalence of human papilloma virus and human herpes virus types 1-7 in human nasal polyposis.

    Science.gov (United States)

    Zaravinos, Apostolos; Bizakis, John; Spandidos, Demetrios A

    2009-09-01

    This study aimed to investigate the prevalence of human papilloma virus (HPV), herpes simplex virus-1/-2 (HSV-1/-2), varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), and human herpes virus-6/-7 (HHV-6/-7) in 23 human nasal polyps by applying PCR. Two types of control tissues were used: adjacent inferior/middle turbinates from the patients and inferior/middle turbinates from 13 patients undergoing nasal corrective surgery. EBV was the virus most frequently detected (35%), followed by HPV (13%), HSV-1 (9%), and CMV (4%). The CMV-positive polyp was simultaneously positive for HSV-1. HPV was also detected in the adjacent turbinates (4%) and the adjacent middle turbinate (4%) of one of the HPV-positive patients. EBV, HSV, and CMV were not detected in the adjacent turbinates of the EBV-, HSV- or CMV-positive patients. All mucosae were negative for the VZV, HHV-6, and HHV-7. This is the first study to deal with the involvement of a comparable group of viruses in human nasal polyposis. The findings support the theory that the presence of viral EBV markedly influences the pathogenesis of these benign nasal tumors. The low incidence of HPV detected confirms the hypothesis that HPV is correlated with infectious mucosal lesions to a lesser extent than it is with proliferative lesions, such as inverted papilloma. The low incidence of HSV-1 and CMV confirms that these two herpes viruses may play a minor role in the development of nasal polyposis. Double infection with HSV-1 and CMV may also play a minor, though causative, role in nasal polyp development. VZV and HHV-6/-7 do not appear to be involved in the pathogenesis of these mucosal lesions.

  4. Herpes simplex virus type 2 latency in the footpad of mice: effect of acycloguanosine on the recovery of virus.

    Science.gov (United States)

    Al-Saadi, S A; Gross, P; Wildy, P

    1988-02-01

    Herpes simplex virus type 2 has been reactivated from the latent state in the footpad and dorsal root ganglia of acycloguanosine-treated BALB/c mice. Virus was also recovered from the footpad tissue but not from the ganglia of denervated, latently infected mice. Treatment in vitro of explanted footpad cultures with acycloguanosine or phosphonoacetic acid did not affect the rate of virus reactivation. In all the isolates examined the virus was found to be acycloguanosine-sensitive. Recovery of virus from footpad tissue of mice after a long period of acycloguanosine treatment supports the theory that virus had been truly latent in the footpad and not in a state of persistent infection.

  5. A case of urinary retention in the early stages of herpes simplex virus type-1 encephalitis.

    Science.gov (United States)

    Fukuoka, Takuya; Nakazato, Yoshihiko; Miyake, Akifumi; Tamura, Naotoshi; Araki, Nobuo; Yamamoto, Toshimasa

    2017-06-01

    A 70-year-old man developed urinary retention in the early stages of herpes simplex virus (HSV) type-1 encephalitis. A nerve conduction study suggested latent myeloradiculitis. This is the first report of human herpes simplex virus-1 encephalitis followed by urinary retention at early stage from the onset like the Elsberg syndrome. Although relatively few similar cases have been reported, we consider that urinary retention is common in HSV-1 encephalitis, in which disturbances of consciousness usually require bladder catheterization from the onset. We further emphasize that urinary retention may occasionally occur in early stages of HSV-1 encephalitis, with a significant possibility of recovery. Copyright © 2017. Published by Elsevier B.V.

  6. [Neonatal facial palsy: identification of herpes simplex virus 1 in cerebrospinal fluid. Case report].

    Science.gov (United States)

    Lubián López, Simón; Pérez Guerrero, Juan J; Salazar Oliva, Patricia; Benavente Fernández, Isabel

    2018-06-01

    Neonatal facial palsy is very uncommon and is generally diagnosed at birth. We present the first published case of neonatal facial palsy with identification of herpes simplex virus 1 in cerebrospinal fluid. A 35-day-old male was presented at the Emergency Department with mouth deviation to the left and impossibility of full closure of the right eye. There were no symptoms of infection or relevant medical history. Physical examination was compatible with peripheral facial palsy. Studies performed at admission were normal (blood count, biochemical analysis and coagulation blood tests and cerebrospinal fluid analysis). The patient was admitted on oral prednisolone and intravenous aciclovir. Cranial magnetic resonance was normal. Polymerase chain reaction test for herpes simplex virus 1 in cerebrospinal fluid was reported positive after 48 hours of admission. Patient followed good evolution and received prednisolone for 7 days and acyclovir for 21 days. At discharge, neurological examination was normal. Sociedad Argentina de Pediatría.

  7. Synthetic analogues of bovine bactenecin dodecapeptide reduce herpes simplex virus type 2 infectivity in mice

    DEFF Research Database (Denmark)

    Jenssen, Håvard; Shestakov, Andrey; Hancock, Robert E. W

    2013-01-01

    We have evaluated the potential of four synthetic peptides (denoted HH-2, 1002, 1006, 1018) with a distant relationship to the host defense peptide bovine bactenecin dodecapeptide for their ability to prevent genital infections with herpes simplex virus type 2 (HSV-2) in mice. All four peptides...... infectious doses of HSV-2. These data show that peptides HH-2 and 1018 have antiviral properties and can be used to prevent genital herpes infection in mice. (C) 2013 Elsevier B.V. All rights reserved....... was introduced in human semen. Two of the peptides proved especially effective in reducing HSV-2 infection also in vivo. When admixed with virus prior to inoculation, both HH-2 and 1018 reduced viral replication and disease development in a genital model of HSV-2 infection in mice, and also when using very high...

  8. Herpes Simplex Virus-1 DNA Primase: A Remarkably Inaccurate yet Selective Polymerase

    Czech Academy of Sciences Publication Activity Database

    Urban, M.; Joubert, Nicolas; Hocek, Michal; Alexander, R. E.; Kuchta, R. D.

    2009-01-01

    Roč. 48, č. 46 (2009), s. 10866-10881 ISSN 0006-2960 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550902 Grant - others:NIH(US) AI059764 Institutional research plan: CEZ:AV0Z40550506 Keywords : HSV-1 * herpes simplex virus-1 * Pyr * pyrimidine Subject RIV: CC - Organic Chemistry Impact factor: 3.226, year: 2009

  9. Contributions of herpes simplex virus type 1 envelope proteins to entry by endocytosis

    Science.gov (United States)

    Herpes simplex virus (HSV) proteins specifically required for endocytic entry but not direct penetration have not been identified. HSVs deleted of gE, gG, gI, gJ, gM, UL45, or Us9 entered cells via either pH-dependent or pH-independent endocytosis and were inactivated by mildly acidic pH. Thus, the ...

  10. Comparative studies of types 1 and 2 herpes simplex virus infection of cultured normal keratinocytes.

    OpenAIRE

    Su, S J; Wu, H H; Lin, Y H; Lin, H Y

    1995-01-01

    AIMS--To investigate the differences in biological properties, multiplication patterns, and cytopathic effects between type 1 and type 2 herpes simplex virus (HSV) through the replication of HSV in cultured normal human keratinocytes. METHODS--Keratinocytes were obtained from surgical specimens of normal gingiva, cervix, trunk skin, and newborn foreskin. They were cultured in serum free, chemically defined, culture medium and infected with a pool of HSV collected from clinical specimens. RESU...

  11. Imaging Herpes Simplex Virus Type 1 Amplicon Vector–Mediated Gene Expression in Human Glioma Spheroids

    OpenAIRE

    Christine Kaestle; Alexandra Winkeler; Raphaela Richter; Heinrich Sauer; Jürgen Hescheler; Cornel Fraefel; Maria Wartenberg; Andreas H. Jacobs

    2011-01-01

    Vectors derived from herpes simplex virus type 1 (HSV-1) have great potential for transducing therapeutic genes into the central nervous system; however, inefficient distribution of vector particles in vivo may limit their therapeutic potential in patients with gliomas. This study was performed to investigate the extent of HSV-1 amplicon vector–mediated gene expression in a three-dimensional glioma model of multicellular spheroids by imaging highly infectious HSV-1 virions expressing green fl...

  12. Computed Tomography Perfusion Usefulness in Early Imaging Diagnosis of Herpes Simplex Virus Encephalitis

    International Nuclear Information System (INIS)

    Marco de Lucas, E.; Mandly, Gonzalez A.; Gutierrez, A.; Sanchez, E.; Arnaiz, J.; Piedra, T.; Rodriguez, E.; Diez, C.

    2006-01-01

    An early diagnosis is crucial in herpes simplex virus encephalitis patients in order to institute acyclovir therapy and reduce mortality rates. Magnetic resonance imaging (MRI) is considered the gold standard for evaluation of these patients, but is frequently not available in the emergency setting. We report the first case of a computed tomography (CT) perfusion study that helped to establish a prompt diagnosis revealing abnormal increase of blood flow in the affected temporoparietal cortex at an early stage

  13. Genital herpes simplex.

    OpenAIRE

    Tummon, I. S.; Dudley, D. K.; Walters, J. H.

    1981-01-01

    Genital herpes is a sexually transmitted disease caused by the herpes simplex virus. Following the initial infection the virus becomes latent in the sacral ganglia. Approximately 80% of patients are then subject to milder but unpredictable recurrences and may shed the virus even when they are asymptomatic. The disorder causes concern because genital herpes in the mother can result in rare but catastrophic neonatal infection and because of a possible association between genital herpes and canc...

  14. Herpes simplex virus infection in pregnancy and in neonate: status of art of epidemiology, diagnosis, therapy and prevention

    Directory of Open Access Journals (Sweden)

    Barucca Valentina

    2009-04-01

    Full Text Available Abstract Herpes simplex virus (HSV infection is one of the most common viral sexually transmitted diseases worldwide. The first time infection of the mother may lead to severe illness in pregnancy and may be associated with virus transmission from mother to foetus/newborn. Since the incidence of this sexually transmitted infection continues to rise and because the greatest incidence of herpes simplex virus infections occur in women of reproductive age, the risk of maternal transmission of the virus to the foetus or neonate has become a major health concern. On these purposes the Authors of this review looked for the medical literature and pertinent publications to define the status of art regarding the epidemiology, the diagnosis, the therapy and the prevention of HSV in pregnant women and neonate. Special emphasis is placed upon the importance of genital herpes simplex virus infection in pregnancy and on the its prevention to avoid neonatal HSV infections.

  15. Facial nerve palsy after reactivation of herpes simplex virus type 1 in diabetic mice.

    Science.gov (United States)

    Esaki, Shinichi; Yamano, Koji; Katsumi, Sachiyo; Minakata, Toshiya; Murakami, Shingo

    2015-04-01

    Bell's palsy is highly associated with diabetes mellitus (DM). Either the reactivation of herpes simplex virus type 1 (HSV-1) or diabetic mononeuropathy has been proposed to cause the facial paralysis observed in DM patients. However, distinguishing whether the facial palsy is caused by herpetic neuritis or diabetic mononeuropathy is difficult. We previously reported that facial paralysis was aggravated in DM mice after HSV-1 inoculation of the murine auricle. In the current study, we induced HSV-1 reactivation by an auricular scratch following DM induction with streptozotocin (STZ). Controlled animal study. Diabetes mellitus was induced with streptozotocin injection in only mice that developed transient facial nerve paralysis with HSV-1. Recurrent facial palsy was induced after HSV-1 reactivation by auricular scratch. After DM induction, the number of cluster of differentiation 3 (CD3)(+) T cells decreased by 70% in the DM mice, and facial nerve palsy recurred in 13% of the DM mice. Herpes simplex virus type 1 deoxyribonucleic acid (DNA) was detected in the facial nerve of all of the DM mice with palsy, and HSV-1 capsids were found in the geniculate ganglion using electron microscopy. Herpes simplex virus type 1 DNA was also found in some of the DM mice without palsy, which suggested the subclinical reactivation of HSV-1. These results suggested that HSV-1 reactivation in the geniculate ganglion may be the main causative factor of the increased incidence of facial paralysis in DM patients. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Update On Emerging Antivirals For The Management Of Herpes Simplex Virus Infections: A Patenting Perspective

    Science.gov (United States)

    Vadlapudi, Aswani D.; Vadlapatla, Ramya K.; Mitra, Ashim K.

    2015-01-01

    Herpes simplex virus (HSV) infections can be treated efficiently by the application of antiviral drugs. The herpes family of viruses is responsible for causing a wide variety of diseases in humans. The standard therapy for the management of such infections includes acyclovir (ACV) and penciclovir (PCV) with their respective prodrugs valaciclovir and famciclovir. Though effective, long term prophylaxis with the current drugs leads to development of drug-resistant viral isolates, particularly in immunocompromised patients. Moreover, some drugs are associated with dose-limiting toxicities which limit their further utility. Therefore, there is a need to develop new antiherpetic compounds with different mechanisms of action which will be safe and effective against emerging drug resistant viral isolates. Significant advances have been made towards the design and development of novel antiviral therapeutics during the last decade. As evident by their excellent antiviral activities, pharmaceutical companies are moving forward with several new compounds into various phases of clinical trials. This review provides an overview of structure and life cycle of HSV, progress in the development of new therapies, update on the advances in emerging therapeutics under clinical development and related recent patents for the treatment of Herpes simplex virus infections. PMID:23331181

  17. Facile preparation of a DNA sensor for rapid herpes virus detection

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Phuong Dinh, E-mail: tampd-hast@mail.hut.edu.vn [Hanoi Advanced School of Science and Technology, Hanoi University of Technology (Viet Nam); Tuan, Mai Anh, E-mail: tuanma-itims@mail.hut.edu.vn [International Training Institute for Materials Science, Hanoi University of Technology (Viet Nam); Huy, Tran Quang [National Institute of Hygiene and Epidemiology (NIHE), 01 Yersin, Hai Ba Trung District, Hanoi (Viet Nam); Le, Anh-Tuan [Hanoi Advanced School of Science and Technology, Hanoi University of Technology (Viet Nam); Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science, Hanoi University of Technology (Viet Nam)

    2010-10-12

    In this paper, a simple DNA sensor platform was developed for rapid herpes virus detection in real samples. The deoxyribonucleic acid (DNA) sequences of the herpes simplex virus (DNA probe) were directly immobilized on the surface of interdigitated electrodes by electrochemical polymerization along with pyrrole monomers. The potential was scanned from - 0.7 to + 0.6 V, and the scanning rate was 100 mV/s. Fourier transform infrared spectroscopy was employed to verify specific DNA sequence binding and the conducting polymer. The morphology of the conducting polymer doped with DNA strands was characterized using a field emission scanning electron microscope. As-obtained DNA sensor was used to detect the herpes virus DNA in the real samples. The results show that the current DNA sensors detected the lowest DNA concentration of 2 nM. This sensitivity appears to be better than that of the DNA sensors prepared by immobilization of the DNA probe on the 3-aminopropyl-triethoxy-silance (APTS) membrane.

  18. Facile preparation of a DNA sensor for rapid herpes virus detection

    International Nuclear Information System (INIS)

    Tam, Phuong Dinh; Tuan, Mai Anh; Huy, Tran Quang; Le, Anh-Tuan; Hieu, Nguyen Van

    2010-01-01

    In this paper, a simple DNA sensor platform was developed for rapid herpes virus detection in real samples. The deoxyribonucleic acid (DNA) sequences of the herpes simplex virus (DNA probe) were directly immobilized on the surface of interdigitated electrodes by electrochemical polymerization along with pyrrole monomers. The potential was scanned from - 0.7 to + 0.6 V, and the scanning rate was 100 mV/s. Fourier transform infrared spectroscopy was employed to verify specific DNA sequence binding and the conducting polymer. The morphology of the conducting polymer doped with DNA strands was characterized using a field emission scanning electron microscope. As-obtained DNA sensor was used to detect the herpes virus DNA in the real samples. The results show that the current DNA sensors detected the lowest DNA concentration of 2 nM. This sensitivity appears to be better than that of the DNA sensors prepared by immobilization of the DNA probe on the 3-aminopropyl-triethoxy-silance (APTS) membrane.

  19. Computational sensing of herpes simplex virus using a cost-effective on-chip microscope

    KAUST Repository

    Ray, Aniruddha

    2017-07-03

    Caused by the herpes simplex virus (HSV), herpes is a viral infection that is one of the most widespread diseases worldwide. Here we present a computational sensing technique for specific detection of HSV using both viral immuno-specificity and the physical size range of the viruses. This label-free approach involves a compact and cost-effective holographic on-chip microscope and a surface-functionalized glass substrate prepared to specifically capture the target viruses. To enhance the optical signatures of individual viruses and increase their signal-to-noise ratio, self-assembled polyethylene glycol based nanolenses are rapidly formed around each virus particle captured on the substrate using a portable interface. Holographic shadows of specifically captured viruses that are surrounded by these self-assembled nanolenses are then reconstructed, and the phase image is used for automated quantification of the size of each particle within our large field-of-view, ~30 mm2. The combination of viral immuno-specificity due to surface functionalization and the physical size measurements enabled by holographic imaging is used to sensitively detect and enumerate HSV particles using our compact and cost-effective platform. This computational sensing technique can find numerous uses in global health related applications in resource-limited environments.

  20. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    Directory of Open Access Journals (Sweden)

    Li-Li Dong

    2017-11-01

    Full Text Available AIM: To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1 glycoprotein C (gC and glycoprotein D (gD will achieve better protective effect against herpes simplex keratitis (HSK than DNA vaccine encoding gD alone. METHODS: DNA vaccine expressing gD or gC combined gD (gD.gC were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice were inoculated with DNA/nanoparticle for 3 times with 2wk interval, and two weeks after the final immunization, the specific immune responses and clinical degrees of primary HSK were evaluated. RESULTS: Fusion protein gD.gC could be expressed successfully in cultured 293T cells. And, pRSC-gC.gD-IL21 DNA/chitosan nanoparticle could effectively elicit strongest humoral and cellular immune response in primary HSK mice evidenced by higher levels of specific neutralizing antibody and sIgA production, enhanced cytotoxicities of splenocytes and nature killer cells (NK, when compared with those of gD alone or mocked vaccine immunized mice. As a result, gC-based vaccine immunized mice showed least HSK disease. CONCLUSION: gC-based DNA vaccine could effectively prevent the progress of primary HSK, suggesting that this DNA vaccine could be a promising vaccine for HSK treatment in the future.

  1. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    Science.gov (United States)

    Dong, Li-Li; Tang, Ru; Zhai, Yu-Jia; Malla, Tejsu; Hu, Kai

    2017-01-01

    AIM To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1) glycoprotein C (gC) and glycoprotein D (gD) will achieve better protective effect against herpes simplex keratitis (HSK) than DNA vaccine encoding gD alone. METHODS DNA vaccine expressing gD or gC combined gD (gD.gC) were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice were inoculated with DNA/nanoparticle for 3 times with 2wk interval, and two weeks after the final immunization, the specific immune responses and clinical degrees of primary HSK were evaluated. RESULTS Fusion protein gD.gC could be expressed successfully in cultured 293T cells. And, pRSC-gC.gD-IL21 DNA/chitosan nanoparticle could effectively elicit strongest humoral and cellular immune response in primary HSK mice evidenced by higher levels of specific neutralizing antibody and sIgA production, enhanced cytotoxicities of splenocytes and nature killer cells (NK), when compared with those of gD alone or mocked vaccine immunized mice. As a result, gC-based vaccine immunized mice showed least HSK disease. CONCLUSION gC-based DNA vaccine could effectively prevent the progress of primary HSK, suggesting that this DNA vaccine could be a promising vaccine for HSK treatment in the future. PMID:29181304

  2. Herpes simplex virus produces larger plaques when assayed on ultraviolet irradiated CV1 cells

    International Nuclear Information System (INIS)

    Coohill, T.P.; Babich, M.A.; Taylor, W.D.; Snipes, W.

    1980-01-01

    Plaque development for either untreated or UV treated irradiated Herpes simplex virus Type 1 was faster when assayed on UV irradiated CV1 cells. This Large Plaque Effect only occurred if a minimum delay of 12h between cell irradiation and viral inoculation was allowed. Shorter delays gave plaques that were smaller than controls (unirradiated virus-unirradiated cells). The effect was maximal for a 48-h delay and remained unchanged for delays as long as 84h. The effect was greatest for cell exposures of 10Jm -2 . (author)

  3. Affinity purification combined with mass spectrometry to identify herpes simplex virus protein-protein interactions.

    Science.gov (United States)

    Meckes, David G

    2014-01-01

    The identification and characterization of herpes simplex virus protein interaction complexes are fundamental to understanding the molecular mechanisms governing the replication and pathogenesis of the virus. Recent advances in affinity-based methods, mass spectrometry configurations, and bioinformatics tools have greatly increased the quantity and quality of protein-protein interaction datasets. In this chapter, detailed and reliable methods that can easily be implemented are presented for the identification of protein-protein interactions using cryogenic cell lysis, affinity purification, trypsin digestion, and mass spectrometry.

  4. Asociación de linfomas malignos con herpes virus I y II

    Directory of Open Access Journals (Sweden)

    Ashley Efraín Alarcon-Rozas

    2002-04-01

    Full Text Available Objetivos: Conocer la prevalencia de la seropositividad para herpes virus I y II en pacientes con linfomas non Hodgkin y su asociación con el linaje celular (B ó T. Pacientes y métodos: Se tomó una muestra de 60 pacientes en el Hospital Almenara de agosto de 1999 a diciembre del 2000 todos ellos pacientes con diagnostico establecido de linfoma non Hodgkin nuevos o en primera recaída, el análisis se realizó mediante bioestadística descriptiva. Resultados: La mediana de la edad fue de 59 años, 2/3 fueron varones, 65% pacientes nuevos y el linfoma primario fue extraganglionar en un 58% de los casos. El 80% de los linfomas fueron a células B y mas del 90% en estadios avanzados (III y IV, ningún caso fue positivo para IgM herpes I o II y 25% tuvieron serología positiva IgG para herpes I o II (2/3 positivos para IgG I de los cuales el 93% fueron a células B. Conclusiones: La prevalencia de seropositividad para herpes virus I y II en pacientes con linfoma non Hodgkin es del 25%, mayormente asociado a células B, además de tener un porcentaje considerable de linfomas a células T (25% y linfomas extranodales (58%; para evaluar la posibilidad de asociación entre este virus y los linfomas requerimos de un estudio caso-control.

  5. Oncolytic virotherapy in veterinary medicine: current status and future prospects for canine patients

    Directory of Open Access Journals (Sweden)

    Patil Sandeep S

    2012-01-01

    Full Text Available Abstract Oncolytic viruses refer to those that are able to eliminate malignancies by direct targeting and lysis of cancer cells, leaving non-cancerous tissues unharmed. Several oncolytic viruses including adenovirus strains, canine distemper virus and vaccinia virus strains have been used for canine cancer therapy in preclinical studies. However, in contrast to human studies, clinical trials with oncolytic viruses for canine cancer patients have not been reported. An 'ideal' virus has yet to be identified. This review is focused on the prospective use of oncolytic viruses in the treatment of canine tumors - a knowledge that will undoubtedly contribute to the development of oncolytic viral agents for canine cancer therapy in the future.

  6. Nelfinavir Impairs Glycosylation of Herpes Simplex Virus 1 Envelope Proteins and Blocks Virus Maturation

    Directory of Open Access Journals (Sweden)

    Soren Gantt

    2015-01-01

    Full Text Available Nelfinavir (NFV is an HIV-1 aspartyl protease inhibitor that has numerous effects on human cells, which impart attractive antitumor properties. NFV has also been shown to have in vitro inhibitory activity against human herpesviruses (HHVs. Given the apparent absence of an aspartyl protease encoded by HHVs, we investigated the mechanism of action of NFV herpes simplex virus type 1 (HSV-1 in cultured cells. Selection of HSV-1 resistance to NFV was not achieved despite multiple passages under drug pressure. NFV did not significantly affect the level of expression of late HSV-1 gene products. Normal numbers of viral particles appeared to be produced in NFV-treated cells by electron microscopy but remain within the cytoplasm more often than controls. NFV did not inhibit the activity of the HSV-1 serine protease nor could its antiviral activity be attributed to inhibition of Akt phosphorylation. NFV was found to decrease glycosylation of viral glycoproteins B and C and resulted in aberrant subcellular localization, consistent with induction of endoplasmic reticulum stress and the unfolded protein response by NFV. These results demonstrate that NFV causes alterations in HSV-1 glycoprotein maturation and egress and likely acts on one or more host cell functions that are important for HHV replication.

  7. Association of interferon lambda-1 with herpes simplex viruses-1 and -2, Epstein-Barr virus, and human cytomegalovirus in chronic periodontitis.

    Science.gov (United States)

    Muzammil; Jayanthi, D; Faizuddin, Mohamed; Noor Ahamadi, H M

    2017-05-01

    Periodontal tissues facilitate the homing of herpes viruses that elicit the immune-inflammatory response releasing the interferons (IFN). IFN lambda-1 (λ1) can suppress the replication of viruses, and induces the antiviral mechanism. The aim of the present study was to evaluate the association between IFN-λ1 and periodontal herpes viruses in the immunoregulation of chronic periodontal disease. The cross-sectional study design included 30 chronic periodontitis patients with a mean age of 42.30 ± 8.63 years. Gingival crevicular fluid collected was assessed for IFN-λ1 using enzyme-linked immunosorbent assay and four herpes viruses were detected using multiplex polymerase chain reaction technique. IFN-λ1 levels were compared between virus-positive and -negative patients for individual and total viruses. Fifty per cent (n = 15) of patients were positive for the four herpes viruses together; 50% (n = 15), 30% (n = 9), 26.7% (n = 8), and 40% (n = 12) were positive for herpes simplex virus (HSV)-1, Epstein-Barr virus, HSV-2, and human cytomegalovirus, respectively. The mean concentrations of IFN-λ1 in virus-positive patients (14.38 ± 13.95) were lower than those of virus-negative patients (228.26 ± 215.35). INF-λ1 levels in individual virus groups were also lower in virus-positive patients compared to virus-negative patients, with P viruses in the pathogenesis of chronic periodontitis. © 2015 Wiley Publishing Asia Pty Ltd.

  8. Salivary Varicella Zoster Virus in Astronauts and in Patients of Herpes Zoster

    Science.gov (United States)

    Mehta, Satish; Pierson, Duane L.

    2010-01-01

    Spaceflight is a uniquely stressful environment with astronauts experiencing a variety of stressors including: isolation and confinement, psychosocial, noise, sleep deprivation, anxiety, variable gravitational forces, and increased radiation. These stressors are manifested through the HPA and SAM axes resulting in increased stress hormones. Diminished T-lymphocyte functions lead to reactivation of latent herpes viruses in astronauts during spaceflight. Herpes simplex virus reactivated with symptoms during spaceflight whereas Epstein-Barr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate and are shed without symptoms. EBV and VZV are shed in saliva and CMV in the urine. The levels of EBV shed in astronauts increased 10-fold during the flight; CMV and VZV are not typically shed in low stressed individuals, but both were shed in astronauts during spaceflight. All herpesviruses were detected by polymerase chain reaction (PCR) assay. Culturing revealed that VZV shed in saliva was infectious virus. The PCR technology was extended to test saliva of 54 shingles patients. All shingles patients shed VZV in their saliva, and the levels followed the course of the disease. Viremia was also found to be common during shingles. The technology may be used before zoster lesions appear allowing for prevention of disease. The technology may be used for rapid detection of VZV in doctors? offices. These studies demonstrated the value of applying technologies designed for astronauts to people on Earth.

  9. Novel Infectivity-Enhanced Oncolytic Adenovirus with a Capsid-Incorporated Dual-Imaging Moiety for Monitoring Virotherapy in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Kristopher J. Kimball

    2009-09-01

    Full Text Available We sought to develop a cancer-targeted, infectivity-enhanced oncolytic adenovirus that embodies a capsid-labeling fusion for non-invasive dual-modality imaging of ovarian cancer virotherapy. A functional fusion protein composed of fluorescent and nuclear imaging tags was genetically incorporated into the capsid of an infectivity-enhanced conditionally replicative adenovirus. Incorporation of herpes simplex virus thymidine kinase (HSV-tk and monomeric red fluorescent protein 1 (mRFP1 into the viral capsid and its genomic stability were verified by molecular analyses. Replication and oncolysis were evaluated in ovarian cancer cells. Fusion functionality was confirmed by in vitro gamma camera and fluorescent microscopy imaging. Comparison of tk-mRFP virus to single-modality controls revealed similar replication efficiency and oncolytic potency. Molecular fusion did not abolish enzymatic activity of HSV-tk as the virus effectively phosphorylated thymidine both ex vivo and in vitro. In vitro fluorescence imaging demonstrated a strong correlation between the intensity of fluorescent signal and cytopathic effect in infected ovarian cancer cells, suggesting that fluorescence can be used to monitor viral replication. We have in vitro validated a new infectivity-enhanced oncolytic adenovirus with a dual-imaging modality-labeled capsid, optimized for ovarian cancer virotherapy. The new agent could provide incremental gains toward climbing the barriers for achieving conditionally replicated adenovirus efficacy in human trials.

  10. Herpes Zoster Oticus

    Science.gov (United States)

    ... Page You are here Home » Disorders » All Disorders Herpes Zoster Oticus Information Page Herpes Zoster Oticus Information Page What research is being ... neurotropic viruses and development of neurological diseases including herpes simplex and varicella-zoster viruses. × What research is ...

  11. Synthesis and methylation of ribosomal RNA in HeLa cells infected with the herpes virus pseudorabies virus

    International Nuclear Information System (INIS)

    Furlong, J.C.; Kyriakidis, S.; Stevely, W.S.

    1982-01-01

    The effects of infection with the herpes virus pseudorabies virus on the metabolism of HeLa cell ribosomal RNA were examined. There is a decline both in the synthesis of nucleolar 45S ribosomal precursor RNA and in its processing to mature cytoplasmic RNA. The methylated oligonucleotides in the ribosomal RNA species were studied. The methylation of cytoplasmic ribosomal RNA was essentially unchanged. However there was some undermethylation of the nucleolar precursor. If undermethylated RNA does not mature then this may partly explain the reduced processing in the infected cells. (Author)

  12. Completely assembled virus particles detected by transmission electron microscopy in proximal and mid-axons of neurons infected with herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus

    International Nuclear Information System (INIS)

    Huang Jialing; Lazear, Helen M.; Friedman, Harvey M.

    2011-01-01

    The morphology of alphaherpesviruses during anterograde axonal transport from the neuron cell body towards the axon terminus is controversial. Reports suggest that transport of herpes simplex virus type 1 (HSV-1) nucleocapsids and envelope proteins occurs in separate compartments and that complete virions form at varicosities or axon termini (subassembly transport model), while transport of a related alphaherpesvirus, pseudorabies virus (PRV) occurs as enveloped capsids in vesicles (assembled transport model). Transmission electron microscopy of proximal and mid-axons of primary superior cervical ganglion (SCG) neurons was used to compare anterograde axonal transport of HSV-1, HSV-2 and PRV. SCG cell bodies were infected with HSV-1 NS and 17, HSV-2 2.12 and PRV Becker. Fully assembled virus particles were detected intracellularly within vesicles in proximal and mid-axons adjacent to microtubules after infection with each virus, indicating that assembled virions are transported anterograde within axons for all three alphaherpesviruses.

  13. THE PREVALENCE OF INFECTION WITH HERPES VIRUSES AMONG FREQUENTLY ILL CHILDREN

    Directory of Open Access Journals (Sweden)

    Volyansky AY

    2014-10-01

    Full Text Available Frequently ill children (FIC - a group of dispensary an inclusion criterion which is the frequency of episodes of colds are over 4-6 throughout the year depending on age. In children population among all diseases marked the absolute predominance (90% of acute respiratory infections (ARI. The maximum incidence of acute respiratory infections among children there is between the ages of 1 to 3 years, and then gradually decreases. Among primary school children the incidence is 2-5 cases a year, among teens - no more than 2-4 diseases throughout the year. Opinions of scholars and practitioners pediatricians as to the legality of frequent classification of cases of children to pathologic conditions of the immune system are different and often diametrically opposed. Objective: To determine the prevalence of infection with herpes viruses of frequently ill children. Materials and methods. The analysis consists the results of clinical and laboratory examination of 170 frequently ill children. The criterion for selection of children for the study is the frequency of episodes of colds according to the classification of A.A.Baranov V.Yu.Albitskiy. Analysis of clinical and anamnesis data revealed that in the observed group of children there is a high rate of recurrent respiratory diseases. Thus, in the observed group of children the average incidence of ARI was 7,42 ± 0,92 episodes a year. The average duration of an episode of disease was 9,12 ± 2,75 days. The complicated course occurred in 32% of cases, the average duration of a complicated episode grew to 12,37 ± 3,91 days. This study led to the following conclusions: 1. To 3 years of age, about 85% frequently ill children are infected with at least one virus of the family Herpesviridae. By 6 years of age the number grows to 95%, to 11 years - to 98%. 2. Infectiousness 3 or more herpes viruses among children up to 3 years is more than 30%, among children 3-6 years is 48%, in the age group 6-11 years more

  14. State infants after perinatal complications prevention by mother with the association of HIV and herpes virus infection

    OpenAIRE

    Zhdanovich O.I.; Anoshyna T.M.; Kolomiichenko T.V.

    2016-01-01

    Relevance. Complicated and little studied issue is the perinatal complications prevention in pregnant women with HIV and herpes virus infections (GI) The goal — to evaluate the effectiveness of the system of perinatal complications prevention during the association of HIV and herpes infection. Materials and methods. Selected 60 HIV-infected pregnant women with the GI, which divided into 2 groups: primary — 30 pregnant women with the use of recommended prophylaxis complex (specific immunogl...

  15. Mediators and Mechanisms of Herpes Simplex Virus Entry into Ocular Cells

    Science.gov (United States)

    Farooq, Asim V.; Valyi-Nagy, Tibor; Shukla, Deepak

    2010-01-01

    The entry of herpes simplex virus (HSV) into cells was once thought to be a general process. It is now understood that the virus is able to use multiple mechanisms for entry and spread, including the use of receptors and co-receptors that have been determined to be cell-type specific. This is certainly true for ocular cell types, which is important as the virus may use different mechanisms to gain access to multiple anatomic structures in close proximity, leading to various ocular diseases. There are some patterns that may be utilized by the virus in the eye and elsewhere, including surfing along filopodia in moving from cell to cell. There are common themes as well as intriguing differences in the entry mechanisms of HSV into ocular cells. We discuss these issues in the context of conjunctivitis, keratitis, acute retinal necrosis and other ocular diseases. PMID:20465436

  16. Characterization of soluble glycoprotein D-mediated herpes simplex virus type 1 infection

    International Nuclear Information System (INIS)

    Tsvitov, Marianna; Frampton, Arthur R.; Shah, Waris A.; Wendell, Steven K.; Ozuer, Ali; Kapacee, Zoher; Goins, William F.; Cohen, Justus B.; Glorioso, Joseph C.

    2007-01-01

    Herpes simplex virus type 1 (HSV-1) entry into permissive cells involves attachment to cell-surface glycosaminoglycans (GAGs) and fusion of the virus envelope with the cell membrane triggered by the binding of glycoprotein D (gD) to cognate receptors. In this study, we characterized the observation that soluble forms of the gD ectodomain (sgD) can mediate entry of gD-deficient HSV-1. We examined the efficiency and receptor specificity of this activity and used sequential incubation protocols to determine the order and stability of the initial interactions required for entry. Surprisingly, virus binding to GAGs did not increase the efficiency of sgD-mediated entry and gD-deficient virus was capable of attaching to GAG-deficient cells in the absence of sgD. These observations suggested a novel binding interaction that may play a role in normal HSV infection

  17. Herpes viruses and HIV-1 drug resistance mutations influence the virologic and immunologic milieu of the male genital tract.

    Science.gov (United States)

    Gianella, Sara; Morris, Sheldon R; Anderson, Christy; Spina, Celsa A; Vargas, Milenka V; Young, Jason A; Richman, Douglas D; Little, Susan J; Smith, Davey M

    2013-01-02

    To further understand the role that chronic viral infections of the male genital tract play on HIV-1 dynamics and replication. Retrospective, observational study including 236 paired semen and blood samples collected from 115 recently HIV-1 infected antiretroviral naive men who have sex with men. In this study, we evaluated the association of seminal HIV-1 shedding to coinfections with seven herpes viruses, blood plasma HIV-1 RNA levels, CD4 T-cell counts, presence of transmitted drug resistance mutations (DRMs) in HIV-1 pol, participants' age and stage of HIV-infection using multivariate generalized estimating equation methods. Associations between herpes virus shedding, seminal HIV-1 levels, number and immune activation of seminal T-cells was also investigated (Mann-Whitney). Seminal herpes virus shedding was observed in 75.7% of individuals. Blood HIV-1 RNA levels (P herpes virus (HHV)-8 levels (P herpes viruses seminal shedding in our cohort. Shedding of CMV, EBV and HHV-8 and absence of DRM were associated with increased frequency of HIV-1 shedding and/or higher levels of HIV-1 RNA in semen, which are likely important cofactors for HIV-1 transmission.

  18. Bovine Herpes Virus 1 (BHV-1) and Herpes Simplex Virus Type 1 (HSV-1) Promote Survival of Latently Infected Sensory Neurons, in Part by Inhibiting Apoptosis

    Science.gov (United States)

    Jones, Clinton

    2013-01-01

    α-Herpesvirinae subfamily members, including herpes simplex virus type 1 (HSV-1) and bovine herpes virus 1 (BHV-1), initiate infection in mucosal surfaces. BHV-1 and HSV-1 enter sensory neurons by cell-cell spread where a burst of viral gene expression occurs. When compared to non-neuronal cells, viral gene expression is quickly extinguished in sensory neurons resulting in neuronal survival and latency. The HSV-1 latency associated transcript (LAT), which is abundantly expressed in latently infected neurons, inhibits apoptosis, viral transcription, and productive infection, and directly or indirectly enhances reactivation from latency in small animal models. Three anti-apoptosis genes can be substituted for LAT, which will restore wild type levels of reactivation from latency to a LAT null mutant virus. Two small non-coding RNAs encoded by LAT possess anti-apoptosis functions in transfected cells. The BHV-1 latency related RNA (LR-RNA), like LAT, is abundantly expressed during latency. The LR-RNA encodes a protein (ORF2) and two microRNAs that are expressed in certain latently infected neurons. Wild-type expression of LR gene products is required for stress-induced reactivation from latency in cattle. ORF2 has anti-apoptosis functions and interacts with certain cellular transcription factors that stimulate viral transcription and productive infection. ORF2 is predicted to promote survival of infected neurons by inhibiting apoptosis and sequestering cellular transcription factors which stimulate productive infection. In addition, the LR encoded microRNAs inhibit viral transcription and apoptosis. In summary, the ability of BHV-1 and HSV-1 to interfere with apoptosis and productive infection in sensory neurons is crucial for the life-long latency-reactivation cycle in their respective hosts. PMID:25278776

  19. Transient urinary retention and chronic neuropathic pain associated with genital herpes simplex virus infection.

    Science.gov (United States)

    Haanpää, Maija; Paavonen, Jorma

    2004-10-01

    Genital herpes (GH) causes genital ulcer disease, severe transient pain, and often paresthesias. Whether or not GH can cause urinary retention or chronic neuropathic pain is not well known. We present two immunocompetent patients with GH associated with neuropathic symptoms. We also review the literature on GH and associated neurologic problems. Patient 1 had primary herpes simplex virus (HSV)-2 infection with transient urinary retention and chronic bilateral neuropathic pain in the sacral area. Patient 2 had recurrent HSV-1 associated with unitaleral chronic neuropathic pain in the sacral area. Although transient urinary retention associated with GH is not uncommon, chronic neuropathic pain has not been reported previously. Our cases show that chronic neuropathic pain, that is "pain initiated or caused by a primary lesion or dysfunction in the nervous system," can follow genital HSV infection.

  20. Immunogenicity of oncolytic vaccinia viruses JX-GFP and TG6002 in a human melanoma in vitro model: studying immunogenic cell death, dendritic cell maturation and interaction with cytotoxic T lymphocytes

    Directory of Open Access Journals (Sweden)

    Heinrich B

    2017-05-01

    Full Text Available B Heinrich,1 J Klein,1 M Delic,1 K Goepfert,1 V Engel,1 L Geberzahn,1 M Lusky,2 P Erbs,2 X Preville,3 M Moehler1 1First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany; 2Transgene SA, Illkirch-Graffenstaden, 3Amoneta Diagnostics, Huningue, France Abstract: Oncolytic virotherapy is an emerging immunotherapeutic modality for cancer treatment. Oncolytic viruses with genetic modifications can further enhance the oncolytic effects on tumor cells and stimulate antitumor immunity. The oncolytic vaccinia viruses JX-594-GFP+/hGM-CSF (JX-GFP and TG6002 are genetically modified by secreting granulocyte-macrophage colony-stimulating factor (GM-CSF or transforming 5-fluorocytosine (5-FC into 5-fluorouracil (5-FU. We compared their properties to kill tumor cells and induce an immunogenic type of cell death in a human melanoma cell model using SK29-MEL melanoma cells. Their influence on human immune cells, specifically regarding the activation of dendritic cells (DCs and the interaction with the autologous cytotoxic T lymphocyte (CTL clone, was investigated. Melanoma cells were infected with either JX-GFP or TG6002 alone or in combination with 5-FC and 5-FU. The influence of viral infection on cell viability followed a time- and multiplicity of infection dependent manner. Combination of virus treatment with 5-FU resulted in stronger reduction of cell viability. TG6002 in combination with 5-FC did not significantly strengthen the reduction of cell viability in this setting. Expression of calreticulin and high mobility group 1 protein (HMGB1, markers of immunogenic cell death (ICD, could be detected after viral infection. Accordingly, DC maturation was noted after viral oncolysis. DCs presented stronger expression of activation and maturation markers. The autologous CTL clone IVSB expressed the activation marker CD69, but viral treatment failed to enhance cytotoxicity marker. In summary, vaccinia viruses JX-GFP and TG6002 lyse

  1. Newly Characterized Murine Undifferentiated Sarcoma Models Sensitive to Virotherapy with Oncolytic HSV-1 M002

    Directory of Open Access Journals (Sweden)

    Eric K. Ring

    2017-12-01

    Full Text Available Despite advances in conventional chemotherapy, surgical techniques, and radiation, outcomes for patients with relapsed, refractory, or metastatic soft tissue sarcomas are dismal. Survivors often suffer from lasting morbidity from current treatments. New targeted therapies with less toxicity, such as those that harness the immune system, and immunocompetent murine sarcoma models to test these therapies are greatly needed. We characterized two new serendipitous murine models of undifferentiated sarcoma (SARC-28 and SARC-45 and tested their sensitivity to virotherapy with oncolytic herpes simplex virus 1 (HSV-1. Both models expressed high levels of the primary HSV entry molecule nectin-1 (CD111 and were susceptible to killing by interleukin-12 (IL-12 producing HSV-1 M002 in vitro and in vivo. M002 resulted in a significant intratumoral increase in effector CD4+ and CD8+ T cells and activated monocytes, and a decrease in myeloid-derived suppressor cells (MDSCs in immunocompetent mice. Compared to parent virus R3659 (no IL-12 production, M002 resulted in higher CD8:MDSC and CD8:T regulatory cell (Treg ratios, suggesting that M002 creates a more favorable immune tumor microenvironment. These data provide support for clinical trials targeting sarcomas with oncolytic HSV-1. These models provide an exciting opportunity to explore combination therapies for soft tissue sarcomas that rely on an intact immune system to reach full therapeutic potential.

  2. Repair and mutagenesis of herpes simplex virus in UV-irradiated monkey cells

    International Nuclear Information System (INIS)

    Lytle, C.D.; Goddard, J.G.; Lin, C.H.

    1980-01-01

    Mutagenic repair in mammalian cells was investigated by determining the mutagenesis of UV-irradiated or unirradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cells. These results were compared with the results for UV-enhanced virus reactivation (UVER) in the same experimental situation. High and low multiplicities of infection were used to determine the effects of multiplicity reactivation (MR). UVER and MR were readily demonstrable and were approximately equal in amount in an infectious center assay. For this study, a forward-mutation assay was developed to detect virus mutants resistant to iododeoxycytidine (ICdR), probably an indication of the mutant virus being defective at its thymidine kinase locus. ICdR-resistant mutants did not have a growth advantage over wild-type virus in irradiated or unirradiated cells. Thus, higher fractions of mutant virus indicated greater mutagenesis during virus repair and/or replication. The data showed that: (1) unirradiated virus was mutated in unirradiated cells, providing a background level of mutagenesis; (2) unirradiated virus was mutated about 40% more in irradiated cells, indicating that virus replication (DNA synthesis) became more mutagenic as a result of cell irradiation; (3) irradiated virus was mutated much more (about 6-fold) than unirradiated virus, even in unirradiated cells; (4) cell irradiation did not change the mutagenesis of irradiated virus except at high multiplicity of infection. High multiplicity of infection did not demonstrate UVER or MR alone to be either error-free or error-prone. When the two processes were present simultaneously, they were mutagenic. (orig.)

  3. A 9 year-old girl with herpes simplex virus type 2 acute retinal necrosis treated with intravitreal foscarnet.

    Science.gov (United States)

    King, John; Chung, Mina; DiLoreto, David A

    2007-01-01

    A 9-year-old girl presented with a 2-week history of redness in the left eye. Examination revealed vitritis, retinal whitening, vasculitis, and optic nerve head edema. Polymerase chain reaction testing of the aqueous fluid revealed herpes simplex virus type 2. The retinitis was controlled with intravenous acyclovir and intravitreal foscarnet. The clinical course was complicated by retinal neovascularization and vitreous hemorrhage, which was treated by pars plana vitrectomy and endolaser. While there are few case reports of herpes simplex virus type 2 retinitis in children, this one is unique for the following reasons: it is the first reported case of herpes simplex virus type 2 retinitis in a child less than 10 years old without a previous history of neonatal infection or central nervous system involvement; no other children have been reported to have been treated with intravitreal foscarnet; and retinal neovascularization complicated the recovery.

  4. Reactivation of UV- and γ-irradiated herpes virus in UV- and X-irradiated CV-1 cells

    International Nuclear Information System (INIS)

    Takimoto, K.; Niwa, O.; Sugahara, T.

    1982-01-01

    Enhanced reactivation of UV- and γ-irradiated herpes virus was investigated by the plaque assay on CV-1 monkey kidney monolayer cells irradiated with UV light or X-rays. Both UV- and X-irradiated CV-1 cells showed enhancement of survival of UV-irradiated virus, while little or no enhancement was detected for γ-irradiated virus assayed on UV- or X-irradiated cells. The enhanced reactivation of UV-irradiated virus was greater when virus infection was delayed 24 or 48 h, than for infection immediately following the irradiation of cells. Thus the UV- or X-irradiated CV-1 cells are able to enhance the repair of UV damaged herpes virus DNA, but not of γ-ray damaged ones. (author)

  5. Eritema multiforme ampollar extenso asociado a infección por virus herpes simplex Extended Bullous Erythema Multiforme Associated To Herpes Simplex Virus Infection

    Directory of Open Access Journals (Sweden)

    A Elgueta-Noy

    2009-12-01

    Full Text Available El Eritema Multiforme (EM es una reacción cutánea aguda generalmente benigna y autolimitada, asociada a la infección por Virus Herpes Simplex (HSV. Se caracteriza por lesiones polimorfas y tipo diana en extremidades y mucosas. Presentamos un paciente de 22 años con pápulas, vesículas y ampollas, que evoluciona con un 90% de la superficie corporal comprometida en tres semanas. Se realizó una reacción de polimerasa en cadena para HSV, resultando positiva en una costra. La biopsia de piel y la tinción de inmunohistoquímica positiva para linfocitos T CD4, fueron compatibles con EM ampollar asociado a HSV. Destacamos la importancia de la correlación clínico patológica, apoyada por el estudio virológico, en el diagnóstico de este caso de presentación atípica. Los hallazgos de laboratorio confirmaron lo descrito en la literatura respecto de la patogenia del EM asociado a HSV.Erythema Multiforme (EM is a generally benign and self-limited acute cutaneous reaction, associated with Herpes Simplex Virus (HSV infection. It is characterized by polymorphic "target" lesions in extremities and mucosal tissues. We report a 22-year old patient with papules, vesicles and blisters, which evolved to cover 90% of the body in three weeks. We performed a PCR study for HSV, which was positive in a crust. A skin biopsy and positive immunohistochemical stain for LT CD4+ were compatible with bullous EM associated with HSV. We underline the importance of pathological clinical correlation, reinforced by a virological study, in the diagnosis of this case with atypical symptoms. The laboratory findings confirmed literature descriptions with respect to the pathogenicity of EM associated with HSV.

  6. Determination of human herpes simplex virus in clear cerebrospinal ...

    African Journals Online (AJOL)

    MICROBIO TA

    simplex viruses (HSV) type 1 and 2 using a commercial multiplex PCR kit. ... CSF and is the method most widely used for diagno- sing viral CNS .... of HSV-2 and purple– proportion of samples with dual infection (both HSV-1 and HSV-2).

  7. A lymphoblastoid response of human foetal lymphocytes to ultraviolet-irradiated herpes simplex virus

    International Nuclear Information System (INIS)

    Westmoreland, D.

    1980-01-01

    Cultures of foetal lymphocytes were exposed to u.v.-irradiated herpes simplex virus (HSV). The cells responded with increased 6- 3 H-thymidine incorporation, the formation of clumps of enlarged lymphoblastoid cells and cell division. This response was first detected 3 to 4 days after exposure to virus material and was shown to be virus-dose dependent. The ability to stimulate foetal cells was considerably more u.v. resistant than infectivity. Two isolates of HSV type 2 (4663 and 37174), which had a high 'transforming' ability, produced large numbers of non-infectious particles (particle: infectivity ratios in excess of 10 4 ). The cells, which responded to u.v.-irradiated HSV with blastoid transformation, were associated with the non-E-rosetting (T-cell-depleted) subpopulation. (author)

  8. Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase?

    Science.gov (United States)

    Wildy, P; Gell, P G; Rhodes, J; Newton, A

    1982-07-01

    Proteose-peptone-activated mouse macrophages can prevent productive infection by herpes simplex virus in neighboring cells in vitro whether or not those cells belong to the same animal species. The effect does not require contact between the macrophages and the infected cells, may be prevented by adding extra arginine to the medium, and may be reversed when extra arginine is added 24 h after the macrophages. Arginase activity was found both intracellularly and released from the macrophages. The extracellular enzyme is quite stable; 64% activity was found after 48 h of incubation at 37 degrees C in tissue culture medium. No evidence was found that the inefficiency of virus replication in macrophages was due to self-starvation by arginase. As might be predicted macrophages can, by the same mechanism, limit productive infection by vaccinia virus.

  9. Isolation and characterization of acyclovir-resistant mutants of herpes simplex virus.

    Science.gov (United States)

    Field, H J; Darby, G; Wildy, P

    1980-07-01

    Mutants of HSV which are resistant to acyclovir (acycloguanosine) have been isolated following serial passages of several herpes simplex virus (HSV) strains in the presence of the drug. The majority of the mutants isolated are defective in induction of thymidine kinase (TK) and this is consistent with the observation that independently isolated TK- viruses are naturally resistant to ACV. One mutant is described (SC16 R9C2) which is resistant in biochemically transformed cells which express HSV TK. This suggests that its resistance resides at a level other than TK. It is also resistant to phosphonoacetic acid, suggesting that the DNA polymerase locus may be involved. A further mutant is described [Cl (101) P2C5] which induces normal levels of TK, although the nature of resistance of this virus is not yet elucidated.

  10. Molecular diagnostics and newborns at risk for genital herpes simplex virus.

    Science.gov (United States)

    Chua, Caroline; Arnolds, Marin; Niklas, Victoria

    2015-05-01

    Herpes simplex virus (HSV) infection in the newborn carries a high mortality rate and can result in lifelong neurologic impairment. The severity of HSV infection in the newborn has always dictated conservative management when prodromal symptoms or active genital lesions (or those suggestive of genital herpes) are present during labor and delivery. The risk of intrapartum infection, however, is related to the presence or absence of maternal immunity (neutralizing antibody) to HSV. The most significant risk of transmission is in first-episode primary infections with active lesions at delivery. Recent recommendations from the American Academy of Pediatrics Committees on Infectious Diseases and the Fetus and Newborn use rapid serologic and virologic screening in the management of asymptomatic infants born to mothers with active genital herpes. The revised guidelines highlight infants at greatest risk for HSV disease but do not apply to asymptomatic infants born to mothers with a history of HSV but no genital lesions at delivery. The current guidelines also stipulate that maternal serologic screening and molecular assays for HSV in newborn blood and cerebrospinal fluid must be available and reported in a timely fashion. Copyright 2015, SLACK Incorporated.

  11. Diagnosis of genital herpes simplex virus infection in the clinical laboratory

    Science.gov (United States)

    2014-01-01

    Since the type of herpes simplex virus (HSV) infection affects prognosis and subsequent counseling, type-specific testing to distinguish HSV-1 from HSV-2 is always recommended. Although PCR has been the diagnostic standard method for HSV infections of the central nervous system, until now viral culture has been the test of choice for HSV genital infection. However, HSV PCR, with its consistently and substantially higher rate of HSV detection, could replace viral culture as the gold standard for the diagnosis of genital herpes in people with active mucocutaneous lesions, regardless of anatomic location or viral type. Alternatively, antigen detection—an immunofluorescence test or enzyme immunoassay from samples from symptomatic patients--could be employed, but HSV type determination is of importance. Type-specific serology based on glycoprotein G should be used for detecting asymptomatic individuals but widespread screening for HSV antibodies is not recommended. In conclusion, rapid and accurate laboratory diagnosis of HSV is now become a necessity, given the difficulty in making the clinical diagnosis of HSV, the growing worldwide prevalence of genital herpes and the availability of effective antiviral therapy. PMID:24885431

  12. Prospects and perspectives for development of a vaccine against herpes simplex virus infections.

    Science.gov (United States)

    McAllister, Shane C; Schleiss, Mark R

    2014-11-01

    Herpes simplex viruses 1 and 2 are human pathogens that lead to significant morbidity and mortality in certain clinical settings. The development of effective antiviral medications, however, has had little discernible impact on the epidemiology of these pathogens, largely because the majority of infections are clinically silent. Decades of work have gone into various candidate HSV vaccines, but to date none has demonstrated sufficient efficacy to warrant licensure. This review examines developments in HSV immunology and vaccine development published since 2010, and assesses the prospects for improved immunization strategies that may result in an effective, licensed vaccine in the near future.

  13. [DNA-dependent DNA polymerase induced by herpes virus papio (HVP) in producing cells].

    Science.gov (United States)

    D'iachenko, A G; Beriia, L Ia; Matsenko, L D; Kakubava, V V; Kokosh, L V

    1980-11-01

    A new DNA polymerase was found in the cells of suspension lymphoblastoid cultures, which produce lymphotropic baboon herpes virus (HVP). The enzyme was isolated in a partially purified form. In some properties the enzyme differs from other cellular DNA polymerases. The HVP-induced DNA polymerase has the molecular weight of 1,6 x 10(5) and sedimentation coefficient of about 8S. The enzyme is resistant to high salt concentrations and N-ethylmaleimide, but shows a pronounced sensitivity to phosphonoacetate. The enzyme effectively copies "activated" DNA and synthetic deoxyribohomopolymers. The attempts to detect the DNA polymerase activity in HVP virions were unsuccessful.

  14. Concomitant Human Herpes Virus 6 and nivolumab-related pneumonitis: Potential pathogenetic insights

    Directory of Open Access Journals (Sweden)

    Periklis G. Foukas

    2018-01-01

    Full Text Available The development of immune system modulating agents, such as immune checkpoint inhibitors (ICIs, has revolutionized cancer treatment. Nivolumab, a human monoclonal antibody against PD-1, has emerged as an efficient treatment for various malignancies, including non-small cell lung cancer (NSCLC; however, it is associated with important immune related side-effects, attributed to organ-specific inflammation, such as immune-mediated pneumonitis, a relatively uncommon, albeit potentially fatal adverse event. We herein present the unique case of severe interstitial pneumonitis with concomitant detection of Human Herpes Virus 6 (HHV-6 in a nivolumab treated patient with NSCLC. Potential pathogenetic mechanisms are discussed.

  15. Detección de virus herpes canino tipo 1 en Chile

    OpenAIRE

    NAVARRO, C; CELEDON, M; PIZARRO, J

    2003-01-01

    RESUMEN Este trabajo informa la detección del virus herpes canino tipo 1 (VHC-1) en nuestro país, confirmando la fuerte sospecha clínica de su existencia. Se logró obtener un aislado viral, denominado RP5, a partir de casos clínicos diagnosticados como enfermedad hemorrágica de los cachorros. Este aislado inoculado en monocapas celulares produce el típico efecto citopático de miembros de la subfamilia alphaherpesvirinae, familia Herpesviridae: lisis celular a tiempos cortos. Este aislado mani...

  16. SEROLOGICAL EVIDENCE OF THE PRESENCE OF CANINE HERPES VIRUS TYPE 1 IN LIMA PROVINCE

    OpenAIRE

    Góngora A., Vladimir; Sandoval Ch., Nieves; Manchego S., Alberto

    2012-01-01

    El Virus Herpes Canino tipo 1 (VHC-1) es responsable de la enfermedad hemorrágica canina en cachorros menores de cuatro semanas de vida y de algunos problemas reproductivos en perras adultas. En el Perú, la enfermedad no ha sido reportada, aunque existen hallazgos que sugieren su presencia. El objetivo del presente estudio fue demostrar la presencia de anticuerpos contra el VHC-1 entre la población canina con antecedentes asociados a problemas reproductivos. Se recolectaron muestras de sangre...

  17. The Link between Hypersensitivity Syndrome Reaction Development and Human Herpes Virus-6 Reactivation

    Directory of Open Access Journals (Sweden)

    Joshua C. Pritchett

    2012-01-01

    Data Sources and Extraction. Drugs identified as causes of (i idiosyncratic reactions, (ii drug-induced hypersensitivity, drug-induced hepatotoxicity, acute liver failure, and Stevens-Johnson syndrome, and (iii human herpes virus reactivation in PubMed since 1997 have been collected and discussed. Results. Data presented in this paper show that HHV-6 reactivation is associated with more severe organ involvement and a prolonged course of disease. Conclusion. This analysis of HHV-6 reactivation associated with drug-induced severe cutaneous reactions and hepatotoxicity will aid in causality assessment and clinical diagnosis of possible life-threatening events and will provide a basis for further patient characterization and therapy.

  18. Treatment of rat gliomas with recombinant retrovirus harboring Herpes simplex virus thymidine kinase suicide gene

    International Nuclear Information System (INIS)

    Hlavaty, J.; Hlubinova, K.; Altanerova, V.; Liska, J.; Altaner, C.

    1997-01-01

    The retrovirus vector containing Herpes simplex virus type 1 thymidine kinase (HSVtk) gene was constructed. The vector was transfected into the packaging cell line PG13. It was shown that individual transfected cells differ in the production of recombinant retrovirus and in their susceptibility to be killed by ganciclovir. Recombinant retrovirus with a gibbon envelope was able to transduced the HSVtk gene into rat glioma cells. In vivo studies confirmed the ability of intraperitoneal ganciclovir administration to influence subcutaneous and intracerebral tumors developed after injection of C 6 rat glioma cells with subsequent injection of HSVtk retrovirus producing cells. (author)

  19. Herpes simplex virus vectors overexpressing the glucose transporter gene protect against seizure-induced neuron loss.

    OpenAIRE

    Lawrence, M S; Ho, D Y; Dash, R; Sapolsky, R M

    1995-01-01

    We have generated herpes simplex virus (HSV) vectors vIE1GT and v alpha 4GT bearing the GLUT-1 isoform of the rat brain glucose transporter (GT) under the control of the human cytomegalovirus ie1 and HSV alpha 4 promoters, respectively. We previously reported that such vectors enhance glucose uptake in hippocampal cultures and the hippocampus. In this study we demonstrate that such vectors can maintain neuronal metabolism and reduce the extent of neuron loss in cultures after a period of hypo...

  20. The psychosocial impact of serological diagnosis of asymptomatic herpes simplex virus type 2 infection.

    Science.gov (United States)

    Rosenthal, S L; Zimet, G D; Leichliter, J S; Stanberry, L R; Fife, K H; Tu, W; Bernstein, D I

    2006-04-01

    To evaluate the impact of a positive herpes simplex virus type 2 (HSV-2) serological test on psychosocial functioning among people with no known history of genital herpes. Individuals (age 14-30 years) without a history of genital herpes were recruited from an urban university setting and sexually transmitted diseases (STD), primary care, and adolescent clinics. Participants completed a questionnaire addressing psychological functioning, psychosocial adjustment, and perceived quality of sex and were offered free HSV-2 antibody testing. 33 HSV-2 positive people and 60 HSV-2 negative people demographically matched from the same source of recruitment were re-evaluated at a 3 month follow up visit. HSV-2 positive participants also completed a genital herpes quality of life (GHQOL) measure. Of the 33 who were HSV-2 seropositive, four did not recall their diagnosis. In comparing those who were HSV-2 positive with those who were negative, repeated measures analysis of variance indicated there were no significant differences over time on any of the measures. None the less, many HSV-2 positive individuals indicated that the diagnosis had a notable impact on their quality of life. Also, among the HSV-2 positive people, lower GHQOL at the 3 month follow up was predicted by higher interpersonal sensitivity (r = -0.44, p<0.05), lower social support (r = 0.40, p<0.05), and quality of sex (r = 0.62, p<0.01) at baseline. A diagnosis of asymptomatic HSV-2 infection does not appear to cause significant lasting psychological difficulties. Those for whom the diagnosis had the greatest impact were interpersonally vulnerable before the diagnosis. These results suggest that assessment of interpersonal distress may be important to include as part of pretest and post-test counselling.

  1. Herpes Simplex Virus-2 Glycoprotein Interaction with HVEM Influences Virus-Specific Recall Cellular Responses at the Mucosa

    Directory of Open Access Journals (Sweden)

    Sarah J. Kopp

    2012-01-01

    Full Text Available Infection of susceptible cells by herpes simplex virus (HSV requires the interaction of the HSV gD glycoprotein with one of two principal entry receptors, herpes virus entry mediator (HVEM or nectins. HVEM naturally functions in immune signaling, and the gD-HVEM interaction alters innate signaling early after mucosal infection. We investigated whether the gD-HVEM interaction during priming changes lymphocyte recall responses in the murine intravaginal model. Mice were primed with attenuated HSV-2 expressing wild-type gD or mutant gD unable to engage HVEM and challenged 32 days later with virulent HSV-2 expressing wild-type gD. HSV-specific CD8+ T cells were decreased at the genital mucosa during the recall response after priming with virus unable to engage HVEM but did not differ in draining lymph nodes. CD4+ T cells, which are critical for entry of HSV-specific CD8+ T cells into mucosa in acute infection, did not differ between the two groups in either tissue. An inverse association between Foxp3+ CD4+ regulatory T cells and CD8+ infiltration into the mucosa was not statistically significant. CXCR3 surface expression was not significantly different among different lymphocyte subsets. We conclude that engagement of HVEM during the acute phase of HSV infection influences the antiviral CD8+ recall response by an unexplained mechanism.

  2. The requirements for herpes simplex virus type 1 cell-cell spread via nectin-1 parallel those for virus entry.

    Science.gov (United States)

    Even, Deborah L; Henley, Allison M; Geraghty, Robert J

    2006-08-01

    Herpes simplex virus type 1 (HSV-1) spreads from an infected cell to an uninfected cell by virus entry, virus-induced cell fusion, and cell-cell spread. The three forms of virus spread require the viral proteins gB, gD, and gH-gL, as well as a cellular gD receptor. The mutual requirement for the fusion glycoproteins and gD receptor suggests that virus entry, cell fusion, and cell-cell spread occur by a similar mechanism. The goals of this study were to examine the role of the nectin-1alpha transmembrane domain and cytoplasmic tail in cell-cell spread and to obtain a better understanding of the receptor-dependent events occurring at the plasma membrane during cell-cell spread. We determined that an intact nectin-1alpha V-like domain was required for cell-cell spread, while a membrane-spanning domain and cytoplasmic tail were not. Chimeric forms of nectin-1 that were non-functional for virus entry did not mediate cell-cell spread regardless of whether they could mediate cell fusion. Also, cell-cell spread of syncytial isolates was dependent upon nectin-1alpha expression and occurred through a nectin-1-dependent mechanism. Taken together, our results indicate that nectin-1-dependent events occurring at the plasma membrane during cell-cell spread were equivalent to those for virus entry.

  3. Human papilloma virus, herpes simplex virus and epstein barr virus in oral squamous cell carcinoma from eight different countries.

    Science.gov (United States)

    Jalouli, Jamshid; Jalouli, Miranda M; Sapkota, Dipak; Ibrahim, Salah O; Larsson, Per-Anders; Sand, Lars

    2012-02-01

    Oral squamous cell carcinoma (OSCC) is a major health problem in many parts of the world, and the major causative agents are thought to be the use of alcohol and tobacco. Oncogenic viruses have also been suggested to be involved in OSCC development. This study investigated the prevalence of human papillomaviruses (HPV), herpes simplex virus (HSV) and Epstein-Barr virus (EBV) in 155 OSCC from eight different countries from different ethnic groups, continents and with different socioeconomic backgrounds. 41 A total of OSCCs were diagnosed in the tongue (26%) and 23 in the floor of the mouth (15%); the other 91 OSCCs were diagnosed in other locations (59%). The patients were also investigated regarding the use of alcohol and smoking and smokeless tobacco habits. Tissue samples were obtained from formalin-fixed, paraffin-embedded samples of the OSCC. DNA was extracted and the viral genome was examined by single, nested and semi-nested PCR assays. Sequencing of double-stranded DNA from the PCR product was carried out. Following sequencing of the HPV-, HSV- and EBV-positive PCR products, 100% homology between the sampels was found. Of all the 155 OSCCs examined, 85 (55%) were positive for EBV, 54 (35%) for HPV and 24 (15%) for HSV. The highest prevalence of HPV was seen in Sudan (65%), while HSV (55%) and EBV (80%) were most prevalent in the UK. In 34% (52/155) of all the samples examined, co-infection by two (46/155=30%) or three (6/155=4%) virus specimens was detected. The most frequent double infection was HPV with EBV in 21% (32/155) of all OSCCs. There was a statistically significant higher proportion of samples with HSV (p=0.026) and EBV (p=0.015) in industrialized countries (Sweden, Norway, UK and USA) as compared to developing countries (Sudan, India, Sri Lanka and Yemen). Furthermore, there was a statistically significant higher co-infection of HSV and EBV in samples from industrialized countries (p=0.00031). No firm conclusions could be drawn regarding the

  4. Enhanced replication of herpes simplex virus type 1 in human cells

    International Nuclear Information System (INIS)

    Miller, C.S.; Smith, K.O.

    1991-01-01

    The effects of DNA-damaging agents on the replication of herpes simplex virus type 1 (HSV-1) were assessed in vitro. Monolayers of human lung fibroblast cell lines were exposed to DNA-damaging agents (methyl methanesulfonate [MMS], methyl methanethiosulfonate [MMTS], ultraviolet light [UV], or gamma radiation [GR]) at specific intervals, before or after inoculation with low levels of HSV-1. The ability of cell monolayers to support HSV-1 replication was measured by direct plaque assay and was compared with that of untreated control samples. In this system, monolayers of different cell lines infected with identical HSV-1 strains demonstrated dissimilar levels of recovery of the infectious virus. Exposure of DNA-repair-competent cell cultures to DNA-damaging agents produced time-dependent enhanced virus replication. Treatment with agent before virus inoculation significantly (p less than 0.025) increased the number of plaques by 10 to 68%, compared with untreated control cultures, while treatment with agent after virus adsorption significantly increased (p less than 0.025) the number of plaques by 7 to 15%. In a parallel series of experiments, cells deficient in DNA repair (xeroderma pigmentosum) failed to support enhanced virus replication. These results suggest that after exposure to DNA-damaging agents, fibroblasts competent in DNA repair amplify the replication of HSV-1, and that DNA-repair mechanisms that act on a variety of chromosomal lesions may be involved in the repair and biological activation of HSV-1 genomes

  5. Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus

    International Nuclear Information System (INIS)

    Schlehofer, J.R.; Ehrbar, M.; zur Hausen, H.

    1986-01-01

    The SV40-transformed human kidney cell line, NB-E, amplifies integrated as well as episomal SV40 DNA upon treatment with chemical (DMBA) or physical (uv irradiation) carcinogens (initiators) as well as after infection with herpes simplex virus (HSV) type 1 or with vaccinia virus. In addition it is shown that vaccinia virus induces SV40 DNA amplification also in the SV40-transformed Chinese hamster embryo cell line, CO631. These findings demonstrate that human cells similar to Chinese hamster cells amplify integrated DNA sequences after treatment with carcinogens or infection with specific viruses. Furthermore, a poxvirus--vaccinia virus--similar to herpes group viruses induces DNA amplification. As reported for other systems, the vaccinia virus-induced DNA amplification in NB-E cells is inhibited by coinfection with adeno-associated virus (AAV) type 5. This is in line with previous studies on inhibition of carcinogen- or HSV-induced DNA amplification in CO631 cells. The experiments also demonstrate that vaccinia virus, in addition to herpes and adenoviruses acts as a helper virus for replication and structural antigen synthesis of AAV-5 in NB-E cells

  6. Rise in seroprevalence of herpes simplex virus type 1 among highly sexual active homosexual men and an increasing association between herpes simplex virus type 2 and HIV over time (1984-2003)

    NARCIS (Netherlands)

    Smit, Colette; Pfrommer, Christiaan; Mindel, Adrian; Taylor, Janette; Spaargaren, Joke; Berkhout, Ben; Coutinho, Roel; Dukers, Nicole H. T. M.

    2007-01-01

    OBJECTIVES: Herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) are both highly prevalent. The rate of genital HSV-1 transmission is reportedly increasing over time. HSV-2 is considered to be an important risk factor for HIV transmission. We therefore studied changes in the HSV-1 and HSV-2

  7. Disparities in herpes simplex virus type 2 infection between black and white men who have sex with men in Atlanta, GA.

    Science.gov (United States)

    Okafor, Netochukwu; Rosenberg, Eli S; Luisi, Nicole; Sanchez, Travis; del Rio, Carlos; Sullivan, Patrick S; Kelley, Colleen F

    2015-09-01

    HIV disproportionately affects black men who have sex with men, and herpes simplex virus type 2 is known to increase acquisition of HIV. However, data on racial disparities in herpes simplex virus type 2 prevalence and risk factors are limited among men who have sex with men in the United States. InvolveMENt was a cohort study of black and white HIV-negative men who have sex with men in Atlanta, GA. Univariate and multivariate cross-sectional associations with herpes simplex virus type 2 seroprevalence were assessed among 455 HIV-negative men who have sex with men for demographic, behavioural and social determinant risk factors using logistic regression. Seroprevalence of herpes simplex virus type 2 was 23% (48/211) for black and 16% (38/244) for white men who have sex with men (p = 0.05). Education, poverty, drug/alcohol use, incarceration, circumcision, unprotected anal intercourse, and condom use were not associated with herpes simplex virus type 2. In multivariate analyses, black race for those ≤25 years, but not >25 years, and number of sexual partners were significantly associated. Young black men who have sex with men are disproportionately affected by herpes simplex virus type 2, which may contribute to disparities in HIV acquisition. An extensive assessment of risk factors did not explain this disparity in herpes simplex virus type 2 infection suggesting differences in susceptibility or partner characteristics. © The Author(s) 2014.

  8. Herpes Simplex Virus-1 Encephalitis in Adults: Pathophysiology, Diagnosis, and Management.

    Science.gov (United States)

    Bradshaw, Michael J; Venkatesan, Arun

    2016-07-01

    Herpetic infections have plagued humanity for thousands of years, but only recently have advances in antiviral medications and supportive treatments equipped physicians to combat the most severe manifestations of disease. Prompt recognition and treatment can be life-saving in the care of patients with herpes simplex-1 virus encephalitis, the most commonly identified cause of sporadic encephalitis worldwide. Clinicians should be able to recognize the clinical signs and symptoms of the infection and familiarize themselves with a rational diagnostic approach and therapeutic modalities, as early recognition and treatment are key to improving outcomes. Clinicians should also be vigilant for the development of acute complications, including cerebral edema and status epilepticus, as well as chronic complications, including the development of autoimmune encephalitis associated with antibodies to the N-methyl-D-aspartate receptor and other neuronal cell surface and synaptic epitopes. Herein, we review the pathophysiology, differential diagnosis, and clinical and radiological features of herpes simplex virus-1 encephalitis in adults, including a discussion of the most common complications and their treatment. While great progress has been made in the treatment of this life-threatening infection, a majority of patients will not return to their previous neurologic baseline, indicating the need for further research efforts aimed at improving the long-term sequelae.

  9. Identification and characterization of 20 immunocompetent patients with simultaneous varicella zoster and herpes simplex virus infection.

    Science.gov (United States)

    Giehl, K A; Müller-Sander, E; Rottenkolber, M; Degitz, K; Volkenandt, M; Berking, C

    2008-06-01

    It has been shown that varicella zoster virus (VZV) and herpes simplex virus (HSV) can co-localize to the same sensory ganglion. However, only a few case reports on VZV/HSV co-infections exist. Objective To identify and characterize patients with concurrent VZV and HSV infection at the same body site. In 1718 patients, the presence of VZV and HSV in suspicious skin lesions was investigated by polymerase chain reaction analysis. Clinical characteristics of co-infected patients were compared with matched control patients infected with either VZV or HSV. The data are discussed in the context of an extensive review of the literature. Twenty (1.2%) of 1718 patients were infected with both VZV and HSV at the same body site. The mean age was 54 years (range, 2-83). The clinical diagnosis was zoster in 65%, herpes simplex in 20%, varicella in 10% and erythema multiforme in 5% of cases. The trigeminus region was affected in 60% and the trunk in 25%. Involvement of the head was most commonly associated with a severe course of disease and with older age. Simultaneous VZV/HSV infection is rare but can occur in immunocompetent patients, which is often overlooked. The majority of cases is localized to the trigeminus region and affects elderly people.

  10. Identification of structural protein-protein interactions of herpes simplex virus type 1.

    Science.gov (United States)

    Lee, Jin H; Vittone, Valerio; Diefenbach, Eve; Cunningham, Anthony L; Diefenbach, Russell J

    2008-09-01

    In this study we have defined protein-protein interactions between the structural proteins of herpes simplex virus type 1 (HSV-1) using a LexA yeast two-hybrid system. The majority of the capsid, tegument and envelope proteins of HSV-1 were screened in a matrix approach. A total of 40 binary interactions were detected including 9 out of 10 previously identified tegument-tegument interactions (Vittone, V., Diefenbach, E., Triffett, D., Douglas, M.W., Cunningham, A.L., and Diefenbach, R.J., 2005. Determination of interactions between tegument proteins of herpes simplex virus type 1. J. Virol. 79, 9566-9571). A total of 12 interactions involving the capsid protein pUL35 (VP26) and 11 interactions involving the tegument protein pUL46 (VP11/12) were identified. The most significant novel interactions detected in this study, which are likely to play a role in viral assembly, include pUL35-pUL37 (capsid-tegument), pUL46-pUL37 (tegument-tegument) and pUL49 (VP22)-pUS9 (tegument-envelope). This information will provide further insights into the pathways of HSV-1 assembly and the identified interactions are potential targets for new antiviral drugs.

  11. [Identification of occult disseminated tumor cells by recombinant herpes simplex virus expressing GFP (HSV(GFP))].

    Science.gov (United States)

    Han, Xiang-ping; Shi, Gui-lan; Wang, Cheng-feng; Li, Jie; Zhang, Jian-wei; Zhang, Yu; Zhang, Shu-ren; Liu, Bin-lei

    2012-12-01

    To develop a novel rapid protocol for the detection of occult disseminated tumor cells by a recombinant herpes simplex virus expressing GFP (HSV(GFP)). Tumor cells of seven cell lines were exposed to HSV(GFP) and then examined for GFP expression by fluorescence microscopy. Various numbers of tumor cells (10, 100, 1000, 10 000) were mixed into 2 ml human whole blood, separated with lymphocytes separation medium, exposed to HSV(GFP), incubated at 37°C for 6 - 24 h and then counted for the number of green cells under the fluorescence microscope. Some clinical samples including peripheral blood, pleural effusion, ascites, spinal fluid from tumor-bearing patients were screened using this protocol in parallel with routine cytological examination. HSV(GFP) was able to infect all 7 tumor cell lines indicating that the HSV(GFP) can be used to detect different types of tumor cells. The detection sensitivity was 10 cancer cells in 2 ml whole blood. In the clinical samples, there were 4/15 positive by routine cytological examination but 11/15 positive by HSV(GFP), indicating a higher sensitivity of this new protocol. Recombinant herpes simplex virus-mediated green fluorescence is a simple and sensitive technique for the identification of occult disseminated cancer cells including circulating tumor cells (CTCs).

  12. Persistent genital herpes simplex virus-2 shedding years following the first clinical episode.

    Science.gov (United States)

    Phipps, Warren; Saracino, Misty; Magaret, Amalia; Selke, Stacy; Remington, Mike; Huang, Meei-Li; Warren, Terri; Casper, Corey; Corey, Lawrence; Wald, Anna

    2011-01-15

    Patients with newly acquired genital herpes simplex virus 2 (HSV-2) infection have virus frequently detected at the genital mucosa. Rates of genital shedding initially decrease over time after infection, but data on long-term viral shedding are lacking. For this study, 377 healthy adults with history of symptomatic genital HSV-2 infection collected anogenital swabs for HSV-2 DNA polymerase chain reaction for at least 30 consecutive days. Time since first genital herpes episode was significantly associated with reduced genital shedding. Total HSV shedding occurred on 33.6% of days in participants <1 year, 20.6% in those 1-9 years, and 16.7% in those ≥10 years from first episode. Subclinical HSV shedding occurred on 26.2% of days among participants <1 year, 13.1% in those 1-9 years, and 9.3% in those ≥10 years from first episode. On days with HSV detection, mean quantity was 4.9 log₁₀ copies/mL for those <1 year, 4.7 log₁₀ copies/mL among those 1-9 years, and 4.6 log₁₀ copies/mL among those ≥10 years since first episode. Rates of total and subclinical HSV-2 shedding decrease after the first year following the initial clinical episode. However, viral shedding persists at high rates and copy numbers years after infection, and therefore may pose continued risk of HSV-2 transmission to sexual partners.

  13. Quantitative autoradiographic mapping of herpes simplex virus encephalitis with a radiolabeled antiviral drug

    International Nuclear Information System (INIS)

    Saito, Y.; Price, R.W.; Rottenberg, D.A.; Fox, J.J.; Su, T.L.; Watanabe, K.A.; Philips, F.S.

    1982-01-01

    2'-Fluoro-5-methyl-1-ν-D-arabinosyluracil (FMAU) labeled with carbon-14 was used to image herpes simplex virus type 1-infected regions of rat brain by quantitative autoradiography. FMAU is a potent antiviral pyrimidine nucleoside which is selectively phosphorylated by virus-coded thymidine kinase. When the labeled FMAU was administered 6 hours before the rats were killed, the selective uptake and concentration of the drug and its metabolites by infected cells (defined by immunoperoxidase staining of viral antigens) allowed quantitative definition and mapping of HSV-1-infected structures in autoradiograms of brain sections. These results shown that quantitative autoradiography can be used to characterize the local metabolism of antiviral drugs by infected cells in vivo. They also suggest that the selective uptake of drugs that exploit viral thymidine kinase for their antiviral effect can, by appropriate labeling, be used in conjunction with clinical neuroimaging techniques to define infected regions of human brain, thereby providing a new approach to the diagnosis of herpes encephalitis in man

  14. Human cytomegalovirus renders cells non-permissive for replication of herpes simplex viruses

    International Nuclear Information System (INIS)

    Cockley, K.D.

    1988-01-01

    The herpes simplex virus (HSV) genome during production infection in vitro may be subject to negative regulation which results in modification of the cascade of expression of herpes virus macromolecular synthesis leading to establishment of HSV latency. In the present study, human embryonic lung (HEL) cells infected with human cytomegalovirus (HCMV) restricted the replication of HSV type-1 (HSV-1). A delay in HSV replication of 15 hr as well as a consistent, almost 1000-fold inhibition of HSV replication in HCMV-infected cell cultures harvested 24 to 72 hr after superinfection were observed compared with controls infected with HSV alone. HSV type-2 (HSV-2) replication was similarly inhibited in HCMV-infected HEL cells. Prior ultraviolet-irradiation (UV) of HCMV removed the block to HSV replication, demonstrating the requirement for an active HCMV genome. HCMV deoxyribonucleic acid (DNA) negative temperature-sensitive (ts) mutants inhibited HSV replications as efficiently as wild-type (wt) HCMV at the non-permissive temperature. Evidence for penetration and replication of superinfecting HSV into HCMV-infected cells was provided by blot hybridization of HSV DNA synthesized in HSV-superinfected cell cultures and by cesium chloride density gradient analysis of [ 3 H]-labeled HSV-1-superinfected cells

  15. Glioma stem cells targeted by oncolytic virus carrying endostatin-angiostatin fusion gene and the expression of its exogenous gene in vitro.

    Science.gov (United States)

    Zhu, Guidong; Su, Wei; Jin, Guishan; Xu, Fujian; Hao, Shuyu; Guan, Fangxia; Jia, William; Liu, Fusheng

    2011-05-16

    The development of the cancer stem cell (CSCs) niche theory has provided a new target for the treatment of gliomas. Gene therapy using oncolytic viral vectors has shown great potential for the therapeutic targeting of CSCs. To explore whether a viral vector carrying an exogenous Endo-Angio fusion gene (VAE) can infect and kill glioma stem cells (GSCs), as well as inhibit their vascular niche in vitro, we have collected surgical specimens of human high-grade glioma (world health organization, WHO Classes III-VI) from which we isolated and cultured GSCs under conditions originally designed for the selective expansion of neural stem cells. Our results demonstrate the following: (1) Four lines of GSCs (isolated from 20 surgical specimens) could grow in suspension, were multipotent, had the ability to self-renew and expressed the neural stem cell markers, CD133 and nestin. (2) VAE could infect GSCs and significantly inhibit their viability. (3) The Endo-Angio fusion gene was expressed in GSCs 48 h after VAE infection and could inhibit the proliferation of human brain microvascular endothelial cells (HBMEC). (4) Residual viable cells lose the ability of self-renewal and adherent differentiation. In conclusion, VAE can significantly inhibit the activity of GSCs in vitro and the expression of exogenous Endo-Angio fusion gene can inhibit HBMEC proliferation. VAE can be used as a novel virus-gene therapy strategy for glioma. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Asymptomatic Herpes Simplex Virus Infection in Iranian Mothers and Their Newborns.

    Science.gov (United States)

    Tavakoli, Ahmad; Monavari, Seyed Hamidreza; Bokharaei-Salim, Farah; Mollaei, Hamidreza; Abedi-Kiasari, Bahman; Fallah, Fatemeh Hoda; Mortazavi, Helya Sadat

    2017-02-01

    This study aims to determine the prevalence of herpes simplex virus (HSV) infection among pregnant women as well as congenital infection of their newborns in Tehran. One hundred samples of blood sera from pregnant women were analyzed for the presence of HSV specific antibodies. Umbilical cord blood samples from the newborns were analyzed for the presence of HSV DNA using real-time PCR. HSV IgG and IgM antibodies were found in 97% and 2% of pregnant women, respectively. Of all the 100 cord blood samples, 6 were positive for HSV DNA in which 2 cases were from mothers who had detectable IgM. It was notable that all corresponding mothers of six HSV positive infants had detectable IgG antibodies in their sera. It was demonstrated that the presence of HSV DNA in cord blood of newborns could be a risk marker for maternal-fetal transmission of the virus in asymptomatic pregnant women.

  17. Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling

    International Nuclear Information System (INIS)

    Johnson, Karen E.; Song, Byeongwoon; Knipe, David M.

    2008-01-01

    Host cells respond to viral infection by many mechanisms, including the production of type I interferons which act in a paracrine and autocrine manner to induce the expression of antiviral interferon-stimulated genes (ISGs). Viruses have evolved means to inhibit interferon signaling to avoid induction of the innate immune response. Herpes simplex virus 1 (HSV-1) has several mechanisms to inhibit type I interferon production, the activities of ISGs, and the interferon signaling pathway itself. We report that the inhibition of the Jak/STAT pathway by HSV-1 requires viral gene expression and that viral immediate-early protein ICP27 plays a role in downregulating STAT-1 phosphorylation and in preventing the accumulation of STAT-1 in the nucleus. We also show that expression of ICP27 by transfection causes an inhibition of IFN-induced STAT-1 nuclear accumulation. Therefore, ICP27 is necessary and sufficient for at least some of the effects of HSV infection on STAT-1

  18. A random PCR screening system for the identification of type 1 human herpes simplex virus.

    Science.gov (United States)

    Yu, Xuelian; Shi, Bisheng; Gong, Yan; Zhang, Xiaonan; Shen, Silan; Qian, Fangxing; Gu, Shimin; Hu, Yunwen; Yuan, Zhenghong

    2009-10-01

    Several viral diseases exhibit measles-like symptoms. Differentiation of suspected cases of measles with molecular epidemiological techniques in the laboratory is useful for measles surveillance. In this study, a random PCR screening system was undertaken for the identification of isolates from patients with measles-like symptoms who exhibited cytopathic effects, but who had negative results for measles virus-specific reverse transcription (RT)-PCR and indirect immunofluorescence assays. Sequence analysis of random amplified PCR products showed that they were highly homologous to type 1 human herpes simplex virus (HSV-1). The results were further confirmed by an HSV-1-specific TaqMan real-time PCR assay. The random PCR screening system described in this study provides an efficient procedure for the identification of unknown viral pathogens. Measles-like symptoms can also be caused by HSV-1, suggesting the need to include HSV-1 in differential diagnoses of measles-like diseases.

  19. Evasion of Cytosolic DNA-Stimulated Innate Immune Responses by Herpes Simplex Virus 1.

    Science.gov (United States)

    Zheng, Chunfu

    2018-03-15

    Recognition of virus-derived nucleic acids by host pattern recognition receptors (PRRs) is crucial for early defense against viral infections. Recent studies revealed that PRRs also include several newly identified DNA sensors, most of which could activate the downstream adaptor stimulator of interferon genes (STING) and lead to the production of host antiviral factors. Herpes simplex virus 1 (HSV-1) is extremely successful in establishing effective infections, due to its capacity to counteract host innate antiviral responses. In this Gem, I summarize the most recent findings on the molecular mechanisms utilized by HSV-1 to target different steps of the cellular DNA-sensor-mediated antiviral signal pathway. Copyright © 2018 American Society for Microbiology.

  20. Antiviral activities of Radix Isatidis polysaccharide against type II herpes simplex virus in vitro

    Directory of Open Access Journals (Sweden)

    Chunmei WANG

    2018-03-01

    Full Text Available Abstract This study investigated the antiviral activities of Radix Isatidis polysaccharide (RIP against type II herpes simplex virus (HSV-2 in vitro. RIP was prepared from the Radix Isatidis root. The toxicity of RIP on Vero cells was detected. The direct killing effect of RIP on HSV-2, inhibitory effect of RIP on HSV-2 replication and inhibitory effect of RIP on HSV-2 adsorption were determined. Results showed that, RIP in concentration range of 25-800 mg/L had no toxic effect on Vero cells. RIP with different concentrations could not directly inactivate the HSV-2. The effective rates on inhibition of HSV-2 replication and adsorption in 800 mg/L RIP group were 71.57% and 48.37%, respectively, which were the highest among different groups. In conclusion, RIP has the antiviral effect against HSV-2 in vitro. This effect mainly occurs in inhibiting the virus duplication and adsorption.

  1. Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton

    Science.gov (United States)

    2018-01-01

    Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that has the ability to infect and replicate within epithelial cells and neurons and establish a life-long latent infection in sensory neurons. HSV-1 depends on the host cellular cytoskeleton for entry, replication, and exit. Therefore, HSV-1 has adapted mechanisms to promote its survival by exploiting the microtubule and actin cytoskeletons to direct its active transport, infection, and spread between neurons and epithelial cells during primary and recurrent infections. This review will focus on the currently known mechanisms utilized by HSV-1 to harness the neuronal cytoskeleton, molecular motors, and the secretory and exocytic pathways for efficient virus entry, axonal transport, replication, assembly, and exit from the distinct functional compartments (cell body and axon) of the highly polarized sensory neurons. PMID:29473915

  2. Antiviral activity of an extract of Cordia salicifolia on herpes simplex virus type 1.

    Science.gov (United States)

    Hayashi, K; Hayashi, T; Morita, N; Niwayama, S

    1990-10-01

    A partially purified extract (COL 1-6) from whole plant of Cordia salicifolia showed an inhibitory effect on herpes simplex virus type 1 (HSV-1). The activity of COL 1-6 on different steps of HSV-1 replication in HeLa cells was investigated. Under single-cycle replication conditions, COL 1-6 exerted a greater than 99.9% inhibition in virus yield when added to the cells 3 h or 1.5 h before infection, and even when added 8 h after infection the extract still caused a greater than 99% inhibition. The extract has been shown to have a direct virucidal activity. And also, analysis of early events following infection showed that COL 1-6 affected viral penetration in HeLa cells but did not interfere with adsorption to the cells.

  3. Different presence of Chlamydia pneumoniae, herpes simplex virus type 1, human herpes virus 6, and Toxoplasma gondii in schizophrenia: meta-analysis and analytical study

    Directory of Open Access Journals (Sweden)

    Gutiérrez-Fernández J

    2015-03-01

    Full Text Available José Gutiérrez-Fernández,1 Juan de Dios Luna del Castillo,2 Sara Mañanes-González,1 José Antonio Carrillo-Ávila,1 Blanca Gutiérrez,3 Jorge A Cervilla,3 Antonio Sorlózano-Puerto1 1Department of Microbiology, 2Department of Statistics and Operation Research, 3Department of Psychiatry, Institute of Neurosciences and CIBERSAM, School of Medicine and Biohealth Research Institute (Instituto de Investigación Biosanitaria IBS-Granada, University of Granada, Granada, Spain Abstract: In the present study we have performed both a meta-analysis and an analytical study exploring the presence of Chlamydia pneumoniae, herpes simplex virus type 1, human herpes virus 6, and Toxoplasma gondii antibodies in a sample of 143 schizophrenic patients and 143 control subjects. The meta-analysis was performed on papers published up to April 2014. The presence of serum immunoglobulin G and immunoglobulin A was performed by enzyme-linked immunosorbent assay test. The detection of microbial DNA in total peripheral blood was performed by nested polymerase chain reaction. The meta-analysis showed that: 1 C. pneumoniae DNA in blood and brain are more common in schizophrenic patients; 2 there is association with parasitism by T. gondii, despite the existence of publication bias; and 3 herpes viruses were not more common in schizophrenic patients. In our sample only anti-Toxoplasma immunoglobulin G was more prevalent and may be a risk factor related to schizophrenia, with potential value for prevention. Keywords: meta-analysis, analytical study, Chlamydia pneumoniae, herpes simplex virus type 1, human herpes virus 6, Toxoplasma gondii, schizophrenia

  4. Strong decline in herpes simplex virus antibodies over time among young homosexual men is associated with changing sexual behavior

    NARCIS (Netherlands)

    Dukers, N. H.; Bruisten, S. M.; van den Hoek, J. A.; de Wit, J. B.; van Doornum, G. J.; Coutinho, R. A.

    2000-01-01

    The objective of this study was to evaluate whether the change in sexual behavior among homosexual men observed after the start of the acquired immunodeficiency syndrome epidemic resulted in a change in herpes simplex virus (HSV) seroprevalence in this group over time. In a cross-sectional study,

  5. Identification of ribonucleotide reductase mutation causing temperature-sensitivity of herpes simplex virus isolates from whitlow by deep sequencing.

    Science.gov (United States)

    Daikoku, Tohru; Oyama, Yukari; Yajima, Misako; Sekizuka, Tsuyoshi; Kuroda, Makoto; Shimada, Yuka; Takehara, Kazuhiko; Miwa, Naoko; Okuda, Tomoko; Sata, Tetsutaro; Shiraki, Kimiyasu

    2015-06-01

    Herpes simplex virus 2 caused a genital ulcer, and a secondary herpetic whitlow appeared during acyclovir therapy. The secondary and recurrent whitlow isolates were acyclovir-resistant and temperature-sensitive in contrast to a genital isolate. We identified the ribonucleotide reductase mutation responsible for temperature-sensitivity by deep-sequencing analysis.

  6. Glycoprotein H of herpes simplex virus type 1 requires glycoprotein L for transport to the surfaces of insect cells

    NARCIS (Netherlands)

    Westra, DF; Glazenburg, KL; Harmsen, MC; Tiran, A; Scheffer, AJ; Welling, GW; The, TH; WellingWester, S

    In mammalian cells, formation of heterooligomers consisting of the glycoproteins H and L (gH and gL) of herpes simplex virus type 1 is essential for the cell-to-cell spread of virions and for the penetration of virions into cells. We examined whether formation of gH1/gL1 heterooligomers and cell

  7. [F-18]FHPG positron emission tomography for detection of herpes simplex virus (HSV) in experimental HSV encephalitis

    NARCIS (Netherlands)

    Buursma, AR; de Vries, EFJ; Garssen, J; Kegler, D; van Waarde, A; Schirm, J; Hospers, GAP; Mulder, NH; Vaalburg, W; Klein, HC

    Herpes simplex virus type 1 (HSV-1) is one of the most common causes of sporadic encephalitis. The initial clinical course of HSV encephalitis (HSE) is highly variable, and the infection may be rapidly fatal. For effective treatment with antiviral medication, an early diagnosis of HSE is crucial.

  8. Herpes simplex virus type 2 induces rapid cell death and functional impairment of murine dendritic cells in vitro

    NARCIS (Netherlands)

    Jones, CA; Fernandez, M; Herc, K; Bosnjak, L; Miranda-Saksena, M; Boadle, RA; Cunningham, A

    2003-01-01

    Dendritic cells (DC) are critical for stimulation of naive T cells. Little is known about the effect of herpes simplex virus type 2 (HSV-2) infection on DC structure or function or if the observed effects of HSV-1 on human DC are reproduced in murine DC. Here, we demonstrate that by 12 h

  9. Construction of rat cell lines that contain potential morphologically transforming regions of the herpes simplex virus type 2 genome

    NARCIS (Netherlands)

    van den Berg, F. M.; van Amstel, P. J.; Walboomers, J. M.

    1985-01-01

    Hybrid recombinant plasmids were constructed; they were composed of the herpes simplex virus type 2 (HSV2) thymidine kinase (tk) gene and DNA sequences of HSV2 that have been reported to induce morphological and/or oncogenic transformation of rodent cells in culture. Several plasmids were made in

  10. From norbornane-based nucleotide analogs locked in South conformation to novel inhibitors of feline herpes virus

    Czech Academy of Sciences Publication Activity Database

    Dejmek, Milan; Hřebabecký, Hubert; Šála, Michal; Dračínský, Martin; Procházková, Eliška; Leyssen, P.; Neyts, J.; Balzarini, J.; Nencka, Radim

    2014-01-01

    Roč. 22, č. 11 (2014), s. 2974-2983 ISSN 0968-0896 R&D Projects: GA MV VG20102015046 Institutional support: RVO:61388963 Keywords : carbocyclic nucleosides * nucleoside phosphonates * purine * norbornane * feline herpes virus Subject RIV: CC - Organic Chemistry Impact factor: 2.793, year: 2014

  11. Studies on virus-induced cell fusion. Progress report, August 1, 1975--April 30, 1976. [Herpes simplex

    Energy Technology Data Exchange (ETDEWEB)

    Person, S.

    1976-01-01

    Progress is reported on the following research projects: mechanism of cell fusion induced by fusion-causing mutants of herpes simplex virus type I; quantitative assays for kinetics of cell fusion; neutral sphingoglycolipids in wild type and mutant infected cells; effects of alteration in oligosaccharide metabolism on cell fusion; and blocking of fusion by ..beta..-galactosidase and NH/sub 4/Cl. (HLW)

  12. Reduction of /sup 51/Cr-permeability of tissue culture cells by infection with herpes simplex virus type 1

    Energy Technology Data Exchange (ETDEWEB)

    Schlehofer, J.R.; Habermehl, K.O.; Diefenthal, W.; Hampl, H.

    1979-01-01

    Infection of different strains of tissue culture cells with herpes simplex virus type 1(HSV-1) resulted in a reduced /sup 51/Cr-permeability. A stability of the cellular membrane to Triton X-100, toxic sera and HSV-specific complement-mediated immune-cytolysis could be observed simultaneously. The results differed with respect to the cell strain used in the experiments.

  13. Twenty years' delay of fellow eye involvement in herpes simplex virus type 2-associated bilateral acute retinal necrosis syndrome

    NARCIS (Netherlands)

    Schlingemann, R. O.; Bruinenberg, M.; Wertheim-van Dillen, P.; Feron, E.

    1996-01-01

    PURPOSE: To describe a case of acute retinal necrosis with concurrent encephalitis and determine the causative virus. The patient had a history of presumed acute retinal necrosis in the left eye at the age of 8 years and recurrent genital herpes. METHODS: Diagnostic anterior chamber puncture of the

  14. Atypical presentations of genital herpes simplex virus in HIV-1 and HIV-2 effectively treated by imiquimod.

    Science.gov (United States)

    McKendry, Anna; Narayana, Srinivasulu; Browne, Rita

    2015-05-01

    Atypical presentations of genital herpes simplex virus have been described in HIV. We report two cases with hypertrophic presentations which were effectively treated with imiquimod, one of which is the first reported case occurring in a patient with HIV-2. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  15. Human herpes virus-8 DNA in bronchoalveolar lavage samples from patients with AIDS-associated pulmonary Kaposi's sarcoma

    DEFF Research Database (Denmark)

    Benfield, T L; Dodt, K K; Lundgren, Jens Dilling

    1997-01-01

    Kaposi's sarcoma (KS) is the most frequent AIDS-associated neoplasm, and often disseminates to visceral organs, including the lungs. An ante-mortem diagnosis of pulmonary KS is difficult. Recently, DNA sequences resembling a new human herpes virus (HHV-8), have been identified in various forms...

  16. Lichen planus remission is associated with a decrease of human herpes virus type 7 protein expression in plasmacytoid dendritic cells

    NARCIS (Netherlands)

    de Vries, Henry J. C.; Teunissen, Marcel B. M.; Zorgdrager, Fokla; Picavet, Daisy; Cornelissen, Marion

    2007-01-01

    The cause of lichen planus is still unknown. Previously we showed human herpes virus 7 (HHV-7) DNA and proteins in lesional lichen planus skin, and significantly less in non-lesional lichen planus, psoriasis or healthy skin. Remarkably, lesional lichen planus skin was infiltrated with plasmacytoid

  17. Temperature-sensitive host range mutants of herpes simplex virus type 2

    International Nuclear Information System (INIS)

    Koment, R.W.; Rapp, F.

    1975-01-01

    Herpesviruses are capable of several types of infection of a host cell. To investigate the early events which ultimately determine the nature of the virus-host cell interaction, a system was established utilizing temperature-sensitive mutants of herpes simplex virus type 2. Four mutants have been isolated which fail to induce cytopathic effects and do not replicate at 39 C in hamster embryo fibroblast cells. At least one mutant is virus DNA negative. Since intracellular complementation is detectable between pairs of mutants, a virus function is known to be temperature sensitive. However, all four mutants induce cytopathic effects and replicate to parental virus levels in rabbit kidney cells at 39 C. This suggests that a host cell function, lacking or nonfunctional in HEF cells but present in rabbit kidney cells at 39 C, is required for the replication of these mutants in hamster embryo fibroblast cells at 39 C. Therefore, we conclude that these mutants are both temperature sensitive and exhibit host range properties

  18. Evidence for repair of ultraviolet light-damaged herpes virus in human fibroblasts by a recombination mechanism

    International Nuclear Information System (INIS)

    Hall, J.D.; Featherston, J.D.; Almy, R.E.

    1980-01-01

    Human cells were either singly or multiply infected with herpes simplex virus (HSV-1) damaged by ultraviolet (uv) light, and the fraction of cells able to produce infectious virus was measured. The fraction of virus-producing cells was considerably greater for multiply infected cells than for singly infected cells at each uv dose examined. These high survival levels of uv-irradiated virus in multiply infected cells demonstrated that multiplicity-dependent repair, possibly due to genetic exchanges between damaged HSV-1 genomes, was occurring in these cells. To test whether uv light is recombinogenic for HSV-1, the effect of uv irradiation on the yield of temperature-resistant viral recombinants in cells infected with pairs of temperature-sensitive mutants was also investigated. The results of these experiments showed that the defective functions in these mutant host cells are not required for multiplicity-dependent repair or uv-stimulated viral recombination in herpes-infected cells

  19. Large Amounts of Reactivated Virus in Tears Precedes Recurrent Herpes Stromal Keratitis in Stressed Rabbits Latently Infected with Herpes Simplex Virus.

    Science.gov (United States)

    Perng, Guey-Chuen; Osorio, Nelson; Jiang, Xianzhi; Geertsema, Roger; Hsiang, Chinhui; Brown, Don; BenMohamed, Lbachir; Wechsler, Steven L

    2016-01-01

    Recurrent herpetic stromal keratitis (rHSK), due to an immune response to reactivation of herpes simplex virus (HSV-1), can cause corneal blindness. The development of therapeutic interventions such as drugs and vaccines to decrease rHSK have been hampered by the lack of a small and reliable animal model in which rHSK occurs at a high frequency during HSV-1 latency. The aim of this study is to develop a rabbit model of rHSK in which stress from elevated temperatures increases the frequency of HSV-1 reactivations and rHSK. Rabbits latently infected with HSV-1 were subjected to elevated temperatures and the frequency of viral reactivations and rHSK were determined. In an experiment in which rabbits latently infected with HSV-1 were subjected to ill-defined stress as a result of failure of the vivarium air conditioning system, reactivation of HSV-1 occurred at over twice the normal frequency. In addition, 60% of eyes developed severe rHSK compared to tears of that eye and whenever this unusually large amount of reactivated virus was detected in tears, rHSK always appeared 4-5 days later. In subsequent experiments using well defined heat stress the reactivation frequency was similarly increased, but no eyes developed rHSK. The results reported here support the hypothesis that rHSK is associated not simply with elevated reactivation frequency, but rather with rare episodes of very high levels of reactivated virus in tears 4-5 days earlier.

  20. Tolerance and immunity in mice infected with herpes simplex virus: simultaneous induction of protective immunity and tolerance to delayed-type hypersensitivity.

    Science.gov (United States)

    Nash, A A; Gell, P G; Wildy, P

    1981-05-01

    Unresponsiveness to delayed type hypersensitivity was induced in mice following an intravenous injection of herpes simplex virus. The principal tolerogens used were thymidine kinase-deficient virus mutants which grow poorly in vivo; u.v.-inactivated and to a lesser extent formalin-inactivated virus were also tolerogenic. The tolerance induced was specific for the virus type. Despite the tolerance to delayed hypersensitivity, anti-viral immunity is present as determined by the rapid inactivation of infectious virus. The mechanism of tolerance to herpes virus and the importance of these observations for the pathogenesis of viral disease is discussed.

  1. Pharmacological Induction of Heme Oxygenase-1 Impairs Nuclear Accumulation of Herpes Simplex Virus Capsids upon Infection

    Directory of Open Access Journals (Sweden)

    Francisco J. Ibáñez

    2017-10-01

    Full Text Available Heme oxygenase-1 (HO-1 is an inducible enzyme that is expressed in response to physical and chemical stresses, such as ultraviolet radiation, hyperthermia, hypoxia, reactive oxygen species (ROS, as well as cytokines, among others. Its activity can be positively modulated by cobalt protoporphyrin (CoPP and negatively by tin protoporphirin (SnPP. Once induced, HO-1 degrades iron-containing heme into ferrous iron (Fe2+, carbon monoxide (CO and biliverdin. Importantly, numerous products of HO-1 are cytoprotective with anti-apoptotic, anti-oxidant, anti-inflammatory, and anti-cancer effects. The products of HO-1 also display antiviral properties against several viruses, such as the human immunodeficiency virus (HIV, influenza, hepatitis B, hepatitis C, and Ebola virus. Here, we sought to assess the effect of modulating HO-1 activity over herpes simplex virus type 2 (HSV-2 infection in epithelial cells and neurons. There are no vaccines against HSV-2 and treatment options are scarce in the immunosuppressed, in which drug-resistant variants emerge. By using HSV strains that encode structural and non-structural forms of the green fluorescent protein (GFP, we found that pharmacological induction of HO-1 activity with CoPP significantly decreases virus plaque formation and the expression of virus-encoded genes in epithelial cells as determined by flow cytometry and western blot assays. CoPP treatment did not affect virus binding to the cell surface or entry into the cytoplasm, but rather downstream events in the virus infection cycle. Furthermore, we observed that treating cells with a CO-releasing molecule (CORM-2 recapitulated some of the anti-HSV effects elicited by CoPP. Taken together, these findings indicate that HO-1 activity interferes with the replication cycle of HSV and that its antiviral effects can be recapitulated by CO.

  2. Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate.

    OpenAIRE

    Coen, D M; Kosz-Vnenchak, M; Jacobson, J G; Leib, D A; Bogard, C L; Schaffer, P A; Tyler, K L; Knipe, D M

    1989-01-01

    Herpes simplex virus infection of mammalian hosts involves lytic replication at a primary site, such as the cornea, translocation by axonal transport to sensory ganglia and replication, and latent infection at a secondary site, ganglionic neurons. The virus-encoded thymidine kinase, which is a target for antiviral drugs such as acyclovir, is not essential for lytic replication yet evidently is required at the secondary site for replication and some phase of latent infection. To determine the ...

  3. Herpes zoster in childhood.

    Science.gov (United States)

    Leung, Alexander K C; Robson, W Lane M; Leong, Alexander G

    2006-01-01

    Herpes zoster is caused by reactivation of latent varicella-zoster virus that resides in a dorsal root ganglion. Herpes zoster can develop any time after a primary infection. Because varicella vaccine is a live attenuated virus, herpes zoster can develop in a vaccine recipient. The incidence of herpes zoster among vaccine recipients is about 14 cases per 100,000 person-years. In young children, herpes zoster has a predilection for areas supplied by the cervical and sacral dermatomes. The most common complications are secondary bacterial infection, depigmentation, and scarring. Although the diagnosis of herpes zoster is based on a distinct clinical appearance, viral DNA analysis of the lesion by polymerase chain reaction or restriction fragment length polymorphism is necessary to differentiate wild from vaccine-type viruses. Acyclovir is the treatment of choice for herpes zoster.

  4. Molecular imaging of oncolytic viral therapy

    Directory of Open Access Journals (Sweden)

    Dana Haddad

    2014-01-01

    Full Text Available Oncolytic viruses have made their mark on the cancer world as a potential therapeutic option, with the possible advantages of reduced side effects and strengthened treatment efficacy due to higher tumor selectivity. Results have been so promising, that oncolytic viral treatments have now been approved for clinical trials in several countries. However, clinical studies may benefit from the ability to noninvasively and serially identify sites of viral targeting via molecular imaging in order to provide safety, efficacy, and toxicity information. Furthermore, molecular imaging of oncolytic viral therapy may provide a more sensitive and specific diagnostic technique to detect tumor origin and, more importantly, presence of metastases. Several strategies have been investigated for molecular imaging of viral replication broadly categorized into optical and deep tissue imaging, utilizing several reporter genes encoding for fluorescence proteins, conditional enzymes, and membrane protein and transporters. Various imaging methods facilitate molecular imaging, including computer tomography, magnetic resonance imaging, positron emission tomography, single photon emission CT, gamma-scintigraphy, and photoacoustic imaging. In addition, several molecular probes are used for medical imaging, which act as targeting moieties or signaling agents. This review will explore the preclinical and clinical use of in vivo molecular imaging of replication-competent oncolytic viral therapy.

  5. DNA immunization with a herpes simplex virus 2 bacterial artificial chromosome

    International Nuclear Information System (INIS)

    Meseda, Clement A.; Schmeisser, Falko; Pedersen, Robin; Woerner, Amy; Weir, Jerry P.

    2004-01-01

    Construction of a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) is described. BAC vector sequences were inserted into the thymidine kinase gene of HSV-2 by homologous recombination. DNA from cells infected with the resulting recombinant virus was transformed into E. coli, and colonies containing the HSV-2 BAC (HSV2-BAC) were isolated and analyzed for the expected genotype. HSV2-BAC DNA was infectious when transfected back into mammalian cells and the resulting virus was thymidine kinase negative. When used to immunize mice, the HSV2-BAC DNA elicited a strong HSV-2 specific antibody response that was equal to or greater than live virus immunization. Further, HSV2-BAC immunization was protective when animals were challenged with a lethal dose of virus. The utility of the HSV2-BAC for construction of recombinant virus genomes was demonstrated by elimination of the HSV-2 glycoprotein D (gD) gene. A recombinant HSV-2 BAC with the gD gene deleted was isolated and shown to be incapable of producing infectious virus following transfection unless an HSV gD gene was expressed in a complementing cell line. Immunization of mice with the HSV2 gD-BAC also elicited an HSV-2 specific antibody response and was protective. The results demonstrate the feasibility of DNA immunization with HSV-2 bacterial artificial chromosomes for replicating and nonreplicating candidate HSV-2 vaccines, as well as the utility of BAC technology for construction and maintenance of novel HSV-2 vaccines. The results further suggest that such technology will be a powerful tool for dissecting the immune response to HSV-2

  6. [Detection of herpes virus and human enterovirus in pathology samples using low-density arrays].

    Science.gov (United States)

    Del Carmen Martínez, Sofía; Gervás Ríos, Ruth; Franco Rodríguez, Yoana; González Velasco, Cristina; Cruz Sánchez, Miguel Ángel; Abad Hernández, María Del Mar

    Despite the frequency of infections with herpesviridae family, only eight subtypes affect humans (Herpex Simplex Virus types 1 and 2, Varicella Zoster Virus, Epstein-Barr Virus, Citomegalovirus and Human Herpes Virus types 6, 7 and 8). Amongst enteroviruses infections, the most important are Poliovirus, Coxackievirus and Echovirus. Symptoms can vary from mild to severe and early diagnosis is of upmost importance. Nowadays, low-density arrays can detect different types of viruses in a single assay using DNA extracted from biological samples. We analyzed 70 samples of formalin-fixed and paraffin-embedded tissue, searching for viruses (HSV-1, HSV-2, VZV, CMV, EBV, HHV-6, HHV-7 y HHV-8, Poliovirus, Echovirus and Coxsackievirus) using the kit CLART ® ENTHERPEX. Out of the total of 70 samples, 29 were positive for viral infection (41.43%), and only 4 of them showed cytopathic effect (100% correlation between histology and the test). 47.6% of GVHD samples were positive for virus; 68.75% of IBD analyzed showed positivity for viral infection; in colitis with ulcers (neither GVHD nor IBD), the test was positive in 50% of the samples and was also positive in 50% of ischemic lesions. The high sensitivity of the technique makes it a useful tool for the pathologist in addition to conventional histology-based diagnosis, as a viral infection may affect treatment. Copyright © 2016 Sociedad Española de Anatomía Patológica. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. The occurrence of herpes simplex viruses 1 and 2 in skin and mucosal lesions in patients with suspicion of genital herpes.

    Science.gov (United States)

    Gorka, Emilia; Mlynarczyk-Bonikowska, Beata; Machura, Paulina; Majewska, Anna; Dzieciqtkowski, Tomasz; Mlynarzyk, Grazyna; Malejczyk, Magdalena; Majewski, Slawomir

    Infection with herpes simplex viruses 1 and 2 (HSV 1 and 2 or Human herpesvirus HHV) are one of the most common infections in human. Real time PCR is a sensitive and specific method for diagnostics of HHV infections. The aim of the study was to investigate the occurrence of HHV 1 and HHV 2 DNA in patient with clinical symptoms suggesting HHV infection. We used real time PCR to investigate swabs from genital and perianal lesions from 74 patients of the Department of Dermatology and Venereology Medical University Warsaw and of gynecological outpatient clinics in Warsaw 40 women and 34 men. The results were positive for HHV 2 in 25 cases (34%), for HHV 1 in 19 cases (26%) and for both viruses in 20 cases (27%). 10 samples were negative for both viruses. The results confirm that the main cause of symptomatic genital herpes is HHV 2, however the percentage of HHV 1 and specially of mixed HHV 1/HHV 2 infections was unexpectedly high.

  8. Current Concepts for Genital Herpes Simplex Virus Infection: Diagnostics and Pathogenesis of Genital Tract Shedding.

    Science.gov (United States)

    Johnston, Christine; Corey, Lawrence

    2016-01-01

    Herpes simplex virus 2 (HSV-2) is a DNA virus that is efficiently transmitted through intimate genital tract contact and causes persistent infection that cannot be eliminated. HSV-2 may cause frequent, symptomatic self-limited genital ulcers, but in most persons infection is subclinical. However, recent studies have demonstrated that the virus is frequently shed from genital surfaces even in the absence of signs or symptoms of clinical disease and that the virus can be transmitted during these periods of shedding. Furthermore, HSV-2 shedding is detected throughout the genital tract and may be associated with genital tract inflammation, which likely contributes to increased risk of HIV acquisition. This review focuses on HSV diagnostics, as well as what we have learned about the importance of frequent genital HSV shedding for (i) HSV transmission and (ii) genital tract inflammation, as well as (iii) the impact of HSV-2 infection on HIV acquisition and transmission. We conclude with discussion of future areas of research to push the field forward. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Induction of uterine cancer with inactivated herpes simplex virus, types 1 and 2

    International Nuclear Information System (INIS)

    Wentz, W.B.; Reagan, J.W.; Heggie, A.D.; Fu, Y.S.; Anthony, D.D.

    1981-01-01

    A series of studies were performed to evaluate the oncogenic potential of inactivated herpes simplex viruses types 1 (HSV-1) and 2 (HSV-2) in the mouse cervix. HSV-1 or HSV-2 prepared in HEp-2 cell cultures and inactivated by exposure to formalin or ultraviolet light was applied to the mouse cervix for periods ranging from 20 to 90 weeks. Control mice were exposed for the same period to control fluids. Vaginal cytologic preparations from all animals were examined weekly to detect epithelial abnormalities. Animals were sacrificed and histopathological studies were carried out when cellular changes seen on vaginal smears resembled those indicative of premalignant or malignant changes as previously established in a similar model system using coal tar hydrocarbons. Other animals were exposed for periods up to 90 weeks, or until there was cellular evidence of invasive cancer. Cytologic and histologic materials were coded and evaluated without knowledge of whether they were from virus-exposed or control animals. Premalignant and malignant cervical lesions similar to those that occur in women were encountered in 78 to 90% of the virus-exposed animals. All controls were normal. Invasive cancer was detected in 24 to 60% of the animals and dysplasia was found in 18 to 66%. The yield of invasive cancer was twice as great after exposure to ultraviolet-inactivated HSV-2 as compared with formalin-inactivated virus. Various histologic grades of carcinoma of the cervix and endometrium were found. No primary lesions were found in the vagina or ovaries

  10. Current Concepts for Genital Herpes Simplex Virus Infection: Diagnostics and Pathogenesis of Genital Tract Shedding

    Science.gov (United States)

    Corey, Lawrence

    2015-01-01

    SUMMARY Herpes simplex virus 2 (HSV-2) is a DNA virus that is efficiently transmitted through intimate genital tract contact and causes persistent infection that cannot be eliminated. HSV-2 may cause frequent, symptomatic self-limited genital ulcers, but in most persons infection is subclinical. However, recent studies have demonstrated that the virus is frequently shed from genital surfaces even in the absence of signs or symptoms of clinical disease and that the virus can be transmitted during these periods of shedding. Furthermore, HSV-2 shedding is detected throughout the genital tract and may be associated with genital tract inflammation, which likely contributes to increased risk of HIV acquisition. This review focuses on HSV diagnostics, as well as what we have learned about the importance of frequent genital HSV shedding for (i) HSV transmission and (ii) genital tract inflammation, as well as (iii) the impact of HSV-2 infection on HIV acquisition and transmission. We conclude with discussion of future areas of research to push the field forward. PMID:26561565

  11. Herpes simplex virus type 1 (HSV-1)-derived recombinant vectors for gene transfer and gene therapy.

    Science.gov (United States)

    Marconi, Peggy; Fraefel, Cornel; Epstein, Alberto L

    2015-01-01

    Herpes simplex virus type 1 (HSV-1 ) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153-kilobase pair (kbp) double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes the approach most commonly used to prepare recombinant HSV-1 vectors through homologous recombination, either in eukaryotic cells or in bacteria.

  12. Acute retinal necrosis results in low vision in a young patient with a history of herpes simplex virus encephalitis.

    Science.gov (United States)

    Shahi, Sanjeet K

    2017-05-01

    Acute retinal necrosis (ARN), secondary to herpes simplex encephalitis, is a rare syndrome that can present in healthy individuals, as well as immuno-compromised patients. Most cases are caused by a secondary infection from the herpes virus family, with varicella zoster virus being the leading cause of this syndrome. Potential symptoms include blurry vision, floaters, ocular pain and photophobia. Ocular findings may consist of severe uveitis, retinal vasculitis, retinal necrosis, papillitis and retinal detachment. Clinical manifestations of this disease may include increased intraocular pressure, optic disc oedema, optic neuropathy and sheathed retinal arterioles. A complete work up is essential to rule out cytomegalovirus retinitis, herpes simplex encephalitis, herpes virus, syphilis, posterior uveitis and other conditions. Depending on the severity of the disease, the treatment options consist of anticoagulation therapy, cycloplegia, intravenous acyclovir, systemic steroids, prophylactic laser photocoagulation and pars plana vitrectomy with silicon oil for retinal detachment. An extensive history and clinical examination is crucial in making the correct diagnosis. Also, it is very important to be aware of low vision needs and refer the patients, if expressing any sort of functional issues with completing daily living skills, especially reading. In this article, we report one case of unilateral ARN 20 years after herpetic encephalitis. © 2016 Optometry Australia.

  13. Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa

    Science.gov (United States)

    Vega Thurber, Rebecca L.; Barott, Katie L.; Hall, Dana; Liu, Hong; Rodriguez-Mueller, Beltran; Desnues, Christelle; Edwards, Robert A.; Haynes, Matthew; Angly, Florent E.; Wegley, Linda; Rohwer, Forest L.

    2008-01-01

    During the last several decades corals have been in decline and at least one-third of all coral species are now threatened with extinction. Coral disease has been a major contributor to this threat, but little is known about the responsible pathogens. To date most research has focused on bacterial and fungal diseases; however, viruses may also be important for coral health. Using a combination of empirical viral metagenomics and real-time PCR, we show that Porites compressa corals contain a suite of eukaryotic viruses, many related to the Herpesviridae. This coral-associated viral consortium was found to shift in response to abiotic stressors. In particular, when exposed to reduced pH, elevated nutrients, and thermal stress, the abundance of herpes-like viral sequences rapidly increased in 2 separate experiments. Herpes-like viral sequences were rarely detected in apparently healthy corals, but were abundant in a majority of stressed samples. In addition, surveys of the Nematostella and Hydra genomic projects demonstrate that even distantly related Cnidarians contain numerous herpes-like viral genes, likely as a result of latent or endogenous viral infection. These data support the hypotheses that corals experience viral infections, which are exacerbated by stress, and that herpes-like viruses are common in Cnidarians. PMID:19017800

  14. Mechanical Barriers Restrict Invasion of Herpes Simplex Virus 1 into Human Oral Mucosa.

    Science.gov (United States)

    Thier, Katharina; Petermann, Philipp; Rahn, Elena; Rothamel, Daniel; Bloch, Wilhelm; Knebel-Mörsdorf, Dagmar

    2017-11-15

    Oral mucosa is one of the main target tissues of the human pathogen herpes simplex virus 1 (HSV-1). How the virus overcomes the protective epithelial barriers and penetrates the tissue to reach its receptors and initiate infection is still unclear. Here, we established an ex vivo infection assay with human oral mucosa that allows viral entry studies in a natural target tissue. The focus was on the susceptibility of keratinocytes in the epithelium and the characterization of cellular receptors that mediate viral entry. Upon ex vivo infection of gingiva or vestibular mucosa, we observed that intact human mucosa samples were protected from viral invasion. In contrast, the basal layer of the oral epithelium was efficiently invaded once the connective tissue and the basement membrane were removed. Later during infection, HSV-1 spread from basal keratinocytes to upper layers, demonstrating the susceptibility of the stratified squamous epithelium to HSV-1. The analysis of potential receptors revealed nectin-1 on most mucosal keratinocytes, whereas herpesvirus entry mediator (HVEM) was found only on a subpopulation of cells, suggesting that nectin-1 acts as primary receptor for HSV-1 in human oral mucosa. To mimic the supposed entry route of HSV-1 via microlesions in vivo , we mechanically wounded the mucosa prior to infection. While we observed a limited number of infected keratinocytes in some wounded mucosa samples, other samples showed no infected cells. Thus, we conclude that mechanical wounding of mucosa is insufficient for the virus to efficiently overcome epithelial barriers and to make entry-mediating receptors accessible. IMPORTANCE To invade the target tissue of its human host during primary infection, herpes simplex virus (HSV) must overcome the epithelial barriers of mucosa, skin, or cornea. For most viruses, the mechanisms underlying the invasion into the target tissues of their host organism are still open. Here, we established an ex vivo infection model of

  15. HERPES SIMPLEX VIRUS IN SALIVA OF PATIENTS WITH BELL'S PALSY

    Directory of Open Access Journals (Sweden)

    M.H. Harirchian

    2008-04-01

    Full Text Available Acute idiopathic peripheral facial paralysis (Bell's palsy is the most common disorder of the facial nerve. Most patients recover completely, although some have permanent disfiguring facial weakness. Many studies have attempted to identify an infectious etiology for this disease. Although the cause of Bell's palsy remains unknown, recent studies suggest a possible association with Herpes Simplex Virus-1(HSV-1 infection. In this case-control study we investigated the presence of DNA of HSV in the saliva of 26 patients with Bells palsy in first and second weeks of disorder compared to normal population who were matched in sex, age, as well as history of diabetes mellitus, hypertension and labial herpes. In the case group 3 and 7 patients had positive polymerase chain reaction (PCR for HSV in first and second weeks of disease respectively compared to 4 in controls. It means that there was not any relationship between Bell's palsy and HSV in saliva either in first or in second week. Two and 6 of positive results from the sample of first and second weeks were from patients with severe (grade 4-6 Bell's palsy. Although the positive results were more in second week in patient group and more in severe palsies, but a significant relationship between Bell's palsy or its severity and positive PCR for HSV was not detected (P >0.05.

  16. Overlapping reactivations of herpes simplex virus type 2 in the genital and perianal mucosa.

    Science.gov (United States)

    Tata, Sunitha; Johnston, Christine; Huang, Meei-Li; Selke, Stacy; Magaret, Amalia; Corey, Lawrence; Wald, Anna

    2010-02-15

    Genital shedding of herpes simplex virus (HSV) type 2 occurs frequently. Anatomic patterns of genital HSV-2 reactivation have not been intensively studied. Four HSV-2-seropositive women with symptomatic genital herpes attended a clinic daily during a 30-day period. Daily samples were collected from 7 separate genital sites. Swab samples were assayed for HSV DNA by quantitative polymerase chain reaction. Anatomic sites of clinical HSV-2 recurrences were recorded. HSV was detected on 44 (37%) of 120 days and from 136 (16%) of 840 swab samples. Lesions were documented on 35 (29%) of 120 days. HSV was detected at >1 anatomic site on 25 (57%) of 44 days with HSV shedding (median, 2 sites; range, 1-7), with HSV detected bilaterally on 20 (80%) of the 25 days. The presence of a lesion was significantly associated with detectable HSV from any genital site (incident rate ratio [IRR], 5.41; 95% confidence interval [CI], 1.24-23.50; P= .02) and with the number of positive sites (IRR, 1.19; 95% CI, 1. 01-1.40; P=.03). The maximum HSV copy number detected was associated with the number of positive sites (IRR, 1.62; 95% CI, 1.44-1.82; Pgenital tract. To prevent HSV-2 reactivation, suppressive HSV-2 therapy must control simultaneous viral reactivations from multiple sacral ganglia.

  17. Therapeutic Vaccine for Genital Herpes Simplex Virus-2 Infection: Findings From a Randomized Trial.

    Science.gov (United States)

    Bernstein, David I; Wald, Anna; Warren, Terri; Fife, Kenneth; Tyring, Stephen; Lee, Patricia; Van Wagoner, Nick; Magaret, Amalia; Flechtner, Jessica B; Tasker, Sybil; Chan, Jason; Morris, Amy; Hetherington, Seth

    2017-03-15

    Genital herpes simplex virus type 2 (HSV-2) infection causes recurrent lesions and frequent viral shedding. GEN-003 is a candidate therapeutic vaccine containing HSV-2 gD2∆TMR and ICP4.2, and Matrix-M2 adjuvant. Persons with genital herpes were randomized into 3 dose cohorts to receive 3 intramuscular doses 21 days apart of 10 µg, 30 µg, or 100 µg of GEN-003, antigens without adjuvant, or placebo. Participants obtained genital swab specimens twice daily for HSV-2 detection and monitored genital lesions for 28-day periods at baseline and at intervals after the last dose. One hundred and thirty-four persons received all 3 doses. Reactogenicity was associated with adjuvant but not with antigen dose or dose number. No serious adverse events were attributed to GEN-003. Compared with baseline, genital HSV-2 shedding rates immediately after dosing were reduced with GEN-003 (from 13.4% to 6.4% for 30 μg [P genital HSV shedding and lesion rates. NCT01667341 (funded by Genocea). © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  18. [Distribution of herpes simplex virus type 1 and 2 genomes in the human spinal ganglia].

    Science.gov (United States)

    Obara, Y

    1994-09-01

    Herpes simplex virus (HSV) is well known for its propensity to cause recurrent oral or genital mucosal infections in humans. HSV-1 is involved primarily in oral lesions, whereas HSV-2 is more frequently involved in genital lesions. Based on this, it is thought that HSV-1 may produce latent infections in trigeminal ganglia, and HSV-2 in the sacral ganglia. However the distribution pattern of latent HSV-1 and HSV-2 infections in spinal ganglia remains unknown. Using the polymerase chain reaction we detected latent herpes HSV-1 and HSV-2 in human spinal ganglia obtained from autopsy material. A pair of primers which were specific for a part of the HSV-1 and HSV-2 DNA polymerase domain were employed. HSV-1 and HSV-2 DNAs were detected in 11 of 40 (28%) and 15 of 40 (38%) cervical ganglia, respectively, 52 of 103 (50%) and 47 of 103 (46%) thoracic ganglia, 16 of 53 (30%) and 17 of 53 (32%) lumbar ganglia, and 3 of 20 (15%) and 3 of 20 (15%) sacral ganglia. These findings suggest that latent HSV-1 and HSV-2 infections have a widespread distribution from the cervical ganglia to sacral ganglia. Importantly this study demonstrated latent HSV-1 infection of both the lumbar and sacral ganglia for the first time.

  19. Using centralized laboratory data to monitor trends in herpes simplex virus type 1 and 2 infection in British Columbia and the changing etiology of genital herpes.

    Science.gov (United States)

    Gilbert, Mark; Li, Xuan; Petric, Martin; Krajden, Mel; Isaac-Renton, Judith L; Ogilvie, Gina; Rekart, Michael L

    2011-01-01

    Understanding the regional epidemiology of genital Herpes Simplex Virus (HSV) infections is important for clinical and public health practice, due to the increasing availability of type-specific serologic testing in Canada and the contribution of genital HSV-2 infection to ongoing HIV transmission. We used centralized laboratory data to describe trends in viral identifications of genital HSV in BC and assess the utility of these data for ongoing population surveillance. Records of viral identifications (1997-2005) were extracted from the Provincial Public Health Microbiology & Reference Laboratory database. Classification as genital or other site was based on documented specimen site. We conducted a descriptive analysis of trends over time, and calculated odds of HSV-1 infection among individuals with genital herpes. Of 48,183 viral identifications, 56.8% were genital, 10.0% were peri-oral and 9.1% cutaneous; site was unknown for 22.9%. Among genital identifications, HSV-1 infection was more likely in females, younger age groups, and later time periods. The proportion of genital herpes due to HSV-1 increased over time from 31.4% to 42.8% in BC. Our analysis of population-level laboratory data demonstrates that the proportion of genital herpes due to HSV-1 is increasing over time in BC, particularly among women and younger age groups; this has implications for clinical practice including the interpretation of type-specific serology. Provincial viral identification data are useful for monitoring the distribution of genital HSV-1 and HSV-2 infections over time. Improving clinical documentation of specimen site would improve the utility of these data.

  20. Blocking herpes simplex virus 2 glycoprotein E immune evasion as an approach to enhance efficacy of a trivalent subunit antigen vaccine for genital herpes.

    Science.gov (United States)

    Awasthi, Sita; Huang, Jialing; Shaw, Carolyn; Friedman, Harvey M

    2014-08-01

    Herpes simplex virus 2 (HSV-2) subunit antigen vaccines targeting virus entry molecules have failed to prevent genital herpes in human trials. Our approach is to include a virus entry molecule and add antigens that block HSV-2 immune evasion. HSV-2 glycoprotein C (gC2) is an immune evasion molecule that inhibits complement. We previously reported that adding gC2 to gD2 improved vaccine efficacy compared to the efficacy of either antigen alone in mice and guinea pigs. Here we demonstrate that HSV-2 glycoprotein E (gE2) functions as an immune evasion molecule by binding the IgG Fc domain. HSV-2 gE2 is synergistic with gC2 in protecting the virus from antibody and complement neutralization. Antibodies produced by immunization with gE2 blocked gE2-mediated IgG Fc binding and cell-to-cell spread. Mice immunized with gE2 were only partially protected against HSV-2 vaginal challenge in mice; however, when gE2 was added to gC2/gD2 to form a trivalent vaccine, neutralizing antibody titers with and without complement were significantly higher than those produced by gD2 alone. Importantly, the trivalent vaccine protected the dorsal root ganglia (DRG) of 32/33 (97%) mice between days 2 and 7 postchallenge, compared with 27/33 (82%) in the gD2 group. The HSV-2 DNA copy number was significantly lower in mice immunized with the trivalent vaccine than in those immunized with gD2 alone. The extent of DRG protection using the trivalent vaccine was better than what we previously reported for gC2/gD2 immunization. Therefore, gE2 is a candidate antigen for inclusion in a multivalent subunit vaccine that attempts to block HSV-2 immune evasion. Herpes simplex virus is the most common cause of genital ulcer disease worldwide. Infection results in emotional distress for infected individuals and their partners, is life threatening for infants exposed to herpes during childbirth, and greatly increases the risk of individuals acquiring and transmitting HIV infection. A vaccine that prevents

  1. Characterization and detection of Vero cells infected with Herpes Simplex Virus type 1 using Raman spectroscopy and advanced statistical methods.

    Science.gov (United States)

    Salman, A; Shufan, E; Zeiri, L; Huleihel, M

    2014-07-01

    Herpes viruses are involved in a variety of human disorders. Herpes Simplex Virus type 1 (HSV-1) is the most common among the herpes viruses and is primarily involved in human cutaneous disorders. Although the symptoms of infection by this virus are usually minimal, in some cases HSV-1 might cause serious infections in the eyes and the brain leading to blindness and even death. A drug, acyclovir, is available to counter this virus. The drug is most effective when used during the early stages of the infection, which makes early detection and identification of these viral infections highly important for successful treatment. In the present study we evaluated the potential of Raman spectroscopy as a sensitive, rapid, and reliable method for the detection and identification of HSV-1 viral infections in cell cultures. Using Raman spectroscopy followed by advanced statistical methods enabled us, with sensitivity approaching 100%, to differentiate between a control group of Vero cells and another group of Vero cells that had been infected with HSV-1. Cell sites that were "rich in membrane" gave the best results in the differentiation between the two categories. The major changes were observed in the 1195-1726 cm(-1) range of the Raman spectrum. The features in this range are attributed mainly to proteins, lipids, and nucleic acids. Copyright © 2014. Published by Elsevier Inc.

  2. Association of Chlamydia trachomatis Infection and Herpes Simplex Virus Type 2 Serostatus With Genital Human Papillomavirus Infection in Men: The HPV in Men Study

    NARCIS (Netherlands)

    Alberts, Catharina Johanna; Schim van der Loeff, Maarten F.; Papenfuss, Mary R.; da Silva, Roberto José Carvalho; Villa, Luisa Lina; Lazcano-Ponce, Eduardo; Nyitray, Alan G.; Giuliano, Anna R.

    2013-01-01

    Background: Studies in women indicate that some sexually transmitted infections promote human papillomavirus (HPV) persistence and carcinogenesis. Little is known about this association in men; therefore, we assessed whether Chlamydia trachomatis (CT) infection and herpes simplex virus type 2

  3. Coinfections of Sudanese dairy cattle with bovine herpes virus 1, bovine viral diarrhea virus, bluetongue virus and bovine herpes virus 4 and their relation to reproductive disorders

    Directory of Open Access Journals (Sweden)

    Amira M. Elhassan

    2016-12-01

    Reults: The meta-analysis of the data indicated high seroprevalence of coinfections with various combinations of these agents; only few animals were singly infected. An infection with BHV-1 was observed to be higher than the prevalence of associations between BHV-1 and the other three viral agents. Prevalence of seropositivities to coinfection with BHV-1/BTV; BHV-1/BVD; BHV-1/BTV/BVD were the highest while seropositivities prevalences that involved BHV-4 were much lower. The highest abortion rates were encountered in coinfections with BHV-1/BVD/BTV (31% and BHV-1/BVD/BTV/BHV-4 (30% while most infertility cases were noticed in coinfection with BHV-1/BVD/BTV (44% and BHV-1/BVD/BTV/BHV-4 (21%, and coinfections with the four viruses were encountered in most of the death after birth cases (25%. Overall mixed infections with BHV-1/BVD/BTV (34% and BHV-1/BVD/BTV/BHV-4 (22.5% were involved in the majority of reproductive problems studied. Conclusion: Mixed infections constitutes the vast majority of cases and are involved in the majority of reproductive disorders investigated. The high prevalence of seropositivity to all of the four viruses should call for an intervention strategy to reduce the impact of these viruses. [J Adv Vet Anim Res 2016; 3(4.000: 332-337

  4. CYTOCHEMICAL STUDIES OF THE NUCLEOPROTEINS OF HELA CELLS INFECTED WITH HERPES VIRUS.

    Science.gov (United States)

    Love, R; Wildy, P

    1963-05-01

    The morphological and cytochemical changes in HeLa cells infected with herpes virus have been studied at frequent intervals during infection and related to the growth of virus and the multiplicity of the virus inoculum. Infection with a high multiplicity inoculum produced enlargement and extrusion of small ribonucleoprotein (RNP) bodies in the nucleoli (nucleolini) to form RNP bodies in the nucleoplasm (B bodies) beginning (1/2) hour after infection. 3 hours after infection, RNP of the pars amorpha appeared to diffuse into the adjacent nucleoplasm, where, (1/2) hour later, the classical type A inclusion or A body first appeared. The A bodies displaced the B bodies and the nucleoli and eventually filled the nucleus. 6 hours after infection, minute granules containing RNA, DNA, and non-histone protein appeared inside the A bodies (A granules) and increased in number until the late stages of infection, when they disappeared. 18 hours after infection, at the time when the A bodies came to fill the nucleus completely, extrusion of RNP from the nucleus produced cytoplasmic masses which have been termed C bodies. B bodies were formed in the majority of cells before the maturation of infectious virus, but the number of B bodies could not be correlated with the amount of virus in the cell or with the multiplicity of the inoculum. It is suggested that the formation of B bodies may be the result of inhibition of the onset of mitotic division by a mechanism which does not inhibit the formation of RNA in the nucleolini. The nature of the A bodies, the A granules, and the C bodies is discussed and it is concluded that the A granules may represent aggregations of maturing virus in the nucleus. The progression of some C mitotic metaphases to the formation of post-C mitotic multinucleated giant cells is described. These are distinct from syncytia formed by cell fusion.

  5. Improvement of oncolytic adenovirus vectors through genetic capsid modifications

    NARCIS (Netherlands)

    Vrij, Jeroen de

    2012-01-01

    Recombinant viral vectors hold great promise in the field of cancer gene therapy. While a plethora of viruses is being evaluated as oncolytic agents, human adenoviruses of serotype 5 (HAdV-5) are among the most popular of viruses to be developed. Although clinical studies have demonstrated safety of

  6. Near instrument-free, simple molecular device for rapid detection of herpes simplex viruses.

    Science.gov (United States)

    Lemieux, Bertrand; Li, Ying; Kong, Huimin; Tang, Yi-Wei

    2012-06-01

    The first near instrument-free, inexpensive and simple molecular diagnostic device (IsoAmp HSV, BioHelix Corp., MA, USA) recently received US FDA clearance for use in the detection of herpes simplex viruses (HSV) in genital and oral lesion specimens. The IsoAmp HSV assay uses isothermal helicase-dependent amplification in combination with a disposable, hermetically-sealed, vertical-flow strip identification. The IsoAmp HSV assay has a total test-to-result time of less than 1.5 h by omitting the time-consuming nucleic acid extraction. The diagnostic sensitivity and specificity are comparable to PCR and are superior to culture-based methods. The near instrument-free, rapid and simple characteristics of the IsoAmp HSV assay make it potentially suitable for point-of-care testing.

  7. Herpes simplex virus type 2 infections of the central nervous system

    DEFF Research Database (Denmark)

    Omland, Lars Haukali; Vestergaard, Bent Faber; Wandall, Johan

    2008-01-01

    Herpes simplex virus type 2 (HSV-2) infections of the central nervous system (CNS) are rare with meningitis as the most common clinical presentation. We have investigated the clinical spectrum of CNS infections in 49 adult consecutive patients with HSV-2 genome in the cerebrospinal fluid (CSF). HSV......-2 in the CSF was determined by polymerase chain reaction (PCR), and patients were diagnosed as encephalitis or meningitis according to predefined clinical criteria by retrospective data information from consecutive clinical journals. The annual crude incidence rate of HSV-2 CNS disease was 0.26 per...... 100,000. 43 (88%) had meningitis of whom 8 (19%) had recurring lymphocytic meningitis. Six patients (12%) had encephalitis. 11 of 49 patients (22%) had sequelae recorded during follow-up. None died as a result of HSV-2 CNS disease. Thus, the clinical presentation of HSV-2 infection of the CNS...

  8. Identification of syncytial mutations in a clinical isolate of herpes simplex virus 2

    International Nuclear Information System (INIS)

    Muggeridge, Martin I.; Grantham, Michael L.; Johnson, F. Brent

    2004-01-01

    Small polykaryocytes resulting from cell fusion are found in herpes simplex virus (HSV) lesions in patients, but their significance for viral spread and pathogenesis is unclear. Although syncytial variants causing extensive fusion in tissue culture can be readily isolated from laboratory strains, they are rarely found in clinical isolates, suggesting that extensive cell fusion may be deleterious in vivo. Syncytial mutations have previously been identified for several laboratory strains, but not for clinical isolates of HSV type 2. To address this deficiency, we studied a recent syncytial clinical isolate, finding it to be a mixture of two syncytial and one nonsyncytial strain. The two syncytial strains have novel mutations in glycoprotein B, and in vitro cell fusion assays confirmed that they are responsible for syncytium formation. This panel of clinical strains may be ideal for examining the effect of increased cell fusion on pathogenesis

  9. Kyrieleis plaques associated with Herpes Simplex Virus type 1 acute retinal necrosis

    Directory of Open Access Journals (Sweden)

    Neha Goel

    2016-04-01

    Full Text Available We report the case of a 55-year-old immunocompetent male who presented with features typical of acute retinal necrosis (ARN. Polymerase chain reaction of the aqueous tap was positive for Herpes Simplex Virus (HSV – 1. Following therapy with intravenous Acyclovir, followed by oral Acyclovir and steroids, there was marked improvement in the visual acuity and clinical picture. At one week after initiation of treatment, Kyrieleis plaques were observed in the retinal arteries. They became more prominent despite resolution of the vitritis, retinal necrosis and vasculitis and persisted till six weeks of follow-up, when fluorescein angiography was performed. The appearance of this segmental retinal periarteritis also known as Kyrieleis plaques has not been described in ARN due to HSV-1 earlier.

  10. The synthesis of polyadenylated messenger RNA in herpes simplex type I virus infected BHK cells.

    Science.gov (United States)

    Harris, T J; Wildy, P

    1975-09-01

    The pattern of polyadenylated messenger RNA (mRNA) synthesis in BHK cell monolayers, infected under defined conditions with herpes simplex type I virus has been investigated by polyacrylamide gel electrophoresis or pulse-labelled RNA isolated by oligo dT-cellulose chromatography. Two classes of mRNA molecules were synthesized in infected cells; these were not detected in uninfected cells. The rate of synthesis of the larger, 18 to 30S RNA class reached a maximum soon after injection and then declined, whereas the rate of synthesis of the 7 to 11 S RNA class did not reach a maximum until much later and did not decline. In the presence of cytosine arabinoside, the rate of mRNA synthesis in infected cells was reduced but the electrophoretic pattern remained the same.

  11. Deoxypyrimidine kinases of herpes simplex viruses types 1 and 2: comparison of serological and structural properties.

    Science.gov (United States)

    Thouless, M E; Wildy, P

    1975-02-01

    The kinetics of formation, the stability at 40 degrees C and the serological properties of thymidine kinase and deoxycytidine kinase activities induced by herpes simplex virus have been examined. The results are consistent with the hypothesis that both activities are carried on the same molecule-a deoxypyrimidine kinase. Mutants deficient in deoxypyrimidine kinase have been used to produce, by absorption of general antisera, deoxypyrimidine kinase-specific antisera. Using immunoprecipitation and SDS-polyacrylamide gel electrophoresis, only one size of polypeptide (mol. wt. 42400 plus or minus 200) has been found, constituting the type 2 enzyme. This is close to published values for the type i enzyme but co-electrophoresis demonstrated that the polypeptide of the type i enzyme was slightly bigger.

  12. Ocular herpes simplex virus: how are latency, reactivation, recurrent disease and therapy interrelated?

    Science.gov (United States)

    Al-Dujaili, Lena J; Clerkin, Patrick P; Clement, Christian; McFerrin, Harris E; Bhattacharjee, Partha S; Varnell, Emily D; Kaufman, Herbert E; Hill, James M

    2011-08-01

    Most humans are infected with herpes simplex virus (HSV) type 1 in early childhood and remain latently infected throughout life. While most individuals have mild or no symptoms, some will develop destructive HSV keratitis. Ocular infection with HSV-1 and its associated sequelae account for the majority of corneal blindness in industrialized nations. Neuronal latency in the peripheral ganglia is established when transcription of the viral genome is repressed (silenced) except for the latency-associated transcripts and microRNAs. The functions of latency-associated transcripts have been investigated since 1987. Roles have been suggested relating to reactivation, establishment of latency, neuronal protection, antiapoptosis, apoptosis, virulence and asymptomatic shedding. Here, we review HSV-1 latent infections, reactivation, recurrent disease and antiviral therapies for the ocular HSV diseases.

  13. Analysis of the herpes simplex virus type 1 UL6 gene in patients with stromal keratitis

    International Nuclear Information System (INIS)

    Ellison, Aaron R.; Yang Li; Cevallos, A. Vicky; Margolis, Todd P.

    2003-01-01

    Recent work suggests that herpes simplex virus (HSV) stromal keratitis in the mouse is caused by autoreactive T lymphocytes triggered by a 16 amino acid region of the HSV UL6 protein (aa299-314) , Science 279, 1344-1347). In the present study we sought to determine whether genetic variation of this presumed autoreactive UL6 epitope is responsible for different pathogenic patterns of human HSV keratitis. To accomplish this, we sequenced the HSV UL6 gene from ocular isolates of 10 patients with necrotizing stromal keratitis, 7 patients with recurrent epithelial keratitis, and 8 patients with other forms of HSV keratitis. The sequences obtained predicted identical UL6(299-314) epitopes for all 25 viral isolates. Furthermore, the upstream sequence of all isolates was free of insertions, deletions, and stop codons. We conclude that different pathogenic patterns of human HSV keratitis occur independent of genetic variation of the HSV UL6 (299-314) epitope

  14. Ocular herpes simplex virus: how are latency, reactivation, recurrent disease and therapy interrelated?

    Science.gov (United States)

    Al-Dujaili, Lena J; Clerkin, Patrick P; Clement, Christian; McFerrin, Harris E; Bhattacharjee, Partha S; Varnell, Emily D; Kaufman, Herbert E; Hill, James M

    2012-01-01

    Most humans are infected with herpes simplex virus (HSV) type 1 in early childhood and remain latently infected throughout life. While most individuals have mild or no symptoms, some will develop destructive HSV keratitis. Ocular infection with HSV-1 and its associated sequelae account for the majority of corneal blindness in industrialized nations. Neuronal latency in the peripheral ganglia is established when transcription of the viral genome is repressed (silenced) except for the latency-associated transcripts and microRNAs. The functions of latency-associated transcripts have been investigated since 1987. Roles have been suggested relating to reactivation, establishment of latency, neuronal protection, antiapoptosis, apoptosis, virulence and asymptomatic shedding. Here, we review HSV-1 latent infections, reactivation, recurrent disease and antiviral therapies for the ocular HSV diseases. PMID:21861620

  15. Innate-like behavior of human invariant natural killer T cells during herpes simplex virus infection.

    Science.gov (United States)

    Novakova, Lucie; Nevoralova, Zuzana; Novak, Jan

    2012-01-01

    Invariant natural killer T (iNKT) cells, CD1d restricted T cells, are involved in the immune responses against various infection agents. Here we describe their behavior during reactivation of human herpes simplex virus (HSV). iNKT cells exhibit only discrete changes, which however, reached statistically significant level due to the relatively large patient group. Higher percentage of iNKT cells express NKG2D. iNKT cells down-regulate NKG2A in a subset of patients. Finally, iNKT cells enhance their capacity to produce TNF-α. Our data suggests that iNKT cells are involved in the immune response against HSV and contribute mainly to its early, innate phase. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Ultraviolet-irradiated urocanic acid suppresses delayed-type hypersensitivity to herpes simplex virus in mice

    International Nuclear Information System (INIS)

    Ross, J.A.; Howie, S.E.; Norval, M.; Maingay, J.; Simpson, T.J.

    1986-01-01

    Ultraviolet radiation is known to induce a transient defect in epidermal antigen presentation which leads to the generation of antigen-specific suppression of the delayed-type hypersensitivity (DTH) response. The putative receptor in skin for the primary event in UV-suppression is urocanic acid (UCA) which may then interact locally, or systemically, with antigen presenting cells or initiate a cascade of events resulting in suppression. We present the first direct evidence that UCA, when irradiated with a dose (96 mJ/cm2) of UVB radiation known to suppress the DTH response to herpes simplex virus, type 1 (HSV-1) in mice, can induce suppression following epidermal application or s.c. injection of the irradiated substance. This suppression is transferable with nylon wool-passed spleen cells

  17. In vitro virucidal activity of a styrylpyrone derivative against herpes simplex virus strain KOS-1

    Science.gov (United States)

    Moses, Micheal; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina

    2014-09-01

    In this study, styrylpyrone derivative (SPD) extracted from Goniothalamus umbrosus root was tested against herpes simplex virus (HSV) strain KOS-1. Firstly, the cytotoxicity of SPD on Vero cells was tested and the value of cytotoxic concentration, CC50, was 44 μM (8.88 μg/mL), and the 50% Effective Concentration, EC50, was 3.35 μM (0.67 μg/mL). Selectivity index of SPD against HSV Kos-1 was more than 13 indicating potential as antiviral agent. Three treatments were used in the antiviral test; 1) post-treatment, 2) pre-treatment, and 3) virucidal. The results revealed that the post-treatment was more effective in inhibiting viral replication compared to pre-treatment. The findings indicated that the SPD from G. umbrosus has good potential for prospective nature-based antiviral drug.

  18. Identification of TRIM27 as a novel degradation target of herpes simplex virus 1 ICP0.

    Science.gov (United States)

    Conwell, Sara E; White, Anne E; Harper, J Wade; Knipe, David M

    2015-01-01

    The herpes simplex virus 1 (HSV-1) immediate early protein ICP0 performs many functions during infection, including transactivation of viral gene expression, suppression of innate immune responses, and modification and eviction of histones from viral chromatin. Although these functions of ICP0 have been characterized, the detailed mechanisms underlying ICP0's complex role during infection warrant further investigation. We thus undertook an unbiased proteomic approach to identifying viral and cellular proteins that interact with ICP0 in the infected cell. Cellular candidates resulting from our analysis included the ubiquitin-specific protease USP7, the transcriptional repressor TRIM27, DNA repair proteins NBN and MRE11A, regulators of apoptosis, including BIRC6, and the proteasome. We also identified two HSV-1 early proteins involved in nucleotide metabolism, UL39 and UL50, as novel candidate interactors of ICP0. Because TRIM27 was the most statistically significant cellular candidate, we investigated the relationship between TRIM27 and ICP0. We observed rapid, ICP0-dependent loss of TRIM27 during HSV-1 infection. TRIM27 protein levels were restored by disrupting the RING domain of ICP0 or by inhibiting the proteasome, arguing that TRIM27 is a novel degradation target of ICP0. A mutant ICP0 lacking E3 ligase activity interacted with endogenous TRIM27 during infection as demonstrated by reciprocal coimmunoprecipitation and supported by immunofluorescence data. Surprisingly, ICP0-null mutant virus yields decreased upon TRIM27 depletion, arguing that TRIM27 has a positive effect on infection despite being targeted for degradation. These results illustrate a complex interaction between TRIM27 and viral infection with potential positive or negative effects of TRIM27 on HSV under different infection conditions. During productive infection, a virus must simultaneously redirect multiple cellular pathways to replicate itself while evading detection by the host's defenses. To

  19. Quantitative Evaluation of Protein Heterogeneity within Herpes Simplex Virus 1 Particles.

    Science.gov (United States)

    El Bilali, Nabil; Duron, Johanne; Gingras, Diane; Lippé, Roger

    2017-05-15

    Several virulence genes have been identified thus far in the herpes simplex virus 1 genome. It is also generally accepted that protein heterogeneity among virions further impacts viral fitness. However, linking this variability directly with infectivity has been challenging at the individual viral particle level. To address this issue, we resorted to flow cytometry (flow virometry), a powerful approach we recently employed to analyze individual viral particles, to identify which tegument proteins vary and directly address if such variability is biologically relevant. We found that the stoichiometry of the U L 37, ICP0, and VP11/12 tegument proteins in virions is more stable than the VP16 and VP22 tegument proteins, which varied significantly among viral particles. Most interestingly, viruses sorted for their high VP16 or VP22 content yielded modest but reproducible increases in infectivity compared to their corresponding counterparts containing low VP16 or VP22 content. These findings were corroborated for VP16 in short interfering RNA experiments but proved intriguingly more complex for VP22. An analysis by quantitative Western blotting revealed substantial alterations of virion composition upon manipulation of individual tegument proteins and suggests that VP22 protein levels acted indirectly on viral fitness. These findings reaffirm the interdependence of the virion components and corroborate that viral fitness is influenced not only by the genome of viruses but also by the stoichiometry of proteins within each virion. IMPORTANCE The ability of viruses to spread in animals has been mapped to several viral genes, but other factors are clearly involved, including virion heterogeneity. To directly probe whether the latter influences viral fitness, we analyzed the protein content of individual herpes simplex virus 1 particles using an innovative flow cytometry approach. The data confirm that some viral proteins are incorporated in more controlled amounts, while

  20. The current status of oncolytic viral therapy for head and neck cancer

    Directory of Open Access Journals (Sweden)

    Matthew O. Old

    2016-06-01

    Full Text Available Objective: Cancer affects the head and neck region frequently and leads to significant morbidity and mortality. Oncolytic viral therapy has the potential to make a big impact in cancers that affect the head and neck. We intend to review the current state of oncolytic viruses in the treatment of cancers that affect the head and neck region. Method: Data sources are from National clinical trials database, literature, and current research. Results: There are many past and active trials for oncolytic viruses that show promise for treating cancers of the head and neck. The first oncolytic virus was approved by the FDA October 2015 (T-VEC, Amgen for the treatment of melanoma. Active translational research continues for this and many other oncolytic viruses. Conclusion: The evolving field of oncolytic viruses is impacting the treatment of head and neck cancer and further trials and agents are moving forward in the coming years. Keywords: Head and neck squamous cell carcinoma, Oncolytic viruses, Clinical trials, Novel therapeutics

  1. Tumor-Associated Macrophages in Oncolytic Virotherapy: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Nicholas L. Denton

    2016-07-01

    Full Text Available Cancer therapy remains a challenge due to toxicity limitations of chemotherapy and radiation therapy. Oncolytic viruses that selectively replicate and destroy cancer cells are of increasing interest. In addition to direct cell lysis, these vectors stimulate an anti-tumor immune response. A key regulator of tumor immunity is the tumor-associated macrophage population. Macrophages can either support oncolytic virus therapy through pro-inflammatory stimulation of the anti-tumor response at the cost of hindering direct oncolysis or through immunosuppressive protection of virus replication at the cost of hindering the anti-tumor immune response. Despite similarities in macrophage interaction between adult and pediatric tumors and the abundance of research supporting macrophage modulation in adult tumors, there are few studies investigating macrophage modulation in pediatric cancers or modulation of immunotherapy. We review the current state of knowledge regarding macrophages in cancers and their influence on oncolytic virotherapy.

  2. Identification of interaction domains within the UL37 tegument protein of herpes simplex virus type 1.

    Science.gov (United States)

    Bucks, Michelle A; Murphy, Michael A; O'Regan, Kevin J; Courtney, Richard J

    2011-07-20

    Herpes simplex virus type 1 (HSV-1) UL37 is a 1123 amino acid tegument protein that self-associates and binds to the tegument protein UL36 (VP1/2). Studies were undertaken to identify regions of UL37 involved in these protein-protein interactions. Coimmunoprecipitation assays showed that residues within the carboxy-terminal half of UL37, amino acids 568-1123, are important for interaction with UL36. Coimmunoprecipitation assays also revealed that amino acids 1-300 and 568-1123 of UL37 are capable of self-association. UL37 appears to self-associate only under conditions when UL36 is not present or is present in low amounts, suggesting UL36 and UL37 may compete for binding. Transfection-infection experiments were performed to identify domains of UL37 that complement the UL37 deletion virus, K∆UL37. The carboxy-terminal region of UL37 (residues 568-1123) partially rescues the K∆UL37 infection. These results suggest the C-terminus of UL37 may contribute to its essential functional role within the virus-infected cell. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Involvement of intracellular free Ca2+ in enhanced release of herpes simplex virus by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Ogawa Yuzo

    2006-08-01

    Full Text Available Abstract Background It was reported that elevation of the intracellular concentration of free Ca2+ ([Ca2+]i by a calcium ionophore increased the release of herpes simplex virus type 1 (HSV-1. Freely diffusible hydrogen peroxide (H2O2 is implied to alter Ca2+ homeostasis, which further enhances abnormal cellular activity, causing changes in signal transduction, and cellular dysfunction. Whether H2O2 could affect [Ca2+]i in HSV-1-infected cells had not been investigated. Results H2O2 treatment increased the amount of cell-free virus and decreased the proportion of viable cells. After the treatment, an elevation in [Ca2+]i was observed and the increase in [Ca2+]i was suppressed when intracellular and cytosolic Ca2+ were buffered by Ca2+ chelators. In the presence of Ca2+ chelators, H2O2-mediated increases of cell-free virus and cell death were also diminished. Electron microscopic analysis revealed enlarged cell junctions and a focal disintegration of the plasma membrane in H2O2-treated cells. Conclusion These results indicate that H2O2 can elevate [Ca2+]i and induces non-apoptotic cell death with membrane lesions, which is responsible for the increased release of HSV-1 from epithelial cells.

  4. Involvement of UL24 in herpes-simplex-virus-1-induced dispersal of nucleolin

    International Nuclear Information System (INIS)

    Lymberopoulos, Maria H.; Pearson, Angela

    2007-01-01

    UL24 of herpes simplex virus 1 is important for efficient viral replication, but its function is unknown. We generated a recombinant virus, vHA-UL24, encoding UL24 with an N-terminal hemagglutinin tag. By indirect immunofluorescence at 9 h post-infection (hpi), we detected HA-UL24 in nuclear foci and in cytoplasmic speckles. HA-UL24 partially co-localized with nucleolin, but not with ICP8 or coilin, markers for nucleoli, viral replication compartments, and Cajal bodies respectively. HA-UL24 staining was often juxtaposed to that of another nucleolar protein, fibrillarin. Analysis of HSV-1-induced nucleolar modifications revealed that by 18 hpi, nucleolin staining had dispersed, and fibrillarin staining went from clusters of small spots to a few separate but prominent spots. Fibrillarin redistribution appeared to be independent of UL24. In contrast, cells infected with a UL24-deficient virus retained foci of nucleolin staining. Our results demonstrate involvement of UL24 in dispersal of nucleolin during infection

  5. Structural analysis of herpes simplex virus by optical super-resolution imaging

    Science.gov (United States)

    Laine, Romain F.; Albecka, Anna; van de Linde, Sebastian; Rees, Eric J.; Crump, Colin M.; Kaminski, Clemens F.

    2015-01-01

    Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument.

  6. Recent advances in vaccine development for herpes simplex virus types I and II.

    Science.gov (United States)

    Coleman, Jeffrey L; Shukla, Deepak

    2013-04-01

    Despite recent advances in vaccine design and strategies, latent infection with herpes simplex virus (HSV) remains a formidable challenge. Approaches involving live-attenuated viruses and inactivated viral preparations were popular throughout the twentieth century. In the past ten years, many vaccine types, both prophylactic or therapeutic, have contained a replication-defective HSV, viral DNA or glycoproteins. New research focused on the mechanism of immune evasion by the virus has involved developing vaccines with various gene deletions and manipulations combined with the use of new and more specific adjuvants. In addition, new "prime-boost" methods of strengthening the vaccine efficacy have proven effective, but there have also been flaws with some recent strategies that appear to have compromised vaccine efficacy in humans. Given the complicated lifecycle of HSV and its unique way of spreading from cell-to-cell, it can be concluded that the development of an ideal vaccine needs new focus on cell-mediated immunity, better understanding of the latent viral genome and serious consideration of gender-based differences in immunity development among humans. This review summarizes recent developments made in the field and sheds light on some potentially new ways to conquer the problem including development of dual-action prophylactic microbicides that prohibit viral entry and, in addition, induce a strong antigen response.

  7. Phenotypic and Functional Characterization of Herpes Simplex Virus Glycoprotein B Epitope-Specific Effector and Memory CD8+ T Cells from Symptomatic and Asymptomatic Individuals with Ocular Herpes

    Science.gov (United States)

    Khan, Arif A.; Srivastava, Ruchi; Spencer, Doran; Garg, Sumit; Fremgen, Daniel; Vahed, Hawa; Lopes, Patricia P.; Pham, Thanh T.; Hewett, Charlie; Kuang, Jasmine; Ong, Nicolas; Huang, Lei; Scarfone, Vanessa M.; Nesburn, Anthony B.

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) glycoprotein B (gB)-specific CD8+ T cells protect mice from herpes infection and disease. However, whether and which HSV-1 gB-specific CD8+ T cells play a key role in the “natural” protection seen in HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we have dissected the phenotypes and the functions of HSV-1 gB-specific CD8+ T cells from HLA-A*02:01 positive, HSV-1 seropositive ASYMP and symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpes disease). We found the following. (i) Healthy ASYMP individuals maintained a significantly higher proportion of differentiated HSV-1 gB-specific effector memory CD8+ T cells (TEM cells) (CD45RAlow CCR7low CD44high CD62Llow). In contrast, SYMP patients had frequent less-differentiated central memory CD8+ T cells (TCM cells) (CD45RAlow CCR7high CD44low CD62Lhigh). (ii) ASYMP individuals had significantly higher proportions of multifunctional effector CD8+ T cells which responded mainly to gB342–350 and gB561–569 “ASYMP” epitopes, and simultaneously produced IFN-γ, CD107a/b, granzyme B, and perforin. In contrast, effector CD8+ T cells from SYMP individuals were mostly monofunctional and were directed mainly against nonoverlapping gB17–25 and gB183–191 “SYMP” epitopes. (iii) Immunization of an HLA-A*02:01 transgenic mouse model of ocular herpes with “ASYMP” CD8+ TEM cell epitopes, but not with “SYMP” CD8+ TCM cell epitopes, induced a strong CD8+ T cell-dependent protective immunity against ocular herpes infection and disease. Our findings provide insights into the role of HSV-specific CD8+ TEM cells in protection against herpes and should be considered in the development of an effective vaccine. IMPORTANCE A significantly higher proportion of differentiated and multifunctional HSV-1 gB-specific effector memory CD8+ T cells (TEM

  8. Lack of evidence for intertypic recombinants in the pathogenesis of recurrent genital infections with herpes simplex virus type 1.

    Science.gov (United States)

    Fife, K H; Boggs, D

    1986-01-01

    Clinical observations indicate that herpes simplex virus type 1 (HSV-1) is significantly less likely than herpes simplex virus type 2 (HSV-2) to establish latency in (or reactivate from) sacral ganglionic tissue. In an effort to identify viral functions associated with latency, we analyzed HSV-1 isolates from three patients with established recurrent genital herpes and sought evidence of DNA sequences and proteins similar to those found in HSV-2. By restriction endonuclease cleavage patterns and by DNA hybridization analysis using either whole HSV-2 DNA or several cloned segments of HSV-2 DNA as probes, we found that the three HSV-1 isolates from patients with recurrent genital herpes showed no unusual homology to HSV-2 as compared with other HSV-1 isolates. Similarly, the proteins of these isolates could not be distinguished from those of other HSV-1 isolates and were distinct from those of HSV-2. At this level of resolution, there was no evidence to suggest that these recurrent genital HSV-1 isolates were intertypic recombinants, nor did they show any other unusual similarity to HSV-2.

  9. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    International Nuclear Information System (INIS)

    Zheng, Kai; Chen, Maoyun; Xiang, Yangfei; Ma, Kaiqi; Jin, Fujun; Wang, Xiao; Wang, Xiaoyan; Wang, Shaoxiang; Wang, Yifei

    2014-01-01

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections

  10. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Kai [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of Life Science and Technology, Jinan University, Guangzhou (China); Chen, Maoyun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Xiang, Yangfei; Ma, Kaiqi [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Jin, Fujun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Wang, Xiao [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Wang, Xiaoyan; Wang, Shaoxiang [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Wang, Yifei, E-mail: twang-yf@163.com [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China)

    2014-04-18

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.

  11. The association between herpes virus infections and functional somatic symptoms in a general population of adolescents. The TRAILS study.

    Directory of Open Access Journals (Sweden)

    Iris Jonker

    Full Text Available FSS have been suggested to follow activation of the immune system, triggered by herpes virus infections. The aim of this study was to find out whether herpes virus infections were associated with the experience of FSS in adolescents, and whether this association was mediated by hsCRP, as a general marker of immune activation.This study was performed in TRAILS, a large prospective population cohort of 2230 adolescents (mean age: 16.1 years, SD = .66, 53.4% girls. FSS were assessed using the somatic complaints subscale of the Youth Self-Report. FSS were analyzed as total scores and divided in two group clusters based on previous studies in this cohort. Levels of hsCRP and antibody levels to the herpes viruses HSV1, HSV2, CMV, EBV and HHV6 were assessed in blood samples at age 16. Also a value for pathogen burden was created adding the number of viruses the adolescents were seropositive for. Multiple regression analysis with bootstrapping was used to analyze the association between viral antibodies and pathogen burden, hsCRP and FSS scores.Antibody levels and pathogen burden were not associated with FSS total scores or FSS scores in both symptom groups. hsCRP was associated with the total FSS score (B = .02, 95% CI: .004 to .028, p = .01 and FSS score in the symptom group of headache and gastrointestinal complaints (B = .02, 95% CI: .001 to .039, p = .04.Our study showed no association between herpes virus infections and FSS in general or specific FSS symptom clusters. A role for inflammatory processes in FSS development was supported by the significant association we found between hsCRP levels and FSS, especially in the symptom group of headache and gastrointestinal complaints.

  12. The association between herpes virus infections and functional somatic symptoms in a general population of adolescents. The TRAILS study.

    Science.gov (United States)

    Jonker, Iris; Schoevers, Robert; Klein, Hans; Rosmalen, Judith

    2017-01-01

    FSS have been suggested to follow activation of the immune system, triggered by herpes virus infections. The aim of this study was to find out whether herpes virus infections were associated with the experience of FSS in adolescents, and whether this association was mediated by hsCRP, as a general marker of immune activation. This study was performed in TRAILS, a large prospective population cohort of 2230 adolescents (mean age: 16.1 years, SD = .66, 53.4% girls). FSS were assessed using the somatic complaints subscale of the Youth Self-Report. FSS were analyzed as total scores and divided in two group clusters based on previous studies in this cohort. Levels of hsCRP and antibody levels to the herpes viruses HSV1, HSV2, CMV, EBV and HHV6 were assessed in blood samples at age 16. Also a value for pathogen burden was created adding the number of viruses the adolescents were seropositive for. Multiple regression analysis with bootstrapping was used to analyze the association between viral antibodies and pathogen burden, hsCRP and FSS scores. Antibody levels and pathogen burden were not associated with FSS total scores or FSS scores in both symptom groups. hsCRP was associated with the total FSS score (B = .02, 95% CI: .004 to .028, p = .01) and FSS score in the symptom group of headache and gastrointestinal complaints (B = .02, 95% CI: .001 to .039, p = .04). Our study showed no association between herpes virus infections and FSS in general or specific FSS symptom clusters. A role for inflammatory processes in FSS development was supported by the significant association we found between hsCRP levels and FSS, especially in the symptom group of headache and gastrointestinal complaints.

  13. The Telomerase Inhibitor MST-312 Interferes with Multiple Steps in the Herpes Simplex Virus Life Cycle.

    Science.gov (United States)

    Haberichter, Jarod; Roberts, Scott; Abbasi, Imran; Dedthanou, Phonphanh; Pradhan, Prajakta; Nguyen, Marie L

    2015-10-01

    The life cycle of herpes simplex virus (HSV) has the potential to be further manipulated to yield novel, more effective therapeutic treatments. Recent research has demonstrated that HSV-1 can increase telomerase activity and that expression of the catalytic component of telomerase, telomerase reverse transcriptase (TERT), alters sensitivity to HSV-dependent apoptosis. Telomerase is a cellular enzyme that synthesizes nucleotide repeats at the ends of chromosomes (telomeres), which prevents shortening of the 3' ends of DNA with each cell division. Once telomeres reach a critical length, cells undergo senescence and apoptosis. Here, we used a cell-permeable, reversible inhibitor of the telomerase enzyme, MST-312, to investigate telomerase activity during HSV infection. Human mammary epithelial cells immortalized through TERT expression and human carcinoma HEp-2 cells were infected with the KOS1.1 strain of HSV-1 in the presence of MST-312. MST-312 treatment reduced the number of cells displaying a cytopathic effect and the accumulation of immediate early and late viral proteins. Moreover, the presence of 20 μM to 100 μM MST-312 during infection led to a 2.5- to 5.5-log10 decrease in viral titers. MST-312 also inhibited the replication of HSV-2 and a recent clinical isolate of HSV-1. Additionally, we determined that MST-312 has the largest impact on viral events that take place prior to 5 h postinfection (hpi). Furthermore, MST-312 treatment inhibited virus replication, as measured by adsorption assays and quantification of genome replication. Together, these findings demonstrate that MST-312 interferes with the HSV life cycle. Further investigation into the mechanism for MST-312 is warranted and may provide novel targets for HSV therapies. Herpes simplex virus (HSV) infections can lead to cold sores, blindness, and brain damage. Identification of host factors that are important for the virus life cycle may provide novel targets for HSV antivirals. One such factor

  14. The herpes simplex virus 2 virion-associated ribonuclease vhs interferes with stress granule formation.

    Science.gov (United States)

    Finnen, Renée L; Hay, Thomas J M; Dauber, Bianca; Smiley, James R; Banfield, Bruce W

    2014-11-01

    In a previous study, it was observed that cells infected with herpes simplex virus 2 (HSV-2) failed to accumulate stress granules (SGs) in response to oxidative stress induced by arsenite treatment. As a follow-up to this observation, we demonstrate here that disruption of arsenite-induced SG formation by HSV-2 is mediated by a virion component. Through studies on SG formation in cells infected with HSV-2 strains carrying defective forms of UL41, the gene that encodes vhs, we identify vhs as a virion component required for this disruption. Cells infected with HSV-2 strains producing defective forms of vhs form SGs spontaneously late in infection. In addition to core SG components, these spontaneous SGs contain the viral immediate early protein ICP27 as well as the viral serine/threonine kinase Us3. As part of these studies, we reexamined the frameshift mutation known to reside within the UL41 gene of HSV-2 strain HG52. We demonstrate that this mutation is unstable and can rapidly revert to restore wild-type UL41 following low-multiplicity passaging. Identification of the involvement of virion-associated vhs in the disruption of SG formation will enable mechanistic studies on how HSV-2 is able to counteract antiviral stress responses early in infection. In addition, the ability of Us3 to localize to stress granules may indicate novel roles for this viral kinase in the regulation of translation. Eukaryotic cells respond to stress by rapidly shutting down protein synthesis and storing mRNAs in cytoplasmic stress granules (SGs). Stoppages in protein synthesis are problematic for all viruses as they rely on host cell machinery to synthesize viral proteins. Thus, many viruses target SGs for disruption or modification. Infection by herpes simplex virus 2 (HSV-2) was previously observed to disrupt SG formation induced by oxidative stress. In this follow-up study, we identify virion host shutoff protein (vhs) as a viral protein involved in this disruption. The

  15. Genetic recombination of Herpes simplex virus, the role of the host cell and UV-irradiation of the virus

    International Nuclear Information System (INIS)

    Dasgupta, U.B.; Summers, W.C.; Yale Univ., New Haven, CT; Yale Univ., New Haven, CT

    1980-01-01

    Recombination frequencies for two sets of genetic markers of Herpes simplex virus were determined in various host cells with and without ultraviolet irradiation of the virus. UV irradiation increased the recombination frequency in all the cell types studied in direct proportion to the unrepaired lethal damage. In human skin fibroblasts derived from a patient with xeroderma pigmentosum (XP) of complementation group A, a given dose of UV stimulated recombination more than that in fibroblasts from normal individuals. On the other hand, UV stimulation of HSV recombination was slightly less than normal in fibroblasts derived from a patient with a variant form XP and from an ataxia telangiectasia patient. Caffeine, an agent known to inhibit repair of UV damage, reduced recombination in most of the cell types studied but did not suppress the UV-induced increase in recombination. These findings suggest that for virus DNA with the same number of unrepaired UV-lesions, each of the tested cell types promoted HSV-recombination to an equivalent extent. (orig.) [de

  16. Vectorization in an oncolytic vaccinia virus of an antibody, a Fab and a scFv against programmed cell death -1 (PD-1) allows their intratumoral delivery and an improved tumor-growth inhibition.

    Science.gov (United States)

    Kleinpeter, Patricia; Fend, Laetitia; Thioudellet, Christine; Geist, Michel; Sfrontato, Nathalie; Koerper, Véronique; Fahrner, Catherine; Schmitt, Doris; Gantzer, Murielle; Remy-Ziller, Christelle; Brandely, Renée; Villeval, Dominique; Rittner, Karola; Silvestre, Nathalie; Erbs, Philippe; Zitvogel, Laurence; Quéméneur, Eric; Préville, Xavier; Marchand, Jean-Baptiste

    2016-01-01

    We report here the successful vectorization of a hamster monoclonal IgG (namely J43) recognizing the murine Programmed cell death-1 (mPD-1) in Western Reserve (WR) oncolytic vaccinia virus. Three forms of mPD-1 binders have been inserted into the virus: whole antibody (mAb), Fragment antigen-binding (Fab) or single-chain variable fragment (scFv). MAb, Fab and scFv were produced and assembled with the expected patterns in supernatants of cells infected by the recombinant viruses. The three purified mPD-1 binders were able to block the binding of mPD-1 ligand to mPD-1 in vitro . Moreover, mAb was detected in tumor and in serum of C57BL/6 mice when the recombinant WR-mAb was injected intratumorally (IT) in B16F10 and MCA 205 tumors. The concentration of circulating mAb detected after IT injection was up to 1,900-fold higher than the level obtained after a subcutaneous (SC) injection (i.e., without tumor) confirming the virus tropism for tumoral cells and/or microenvironment. Moreover, the overall tumoral accumulation of the mAb was higher and lasted longer after IT injection of WR-mAb1, than after IT administration of 10 µg of J43. The IT injection of viruses induced a massive infiltration of immune cells including activated lymphocytes (CD8 + and CD4 + ). Interestingly, in the MCA 205 tumor model, WR-mAb1 and WR-scFv induced a therapeutic control of tumor growth similar to unarmed WR combined to systemically administered J43 and superior to that obtained with an unarmed WR. These results pave the way for next generation of oncolytic vaccinia armed with immunomodulatory therapeutic proteins such as mAbs.

  17. Assessing the contribution of the herpes simplex virus DNA polymerase to spontaneous mutations

    Directory of Open Access Journals (Sweden)

    Leary Jeffry J

    2002-05-01

    Full Text Available Abstract Background The thymidine kinase (tk mutagenesis assay is often utilized to determine the frequency of herpes simplex virus (HSV replication-mediated mutations. Using this assay, clinical and laboratory HSV-2 isolates were shown to have a 10- to 80-fold higher frequency of spontaneous mutations compared to HSV-1. Methods A panel of HSV-1 and HSV-2, along with polymerase-recombinant viruses expressing type 2 polymerase (Pol within a type 1 genome, were evaluated using the tk and non-HSV DNA mutagenesis assays to measure HSV replication-dependent errors and determine whether the higher mutation frequency of HSV-2 is a distinct property of type 2 polymerases. Results Although HSV-2 have mutation frequencies higher than HSV-1 in the tk assay, these errors are assay-specific. In fact, wild type HSV-1 and the antimutator HSV-1 PAAr5 exhibited a 2–4 fold higher frequency than HSV-2 in the non-HSV DNA mutatagenesis assay. Furthermore, regardless of assay, HSV-1 recombinants expressing HSV-2 Pol had error rates similar to HSV-1, whereas the high mutator virus, HSV-2 6757, consistently showed signficant errors. Additionally, plasmid DNA containing the HSV-2 tk gene, but not type 1 tk or LacZ DNA, was shown to form an anisomorphic DNA stucture. Conclusions This study suggests that the Pol is not solely responsible for the virus-type specific differences in mutation frequency. Accordingly, it is possible that (a mutations may be modulated by other viral polypeptides cooperating with Pol, and (b the localized secondary structure of the viral genome may partially account for the apparently enhanced error frequency of HSV-2.

  18. Crystal Structure of the Conserved Herpes Virus Fusion Regulator Complex gH–gL

    Energy Technology Data Exchange (ETDEWEB)

    Chowdary, T.; Cairns, T; Atanasiu, D; Cohen, G; Eisenberg, R; Heldwein, E

    2010-01-01

    Herpesviruses, which cause many incurable diseases, infect cells by fusing viral and cellular membranes. Whereas most other enveloped viruses use a single viral catalyst called a fusogen, herpesviruses, inexplicably, require two conserved fusion-machinery components, gB and the heterodimer gH-gL, plus other nonconserved components. gB is a class III viral fusogen, but unlike other members of its class, it does not function alone. We determined the crystal structure of the gH ectodomain bound to gL from herpes simplex virus 2. gH-gL is an unusually tight complex with a unique architecture that, unexpectedly, does not resemble any known viral fusogen. Instead, we propose that gH-gL activates gB for fusion, possibly through direct binding. Formation of a gB-gH-gL complex is critical for fusion and is inhibited by a neutralizing antibody, making the gB-gH-gL interface a promising antiviral target.

  19. Interaction of humic acids and humic-acid-like polymers with herpes simplex virus type 1

    Science.gov (United States)

    Klöcking, Renate; Helbig, Björn

    The study was performed in order to compare the antiviral activity against herpes simplex virus type 1 (HSV-1) of synthetic humic-acid-like polymers to that of their low-molecular-weight basic compounds and naturally occurring humic acids (HA) in vitro. HA from peat water showed a moderate antiviral activity at a minimum effective concentration (MEC) of 20 µg/ml. HA-like polymers, i.e. the oxidation products of caffeic acid (KOP), hydrocaffeic acid (HYKOP), chlorogenic acid (CHOP), 3,4-dihydroxyphenylacetic acid (3,4-DHPOP), nordihydroguaretic acid (NOROP), gentisinic acid (GENOP), pyrogallol (PYROP) and gallic acid (GALOP), generally inhibit virus multiplication, although with different potency and selectivity. Of the substances tested, GENOP, KOP, 3,4-DHPOP and HYKOP with MEC values in the range of 2 to 10 µg/ml, proved to be the most potent HSV-1 inhibitors. Despite its lower antiviral potency (MEC 40 µg/ml), CHOP has a remarkable selectivity due to the high concentration of this polymer that is tolerated by the host cells (>640 µg/ml). As a rule, the antiviral activity of the synthetic compounds was restricted to the polymers and was not preformed in the low-molecular-weight basic compounds. This finding speaks in favour of the formation of antivirally active structures during the oxidative polymerization of phenolic compounds and, indirectly, of corresponding structural parts in different HA-type substances.

  20. Crystal structure of the conserved herpes virus fusion regulator complex gH-gL

    Energy Technology Data Exchange (ETDEWEB)

    Chowdary, Tirumala K; Cairns, Tina M; Atanasiu, Doina; Cohen, Gary H; Eisenberg, Roselyn J; Heldwein, Ekaterina E [UPENN; (Tufts-MED)

    2010-09-13

    Herpesviruses, which cause many incurable diseases, infect cells by fusing viral and cellular membranes. Whereas most other enveloped viruses use a single viral catalyst called a fusogen, herpesviruses, inexplicably, require two conserved fusion-machinery components, gB and the heterodimer gH-gL, plus other nonconserved components. gB is a class III viral fusogen, but unlike other members of its class, it does not function alone. We determined the crystal structure of the gH ectodomain bound to gL from herpes simplex virus 2. gH-gL is an unusually tight complex with a unique architecture that, unexpectedly, does not resemble any known viral fusogen. Instead, we propose that gH-gL activates gB for fusion, possibly through direct binding. Formation of a gB-gH-gL complex is critical for fusion and is inhibited by a neutralizing antibody, making the gB-gH-gL interface a promising antiviral target.

  1. Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection.

    Science.gov (United States)

    Zhang, Jie; Liu, Huan; Wei, Bin

    Herpes simplex virus type 1 (HSV-1), a neurotropic member of the alphaherpes virus family, is among the most prevalent and successful human pathogens. HSV-1 can cause serious diseases at every stage of life including fatal disseminated disease in newborns, cold sores, eye disease, and fatal encephalitis in adults. HSV-1 infection can trigger rapid immune responses, and efficient inhibition and clearance of HSV-1 infection rely on both the innate and adaptive immune responses of the host. Multiple strategies have been used to restrict host innate immune responses by HSV-1 to facilitate its infection in host cells. The adaptive immunity of the host plays an important role in inhibiting HSV-1 infections. The activation and regulation of T cells are the important aspects of the adaptive immunity. They play a crucial role in host-mediated immunity and are important for clearing HSV-1. In this review, we examine the findings on T cell immune responses during HSV-1 infection, which hold promise in the design of new vaccine candidates for HSV-1.

  2. Identification of two novel functional p53 responsive elements in the herpes simplex virus-1 genome.

    Science.gov (United States)

    Hsieh, Jui-Cheng; Kuta, Ryan; Armour, Courtney R; Boehmer, Paul E

    2014-07-01

    Analysis of the herpes simplex virus-1 (HSV-1) genome reveals two candidate p53 responsive elements (p53RE), located in proximity to the replication origins oriL and oriS, referred to as p53RE-L and p53RE-S, respectively. The sequences of p53RE-L and p53RE-S conform to the p53 consensus site and are present in HSV-1 strains KOS, 17, and F. p53 binds to both elements in vitro and in virus-infected cells. Both p53RE-L and p53RE-S are capable of conferring p53-dependent transcriptional activation onto a heterologous reporter gene. Importantly, expression of the essential immediate early viral transactivator ICP4 and the essential DNA replication protein ICP8, that are adjacent to p53RE-S and p53RE-L, are repressed in a p53-dependent manner. Taken together, this study identifies two novel functional p53RE in the HSV-1 genome and suggests a complex mechanism of viral gene regulation by p53 which may determine progression of the lytic viral replication cycle or the establishment of latency. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Polyploidization on SK-N-MC human neuroblastoma cells infected with herpes simplex virus 1.

    Science.gov (United States)

    Karalyan, Zaven; Izmailyan, Roza; Karalova, Elena; Abroyan, Liana; Hakobyan, Lina; Avetisyan, Aida; Semerjyan, Zara

    2016-01-01

    Polyploidization is one of the most dramatic changes occurring within cell genome owing to various reasons including under many viral infections. We examined the impact of herpes simplex virus-1 (HSV-1) on SK-N-MC human neuroblastoma cell line. The infected cells were followed from 6 hours up to 96 hours post infection (hpi). A large number of polyploid cells with giant nuclei was observed under the influence of HSV-1 at 24 hpi with the DNA content of 32c to 64c or more, in comparison with control SK-N-MC cells that were characterized by relatively moderate values of ploidy, i.e. 8с to 16с (where 1c is the haploid amount of nuclear DNA found in normal diploid populations in G0/G1). After 48-96 hpi, the population of polyploid cells with giant nuclei decreased to the benchmark level. The SK-NMC cells infected with HSV-1 for 24 hours were stained with gallocyanine and monitored for cytological features. The infected cells underwent virus induced cellcell and nuclei fusion with the formation of dense nuclei syncytium. The metabolic activity of HSV-1 infected cells was higher in both nuclei and nucleoli when compared to control cells.

  4. Early events in herpes simplex virus lifecycle with implications for an infection of lifetime.

    Science.gov (United States)

    Salameh, Sarah; Sheth, Urmi; Shukla, Deepak

    2012-01-01

    Affecting a large percentage of human population herpes simplex virus (HSV) types -1 and -2 mainly cause oral, ocular, and genital diseases. Infection begins with viral entry into a host cell, which may be preceded by viral "surfing" along filopodia. Viral glycoproteins then bind to one or more of several cell surface receptors, such as herpesvirus entry mediator (HVEM), nectin-1, 3-O sulfated heparan sulfate (3-OS HS), paired immunoglobulin-like receptor α, and non-muscle myosin-IIA. At least five viral envelope glycoproteins participate in entry and these include gB, gC, gD and gH-gL. Post-entry, these glycoproteins may also facilitate cell-to-cell spread of the virus, which helps in the evasion of physical barriers as well as several components of the innate and adaptive immune responses. The spread may be facilitated by membrane fusion, movement across tight junctions, transfer across neuronal synapses, or the recruitment of actin-containing structures. This review summarizes some of the recent advances in our understanding of HSV entry and cell-to-cell spread.

  5. Replication and interaction of herpes simplex virus and human papillomavirus in differentiating host epithelial tissue

    International Nuclear Information System (INIS)

    Meyers, Craig; Andreansky, Samita S.; Courtney, Richard J.

    2003-01-01

    We have investigated the interactions and consequences of superinfecting and coreplication of human papillomavirus (HPV) and herpes simplex virus (HSV) in human epithelial organotypic (raft) culture tissues. In HPV-positive tissues, HSV infection and replication induced significant cytopathic effects (CPE), but the tissues were able to recover and maintain a certain degree of tissue integrity and architecture. HPV31b not only maintained the episomal state of its genomic DNA but also maintained its genomic copy number even during times of extensive HSV-induced CPE. E2 transcripts encoded by HPV31b were undetectable even though HPV31b replication was maintained in HSV- infected raft tissues. Expression of HPV31b oncogenes (E6 and E7) was also repressed but to a lesser degree than was E2 expression. The extent of CPE induced by HSV is dependent on the magnitude of HPV replication and gene expression at the time of HSV infection. During active HSV infection, HPV maintains its genomic copy number even though genes required for its replication were repressed. These studies provide new insight into the complex interaction between two common human sexually transmitted viruses in an in vitro system, modeling their natural host tissue in vivo

  6. Herpes Simplex Virus Type 2 Myelitis: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Raffaele Nardone

    2017-05-01

    Full Text Available Non-traumatic myelopathies can result from a wide spectrum of conditions including inflammatory, ischemic, and metabolic disorders. Here, we describe the case of a 60-year old immunocompetent woman who developed acute back pain followed by rapidly ascending flaccid tetraparesis, a C6 sensory level, and sphincter dysfunction within 8 h. Acyclovir and steroids were started on day 2 and herpes simplex virus type 2 (HSV-2 was confirmed by polymerase chain reaction in cerebrospinal fluid. Magnetic resonance imaging revealed a bilateral anterior horn tractopathy expanding from C2 to T2 and cervicothoracic cord swelling. Screening for paraneoplastic antibodies and cancer was negative. Neurophysiology aided in the work-up by corroborating root involvement. Recovery was poor despite early initiation of antiviral treatment, adjuvant anti-inflammatory therapy, and neurorehabilitation efforts. The clinical course, bilateral affection of the anterior horns, and early focal atrophy on follow-up magnetic resonance imaging take a necrotizing myelitis potentially caused by intraneuronal spread of the virus into consideration. Further, we summarize the literature on classical and rare presentations of HSV-2 myeloradiculitis in non-immunocompromised patients and raise awareness for the limited treatment options for a condition with frequent devastating outcome.

  7. Virologic and immunologic evidence of multifocal genital herpes simplex virus 2 infection.

    Science.gov (United States)

    Johnston, Christine; Zhu, Jia; Jing, Lichen; Laing, Kerry J; McClurkan, Christopher M; Klock, Alexis; Diem, Kurt; Jin, Lei; Stanaway, Jeffrey; Tronstein, Elizabeth; Kwok, William W; Huang, Meei-Li; Selke, Stacy; Fong, Youyi; Magaret, Amalia; Koelle, David M; Wald, Anna; Corey, Lawrence

    2014-05-01

    Genital herpes simplex virus (HSV) reactivation is thought to be anatomically and temporally localized, coincident with limited ganglionic infection. Short, subclinical shedding episodes are the most common form of HSV-2 reactivation, with host clearance mechanisms leading to rapid containment. The anatomic distribution of shedding episodes has not been characterized. To precisely define patterns of anatomic reactivation, we divided the genital tract into a 22-region grid and obtained daily swabs for 20 days from each region in 28 immunocompetent, HSV-2-seropositive persons. HSV was detected via PCR, and sites of asymptomatic HSV shedding were subjected to a biopsy procedure within 24 h. CD4(+) and CD8(+) T cells were quantified by immunofluorescence, and HSV-specific CD4(+) T cells were identified by intracellular cytokine cytometry. HSV was detected in 868 (7%) of 11,603 genital swabs at a median of 12 sites per person (range, 0 to 22). Bilateral HSV detection occurred on 83 (67%) days with shedding, and the median quantity of virus detected/day was associated with the number of sites positive (P sacral ganglia. In addition, genital biopsy specimens from sites of asymptomatic HSV shedding have increased numbers of CD8(+) T cells compared to control tissue, and HSV-specific CD4(+) T cells are found at sites of asymptomatic shedding. These findings suggest that widespread asymptomatic genital HSV-2 shedding is associated with a targeted host immune response and contributes to chronic inflammation throughout the genital tract.

  8. Molecular detection of cytomegalovirus, herpes simplex virus 2, human papillomavirus 16-18 in Turkish pregnants

    Directory of Open Access Journals (Sweden)

    Bedia Dinc

    Full Text Available OBJECTIVE: Human cytomegalovirus (CMV is the most common cause of viral intrauterine infections in the world. Herpes simplex virus type 2 (HSV-2 and human papillomavirus (HPV are the main agents of viral sexually transmitted diseases, which cause genital ulcers and genital warts, respectively. HPV infection has been linked to the majority of the anogenital malignancies. The aim of this study was to detect the existence of CMV, HSV-2 and HPV type 16-18 in Turkish pregnants by using sensitive molecular assays. METHODS: One hundred thirty-four women (18-41 years old; mean age ± SD: 27 ± 8 applied to outpatient clinic of Obstetrics and Gynecology, in between 18th - 22nd weeks of their pregnancy and a control group of 99 healthy women (15-39 years old; mean age ± SD: 24 ± 8 were included in the study. Cervical smear samples were used for DNA extraction. CMV, HSV-2 and HPV 16-18 detections were carried out by real time PCR and in house PCR method, respectively. RESULTS: Three patients (3/134; 2.2% were found to be positive for each HPV and HSV-2. Dual infection with HPV and HSV was found in just one patient. HPV 18 was detected in all positive samples. CMV was found to be positive in two patients (2/134; 1.4 %. CONCLUSION: HPV, HSV and CMV must be screened due to high prevalence of these viruses in pregnants by using sensitive molecular methods.

  9. Molecular detection of cytomegalovirus, herpes simplex virus 2, human papillomavirus 16-18 in Turkish pregnants.

    Science.gov (United States)

    Dinc, Bedia; Bozdayi, Gulendam; Biri, Aydan; Kalkanci, Ayse; Dogan, Bora; Bozkurt, Nuray; Rota, Seyyal

    2010-01-01

    Human cytomegalovirus (CMV) is the most common cause of viral intrauterine infections in the world. Herpes simplex virus type 2 (HSV-2) and human papillomavirus (HPV) are the main agents of viral sexually transmitted diseases, which cause genital ulcers and genital warts, respectively. HPV infection has been linked to the majority of the anogenital malignancies. The aim of this study was to detect the existence of CMV, HSV-2 and HPV type 16-18 in Turkish pregnants by using sensitive molecular assays. One hundred thirty-four women (18-41 years old; mean age ± SD: 27 ± 8) applied to outpatient clinic of Obstetrics and Gynecology, in between 18th - 22nd weeks of their pregnancy and a control group of 99 healthy women (15-39 years old; mean age ± SD: 24 ± 8) were included in the study. Cervical smear samples were used for DNA extraction. CMV, HSV-2 and HPV 16-18 detections were carried out by real time PCR and in house PCR method, respectively. Three patients (3/134; 2.2%) were found to be positive for each HPV and HSV-2. Dual infection with HPV and HSV was found in just one patient. HPV 18 was detected in all positive samples. CMV was found to be positive in two patients (2/134; 1.4 %). HPV, HSV and CMV must be screened due to high prevalence of these viruses in pregnants by using sensitive molecular methods.

  10. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2

    Directory of Open Access Journals (Sweden)

    Little Morgan R

    2010-06-01

    Full Text Available Abstract Background Using a murine model of herpes simplex virus (HSV-1 encephalitis, our laboratory has determined that induction of proinflammatory mediators in response to viral infection is largely mediated through a Toll-like receptor-2 (TLR2-dependent mechanism. Published studies have shown that, like other inflammatory mediators, reactive oxygen species (ROS are generated during viral brain infection. It is increasingly clear that ROS are responsible for facilitating secondary tissue damage during central nervous system infection and may contribute to neurotoxicity associated with herpes encephalitis. Methods Purified microglial cell and mixed neural cell cultures were prepared from C57B/6 and TLR2-/- mice. Intracellular ROS production in cultured murine microglia was measured via 2', 7'-Dichlorofluorescin diacetate (DCFH-DA oxidation. An assay for 8-isoprostane, a marker of lipid peroxidation, was utilized to measure free radical-associated cellular damage. Mixed neural cultures obtained from β-actin promoter-luciferase transgenic mice were used to detect neurotoxicity induced by HSV-infected microglia. Results Stimulation with HSV-1 elevated intracellular ROS in wild-type microglial cell cultures, while TLR2-/- microglia displayed delayed and attenuated ROS production following viral infection. HSV-infected TLR2-/- microglia produced less neuronal oxidative damage to mixed neural cell cultures in comparison to HSV-infected wild-type microglia. Further, HSV-infected TLR2-/- microglia were found to be less cytotoxic to cultured neurons compared to HSV-infected wild-type microglia. These effects were associated with decreased activation of p38 MAPK and p42/p44 ERK in TLR2-/- mice. Conclusions These studies demonstrate the importance of microglial cell TLR2 in inducing oxidative stress and neuronal damage in response to viral infection.

  11. Directed Selection of Recombinant Human Monoclonal Antibodies to Herpes Simplex Virus Glycoproteins from Phage Display Libraries

    Science.gov (United States)

    Sanna, Pietro Paolo; Williamson, R. Anthony; de Logu, Alessandro; Bloom, Floyd E.; Burton, Dennis R.

    1995-07-01

    Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.

  12. Iguana Virus, a Herpes-Like Virus Isolated from Cultured Cells of a Lizard, Iguana iguana

    Science.gov (United States)

    Clark, H. Fred; Karzon, David T.

    1972-01-01

    An agent cytopathic for Terrapene and Iguana cell cultures was isolated from spontaneously degenerating cell cultures prepared from a green iguana (Iguana iguana). The agent, designated iguana virus, caused a cytopathic effect (CPE) of a giant cell type, with eosinophilic inclusions commonly observed within giant cell nuclei. Incubation temperature had a marked effect on CPE and on virus release from infected cells. Within the range of 23 to 36 C, low temperatures favored CPE characterized by cytolysis and small giant cell formation, and significant virus release was observed. At warmer temperatures, a purely syncytial type of CPE and total absence of released virus were noted. A unique type of hexagonal eosinophilic cytoplasmic inclusion was observed within syncytia of infected Terrapene cell cultures incubated at 36 C. In vivo studies revealed no evidence of pathogenicity of iguana virus for suckling mice, embryonated hen's eggs, or several species of reptiles and amphibians. Inoculation of iguana virus into young iguanas consistently caused infection that was “unmasked” only when cell cultures were prepared directly from the infected animal. Filtration studies revealed a virion size of >100 nm and Iguana virus is ether-sensitive and, as presumptively indicated by studies of inhibition by bromodeoxyuridine, possesses a deoxyribonucleic type of nucleic acid. The virus characteristics described, as well as electron microscopy observations described in a separate report, indicate that iguana virus is a member of the herpesvirus group. Images PMID:4344303

  13. HERPES VIRUS CONTAMINATION OF DONOR’S TISSUE AS A POTENTIAL ETIOLOGY OF CORNEAL GRAFT DISEASE AFTER PENETRATING KERATOPLASTY

    Directory of Open Access Journals (Sweden)

    E. A. Mironkova

    2012-01-01

    Full Text Available We present the study of outcomes of PCR-diagnostics directed on detection of DNA of herpes-family viruses in donor’s corneal tissues taken during penetrating keratoplasty (PK. In total, there were 46 patients, who under- went PKs. They were followed up from 14 days till 12 months. PCR-research of fragments of a donor cornea re- vealed existence of DNA in 21.7%. The retrospective analysis showed that in the presence of herpes-virus DNA in donor’s cornea is the risk factor of postoperative complications development and increases the rejection rate 2–3 times, reaching 100% – 70%. Thus the high risk of graft failures remains associated not only with the system immunosupressive therapy which is usually considered as the precondition of activization of chronic infections, but also in the absence of that. It gives the ground to conclude that preoperative preparation of a donor material, especially «fresh» corneas, should include expanded PCR-diagnostics on herpes-viruses and its obligatory dis- carding in cases of positive tests. 

  14. Differential stability of host mRNAs in Friend erythroleukemia cells infected with herpes simplex virus type 1

    International Nuclear Information System (INIS)

    Mayman, B.A.; Nishioka, Y.

    1985-01-01

    The consequences of herpes simplex virus type 1 infection on cellular macromolecules were investigated in Friend erythroleukemia cells. The patterns of protein synthesis, examined by polyacrylamide gel electrophoresis, demonstrated that by 4 h postinfection the synthesis of many host proteins, with the exception of histones, was inhibited. Examination of the steady-state level of histone H3 mRNA by molecular hybridization of total RNA to a cloned mouse histone H3 complementary DNA probe demonstrated that the ratio of histone H3 mRNA to total RNA remained unchanged for the first 4 h postinfection. In contrast, the steady-state levels of globin and actin mRNAs decreased progressively at early intervals postinfection. Studies on RNA synthesis in isolated nuclei demonstrated that the transcription of the histone H3 gene was inhibited to approximately the same extent as that of actin gene. It was concluded that the stabilization of preexisting histone H3 mRNA was responsible for the persistence of H3 mRNA and histone protein synthesis in herpes simplex virus type 1-infected Friend erythroleukemia cells. The possible mechanisms influencing the differential stability of host mRNAs during the course of productive infection with herpes simplex virus type 1 are discussed

  15. Oncolytic virotherapy in upper gastrointestinal tract cancers

    Directory of Open Access Journals (Sweden)

    Yokoda R

    2018-03-01

    Full Text Available Raquel Yokoda,1 Bolni M Nagalo,1 Mansi Arora,1 Jan B Egan,1 James M Bogenberger,1 Thomas T DeLeon,1 Yumei Zhou,1 Daniel H Ahn,1 Mitesh J Borad1–3 1Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, 2Department of Molecular Medicine, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 3Department of Oncology, Mayo Clinic Cancer Center, Phoenix, AZ, USA Abstract: Upper gastrointestinal tract malignancies are among the most challenging cancers with regard to response to treatment and prognosis. Cancers of the esophagus, stomach, pancreas, liver, and biliary tree have dismal 5-year survival, and very modest improvements in this rate have been made in recent times. Oncolytic viruses are being developed to address these malignancies, with a focus on high safety profiles and low off-target toxicities. Each viral platform has evolved to enhance oncolytic potency and the clinical response to either single-agent viral therapy or combined viral treatment with radiotherapy and chemotherapy. A panel of genomic alterations, chimeric proteins, and pseudotyped capsids are the breakthroughs for vector success. This article revisits developments for each viral platform to each tumor type, in an attempt to achieve maximum tumor selectivity. From the bench to clinical trials, the scope of this review is to highlight the beginnings of translational oncolytic virotherapy research in upper gastrointestinal tract malignancies and provide a bioengineering perspective of the most promising platforms. Keywords: oncolytic viruses, hepatopancreatobiliary, gastric cancer, pancreatic cancer, liver cancer, biliary cancer

  16. Definition of herpes simplex virus type 1 helper activities for adeno-associated virus early replication events.

    Directory of Open Access Journals (Sweden)

    Nathalie Alazard-Dany

    2009-03-01

    Full Text Available The human parvovirus Adeno-Associated Virus (AAV type 2 can only replicate in cells co-infected with a helper virus, such as Adenovirus or Herpes Simplex Virus type 1 (HSV-1; whereas, in the absence of a helper virus, it establishes a latent infection. Previous studies demonstrated that the ternary HSV-1 helicase/primase (HP complex (UL5/8/52 and the single-stranded DNA-Binding Protein (ICP8 were sufficient to induce AAV-2 replication in transfected cells. We independently showed that, in the context of a latent AAV-2 infection, the HSV-1 ICP0 protein was able to activate rep gene expression. The present study was conducted to integrate these observations and to further explore the requirement of other HSV-1 proteins during early AAV replication steps, i.e. rep gene expression and AAV DNA replication. Using a cellular model that mimics AAV latency and composite constructs coding for various sets of HSV-1 genes, we first confirmed the role of ICP0 for rep gene expression and demonstrated a synergistic effect of ICP4 and, to a lesser extent, ICP22. Conversely, ICP27 displayed an inhibitory effect. Second, our analyses showed that the effect of ICP0, ICP4, and ICP22 on rep gene expression was essential for the onset of AAV DNA replication in conjunction with the HP complex and ICP8. Third, and most importantly, we demonstrated that the HSV-1 DNA polymerase complex (UL30/UL42 was critical to enhance AAV DNA replication to a significant level in transfected cells and that its catalytic activity was involved in this process. Altogether, this work represents the first comprehensive study recapitulating the series of early events taking place during HSV-1-induced AAV replication.

  17. Role of type-specific herpes simplex virus-1 and 2 serology as a diagnostic modality in patients with clinically suspected genital herpes: A comparative study in Indian population from a tertiary care hospital.

    Science.gov (United States)

    Patwardhan, Vrushali; Bhalla, Preena

    2016-01-01

    Type-specific serology (TSS) test for herpes simplex virus (HSV) have been used as a research tool in seroepidemiological studies for some years. However, TSS as a diagnostic modality for diagnosis of current episode of genital herpes is not well documented. To measure the seroprevalence of type-specific HSV Type 1 (HSV-1) and Type 2 (HSV-2) IgG antibodies in cases provisionally diagnosed as primary and recurrent genital herpes and to evaluate the role of TSS as a diagnostic modality for diagnosis of genital herpes versus polymerase chain reaction (PCR). A cross-sectional study was performed over a period of 10 months in which 44 adult patients with clinically suspected genital herpes were recruited. An in-house glycoprotein G gene base PCR was performed directly from the genital lesion specimen for simultaneous detection and typing of HSV. TSS was performed to detect IgG antibody against HSV-1 and 2 in all patients using commercially available kits, and the results were compared. Seroprevalence of HSV-1 IgG was 43% among primary and 65% among recurrent genital herpes cases (P = 0.22). Whereas that of HSV-2 IgG was found to be 14% and 83% in respective patient group (P = 0.0001). When compared to PCR results HSV-1 IgG detection in both primary and recurrent genital herpes diagnosis had poor specificity, positive predictive value, and sensitivity. Whereas, HSV-2 serology had a sensitivity of 13.33% and 73.33% in primary and recurrent genital herpes and specificity of 83.33% and 85.71%, respectively. HSV-2 IgG detection helps in strengthening the diagnosis of recurrent HSV-2 disease, whereas the absence of HSV-2 IgG antibody helps in excluding genital herpes as a likely cause of recurrent genital ulceration. However, detection of HSV-1 IgG antibody may not be useful for diagnosis in patients of genital ulcer disease.

  18. Inhibition of herpes simplex virus infection by lactoferrin is dependent on interference with the virus binding to glycosaminoglycans

    International Nuclear Information System (INIS)

    Marchetti, Magda; Trybala, Edward; Superti, Fabiana; Johansson, Maria; Bergstroem, Tomas

    2004-01-01

    Previous reports have indicated that lactoferrin inhibits herpes simplex virus (HSV) infection during the very early phases of the viral replicative cycle. In the present work we investigated the mechanism of the antiviral activity of lactoferrin in mutant glycosaminoglycan (GAG)-deficient cells. Bovine lactoferrin (BLf) was a strong inhibitor of HSV-1 infection in cells expressing either heparan sulfate (HS) or chondroitin sulfate (CS) or both, but was ineffective or less efficient in GAG-deficient cells or in cells treated with GAG-degrading enzymes. In contrast to wild-type HSV-1, virus mutants devoid of glycoprotein C (gC) were significantly less inhibited by lactoferrin in GAG-expressing cells, indicating that lactoferrin interfered with the binding of viral gC to cell surface HS and/or CS. Finally, we demonstrated that lactoferrin bound directly to both HS and CS isolated from surfaces of the studied cells, as well as to commercial preparations of GAG chains. The results support the hypothesis that the inhibition of HSV-1 infectivity by lactoferrin is dependent on its interaction with cell surface GAG chains of HS and CS

  19. Genital herpes simplex.

    Science.gov (United States)

    Tummon, I S; Dudley, D K; Walters, J H

    1981-07-01

    Genital herpes is a sexually transmitted disease caused by the herpes simplex virus. Following the initial infection the virus becomes latent in the sacral ganglia. Approximately 80% of patients are then subject to milder but unpredictable recurrences and may shed the virus even when they are asymptomatic. The disorder causes concern because genital herpes in the mother can result in rare but catastrophic neonatal infection and because of a possible association between genital herpes and cancer of the cervix. No effective treatment is as yet available. Weekly monitoring for virus by cervical culture from 32 weeks' gestation is recommended for women with a history of genital herpes and for those whose sexual partner has such a history.

  20. Epstein-Barr virus and herpes simplex infection assessment in schizophrenia and bipolar patients compared to healthy subjects

    Directory of Open Access Journals (Sweden)

    Amir Asoode

    2016-05-01

    Full Text Available Background and Aim: Some viruses (including herpes viruses due to  neurotropic properties and latency  are considered as a possible factor in many central nervous system disorders, including schizophrenia and bipolar disorder. The aim of the current study was to assess the level of IgG antibodies against Herpes Simplex virus (HSV and Epstein-Barr virus (EBV in these diseases. Materials and Methods: In this case-control study, a total of 92 serum samples including those of 46  patients admitted to Iran Psychiatric Hospital and 46 samples of the healthy personnel of Tehran University of Medical Sciences, as a control group, were assessed. The level of IgG antibodies against HSV 1 & 2 and EBV were tested using ELISA kits and  the presence or absence of EBV genome (active infection was examined by Real-time PCR.  Finally, the obtained. Data were analyzed by means of IBM SPSS( V:22 software using Chi square test and T- test. Results: Prevalence of HSV 1 & 2 antibodies in patients with schizophrenia and bipolar disorder (case group. and healthy individuals (control group. were 80/4% and 82/6% ,respectively. The results showed no significant difference in HSV 1 & 2 antibody regarding P value (P= 0.79. Prevalence of EBV antibodies in patients with schizophrenia and bipolar disorder and healthy controls were 100% and 89/1%, respectively. The results showed significant differences between the two groups in terms of anti-EBV antibody titers with P value of  0.02. Besides,  in order to detect the genome of EBV virus, Real-time PCR was u sedon 87 samples with positive EBV antibodies in which no EBV genome was detected. Conclusion: The findings showed a significant association between EBV infection with schizophrenia and bipolar disorder, but there was no significant association between herpes simplex viruses with the mentioned diseases.

  1. Diagnosis of Herpes Simplex Encephalitis by ELISA Using Antipeptide Antibodies Against Type-Common Epitopes of Glycoprotein B of Herpes Simplex Viruses.

    Science.gov (United States)

    Bhullar, Shradha S; Chandak, Nitin H; Baheti, Neeraj N; Purohit, Hemant J; Taori, Girdhar M; Daginawala, Hatim F; Kashyap, Rajpal S

    2016-01-01

    Herpes simplex encephalitis (HSE) represents one of the most severe infectious diseases of the central nervous system (CNS). As effective antiviral drugs are available, an early, rapid, and reliable diagnosis has become important. The objective of this article was to develop a sensitive ELISA protocol for herpes simplex viruses (HSV) antigen detection and quantitation by assessing the usefulness of antipeptide antibodies against potential peptides of HSV glycoprotein B (gB). A total of 180 cerebrospinal fluid (CSF) samples of HSE and non-HSE patients were analyzed using a panel of antipeptide antibodies against synthetic peptides of HSV glycoprotein gB. The cases of confirmed and suspected HSE showed 80% and 51% positivity for antipeptide against synthetic peptide QLHDLRF and 77% and 53% positivity for antipeptide against synthetic peptide MKALYPLTT, respectively for the detection of HSV antigen in CSF. The concentration of HSV antigen was found to be higher in confirmed HSE as compared to suspected HSE group and the viral load correlated well with antigen concentration obtained using the two antipeptides in CSF of confirmed HSE group. This is the first article describing the use of antibodies obtained against synthetic peptides derived from HSV in diagnostics of HSE using patients' CSF samples.

  2. Macrophages and cytokines in the early defence against herpes simplex virus

    Directory of Open Access Journals (Sweden)

    Ellermann-Eriksen Svend

    2005-08-01

    Full Text Available Abstract Herpes simplex virus (HSV type 1 and 2 are old viruses, with a history of evolution shared with humans. Thus, it is generally well-adapted viruses, infecting many of us without doing much harm, and with the capacity to hide in our neurons for life. In rare situations, however, the primary infection becomes generalized or involves the brain. Normally, the primary HSV infection is asymptomatic, and a crucial element in the early restriction of virus replication and thus avoidance of symptoms from the infection is the concerted action of different arms of the innate immune response. An early and light struggle inhibiting some HSV replication will spare the host from the real war against huge amounts of virus later in infection. As far as such a war will jeopardize the life of the host, it will be in both interests, including the virus, to settle the conflict amicably. Some important weapons of the unspecific defence and the early strikes and beginning battle during the first days of a HSV infection are discussed in this review. Generally, macrophages are orchestrating a multitude of anti-herpetic actions during the first hours of the attack. In a first wave of responses, cytokines, primarily type I interferons (IFN and tumour necrosis factor are produced and exert a direct antiviral effect and activate the macrophages themselves. In the next wave, interleukin (IL-12 together with the above and other cytokines induce production of IFN-γ in mainly NK cells. Many positive feed-back mechanisms and synergistic interactions intensify these systems and give rise to heavy antiviral weapons such as reactive oxygen species and nitric oxide. This results in the generation of an alliance against the viral enemy. However, these heavy weapons have to be controlled to avoid too much harm to the host. By IL-4 and others, these reactions are hampered, but they are still allowed in foci of HSV replication, thus focusing the activity to only relevant sites

  3. Type-specific identification of anogenital herpes simplex virus infections by use of a commercially available nucleic acid amplification test.

    Science.gov (United States)

    Van Der Pol, Barbara; Warren, Terri; Taylor, Stephanie N; Martens, Mark; Jerome, Keith R; Mena, Leandro; Lebed, Joel; Ginde, Savita; Fine, Paul; Hook, Edward W

    2012-11-01

    Herpes infections are among the most common sexually transmitted infections (STI), but diagnostic methods for genital herpes have not kept pace with the movement toward molecular testing. Here, we describe an FDA-approved molecular assay that identifies and types herpes simplex virus (HSV) infections for use in routine clinical settings. Paired samples from anogenital lesions were tested using the BD ProbeTec HSV Q(x) (HSVQ(x)) system, HSV culture and, a laboratory-developed PCR assay. Family planning, obstetrics/gynecology (OB/GYN), or sexually transmitted disease (STD) clinics in the United States served as recruitment sites. Sensitivity and specificity estimates, head-to-head comparisons, measures of agreement, and latent-class analyses were performed to provide robust estimates of performance. A total of 508 participants (174 men and 334 women) with anogenital lesions were included; 260 HSV-2 and 73 HSV-1 infections were identified. No differences in test performance based on gender, clinic type, location of the lesion, or type of lesion were observed. The sensitivity of HSV-2 detection ranged from 98.4 to 100% depending on the analytical approach, while the specificity ranged from 80.6%, compared to the less sensitive culture method, to 97.0%, compared to PCR. For HSV-1, the sensitivity and specificity ranges were 96.7 to 100% and 95.1 to 99.4%, respectively. This assay may improve our ability to accurately diagnose anogenital lesions due to herpes infection.

  4. Gastric and Peritoneal Involvement of Human Herpes Virus 8 Related Kaposi Sarcoma in a Patient with Acquired Immunodeficiency Syndrome

    Directory of Open Access Journals (Sweden)

    Nuno Ribeiro Ferreira

    2015-09-01

    Full Text Available Kaposi's sarcoma (KS is one of the most frequent neoplastic diseases in patients infected with human immunodeficiency virus (HIV. The authors report the case of a 40-year-old male with ascites, peripheral edema and peritoneal carcinomatosis secondary to a gastric KS related to human herpes virus type 8 (HHV-8. The patient had severe immunodeficiency, with a TCD4+ count of 86 cells/µl and newly diagnosed acquired immunodeficiency syndrome. His clinical condition rapidly deteriorated, with multiorgan failure, and he died without the possibility of initiating antiretroviral therapy or chemotherapy. To the authors’ knowledge, carcinomatosis is a rare feature in KS.

  5. Influence of exogeneous histone on DNA, RNA and protein synthesis in cells inoculated with Herpes simplex virus

    International Nuclear Information System (INIS)

    Praskov, D.; Kavaklova, L.; Todorov, S.; Tsilka, S.; Petrova, S.

    1976-01-01

    The influence of exogeneous total histone from nucleated red cells on the incorporation of basal DNA and RNA precursors and proteins in FL cells inoculated with serotype I herpes simplex virus was followed up during the infectious process. In comparison with the purely viral infection, in the presence of exogeneous histone, there was repression in the incorporation of all three labelled precursors: 3 H-thymidine, 3 H-uridine and 14 C-leucine. This repression correlates with as high as 90% decrease in infectious virus yield. (author)

  6. Time-resolved Global and Chromatin Proteomics during Herpes Simplex Virus Type 1 (HSV-1) Infection.

    Science.gov (United States)

    Kulej, Katarzyna; Avgousti, Daphne C; Sidoli, Simone; Herrmann, Christin; Della Fera, Ashley N; Kim, Eui Tae; Garcia, Benjamin A; Weitzman, Matthew D

    2017-04-01

    Herpes simplex virus (HSV-1) lytic infection results in global changes to the host cell proteome and the proteins associated with host chromatin. We present a system level characterization of proteome dynamics during infection by performing a multi-dimensional analysis during HSV-1 lytic infection of human foreskin fibroblast (HFF) cells. Our study includes identification and quantification of the host and viral proteomes, phosphoproteomes, chromatin bound proteomes and post-translational modifications (PTMs) on cellular histones during infection. We analyzed proteomes across six time points of virus infection (0, 3, 6, 9, 12 and 15 h post-infection) and clustered trends in abundance using fuzzy c-means. Globally, we accurately quantified more than 4000 proteins, 200 differently modified histone peptides and 9000 phosphorylation sites on cellular proteins. In addition, we identified 67 viral proteins and quantified 571 phosphorylation events (465 with high confidence site localization) on viral proteins, which is currently the most comprehensive map of HSV-1 phosphoproteome. We investigated chromatin bound proteins by proteomic analysis of the high-salt chromatin fraction and identified 510 proteins that were significantly different in abundance during infection. We found 53 histone marks significantly regulated during virus infection, including a steady increase of histone H3 acetylation (H3K9ac and H3K14ac). Our data provide a resource of unprecedented depth for human and viral proteome dynamics during infection. Collectively, our results indicate that the proteome composition of the chromatin of HFF cells is highly affected during HSV-1 infection, and that phosphorylation events are abundant on viral proteins. We propose that our epi-proteomics approach will prove to be important in the characterization of other model infectious systems that involve changes to chromatin composition. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Reliable Detection of Herpes Simplex Virus Sequence Variation by High-Throughput Resequencing.

    Science.gov (United States)

    Morse, Alison M; Calabro, Kaitlyn R; Fear, Justin M; Bloom, David C; McIntyre, Lauren M

    2017-08-16

    High-throughput sequencing (HTS) has resulted in data for a number of herpes simplex virus (HSV) laboratory strains and clinical isolates. The knowledge of these sequences has been critical for investigating viral pathogenicity. However, the assembly of complete herpesviral genomes, including HSV, is complicated due to the existence of large repeat regions and arrays of smaller reiterated sequences that are commonly found in these genomes. In addition, the inherent genetic variation in populations of isolates for viruses and other microorganisms presents an additional challenge to many existing HTS sequence assembly pipelines. Here, we evaluate two approaches for the identification of genetic variants in HSV1 strains using Illumina short read sequencing data. The first, a reference-based approach, identifies variants from reads aligned to a reference sequence and the second, a de novo assembly approach, identifies variants from reads aligned to de novo assembled consensus sequences. Of critical importance for both approaches is the reduction in the number of low complexity regions through the construction of a non-redundant reference genome. We compared variants identified in the two methods. Our results indicate that approximately 85% of variants are identified regardless of the approach. The reference-based approach to variant discovery captures an additional 15% representing variants divergent from the HSV1 reference possibly due to viral passage. Reference-based approaches are significantly less labor-intensive and identify variants across the genome where de novo assembly-based approaches are limited to regions where contigs have been successfully assembled. In addition, regions of poor quality assembly can lead to false variant identification in de novo consensus sequences. For viruses with a well-assembled reference genome, a reference-based approach is recommended.

  8. Inhibition of MHC class I is a virulence factor in herpes simplex virus infection of mice.

    Directory of Open Access Journals (Sweden)

    Mark T Orr

    2005-09-01

    Full Text Available Herpes simplex virus (HSV has a number of genes devoted to immune evasion. One such gene, ICP47, binds to the transporter associated with antigen presentation (TAP 1/2 thereby preventing transport of viral peptides into the endoplasmic reticulum, loading of peptides onto nascent major histocompatibility complex (MHC class I molecules, and presentation of peptides to CD8 T cells. However, ICP47 binds poorly to murine TAP1/2 and so inhibits antigen presentation by MHC class I in mice much less efficiently than in humans, limiting the utility of murine models to address the importance of MHC class I inhibition in HSV immunopathogenesis. To address this limitation, we generated recombinant HSVs that efficiently inhibit antigen presentation by murine MHC class I. These recombinant viruses prevented cytotoxic T lymphocyte killing of infected cells in vitro, replicated to higher titers in the central nervous system, and induced paralysis more frequently than control HSV. This increase in virulence was due to inhibition of antigen presentation to CD8 T cells, since these differences were not evident in MHC class I-deficient mice or in mice in which CD8 T cells were depleted. Inhibition of MHC class I by the recombinant viruses did not impair the induction of the HSV-specific CD8 T-cell response, indicating that cross-presentation is the principal mechanism by which HSV-specific CD8 T cells are induced. This inhibition in turn facilitates greater viral entry, replication, and/or survival in the central nervous system, leading to an increased incidence of paralysis.

  9. A subset of herpes simplex virus replication genes induces DNA amplification within the host cell genome

    Energy Technology Data Exchange (ETDEWEB)

    Heilbronn, R.; zur Hausen, H. (Deutsches Krebsforschungszentrum, Heidelberg (West Germany))

    1989-09-01

    Herpes simplex virus (HSV) induces DNA amplification of target genes within the host cell chromosome. To characterize the HSV genes that mediate the amplification effect, combinations of cloned DNA fragments covering the entire HSV genome were transiently transfected into simian virus 40 (SV40)-transformed hamster cells. This led to amplification of the integrated SV40 DNA sequences to a degree comparable to that observed after transfection of intact virion DNA. Transfection of combinations of subclones and of human cytomegalovirus immediate-early promoter-driven expression constructs for individual open reading frames led to the identification of sic HSV genes which together were necessary and sufficient for the induction of DNA amplification: UL30 (DNA polymerase), UL29 (major DNA-binding protein), UL5, UL8, UL42, and UL52. All of these genes encode proteins necessary for HSV DNA replication. However, an additional gene coding for an HSV origin-binding protein (UL9) was required for origin-dependent HSV DNA replication but was dispensable for SV40 DNA amplification. The results show that a subset of HSV replication genes is sufficient for the induction of DNA amplification. This opens the possibility that HSV expresses functions sufficient for DNA amplification but separate from those responsible for lytic viral growth. HSV infection may thereby induce DNA amplification within the host cell genome without killing the host by lytic viral growth. This may lead to persistence of a cell with a new genetic phenotype, which would have implications for the pathogenicity of the virus in vivo.

  10. The HDAC Inhibitors Scriptaid and LBH589 Combined with the Oncolytic Virus Delta24-RGD Exert Enhanced Anti-Tumor Efficacy in Patient-Derived Glioblastoma Cells.

    Directory of Open Access Journals (Sweden)

    Lotte M E Berghauser Pont

    Full Text Available A phase I/II trial for glioblastoma with the oncolytic adenovirus Delta24-RGD was recently completed. Delta24-RGD conditionally replicates in cells with a disrupted retinoblastoma-pathway and enters cells via αvβ3/5 integrins. Glioblastomas are differentially sensitive to Delta24-RGD. HDAC inhibitors (HDACi affect integrins and share common cell death pathways with Delta24-RGD. We studied the combination treatment effects of HDACi and Delta24-RGD in patient-derived glioblastoma stem-like cells (GSC, and we determined the most effective HDACi.SAHA, Valproic Acid, Scriptaid, MS275 and LBH589 were combined with Delta24-RGD in fourteen distinct GSCs. Synergy was determined by Chou Talalay method. Viral infection and replication were assessed using luciferase and GFP encoding vectors and hexon-titration assays. Coxsackie adenovirus receptor and αvβ3 integrin levels were determined by flow cytometry. Oncolysis and mechanisms of cell death were studied by viability, caspase-3/7, LDH and LC3B/p62, phospho-p70S6K. Toxicity was studied on normal human astrocytes. MGMT promotor methylation status, TCGA classification, Rb-pathway and integrin gene expression levels were assessed as markers of responsiveness.Scriptaid and LBH589 acted synergistically with Delta24-RGD in approximately 50% of the GSCs. Both drugs moderately increased αvβ3 integrin levels and viral infection in responding but not in non-responding GSCs. LBH589 moderately increased late viral gene expression, however, virus titration revealed diminished viral progeny production by both HDACi, Scriptaid augmented caspase-3/7 activity, LC3B conversion, p62 and phospho-p70S6K consumption, as well as LDH levels. LBH589 increased LDH and phospho-p70S6K consumption. Responsiveness correlated with expression of various Rb-pathway genes and integrins. Combination treatments induced limited toxicity to human astrocytes.LBH589 and Scriptaid combined with Delta24-RGD revealed synergistic anti

  11. Role of neutralizing antibodies and T-cells in pathogenesis of herpes simplex virus infection in congenitally athymic mice.

    Science.gov (United States)

    Kapoor, A K; Buckmaster, A; Nash, A A; Field, H J; Wildy, P

    1982-11-01

    Congenitally athymic nude mice were infected with 10(4) p.f.u. herpes simplex type 1 (strain SC16). Following the passive transfer of neutralizing monoclonal antibodies (AP7, AP8 and AP12) it was observed that AP7 alone reduced the virus infectivity in the nervous system; AP8 and AP12 failed to protect mice probably due to poor in vivo binding to the neutralization site on the virus. Latent ganglionic infection could be established in nude mice following adoptive transfer of optimum number (2 x 10(7) cells/mouse) of immune lymph node cells from day 7 herpes virus-infected hairy immunocompetent donor mice. Moreover, in some of the immune lymph node cell protected nudes, latency could be maintained even in complete absence of neutralizing antibodies. Results of ear-ablation experiments revealed that removal of primary source of infection after day 5 of infection reduced the amount of virus in the ganglia and spinal cord. Acute neurological infection was not detected following transfer of protective anti-gp-D neutralizing antibody (LP2) in combination with removal of infected pinna. These data suggest that continuous seeding of virus occurs in related ganglia via the axonal route from infected ear pinna. It appears that local T-cell-mediated immune mechanisms are involved in maintenance of latency.

  12. Comparison of indirect hemagglutination and 51Chromium release tests for detection of herpes simplex virus types 1 and 2 antibodies in patients with recurrent herpes infections

    International Nuclear Information System (INIS)

    Kesavalu, L.; Seth, P.

    1980-01-01

    Indirect hemagglutination and 51 Cr release tests (IHAT and 51-CRT respectively) were compared in patients with recurrent herpes simplex virus (HSV) infections from whom HSV-1 or HSV-2 was isolated. Both tests were equally sensitive and specific in detecting HSV antibodies. However, IHAT was more specific in detecting homologous HSV antibody response in patients with recurrent HSV-2 infections. Past infections with HSV-1 in the patients with dual infections were detected by determining HSV-type specific antibodies by inhibition of IHAT. Cross absorption studies showed that the antibody reactivity measured by the two tests was qualitatively and quantitatively different. Nevertheless, IHAT has been found to be more appropriate test for seroepidemiologic studies of HSV-2 infections because of its specificity, rapidity and less cost, whereas, 51-CRT appears to measure antibodies against recent and more predominant type of infecting HSV. (Author)

  13. Vesicular stomatitis virus modified with single chain IL-23 exhibits oncolytic activity against tumor cells in vitro and in vivo

    OpenAIRE

    Reiss, Carol Shoshkes

    2010-01-01

    James M Miller1, Sarah McNulty Bidula1,5, Troels Mygind Jensen1,6, Carol Shoshkes Reiss1,2,3,41Department of Biology, New York University, New York, NY, USA; 2Center for Neural Science, NYU; 3NYU Cancer Institute; 4Departments of Microbiology, NYU School of Medicine and Mt Sinai School of Medicine, New York, NY, USA; 5Present address Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA,USA 6Present address: Univercity of Copenhagen, Copenhagen, DenmarkAbstract: Viruse...

  14. High level expression and secretion of truncated forms of herpes simplex virus type I and type 2 glycoprotein D by the methylotrophic yeast Pichia pastoris

    NARCIS (Netherlands)

    van Kooij, A; Middel, J; Jakab, F; Elfferich, P; Koedijk, DGAM; Feijlbrief, M; Scheffer, AJ; Degener, JE; The, TH; Scheek, RM; Welling, GW; Welling-Wester, S

    Herpes simplex virus type I and 2 (HSV-1 and -2) glycoproteins D (gD-1 and gD-2) play a role in the entry of the virus into the host cell. Availability of substantial amounts of these proteins, or large fragments thereof. will he needed to allow studies at the molecular level. We studied the potency

  15. Development and evaluation of the quantitative real-time PCR assay in detection and typing of herpes simplex virus in swab specimens from patients with genital herpes.

    Science.gov (United States)

    Liu, Junlian; Yi, Yong; Chen, Wei; Si, Shaoyan; Yin, Mengmeng; Jin, Hua; Liu, Jianjun; Zhou, Jinlian; Zhang, Jianzhong

    2015-01-01

    Genital herpes (GH), which is caused mainly by herpes simplex virus (HSV)-2 and HSV-1, remains a worldwide problem. Laboratory confirmation of GH is important, particularly as there are other conditions which present similarly to GH, while atypical presentations of GH also occur. Currently, virus culture is the classical method for diagnosis of GH, but it is time consuming and with low sensitivity. A major advance for diagnosis of GH is to use Real-time polymerase chain reaction (PCR). In this study, to evaluate the significance of the real-time PCR method in diagnosis and typing of genital HSV, the primers and probes targeted at HSV-1 DNA polymerase gene and HSV-2 glycoprotein D gene fraction were designed and applied to amplify DNA from HSV-1 or HSV-2 by employing the real-time PCR technique. Then the PCR reaction system was optimized and evaluated. HSV in swab specimens from patients with genital herpes was detected by real-time PCR. The real-time PCR assay showed good specificity for detection and typing of HSV, with good linear range (5×10(2)~5×10(8) copies/ml, r=0.997), a sensitivity of 5×10(2) copies/ml, and good reproducibility (intra-assay coefficients of variation 2.29% and inter-assay coefficients of variation 4.76%). 186 swab specimens were tested for HSV by real-time PCR, and the positive rate was 23.7% (44/186). Among the 44 positive specimens, 8 (18.2%) were positive for HSV-1 with a viral load of 8.5546×10(6) copies/ml and 36 (81.2%) were positive for HSV-2 with a viral load of 1.9861×10(6) copies/ml. It is concluded that the real-time PCR is a specific, sensitive and rapid method for the detection and typing of HSV, which can be widely used in clinical diagnosis of GH.

  16. Herpes - resources

    Science.gov (United States)

    Genital herpes - resources; Resources - genital herpes ... following organizations are good resources for information on genital herpes : March of Dimes -- www.marchofdimes.org/complications/sexually- ...

  17. Disseminated cutaneous Herpes Simplex Virus-1 in a woman with rheumatoid arthritis receiving Infliximab: A case report

    Directory of Open Access Journals (Sweden)

    Justice Elizabeth

    2008-08-01

    Full Text Available Abstract Introduction We present the case of a 49-year-old woman with a seronegative rheumatoid arthritis who developed pustular psoriasis whilst on etanercept and subsequently developed disseminated herpes simplex on infliximab. Case presentation Our patient presented with an inflammatory arthritis which failed to respond to both methotrexate and leflunomide, and sulphasalazine treatment led to side effects. She was started on etanercept but after 8 months of treatment developed scaly pustular lesions on her palms and soles typical of pustular psoriasis. Following the discontinuation of etanercept, our patient required high doses of oral prednisolone to control her inflammatory arthritis. A second biologic agent, infliximab, was introduced in addition to low-dose methotrexate and 15 mg of oral prednisolone. However, after just 3 infusions of infliximab, she was admitted to hospital with a fever, widespread itchy vesicular rash and worsening inflammatory arthritis. Fluid from skin vesicles examined by polymerase chain reaction showed Herpes Simplex Virus type 1. Blood cultures were negative and her chest X-ray was normal. Her infliximab was discontinued and she was started on acyclovir, 800 mg five times daily for 2 weeks. She made a good recovery with improvement in her skin within 48 hours. She continued for 2 months on a prophylactic dose of 400 mg bd. Her rheumatoid arthritis became increasingly active and a decision was made to introduce adalimumab alongside acyclovir. Acyclovir prophylaxis has been continued but the dose tapered so that she is taking only 200 mg of acyclovir on alternate days. There has been no recurrence of Herpes Simplex Virus lesions despite increasing adalimumab to 40 mg weekly 3 months after starting treatment. Conclusion We believe this to be the first reported case of widespread cutaneous Herpes Simplex Virus type 1 infection following treatment with infliximab. We discuss the clinical manifestations of Herpes

  18. Clinical courses of herpes simplex virus-induced urethritis in men.

    Science.gov (United States)

    Ito, Shin; Yasuda, Mitsuru; Kondo, Hiromi; Yamada, Yoshiteru; Nakane, Keita; Mizutani, Kosuke; Tsuchiya, Tomohiro; Yokoi, Shigeaki; Nakano, Masahiro; Deguchi, Takashi

    2017-10-01

    We retrieved clinical data of 13 men having herpes simplex virus (HSV)-induced non-gonococcal urethritis (NGU) without visible herpetic lesions. They visited a clinic in Sendai, Japan, between April 2013 and December 2015. All the men complained of dysuria. Meatitis was observed in 9 of the 13 men. Mononuclear cells were observed in the urethral smears from 9 men. The 13 men were treated with azithromycin or sitafloxacin regimen. First-voided urine (FVU) specimens became negative for HSV in 8 of the 10 men who returned to the clinic after antibacterial treatment, and urethritis symptoms were alleviated. However, herpetic lesions were observed at the follow-up visits in 3 men, and 2 of them were still positive for HSV in their FVU. HSV could be a cause of acute urethritis without causing visible herpetic lesions. The shedding of HSV from the urethra would spontaneously cease with alleviation of urethritis symptoms in most cases of HSV-induced NGU without antiviral therapy. However, new herpetic lesions could be developed in some cases. Early antiviral therapy is beneficial for patients with HSV infections. The development of meatitis and the mononuclear cell response in the urethral smear could be helpful to diagnose HSV-induced NGU. Therefore, we should presumptively initiate anti-HSV therapy for patients with signs and symptoms suggestive of HSV-induced NGU at their first presentation. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  19. Clinical Characteristics of Herpes Simplex Virus Urethritis Compared With Chlamydial Urethritis Among Men.

    Science.gov (United States)

    Ong, Jason J; Morton, Anna N; Henzell, Helen R; Berzins, Karen; Druce, Julian; Fairley, Christopher K; Bradshaw, Catriona S; Read, Tim Rh; Hocking, Jane S; Chen, Marcus Y

    2017-02-01

    The aim of this study was to ascertain the clinical characteristics associated with herpes simplex virus (HSV) urethritis in men and to compare those with chlamydial urethritis. We compared clinical and laboratory data from men diagnosed with polymerase chain reaction confirmed HSV urethritis with those of men with chlamydial urethritis presenting to Melbourne Sexual Health Centre between 2000 and 2015. Eighty HSV urethritis cases were identified: 55 (68%, 95% confidence interval, 58-78) were by HSV-1 and 25 (32%, 95% confidence interval, 22-42) by HSV-2. Compared with chlamydial urethritis, men with HSV urethritis were significantly more likely to report severe dysuria (20% vs 0%, P < 0.01) or constitutional symptoms (15% vs 0%, P < 0.01). Men with HSV urethritis were significantly more likely to have meatitis (62% vs 23%, P < 0.01), genital ulceration (37% vs 0%, P < 0.01), or inguinal lymphadenopathy (30% vs 0%, P < 0.01) but less likely to have urethral discharge (32% vs 69%, P < 0.01). There was no significant difference in the proportion of men who had raised (≥5) polymorphonuclear leukocytes per high-powered field between the two groups (P = 0.46). The clinical presentation of HSV urethritis in men may differ from those of chlamydial urethritis and guide testing for HSV in men presenting with non-gonococcal urethritis.

  20. Herpes simplex virus-1 evasion of CD8+ T cell accumulation contributes to viral encephalitis.

    Science.gov (United States)

    Koyanagi, Naoto; Imai, Takahiko; Shindo, Keiko; Sato, Ayuko; Fujii, Wataru; Ichinohe, Takeshi; Takemura, Naoki; Kakuta, Shigeru; Uematsu, Satoshi; Kiyono, Hiroshi; Maruzuru, Yuhei; Arii, Jun; Kato, Akihisa; Kawaguchi, Yasushi

    2017-10-02

    Herpes simplex virus-1 (HSV-1) is the most common cause of sporadic viral encephalitis, which can be lethal or result in severe neurological defects even with antiviral therapy. While HSV-1 causes encephalitis in spite of HSV-1-specific humoral and cellular immunity, the mechanism by which HSV-1 evades the immune system in the central nervous system (CNS) remains unknown. Here we describe a strategy by which HSV-1 avoids immune targeting in the CNS. The HSV-1 UL13 kinase promotes evasion of HSV-1-specific CD8+ T cell accumulation in infection sites by downregulating expression of the CD8+ T cell attractant chemokine CXCL9 in the CNS of infected mice, leading to increased HSV-1 mortality due to encephalitis. Direct injection of CXCL9 into the CNS infection site enhanced HSV-1-specific CD8+ T cell accumulation, leading to marked improvements in the survival of infected mice. This previously uncharacterized strategy for HSV-1 evasion of CD8+ T cell accumulation in the CNS has important implications for understanding the pathogenesis and clinical treatment of HSV-1 encephalitis.