WorldWideScience

Sample records for oncogenic ret-carrying transgenic

  1. c-RET molecule in malignant melanoma from oncogenic RET-carrying transgenic mice and human cell lines.

    Directory of Open Access Journals (Sweden)

    Yuichiro Ohshima

    Full Text Available Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf and Gdnf receptor alpha 1 (Gfra1 transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1 were higher than those in primary cultured normal human epithelial melanocytes (NHEM, while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma.

  2. Hepatocellular alterations and dysregulation of oncogenic pathways in the liver of transgenic mice overexpressing growth hormone.

    Science.gov (United States)

    Miquet, Johanna G; Freund, Thomas; Martinez, Carolina S; González, Lorena; Díaz, María E; Micucci, Giannina P; Zotta, Elsa; Boparai, Ravneet K; Bartke, Andrzej; Turyn, Daniel; Sotelo, Ana I

    2013-04-01

    Growth hormone (GH) overexpression throughout life in transgenic mice is associated with the development of liver tumors at old ages. The preneoplastic pathology observed in the liver of young adult GH-overexpressing mice is similar to that present in humans at high risk of hepatic cancer. To elucidate the molecular pathogenesis underlying the pro-oncogenic liver pathology induced by prolonged exposure to elevated GH levels, the activation and expression of several components of signal transduction pathways that have been implicated in hepatocellular carcinogenesis were evaluated in the liver of young adult GH-transgenic mice. In addition, males and females were analyzed in parallel in order to evaluate sexual dimorphism. Transgenic mice from both sexes exhibited hepatocyte hypertrophy with enlarged nuclear size and exacerbated hepatocellular proliferation, which were higher in males. Dysregulation of several oncogenic pathways was observed in the liver of GH-overexpressing transgenic mice. Many signaling mediators and effectors were upregulated in transgenic mice compared with normal controls, including Akt2, NFκB, GSK3β, β-catenin, cyclin D1, cyclin E, c-myc, c-jun and c-fos. The molecular alterations described did not exhibit sexual dimorphism in transgenic mice except for higher gene expression and nuclear localization of cyclin D1 in males. We conclude that prolonged exposure to GH induces in the liver alterations in signaling pathways involved in cell growth, proliferation and survival that resemble those found in many human tumors.

  3. Role of papillomavirus oncogenes in human cervical cancer: Transgenic animal studies

    Energy Technology Data Exchange (ETDEWEB)

    Griep, A.E.; Lambert, P.F. [Univ. of Wisconsin School of Medicine, Madison, WI (United States)

    1994-05-01

    Human papillomaviruses are believed to be etiologic agents for the majority of human cervical carcinoma, a common cancer that is a leading cause of death by cancer among women worldwide. In cervical carcinoma, a subset of papillomaviral genes, namely E6 and E7, are expressed. In vitro tissue culture studies indicate that HPV E6 and E7 are oncogenes, and that their oncogenicity is due in part to their capacity to inactivate cellular tumor suppressor genes. The behavior of E6 and E7 in vitro and the genetic evidence from analysis of human cancers suggest that the E6 and E7 genes play a significant role in the development of cervical cancer. This hypothesis is now being tested using animal models. In this review, we summarize our current knowledge of the oncogenicity of papillomavirus genes that has been generated through their study in transgenic mice. 82 refs., 4 figs., 1 tab.

  4. Salivary gland tumors in transgenic mice with targeted PLAG1 proto-oncogene overexpression.

    Science.gov (United States)

    Declercq, Jeroen; Van Dyck, Frederik; Braem, Caroline V; Van Valckenborgh, Isabelle C; Voz, Marianne; Wassef, Michel; Schoonjans, Luc; Van Damme, Boudewijn; Fiette, Laurence; Van de Ven, Wim J M

    2005-06-01

    Pleomorphic adenoma gene 1 (PLAG1) proto-oncogene overexpression is implicated in various human neoplasias, including salivary gland pleomorphic adenomas. To further assess the oncogenic capacity of PLAG1, two independent PLAG1 transgenic mouse strains were established, PTMS1 and PTMS2, in which activation of PLAG1 overexpression is Cre mediated. Crossbreeding of PTMS1 or PTMS2 mice with MMTV-Cre transgenic mice was done to target PLAG1 overexpression to salivary and mammary glands, in the P1-Mcre/P2-Mcre offspring. With a prevalence of 100% and 6%, respectively, P1-Mcre and P2-Mcre mice developed salivary gland tumors displaying various pleomorphic adenoma features. Moreover, histopathologic analysis of salivary glands of 1-week-old P1-Mcre mice pointed at early tumoral stages in epithelial structures. Malignant characteristics in the salivary gland tumors and frequent lung metastases were found in older tumor-bearing mice. PLAG1 overexpression was shown in all tumors, including early tumoral stages. The tumors revealed an up-regulation of the expression of two distinct, imprinted gene clusters (i.e., Igf2/H19 and Dlk1/Gtl2). With a latency period of about 1 year, 8% of the P2-Mcre mice developed mammary gland tumors displaying similar histopathologic features as the salivary gland tumors. In conclusion, our results establish the strong and apparently direct in vivo tumorigenic capacity of PLAG1 and indicate that the transgenic mice constitute a valuable model for pleomorphic salivary gland tumorigenesis and potentially for other glands as well.

  5. Induction of epithelial mesenchimal transition and vasculogenesis in the lenses of Dbl oncogene transgenic mice.

    Directory of Open Access Journals (Sweden)

    Paolo Fardin

    Full Text Available BACKGROUND: The Dbl family of proteins represents a large group of proto-oncogenes involved in cell growth regulation. The numerous domains that are present in many Dbl family proteins suggest that they act to integrate multiple inputs in complicated signaling networks involving the Rho GTPases. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders and neoplastic transformation. We generated transgenic mice introducing the cDNA of Dbl oncogene linked to the metallothionein promoter into the germ line of FVB mice and found that onco-Dbl expression in mouse lenses affected proliferation, migration and differentiation of lens epithelial cells. RESULTS: We used high density oligonucleotide microarray to define the transcriptional profile induced by Dbl in the lenses of 2 days, 2 weeks, and 6 weeks old transgenic mice. We observed modulation of genes encoding proteins promoting epithelial-mesenchymal transition (EMT, such as down-regulation of epithelial cell markers and up-regulation of fibroblast markers. Genes encoding proteins involved in the positive regulation of apoptosis were markedly down regulated while anti-apoptotic genes were strongly up-regulated. Finally, several genes encoding proteins involved in the process of angiogenesis were up-regulated. These observations were validated by histological and immunohistochemical examination of the transgenic lenses where vascularization can be readily observed. CONCLUSION: Onco-Dbl expression in mouse lens correlated with modulation of genes involved in the regulation of EMT, apoptosis and vasculogenesis leading to disruption of the lens architecture, epithelial cell proliferation, and aberrant angiogenesis. We conclude that onco-Dbl has a potentially important, previously unreported, capacity to dramatically alter epithelial cell migration, replication, polarization and differentiation and to induce vascularization of an epithelial

  6. Using a Novel Transgenic Mouse Model to Study c-Myc Oncogenic Pathway in Castration Resistance and Chemoresistance of Prostate Cancer

    Science.gov (United States)

    2015-10-01

    Oncogenic Pathway in Castration Resistance and Chemoresistance of Prostate Cancer 3 Annual Progress Report W81XWH-13-1-0162 Using a Novel...Transgenic Mouse Model to Study c-Myc Oncogenic Pathway in Castration Resistance and Chemoresistance of Prostate Cancer Feng Yang, Ph.D. Department of...AWARD NUMBER: W81XWH-13-1-0162 TITLE: Using a Novel Transgenic Mouse Model to Study c-Myc Oncogenic Pathway in Castration Resistance and

  7. Investigation of oncogenic cooperation in simple liver-specific transgenic mouse models using noninvasive in vivo imaging.

    Directory of Open Access Journals (Sweden)

    Hye-Lim Ju

    Full Text Available Liver cancer is a complex multistep process requiring genetic alterations in multiple proto-oncogenes and tumor suppressor genes. Although hundreds of genes are known to play roles in hepatocarcinogenesis, oncogenic collaboration among these genes is still largely unknown. Here, we report a simple methodology by which oncogenic cooperation between cancer-related genes can be efficiently investigated in the liver. We developed various non-germline transgenic mouse models using hydrodynamics-based transfection which express HrasG12V, SmoM2, and a short-hairpin RNA down-regulating p53 (shp53 individually or in combination in the liver. In this transgenic system, firefly luciferase was co-expressed with the oncogenes as a reporter, allowing tumor growth in the liver to be monitored over time without an invasive procedure. Very strong bioluminescence imaging (BLI signals were observed at 4 weeks post-hydrodynamic injection (PHI in mice co-expressing HrasG12V and shp53, while only background signals were detected in other double or single transgenic groups until 30 weeks PHI. Consistent with the BLI data, tumors were observed in the HrasG12V plus shp53 group at 4 weeks PHI, while other transgenic groups failed to exhibit a hyperplastic nodule at 30 weeks PHI. In the HrasG12V plus shp53 transgenic group, BLI signals were well-correlated with actual tumor growth in the liver, confirming the versatility of BLI-based monitoring of tumor growth in this organ. The methodology described here is expected to accelerate and facilitate in vivo studies of the hepatocarcinogenic potential of cancer-related genes by means of oncogenic cooperation.

  8. Synergistic Induction of Potential Warburg Effect in Zebrafish Hepatocellular Carcinoma by Co-Transgenic Expression of Myc and xmrk Oncogenes.

    Directory of Open Access Journals (Sweden)

    Zhen Li

    Full Text Available Previously we have generated inducible liver tumor models by transgenic expression of Myc or xmrk (activated EGFR homolog oncogenes in zebrafish. To investigate the interaction of the two oncogenes, we crossed the two transgenic lines and observed more severe and faster hepatocarcinogenesis in Myc/xmrk double transgenic zebrafish than either single transgenic fish. RNA-Seq analyses revealed distinct changes in many molecular pathways among the three types of liver tumors. In particular, we found dramatic alteration of cancer metabolism based on the uniquely enriched pathways in the Myc/xmrk tumors. Critical glycolytic genes including hk2, pkm and ldha were significantly up-regulated in Myc/xmrk tumors but not in either single oncogene-induced tumors, suggesting a potential Warburg effect. In RT-qPCR analyses, the specific pkm2 isoformin Warburg effect was found to be highly enriched in the Myc/xmrk tumors but not in Myc or xmrk tumors, consistent with the observations in many human cancers with Warburg effect. Moreover, the splicing factor genes (hnrnpa1, ptbp1a, ptbp1b and sfrs3b responsible for generating the pkm isoform were also greatly up-regulated in the Myc/xmrk tumors. As Pkm2 isoform is generally inactive and causes incomplete glycolysis to favor anabolism and tumor growth, by treatment with a Pkm2-specific activator, TEPP-46, we further demonstrated that activation of Pkm2 suppressed the growth of oncogenic liver as well as proliferation of liver cells. Collectively, our Myc/xmrk zebrafish model suggests synergetic effect of EGFR and MYC in triggering Warburg effect in the HCC formation and may provide a promising in vivo model for Warburg effect.

  9. Transgenic expression of oncogenic BRAF induces loss of stem cells in the mouse intestine, which is antagonized by β-catenin activity.

    Science.gov (United States)

    Riemer, P; Sreekumar, A; Reinke, S; Rad, R; Schäfer, R; Sers, C; Bläker, H; Herrmann, B G; Morkel, M

    2015-06-11

    Colon cancer cells frequently carry mutations that activate the β-catenin and mitogen-activated protein kinase (MAPK) signaling cascades. Yet how oncogenic alterations interact to control cellular hierarchies during tumor initiation and progression is largely unknown. We found that oncogenic BRAF modulates gene expression associated with cell differentiation in colon cancer cells. We therefore engineered a mouse with an inducible oncogenic BRAF transgene, and analyzed BRAF effects on cellular hierarchies in the intestinal epithelium in vivo and in primary organotypic culture. We demonstrate that transgenic expression of oncogenic BRAF in the mouse strongly activated MAPK signal transduction, resulted in the rapid development of generalized serrated dysplasia, but unexpectedly also induced depletion of the intestinal stem cell (ISC) pool. Histological and gene expression analyses indicate that ISCs collectively converted to short-lived progenitor cells after BRAF activation. As Wnt/β-catenin signals encourage ISC identity, we asked whether β-catenin activity could counteract oncogenic BRAF. Indeed, we found that intestinal organoids could be partially protected from deleterious oncogenic BRAF effects by Wnt3a or by small-molecule inhibition of GSK3β. Similarly, transgenic expression of stabilized β-catenin in addition to oncogenic BRAF partially prevented loss of stem cells in the mouse intestine. We also used BRAF(V637E) knock-in mice to follow changes in the stem cell pool during serrated tumor progression and found ISC marker expression reduced in serrated hyperplasia forming after BRAF activation, but intensified in progressive dysplastic foci characterized by additional mutations that activate the Wnt/β-catenin pathway. Our study suggests that oncogenic alterations activating the MAPK and Wnt/β-catenin pathways must be consecutively and coordinately selected to assure stem cell maintenance during colon cancer initiation and progression. Notably, loss of

  10. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene

    DEFF Research Database (Denmark)

    Efrat, S; Linde, S; Kofod, Hans

    1988-01-01

    Three pancreatic beta-cell lines have been established from insulinomas derived from transgenic mice carrying a hybrid insulin-promoted simian virus 40 tumor antigen gene. The beta tumor cell (beta TC) lines maintain the features of differentiated beta cells for about 50 passages in culture. The ...... both to immortalize a rare cell type and to provide a selection for the maintenance of its differentiated phenotype....

  11. Centrosomal Nlp is an oncogenic protein that is gene-amplified in human tumors and causes spontaneous tumorigenesis in transgenic mice.

    Science.gov (United States)

    Shao, Shujuan; Liu, Rong; Wang, Yang; Song, Yongmei; Zuo, Lihui; Xue, Liyan; Lu, Ning; Hou, Ning; Wang, Mingrong; Yang, Xiao; Zhan, Qimin

    2010-02-01

    Disruption of mitotic events contributes greatly to genomic instability and results in mutator phenotypes. Indeed, abnormalities of mitotic components are closely associated with malignant transformation and tumorigenesis. Here we show that ninein-like protein (Nlp), a recently identified BRCA1-associated centrosomal protein involved in microtubule nucleation and spindle formation, is an oncogenic protein. Nlp was found to be overexpressed in approximately 80% of human breast and lung carcinomas analyzed. In human lung cancers, this deregulated expression was associated with NLP gene amplification. Further analysis revealed that Nlp exhibited strong oncogenic properties; for example, it conferred to NIH3T3 rodent fibroblasts the capacity for anchorage-independent growth in vitro and tumor formation in nude mice. Consistent with these data, transgenic mice overexpressing Nlp displayed spontaneous tumorigenesis in the breast, ovary, and testicle within 60 weeks. In addition, Nlp overexpression induced more rapid onset of radiation-induced lymphoma. Furthermore, mouse embryonic fibroblasts (MEFs) derived from Nlp transgenic mice showed centrosome amplification, suggesting that Nlp overexpression mimics BRCA1 loss. These findings demonstrate that Nlp abnormalities may contribute to genomic instability and tumorigenesis and suggest that Nlp might serve as a potential biomarker for clinical diagnosis and therapeutic target.

  12. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Andres, A.C.; Schoenenberger, C.A.; Groner, B.; Henninghausen, L.; LeMeur, M.; Gelinger, P.

    1987-03-01

    The activated human Ha-ras oncogene was subjected to the control of the promoter region of the murine whey acidic protein (Wap) gene, which is expressed in mammary epithelial cells in response to lactogenic hormones. The Wap-ras gene was stably introduced into the mouse germ line of five transgenic mice (one male and four females). Wap-ras expression was observed in the mammary glands of lactating females in two lines derived from female founders. The tissue-directed and hormone-dependent Wap expression was conferred on the Ha-ras oncogene. The signals governing Wap expression are located within 2.5 kilobases of 5' flanking sequence. The other two lines derived from female founders did not express the chimeric gene. In the line derived from the male founder the Wap-ras gene is integrated into the Y chromosome. Expression was found in the salivary gland of male animals only. After a long latency, Wap-ras-expressing mice developed tumors. The tumors arose in tissues expressing Wap-ras - i.e., mammary or salivary glands. Compared to the corresponding nonmalignant tissues, Wap-ras expression was enhanced in the tumors.

  13. Activating the expression of human K-rasG12D stimulates oncogenic transformation in transgenic goat fetal fibroblast cells.

    Science.gov (United States)

    Gong, Jianhua; Wang, Zhongde; Polejaeva, Irina; Salgia, Ravi; Kao, Chien-Min; Chen, Chin-Tu; Chen, Guangchun; Chen, Liaohai

    2014-01-01

    Humane use of preclinical large animal cancer models plays a critical role in understanding cancer biology and developing therapeutic treatments. Among the large animal candidates, goats have great potentials as sustainable sources for large animal cancer model development. Goats are easier to handle and cheaper to raise. The genome of the goats has been sequenced recently. It has been known that goats develop skin, adrenal cortex, breast and other types of cancers. Technically, goats are subject to somatic cell nuclear transfer more efficiently and exhibit better viability through the cloning process. Towards the development of a goat cancer model, we created a transgenic goat fetal fibroblast (GFF) cell as the donor cell for SCNT. Human mutated K-ras (hK-rasG12D) was chosen as the transgene, as it is present in 20% of cancers. Both hK-rasG12D and a herpes simplex viral thymidine kinase (HSV1-tk) reporter genes, flanked by a pair of LoxP sites, were knocked in the GFF endogenous K-ras locus through homologous recombination. Following Cre-mediated activation (with a 95% activation efficiency), hK-rasG12D and HSV1-tk were expressed in the transgenic GFF cells, evidently through the presence of corresponding mRNAs, and confirmed by HSV1-tk protein function assay. The hK-rasG12D expressing GFF cells exhibited enhanced proliferation rates and an anchorage-independent growth behavior. They were able to initiate tumor growth in athymic nude mice. In conclusion, after activating hK-rasG12D gene expression, hK-rasG12D transgenic GFF cells were transformed into tumorgenesis cells. Transgenic goats via SCNT using the above-motioned cells as the donor cells have been established.

  14. Activating the expression of human K-rasG12D stimulates oncogenic transformation in transgenic goat fetal fibroblast cells.

    Directory of Open Access Journals (Sweden)

    Jianhua Gong

    Full Text Available Humane use of preclinical large animal cancer models plays a critical role in understanding cancer biology and developing therapeutic treatments. Among the large animal candidates, goats have great potentials as sustainable sources for large animal cancer model development. Goats are easier to handle and cheaper to raise. The genome of the goats has been sequenced recently. It has been known that goats develop skin, adrenal cortex, breast and other types of cancers. Technically, goats are subject to somatic cell nuclear transfer more efficiently and exhibit better viability through the cloning process. Towards the development of a goat cancer model, we created a transgenic goat fetal fibroblast (GFF cell as the donor cell for SCNT. Human mutated K-ras (hK-rasG12D was chosen as the transgene, as it is present in 20% of cancers. Both hK-rasG12D and a herpes simplex viral thymidine kinase (HSV1-tk reporter genes, flanked by a pair of LoxP sites, were knocked in the GFF endogenous K-ras locus through homologous recombination. Following Cre-mediated activation (with a 95% activation efficiency, hK-rasG12D and HSV1-tk were expressed in the transgenic GFF cells, evidently through the presence of corresponding mRNAs, and confirmed by HSV1-tk protein function assay. The hK-rasG12D expressing GFF cells exhibited enhanced proliferation rates and an anchorage-independent growth behavior. They were able to initiate tumor growth in athymic nude mice. In conclusion, after activating hK-rasG12D gene expression, hK-rasG12D transgenic GFF cells were transformed into tumorgenesis cells. Transgenic goats via SCNT using the above-motioned cells as the donor cells have been established.

  15. Oncogene interactions are required for glioma development and progression as revealed by a tissue specific transgenic mouse model

    Institute of Scientific and Technical Information of China (English)

    Lynette M. Moore; Kristen M. Holmes; Gregory N. Fuller; Wei Zhang

    2011-01-01

    The aggressive and invasive nature of brain tumors has hampered progress in the design and implementation of efficacious therapies. The recent success of targeted therapies in other tumor types makes this an attractive area for research yet complicating matters is the ability of brain tumors to circumvent the targeted pathways to develop drug resistance. Effective therapies will likely need to target more than one signaling pathway or target multiple nodes within a given pathway. Key to identifying these targets is the elucidation of the driver and passenger molecules within these pathways. Animal models provide a useful tool with many advantages in the study of these pathways. These models provide a means to dissect the critical components of tumorigenesis, as well as serve as agents for preclinical testing. This review focuses on the use of the RCAS/tv-a mouse model of brain tumors and describes their unique ability to provide insight into the role of oncogene cooperation in tumor development and progression.

  16. Oncogenic viruses and cancer

    Institute of Scientific and Technical Information of China (English)

    Guangxiang; George; Luo; Jing-hsiung; James; Ou

    2015-01-01

    <正>This special issue of the journal is dedicated to the important topic of oncogenic viruses and cancer.It contains seven review articles covering all known oncogenic viruses except for human T-lymphotropic virus type1(HTLV-1).These review articles are contributed by experts on specific viruses and their associated human cancers.Viruses account for about 20%of total human cancer cases.Although many viruses can cause various tumors in animals,only seven of them

  17. Imaging oncogene expression

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Archana [Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107 (United States)], E-mail: Archana.Mukherjee@jefferson.edu; Wickstrom, Eric [Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233S, 10th street, Philadelphia, PA 19107 (United States)], E-mail: eric@tesla.jci.tju.edu; Thakur, Mathew L. [Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107 (United States)], E-mail: Mathew.Thakur@jefferson.edu

    2009-05-15

    This review briefly outlines the importance of molecular imaging, particularly imaging of endogenous gene expression for noninvasive genetic analysis of radiographic masses. The concept of antisense imaging agents and the advantages and challenges in the development of hybridization probes for in vivo imaging are described. An overview of the investigations on oncogene expression imaging is given. Finally, the need for further improvement in antisense-based imaging agents and directions to improve oncogene mRNA targeting is stated.

  18. Pesticides and oncogenic modulation.

    Science.gov (United States)

    Vakonaki, Elena; Androutsopoulos, Vasilis P; Liesivuori, Jyrki; Tsatsakis, Aristidis M; Spandidos, Demetrios A

    2013-05-10

    Pesticides constitute a diverse class of chemicals used for the protection of agricultural products. Several lines of evidence demonstrate that organochlorine and organophosphate pesticides can cause malignant transformation of cells in in vitro and in vivo models. In the current minireview a comprehensive summary of recent in vitro findings is presented along with data reported from human population studies, regarding the impact of pesticide exposure on activation or dysregulation of oncogenes and tumor suppressor genes. Substantial mechanistic work suggests that pesticides are capable of inducing mutations in oncogenes and increase their transcriptional expression in vitro, whereas human population studies indicate associations between pesticide exposure levels and mutation occurrence in cancer-related genes. Further work is required to fully explore the exact mechanisms by which pesticide exposure affects the integrity and normal function of oncogenes and tumor suppressor genes in human populations.

  19. A transgenic mouse model for trilateral retinoblastoma

    NARCIS (Netherlands)

    O'Brien, J.M.; Marcus, D.M.; Bernards, R.A.; Carpenter, J.L.; Windle, J.J.; Mellon, P.; Albert, D.M.

    1990-01-01

    We present a murine model of trilateral retinoblastoma. Ocular retinoblastoma and central nervous system tumors are observed in a line of mice formed by the transgenic expression of SV40 T-antigen. An oncogenic protein known to bind to the retinoblastoma gene product (p105-Rb) is specifically expres

  20. Transgenic bioreactors.

    Science.gov (United States)

    Jänne, J; Alhonen, L; Hyttinen, J M; Peura, T; Tolvanen, M; Korhonen, V P

    1998-01-01

    Since the generation of the first transgenic mice in 1980, transgene technology has also been successfully applied to large farm animals. Although this technology can be employed to improve certain production traits of livestock, this approach has not been very successful so far owing to unwanted effects encountered in the production animals. However, by using tissue-specific targeting of the transgene expression, it is possible to produce heterologous proteins in the extracellular space of large transgenic farm animals. Even though some recombinant proteins, such as human hemoglobin, have been produced in the blood of transgenic pigs, in the majority of the cases mammary gland targeted expression of the transgene has been employed. Using production genes driven by regulatory sequences of milk protein genes a number of valuable therapeutic proteins have been produced in the milk of transgenic bioreactors, ranging from rabbits to dairy cattle. Unlike bacterial fermentors, the mammary gland of transgenic bioreactors appear to carry out proper postsynthetic modifications of human proteins required for full biological activity. In comparison with mammalian cell bioreactors, transgenic livestock with mammary gland targeted expression seems to be able to produce valuable human therapeutic proteins at very low cost. Although not one transgenically produced therapeutic protein is yet on the market, the first such proteins have recently entered or even completed clinical trials required for their approval.

  1. The Homeodomain Transcription Factor Cdx1 Does Not Behave as an Oncogene in Normal Mouse Intestine

    Directory of Open Access Journals (Sweden)

    Mary Ann S. Crissey

    2008-01-01

    Full Text Available The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium.

  2. The human papillomavirus E6 oncogene dysregulates the cell cycle and contributes to cervical carcinogenesis through two independent activities.

    Science.gov (United States)

    Shai, Anny; Brake, Tiffany; Somoza, Chamorro; Lambert, Paul F

    2007-02-15

    Cervical cancer is a leading cause of death due to cancer among women worldwide. Using transgenic mice to dissect the contributions of the human papillomavirus (HPV) 16 E6 and E7 oncogenes in cervical cancer, E7 was identified previously to be the dominant oncogene. Specifically, when treated with exogenous estrogen for 6 months, E7 transgenic mice developed cancer throughout the reproductive tract, but E6 transgenic mice did not. E6 contributed to carcinogenesis of the reproductive tract, as E6/E7 double transgenic mice treated for 6 months with estrogen developed larger cancers than E7 transgenic mice. In the current study, we investigated whether the E6 oncogene alone could cooperate with estrogen to induce cervical cancer after an extended estrogen treatment period of 9 months. We found that the E6 oncogene synergizes with estrogen to induce cervical cancer after 9 months, indicating that E6 has a weaker but detectable oncogenic potential in the reproductive tract compared with the E7 oncogene. Using transgenic mice that express mutant forms of HPV16 E6, we determined that the interactions of E6 with cellular alpha-helix and PDZ partners correlate with its ability to induce cervical carcinogenesis. In analyzing the tumors arising in E6 transgenic mice, we learned that E6 induces expression of the E2F-responsive genes, Mcm7 and cyclin E, in the absence of the E7 oncogene. E6 also prevented the expression of p16 in tumors of the reproductive tract through a mechanism mediated by the interaction of E6 with alpha-helix partners.

  3. Oncogenes in melanoma: an update.

    Science.gov (United States)

    Kunz, Manfred

    2014-01-01

    Melanoma is a highly aggressive tumour with poor prognosis in the metastatic stage. BRAF, NRAS, and KIT are three well-known oncogenes involved in melanoma pathogenesis. Targeting of mutated BRAF kinase has recently been shown to significantly improve overall survival of metastatic melanoma patients, underscoring the particular role of this oncogene in melanoma biology. However, recurrences regularly occur within several months, which supposedly involve further oncogenes. Moreover, oncogenic driver mutations have not been described for up to 30% of all melanomas. In order to obtain a more complete picture of the mutational landscape of melanoma, more recent studies used high-throughput DNA sequencing technologies. A number of new oncogene candidates such as MAPK1/2, ERBB4, GRIN2A, GRM3, RAC1, and PREX2 were identified. Their particular role in melanoma biology is currently under investigation. Evidence for the functional relevance of some of these new oncogene candidates has been provided in in vitro and in vivo experiments. However, these findings await further validation in clinical studies. This review provides an overview on well-known melanoma oncogenes and new oncogene candidates, based on recent high-throughput sequencing studies. The list of genes discussed herein is of course not complete but highlights some of the most significant of recent findings in this area. The new candidates may support more individualized treatment approaches for metastatic melanoma patients in the future.

  4. Targeted expression of oncogenic K-ras in intestinal epithelium causes spontaneous tumorigenesis in mice

    NARCIS (Netherlands)

    Janssen, KP; El Marjou, F; Pinto, D; Sastre, X; Rouillard, D; Fouquet, C; Soussi, T; Louvard, D; Robine, S

    2002-01-01

    Background & Aims: Ras oncoproteins are mutated in about 50% of human colorectal cancers, but their precise role in tumor initiation or progression is still unclear. Methods: This study presents transgenic mice that express K-ras(V12G), the most frequent oncogenic mutation in human tumors, under con

  5. Oncogenic cancer/testis antigens

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Andersen, Mads H; Ditzel, Henrik J

    2015-01-01

    Recent developments have set the stage for immunotherapy as a supplement to conventional cancer treatment. Consequently, a significant effort is required to further improve efficacy and specificity, particularly the identification of optimal therapeutic targets for clinical testing. Cancer....../testis antigens are immunogenic, highly cancer-specific, and frequently expressed in various types of cancer, which make them promising candidate targets for cancer immunotherapy, including cancer vaccination and adoptive T-cell transfer with chimeric T-cell receptors. Our current understanding of tumor...... immunology and immune escape suggests that targeting oncogenic antigens may be beneficial, meaning that identification of cancer/testis antigens with oncogenic properties is of high priority. Recent work from our lab and others provide evidence that many cancer/testis antigens, in fact, have oncogenic...

  6. Elimination of marker genes from transgenic plants using MAT vector systems.

    Science.gov (United States)

    Ebinuma, Hiroyasu; Sugita, Koichi; Endo, Saori; Matsunaga, Etsuko; Yamada, Keiko

    2005-01-01

    We have developed an efficient system (Multi-Auto-Transformation [MAT] vectors) for the removal of marker genes and to increase the regeneration frequency of transgenic crops without using antibiotic selection, reducing their possible environmental impact. The MAT vector system is designed to use the oncogenes (ipt, iaaM/H, rol) of Agrobacterium, which control the endogenous levels of plant hormones and the cell responses to plant growth regulators, to differentiate transgenic cells, and to select marker-free transgenic plants. The oncogenes are combined with the site-specific recombination system (R/RS). At transformation, the oncogenes regenerate transgenic plants and then are removed by the R/RS system to generate marker-free transgenic plants. The choice of a promoter for the oncogenes and the recombinase (R) gene, the state of plant materials and the tissue culture conditions greatly affect efficiency of both the regeneration of transgenic plants and the generation of marker-free plants. We have evaluated these conditions in several plant species to increase their generation efficiency. This chapter describes our transformation protocols using MAT vectors.

  7. Tumor suppression by miR-26 overrides potential oncogenic activity in intestinal tumorigenesis

    Science.gov (United States)

    Zeitels, Lauren R.; Acharya, Asha; Shi, Guanglu; Chivukula, Divya; Chivukula, Raghu R.; Anandam, Joselin L.; Abdelnaby, Abier A.; Balch, Glen C.; Mansour, John C.; Yopp, Adam C.; Richardson, James A.

    2014-01-01

    Down-regulation of miR-26 family members has been implicated in the pathogenesis of multiple malignancies. In some settings, including glioma, however, miR-26-mediated repression of PTEN promotes tumorigenesis. To investigate the contexts in which the tumor suppressor versus oncogenic activity of miR-26 predominates in vivo, we generated miR-26a transgenic mice. Despite measureable repression of Pten, elevated miR-26a levels were not associated with malignancy in transgenic animals. We documented reduced miR-26 expression in human colorectal cancer and, accordingly, showed that miR-26a expression potently suppressed intestinal adenoma formation in Apcmin/+ mice, a model known to be sensitive to Pten dosage. These studies reveal a tumor suppressor role for miR-26 in intestinal cancer that overrides putative oncogenic activity, highlighting the therapeutic potential of miR-26 delivery to this tumor type. PMID:25395662

  8. Oncogenicity of human N-ras oncogene and proto-oncogene introduced into retroviral vectors

    Energy Technology Data Exchange (ETDEWEB)

    Souyri, M.; Vigon, I.; Charon, M.; Tambourin, P. (Hopital Cochin, Paris (France))

    1989-09-01

    The N-ras gene is the only member of the ras family which has never been naturally transduced into a retrovirus. In order to study the in vitro and in vivo oncogenicity of N-ras and to compare its pathogenicity to that of H-ras, the authors have inserted an activated or a normal form of human N-ras cDNA into a slightly modified Harvey murine sarcoma virus-derived vector in which the H-ras p21 coding region had been deleted. The resulting constructions were transfected into NIH 3T3 cells. The activated N-ras-containing construct (HSN) induced 10{sup 4} foci per {mu}g of DNA and was found to be as transforming as H-ras was. After infection of the transfected cells by either the ecotropic Moloney murine leukemia virus or the amphotropic 4070A helper viruses, rescued transforming viruses were injected into newborn mice. Both pseudotypes of HSN virus containing activated N-ras induced the typical Harvey disease with similar latency. However, they found that the virus which contained normal N-ras p21 (HSn) was also pathogenic and induced splenomegaly, lymphadenopathies, and sarcoma in mice after a latency of 3 to 7 weeks. In addition, Moloney murine leukemia virus pseudotypes of N-ras caused neurological disorders in 30% of the infected animals. These results differed markedly from those of previous experiments in which the authors had inserted the activated form of N-ras in the pSV(X) vector: the resulting SVN-ras virus was transforming on NIH 3T3 cells but was poorly oncogenic in vivo. Altogether, these data demonstrated unequivocally that N-ras is potentially as oncogenic as H-ras and that such oncogenic effect could depend on the vector environment.

  9. Gene therapy: X-SCID transgene leukaemogenicity.

    Science.gov (United States)

    Thrasher, Adrian J; Gaspar, H Bobby; Baum, Christopher; Modlich, Ute; Schambach, Axel; Candotti, Fabio; Otsu, Makoto; Sorrentino, Brian; Scobie, Linda; Cameron, Ewan; Blyth, Karen; Neil, Jim; Abina, Salima Hacein-Bey; Cavazzana-Calvo, Marina; Fischer, Alain

    2006-09-21

    Gene therapy has been remarkably effective for the immunological reconstitution of patients with severe combined immune deficiency, but the occurrence of leukaemia in a few patients has stimulated debate about the safety of the procedure and the mechanisms of leukaemogenesis. Woods et al. forced high expression of the corrective therapeutic gene IL2RG, which encodes the gamma-chain of the interleukin-2 receptor, in a mouse model of the disease and found that tumours appeared in a proportion of cases. Here we show that transgenic IL2RG does not necessarily have potent intrinsic oncogenic properties, and argue that the interpretation of this observation with respect to human trials is overstated.

  10. Oncogenic Brain Metazoan Parasite Infection

    Directory of Open Access Journals (Sweden)

    Angela N. Spurgeon

    2013-01-01

    Full Text Available Multiple observations suggest that certain parasitic infections can be oncogenic. Among these, neurocysticercosis is associated with increased risk for gliomas and hematologic malignancies. We report the case of a 71-year-old woman with colocalization of a metazoan parasite, possibly cysticercosis, and a WHO grade IV neuroepithelial tumor with exclusively neuronal differentiation by immunohistochemical stains (immunopositive for synaptophysin, neurofilament protein, and Neu-N and not for GFAP, vimentin, or S100. The colocalization and temporal relationship of these two entities suggest a causal relationship.

  11. Transgenic CHD1L expression in mouse induces spontaneous tumors.

    Directory of Open Access Journals (Sweden)

    Muhan Chen

    Full Text Available BACKGROUND: Amplification of 1q21 is the most frequent genetic alteration in hepatocellular carcinoma (HCC, which was detected in 58-78% of primary HCC cases by comparative genomic hybridization (CGH. Using chromosome microdissection/hybrid selection approach we recently isolated a candidate oncogene CHD1L from 1q21 region. Our previous study has demonstrated that CHD1L had strong oncogenic ability, which could be effectively suppressed by siRNA against CHD1L. The molecular mechanism of CHD1L in tumorigenesis has been associated with its role in promoting cell proliferation. METHODOLOGY/PRINCIPAL FINDINGS: To further investigate the in vivo oncogenic role of CHD1L, CHD1L ubiquitous-expression transgenic mouse model was generated. Spontaneous tumor formations were found in 10/41 (24.4% transgenic mice, including 4 HCCs, but not in their 39 wild-type littermates. In addition, alcohol intoxication was used to induce hepatocyte pathological lesions and results found that overexpression of CHD1L in hepatocytes could promote tumor susceptibility in CHD1L-transgenic mice. To address the mechanism of CHD1L in promoting cell proliferation, DNA content between CHD1L-transgenic and wildtype mouse embryo fibroblasts (MEFs was compared by flow cytometry. Flow cytometry results found that CHD1L could facilitate DNA synthesis and G1/S transition through the up-regulation of Cyclin A, Cyclin D1, Cyclin E, CDK2, and CDK4, and down-regulation of Rb, p27(Kip1, and p53. CONCLUSION/SIGNIFICANCE: Taken together, our data strongly support that CHD1L is a novel oncogene and plays an important role in HCC pathogenesis.

  12. 40 CFR 798.3300 - Oncogenicity.

    Science.gov (United States)

    2010-07-01

    ... Species of Experimental Animals for Inhalation Carcinogenicity Studies” Paper presented at Conference on...) HEALTH EFFECTS TESTING GUIDELINES Chronic Exposure § 798.3300 Oncogenicity. (a) Purpose. The objective of a long-term oncogenicity study is to observe test animals for a major portion of their life span for...

  13. Neuroanatomy and transgenic technologies

    Science.gov (United States)

    This is a short review that introduces recent advances of neuroanatomy and transgenic technologies. The anatomical complexity of the nervous system remains a subject of tremendous fascination among neuroscientists. In order to tackle this extraordinary complexity, powerful transgenic technologies a...

  14. Evolution of somatic mutations in mammary tumors in transgenic mice is influenced by the inherited genotype

    Directory of Open Access Journals (Sweden)

    Li Yi

    2004-06-01

    Full Text Available Abstract Background MMTV-Wnt1 transgenic mice develop mammary hyperplasia early in development, followed by the appearance of solitary mammary tumors with a high proportion of cells expressing early lineage markers and many myoepithelial cells. The occurrence of tumors is accelerated in experiments that activate FGF proto-oncogenes or remove the tumor suppressor genes Pten or P53, implying that secondary oncogenic events are required for progression from mammary hyperplasia to carcinoma. It is not known, however, which oncogenic pathways contribute to Wnt1-induced tumorigenesis – further experimental manipulation of these mice is needed. Secondary events also appear to be required for mammary tumorigenesis in MMTV-Neu transgenic mice because the transgene in the tumors usually contains an acquired mutation that activates the Neu protein-tyrosine kinase. Methods cDNA or DNA from the mammary glands and mammary tumors from MMTV-Wnt1, MMTV-Wnt1/p53-/-, MMTV-Neu transgenic mice, and newly generated MMTV-Wnt1/MMTV-Neu bitransgenic mice, was sequenced to seek activating mutations in H-Ras, K-Ras, and N-Ras genes, or in the MMTV-Neu transgene. In addition, tumors from bitransgenic animals were examined to determine the cellular phenotype. Results We found activating mutations at codons 12, 13, and 61 of H-Ras in just over half of the mammary tumors in MMTV-Wnt1 transgenic mice, and we confirmed the high frequency of activating mutations of Neu in tumors in MMTV-Neu transgenic mice. Tumors appeared earlier in bitransgenic MMTV-Wnt1/MMTV-Neu mice, but no Ras or MMTV-Neu mutations were found in these tumors, which were phenotypically similar to those arising in MMTV-Wnt1 mice. In addition, no Ras mutations were found in the mammary tumors that arise in MMTV-Wnt1 transgenic mice lacking an intact P53 gene. Conclusions Tumorigenic properties of cells undergoing functionally significant secondary mutations in H-Ras or the MMTV-Neu transgene allow selection

  15. Amplification of cellular oncogenes in solid tumors

    Directory of Open Access Journals (Sweden)

    Ozkan Bagci

    2015-01-01

    Full Text Available The term gene amplification refers to an increase in copy number of a gene. Upregulation of gene expression through amplification is a general mechanism to increase gene dosage. Oncogene amplifications have been shown in solid human cancers and they are often associated with progression of cancer. Defining oncogene amplification is useful since it is used as a prognostic marker in clinical oncology nowadays, especially v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 (HER2 targeted agents are used in breast cancer patients with high level of HER2 overexpression as a therapeutic approach. However, patients without HER2 overexpression do not appear to benefit from these agents. We concluded that determination of oncogene amplification in solid tumors is an important factor in treatment of human cancers with many unknowns. We have referred to PubMed and some databases to prepare this article.

  16. Enhanced Malignant Tumorigenesis in Cdk4-Transgenic Mice

    Science.gov (United States)

    Miliani de Marval, Paula L.; Macias, Everardo; Conti, Claudio J.; Rodriguez-Puebla, Marcelo L.

    2010-01-01

    In a previous study, we reported that overexpression of CDK4 in mouse epidermis results in epidermal hyperplasia, hypertrophy and severe dermal fibrosis. In this study, we have investigated the susceptibility to skin tumor formation by forced expression of CDK4. Skin tumors from transgenic mice showed a dramatic increase in the rate of malignant progression to squamous cell carcinomas (SCC) in an initiation-promotion protocol. Histopathological analysis of papillomas from transgenic mice showed an elevated number of premalignant lesions characterized by dysplasia and marked atypia. Interestingly, transgenic mice also developed tumors in initiated but not promoted skin, demonstrating that CDK4 replaced the action of tumor promoters. These results suggest that expression of cyclin D1 upon ras activation synergizes with CDK4 overexpression. However, cyclin D1 transgenic mice and double transgenic mice for cyclin D1 and CDK4 did not show increased malignant progression in comparison to CDK4 transgenic mice. Biochemical analysis of tumors showed that CDK4 sequesters the CDK2 inhibitors p27Kip1 and p21Cip1 suggesting that indirect activation of CDK2 plays an important role in tumor development. These results indicate that, contrary to the general assumption, the catalytic subunit, CDK4, has higher oncogenic activity than cyclin D1, revealing a potential use of CDK4 as therapeutic target. PMID:14647432

  17. [Transgenic animals bioreactors].

    Science.gov (United States)

    Gou, Ke-Mian; An, Xiao-Rong; Tian, Jian-Hui; Chen, Yong-Fu

    2002-01-01

    The production of human recombinant proteins in milk of transgenic farm animals offers a safe, very cost-effective source of commercially important proteins that cannot be produced as efficiently in adequate quantities by other methods. This review has summarized the current status of gene selection, vector construct, transgenic methods, economics, and obvious potential in transgenic animals bioreactors. Recently, a more powerful approach was adopted in the transgenic animals founded on the application of nuclear transfer. As we will illustrate, this strategy presents a breakthrough in the overall efficiency of generating transgenic farm animals, product consistency, and time of product development. The successful adaptation of Cre-/lox P-mediated site-specific DNA recombination systems in farm animals will offer unprecedented possibilities for generating transgenic animals.

  18. A novel MCF-10A line allowing conditional oncogene expression in 3D culture

    Directory of Open Access Journals (Sweden)

    Danke Christina

    2011-07-01

    Full Text Available Introduction Non-transformed mammary epithelial cell lines such as MCF-10A recapitulate epithelial morphogenesis in three-dimensional (3D tissue culture by forming acinar structures. They represent an important tool to characterize the biological properties of oncogenes and to model early carcinogenic events. So far, however, these approaches were restricted to cells with constitutive oncogene expression prior to the set-up of 3D cultures. Although very informative, this experimental setting has precluded the analysis of effects caused by sudden oncoprotein expression or withdrawal in established epithelial cultures. Here, we report the establishment and use of a stable MCF-10A cell line (MCF-10Atet fitted with a novel and improved doxycycline (dox-regulated expression system allowing the conditional expression of any transgene. Methods MCF-10Atet cells were generated by stable transfection with pWHE644, a vector expressing a second generation tetracycline-regulated transactivator and a novel transcriptional silencer. In order to test the properties of this new repressor/activator switch, MCF-10Atet cells were transfected with a second plasmid, pTET-HABRAF-IRES-GFP, which responds to dox treatment with the production of a bi-cistronic transcript encoding hemagglutinin-tagged B-Raf and green fluorescent protein (GFP. This improved conditional expression system was then characterized in detail in terms of its response to various dox concentrations and exposure times. The plasticity of the phenotype provoked by oncogenic B-RafV600E in MCF-10Atet cells was analyzed in 3D cultures by dox exposure and subsequent wash-out. Results MCF-10Atet cells represent a tightly controlled, conditional gene expression system. Using B-RafV600E as a model oncoprotein, we show that its sudden expression in established 3D cultures results in the loss of acinar organization, the induction of an invasive phenotype and hallmarks of epithelial-to-mesenchymal transition

  19. Tumorigenic potential of pituitary tumor transforming gene (PTTG in vivo investigated using a transgenic mouse model, and effects of cross breeding with p53 (+/− transgenic mice

    Directory of Open Access Journals (Sweden)

    Fong Miranda Y

    2012-11-01

    Full Text Available Abstract Background Pituitary tumor-transforming gene (PTTG is an oncogene that is overexpressed in variety of tumors and exhibits characteristics of a transforming gene. Previous transgenic mouse models to access the tumorigenic potential in the pituitary and ovary have resulted in dysplasia without formation of visible tumors, possibly due to the insufficient expression of PTTG. PTTG expression level is critical for ovarian tumorigenesis in a xenograft model. Therefore, the tumorigenic function of PTTG in vivo remains unclear. We generated a transgenic mouse that overexpresses PTTG driven by the CMV promoter to determine whether PTTG functions as a transforming oncogene that is capable of initiating tumorigenesis. Methods Transgenic animals were generated by microinjection of PTTG transgene into the male pronucleus of FVB 0.5 day old embryos. Expression levels of PTTG in tissues of transgenic animals were analyzed using an immunohistochemical analysis. H&E staining and immunohistostaining were performed to examine the type of tumor in transgenic and PTTG transgenic/p53+/- animals. Results PTTG transgenic offspring (TgPTTG were monitored for tumor development at various ages. H&E analysis was performed to identify the presence of cancer and hyperplastic conditions verified with the proliferation marker PCNA and the microvessel marker CD31. Immunohistochemistry was performed to determine transgene expression, revealing localization to the epithelium of the fallopian tube, with more generalized expression in the liver, lung, kidney, and spleen. At eight months of age, 2 out of 15 TgPTTG developed ovarian cancer, 2 out of 15 developed benign tumors, 2 out of 15 developed cervical dysplasia, and 3 out of 15 developed adenomyosis of the uterus. At ten months of age, 2 out of 10 TgPTTG developed adenocarcinoma of the ovary, 1 out of 10 developed a papillary serous adenocarcinoma, and 2 out of 10 presented with atypia of ovarian epithelial cells

  20. Attempts on producing lymphoid cell line from Penaeus monodon by induction with SV40-T and 12S EIA oncogenes.

    Science.gov (United States)

    Puthumana, Jayesh; Prabhakaran, Priyaja; Philip, Rosamma; Singh, I S Bright

    2015-12-01

    In an attempt of in vitro transformation, transfection mediated expression of Simian virus-40 (T) antigen (SV40-T) and transduction mediated expression of Adenovirus type 12 early region 1A (12S E1A) oncogene were performed in Penaeus monodon lymphoid cells. pSV3-neo vector encoding SV40-T oncogene and a recombinant baculovirus BacP2-12S E1A-GFP encoding 12S E1A oncogene under the control of hybrid promoters were used. Electroporation and lipofection mediated transformation of SV40-T in lymphoid cells confirmed the transgene expression by phenotypic variation and the expression of GFP in co-transfection experiment. The cells transfected by lipofection (≥ 5%) survived for 14 days with lower toxicity (30%), whilst on electroporation, most of the cells succumbed to death (60%) and survived cells lived up to 7 days. Transduction efficiency in primary lymphoid cells was more than 80% within 14 days of post-transduction, however, an incubation period of 7 days post-transduction was observed without detectable expression of 12S E1A. High level of oncogenic 12S E1A expression were observed after 14 day post-transduction and the proliferating cells survived for more than 90 days with GFP expression, however, without in vitro transformation and immortalization. The study put forth the requirement of transduction mediated 'specific' oncogene expression along with telomerase activation and epigenetic induction for the immortalization and establishment of shrimp cell line.

  1. Human genome: proto-oncogenes and proretroviruses.

    Science.gov (United States)

    Kisselev, L L; Chumakov, I M; Zabarovsky, E R; Prassolov, V S; Mett, V L; Berditchevsky, F B; Tret'yakov, L D

    1985-01-01

    A brief review of the studies undertaken at the Laboratory for Molecular Bases of Oncogenesis (Institute of Molecular Biology, Moscow) till middle of 1984 is presented. The human genome contains multiple dispersed nucleotide sequences related to the proto-oncogene mos and to proretroviral sequences in tight juxtaposition to each other. From sequencing appropriate cloned fragments of human DNA in phage and plasmid vectors it follows that one of these regions, NV-1, is a pseudogene of proto-mos with partial duplications and two Alu elements intervening its coding sequence, and the other, CL-1, seems to be also a mos-related gene with a deletion of the internal part of the structural gene. CL-1 is flanked by a proretroviral-like sequence including tRNAiMet binding site and U5 (part of the long terminal repeat). The proretroviral-like sequences are transcribed in 21-35S poly(A)+RNA abundant in normal and malignant human cells. Two hypotheses are proposed: endogenous retroviruses take part in amplification of at least some proto-oncogenes; proto-oncogenes are inactivated via insertion of movable genetic elements and conversion into pseudogenes. Potential oncogenicity of a normal human genome undergoes two controversial influences: it increases due to proto-oncogene amplification and decreases due to inactivation of some of them.

  2. HUMAN PAPILLOMA VIRUS — ONCOGENIC VIRUS

    Directory of Open Access Journals (Sweden)

    A.N. Mayansky

    2010-01-01

    Full Text Available The lecture is devoted to oncogenic viruses, particularly human papilloma virus. Papilloma viral infection is found in all parts of the globe and highly contagious. In addition to exhaustive current data on classification, specifics of papilloma viruses composition and epidemiology, the author describes in great detail the malignization mechanisms of papilloma viruses pockets. Also, issues of diagnostics and specific prevention and treatment of diseases caused by this virus are illustrated. Key words: oncogenic viruses, papilloma viruses, prevention, vaccination. (Pediatric Pharmacology. – 2010; 7(4:48-55

  3. Transgene Stacking in Cotton Improvement

    Institute of Scientific and Technical Information of China (English)

    YANG Ye-hua; WANG Xue-kui; YAO Ming-jing; FAN Yu-peng; GAO Da-yu

    2008-01-01

    @@ To date,more and more transgenic varieties of upland cotton (Gossypium hirsuturn L.) generated with transgenes,which derived from varies of alien species,are playing important role in agricultural production.Stacking of multi-transgenes has a potential for combining all the merits of distinct transgenic lines in a cultivar and possibly makes a significant contribution to cultivar improvement.

  4. Retinoblastoma in transgenic mice

    NARCIS (Netherlands)

    Windle, J.J.; Albert, D.M.; O'Brien, J.M.; Marcus, D.M.; Disteche, Ch.M.; Bernards, R.A.; Mellon, P.L.

    1990-01-01

    Retinoblastoma, a malignancy of the eye occurring in young children, has been widely studied as a model for genetic predisposition to cancer. This disease is caused by mutations in both alleles of an anti-oncogene (the retinoblastoma gene, Rb) that inactivate or eliminate the Rb encoded protein, pl0

  5. Oncogene v-jun modulates DNA replication.

    Science.gov (United States)

    Wasylyk, C; Schneikert, J; Wasylyk, B

    1990-07-01

    Cell transformation leads to alterations in both transcription and DNA replication. Activation of transcription by the expression of a number of transforming oncogenes is mediated by the transcription factor AP1 (Herrlich & Ponta, 1989; Imler & Wasylyk, 1989). AP1 is a composite transcription factor, consisting of members of the jun and fos gene-families. c-jun and c-fos are progenitors of oncogenes, suggestion that an important transcriptional event in cell transformation is altered activity of AP1, which may arise either indirectly by oncogene expression or directly by structural modification of AP1. We report here that the v-jun oncogene and its progenitor c-jun, as fusion proteins with the lex-A-repressor DNA binding domain, can activate DNA replication from the Polyoma virus (Py) origin of replication, linked to the lex-A operator. The transcription-activation region of v-jun is required for activation of replication. When excess v-jun is expressed in the cell, replication is inhibited or 'squelched'. These results suggest that one consequence of deregulated jun activity could be altered DNA replication and that there are similarities in the way v-jun activates replication and transcription.

  6. Transgenic Animal Mutation Assays

    Institute of Scientific and Technical Information of China (English)

    Tao Chen; Ph.D.D.A.B.T.

    2005-01-01

    @@ The novel transgenic mouse and rat mutation assays have provided a tool for analyzing in vivo mutation in any tissue, thus permitting the direct comparison of cancer incidence with mutant frequency.

  7. The transcription factor ATF3 acts as an oncogene in mouse mammary tumorigenesis

    Directory of Open Access Journals (Sweden)

    Thames Howard D

    2008-09-01

    Full Text Available Abstract Background Overexpression of the bZip transcription factor, ATF3, in basal epithelial cells of transgenic mice under the control of the bovine cytokeratin-5 (CK5 promoter has previously been shown to induce epidermal hyperplasia, hair follicle anomalies and neoplastic lesions of the oral mucosa including squamous cell carcinomas. CK5 is known to be expressed in myoepithelial cells of the mammary gland, suggesting the possibility that transgenic BK5.ATF3 mice may exhibit mammary gland phenotypes. Methods Mammary glands from nulliparous mice in our BK5.ATF3 colony, both non-transgenic and transgenic, were examined for anomalies by histopathology and immunohistochemistry. Nulliparous and biparous female mice were observed for possible mammary tumor development, and suspicious masses were analyzed by histopathology and immunohistochemistry. Human breast tumor samples, as well as normal breast tissue, were similarly analyzed for ATF3 expression. Results Transgenic BK5.ATF3 mice expressed nuclear ATF3 in the basal layer of the mammary ductal epithelium, and often developed squamous metaplastic lesions in one or more mammary glands by 25 weeks of age. No progression to malignancy was seen in nulliparous BK5.ATF3 or non-transgenic mice held for 16 months. However, biparous BK5.ATF3 mice developed mammary carcinomas with squamous metaplasia between 6 months and one year of age, reaching an incidence of 67%. Cytokeratin expression in the tumors was profoundly disturbed, including expression of CK5 and CK8 (characteristic of basal and luminal cells, respectively throughout the epithelial component of the tumors, CK6 (potentially a stem cell marker, CK10 (a marker of interfollicular epidermal differentiation, and mIRSa2 and mIRSa3.1 (markers of the inner root sheath of hair follicles. Immunohistochemical studies indicated that a subset of human breast tumors exhibit high levels of nuclear ATF3 expression. Conclusion Overexpression of ATF3 in CK5

  8. Weeding with transgenes.

    Science.gov (United States)

    Duke, Stephen O

    2003-05-01

    Transgenes promise to reduce insecticide and fungicide use but relatively little has been done to significantly reduce herbicide use through genetic engineering. Recently, three strategies for transgene utilization have been developed that have the potential to change this. These are the improvement of weed-specific biocontrol agents, enhancement of crop competition or allelopathic traits, and production of cover crops that will self-destruct near the time of planting. Failsafe risk mitigation technologies are needed for most of these strategies.

  9. Oncogene mutational profile in nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang ZC

    2014-03-01

    Full Text Available Zi-Chen Zhang,1,* Sha Fu,1,* Fang Wang,1 Hai-Yun Wang,1 Yi-Xin Zeng,2 Jian-Yong Shao11Department of Molecular Diagnostics, 2Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China *These authors contributed equally to this work Abstract: Nasopharyngeal carcinoma (NPC is a common tumor in Southern China, but the oncogene mutational status of NPC patients has not been clarified. Using time-of-flight mass spectrometry, 238 mutation hotspots in 19 oncogenes were examined in 123 NPC patients. The relationships between mutational status and clinical data were assessed with a χ2 or Fisher's exact test. Survival analysis was performed using the Kaplan–Meier method with the log-rank test. In 123 patients, 21 (17.1% NPC tumors were positive for mutations in eight oncogenes: six patients had PIK3CA mutations (4.9%, five NRAS mutations (4.1%, four KIT mutations (3.3%, two PDGFRA mutations (1.6%, two ABL mutations (1.6%, and one with simultaneous mutations in HRAS, EGFR, and BRAF (1%. Patients with mutations were more likely to relapse or develop metastasis than those with wild-type alleles (P=0.019. No differences or correlations were found in other clinical characteristics or in patient survival. No mutations were detected in oncogenes AKT1, AKT2, CDK, ERBB2, FGFR1, FGFR3, FLT3, JAK2, KRAS, MET, and RET. These results demonstrate an association between NPC and mutations in NRAS, KIT, PIK3CA, PDGFRA, and ABL, which are associated with patient relapse and metastasis. Keywords: NPC, oncogene, mutation

  10. Multiple oncogenic mutations related to targeted therapy in nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jian-Wei Zhang; Hong-Yuan Zhao; Yu-Xiang Ma; Zhi-Huang Hu; Pei-Yu Huang; Li Zhang; Tao Qin; Shao-Dong Hong; Jing Zhang; Wen-Feng Fang; Yuan-Yuan Zhao; Yun-Peng Yang; Cong Xue; Yan Huang

    2015-01-01

    Introduction:An increasing number of targeted drugs have been tested for the treatment of nasopharyngeal carcinoma (NPC). However, targeted therapy-related oncogenic mutations have not been fully evaluated. This study aimed to detect targeted therapy-related oncogenic mutations in NPC and to determine which targeted therapy might be potentially effective in treating NPC. Methods:By using the SNaPshot assay, a rapid detection method, 19 mutation hotspots in 6 targeted therapy-related oncogenes were examined in 70 NPC patients. The associations between oncogenic mutations and clinicopathologic factors were analyzed. Results:Among 70 patients, 12 (17.1%) had mutations in 5 oncogenes:7 (10.0%) had v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) mutation, 2 (2.8%) had epidermal growth factor receptor (EGFR) mutation, 1 (1.4%) had phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutation, 1 (1.4%) had Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation, and 1 (1.4%) had simultaneous EGFR and v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) mutations. No significant differences were observed between oncogenic mutations and clinicopathologic characteristics. Additionally, these oncogenic mutations were not associated with tumor recurrence and metastasis. Conclusions:Oncogenic mutations are present in NPC patients. The efficacy of targeted drugs on patients with the related oncogenic mutations requires further validation.

  11. Characterization of Leukemia-Inducing Genes Using a Proto-Oncogene/Homeobox Gene Retroviral Human cDNA Library in a Mouse In Vivo Model.

    Directory of Open Access Journals (Sweden)

    Su Hwa Jang

    Full Text Available The purpose of this research is to develop a method to screen a large number of potential driver mutations of acute myeloid leukemia (AML using a retroviral cDNA library and murine bone marrow transduction-transplantation system. As a proof-of-concept, murine bone marrow (BM cells were transduced with a retroviral cDNA library encoding well-characterized oncogenes and homeobox genes, and the virus-transduced cells were transplanted into lethally irradiated mice. The proto-oncogenes responsible for leukemia initiation were identified by PCR amplification of cDNA inserts from genomic DNA isolated from leukemic cells. In an initial screen of ten leukemic mice, the MYC proto-oncogene was detected in all the leukemic mice. Of ten leukemic mice, 3 (30% had MYC as the only transgene, and seven mice (70% had additional proto-oncogene inserts. We repeated the same experiment after removing MYC-related genes from the library to characterize additional leukemia-inducing gene combinations. Our second screen using the MYC-deleted proto-oncogene library confirmed MEIS1and the HOX family as cooperating oncogenes in leukemia pathogenesis. The model system we introduced in this study will be valuable in functionally screening novel combinations of genes for leukemogenic potential in vivo, and the system will help in the discovery of new targets for leukemia therapy.

  12. Characterization of Leukemia-Inducing Genes Using a Proto-Oncogene/Homeobox Gene Retroviral Human cDNA Library in a Mouse In Vivo Model.

    Science.gov (United States)

    Jang, Su Hwa; Lee, Sohyun; Chung, Hee Yong

    2015-01-01

    The purpose of this research is to develop a method to screen a large number of potential driver mutations of acute myeloid leukemia (AML) using a retroviral cDNA library and murine bone marrow transduction-transplantation system. As a proof-of-concept, murine bone marrow (BM) cells were transduced with a retroviral cDNA library encoding well-characterized oncogenes and homeobox genes, and the virus-transduced cells were transplanted into lethally irradiated mice. The proto-oncogenes responsible for leukemia initiation were identified by PCR amplification of cDNA inserts from genomic DNA isolated from leukemic cells. In an initial screen of ten leukemic mice, the MYC proto-oncogene was detected in all the leukemic mice. Of ten leukemic mice, 3 (30%) had MYC as the only transgene, and seven mice (70%) had additional proto-oncogene inserts. We repeated the same experiment after removing MYC-related genes from the library to characterize additional leukemia-inducing gene combinations. Our second screen using the MYC-deleted proto-oncogene library confirmed MEIS1and the HOX family as cooperating oncogenes in leukemia pathogenesis. The model system we introduced in this study will be valuable in functionally screening novel combinations of genes for leukemogenic potential in vivo, and the system will help in the discovery of new targets for leukemia therapy.

  13. Xmrk, kras and myc transgenic zebrafish liver cancer models share molecular signatures with subsets of human hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Weiling Zheng

    Full Text Available Previously three oncogene transgenic zebrafish lines with inducible expression of xmrk, kras or Myc in the liver have been generated and these transgenic lines develop oncogene-addicted liver tumors upon chemical induction. In the current study, comparative transcriptomic approaches were used to examine the correlation of the three induced transgenic liver cancers with human liver cancers. RNA profiles from the three zebrafish tumors indicated relatively small overlaps of significantly deregulated genes and biological pathways. Nevertheless, the three transgenic tumor signatures all showed significant correlation with advanced or very advanced human hepatocellular carcinoma (HCC. Interestingly, molecular signature from each oncogene-induced zebrafish liver tumor correlated with only a small subset of human HCC samples (24-29% and there were conserved up-regulated pathways between the zebrafish and correlated human HCC subgroup. The three zebrafish liver cancer models together represented nearly half (47.2% of human HCCs while some human HCCs showed significant correlation with more than one signature defined from the three oncogene-addicted zebrafish tumors. In contrast, commonly deregulated genes (21 up and 16 down in the three zebrafish tumor models generally showed accordant deregulation in the majority of human HCCs, suggesting that these genes might be more consistently deregulated in a broad range of human HCCs with different molecular mechanisms and thus serve as common diagnosis markers and therapeutic targets. Thus, these transgenic zebrafish models with well-defined oncogene-induced tumors are valuable tools for molecular classification of human HCCs and for understanding of molecular drivers in hepatocarcinogenesis in each human HCC subgroup.

  14. Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish.

    Directory of Open Access Journals (Sweden)

    Cristina Santoriello

    Full Text Available BACKGROUND: Melanoma is the most aggressive and lethal form of skin cancer. Because of the increasing incidence and high lethality of melanoma, animal models for continuously observing melanoma formation and progression as well as for testing pharmacological agents are needed. METHODOLOGY AND PRINCIPAL FINDINGS: Using the combinatorial Gal4-UAS system, we have developed a zebrafish transgenic line that expresses oncogenic HRAS under the kita promoter. Already at 3 days transgenic kita-GFP-RAS larvae show a hyper-pigmentation phenotype as earliest evidence of abnormal melanocyte growth. By 2-4 weeks, masses of transformed melanocytes form in the tail stalk of the majority of kita-GFP-RAS transgenic fish. The adult tumors evident between 1-3 months of age faithfully reproduce the immunological, histological and molecular phenotypes of human melanoma, but on a condensed time-line. Furthermore, they show transplantability, dependence on mitfa expression and do not require additional mutations in tumor suppressors. In contrast to kita expressing melanocyte progenitors that efficiently develop melanoma, mitfa expressing progenitors in a second Gal4-driver line were 4 times less efficient in developing melanoma during the three months observation period. CONCLUSIONS AND SIGNIFICANCE: This indicates that zebrafish kita promoter is a powerful tool for driving oncogene expression in the right cells and at the right level to induce early onset melanoma in the presence of tumor suppressors. Thus our zebrafish model provides a link between kita expressing melanocyte progenitors and melanoma and offers the advantage of a larval phenotype suitable for large scale drug and genetic modifier screens.

  15. Radiosensitivity of tumor cells. Oncogenes and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Peltenburg, L. T. C. [Leiden Univ., Leiden (Netherlands). Dept. of Clinical Oncology

    2000-12-01

    The success of treatment of cancer patients by radiotherapy largely depends on tumor radiosensitivity. Several molecular factors that determine the sensitivity of tumor cells to ionizing radiation have been identified during the last couple of years. Some of these factors are known as oncogenes and tumor suppressor genes. This review focuses on the influence of some of these molecular factors on a major determinant of radiosensitivity: i. e. programmed cell death or apoptosis. The crucial molecular step in ionizing radiation-induced apoptosis is the release of mitochondrial cytochrome c into the cell's cytosol. The ways the tumor suppressor protein p53, as well as the oncogenes ras and raf, c-myc and Bcl-2 can influence this process at different stages are presented. As will be discussed, the result of activation of an oncoprotein on tumor radiosensitivity depends on its mechanism of action and on the presence of other (oncogenic) factors, since complex interactions among many molecular factors determine the delicate balance between cell proliferation and cell death. The ongoing identification and characterization of factors influencing apoptosis will eventually make it possible to predict tumor radiosensitivity and thereby improve cancer treatment.

  16. Generation of transgenic frogs.

    Science.gov (United States)

    Loeber, Jana; Pan, Fong Cheng; Pieler, Tomas

    2009-01-01

    The possibility of generating transgenic animals is of obvious advantage for the analysis of gene function in development and disease. One of the established vertebrate model systems in developmental biology is the amphibian Xenopus laevis. Different techniques have been successfully applied to create Xenopus transgenics; in this chapter, the so-called meganuclease method is described. This technique is not only technically simple, but also comparably efficient and applicable to both Xenopus laevis and Xenopus tropicalis. The commercially available endonuclease I-SceI (meganuclease) mediates the integration of foreign DNA into the frog genome after coinjection into fertilized eggs. Tissue-specific gene expression, as well as germline transmission, has been observed.

  17. Transgenic Crops for Herbicide Resistance

    Science.gov (United States)

    Since their introduction in 1995, crops made resistant to the broad-spectrum herbicides glyphosate and glufosinate with transgenes are widely available and used in much of the world. As of 2008, over 80% of the transgenic crops grown world-wide have this transgenic trait. This technology has had m...

  18. Transgene Stacking in Cotton Improvement

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To date,more and more transgenic varieties of upland cotton(Gossypium hirsutum L.) generated with transgenes,which derived from varies of alien species,are playing important role in agricultural production.Stacking of multi-transgenes has a potential for combining all the merits of distinct

  19. Transgenic Farm Animals

    Science.gov (United States)

    The development of recombinant DNA technology has enabled scientists to isolate single genes, analyze and modify their nucleotide structure(s), make copies of these isolated genes, and insert copies of these genes into the genome of plants and animals. The transgenic technology of adding genes to li...

  20. [Progress on transgenic mosquitoes].

    Science.gov (United States)

    Yang, Pin

    2011-04-30

    The genetically modified mosquitoes have been developed aiming to control mosquito-borne diseases by either reducing population sizes or replacing existing populations with vectors unable to transmit the disease. introduces some progress on the generation of transgenic mosquitoes and their fitness in wild population. This paper

  1. Transgenic animal bioreactors.

    Science.gov (United States)

    Houdebine, L M

    2000-01-01

    The production of recombinant proteins is one of the major successes of biotechnology. Animal cells are required to synthesize proteins with the appropriate post-translational modifications. Transgenic animals are being used for this purpose. Milk, egg white, blood, urine, seminal plasma and silk worm cocoon from transgenic animals are candidates to be the source of recombinant proteins at an industrial scale. Although the first recombinant protein produced by transgenic animals is expected to be in the market in 2000, a certain number of technical problems remain to be solved before the various systems are optimized. Although the generation of transgenic farm animals has become recently easier mainly with the technique of animal cloning using transfected somatic cells as nuclear donor, this point remains a limitation as far as cost is concerned. Numerous experiments carried out for the last 15 years have shown that the expression of the transgene is predictable only to a limited extent. This is clearly due to the fact that the expression vectors are not constructed in an appropriate manner. This undoubtedly comes from the fact that all the signals contained in genes have not yet been identified. Gene constructions thus result sometime in poorly functional expression vectors. One possibility consists in using long genomic DNA fragments contained in YAC or BAC vectors. The other relies on the identification of the major important elements required to obtain a satisfactory transgene expression. These elements include essentially gene insulators, chromatin openers, matrix attached regions, enhancers and introns. A certain number of proteins having complex structures (formed by several subunits, being glycosylated, cleaved, carboxylated...) have been obtained at levels sufficient for an industrial exploitation. In other cases, the mammary cellular machinery seems insufficient to promote all the post-translational modifications. The addition of genes coding for enzymes

  2. Activation of proto-oncogenes by disruption of chromosome neighborhoods.

    Science.gov (United States)

    Hnisz, Denes; Weintraub, Abraham S; Day, Daniel S; Valton, Anne-Laure; Bak, Rasmus O; Li, Charles H; Goldmann, Johanna; Lajoie, Bryan R; Fan, Zi Peng; Sigova, Alla A; Reddy, Jessica; Borges-Rivera, Diego; Lee, Tong Ihn; Jaenisch, Rudolf; Porteus, Matthew H; Dekker, Job; Young, Richard A

    2016-03-25

    Oncogenes are activated through well-known chromosomal alterations such as gene fusion, translocation, and focal amplification. In light of recent evidence that the control of key genes depends on chromosome structures called insulated neighborhoods, we investigated whether proto-oncogenes occur within these structures and whether oncogene activation can occur via disruption of insulated neighborhood boundaries in cancer cells. We mapped insulated neighborhoods in T cell acute lymphoblastic leukemia (T-ALL) and found that tumor cell genomes contain recurrent microdeletions that eliminate the boundary sites of insulated neighborhoods containing prominent T-ALL proto-oncogenes. Perturbation of such boundaries in nonmalignant cells was sufficient to activate proto-oncogenes. Mutations affecting chromosome neighborhood boundaries were found in many types of cancer. Thus, oncogene activation can occur via genetic alterations that disrupt insulated neighborhoods in malignant cells.

  3. Oncogenic extracellular vesicles in brain tumour progression

    Directory of Open Access Journals (Sweden)

    Esterina eD'Asti

    2012-07-01

    Full Text Available The brain is a frequent site of neoplastic growth, including both primary and metastatic tumours. The clinical intractability of many brain tumours and their distinct biology are implicitly linked to the unique microenvironment of the central nervous system (CNS and cellular interactions within. Among the most intriguing forms of cellular interactions is that mediated by membrane-derived extracellular vesicles (EVs. Their biogenesis (vesiculation and uptake by recipient cells serves as a unique mechanism of intercellular trafficking of complex biological messages including the exchange of molecules that cannot be released through classical secretory pathways, or that are prone to extracellular degradation. Tumour cells produce EVs containing molecular effectors of several cancer-related processes such as growth, invasion, drug resistance, angiogenesis, and coagulopathy. Notably, tumour-derived EVs (oncosomes also contain oncogenic proteins, transcripts, DNA and microRNA (miR. Uptake of this material may change properties of the recipient cells and impact the tumour microenvironment. Examples of transformation-related molecules found in the cargo of tumour-derived EVs include the oncogenic epidermal growth factor receptor (EGFRvIII, tumour suppressors (PTEN and oncomirs (miR-520g. It is postulated that EVs circulating in blood or cerebrospinal fluid (CSF of brain tumour patients may be used to decipher molecular features (mutations of the underlying malignancy, reflect responses to therapy or molecular subtypes of primary brain tumours (e.g. glioma or medulloblastoma. It is possible that metastases to the brain may also emit EVs with clinically relevant oncogenic signatures. Thus EVs emerge as a novel and functionally important vehicle of intercellular communication that can mediate multiple biological effects. In addition, they provide a unique platform to develop molecular biomarkers in brain malignancies.

  4. Melanoma: oncogenic drivers and the immune system

    Science.gov (United States)

    Karachaliou, Niki; Pilotto, Sara; Teixidó, Cristina; Viteri, Santiago; González-Cao, María; Riso, Aldo; Morales-Espinosa, Daniela; Molina, Miguel Angel; Chaib, Imane; Santarpia, Mariacarmela; Richardet, Eduardo; Bria, Emilio

    2015-01-01

    Advances and in-depth understanding of the biology of melanoma over the past 30 years have contributed to a change in the consideration of melanoma as one of the most therapy-resistant malignancies. The finding that oncogenic BRAF mutations drive tumor growth in up to 50% of melanomas led to a molecular therapy revolution for unresectable and metastatic disease. Moving beyond BRAF, inactivation of immune regulatory checkpoints that limit T cell responses to melanoma has provided targets for cancer immunotherapy. In this review, we discuss the molecular biology of melanoma and we focus on the recent advances of molecularly targeted and immunotherapeutic approaches. PMID:26605311

  5. Intracortical osteoblastic osteosarcoma with oncogenic rickets

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Hirohashi, Setsuo [Pathology Division, National Cancer Center Research Institute, Tokyo (Japan); Shimoda, Tadakazu [Clinical Laboratory Division, National Cancer Center Hospital, Tokyo (Japan); Yokoyama, Ryohei; Beppu, Yasuo [Orthopedic Division, National Cancer Center Hospital, Tokyo (Japan); Maeda, Shotaro [Department of Pathology, Nippon Medical School Hospital, Tokyo (Japan)

    1999-01-01

    Intracortical osteosarcoma is the rarest variant of osteosarcoma, occurring within, and usually confined to, the cortical bone. Oncogenic osteomalacia, or rickets, is an unusual clinicopathologic entity in which vitamin D-resistant osteomalacia, or rickets, occurs in association with some tumors of soft tissue or bone. We present a case of oncogenic rickets associated with intracortical osteosarcoma of the tibia in a 9-year-old boy, whose roentgenographic abnormalities of rickets disappeared and pertinent laboratory data except for serum alkaline phosphatase became normal after surgical resection of the tumor. Histologically, the tumor was an osteosarcoma with a prominent osteoblastic pattern. An unusual microscopic feature was the presence of matrix mineralization showing rounded calcified structures (calcified spherules). Benign osteoblastic tumors, such as osteoid osteoma and osteoblastoma, must be considered in the differential diagnosis because of the relatively low cellular atypia and mitotic activity of this tumor. The infiltrating pattern with destruction or engulfment of normal bone is a major clue to the correct diagnosis of intracortical osteosarcoma. The co-existing radiographic changes of rickets were due to the intracortical osteosarcoma. (orig.) With 8 figs., 25 refs.

  6. Oncogenic activation of NF-kappaB.

    Science.gov (United States)

    Staudt, Louis M

    2010-06-01

    Recent genetic evidence has established a pathogenetic role for NF-kappaB signaling in cancer. NF-kappaB signaling is engaged transiently when normal B lymphocytes respond to antigens, but lymphomas derived from these cells accumulate genetic lesions that constitutively activate NF-kappaB signaling. Many genetic aberrations in lymphomas alter CARD11, MALT1, or BCL10, which constitute a signaling complex that is intermediate between the B-cell receptor and IkappaB kinase. The activated B-cell-like subtype of diffuse large B-cell lymphoma activates NF-kappaB by a variety of mechanisms including oncogenic mutations in CARD11 and a chronic active form of B-cell receptor signaling. Normal plasma cells activate NF-kappaB in response to ligands in the bone marrow microenvironment, but their malignant counterpart, multiple myeloma, sustains a variety of genetic hits that stabilize the kinase NIK, leading to constitutive activation of the classical and alternative NF-kappaB pathways. Various oncogenic abnormalities in epithelial cancers, including mutant K-ras, engage unconventional IkappaB kinases to activate NF-kappaB. Inhibition of constitutive NF-kappaB signaling in each of these cancer types induces apoptosis, providing a rationale for the development of NF-kappaB pathway inhibitors for the treatment of cancer.

  7. A novel model of SCID-X1 reconstitution reveals predisposition to retrovirus-induced lymphoma but no evidence of gammaC gene oncogenicity.

    Science.gov (United States)

    Scobie, Linda; Hector, Ralph D; Grant, Louise; Bell, Margaret; Nielsen, Anne A; Meikle, Sharon; Philbey, Adrian; Philbey, Adrain; Thrasher, Adrian J; Thrasher, Adrain J; Cameron, Ewan R; Blyth, Karen; Neil, James C

    2009-06-01

    The emergence of leukemia following gene transfer to restore common cytokine receptor gamma chain (gammaC) function in X-linked severe combined immunodeficiency (SCID-X1) has raised important questions with respect to gene therapy safety. To explore the risk factors involved, we tested the oncogenic potential of human gammaC in new strains of transgenic mice expressing the gene under the control of the CD2 promoter and locus control region (LCR). These mice demonstrated mildly perturbed T-cell development, with an increased proportion of thymic CD8 cells, but showed no predisposition to tumor development even on highly tumor prone backgrounds or after gamma-retrovirus infection. The human CD2-gammaC transgene rescued T and B-cell development in gammaC(-/-) mice but with an age-related delay, mimicking postnatal reconstitution in SCID-X1 gene therapy subjects. However, we noted that gammaC(-/-) mice are acutely susceptible to murine leukemia virus (MLV) leukemogenesis, and that this trait was not corrected by the gammaC transgene. We conclude that the SCID-X1 phenotype can be corrected safely by stable ectopic expression of gammaC and that the transgene is not significantly oncogenic when expressed in this context. However, an underlying predisposition conferred by the SCID-X1 background appears to collaborate with insertional mutagenesis to increase the risk of tumor development.

  8. A Novel Model of SCID-X1 Reconstitution Reveals Predisposition to Retrovirus-induced Lymphoma but No Evidence of γC Gene Oncogenicity

    Science.gov (United States)

    Scobie, Linda; Hector, Ralph D; Grant, Louise; Bell, Margaret; Nielsen, Anne A; Meikle, Sharon; Philbey, Adrain; Thrasher, Adrain J; Cameron, Ewan R; Blyth, Karen; Neil, James C

    2009-01-01

    The emergence of leukemia following gene transfer to restore common cytokine receptor γ chain (γC) function in X-linked severe combined immunodeficiency (SCID-X1) has raised important questions with respect to gene therapy safety. To explore the risk factors involved, we tested the oncogenic potential of human γC in new strains of transgenic mice expressing the gene under the control of the CD2 promoter and locus control region (LCR). These mice demonstrated mildly perturbed T-cell development, with an increased proportion of thymic CD8 cells, but showed no predisposition to tumor development even on highly tumor prone backgrounds or after γ-retrovirus infection. The human CD2-γC transgene rescued T and B-cell development in γC−/− mice but with an age-related delay, mimicking postnatal reconstitution in SCID-X1 gene therapy subjects. However, we noted that γC−/− mice are acutely susceptible to murine leukemia virus (MLV) leukemogenesis, and that this trait was not corrected by the γC transgene. We conclude that the SCID-X1 phenotype can be corrected safely by stable ectopic expression of γC and that the transgene is not significantly oncogenic when expressed in this context. However, an underlying predisposition conferred by the SCID-X1 background appears to collaborate with insertional mutagenesis to increase the risk of tumor development. PMID:19337236

  9. A Novel Model of SCID-X1 Reconstitution Reveals Predisposition to Retrovirus-induced Lymphoma but No Evidence of γC Gene Oncogenicity.

    Science.gov (United States)

    Scobie, Linda; Hector, Ralph D; Grant, Louise; Bell, Margaret; Nielsen, Anne A; Meikle, Sharon; Philbey, Adrain; Thrasher, Adrain J; Cameron, Ewan R; Blyth, Karen; Neil, James C

    2009-06-01

    The emergence of leukemia following gene transfer to restore common cytokine receptor γ chain (γC) function in X-linked severe combined immunodeficiency (SCID-X1) has raised important questions with respect to gene therapy safety. To explore the risk factors involved, we tested the oncogenic potential of human γC in new strains of transgenic mice expressing the gene under the control of the CD2 promoter and locus control region (LCR). These mice demonstrated mildly perturbed T-cell development, with an increased proportion of thymic CD8 cells, but showed no predisposition to tumor development even on highly tumor prone backgrounds or after γ-retrovirus infection. The human CD2-γC transgene rescued T and B-cell development in γC(-/-) mice but with an age-related delay, mimicking postnatal reconstitution in SCID-X1 gene therapy subjects. However, we noted that γC(-/-) mice are acutely susceptible to murine leukemia virus (MLV) leukemogenesis, and that this trait was not corrected by the γC transgene. We conclude that the SCID-X1 phenotype can be corrected safely by stable ectopic expression of γC and that the transgene is not significantly oncogenic when expressed in this context. However, an underlying predisposition conferred by the SCID-X1 background appears to collaborate with insertional mutagenesis to increase the risk of tumor development.

  10. Anti-Differentiation Effect of Oncogenic Met Receptor in Terminally-Differentiated Myotubes

    Directory of Open Access Journals (Sweden)

    Valentina Sala

    2015-02-01

    Full Text Available Activation of the hepatocyte growth factor/Met receptor is involved in muscle regeneration, through promotion of proliferation and inhibition of differentiation in myogenic stem cells (MSCs. We previously described that the specific expression of an oncogenic version of the Met receptor (Tpr–Met in terminally-differentiated skeletal muscle causes muscle wasting in vivo. Here, we induced Tpr–Met in differentiated myotube cultures derived from the transgenic mouse. These cultures showed a reduced protein level of myosin heavy chain (MyHC, increased phosphorylation of Erk1,2 MAPK, the formation of giant sacs of myonuclei and the collapse of elongated myotubes. Treatment of the cultures with an inhibitor of the MAPK kinase pathway or with an inhibitor of the proteasome increased the expression levels of MyHC. In addition, the inhibition of the MAPK kinase pathway prevented the formation of myosacs and myotube collapse. Finally, we showed that induction of Tpr–Met in primary myotubes was unable to produce endoreplication in their nuclei. In conclusion, our data indicate that multinucleated, fused myotubes may be forced to disassemble their contractile apparatus by the Tpr–Met oncogenic factor, but they resist the stimulus toward the reactivation of the cell cycle.

  11. Lentivirus-Mediated Oncogene Introduction into Mammary Cells In Vivo Induces Tumors

    Directory of Open Access Journals (Sweden)

    Stefan K. Siwko

    2008-07-01

    Full Text Available We recently reported the introduction of oncogene-expressing avian retroviruses into somatic mammary cells in mice susceptible to infection by transgenic expression of tva, encoding the receptor for subgroup A avian leukosis-sarcoma virus (ALSV. Because ALSV-based vectors poorly infect nondividing cells, they are inadequate for studying carcinogenesis initiated from nonproliferative cells (e.g., stem cells. Lentivirus pseudotyped with the envelope protein of ALSV infects nondividing TVA-producing cells in culture but has not previously been tested for introducing genes in vivo. Here, we demonstrate that these vectors infected mammary cells in vivo when injected into the mammary ductal lumen of mice expressing tva under the control of the keratin 19 promoter. Furthermore, intraductal injection of this lentiviral vector carrying the polyoma middle T antigen gene induced atypical ductal hyperplasia and ductal carcinoma in situ-like premalignant lesions in 30 days and palpable invasive tumors at a median latency of 3.3 months. Induced tumors were a mixed epithelial/myoepithelial histologic diagnosis, occasionally displayed squamous metaplasia, and were estrogen receptor-negative. This work demonstrates the first use of a lentiviral vector to introduce oncogenes for modeling cancer in mice, and this vector system may be especially suitable for introducing genetic alterations into quiescent cells in vivo.

  12. Drosophila PRL-1 is a growth inhibitor that counteracts the function of the Src oncogene.

    Science.gov (United States)

    Pagarigan, Krystle T; Bunn, Bryce W; Goodchild, Jake; Rahe, Travis K; Weis, Julie F; Saucedo, Leslie J

    2013-01-01

    Phosphatase of Regenerating Liver (PRL) family members have emerged as molecular markers that significantly correlate to the ability of many cancers to metastasize. However, contradictory cellular responses to PRL expression have been reported, including the inhibition of cell cycle progression. An obvious culprit for the discrepancy is the use of dozens of different cell lines, including many isolated from tumors or cultured cells selected for immortalization which may have missing or mutated modulators of PRL function. We created transgenic Drosophila to study the effects of PRL overexpression in a genetically controlled, organismal model. Our data support the paradigm that the normal cellular response to high levels of PRL is growth suppression and furthermore, that PRL can counter oncogenic activity of Src. The ability of PRL to inhibit growth under normal conditions is dependent on a CAAX motif that is required to localize PRL to the apical edge of the lateral membrane. However, PRL lacking the CAAX motif can still associate indiscriminately with the plasma membrane and retains its ability to inhibit Src function. We propose that PRL binds to other membrane-localized proteins that are effectors of Src or to Src itself. This first examination of PRL in a model organism demonstrates that PRL performs as a tumor suppressor and underscores the necessity of identifying the conditions that enable it to transform into an oncogene in cancer.

  13. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Olsen, Jesper V; Brandts, Christian

    2009-01-01

    Inappropriate activation of oncogenic kinases at intracellular locations is frequently observed in human cancers, but its effects on global signaling are incompletely understood. Here, we show that the oncogenic mutant of Flt3 (Flt3-ITD), when localized at the endoplasmic reticulum (ER), aberrant...

  14. Oncogenic Transformation of Human-Derived Gastric Organoids.

    Science.gov (United States)

    Bertaux-Skeirik, Nina; Centeno, Jomaris; Gao, Jian; Gabre, Joel; Zavros, Yana

    2016-08-19

    The culture of organoids has represented a significant advancement in the gastrointestinal research field. Previous research studies have described the oncogenic transformation of human intestinal and mouse gastric organoids. Here we detail the protocol for the oncogenic transformation and orthotopic transplantation of human-derived gastric organoids.

  15. Oncogenic pathways implicated in ovarian epithelial cancer.

    Science.gov (United States)

    Nicosia, Santo V; Bai, Wenlong; Cheng, Jin Q; Coppola, Domenico; Kruk, Patricia A

    2003-08-01

    Characterization of intracellular signaling pathways should lead to a better understanding of ovarian epithelial carcinogenesis and provide an opportunity to interfere with signal transduction targets involved in ovarian tumor cell growth, survival, and progression. Challenges toward such an effort are significant because many of these signals are part of cascades within an intricate and likely redundant intracellular signaling network (Fig.1). For instance, a given signal may activate a dual intracellular pathway (ie, MEK1-MAPK and PI3K/Akt required for fibronectin-dependent activation of matrix metalloproteinase 9). A single pathway also may transduce more than one biologic or oncogenic signal (ie, PI3K signaling in epithelial and endothelial cell growth and sprouting of neovessels). Despite these challenges, evidence for therapeutic targeting of signal transduction pathways is accumulating in human cancer. For instance, the EGF-specific tyrosine kinase inhibitor ZD 1839 (Iressa) may have a beneficial therapeutic effect on ovarian epithelial cancer. Therapy of this cancer may include inhibitors of PI kinase (quercetin), ezrin and PIP kinase (genistein). The G protein-coupled family of receptors, including LPA, also is an attractive target to drugs, although their frequent pleiotropic functions may be at times toxic and lack specificity. Because of the lack of notable toxicity, PI3K/Akt pathway inhibitors such as FTIs are a promising targeted therapy of ovarian epithelial cancer. Increasing insight into the oncogenic pathways involved in ovarian epithelial cancer also is helping clinicians to understand better the phenomenon of chemoresistance in this malignancy. Oncogenic activation of gamma-synuclein promotes cell survival and provides resistance to paclitaxel, but such a resistance is partially overcome by an MEK inhibitor that suppresses ERK activity. Ovarian epithelial cancer is a complex group of neoplasms with an overall poor prognosis. Comprehension of

  16. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma.

    Science.gov (United States)

    Northcott, Paul A; Lee, Catherine; Zichner, Thomas; Stütz, Adrian M; Erkek, Serap; Kawauchi, Daisuke; Shih, David J H; Hovestadt, Volker; Zapatka, Marc; Sturm, Dominik; Jones, David T W; Kool, Marcel; Remke, Marc; Cavalli, Florence M G; Zuyderduyn, Scott; Bader, Gary D; VandenBerg, Scott; Esparza, Lourdes Adriana; Ryzhova, Marina; Wang, Wei; Wittmann, Andrea; Stark, Sebastian; Sieber, Laura; Seker-Cin, Huriye; Linke, Linda; Kratochwil, Fabian; Jäger, Natalie; Buchhalter, Ivo; Imbusch, Charles D; Zipprich, Gideon; Raeder, Benjamin; Schmidt, Sabine; Diessl, Nicolle; Wolf, Stephan; Wiemann, Stefan; Brors, Benedikt; Lawerenz, Chris; Eils, Jürgen; Warnatz, Hans-Jörg; Risch, Thomas; Yaspo, Marie-Laure; Weber, Ursula D; Bartholomae, Cynthia C; von Kalle, Christof; Turányi, Eszter; Hauser, Peter; Sanden, Emma; Darabi, Anna; Siesjö, Peter; Sterba, Jaroslav; Zitterbart, Karel; Sumerauer, David; van Sluis, Peter; Versteeg, Rogier; Volckmann, Richard; Koster, Jan; Schuhmann, Martin U; Ebinger, Martin; Grimes, H Leighton; Robinson, Giles W; Gajjar, Amar; Mynarek, Martin; von Hoff, Katja; Rutkowski, Stefan; Pietsch, Torsten; Scheurlen, Wolfram; Felsberg, Jörg; Reifenberger, Guido; Kulozik, Andreas E; von Deimling, Andreas; Witt, Olaf; Eils, Roland; Gilbertson, Richard J; Korshunov, Andrey; Taylor, Michael D; Lichter, Peter; Korbel, Jan O; Wechsler-Reya, Robert J; Pfister, Stefan M

    2014-07-24

    Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.

  17. The Exceptional Oncogenicity of HTLV-1.

    Science.gov (United States)

    Tagaya, Yutaka; Gallo, Robert C

    2017-01-01

    Human T-cell leukemia virus-1 (HTLV-1) is the first pathogenic human retrovirus identified in 1979 by the Gallo group. HTLV-1 causes fatal T-cell leukemia (adult T cell leukemia) and a progressive myelopahy (HTLV-1-associated myelopathy/ tropical spastic paraparesis, HAM/TSP) and other disorders. Since the discovery of HTLV-1, several other microorganisms are demonstrated to cause cancer in humans. In this article, we investigated the oncogenic capacity of HTLV-1, in comparison with those of other oncoviruses and one oncobacterium (Helicobacter pylori, H. Pylori) based on published literature. We conclude here that HTLV-1 is one of the most and may be the most carcinogenic among them and arguably one of the most potent of the known human carcinogens. This fact has not been noted before and is particularly important to justify why we need to study HTLV-1 as an important model of human viral oncogenesis.

  18. Transgenic algae engineered for higher performance

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  19. Glycerophospholipid profile in oncogene-induced senescence.

    Science.gov (United States)

    Cadenas, Cristina; Vosbeck, Sonja; Hein, Eva-Maria; Hellwig, Birte; Langer, Alice; Hayen, Heiko; Franckenstein, Dennis; Büttner, Bettina; Hammad, Seddik; Marchan, Rosemarie; Hermes, Matthias; Selinski, Silvia; Rahnenführer, Jörg; Peksel, Begüm; Török, Zsolt; Vígh, László; Hengstler, Jan G

    2012-09-01

    Alterations in lipid metabolism and in the lipid composition of cellular membranes are linked to the pathology of numerous diseases including cancer. However, the influence of oncogene expression on cellular lipid profile is currently unknown. In this work we analyzed changes in lipid profiles that are induced in the course of ERBB2-expression mediated premature senescence. As a model system we used MCF-7 breast cancer cells with doxycycline-inducible expression of NeuT, an oncogenic ERBB2 variant. Affymetrix gene array data showed NeuT-induced alterations in the transcription of many enzymes involved in lipid metabolism, several of which (ACSL3, CHPT1, PLD1, LIPG, MGLL, LDL and NPC1) could be confirmed by quantitative realtime PCR. A study of the glycerophospholipid and lyso-glycerophospholipid profiles, obtained by high performance liquid chromatography coupled to Fourier-transform ion cyclotron resonance-mass spectrometry revealed senescence-associated changes in numerous lipid species, including mitochondrial lipids. The most prominent changes were found in PG(34:1), PG(36:1) (increased) and LPE(18:1), PG(40:7) and PI(36:1) (decreased). Statistical analysis revealed a general trend towards shortened phospholipid acyl chains in senescence and a significant trend to more saturated acyl chains in the class of phosphatidylglycerol. Additionally, the cellular cholesterol content was elevated and accumulated in vacuoles in senescent cells. These changes were accompanied by increased membrane fluidity. In mitochondria, loss of membrane potential along with altered intracellular distribution was observed. In conclusion, we present a comprehensive overview of altered cholesterol and glycerophospholipid patterns in senescence, showing that predominantly mitochondrial lipids are affected and lipid species less susceptible to peroxidation are increased.

  20. E6/E7 oncogenes in epithelial suprabasal layers and estradiol promote cervical growth and ear regeneration.

    Science.gov (United States)

    García, C; Hernández-García, D; Valencia, C; Rojo-León, V; Pérez-Estrada, J-R; Werner, M; Covarrubias, L

    2017-08-28

    Tissue growth is a common characteristic of carcinogenesis and regeneration. Here we show that suprabasal expression of human papillomavirus (HPV)16 E6/E7 oncogenes in Tg(K6b-E6/E7) mice, similar to that observed in HPV-infected human tissue, and estradiol increased cervical epithelium growth and ear-hole closure efficiency. Oncogenes in combination with estradiol had a significant contribution to the proliferation of suprabasal cells of cervical epithelium that correlated with an increased expression of keratin genes. Remarkably, long-term treatments with estradiol resulted in evident cellular and tissue abnormalities indicative of a precancerous phenotype. Regenerating ear epithelium of transgenic mice also showed increased suprabasal cell proliferation and expression of keratin genes. Unexpectedly, we observed higher ear regeneration efficiency in adult than in young female mice, which was further increased by E6/E7 oncogenes. Supporting a role of estradiol in this phenomenon, ovariectomy and treatment with an estrogen receptor inhibitor caused a significant reduction in regenerative capacity. Our data suggest that Tg(K6b-E6/E7) mice are unique to mimic the initial stages of HPV-mediated cervical carcinogenesis, and ear regeneration could facilitate the elucidation of mechanisms involved.

  1. Fatty Acid Synthase: A Metabolic Enzyme and Candidate Oncogene in Prostate Cancer

    Science.gov (United States)

    Migita, Toshiro; Ruiz, Stacey; Fornari, Alessandro; Fiorentino, Michelangelo; Priolo, Carmen; Zadra, Giorgia; Inazuka, Fumika; Grisanzio, Chiara; Palescandolo, Emanuele; Shin, Eyoung; Fiore, Christopher; Xie, Wanling; Kung, Andrew L.; Febbo, Phillip G.; Subramanian, Aravind; Mucci, Lorelei; Ma, Jing; Signoretti, Sabina; Stampfer, Meir; Hahn, William C.; Finn, Stephen

    2009-01-01

    Background Overexpression of the fatty acid synthase (FASN) gene has been implicated in prostate carcinogenesis. We sought to directly assess the oncogenic potential of FASN. Methods We used immortalized human prostate epithelial cells (iPrECs), androgen receptor–overexpressing iPrECs (AR-iPrEC), and human prostate adenocarcinoma LNCaP cells that stably overexpressed FASN for cell proliferation assays, soft agar assays, and tests of tumor formation in immunodeficient mice. Transgenic mice expressing FASN in the prostate were generated to assess the effects of FASN on prostate histology. Apoptosis was evaluated by Hoechst 33342 staining and by fluorescence-activated cell sorting in iPrEC-FASN cells treated with stimulators of the intrinsic and extrinsic pathways of apoptosis (ie, camptothecin and anti-Fas antibody, respectively) or with a small interfering RNA (siRNA) targeting FASN. FASN expression was compared with the apoptotic index assessed by the terminal deoxynucleotidyltransferase-mediated UTP end-labeling method in 745 human prostate cancer samples by using the least squares means procedure. All statistical tests were two-sided. Results Forced expression of FASN in iPrECs, AR-iPrECs, and LNCaP cells increased cell proliferation and soft agar growth. iPrECs that expressed both FASN and androgen receptor (AR) formed invasive adenocarcinomas in immunodeficient mice (12 of 14 mice injected formed tumors vs 0 of 14 mice injected with AR-iPrEC expressing empty vector (P < .001, Fisher exact test); however, iPrECs that expressed only FASN did not. Transgenic expression of FASN in mice resulted in prostate intraepithelial neoplasia, the incidence of which increased from 10% in 8- to 16-week-old mice to 44% in mice aged 7 months or more (P  = .0028, Fisher exact test), but not in invasive tumors. In LNCaP cells, siRNA-mediated silencing of FASN resulted in apoptosis. FASN overexpression protected iPrECs from apoptosis induced by camptothecin but did not

  2. Ethical issues in transgenics.

    Science.gov (United States)

    Sherlock, R; Morrey, J D

    2000-01-01

    The arguments of critics and concerns of the public on generating transgenic cloned animals are analyzed for the absence or presence of logical structure. Critics' arguments are symbolically compared with "genetic trespassing," "genetic speeding," or "going the wrong way," and responses are provided to these arguments. Scientists will be empowered to participate in the public discussion and to engage the critics on these issues as they consider thoughtful, plausible responses to their concerns. Temporary moratoriums are recognized as a plausible approach to dealing with possible concerns of new scientific advancements.

  3. Aberrant Proliferation of Differentiating Alveolar Cells Induces Hyperplasia in Resting Mammary Glands of SV40-TAg Transgenic Mice

    OpenAIRE

    Quante, Timo; Wegwitz, Florian; Abe, Julia; Rossi, Alessandra; Deppert, Wolfgang; Bohn, Wolfgang

    2014-01-01

    WAP-T1 transgenic mice express SV40-TAg under control of the whey acidic protein (WAP) promoter, which directs activity of this strong viral oncogene to luminal cells of the mammary gland. Resting uniparous WAP-T1 glands develop hyperplasia composed of TAg positive cells prior to appearance of advanced tumor stages. We show that cells in hyperplasia display markers of alveolar differentiation, suggesting that TAg targets differentiating cells of the alveolar compartment. The glands show signi...

  4. Aberrant proliferation of differentiating alveolar cells induces hyperplasia in resting mammary glands of SV40-TAg transgenic mice

    OpenAIRE

    Wolfgang eBohn; Timo eQuante

    2014-01-01

    WAP-T1 transgenic mice express SV40-TAg under control of the WAP promoter (Whey Acidic Protein) which directs activity of this strong viral oncogene to luminal cells of the mammary gland. Resting uniparous WAP-T1 glands develop hyperplasia composed of TAg positive cells prior to appearance of advanced tumor stages. We show that cells in hyperplasia display markers of alveolar differentiation, suggesting that TAg targets differentiating cells of the alveolar compartment. The glands show signif...

  5. Epigenetic silencing in transgenic plants

    Directory of Open Access Journals (Sweden)

    Sarma eRajeev Kumar

    2015-09-01

    Full Text Available Epigenetic silencing is a natural phenomenon in which the expression of gene is regulated through modifications of DNA, RNA or histone proteins. It is a mechanism for defending host genomes against the effects of transposable element, viral infection and acts as a modulator of expression of duplicated gene family members and as a silencer of transgenes. A major breakthrough in understanding the mechanism of epigenetic silencing was discovery of silencing in transgenic tobacco plants due to interaction between two homologous promoters. The molecular mechanism of epigenetic mechanism is highly complicated and it is not completely understood yet. Two different molecular routes have been proposed for this, i.e. transcriptional gene silencing (TGS, which is associated with heavy methylation of promoter regions and blocks the transcription of transgene. The basic mechanism underlying post-transcriptional gene silencing (PTGS is degradation of the cytosolic mRNA of transgenes or endogenous genes. Undesired transgene silencing is of a major concern in transgenic technology used in crop improvement. A complete understanding of this phenomenon will be very useful for transgenic applications, where silencing of specific genes are required. The current status of epigenetic silencing in transgenic technology has been discussed and summarized in this mini-review.

  6. Epigenetic silencing in transgenic plants

    Science.gov (United States)

    Rajeevkumar, Sarma; Anunanthini, Pushpanathan; Sathishkumar, Ramalingam

    2015-01-01

    Epigenetic silencing is a natural phenomenon in which the expression of genes is regulated through modifications of DNA, RNA, or histone proteins. It is a mechanism for defending host genomes against the effects of transposable elements and viral infection, and acts as a modulator of expression of duplicated gene family members and as a silencer of transgenes. A major breakthrough in understanding the mechanism of epigenetic silencing was the discovery of silencing in transgenic tobacco plants due to the interaction between two homologous promoters. The molecular mechanism of epigenetic mechanism is highly complicated and it is not completely understood yet. Two different molecular routes have been proposed for this, that is, transcriptional gene silencing, which is associated with heavy methylation of promoter regions and blocks the transcription of transgenes, and post-transcriptional gene silencing (PTGS), the basic mechanism is degradation of the cytosolic mRNA of transgenes or endogenous genes. Undesired transgene silencing is of major concern in the transgenic technologies used in crop improvement. A complete understanding of this phenomenon will be very useful for transgenic applications, where silencing of specific genes is required. The current status of epigenetic silencing in transgenic technology is discussed and summarized in this mini-review. PMID:26442010

  7. The oncogenic action of ionizing radiation on rat skin

    Energy Technology Data Exchange (ETDEWEB)

    Burns, F.J.

    1991-01-01

    Progress has occurred in several areas corresponding to the specific aims of the proposal: (1) Progression and multiple events in radiation carcinogenesis of rat skin as a function of LET; (2) cell cycle kinetics of irradiated rat epidermis as determined by double labeling and double emulsion autoradiography; (3) oncogene activation detected by in situ hybridization in radiation-induced rat skin tumors; (4) amplification of the c-myc oncogene in radiation-induced rat skin tumors as a function of LET; and (5) transformation of rat skin keratinocytes by ionizing radiation in combination with c-Ki-ras and c-myc oncogenes. 111 refs., 13 figs., 12 tabs.

  8. Human papillomavirus E6/E7 oncogenes promote mouse ear regeneration by increasing the rate of wound re-epithelization and epidermal growth.

    Science.gov (United States)

    Valencia, Concepción; Bonilla-Delgado, José; Oktaba, Katarzyna; Ocádiz-Delgado, Rodolfo; Gariglio, Patricio; Covarrubias, Luis

    2008-12-01

    Mammals have limited regeneration capacity. We report here that, in transgenic mice (Tg(bK6-E6/E7)), the expression of the E6/E7 oncogenes of human papilloma virus type 16 (HPV16) under the control of the bovine keratin 6 promoter markedly improves the mouse's capacity to repair portions of the ear after being wounded. Increased repair capacity correlates with an increased number of epidermal proliferating cells. In concordance with the expected effects of the E6 and E7 oncogenes, levels of p53 decreased and those of p16 in epidermal cells increased. In addition, we observed that wound re-epithelization proceeded faster in transgenic than in wild-type animals. After the initial re-epithelization, epidermal cell migration from the intact surrounding tissue appears to be a major contributor to the growing epidermis, especially in the repairing tissue of transgenic mice. We also found that there is a significantly higher number of putative epidermal stem cells in Tg(bK6-E6/E7) than in wild-type mice. Remarkably, hair follicles and cartilage regenerated within the repaired ear tissue, without evidence of tumor formation. We propose that the ability to regenerate ear portions is limited by the capacity of the epidermis to repair itself and grow.

  9. Oncogenic osteomalacia associated with soft tissue chondromyxoid fibroma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Mi E-mail: jmpark@cmc.cuk.ac.kr; Woo, Young Kyun; Kang, Moo Il; Kang, Chang Suk; Hahn, Seong Tae

    2001-08-01

    Oncogenic osteomalacia is a rarely described clinical entity characterized by hypophosphatemia, phosphaturia, and a low concentration of 1,25-dihydroxyvitamin D{sub 3}. It is most often associated with benign mesenchymal tumor and can be cured with surgical removal of the tumor. In this paper, we present a case of oncogenic osteomalacia caused by chondromyxoid fibroma in the soft tissue of the sole of the foot in a 56-year-old woman.

  10. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase

    OpenAIRE

    Marialuisa Moccia; Qingsong Liu; Teresa Guida; Giorgia Federico; Annalisa Brescia; Zheng Zhao; Hwan Geun Choi; Xianming Deng; Li Tan; Jinhua Wang; Marc Billaud; Gray, Nathanael S.; Francesca Carlomagno; Massimo Santoro

    2015-01-01

    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the 'DFG-out' inactive conformation of RET activation loop. They blocked RET-media...

  11. Inhibition of Ras oncogenic activity by Ras protooncogenes.

    Science.gov (United States)

    Diaz, Roberto; Lue, Jeffrey; Mathews, Jeremy; Yoon, Andrew; Ahn, Daniel; Garcia-España, Antonio; Leonardi, Peter; Vargas, Marcelo P; Pellicer, Angel

    2005-01-10

    Point mutations in ras genes have been found in a large number and wide variety of human tumors. These oncogenic Ras mutants are locked in an active GTP-bound state that leads to a constitutive and deregulated activation of Ras function. The dogma that ras oncogenes are dominant, whereby the mutation of a single allele in a cell will predispose the host cell to transformation regardless of the presence of the normal allele, is being challenged. We have seen that increasing amounts of Ras protooncogenes are able to inhibit the activity of the N-Ras oncogene in the activation of Elk in NIH 3T3 cells and in the formation of foci. We have been able to determine that the inhibitory effect is by competition between Ras protooncogenes and the N-Ras oncogene that occurs first at the effector level at the membranes, then at the processing level and lastly at the effector level in the cytosol. In addition, coexpression of the N-Ras protooncogene in thymic lymphomas induced by the N-Ras oncogene is associated with increased levels of p107, p130 and cyclin A and decreased levels of Rb. In the present report, we have shown that the N-Ras oncogene is not truly dominant over Ras protooncogenes and their competing activities might be depending on cellular context.

  12. COMPARISON TRANSGENIC AND NON-TRANSGENIC MILK QUALITY

    Directory of Open Access Journals (Sweden)

    Peter Chrenek

    2012-02-01

    Full Text Available Transgenic founder rabbits carrying a gene construct consisting of a 2.5 kb murine whey acidic protein promoter (mWAP, 7.2 kb of the human clotting factor VIII (hFVIII cDNA and 4.6 kb of 3’ flanking sequences of mWAP gene were crossed for five generations. Transgenic females showed high level of recombinant hFVIII (rhFVIII mRNA expression in biopsed mammary gland tissues. The presence of the mWAP-hFVIII transgene in rabbit genome and secretion of rhFVIII into milk of transgenic females (F1, F2, F3, F4 and F5 generation did not have any adverse phenotypic effect on milk quality.

  13. Transgenics, agroindustry and food sovereignty

    Directory of Open Access Journals (Sweden)

    Xavier Alejandro León Vega

    2014-10-01

    Full Text Available Food sovereignty has been implemented constitutionally in Ecuador; however, many of the actions and policies are designed to benefit the dominant model of food production, based in agroindustry, intensive monocultures, agrochemicals and transgenics. This article reflects upon the role of family farming as a generator of food sovereignty, and secondly the threat to them by agroindustry agriculture based in transgenic. The role played by food aid in the introduction of transgenic in Latin America and other regions of the world is also analyzed.

  14. Relationship between the high-risk HPV infection and the expression of oncogenes, anti-oncogenes in cervical dysplasia

    Institute of Scientific and Technical Information of China (English)

    Li-Ping Shi; Xiu-Jie Sheng

    2017-01-01

    Objective:To study the relationship between the infection of high-risk HPV in cervical precancerous lesion and the expression of oncogene, anti-oncogene.Methods:218 cases ofcervical intraepithelial neoplasia patients in our hospital during May 2014–May 2016 were chosed and divided into high-risk HPV group (n=107), low-risk HPV group (n=111) according to cervical tissue HPV test; another 100 cases of patients received cervical biopsy and confirmed as benign lesions were enrolled in the control group. RT-PCR method was used to detect the mRNA expression of proto-oncogene and anti-oncogene in three groups, Western-blot method was used to detect the protein expression of Sox-2 and Wnt/β-catenin signal pathway.Results: mRNA expression of oncogene DEK, Bmi-1, c-fos, K-ras, Prdx4 in high-risk HPV group were higher than low-risk HPV group and control group (P<0.05); mRNA expression of anti-oncogene P27, P16, DAPK, PTEN, eIF4E3 in high-risk HPV group were lower than low-risk HPV group and control group (P<0.05); expression of Sox-2 and Wnt/β-catenin signaling pathway protein Sox-2,β-catenin, wnt-1, wnt-3a in high-risk HPV group were higher than low-risk HPV group and control group (P<0.05).Conclusions:High-risk HPV infection can increase the expression of oncogenes and reduce the expression of anti-oncogenes in cervical dysplasia tissues on Sox-2- and Wnt/β-catenin signaling pathway manners.

  15. Transgenic mice in developmental toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Woychik, R.P.

    1992-01-01

    Advances in molecular biology and embryology are being utilized for the generation of transgenic mice, animals that contain specific additions, deletions, or modifications of genes or sequences in their DNA. Mouse embryonic stem cells and homologous recombination procedures have made it possible to target specific DNA structural alterations to highly localized region in the host chromosomes. The majority of the DNA structural rearrangements in transgenic mice can be passed through the germ line and used to establish new genetic traits in the carrier animals. Since the use of transgenic mice is having such an enormous impact on so many areas of mammalian biological research, including developmental toxicology, the objective of this review is to briefly describe the fundamental methodologies for generating transgenic mice and to describe one particular application that has direct relevance to the field of genetic toxicology.

  16. Transgenic mice in developmental toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Woychik, R.P.

    1992-12-31

    Advances in molecular biology and embryology are being utilized for the generation of transgenic mice, animals that contain specific additions, deletions, or modifications of genes or sequences in their DNA. Mouse embryonic stem cells and homologous recombination procedures have made it possible to target specific DNA structural alterations to highly localized region in the host chromosomes. The majority of the DNA structural rearrangements in transgenic mice can be passed through the germ line and used to establish new genetic traits in the carrier animals. Since the use of transgenic mice is having such an enormous impact on so many areas of mammalian biological research, including developmental toxicology, the objective of this review is to briefly describe the fundamental methodologies for generating transgenic mice and to describe one particular application that has direct relevance to the field of genetic toxicology.

  17. An inducible krasV12 transgenic zebrafish model for liver tumorigenesis and chemical drug screening

    Directory of Open Access Journals (Sweden)

    Anh Tuan Nguyen

    2012-01-01

    Because Ras signaling is frequently activated by major hepatocellular carcinoma etiological factors, a transgenic zebrafish constitutively expressing the krasV12 oncogene in the liver was previously generated by our laboratory. Although this model depicted and uncovered the conservation between zebrafish and human liver tumorigenesis, the low tumor incidence and early mortality limit its use for further studies of tumor progression and inhibition. Here, we employed a mifepristone-inducible transgenic system to achieve inducible krasV12 expression in the liver. The system consisted of two transgenic lines: the liver-driver line had a liver-specific fabp10 promoter to produce the LexPR chimeric transactivator, and the Ras-effector line contained a LexA-binding site to control EGFP-krasV12 expression. In double-transgenic zebrafish (driver-effector embryos and adults, we demonstrated mifepristone-inducible EGFP-krasV12 expression in the liver. Robust and homogeneous liver tumors developed in 100% of double-transgenic fish after 1 month of induction and the tumors progressed from hyperplasia by 1 week post-treatment (wpt to carcinoma by 4 wpt. Strikingly, liver tumorigenesis was found to be ‘addicted’ to Ras signaling for tumor maintenance, because mifepristone withdrawal led to tumor regression via cell death in transgenic fish. We further demonstrated the potential use of the transparent EGFP-krasV12 larvae in inhibitor treatments to suppress Ras-driven liver tumorigenesis by targeting its downstream effectors, including the Raf-MEK-ERK and PI3K-AKT-mTOR pathways. Collectively, this mifepristone-inducible and reversible krasV12 transgenic system offers a novel model for understanding hepatocarcinogenesis and a high-throughput screening platform for anti-cancer drugs.

  18. Transgenic mice for MTCP1 develop T-cell prolymphocytic leukemia.

    Science.gov (United States)

    Gritti, C; Dastot, H; Soulier, J; Janin, A; Daniel, M T; Madani, A; Grimber, G; Briand, P; Sigaux, F; Stern, M H

    1998-07-15

    T-cell prolymphocytic leukemia (T-PLL) is a rare form of mature T-cell leukemia associated with chromosomal rearrangements implicating MTCP1 or TCL1 genes. These genes encode two homologous proteins, p13(MTCP1) and p14(TCL1), which share no similarity with other known protein. To determine the oncogenic role of MTCP1, mice transgenic for MTCP1 under the control of CD2 regulatory regions (CD2-p13 mice) were generated. No abnormality was detected during the first year after birth. A late effect of the transgene was searched for in a cohort of 48 CD2-p13 mice aged 15 to 20 months, issued from 3 independent founders. Lymphoid hemopathies, occurring in the three transgenic lines, were characterized by lymphoid cells with an irregular nucleus, a unique and prominent nucleolus, condensed chromatin, a basophilic cytoplasm devoid of granules, and an immunophenotype of mature T cells. The molecular characterization of Tcrb rearrangements demonstrated the monoclonal origin of these populations. Histopathological analysis of the cohort demonstrated early splenic and hepatic infiltrations, whereas lymphocytosis and medullar infiltrations were found infrequently. The engraftment of these proliferations in H2-matched animals demonstrated their malignant nature. Cumulative incidence of the disease at 20 months was 100%, 50%, and 21% in F3, F4, and F7 lines, respectively, and null in the control group. The level of expression of the transgene, as estimated by Western blotting in the transgenic lines correlated with the tumoral incidence, with the highest expression of p13(MTCP1) being found in F3 mice. CD2-p13 transgenic mice developed an hemopathy similar to human T-PLL. These data demonstrate that p13(MTCP1) is an oncoprotein and that CD2-p13 transgenic mice represent the first animal model for mature T-PLL.

  19. Pharming and transgenic plants.

    Science.gov (United States)

    Liénard, David; Sourrouille, Christophe; Gomord, Véronique; Faye, Loïc

    2007-01-01

    Plant represented the essence of pharmacopoeia until the beginning of the 19th century when plant-derived pharmaceuticals were partly supplanted by drugs produced by the industrial methods of chemical synthesis. In the last decades, genetic engineering has offered an alternative to chemical synthesis, using bacteria, yeasts and animal cells as factories for the production of therapeutic proteins. More recently, molecular farming has rapidly pushed towards plants among the major players in recombinant protein production systems. Indeed, therapeutic protein production is safe and extremely cost-effective in plants. Unlike microbial fermentation, plants are capable of carrying out post-translational modifications and, unlike production systems based on mammalian cell cultures, plants are devoid of human infective viruses and prions. Furthermore, a large panel of strategies and new plant expression systems are currently developed to improve the plant-made pharmaceutical's yields and quality. Recent advances in the control of post-translational maturations in transgenic plants will allow them, in the near future, to perform human-like maturations on recombinant proteins and, hence, make plant expression systems suitable alternatives to animal cell factories.

  20. Heterologous expression in transgenic mosquitoes

    Institute of Scientific and Technical Information of China (English)

    Santhosh P K; Yu hua Deng; Weidong Gu; Xiaoguang Chen

    2010-01-01

    Arthropod-borne diseases such as malaria and dengue virus afflict billions of people worldwide imposing major economic and social burdens. Control of such pathogens is mainly performed by vector management and treatment of affected individuals with drugs. The failure of these conventional approaches due to emergence of insecticide-resistant insects and drug-resistant parasites demonstrate the need of novel and efficacious control strategies to combat these diseases. Genetic modification(GM) of mosquito vectors to impair their ability to be infected and transmit pathogens has emerged as a new strategy to reduce transmission of many vector-borne diseases and deliver public health gains. Several advances in developing transgenic mosquitoes unable to transmit pathogens have gained support, some of them attempt to manipulate the naturally occurring endogenous refractory mechanisms, while others initiate the identification of an exogenous foreign gene which disrupt the pathogen development in insect vectors. Heterologous expression of transgenes under a native or heterologous promoter is important for the screening and effecting of the transgenic mosquitoes. The effect of the transgene on mosquito fitness is a crucial parameter influencing the success of this transgenic approach. This review examines these two aspects and describes the basic research work that has been accomplished towards understanding the complex relation between the parasite and its vector and focuses on recent advances and perspectives towards construction of transgenic mosquitoes refractory to vector-borne disease transmission.

  1. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase.

    Directory of Open Access Journals (Sweden)

    Marialuisa Moccia

    Full Text Available Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI, ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the 'DFG-out' inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the 'gatekeeper' V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET.

  2. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase.

    Science.gov (United States)

    Moccia, Marialuisa; Liu, Qingsong; Guida, Teresa; Federico, Giorgia; Brescia, Annalisa; Zhao, Zheng; Choi, Hwan Geun; Deng, Xianming; Tan, Li; Wang, Jinhua; Billaud, Marc; Gray, Nathanael S; Carlomagno, Francesca; Santoro, Massimo

    2015-01-01

    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the 'DFG-out' inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the 'gatekeeper' V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET.

  3. Long-range oncogenic activation of Igh-c-myc translocations by the Igh 3' regulatory region.

    Science.gov (United States)

    Gostissa, Monica; Yan, Catherine T; Bianco, Julia M; Cogné, Michel; Pinaud, Eric; Alt, Frederick W

    2009-12-10

    B-cell malignancies, such as human Burkitt's lymphoma, often contain translocations that link c-myc or other proto-oncogenes to the immunoglobulin heavy chain locus (IgH, encoded by Igh). The nature of elements that activate oncogenes within such translocations has been a long-standing question. Translocations within Igh involve DNA double-strand breaks initiated either by the RAG1/2 endonuclease during variable, diversity and joining gene segment (V(D)J) recombination, or by activation-induced cytidine deaminase (AID, also known as AICDA) during class switch recombination (CSR). V(D)J recombination in progenitor B (pro-B) cells assembles Igh variable region exons upstream of mu constant region (Cmu) exons, which are the first of several sets of C(H) exons ('C(H) genes') within a C(H) locus that span several hundred kilobases (kb). In mature B cells, CSR deletes Cmu and replaces it with a downstream C(H) gene. An intronic enhancer (iEmu) between the variable region exons and Cmu promotes V(D)J recombination in developing B cells. Furthermore, the Igh 3' regulatory region (Igh3'RR) lies downstream of the C(H) locus and modulates CSR by long-range transcriptional enhancement of C(H) genes. Transgenic mice bearing iEmu or Igh3'RR sequences fused to c-myc are predisposed to B lymphomas, demonstrating that such elements can confer oncogenic c-myc expression. However, in many B-cell lymphomas, Igh-c-myc translocations delete iEmu and place c-myc up to 200 kb upstream of the Igh3'RR. Here we address the oncogenic role of the Igh3'RR by inactivating it in two distinct mouse models for B-cell lymphoma with Igh-c-myc translocations. We show that the Igh3'RR is dispensable for pro-B-cell lymphomas with V(D)J recombination-initiated translocations, but is required for peripheral B-cell lymphomas with CSR-associated translocations. As the Igh3'RR is not required for CSR-associated Igh breaks or Igh-c-myc translocations in peripheral B-cell lymphoma progenitors, we conclude that

  4. Through the Looking Glass: Visualizing Leukemia Growth, Migration, and Engraftment Using Fluorescent Transgenic Zebrafish

    Directory of Open Access Journals (Sweden)

    Finola E. Moore

    2012-01-01

    Full Text Available Zebrafish have emerged as a powerful model of development and cancer. Human, mouse, and zebrafish malignancies exhibit striking histopathologic and molecular similarities, underscoring the remarkable conservation of genetic pathways required to induce cancer. Zebrafish are uniquely suited for large-scale studies in which hundreds of animals can be used to investigate cancer processes. Moreover, zebrafish are small in size, optically clear during development, and amenable to genetic manipulation. Facile transgenic approaches and new technologies in gene inactivation have provided much needed genomic resources to interrogate the function of specific oncogenic and tumor suppressor pathways in cancer. This manuscript focuses on the unique attribute of labeling leukemia cells with fluorescent proteins and directly visualizing cancer processes in vivo including tumor growth, dissemination, and intravasation into the vasculature. We will also discuss the use of fluorescent transgenic approaches and cell transplantation to assess leukemia-propagating cell frequency and response to chemotherapy.

  5. The lymphoma-associated NPM-ALK oncogene elicits a p16INK4a/pRb-dependent tumor-suppressive pathway.

    Science.gov (United States)

    Martinelli, Paola; Bonetti, Paola; Sironi, Cristina; Pruneri, Giancarlo; Fumagalli, Caterina; Raviele, Paola Rafaniello; Volorio, Sara; Pileri, Stefano; Chiarle, Roberto; McDuff, Fiona Kate Elizabeth; Tusi, Betsabeh Khoramian; Turner, Suzanne D; Inghirami, Giorgio; Pelicci, Pier Giuseppe; Colombo, Emanuela

    2011-06-16

    Oncogene-induced senescence (OIS) is a barrier for tumor development. Oncogene-dependent DNA damage and activation of the ARF/p53 pathway play a central role in OIS and, accordingly, ARF and p53 are frequently mutated in human cancer. A number of leukemia/lymphoma-initiating oncogenes, however, inhibit ARF/p53 and only infrequently select for ARF or p53 mutations, suggesting the involvement of other tumor-suppressive pathways. We report that NPM-ALK, the initiating oncogene of anaplastic large cell lymphomas (ALCLs), induces DNA damage and irreversibly arrests the cell cycle of primary fibroblasts and hematopoietic progenitors. This effect is associated with inhibition of p53 and is caused by activation of the p16INK4a/pRb tumor-suppressive pathway. Analysis of NPM-ALK lymphomagenesis in transgenic mice showed p16INK4a-dependent accumulation of senescent cells in premalignant lesions and decreased tumor latency in the absence of p16INK4a. Accordingly, human ALCLs showed no expression of either p16INK4a or pRb. Up-regulation of the histone-demethylase Jmjd3 and de-methylation at the p16INK4a promoter contributed to the effect of NPM-ALK on p16INK4a, which was transcriptionally regulated. These data demonstrate that p16INK4a/pRb may function as an alternative pathway of oncogene-induced senescence, and suggest that the reactivation of p16INK4a expression might be a novel strategy to restore the senescence program in some tumors.

  6. Stable oncogenic transformation induced by microcell-mediated gene transfer

    Institute of Scientific and Technical Information of China (English)

    吕有勇; Donald G.Blair

    1995-01-01

    Oncogenes have been identified using DNA-mediated transfection, but the size of the transferable and unrearranged DNA, gene rearrangement and amplification which occur during the transfection process limit the use of the techniques. We have evaluated microcell-mediated gene transfer techniques for the transfer and analysis of dominant oncogenes. MNNG-HOS, a transformed human cell line which contained the met oncogene mapping to human chromosome 7 was infected with retroviruses carrying drug resistance markers and used to optimize microcell preparation and transfer. Stable and drug-resistant hybrids containing single human chromosomes as well as the foci of the transformed cells containing the activated met oncogene and intact hitman chromosomes were obtained. Hybridization analysis with probes (i.e. collA2, pJ3.11) mapping up to 1 Mb away from met shows that the cells from the individual focr contain different amounts of apparently unrearranged human DNA associated with the oncogene, and the microcell-g

  7. Oncogenes and RNA splicing of human tumor viruses.

    Science.gov (United States)

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-09-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein-Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis.

  8. AKT1E¹⁷K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer.

    Science.gov (United States)

    Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe

    2016-01-01

    The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6-2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype.

  9. TRANSGENIC PLANTS RESISTANT TO INSECTS

    Directory of Open Access Journals (Sweden)

    S. Kereša

    2009-09-01

    Full Text Available Proteinase inhibitors are secondary metabolites present in all plants and it seems that their major role is protection of plants against attacks of animals, insects and microorganisms. One of the family of proteinase inhibitors are squash inhibitors of serine proteinases purified from seeds belonging to genera Cucurbita, Cucumis and Momordica. Squash inhibitors consist of 29-32 amino acid residues and are considered to be the smallest inhibitors of the serine proteinases known. Because of shortness, genes for these inhibitors could be synthesised and modified at different ways. Modifications could lead to changes in inhibitor activity. Tobacco as a model plant was transformed with 12 different genes of squash inhibitors. Stable integration of transgenes in putative transgenic plants was determined by PCR analysis using genomic DNA and primers that anneal to promoter and terminator region. The first step of proteinase inhibitor gene expression in transgenic plants was revealed by RT-PCR analysis. In entomological tests where larvae were fed with leaves, influence of transgenic T0 plants, as well as non-transgenic control plants on retardation of larval growth of S. littoralis was examined. Results of entomological tests showed that it is possible to express squash proteinase inhibitors in plants at level that significantly reduces S. littoralis larval growth.

  10. Oncogene-mediated transformation of fetal rat colon in vitro.

    Science.gov (United States)

    Pories, S; Jaros, K; Steele, G; Pauley, A; Summerhayes, I C

    1992-05-01

    Short-term maintenance of fetal rat colonic tissue in vitro has been demonstrated using a collagen matrix organ culture system. The introduction of single (v-myc, v-rasH, v-src) oncogenes or combinations of oncogenes (v-myc/rasH, v-myc/src) into normal colon mucosal elements was established using retroviral vectors, resulting in enhanced proliferation and migration of epithelial cells from the lumen of tissue implants. Expression of a single oncogene in normal colon epithelium did not result in the establishment of cell lines. In contrast, expression of cooperating oncogenic elements resulted in cell lines in greater than 80% of experiments, revealing different morphological characteristics dependent upon the oncogene combination used. Confirmation of the expression of viral transcripts was determined using Northern blot analysis and viral oncoprotein expression using Western blot analysis (p21) and an immunoprecipitation kinase assay (src). Expression of keratin filaments was lost following passaging of cell lines but could be induced by the myc/ras transformants by growth on Rat-1 feeder layers. This induction phenomenon was not observed with myc/src lines, and although these expressed high levels of sucrase isomaltase the epithelial origin of these cells is unclear. Karyotypic analysis performed on three myc/ras-transformed cell lines revealed a normal chromosome complement associated with transformation. In this report we describe a novel in vitro transformation system for normal rat colonic epithelium mediated by the introduction of oncogene elements using different retroviral vector constructs. The potential to generate cell lines representing different stages of neoplastic progression using relevant genetic components presents significant advantages for the study of cellular and molecular interactions underlying colon neoplastic progression.

  11. In Silico Analysis of Oncogenes for Renal Cancer

    Directory of Open Access Journals (Sweden)

    Sim-Hui Tee

    2012-01-01

    Full Text Available Computational tools and methods play a vital role in handling and analyzing a large volume of genomic data. In cancer research, in silico methods such as computational algorithm and protein databases are indispensable. In this paper, we adopted an in silico approach to analyze oncogenes that cause  renal cancer. Our objective is to identify and analyze the genes which are over expressed in the renal cancer tissues. The identification of oncogenes for renal cancer could provide directions and insights for molecular cancer treatment.

  12. Tumor prevention in HPV8 transgenic mice by HPV8-E6 DNA vaccination.

    Science.gov (United States)

    Marcuzzi, Gian Paolo; Awerkiew, Sabine; Hufbauer, Martin; Schädlich, Lysann; Gissmann, Lutz; Eming, Sabine; Pfister, Herbert

    2014-06-01

    The genus beta human papillomavirus 8 (HPV8) is involved in the development of cutaneous squamous cell carcinomas (SCCs) in individuals with epidermodysplasia verruciformis. Immunosuppressed transplant recipients are prone to harbor particularly high betapapillomavirus DNA loads, which may contribute to their highly increased risk of SCC. Tumor induction in HPV8 transgenic mice correlates with increased expression of viral oncogenes E6 and E2. In an attempt to prevent skin tumor development, we evaluated an HPV8-E6-DNA vaccine, which was able to stimulate a detectable HPV8-E6-specific cell-mediated immune response in 8/15 immunized mice. When skin of HPV8 transgenic mice was grafted onto non-transgenic littermates, the grafted HPV8 transgenic tissue was not rejected and papillomas started to grow within 14 days all over the transplant of 9/9 non-vaccinated and 7/15 not successfully vaccinated mice. In contrast, no papillomas developed in 6/8 successfully vaccinated mice. In the other two of these eight mice, a large ulcerative lesion developed within the initial papilloma growth or papilloma development was highly delayed. As the vaccine completely or partially prevented papilloma development without rejecting the transplanted HPV8 positive skin, the immune system appears to attack only keratinocytes with increased levels of E6 protein, which would give rise to papillomas.

  13. The cytoplasmic NPM mutant induces myeloproliferation in a transgenic mouse model.

    Science.gov (United States)

    Cheng, Ke; Sportoletti, Paolo; Ito, Keisuke; Clohessy, John G; Teruya-Feldstein, Julie; Kutok, Jeffery L; Pandolfi, Pier Paolo

    2010-04-22

    Although NPM1 gene mutations leading to aberrant cytoplasmic expression of nucleophosmin (NPMc(+)) are the most frequent genetic lesions in acute myeloid leukemia, there is yet no experimental model demonstrating their oncogenicity in vivo. We report the generation and characterization of a transgenic mouse model expressing the most frequent human NPMc(+) mutation driven by the myeloid-specific human MRP8 promoter (hMRP8-NPMc(+)). In parallel, we generated a similar wild-type NPM trans-genic model (hMRP8-NPM). Interestingly, hMRP8-NPMc(+) transgenic mice developed myeloproliferation in bone marrow and spleen, whereas nontransgenic littermates and hMRP8-NPM transgenic mice remained disease free. These findings provide the first in vivo evidence indicating that NPMc(+) confers a proliferative advantage in the myeloid lineage. No spontaneous acute myeloid leukemia was found in hMPR8-NPMc(+) or hMRP8-NPM mice. This model will also aid in the development of therapeutic regimens that specifically target NPMc(+).

  14. Lymphoma induction by heterocyclic amines in Eu-pim-1 transgenic mice

    DEFF Research Database (Denmark)

    Sørensen, Ilona Kryspin; Kristiansen, E.; Mortensen, Alicja

    1997-01-01

    The usefulness of transgenic E mu-pim-1 mice bearing in their genome the pim-1 oncogene supplemented with an upstream immunoglobulin enhancer and a downstream murine leukaemia virus long terminal repeat, as sensitive test organisms was studied in two short-term carcinogenicity studies. The mice...... to bacteria and cultured mammalian cells. PhIP is a potent mouse lymphomagen, while IQ is a liver, lung and forestomach carcinogen in mice. We found that transgenic E mu-pim-1 mice are highly susceptible to PhIP induced lymphomagenesis but do not respond to IQ treatment. PhIP feeding of E mu-pim-1 mice...... not only increased the total number of T-cell lymphomas but also decreased the latency time compared to either transgenic or wild-type controls. The effect was most pronounced in the treated female E mu-pim-1 mice, which showed a higher incidence of PhIP induced T-cell lymphomas than transgenic males...

  15. Transgenic woody plants for biofuel

    Institute of Scientific and Technical Information of China (English)

    Wei Tang; Anna Y.Tang

    2014-01-01

    Transgenic trees as a new source for biofuel have brought a great interest in tree biotechnology. Genetically modifying forest trees for ethanol production have advantages in technical challenges, costs, environmental concerns, and financial problems over some of crops. Genetic engineering of forest trees can be used to reduce the level of lignin, to produce the fast-growing trees, to develop trees with higher cellulose, and to allow the trees to be grown more widely. Trees can establish themselves in the field with less care of farmers, compared to most of crops. Transgenic crops as a new source for biofuel have been recently reviewed in several reviews. Here, we overview transgenic woody plants as a new source for biofuel including genetically modified woody plants and environment; main focus of woody plants genetic modifications;solar to chemical energy transfer; cellulose biosynthesis;lignin biosynthesis;and cellulosic ethanol as biofuel.

  16. Transgenic agriculture and environmental indicators

    Directory of Open Access Journals (Sweden)

    Denize Dias de Carvalho

    2006-12-01

    Full Text Available Despite the rapid diffusion of transgenic crops, there are still few environmental impact studies capable of supplying a conclusive scientific response in regard to its technical and economic advantages and disadvantages. Prospective scenarios were elaborated to assist environmental impact assessment, using techniques derived from SWOT (Strength, Weakness, Opportunity, Threat analysis and the DPSIR (Driving Force – human activity, Pressure, State, Impact, Response model, to evaluate the environmental indicators and the relationship between them. Control and management actions were identified, searching the integration of aspects related to the biotechnology applied to transgenic processes, biodiversity, biosafety and intellectual property. It was demonstrated that the DPSIR model is, in fact, an instrument for integrated environmental assessment and the application of the proposed methodology resulted in favorable indicators to the adoption of transgenic agriculture. The elaborated scenarios are useful to develop an Environmental Management System (EMS to agriculture.

  17. Proto-oncogene PBF/PTTG1IP regulates thyroid cell growth and represses radioiodide treatment.

    Science.gov (United States)

    Read, Martin L; Lewy, Greg D; Fong, Jim C W; Sharma, Neil; Seed, Robert I; Smith, Vicki E; Gentilin, Erica; Warfield, Adrian; Eggo, Margaret C; Knauf, Jeffrey A; Leadbeater, Wendy E; Watkinson, John C; Franklyn, Jayne A; Boelaert, Kristien; McCabe, Christopher J

    2011-10-01

    Pituitary tumor transforming gene (PTTG)-binding factor (PBF or PTTG1IP) is a little characterized proto-oncogene that has been implicated in the etiology of breast and thyroid tumors. In this study, we created a murine transgenic model to target PBF expression to the thyroid gland (PBF-Tg mice) and found that these mice exhibited normal thyroid function, but a striking enlargement of the thyroid gland associated with hyperplastic and macrofollicular lesions. Expression of the sodium iodide symporter (NIS), a gene essential to the radioiodine ablation of thyroid hyperplasia, neoplasia, and metastasis, was also potently inhibited in PBF-Tg mice. Critically, iodide uptake was repressed in primary thyroid cultures from PBF-Tg mice, which could be rescued by PBF depletion. PBF-Tg thyroids exhibited upregulation of Akt and the TSH receptor (TSHR), each known regulators of thyrocyte proliferation, along with upregulation of the downstream proliferative marker cyclin D1. We extended and confirmed findings from the mouse model by examining PBF expression in human multinodular goiters (MNG), a hyperproliferative thyroid disorder, where PBF and TSHR was strongly upregulated relative to normal thyroid tissue. Furthermore, we showed that depleting PBF in human primary thyrocytes was sufficient to increase radioiodine uptake. Together, our findings indicate that overexpression of PBF causes thyroid cell proliferation, macrofollicular lesions, and hyperplasia, as well as repression of the critical therapeutic route for radioiodide uptake.

  18. Proto-oncogene PBF/PTTG1IP regulates thyroid cell growth and represses radioiodide treatment

    Science.gov (United States)

    Read, Martin L.; Lewy, Greg D.; Fong, Jim C.W.; Sharma, Neil; Seed, Robert I.; Smith, Vicki E.; Gentilin, Erica; Warfield, Adrian; Eggo, Margaret C.; Knauf, Jeffrey A.; Leadbeater, Wendy E.; Watkinson, John C.; Franklyn, Jayne A.; Boelaert, Kristien; McCabe, Christopher J.

    2011-01-01

    PTTG Binding Factor (PBF or PTTG1IP) is a little characterised proto-oncogene that has been implicated in the etiology of breast and thyroid tumors. In this study, we created a murine transgenic model to target PBF expression to the thyroid gland (PBF-Tg mice) and found that these mice exhibited normal thyroid function but a striking enlargement of the thyroid gland associated with hyperplastic and macrofollicular lesions. Expression of the sodium iodide symporter (NIS), a gene essential to the radioiodine ablation of thyroid hyperplasia, neoplasia and metastasis, was also potently inhibited in PBF-Tg mice. Critically, iodide uptake was repressed in primary thyroid cultures from PBF-Tg mice, which could be rescued by PBF depletion. PBF-Tg thyroids exhibited upregulation of Akt and the TSH receptor (TSHR), each known regulators of thyrocyte proliferation, along with upregulation of the downstream proliferative marker cyclin D1. We extended and confirmed findings from the mouse model by examining PBF expression in human multinodular goitres (MNG), a hyperproliferative thyroid disorder, where PBF and TSHR was strongly upregulated relative to normal thyroid tissue. Further, we showed that depleting PBF in human primary thyrocytes was sufficient to increase radioiodine uptake. Together, our findings indicate that overexpression of PBF causes thyroid cell proliferation, macrofollicular lesions and hyperplasia, as well as repression of the critical therapeutic route for radioiodide uptake. PMID:21844185

  19. The mystery of oncogenic KRAS: Lessons from studying its wild-type counter part.

    Science.gov (United States)

    Chang, Yuan-I; Damnernsawad, Alisa; Kong, Guangyao; You, Xiaona; Wang, Demin; Zhang, Jing

    2016-07-22

    Using conditional knock-in mouse models, we and others have shown that despite the very high sequence identity between Nras and Kras proteins, oncogenic Kras displays a much stronger leukemogenic activity than oncogenic Nras in vivo. In this manuscript, we will summarize our recent work of characterizing wild-type Kras function in adult hematopoiesis and in oncogenic Kras-induced leukemogenesis. We attribute the strong leukemogenic activity of oncogenic Kras to 2 unique aspects of Kras signaling. First, Kras is required in mediating cell type- and cytokine-specific ERK1/2 signaling. Second, oncogenic Kras, but not oncogenic Nras, induces hyperactivation of wild-type Ras, which significantly enhances Ras signaling in vivo. We will also discuss a possible mechanism that mediates oncogenic Kras-evoked hyperactivation of wild-type Ras and a potential approach to down-regulate oncogenic Kras signaling.

  20. Role of ets Oncogenes in the Progression of Breast Cancer

    Science.gov (United States)

    1998-10-01

    Mazabraud A. (1988). Cancer Kato J, Matsuoka M, Polyak K, Massague J and Sherr CJ. Genet. Cytogenet., 32, 229-238. (1994). Cell, 79, 487-496. Vairo G...Francisco LV , Roach JC, Argonza R, D, Weber BL and EI-Deiryh WS. (1998). Oncogene, 16, King MC and Ostrander EA. (1996). Human Mol. Genet., 1713-1721. 5

  1. Targeting MET Amplification as a New Oncogenic Driver

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hisato [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Okamoto, Isamu, E-mail: okamotoi@kokyu.med.kyushu-u.ac.jp [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Center for Clinical and Translational Research, Kyushu University Hospital, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582 (Japan); Okamoto, Wataru [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Division of Transrlational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577 (Japan); Tanizaki, Junko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, HIM223, 450 Brookline Avenue, Boston, MA 02215 (United States); Nakagawa, Kazuhiko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Nishio, Kazuto [Department of Genome Biology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan)

    2014-07-22

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy.

  2. c-Abl antagonizes the YAP oncogenic function.

    Science.gov (United States)

    Keshet, R; Adler, J; Ricardo Lax, I; Shanzer, M; Porat, Z; Reuven, N; Shaul, Y

    2015-06-01

    YES-associated protein (YAP) is a central transcription coactivator that functions as an oncogene in a number of experimental systems. However, under DNA damage, YAP activates pro-apoptotic genes in conjunction with p73. This program switching is mediated by c-Abl (Abelson murine leukemia viral oncogene) via phosphorylation of YAP at the Y357 residue (pY357). YAP as an oncogene coactivates the TEAD (transcriptional enhancer activator domain) family transcription factors. Here we asked whether c-Abl regulates the YAP-TEAD functional module. We found that DNA damage, through c-Abl activation, specifically depressed YAP-TEAD-induced transcription. Remarkably, c-Abl counteracts YAP-induced transformation by interfering with the YAP-TEAD transcriptional program. c-Abl induced TEAD1 phosphorylation, but the YAP-TEAD complex remained unaffected. In contrast, TEAD coactivation was compromised by phosphomimetic YAP Y357E mutation but not Y357F, as demonstrated at the level of reporter genes and endogenous TEAD target genes. Furthermore, YAP Y357E also severely compromised the role of YAP in cell transformation, migration, anchorage-independent growth, and epithelial-to-mesenchymal transition (EMT) in human mammary MCF10A cells. These results suggest that YAP pY357 lost TEAD transcription activation function. Our results demonstrate that YAP pY357 inactivates YAP oncogenic function and establish a role for YAP Y357 phosphorylation in cell-fate decision.

  3. Targeting MET Amplification as a New Oncogenic Driver

    Directory of Open Access Journals (Sweden)

    Hisato Kawakami

    2014-07-01

    Full Text Available Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy.

  4. Transgene landbouwhuisdieren : het overwegen waard?

    NARCIS (Netherlands)

    Linskens, M.

    1989-01-01

    Het rapport geeft informatie over de ontwikkelingen die, momenteel nog vooral in het onderzoek, op dit terrein gaande zijn. Het geeft aan wanneer de eerste transgene landbouwhuisdieren, bij een ongewijzigd beleid, op de boerderij kunnen rondlopen. Verder wordt er inzicht verschaft in de maatschappel

  5. The DNA damage checkpoint precedes activation of ARF in response to escalating oncogenic stress during tumorigenesis

    DEFF Research Database (Denmark)

    Evangelou, K; Bartkova, J; Kotsinas, A

    2013-01-01

    to various oncogenes showed that the delayed upregulation of ARF reflected a requirement for a higher, transcriptionally based threshold of oncogenic stress, elicited by at least two oncogenic ‘hits’, compared with lower activation threshold for DDR. We propose that relative to DDR activation, ARF provides...

  6. The use of Gene Ontology terms and KEGG pathways for analysis and prediction of oncogenes.

    Science.gov (United States)

    Xing, Zhihao; Chu, Chen; Chen, Lei; Kong, Xiangyin

    2016-11-01

    Oncogenes are a type of genes that have the potential to cause cancer. Most normal cells undergo programmed cell death, namely apoptosis, but activated oncogenes can help cells avoid apoptosis and survive. Thus, studying oncogenes is helpful for obtaining a good understanding of the formation and development of various types of cancers. In this study, we proposed a computational method, called OPM, for investigating oncogenes from the view of Gene Ontology (GO) and biological pathways. All investigated genes, including validated oncogenes retrieved from some public databases and other genes that have not been reported to be oncogenes thus far, were encoded into numeric vectors according to the enrichment theory of GO terms and KEGG pathways. Some popular feature selection methods, minimum redundancy maximum relevance and incremental feature selection, and an advanced machine learning algorithm, random forest, were adopted to analyze the numeric vectors to extract key GO terms and KEGG pathways. Along with the oncogenes, GO terms and KEGG pathways were discussed in terms of their relevance in this study. Some important GO terms and KEGG pathways were extracted using feature selection methods and were confirmed to be highly related to oncogenes. Additionally, the importance of these terms and pathways in predicting oncogenes was further demonstrated by finding new putative oncogenes based on them. This study investigated oncogenes based on GO terms and KEGG pathways. Some important GO terms and KEGG pathways were confirmed to be highly related to oncogenes. We hope that these GO terms and KEGG pathways can provide new insight for the study of oncogenes, particularly for building more effective prediction models to identify novel oncogenes. The program is available upon request. We hope that the new findings listed in this study may provide a new insight for the investigation of oncogenes. This article is part of a Special Issue entitled "System Genetics" Guest Editor

  7. Philosophical Reflection on Risks of Transgenic Technology

    Institute of Scientific and Technical Information of China (English)

    Xiaolu WANG

    2012-01-01

    Abstract [Objective] The aim was to analyze risks of transgenic technology. [Method] Discussions on risks of transgenic technologies were conducted from per- spective of philosophy. [Result] Mechanistic philosophy and reductionism are causes of reflection on risks of transgenic technology. Considering transgene is an artificial choice taking place of natural choice, it is inevitable for risks of transgenic technolo- gy to be found, in addition, social system constitutes the root for out-of-control of transgenic technology, hence, mechanism risk is the primary cause of transgenic risks. [Conclusion] It is inescapable for science view to be changed from arbitrary and lopsided to reflective and comprehensive and for technology view to be changed from exterminative and genesic to protective and symbiotic.

  8. Foxm1 transcription factor is required for the initiation of lung tumorigenesis by oncogenic Kras(G12D.).

    Science.gov (United States)

    Wang, I-C; Ustiyan, V; Zhang, Y; Cai, Y; Kalin, T V; Kalinichenko, V V

    2014-11-13

    Lung cancer is the leading cause of deaths in cancer patients in the United States. Identification of new molecular targets is clearly needed to improve therapeutic outcomes of this devastating human disease. Activating mutations in K-Ras oncogene and increased expression of FOXM1 protein are associated with poor prognosis in patients with non-small-cell lung cancer. Transgenic expression of activated Kras(G12D) in mouse respiratory epithelium is sufficient to induce lung adenocarcinomas; however, transcriptional mechanisms regulated by K-Ras during the initiation of lung cancer remain poorly understood. Foxm1 transcription factor, a downstream target of K-Ras, stimulates cellular proliferation during embryogenesis, organ repair and tumor growth, but its role in tumor initiation is unknown. In the present study, we used transgenic mice expressing Kras(G12D) under control of Sftpc promoter to demonstrate that Foxm1 was induced in type II epithelial cells before the formation of lung tumors. Conditional deletion of Foxm1 from Kras(G12D)-expressing respiratory epithelium prevented the initiation of lung tumors in vivo. The loss of Foxm1 inhibited expression of K-Ras target genes critical for the nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) pathways, including Ikbkb, Nfkb1, Nfkb2, Rela, Jnk1, N-Myc, Pttg1 and Cdkn2a. Transgenic overexpression of activated FOXM1 mutant was sufficient to induce expression of these genes in alveolar type II cells. FOXM1 directly bound to promoter regions of Ikbkb, Nfkb2, N-Myc, Pttg1 and Cdkn2a, indicating that these genes are direct FOXM1 targets. FOXM1 is required for K-Ras-mediated lung tumorigenesis by activating genes critical for the NF-κB and JNK pathways.

  9. Transgenic Epigenetics: Using Transgenic Organisms to Examine Epigenetic Phenomena

    Directory of Open Access Journals (Sweden)

    Lori A. McEachern

    2012-01-01

    Full Text Available Non-model organisms are generally more difficult and/or time consuming to work with than model organisms. In addition, epigenetic analysis of model organisms is facilitated by well-established protocols, and commercially-available reagents and kits that may not be available for, or previously tested on, non-model organisms. Given the evolutionary conservation and widespread nature of many epigenetic mechanisms, a powerful method to analyze epigenetic phenomena from non-model organisms would be to use transgenic model organisms containing an epigenetic region of interest from the non-model. Interestingly, while transgenic Drosophila and mice have provided significant insight into the molecular mechanisms and evolutionary conservation of the epigenetic processes that target epigenetic control regions in other model organisms, this method has so far been under-exploited for non-model organism epigenetic analysis. This paper details several experiments that have examined the epigenetic processes of genomic imprinting and paramutation, by transferring an epigenetic control region from one model organism to another. These cross-species experiments demonstrate that valuable insight into both the molecular mechanisms and evolutionary conservation of epigenetic processes may be obtained via transgenic experiments, which can then be used to guide further investigations and experiments in the species of interest.

  10. High Risk Alpha Papillomavirus Oncogenes Impair the Homologous Recombination Pathway.

    Science.gov (United States)

    Wallace, Nicholas A; Khanal, Sujita; Robinson, Kristin L; Wendel, Sebastian O; Messer, Joshua J; Galloway, Denise A

    2017-08-02

    Persistent high risk genus α human papillomavirus (HPV) infections cause nearly every cervical carcinoma and a subset of tumors in the oropharyngeal tract. During the decades required for HPV-associated tumorigenesis, the cellular genome becomes significantly destabilized. Our analysis of cervical tumors from 4 separate data sets found a significant upregulation of the homologous recombination (HR) pathway genes. The increased abundance of HR proteins can be replicated in primary cells by expression of the two HPV oncogenes (E6 and E7) required for HPV-associated transformation. HPV E6 and E7 also enhanced the ability of HR proteins to form repair foci, yet both E6 and E7 reduce the ability of the HR pathway to complete double strand break (DSB) repair by about 50%. The HPV oncogenes hinder HR by allowing the process to begin at points in the cell cycle when the lack of a sister chromatid to serve as a homologous template prevents completion of the repair. Further, HPV E6 attenuates repair by causing RAD51 to be mislocalized away from both transient and persistent DSBs, while HPV E7 is only capable of impairing RAD51 localization to transient lesions. Finally, we show that the inability to robustly repair DSBs causes some of these lesions to be more persistent, a phenotype that correlates with increased integration of episomal DNA. Together these data support our hypothesis that HPV oncogenes contribute to the genomic instability observed in HPV-associated malignancies by attenuating the repair of damaged DNA.IMPORTANCE: This work expands the understanding of HPV biology, establishing a direct role for both HPV E6 and E7 in the destabilization of the host genome by blocking the homologous repair of DSBs. To our knowledge, this is the first time that both viral oncogenes were shown to disrupt this DSB repair pathway. We show that HPV E6 and E7 allow HR to initiate at an inappropriate part of the cell cycle. The mislocalization of RAD51 away from DSBs in cells

  11. The ETS family of oncogenic transcription factors in solid tumours.

    Science.gov (United States)

    Sizemore, Gina M; Pitarresi, Jason R; Balakrishnan, Subhasree; Ostrowski, Michael C

    2017-06-01

    Findings over the past decade have identified aberrant activation of the ETS transcription factor family throughout all stages of tumorigenesis. Specifically in solid tumours, gene rearrangement and amplification, feed-forward growth factor signalling loops, formation of gain-of-function co-regulatory complexes and novel cis-acting mutations in ETS target gene promoters can result in increased ETS activity. In turn, pro-oncogenic ETS signalling enhances tumorigenesis through a broad mechanistic toolbox that includes lineage specification and self-renewal, DNA damage and genome instability, epigenetics and metabolism. This Review discusses these different mechanisms of ETS activation and subsequent oncogenic implications, as well as the clinical utility of ETS factors.

  12. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  13. Regulation of apoptosis by the papillomavirus E6 oncogene

    Institute of Scientific and Technical Information of China (English)

    Ting-Ting Li; Li-Na Zhao; Zhi-Guo Liu; Ying Han; Dai-Ming Fan

    2005-01-01

    Infection with human papillomaviruses is strongly associated with the development of multiple cancers including esophageal squamous cell carcinoma. The HPV E6 gene is essential for the oncogenic potential of HPV.The recgulation of apoptosis by oncogene has been relatel to carcinogenesis closely; therefore, the modulation of E6 on cellular apoptosis has become a hot research topic recently. Inactivation of the pro-apoptotic tumor suppressor p53 by E6 is an important mechanism by which E6promotes cell growth; it is expected that inactivation of p53 by E6 should lead to a reduction in cellular apoptosis,numerous studies showed that E6 could in fact sensitize cells to apoptosis. The molecular basis for apoptosis modulation by E6 is poorly understood. In this article, we will present an overview of observations and current understanding of molecular basis for E6-induced apoptosis.

  14. Oncogenic osteomalacia presenting as bilateral stress fractures of the tibia

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Kenjirou; Ohnishi, Takeshi; Ishikawa, Tohru [Department of Radiology, St. Marianna University Hospital, Kanagawa (Japan); Tani, Haruo [Department of Internal Medicine III, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan); Uesugi, Keisuke [Department of Otolaryngology, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan); Takagi, Masayuki [Department of Pathology, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan)

    1999-01-01

    We report on a patient with bilateral stress fractures of the tibia who subsequently showed classic biochemical features of oncogenic osteomalacia. Conventional radiographs were normal. MR imaging revealed symmetric, bilateral, band-like low-signal lesions perpendicular to the medial cortex of the tibiae and corresponding to the only lesions subsequently seen on the bone scan. A maxillary sinus lesion was subsequently detected and surgically removed resulting in prompt alleviation of symptoms and normalization of hypophosphatemia and low 1,25-(OH){sub 2} vitamin D{sub 3}. The lesion was pathologically diagnosed as a hemangiopericytoma-like tumor. Patients with oncogenic osteomalacia may present with stress fractures limited to the tibia, as seen in athletes. The clue to the real diagnosis lies in paying close attention to the serum phosphate levels, especially in patients suffering generalized symptoms of weakness and not given to unusual physical activity. (orig.) With 4 figs., 6 refs.

  15. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences

    Science.gov (United States)

    Balaj, Leonora; Lessard, Ryan; Dai, Lixin; Cho, Yoon-Jae; Pomeroy, Scott L.; Breakefield, Xandra O.; Skog, Johan

    2011-01-01

    Tumour cells release an abundance of microvesicles containing a selected set of proteins and RNAs. Here, we show that tumour microvesicles also carry DNA, which reflects the genetic status of the tumour, including amplification of the oncogene c-Myc. We also find amplified c-Myc in serum microvesicles from tumour-bearing mice. Further, we find remarkably high levels of retrotransposon RNA transcripts, especially for some human endogenous retroviruses, such as LINE-1 and Alu retrotransposon elements, in tumour microvesicles and these transposable elements could be transferred to normal cells. These findings expand the nucleic acid content of tumour microvesicles to include: elevated levels of specific coding and non-coding RNA and DNA, mutated and amplified oncogene sequences and transposable elements. Thus, tumour microvesicles contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer. PMID:21285958

  16. Advances on Driver Oncogenes of Squamous Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Wei HONG

    2014-05-01

    Full Text Available Background and objective Lung cancer is the leading cause of cancer-related deaths worldwide. Next to adenocarcinoma, squamous cell carcinoma (SCC of the lung is the most frequent histologic subtype in non-small cell lung cancer. Several molecular alterations have been defined as "driver oncogenes" responsible for both the initiation and maintenance of the malignancy. The squamous cell carcinoma of the lung has recently shown peculiar molecular characteristics which relate with both carcinogenesis and response to targeted drugs. So far, about 40% of lung squamous cell carcinoma has been found harbouring driver oncogenes, in which fibroblast growth factor receptor 1 (FGFR1 plays important roles. In this review, we will report the mainly advances on some latest driver mutations of squamous cell lung cancer.

  17. Pharmacological strategies to target oncogenic KRAS signaling in pancreatic cancer.

    Science.gov (United States)

    Chuang, Hsiao-Ching; Huang, Po-Hsien; Kulp, Samuel K; Chen, Ching-Shih

    2017-03-01

    The clear importance of mutated KRAS as a therapeutic target has driven the investigation of multiple approaches to inhibit oncogenic KRAS signaling at different molecular levels. However, no KRAS-targeted therapy has reached the clinic to date, which underlies the intrinsic difficulty in developing effective, direct inhibitors of KRAS. Thus, this article provides an overview of the history and recent progress in the development of pharmacological strategies to target oncogenic KRAS with small molecule agents. Mechanistically, these KRAS-targeted agents can be classified into the following four categories. (1) Small-molecule RAS-binding ligands that prevent RAS activation by binding within or outside the nucleotide-binding motif. (2) Inhibitors of KRAS membrane anchorage. (3) Inhibitors that bind to RAS-binding domains of RAS-effector proteins. (4) Inhibitors of KRAS expression. The advantage and limitation of each type of these anti-KRAS agents are discussed.

  18. Annotating MYC oncogene status with 89Zr-transferrin imaging

    OpenAIRE

    Holland, Jason P.; Evans, Michael J.; Rice, Samuel L.; Wongvipat, John; Sawyers, Charles L.; Lewis, Jason S.

    2012-01-01

    A non-invasive technology that quantitatively measures the activity of oncogenic signaling pathways could broadly impact cancer diagnosis and treatment using targeted therapies. Here we describe the development of 89Zr-desferrioxamine transferrin (89Zr-Tf), a novel positron emission tomography (PET) radiotracer that binds the transferrin receptor 1 (TFRC, CD71) with high avidity. 89Zr-Tf produces high contrast PET images that quantitatively reflect treatment-induced changes in MYC-regulated T...

  19. Mutations in the RET proto-oncogene in sporadic pheochromocytomas

    Energy Technology Data Exchange (ETDEWEB)

    Thibodeau, S.N.; Lindor, N.M.; Honchel, R. [Mayo Clinic and Foundation, Rochester, MN (United States)] [and others

    1994-09-01

    Mutations in the RET proto-oncogene have recently been demonstrated in kindreds with Multiple Endocrine Neoplasia (MEN) types 2A and 2B. Both of these autosomal dominant disorders are characterized by the development of neoplasia in cell lines of neural crest origin, such as medullary throid carcinomas and pheochromocytomas. Individuals with MEN 2B have, in addition, ganglioneuromas of the lips, tongue and colon, a marfanoid habitus, and corneal nerve thickening. Approximately 90% of patients with MEN 2A have a germline mutation in exons 10 or 11, while 95% of patients with MEN 2B have a T{yields}C transition in codon 918 of exon 16. In this study, pheochromocytomas from 29 individuals who had no clinical evidence of MEN 2A or 2B (sporadic) were examined for the presence of either germline or somatic mutations in exons 10, 11, and 16 of the RET proto-oncogene. Of the 29 tumors examined, 3 (10%) were found to have a mutation in one of the three exons. One tumor had a G{yields}A transition in codon 609 (exon 10), another had a 6 bp deletion encompassing codons 632 & 633 (exon 11), and the final tumor had a T{yields}C transition in codon 918 (exon 16). These mutations were not found in the corresponding normal DNA from these individuals, indicating that the mutation were somatic in origin. Although we cannot exclude the possibility of mutations in other regions of the RET proto-oncogene, our data suggests that: (1) individuals presenting with apparently sporadic pheochromocytomas are not likely to have undiagnosed MEN 2A or 2B; and (2) somatic mutations in the RET proto-oncogene contribute to the process of tumorigenesis in a small percentage of sporadic pheochromocytomas.

  20. PKC Epsilon: A Novel Oncogenic Player in Prostate Cancer

    Science.gov (United States)

    2014-09-01

    Malik, A., Zaman, N., Sarfaraz, S., Siddiqui, I. A., Syed, D. N. et al (2007). Combined inhibitory effects of green tea polyphenols and selective...not only in prostate cancer but also in several other epithelial cancers including lung , breast, and thyroid cancer8, 13, 20-26. Studies from our...Cvarepsilon is required for non-small cell lung carcinoma growth and regulates the expression of apoptotic genes. Oncogene 31: 2593-2600. 23 Hafeez, B. B

  1. Transgene expression systems in the Triticeae cereals.

    Science.gov (United States)

    Hensel, Götz; Himmelbach, Axel; Chen, Wanxin; Douchkov, Dimitar K; Kumlehn, Jochen

    2011-01-01

    The control of transgene expression is vital both for the elucidation of gene function and for the engineering of transgenic crops. Given the dominance of the Triticeae cereals in the agricultural economy of the temperate world, the development of well-performing transgene expression systems of known functionality is of primary importance. Transgenes can be expressed either transiently or stably. Transient expression systems based on direct or virus-mediated gene transfer are particularly useful in situations where the need is to rapidly screen large numbers of genes. However, an unequivocal understanding of gene function generally requires that a transgene functions throughout the plant's life and is transmitted through the sexual cycle, since this alone allows its effect to be decoupled from the plant's response to the generally stressful gene transfer event. Temporal, spatial and quantitative control of a transgene's expression depends on its regulatory environment, which includes both its promoter and certain associated untranslated region sequences. While many transgenic approaches aim to manipulate plant phenotype via ectopic gene expression, a transgene sequence can be also configured to down-regulate the expression of its endogenous counterpart, a strategy which exploits the natural gene silencing machinery of plants. In this review, current technical opportunities for controlling transgene expression in the Triticeae species are described. Apart from protocols for transient and stable gene transfer, the choice of promoters and other untranslated regulatory elements, we also consider signal peptides, as they too govern the abundance and particularly the sub-cellular localization of transgene products.

  2. Activation of oncogenes by radon progeny and x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Ling, C.C.

    1990-01-01

    The overall goal of this proposal is to study the carcinogenic effect of both high and low LET radiation at the molecular level, utilizing techniques developed in molecular biology, cancer cell biology and radiation biology. The underlying assumption is that malignant transformation of normal cells is a multistep process requiring two or more molecular events in the genomic DNA. We hypothesize that radiation may induce such events in one or more steps of the multistep process. We will use in vitro models of transformation that reproduce the stepwise progression of normal cells toward the transformed phenotype and ask whether radiation can provide the necessary activating function at discrete steps along this path. Our strategy involves transfecting into normal primary cells a variety of cloned oncogenes that are known to supply only some of the functions necessary for full transformation. These partially transformed'' cells will be the targets for irradiation by x-rays and alpha particles. The results will provide the basis for assessing the ability of ionizing radiation to activate oncogenic functions that complement'' the oncogene already present in the transfected cells and produce the fully transformed phenotype. Progress is described. 121 refs.

  3. Phosphoglycerate Dehydrogenase: Potential Therapeutic Target and Putative Metabolic Oncogene

    Directory of Open Access Journals (Sweden)

    Cheryl K. Zogg

    2014-01-01

    Full Text Available Exemplified by cancer cells’ preference for glycolysis, for example, the Warburg effect, altered metabolism in tumorigenesis has emerged as an important aspect of cancer in the past 10–20 years. Whether due to changes in regulatory tumor suppressors/oncogenes or by acting as metabolic oncogenes themselves, enzymes involved in the complex network of metabolic pathways are being studied to understand their role and assess their utility as therapeutic targets. Conversion of glycolytic intermediate 3-phosphoglycerate into phosphohydroxypyruvate by the enzyme phosphoglycerate dehydrogenase (PHGDH—a rate-limiting step in the conversion of 3-phosphoglycerate to serine—represents one such mechanism. Forgotten since classic animal studies in the 1980s, the role of PHGDH as a potential therapeutic target and putative metabolic oncogene has recently reemerged following publication of two prominent papers near-simultaneously in 2011. Since that time, numerous studies and a host of metabolic explanations have been put forward in an attempt to understand the results observed. In this paper, I review the historic progression of our understanding of the role of PHGDH in cancer from the early work by Snell through its reemergence and rise to prominence, culminating in an assessment of subsequent work and what it means for the future of PHGDH.

  4. Oncogenic Kras initiates leukemia in hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Amit J Sabnis

    2009-03-01

    Full Text Available How oncogenes modulate the self-renewal properties of cancer-initiating cells is incompletely understood. Activating KRAS and NRAS mutations are among the most common oncogenic lesions detected in human cancer, and occur in myeloproliferative disorders (MPDs and leukemias. We investigated the effects of expressing oncogenic Kras(G12D from its endogenous locus on the proliferation and tumor-initiating properties of murine hematopoietic stem and progenitor cells. MPD could be initiated by Kras(G12D expression in a highly restricted population enriched for hematopoietic stem cells (HSCs, but not in common myeloid progenitors. Kras(G12D HSCs demonstrated a marked in vivo competitive advantage over wild-type cells. Kras(G12D expression also increased the fraction of proliferating HSCs and reduced the overall size of this compartment. Transplanted Kras(G12D HSCs efficiently initiated acute T-lineage leukemia/lymphoma, which was associated with secondary Notch1 mutations in thymocytes. We conclude that MPD-initiating activity is restricted to the HSC compartment in Kras(G12D mice, and that distinct self-renewing populations with cooperating mutations emerge during cancer progression.

  5. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture.

    Science.gov (United States)

    Li, Xingnan; Nadauld, Lincoln; Ootani, Akifumi; Corney, David C; Pai, Reetesh K; Gevaert, Olivier; Cantrell, Michael A; Rack, Paul G; Neal, James T; Chan, Carol W-M; Yeung, Trevor; Gong, Xue; Yuan, Jenny; Wilhelmy, Julie; Robine, Sylvie; Attardi, Laura D; Plevritis, Sylvia K; Hung, Kenneth E; Chen, Chang-Zheng; Ji, Hanlee P; Kuo, Calvin J

    2014-07-01

    The application of primary organoid cultures containing epithelial and mesenchymal elements to cancer modeling holds promise for combining the accurate multilineage differentiation and physiology of in vivo systems with the facile in vitro manipulation of transformed cell lines. Here we used a single air-liquid interface culture method without modification to engineer oncogenic mutations into primary epithelial and mesenchymal organoids from mouse colon, stomach and pancreas. Pancreatic and gastric organoids exhibited dysplasia as a result of expression of Kras carrying the G12D mutation (Kras(G12D)), p53 loss or both and readily generated adenocarcinoma after in vivo transplantation. In contrast, primary colon organoids required combinatorial Apc, p53, Kras(G12D) and Smad4 mutations for progressive transformation to invasive adenocarcinoma-like histology in vitro and tumorigenicity in vivo, recapitulating multi-hit models of colorectal cancer (CRC), as compared to the more promiscuous transformation of small intestinal organoids. Colon organoid culture functionally validated the microRNA miR-483 as a dominant driver oncogene at the IGF2 (insulin-like growth factor-2) 11p15.5 CRC amplicon, inducing dysplasia in vitro and tumorigenicity in vivo. These studies demonstrate the general utility of a highly tractable primary organoid system for cancer modeling and driver oncogene validation in diverse gastrointestinal tissues.

  6. PRG3 induces Ras-dependent oncogenic cooperation in gliomas

    Science.gov (United States)

    Yakubov, Eduard; Chen, Daishi; Broggini, Thomas; Sehm, Tina; Majernik, Gökce Hatipoglu; Hock, Stefan W.; Schwarz, Marc; Engelhorn, Tobias; Doerfler, Arnd; Buchfelder, Michael; Eyupoglu, Ilker Y.; Savaskan, Nicolai E.

    2016-01-01

    Malignant gliomas are one of the most devastating cancers in humans. One characteristic hallmark of malignant gliomas is their cellular heterogeneity with frequent genetic lesions and disturbed gene expression levels conferring selective growth advantage. Here, we report on the neuronal-associated growth promoting gene PRG3 executing oncogenic cooperation in gliomas. We have identified perturbed PRG3 levels in human malignant brain tumors displaying either elevated or down-regulated PRG3 levels compared to non-transformed specimens. Further, imbalanced PRG3 levels in gliomas foster Ras-driven oncogenic amplification with increased proliferation and cell migration although angiogenesis was unaffected. Hence, PRG3 interacts with RasGEF1 (RasGRF1/CDC25), undergoes Ras-induced challenges, whereas deletion of the C-terminal domain of PRG3 (PRG3ΔCT) inhibits Ras. Moreover PRG3 silencing makes gliomas resistant to Ras inhibition. In vivo disequilibrated PRG3 gliomas show aggravated proliferation, invasion, and deteriorate clinical outcome. Thus, our data show that the interference with PRG3 homeostasis amplifies oncogenic properties and foster the malignancy potential in gliomas. PMID:27058420

  7. CRAF R391W is a melanoma driver oncogene

    Science.gov (United States)

    Atefi, Mohammad; Titz, Bjoern; Tsoi, Jennifer; Avramis, Earl; Le, Allison; Ng, Charles; Lomova, Anastasia; Lassen, Amanda; Friedman, Michael; Chmielowski, Bartosz; Ribas, Antoni; Graeber, Thomas G.

    2016-01-01

    Approximately 75% of melanomas have known driver oncogenic mutations in BRAF, NRAS, GNA11 or GNAQ, while the mutations providing constitutive oncogenic signaling in the remaining melanomas are not known. We established a melanoma cell line from a tumor with none of the common driver mutations. This cell line demonstrated a signaling profile similar to BRAF-mutants, but lacked sensitivity to the BRAF inhibitor vemurafenib. RNA-seq mutation data implicated CRAF R391W as the alternative driver mutation of this melanoma. CRAF R391W was homozygous and over expressed. These melanoma cells were highly sensitive to CRAF, but not BRAF knockdown. In reconstitution experiments, CRAF R391W, but not CRAF WT, transformed NIH3T3 cells in soft-agar colony formation assays, increased kinase activity in vitro, induced MAP kinase signaling and conferred vemurafenib resistance. MAP kinase inducing activity was dependent on CRAF dimerization. Thus, CRAF is a bona fide alternative oncogene for BRAF/NRAS/GNAQ/GNA11 wild type melanomas. PMID:27273450

  8. Tissue Specific Activation and Inactivation of the Neu Proto-Oncogene in Transgenic Mice Using Cre Recombinase

    Science.gov (United States)

    2002-10-01

    now acquired the training and skills required to purify recombinant adenovirus and infect cells with an adenovirus containing Cre recombinase to... infection . Reportable Outcomes Papers Published Centrosome abnormalities, recurring deletions of chromosome 4, and genomic amplification of HER2/neu define...Differentiated maam. gl. marker 11.3 WAP 8.9 Glycaml Elevated in tumor model! 8.6 Glycoprotein 8.3 Connexin -30 Differentiation Marker 4.8 Connexin -26

  9. Synonymous codon changes in the oncogenes of the cottontail rabbit papillomavirus lead to increased oncogenicity and immunogenicity of the virus

    Science.gov (United States)

    Cladel, Nancy M.; Budgeon, Lynn R.; Hu, Jiafen; Balogh, Karla K.; Christensen, Neil D.

    2013-01-01

    Papillomaviruses use rare codons with respect to the host. The reasons for this are incompletely understood but among the hypotheses is the concept that rare codons result in low protein production and this allows the virus to escape immune surveillance. We changed rare codons in the oncogenes E6 and E7 of the cottontail rabbit papillomavirus to make them more mammalian-like and tested the mutant genomes in our in vivo animal model. While the amino acid sequences of the proteins remained unchanged, the oncogenic potential of some of the altered genomes increased dramatically. In addition, increased immunogenicity, as measured by spontaneous regression, was observed as the numbers of codon changes increased. This work suggests that codon usage may modify protein production in ways that influence disease outcome and that evaluation of synonymous codons should be included in the analysis of genetic variants of infectious agents and their association with disease. PMID:23433866

  10. Codon optimization of the human papillomavirus E7 oncogene induces a CD8+ T cell response to a cryptic epitope not harbored by wild-type E7.

    Directory of Open Access Journals (Sweden)

    Felix K M Lorenz

    Full Text Available Codon optimization of nucleotide sequences is a widely used method to achieve high levels of transgene expression for basic and clinical research. Until now, immunological side effects have not been described. To trigger T cell responses against human papillomavirus, we incubated T cells with dendritic cells that were pulsed with RNA encoding the codon-optimized E7 oncogene. All T cell receptors isolated from responding T cell clones recognized target cells expressing the codon-optimized E7 gene but not the wild type E7 sequence. Epitope mapping revealed recognition of a cryptic epitope from the +3 alternative reading frame of codon-optimized E7, which is not encoded by the wild type E7 sequence. The introduction of a stop codon into the +3 alternative reading frame protected the transgene product from recognition by T cell receptor gene-modified T cells. This is the first experimental study demonstrating that codon optimization can render a transgene artificially immunogenic through generation of a dominant cryptic epitope. This finding may be of great importance for the clinical field of gene therapy to avoid rejection of gene-corrected cells and for the design of DNA- and RNA-based vaccines, where codon optimization may artificially add a strong immunogenic component to the vaccine.

  11. Development of cystic glandular hyperplasia of the endometrium in Mullerian inhibitory substance type II receptor-pituitary tumor transforming gene transgenic mice.

    Science.gov (United States)

    El-Naggar, Shahenda M; Malik, Mohammad T; Martin, Alvin; Moore, Joseph P; Proctor, Mary; Hamid, Tariq; Kakar, Sham S

    2007-07-01

    The pituitary tumor transforming gene (PTTG)/securin is an oncogene that is involved in cell cycle regulation and sister chromatid separation. PTTG is highly expressed in various tumors including ovarian tumors, suggesting that PTTG may play a role in ovarian tumorigenesis. Overexpression of PTTG resulted in induction of cellular transformation in vitro and tumor formation in nude mice. To ascertain PTTG function in ovarian tumorigenesis, we generated a transgenic mouse model of PTTG by cloning PTTG cDNA downstream of Mullerian inhibitory substance type II receptor gene promoter (MISIIR) in order to target the ovarian surface epithelium. By screening of transgenic animals, we identified five founders (four males and one female). Using the four male founders, we developed four transgenic lines. PTTG expression was increased in ovarian surface epithelium, ovarian granulosa cells, as well as in the pituitary gland. Transgenic females did not develop any visible ovarian tumors at 8-10 months of age; however, there was an overall increase in the corpus luteum mass in transgenic ovary, suggesting increased luteinization. These changes were associated with an increase in serum LH and testosterone levels. In addition, there was a generalized hypertrophy of the myometrium of MISIIR-PTTG transgenic uteri with cystic glandular and hyperplasia of the endometrium. Based on these results, we conclude that the overexpression of PTTG may be required to initiate precancerous conditions but is not sufficient to induce ovarian tumorigenesis and may require another partner to initiate cellular transformation.

  12. Integration mechanisms of transgenes and population fitness of GH transgenic fish

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    It has been more than 20 years since the first batch of transgenic fish was produced. Five stable germ-line transmitted growth hormone (GH) transgenic fish lines have been generated. This paper reviews the mechanisms of integration and gene targeting of the transgene, as well as the viability, reproduction and transgenic approaches for the reproductive containment of GH-transgenic fish. Further, we propose that it should be necessary to do the following studies, in particularly, of the breeding of transgenic fish: to assess the fitness of transgenic fish in an aqueous environment with a large space and a complex structure; and to develop a controllable on-off strategy of reproduction in transgenic fish.

  13. Can plant oncogenes inhibit programmed cell death? The rolB oncogene reduces apoptosis-like symptoms in transformed plant cells.

    Science.gov (United States)

    Gorpenchenko, Tatiana Y; Aminin, Dmitry L; Vereshchagina, Yuliya V; Shkryl, Yuri N; Veremeichik, Galina N; Tchernoded, Galina K; Bulgakov, Victor P

    2012-09-01

    The rolB oncogene was previously identified as an important player in ROS metabolism in transformed plant cells. Numerous reports indicate a crucial role for animal oncogenes in apoptotic cell death. Whether plant oncogenes such as rolB can induce programmed cell death (PCD) in transformed plant cells is of particular importance. In this investigation, we used a single-cell assay based on confocal microscopy and fluorescent dyes capable of discriminating between apoptotic and necrotic cells. Our results indicate that the expression of rolB in plant cells was sufficient to decrease the proportion of apoptotic cells in steady-state conditions and diminish the rate of apoptotic cells during induced PCD. These data suggest that plant oncogenes, like animal oncogenes, may be involved in the processes mediating PCD.

  14. Optimization of Biofuel Production From Transgenic Microalgae

    Science.gov (United States)

    2013-02-27

    AFRL-OSR-VA-TR-2013-0145 OPTIMIZATION OF BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE Richard Sayre Donald Danforth...Technical 20080815 to 20120630 OPTIMIZATION OF BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE FA9550-08-1-0451 Richard Sayre Donald Danforth Plant...BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE Grant/Contract Number: FA9550-08-1-0451 Reporting Period: Final Report Abstract: We have compared the

  15. Expression Systems and Species Used for Transgenic Animal Bioreactors

    OpenAIRE

    Yanli Wang; Sihai Zhao; Liang Bai; Jianglin Fan; Enqi Liu

    2013-01-01

    Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals) and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm ...

  16. Expression Systems and Species Used for Transgenic Animal Bioreactors

    OpenAIRE

    Yanli Wang; Sihai Zhao; Liang Bai; Jianglin Fan; Enqi Liu

    2013-01-01

    Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals) and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm ...

  17. Selection of in vitro produced, transgenic embryos by nested PCR for efficient production of transgenic goats.

    Science.gov (United States)

    Huang, S Z; Huang, Y; Chen, M J; Zeng, F Y; Ren, Z R; Zeng, Y T

    2001-09-01

    The production of valuable pharmaceutical proteins using transgenic animals as bioreactors has become one of the goals of biotechnology. However, the efficiency of producing transgenic animals by means of pronuclear microinjection is low. This may be attributed in part to the low integration rate of foreign DNA. Therefore, a large number of recipients are required to produce transgenic animals. We recently developed a transgenic procedure that combined the techniques of goat oocyte in vitro maturation (IVM), in vitro fertilization (IVF), microinjection, preimplantation selection of the transgenic embryos with nested PCR and transferring the transgenic embryos into the recipient goat uterus to produce transgenic goats. Thirty-seven transgenic embryos determined by nested PCR were transferred to thirty-two recipient goats. In the end, four live-born kids were produced. As predicted, all the live kids were transgenic as identified by PCR as well as Southern blot hybridization, The integration rate was 100% (4/4) which was completely in accordance with the results of embryo preimplantation detection. The results showed a significant decrease in the number of recipients required as only 8 recipients (32/4) were needed to obtain one live transgenic goat. We suggest that the transgenic system described herein may provide an improved way to efficiently produce transgenic goats on a large scale.

  18. Oncogenic NRAS Primes Primary Acute Myeloid Leukemia Cells for Differentiation.

    Directory of Open Access Journals (Sweden)

    Cornelia Brendel

    Full Text Available RAS mutations are frequently found among acute myeloid leukemia patients (AML, generating a constitutively active signaling protein changing cellular proliferation, differentiation and apoptosis. We have previously shown that treatment of AML patients with high-dose cytarabine is preferentially beneficial for those harboring oncogenic RAS. On the basis of a murine AML cell culture model, we ascribed this effect to a RAS-driven, p53-dependent induction of differentiation. Hence, in this study we sought to confirm the correlation between RAS status and differentiation of primary blasts obtained from AML patients. The gene expression signature of AML blasts with oncogenic NRAS indeed corresponded to a more mature profile compared to blasts with wildtype RAS, as demonstrated by gene set enrichment analysis (GSEA and real-time PCR analysis of myeloid ecotropic viral integration site 1 homolog (MEIS1 in a unique cohort of AML patients. In addition, in vitro cell culture experiments with established cell lines and a second set of primary AML cells showed that oncogenic NRAS mutations predisposed cells to cytarabine (AraC driven differentiation. Taken together, our findings show that AML with inv(16 and NRAS mutation have a differentiation gene signature, supporting the notion that NRAS mutation may predispose leukemic cells to AraC induced differentiation. We therefore suggest that promotion of differentiation pathways by specific genetic alterations could explain the superior treatment outcome after therapy in some AML patient subgroups. Whether a differentiation gene expression status may generally predict for a superior treatment outcome in AML needs to be addressed in future studies.

  19. Hydration kinetics of transgenic soybeans

    Directory of Open Access Journals (Sweden)

    Aline Francielle Fracasso

    2015-01-01

    Full Text Available The kinetic and experimental analyses of the hydration process of transgenic soybeans (BRS 225 RR are provided. The importance of the hydration process consists of the grain texture modifications which favor grinding and extraction of soybeans. The soaking isotherms were obtained for four different temperatures. Results showed that temperature affected transgenic soybeans´ hydration rate and time. Moisture content d.b. of the soybeans increased from 0.12 ± 0.01 kg kg-1 to 1.45 ± 0.19 kg kg-1 during 270 min. of process. Two models were used to fit the kinetic curves: an empirical model developed by Peleg (1988 and a phenomenological one, proposed by Omoto et al. (2009. The two models adequately represented the hydration kinetics. Peleg model was applied to the experimental data and the corresponding parameters were obtained and correlated to temperature. The model by Omoto et al. (2009 showed a better statistical fitting. Although Ks was affected by temperature (Ks = 0.38079 exp (-2289.3 T-1, the equilibrium concentration remained practically unchanged.

  20. Nematode neuropeptides as transgenic nematicides.

    Science.gov (United States)

    Warnock, Neil D; Wilson, Leonie; Patten, Cheryl; Fleming, Colin C; Maule, Aaron G; Dalzell, Johnathan J

    2017-02-01

    Plant parasitic nematodes (PPNs) seriously threaten global food security. Conventionally an integrated approach to PPN management has relied heavily on carbamate, organophosphate and fumigant nematicides which are now being withdrawn over environmental health and safety concerns. This progressive withdrawal has left a significant shortcoming in our ability to manage these economically important parasites, and highlights the need for novel and robust control methods. Nematodes can assimilate exogenous peptides through retrograde transport along the chemosensory amphid neurons. Peptides can accumulate within cells of the central nerve ring and can elicit physiological effects when released to interact with receptors on adjoining cells. We have profiled bioactive neuropeptides from the neuropeptide-like protein (NLP) family of PPNs as novel nematicides, and have identified numerous discrete NLPs that negatively impact chemosensation, host invasion and stylet thrusting of the root knot nematode Meloidogyne incognita and the potato cyst nematode Globodera pallida. Transgenic secretion of these peptides from the rhizobacterium, Bacillus subtilis, and the terrestrial microalgae Chlamydomonas reinhardtii reduce tomato infection levels by up to 90% when compared with controls. These data pave the way for the exploitation of nematode neuropeptides as a novel class of plant protective nematicide, using novel non-food transgenic delivery systems which could be deployed on farmer-preferred cultivars.

  1. ERBB oncogene proteins as targets for monoclonal antibodies.

    Science.gov (United States)

    Polanovski, O L; Lebedenko, E N; Deyev, S M

    2012-03-01

    General properties of the family of tyrosine kinase ERBB receptors are considered in connection with their role in the generation of cascades of signal transduction in normal and tumor cells. Causes of acquisition of oncogene features by genes encoding these receptors and their role in tumorigenesis are analyzed. Anti-ERBB monoclonal antibodies approved for therapy are described in detail, and mechanisms of their antitumor activity and development of resistance to them are reviewed. The existing and the most promising strategies for creating and using monoclonal antibodies and their derivatives for therapy of cancer are discussed.

  2. [Progress in transgenic fish techniques and application].

    Science.gov (United States)

    Ye, Xing; Tian, Yuan-Yuan; Gao, Feng-Ying

    2011-05-01

    Transgenic technique provides a new way for fish breeding. Stable lines of growth hormone gene transfer carps, salmon and tilapia, as well as fluorescence protein gene transfer zebra fish and white cloud mountain minnow have been produced. The fast growth characteristic of GH gene transgenic fish will be of great importance to promote aquaculture production and economic efficiency. This paper summarized the progress in transgenic fish research and ecological assessments. Microinjection is still the most common used method, but often resulted in multi-site and multi-copies integration. Co-injection of transposon or meganuclease will greatly improve the efficiency of gene transfer and integration. "All fish" gene or "auto gene" should be considered to produce transgenic fish in order to eliminate misgiving on food safety and to benefit expression of the transferred gene. Environmental risk is the biggest obstacle for transgenic fish to be commercially applied. Data indicates that transgenic fish have inferior fitness compared with the traditional domestic fish. However, be-cause of the genotype-by-environment effects, it is difficult to extrapolate simple phenotypes to the complex ecological interactions that occur in nature based on the ecological consequences of the transgenic fish determined in the laboratory. It is critical to establish highly naturalized environments for acquiring reliable data that can be used to evaluate the environ-mental risk. Efficacious physical and biological containment strategies remain to be crucial approaches to ensure the safe application of transgenic fish technology.

  3. A simplified method of generating transgenic Xenopus

    OpenAIRE

    Sparrow, Duncan B.; Latinkic, Branko; Mohun, Tim J.

    2000-01-01

    Currently transgenic frog embryos are generated using restriction-enzyme-mediated integration (REMI) on decondensed sperm nuclei followed by nuclear transplantation into unfertilized eggs. We have developed a simplified version of this protocol that has the potential to increase the numbers of normally developing transgenic embryos.

  4. Positron emission tomography : measurement of transgene expression

    NARCIS (Netherlands)

    de Vries, EFJ; Vaalburg, W

    2002-01-01

    Noninvasive and repetitive imaging of transgene expression can play a pivotal role in the development of gene therapy strategies, as it offers investigators a means to determine the effectiveness of their gene transfection protocols. In the last decade, imaging of transgene expression using positron

  5. Transcription-dependent silencing of inducible convergent transgenes in transgenic mice

    Directory of Open Access Journals (Sweden)

    Calero-Nieto Fernando J

    2010-01-01

    Full Text Available Abstract Background Silencing of transgenes in mice is a common phenomenon typically associated with short multi-copy transgenes. We have investigated the regulation of the highly inducible human granulocyte-macrophage colony-stimulating-factor gene (Csf2 in transgenic mice. Results In the absence of any previous history of transcriptional activation, this transgene was expressed in T lineage cells at the correct inducible level in all lines of mice tested. In contrast, the transgene was silenced in a specific subset of lines in T cells that had encountered a previous episode of activation. Transgene silencing appeared to be both transcription-dependent and mediated by epigenetic mechanisms. Silencing was accompanied by loss of DNase I hypersensitive sites and inability to recruit RNA polymerase II upon stimulation. This pattern of silencing was reflected by increased methylation and decreased acetylation of histone H3 K9 in the transgene. We found that silenced lines were specifically associated with a single pair of tail-to-tail inverted repeated copies of the transgene embedded within a multi-copy array. Conclusions Our study suggests that epigenetic transgene silencing can result from convergent transcription of inverted repeats which can lead to silencing of an entire multi-copy transgene array. This mechanism may account for a significant proportion of the reported cases of transgene inactivation in mice.

  6. Accumulation of nickel in transgenic tobacco

    Science.gov (United States)

    Sidik, Nik Marzuki; Othman, Noor Farhan

    2013-11-01

    The accumulation of heavy metal Ni in the roots and leaves of four T1 transgenic lines of tobacco (T(1)20E, T(1)24C, T(1)18B1 and T(1)20B) expressing eiMT1 from E.indica was assessed. The aim of the study was to investigate the level of Ni accumulation in the leaves and roots of each transgenic lines and to evaluate the eligibility of the plants to be classified as a phytoremediation agent. All of the transgenic lines showed different ability in accumulating different metals and has translocation factor (TF) less than 1 (TFmetal treatment. Among the 4 transgenic lines, transgenic line T(1)24C showed the highest accumulation of Ni (251.9 ± 0.014 mg/kg) and the lowest TF value (TFT(1)24C=0.0875) at 60 ppm Ni.

  7. Retroviruses hijack chromatin loops to drive oncogene expression and highlight the chromatin architecture around proto-oncogenic loci.

    Directory of Open Access Journals (Sweden)

    Jillian M Pattison

    Full Text Available The majority of the genome consists of intergenic and non-coding DNA sequences shown to play a major role in different gene regulatory networks. However, the specific potency of these distal elements as well as how these regions exert function across large genomic distances remains unclear. To address these unresolved issues, we closely examined the chromatin architecture around proto-oncogenic loci in the mouse and human genomes to demonstrate a functional role for chromatin looping in distal gene regulation. Using cell culture models, we show that tumorigenic retroviral integration sites within the mouse genome occur near existing large chromatin loops and that this chromatin architecture is maintained within the human genome as well. Significantly, as mutagenesis screens are not feasible in humans, we demonstrate a way to leverage existing screens in mice to identify disease relevant human enhancers and expose novel disease mechanisms. For instance, we characterize the epigenetic landscape upstream of the human Cyclin D1 locus to find multiple distal interactions that contribute to the complex cis-regulation of this cell cycle gene. Furthermore, we characterize a novel distal interaction upstream of the Cyclin D1 gene which provides mechanistic evidence for the abundant overexpression of Cyclin D1 occurring in multiple myeloma cells harboring a pathogenic translocation event. Through use of mapped retroviral integrations and translocation breakpoints, our studies highlight the importance of chromatin looping in oncogene expression, elucidate the epigenetic mechanisms crucial for distal cis-regulation, and in one particular instance, explain how a translocation event drives tumorigenesis through upregulation of a proto-oncogene.

  8. Retroviruses Hijack Chromatin Loops to Drive Oncogene Expression and Highlight the Chromatin Architecture around Proto-Oncogenic Loci

    Science.gov (United States)

    Pattison, Jillian M.; Wright, Jason B.; Cole, Michael D.

    2015-01-01

    The majority of the genome consists of intergenic and non-coding DNA sequences shown to play a major role in different gene regulatory networks. However, the specific potency of these distal elements as well as how these regions exert function across large genomic distances remains unclear. To address these unresolved issues, we closely examined the chromatin architecture around proto-oncogenic loci in the mouse and human genomes to demonstrate a functional role for chromatin looping in distal gene regulation. Using cell culture models, we show that tumorigenic retroviral integration sites within the mouse genome occur near existing large chromatin loops and that this chromatin architecture is maintained within the human genome as well. Significantly, as mutagenesis screens are not feasible in humans, we demonstrate a way to leverage existing screens in mice to identify disease relevant human enhancers and expose novel disease mechanisms. For instance, we characterize the epigenetic landscape upstream of the human Cyclin D1 locus to find multiple distal interactions that contribute to the complex cis-regulation of this cell cycle gene. Furthermore, we characterize a novel distal interaction upstream of the Cyclin D1 gene which provides mechanistic evidence for the abundant overexpression of Cyclin D1 occurring in multiple myeloma cells harboring a pathogenic translocation event. Through use of mapped retroviral integrations and translocation breakpoints, our studies highlight the importance of chromatin looping in oncogene expression, elucidate the epigenetic mechanisms crucial for distal cis-regulation, and in one particular instance, explain how a translocation event drives tumorigenesis through upregulation of a proto-oncogene. PMID:25799187

  9. EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Anne-Pierre Morel

    Full Text Available The epithelial-mesenchymal transition (EMT is an embryonic transdifferentiation process consisting of conversion of polarized epithelial cells to motile mesenchymal ones. EMT-inducing transcription factors are aberrantly expressed in multiple tumor types and are known to favor the metastatic dissemination process. Supporting oncogenic activity within primary lesions, the TWIST and ZEB proteins can prevent cells from undergoing oncogene-induced senescence and apoptosis by abolishing both p53- and RB-dependent pathways. Here we show that they also downregulate PP2A phosphatase activity and efficiently cooperate with an oncogenic version of H-RAS in malignant transformation of human mammary epithelial cells. Thus, by down-regulating crucial tumor suppressor functions, EMT inducers make cells particularly prone to malignant conversion. Importantly, by analyzing transformed cells generated in vitro and by characterizing novel transgenic mouse models, we further demonstrate that cooperation between an EMT inducer and an active form of RAS is sufficient to trigger transformation of mammary epithelial cells into malignant cells exhibiting all the characteristic features of claudin-low tumors, including low expression of tight and adherens junction genes, EMT traits, and stem cell-like characteristics. Claudin-low tumors are believed to be the most primitive breast malignancies, having arisen through transformation of an early epithelial precursor with inherent stemness properties and metaplastic features. Challenging this prevailing view, we propose that these aggressive tumors arise from cells committed to luminal differentiation, through a process driven by EMT inducers and combining malignant transformation and transdifferentiation.

  10. A novel putative tyrosine kinase receptor with oncogenic potential.

    Science.gov (United States)

    Janssen, J W; Schulz, A S; Steenvoorden, A C; Schmidberger, M; Strehl, S; Ambros, P F; Bartram, C R

    1991-11-01

    We have detected transforming activity by a tumorigenicity assay using NIH3T3 cells transfected with DNA from a chronic myeloproliferative disorder patient. Here, we report the cDNA cloning of the corresponding oncogene, designated UFO, in allusion to the as yet unidentified function of its protein. Nucleotide sequence analysis of a 3116bp cDNA clone revealed a 2682-bp-long open reading frame capable of directing the synthesis of a 894 amino acid polypeptide. The predicted UFO protein exhibits characteristic features of a transmembrane receptor with associated tyrosine kinase activity. The UFO proto-oncogene maps to human chromosome 19q13.1 and is transcribed into two 5.0 kb and 3.2 kb mRNAs in human bone marrow and human tumor cell lines. The UFO locus is evolutionarily conserved between vertebrate species. A 4.0 kb mRNA of the murine UFO homolog is expressed in a variety of different mouse tissues. We thus have identified a novel element of the complex signaling network involved in the control of cell proliferation and differentiation.

  11. Design of a small molecule against an oncogenic noncoding RNA.

    Science.gov (United States)

    Velagapudi, Sai Pradeep; Cameron, Michael D; Haga, Christopher L; Rosenberg, Laura H; Lafitte, Marie; Duckett, Derek R; Phinney, Donald G; Disney, Matthew D

    2016-05-24

    The design of precision, preclinical therapeutics from sequence is difficult, but advances in this area, particularly those focused on rational design, could quickly transform the sequence of disease-causing gene products into lead modalities. Herein, we describe the use of Inforna, a computational approach that enables the rational design of small molecules targeting RNA to quickly provide a potent modulator of oncogenic microRNA-96 (miR-96). We mined the secondary structure of primary microRNA-96 (pri-miR-96) hairpin precursor against a database of RNA motif-small molecule interactions, which identified modules that bound RNA motifs nearby and in the Drosha processing site. Precise linking of these modules together provided Targaprimir-96 (3), which selectively modulates miR-96 production in cancer cells and triggers apoptosis. Importantly, the compound is ineffective on healthy breast cells, and exogenous overexpression of pri-miR-96 reduced compound potency in breast cancer cells. Chemical Cross-Linking and Isolation by Pull-Down (Chem-CLIP), a small-molecule RNA target validation approach, shows that 3 directly engages pri-miR-96 in breast cancer cells. In vivo, 3 has a favorable pharmacokinetic profile and decreases tumor burden in a mouse model of triple-negative breast cancer. Thus, rational design can quickly produce precision, in vivo bioactive lead small molecules against hard-to-treat cancers by targeting oncogenic noncoding RNAs, advancing a disease-to-gene-to-drug paradigm.

  12. Oncogenic programmes and Notch activity: an 'organized crime'?

    Science.gov (United States)

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'.

  13. REST regulates oncogenic properties of glioblastoma stem cells

    Science.gov (United States)

    Kamal, Mohamed M.; Sathyan, Pratheesh; Singh, Sanjay K.; Zinn, Pascal O.; Marisetty, Anantha L.; Liang, Shoudan; Gumin, Joy; El-Mesallamy, Hala Osman; Suki, Dima; Colman, Howard; Fuller, Gregory N.; Lang, Frederick F.; Majumder, Sadhan

    2013-01-01

    Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain tumors in adults. Although many GBM tumors are believed to be caused by self-renewing, glioblastoma-derived stem-like cells (GSCs), the mechanisms that regulate self-renewal and other oncogenic properties of GSCs are only now being unraveled. Here we showed that GSCs derived from GBM patient specimens express varying levels of the transcriptional repressor REST, suggesting heterogeneity across different GSC lines. Loss- and gain-of-function experiments indicated that REST maintains self-renewal of GSCs. High REST-expressing GSCs (HR-GSCs) produced tumors histopathologically distinct from those generated by low REST-expressing GSCs (LR-GSCs) in orthotopic mouse brain tumor models. Knockdown of REST in HR-GSCs resulted in increased survival in GSC-transplanted mice and produced tumors with higher apoptotic and lower invasive properties. Conversely, forced expression of exogenous REST in LR-GSCs produced decreased survival in mice and produced tumors with lower apoptotic and higher invasive properties, similar to HR-GSCs. Thus, based on our results, we propose that a novel function of REST is to maintain self-renewal and other oncogenic properties of GSCs and that REST can play a major role in mediating tumorigenicity in GBM. PMID:22228704

  14. Metastatic pancreatic cancer is dependent on oncogenic Kras in mice.

    Directory of Open Access Journals (Sweden)

    Meredith A Collins

    Full Text Available Pancreatic cancer is one of the deadliest human malignancies, and its prognosis has not improved over the past 40 years. Mouse models that spontaneously develop pancreatic adenocarcinoma and mimic the progression of the human disease are emerging as a new tool to investigate the basic biology of this disease and identify potential therapeutic targets. Here, we describe a new model of metastatic pancreatic adenocarcinoma based on pancreas-specific, inducible and reversible expression of an oncogenic form of Kras, together with pancreas-specific expression of a mutant form of the tumor suppressor p53. Using high-resolution magnetic resonance imaging to follow individual animals in longitudinal studies, we show that both primary and metastatic lesions depend on continuous Kras activity for their maintenance. However, re-activation of Kras* following prolonged inactivation leads to rapid tumor relapse, raising the concern that Kras*-resistance might eventually be acquired. Thus, our data identifies Kras* as a key oncogene in pancreatic cancer maintenance, but raises the possibility of acquired resistance should Kras inhibitors become available for use in pancreatic cancer.

  15. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma

    Directory of Open Access Journals (Sweden)

    Dinesh K. Singh

    2017-01-01

    Full Text Available Efforts to identify and target glioblastoma (GBM drivers have primarily focused on receptor tyrosine kinases (RTKs. Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2 transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2 and zinc-finger E-box binding homeobox 1 (ZEB1, which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo.

  16. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma.

    Science.gov (United States)

    Singh, Dinesh K; Kollipara, Rahul K; Vemireddy, Vamsidara; Yang, Xiao-Li; Sun, Yuxiao; Regmi, Nanda; Klingler, Stefan; Hatanpaa, Kimmo J; Raisanen, Jack; Cho, Steve K; Sirasanagandla, Shyam; Nannepaga, Suraj; Piccirillo, Sara; Mashimo, Tomoyuki; Wang, Shan; Humphries, Caroline G; Mickey, Bruce; Maher, Elizabeth A; Zheng, Hongwu; Kim, Ryung S; Kittler, Ralf; Bachoo, Robert M

    2017-01-24

    Efforts to identify and target glioblastoma (GBM) drivers have primarily focused on receptor tyrosine kinases (RTKs). Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2) transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2) and zinc-finger E-box binding homeobox 1 (ZEB1), which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo.

  17. Analysis of the role of Igf2 in adrenal tumour development in transgenic mouse models.

    Directory of Open Access Journals (Sweden)

    Coralie Drelon

    Full Text Available Adrenal cortical carcinomas (ACC are rare but aggressive tumours associated with poor prognosis. The two most frequent alterations in ACC in patients are overexpression of the growth factor IGF2 and constitutive activation of Wnt/β-catenin signalling. Using a transgenic mouse model, we have previously shown that constitutive active β-catenin is a bona fide adrenal oncogene. However, although all these mice developed benign adrenal hyperplasia, malignant progression was infrequent, suggesting that secondary genetic events were required for aggressive tumour development. In the present paper, we have tested IGF2 oncogenic properties by developing two distinct transgenic mouse models of Igf2 overexpression in the adrenal cortex. Our analysis shows that despite overexpression levels ranging from 7 (basal to 87 (ACTH-induced fold, Igf2 has no tumour initiating potential in the adrenal cortex. However, it induces aberrant accumulation of Gli1 and Pod1-positive progenitor cells, in a hedgehog-independent manner. We have also tested the hypothesis that Igf2 may cooperate with Wnt signalling by mating Igf2 overexpressing lines with mice that express constitutive active β-catenin in the adrenal cortex. We show that the combination of both alterations has no effect on tumour phenotype at stages when β-catenin-induced tumours are benign. However, there is a mild promoting effect at later stages, characterised by increased Weiss score and proliferation. Formation of malignant tumours is nonetheless a rare event, even when Igf2 expression is further increased by ACTH treatment. Altogether these experiments suggest that the growth factor IGF2 is a mild contributor to malignant adrenocortical tumourigenesis.

  18. Prediction of oncogenic interactions and cancer-related signaling networks based on network topology.

    Science.gov (United States)

    Acencio, Marcio Luis; Bovolenta, Luiz Augusto; Camilo, Esther; Lemke, Ney

    2013-01-01

    Cancer has been increasingly recognized as a systems biology disease since many investigators have demonstrated that this malignant phenotype emerges from abnormal protein-protein, regulatory and metabolic interactions induced by simultaneous structural and regulatory changes in multiple genes and pathways. Therefore, the identification of oncogenic interactions and cancer-related signaling networks is crucial for better understanding cancer. As experimental techniques for determining such interactions and signaling networks are labor-intensive and time-consuming, the development of a computational approach capable to accomplish this task would be of great value. For this purpose, we present here a novel computational approach based on network topology and machine learning capable to predict oncogenic interactions and extract relevant cancer-related signaling subnetworks from an integrated network of human genes interactions (INHGI). This approach, called graph2sig, is twofold: first, it assigns oncogenic scores to all interactions in the INHGI and then these oncogenic scores are used as edge weights to extract oncogenic signaling subnetworks from INHGI. Regarding the prediction of oncogenic interactions, we showed that graph2sig is able to recover 89% of known oncogenic interactions with a precision of 77%. Moreover, the interactions that received high oncogenic scores are enriched in genes for which mutations have been causally implicated in cancer. We also demonstrated that graph2sig is potentially useful in extracting oncogenic signaling subnetworks: more than 80% of constructed subnetworks contain more than 50% of original interactions in their corresponding oncogenic linear pathways present in the KEGG PATHWAY database. In addition, the potential oncogenic signaling subnetworks discovered by graph2sig are supported by experimental evidence. Taken together, these results suggest that graph2sig can be a useful tool for investigators involved in cancer research

  19. Prediction of oncogenic interactions and cancer-related signaling networks based on network topology.

    Directory of Open Access Journals (Sweden)

    Marcio Luis Acencio

    Full Text Available Cancer has been increasingly recognized as a systems biology disease since many investigators have demonstrated that this malignant phenotype emerges from abnormal protein-protein, regulatory and metabolic interactions induced by simultaneous structural and regulatory changes in multiple genes and pathways. Therefore, the identification of oncogenic interactions and cancer-related signaling networks is crucial for better understanding cancer. As experimental techniques for determining such interactions and signaling networks are labor-intensive and time-consuming, the development of a computational approach capable to accomplish this task would be of great value. For this purpose, we present here a novel computational approach based on network topology and machine learning capable to predict oncogenic interactions and extract relevant cancer-related signaling subnetworks from an integrated network of human genes interactions (INHGI. This approach, called graph2sig, is twofold: first, it assigns oncogenic scores to all interactions in the INHGI and then these oncogenic scores are used as edge weights to extract oncogenic signaling subnetworks from INHGI. Regarding the prediction of oncogenic interactions, we showed that graph2sig is able to recover 89% of known oncogenic interactions with a precision of 77%. Moreover, the interactions that received high oncogenic scores are enriched in genes for which mutations have been causally implicated in cancer. We also demonstrated that graph2sig is potentially useful in extracting oncogenic signaling subnetworks: more than 80% of constructed subnetworks contain more than 50% of original interactions in their corresponding oncogenic linear pathways present in the KEGG PATHWAY database. In addition, the potential oncogenic signaling subnetworks discovered by graph2sig are supported by experimental evidence. Taken together, these results suggest that graph2sig can be a useful tool for investigators involved

  20. [Nature of cancer explored from the perspective of the functional evolution of proto-oncogenes].

    Science.gov (United States)

    Watari, Akihiro

    2012-01-01

    The products of proto-oncogene play critical roles in the development or maintenance of multicellular societies in animals via strict regulatory systems. When these regulatory systems are disrupted, proto-oncogenes can become oncogenes, and thereby induce cell transformation and carcinogenesis. To understand the molecular basis for development of the regulatory system of proto-oncogenes during evolution, we screened for ancestral proto-oncogenes from the unicellular choanoflagellate Monosiga ovata (M. ovata) by monitoring their transforming ability in mammalian cells; consequently, we isolated a Pak gene ortholog, which encodes a serine/threonine kinase as a 'primitive oncogene'. We also cloned Pak orthologs from fungi and the multicellular sponge Ephydatia fluviatilis, and compared their regulatory features with that of M. ovata Pak (MoPak). MoPak is constitutively active and induces cell transformation in mammalian cells. In contrast, Pak orthologs from multicellular animals are strictly regulated. Analyses of Pak mutants revealed that structural alterations in the auto-inhibitory domain (AID) are responsible for the enhanced kinase activity and the oncogenic activity of MoPak. Furthermore, we show that Rho family GTPases-mediated regulatory system of Pak kinase is conserved throughout the evolution from unicellular to multicellular animals, but the MoPak is more sensitive to the Rho family GTPases-mediated activation than multicellular Pak. These results show that maturation of AID function was required for the development of the strict regulatory system of the Pak proto-oncogene, and support the potential link between the development of the regulatory system of proto-oncogenes and the evolution of multicellularity. Further analysis of oncogenic functions of proto-oncogene orthologs in the unicellular genes would provide some insights into the mechanisms of the destruction of multicellular society in cancer.

  1. Comparison of Expression Profiles of Metastatic versus Primary Mammary Tumors in MMTV-Wnt-1 and MMTV-Neu Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Shixia Huang

    2008-02-01

    Full Text Available Distant metastases of human breast cancers have been suggested to be more different from each other than from their respective primary tumors, based on expression profiling. The mechanism behind this lack of similarity between individual metastases is not known. We used cDNA microarrays to determine the expression profiles of pulmonary metastases and primary mammary tumors in two distinct transgenic models expressing either the Neu or the Wnt-1 oncogene from the mouse mammary tumor virus long terminal repeat (MMTV LTR. We found that pulmonary metastases are similar to each other and to their primary tumors within the same line. However, metastases arising in one transgenic mouse line are very different from either metastases or primary tumors arising in the other line. In addition, we found that, like their primary tumors, lung metastases in Wnt-1 transgenic mice harbor both epithelial and myoepithelial tumor cells and cells that express the putative progenitor cell marker keratin 6. Our data suggest that both gene expression profiles and cellular heterogeneity are preserved after breast cancer has spread to distant sites, and that metastases are similar to each other when their primary tumors were induced by the same oncogene and from the same subset of mammary cells.

  2. Oncogenic signaling pathways and origins of tumor-initiating stem-like cells of hepatocellular carcinomas induced by hepatitis C virus, alcohol and/or obesity.

    Science.gov (United States)

    Chen, Chia-Lin; Tsukamoto, Hidekazu; Machida, Keigo

    2014-07-01

    This review article discusses the importance and oncogenic signaling pathways of tumor-initiating cells (TICs) in several etiologies of hepatocellular carcinomas (HCCs) induced by hepatitis C virus (HCV), alcohol, obesity and/or chemicals. Stem cells may be present in cancer tissue, and a hierarchy of cells is formed, as is the case for normal tissue. Tumor formation, growth and propagation are maintained by a small proportion of cells with stem cell-like properties. TICs are present in alcohol-fed HCV transgenic mice, diethylnitrosamine/phenobarbital-treated mice (chemical carcinogenesis) and Spnb2 +/- mice (defective TGF-β signal). Alcohol/obesity-associated endotoxemia induces the stem cell marker Nanog through TLR4 signaling to generate TICs and liver tumors in several HCC models. The oncogenic pathway (such as the STAT3 and TLR4-NANOG pathway) and mechanism of generation of TICs of HCCs associated with HCV, alcohol and obesity are discussed. Understanding the molecular stemness signaling and cellular hierarchy and defining key TIC-specific genes will accelerate the development of novel biomarkers and treatment strategies. This review highlights recent advances in understanding the pathogenesis of liver TICs and discusses unanswered questions about the concept of liver TICs. (This project was supported by NIH grants 1R01AA018857 and P50AA11999).

  3. Rapid characterization of transgenic and non-transgenic soybean oils by chemometric methods using NIR spectroscopy

    Science.gov (United States)

    Luna, Aderval S.; da Silva, Arnaldo P.; Pinho, Jéssica S. A.; Ferré, Joan; Boqué, Ricard

    Near infrared (NIR) spectroscopy and multivariate classification were applied to discriminate soybean oil samples into non-transgenic and transgenic. Principal Component Analysis (PCA) was applied to extract relevant features from the spectral data and to remove the anomalous samples. The best results were obtained when with Support Vectors Machine-Discriminant Analysis (SVM-DA) and Partial Least Squares-Discriminant Analysis (PLS-DA) after mean centering plus multiplicative scatter correction. For SVM-DA the percentage of successful classification was 100% for the training group and 100% and 90% in validation group for non transgenic and transgenic soybean oil samples respectively. For PLS-DA the percentage of successful classification was 95% and 100% in training group for non transgenic and transgenic soybean oil samples respectively and 100% and 80% in validation group for non transgenic and transgenic respectively. The results demonstrate that NIR spectroscopy can provide a rapid, nondestructive and reliable method to distinguish non-transgenic and transgenic soybean oils.

  4. Generation of Transgenic Hydra by Embryo Microinjection

    Science.gov (United States)

    Juliano, Celina E.; Lin, Haifan; Steele, Robert E.

    2014-01-01

    As a member of the phylum Cnidaria, the sister group to all bilaterians, Hydra can shed light on fundamental biological processes shared among multicellular animals. Hydra is used as a model for the study of regeneration, pattern formation, and stem cells. However, research efforts have been hampered by lack of a reliable method for gene perturbations to study molecular function. The development of transgenic methods has revitalized the study of Hydra biology1. Transgenic Hydra allow for the tracking of live cells, sorting to yield pure cell populations for biochemical analysis, manipulation of gene function by knockdown and over-expression, and analysis of promoter function. Plasmid DNA injected into early stage embryos randomly integrates into the genome early in development. This results in hatchlings that express transgenes in patches of tissue in one or more of the three lineages (ectodermal epithelial, endodermal epithelial, or interstitial). The success rate of obtaining a hatchling with transgenic tissue is between 10% and 20%. Asexual propagation of the transgenic hatchling is used to establish a uniformly transgenic line in a particular lineage. Generating transgenic Hydra is surprisingly simple and robust, and here we describe a protocol that can be easily implemented at low cost. PMID:25285460

  5. Transgenic mouse models generated by hydrodynamic transfection for genetic studies of liver cancer and preclinical testing of anti-cancer therapy.

    Science.gov (United States)

    Ju, Hye-Lim; Han, Kwang-Hyub; Lee, Jong Doo; Ro, Simon Weonsang

    2016-04-01

    Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide; however, the genetic mechanisms underlying its pathogenesis are incompletely understood. Genetically engineered mouse (GEM) models of HCC have been developed to elucidate the role of individual cancer-related genes in hepatocarcinogenesis. However, the expensive and time-consuming processes related to generating a GEM model discourage the development of diverse genotype models. Recently, a simple and inexpensive liver-specific transgenic approach was developed, in which a hydrodynamics-based transfection (HT) method was coupled with the Sleeping Beauty transposase system. Various HT models in which different oncogenic pathways are activated and/or tumor-suppressing pathways inactivated have been developed in recent years. The applicability of HT models in liver cancer research is expected to broaden and ultimately elucidate the cooperation between oncogenic signaling pathways and aid in designing molecular therapy to target altered pathways.

  6. Functional Analysis of the Proto-oncogenes Septin9 and Nras

    DEFF Research Database (Denmark)

    Lassen, Louise Berkhoudt

    regardless of genotype indicating an oncogenic role of SEPT9. Nras is a potent proto-oncogene involved in signaling through a number of proliferative pathways. Earlier detected retroviral integration sites resulting in B-cell lymphomas were used to create Nras knock in models harboring the LTR from...

  7. Gene specificity of suppression of transgene-mediated insertional transcriptional activation by the chicken HS4 insulator.

    Directory of Open Access Journals (Sweden)

    Romain Desprat

    Full Text Available Insertional mutagenesis has emerged as a major obstacle for gene therapy based on vectors that integrate randomly in the genome. Reducing the genotoxicity of genomic viral integration can, in first approximation, be equated with reducing the risk of oncogene activation, at least in the case of therapeutic payloads that have no known oncogenic potential, such as the globin genes. An attractive solution to the problem of oncogene activation is the inclusion of insulators/enhancer-blockers in the viral vectors. In this study we have used Recombinase-Mediated Cassette Exchange to characterize the effect of integration of globin therapeutic cassettes in the presence or absence of the chicken HS4 and three other putative insulators inserted near Stil, Tal1 and MAP17, three well-known cellular proto-oncogenes in the SCL/Tal1 locus. We show that insertion of a Locus Control Region-driven globin therapeutic globin transgene had a dramatic activating effect on Tal1 and Map17, the two closest genes, a minor effect on Stil, and no effect on Cyp4x1, a non-expressed gene. Of the four element tested, cHS4 was the only one that was able to suppress this transgene-mediated insertional transcriptional activation. cHS4 had a strong suppressive effect on the activation expression of Map17 but has little or no effect on expression of Tal1. The suppressive activity of cHS4 is therefore promoter specific. Importantly, the observed suppressive effect of cHS4 on Map17 activation did not depend on its intercalation between the LCR and the Map 17 promoter. Rather, presence of one or two copies of cHS4 anywhere within the transgene was sufficient to almost completely block the activation of Map17. Therefore, at this complex locus, suppression of transgene-mediated insertional transcriptional activation by cHS4 could not be adequately explained by models that predict that cHS4 can only suppress expression through an enhancer-blocking activity that requires intercalation

  8. Generation of red fluorescent protein transgenic dogs.

    Science.gov (United States)

    Hong, So Gun; Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Park, Jung Eun; Kang, Jung Taek; Koo, Ok Jae; Kim, Teoan; Kwon, Mo Sun; Koo, Bon Chul; Ra, Jeong Chan; Kim, Dae Yong; Ko, CheMyong; Lee, Byeong Chun

    2009-05-01

    Dogs (Canis familiaris) share many common genetic diseases with humans and development of disease models using a transgenic approach has long been awaited. However, due to the technical difficulty in obtaining fertilizable eggs and the unavailability of embryonic stem cells, no transgenic dog has been generated. Canine fetal fibroblasts were stably transfected with a red fluorescent protein (RFP) gene-expressing construct using retrovirus gene delivery method. Somatic cell nuclear transfer was then employed to replace the nucleus of an oocyte with the nucleus of the RFP-fibroblasts. Using this approach, we produced the first generation of transgenic dogs with four female and two male expressing RFP.

  9. Mdm2 Phosphorylation Regulates Its Stability and Has Contrasting Effects on Oncogene and Radiation-Induced Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Michael I. Carr

    2016-09-01

    Full Text Available ATM phosphorylation of Mdm2-S394 is required for robust p53 stabilization and activation in DNA-damaged cells. We have now utilized Mdm2S394A knockin mice to determine that phosphorylation of Mdm2-S394 regulates p53 activity and the DNA damage response in lymphatic tissues in vivo by modulating Mdm2 stability. Mdm2-S394 phosphorylation delays lymphomagenesis in Eμ-myc transgenic mice, and preventing Mdm2-S394 phosphorylation obviates the need for p53 mutation in Myc-driven tumorigenesis. However, irradiated Mdm2S394A mice also have increased hematopoietic stem and progenitor cell functions, and we observed decreased lymphomagenesis in sub-lethally irradiated Mdm2S394A mice. These findings document contrasting effects of ATM-Mdm2 signaling on p53 tumor suppression and reveal that destabilizing Mdm2 by promoting its phosphorylation by ATM would be effective in treating oncogene-induced malignancies, while inhibiting Mdm2-S394 phosphorylation during radiation exposure or chemotherapy would ameliorate bone marrow failure and prevent the development of secondary hematological malignancies.

  10. AKT1E17K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer

    Science.gov (United States)

    Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe

    2016-01-01

    The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6–2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype. PMID:26859676

  11. AKT1E¹⁷K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Donatella Malanga

    Full Text Available The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6-2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26 locus (R26-AKT1E17K mice we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype.

  12. RET oncogene in MEN2, MEN2B, MTC and other forms of thyroid cancer.

    Science.gov (United States)

    Lodish, Maya B; Stratakis, Constantine A

    2008-04-01

    Hereditary medullary thyroid carcinoma (MTC) is caused by specific autosomal dominant gain-of-function mutations in the RET proto-oncogene. Genotype-phenotype correlations exist that help predict the presence of other associated endocrine neoplasms as well as the timing of thyroid cancer development. MTC represents a promising model for targeted cancer therapy, as the oncogenic event responsible for initiating malignancy has been well characterized. The RET proto-oncogene has become the target for molecularly designed drug therapy. Tyrosine kinase inhibitors targeting activated RET are currently in clinical trials for the treatment of patients with MTC. This review will provide a brief overview of MTC and the associated RET oncogenic mutations, and will summarize the therapies designed to strategically interfere with the pathologic activation of the RET oncogene.

  13. Classical Oncogenes and Tumor Suppressor Genes: A Comparative Genomics Perspective

    Directory of Open Access Journals (Sweden)

    Oxana K. Pickeral

    2000-05-01

    Full Text Available We have curated a reference set of cancer-related genes and reanalyzed their sequences in the light of molecular information and resources that have become available since they were first cloned. Homology studies were carried out for human oncogenes and tumor suppressors, compared with the complete proteome of the nematode, Caenorhabditis elegans, and partial proteomes of mouse and rat and the fruit fly, Drosophila melanogaster. Our results demonstrate that simple, semi-automated bioinformatics approaches to identifying putative functionally equivalent gene products in different organisms may often be misleading. An electronic supplement to this article1 provides an integrated view of our comparative genomics analysis as well as mapping data, physical cDNA resources and links to published literature and reviews, thus creating a “window” into the genomes of humans and other organisms for cancer biology.

  14. Mutations of the KRAS oncogene in endometrial hyperplasia and carcinoma.

    Directory of Open Access Journals (Sweden)

    Wiesława Niklińska

    2009-05-01

    Full Text Available The aim of this study was to examine the prevalence and clinicopathological significance of KRAS point mutation in endometrial hyperplasia and carcinoma. We analysed KRAS in 11 cases of complex atypical hyperplasia and in 49 endometrial carcinomas using polymerase chain reaction associated with restriction fragment length polymorphism (PCR-RFPL. Point mutations at codon 12 of KRAS oncogene were identified in 7 of 49 (14,3% tumor specimens and in 2 of 11 (18,2% hyperplasias. No correlation was found between KRAS gene mutation and age at onset, histology, grade of differentiation and clinical stage. We conclude that KRAS mutation is a relatively common event in endometrial carcinogenesis, but with no prognostic value.

  15. Structural Effects of Oncogenic PI3K alpha Mutations

    Energy Technology Data Exchange (ETDEWEB)

    S Gabelli; C Huang; D Mandelker; O Schmidt-Kittler; B Vogelstein; L Amzel

    2011-12-31

    Physiological activation of PI3K{alpha} is brought about by the release of the inhibition by p85 when the nSH2 binds the phosphorylated tyrosine of activated receptors or their substrates. Oncogenic mutations of PI3K{alpha} result in a constitutively activated enzyme that triggers downstream pathways that increase tumor aggressiveness and survival. Structural information suggests that some mutations also activate the enzyme by releasing p85 inhibition. Other mutations work by different mechanisms. For example, the most common mutation, His1047Arg, causes a conformational change that increases membrane association resulting in greater accessibility to the substrate, an integral membrane component. These effects are examples of the subtle structural changes that result in increased activity. The structures of these and other mutants are providing the basis for the design of isozyme-specific, mutation-specific inhibitors for individualized cancer therapies.

  16. Oncogenes, protooncogenes, and tumor suppressor genes in acute myelogenous leukemia.

    Science.gov (United States)

    Hijiya, N; Gewirtz, A M

    1995-05-01

    In recent years, our understanding of normal human hematopoiesis has expanded greatly. We have increased our knowledge of regulatory growth factors, the receptors through which they act, and the secondary messengers involved in transducing the growth/differentiation signals from the cytoplasmic membrane to the nucleus. This knowledge has revealed potential mechanisms for inducing the neoplastic transformation of hematopoietic cells. This applies in particular to the role of viral oncogenes and cellular protooncogenes and, more recently, to the role of tumor suppressor genes. Protooncogenes are intimately involved in the processes of cell proliferation and differentiation. Therefore, any amplification, mutation, structural alteration, or change in transcriptional regulation of protooncogenes might lead to or be associated with induction of the malignant phenotype. Based on the importance of these genes in leukemogenesis and the maintenance of the malignant phenotype, it seems reasonable to hypothesize that targeted disruption of leukemogenic genes may be of therapeutic value.

  17. Terminal and progenitor lineage-survival oncogenes as cancer markers.

    Science.gov (United States)

    Vias, Maria; Ramos-Montoya, Antonio; Mills, Ian G

    2008-11-01

    Tumour classification has traditionally focused on differentiation and cellular morphology, and latterly on the application of genomic approaches. By combining chromatin immunoprecipitation with expression array, it has been possible to identify direct gene targets for transcription factors for nuclear hormone receptors. At the same time, there have been great strides in deriving stem and progenitor cells from tissues. It is therefore timely to propose that pairing the isolation of these cell subpopulations from tissues and tumours with these genomics approaches will reveal conserved gene targets for transcription factors. By focusing on transcription factors (lineage-survival oncogenes) with roles in both organogenesis and tumourigenesis at multiple organ sites, we suggest that this comparative genomics approach will enable developmental biology to be used more fully in relation to understanding tumour progression and will reveal new cancer markers. We focus here on neurogenesis and neuroendocrine differentiation in tumours.

  18. Use of glycolytic pathways for inhibiting or measuring oncogenic signaling

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, Yasuhito; Bissell, Mina

    2017-06-27

    Disclosed are methods in which glucose metabolism is correlated to oncogenesis through certain specific pathways; inhibition of certain enzymes is shown to interfere with oncogenic signaling, and measurement of certain enzyme levels is correlated with patient survival. The present methods comprise measuring level of expression of at least one of the enzymes involved in glucose uptake or metabolism, wherein increased expression of the at least one of the enzymes relative to expression in a normal cell correlates with poor prognosis of disease in a patient. Preferably the genes whose expression level is measured include GLUT3, PFKP, GAPDH, ALDOC, LDHA and GFPT2. Also disclosed are embodiments directed towards downregulating the expression of some genes in glucose uptake and metabolism.

  19. Tumor-derived exosomes in oncogenic reprogramming and cancer progression.

    Science.gov (United States)

    Saleem, Sarmad N; Abdel-Mageed, Asim B

    2015-01-01

    In multicellular organisms, effective communication between cells is a crucial part of cellular and tissue homeostasis. This communication mainly involves direct cell-cell contact as well as the secretion of molecules that bind to receptors at the recipient cells. However, a more recently characterized mode of intercellular communication-the release of membrane vesicles known as exosomes-has been the subject of increasing interest and intensive research over the past decade. Following the discovery of the exosome-mediated immune activation, the pathophysiological roles of exosomes have been recognized in different diseases, including cancer. In this review, we describe the biogenesis and main physical characteristics that define exosomes as a specific population of secreted vesicles, with a special focus on their role in oncogenic transformation and cancer progression.

  20. Structural effects of oncogenic PI3Kα mutations.

    Science.gov (United States)

    Gabelli, Sandra B; Huang, Chuan-Hsiang; Mandelker, Diana; Schmidt-Kittler, Oleg; Vogelstein, Bert; Amzel, L Mario

    2010-01-01

    Physiological activation of PI3Kα is brought about by the release of the inhibition by p85 when the nSH2 binds the phosphorylated tyrosine of activated receptors or their substrates. Oncogenic mutations of PI3Kα result in a constitutively activated enzyme that triggers downstream pathways that increase tumor aggressiveness and survival. Structural information suggests that some mutations also activate the enzyme by releasing p85 inhibition. Other mutations work by different mechanisms. For example, the most common mutation, His1047Arg, causes a conformational change that increases membrane association resulting in greater accessibility to the substrate, an integral membrane component. These effects are examples of the subtle structural changes that result in increased activity. The structures of these and other mutants are providing the basis for the design of isozyme-specific, mutation-specific inhibitors for individualized cancer therapies.

  1. Relative fitness of transgenic vs. non-transgenic maize x teosinte hybrids: a field evaluation.

    Science.gov (United States)

    Guadagnuolo, R; Clegg, J; Ellstrand, N C

    2006-10-01

    Concern has been often expressed regarding the impact and persistence of transgenes that enter wild populations via gene flow. The impact of a transgene and its persistence are largely determined by the relative fitness of transgenic hybrids and hybrid derivatives compared to non-transgenic plants. Nevertheless, few studies have addressed this question experimentally in the field. Despite the economic importance of maize, and the fact that it naturally hybridizes with the teosinte taxon Zea mays ssp. mexicana, sometimes known as "chalco teosinte," the question has received little experimental attention in this system. Using a glyphosate-tolerant maize cultivar and chalco teosinte as parental lines, we carried out a field experiment testing (1) the relative fitness of maize x teosinte hybrids, compared to their parental taxa, as well as (2) the relative fitness of transgenic hybrids compared to non-transgenic hybrids created from the same parental stock. In order to evaluate the influence of the transgenic construct in different genetic backgrounds, our study included transgenic and non-transgenic pure maize progeny from the cultivar as well. We measured both vegetative and reproductive parameters. Our results demonstrated that hybrids have greater vigor and produced more seeds than the wild parent. However, in the absence of selective pressure from glyphosate herbicide, we did not observe any direct positive or negative impact of the transgene on the fitness or vigor of either the hybrids or pure maize progeny. We discuss our results in terms of the potential for spontaneous transgene flow and introgression from transgenic maize into sympatric teosinte.

  2. Intrinsic structural disorder confers cellular viability on oncogenic fusion proteins.

    Directory of Open Access Journals (Sweden)

    Hedi Hegyi

    2009-10-01

    Full Text Available Chromosomal translocations, which often generate chimeric proteins by fusing segments of two distinct genes, represent the single major genetic aberration leading to cancer. We suggest that the unifying theme of these events is a high level of intrinsic structural disorder, enabling fusion proteins to evade cellular surveillance mechanisms that eliminate misfolded proteins. Predictions in 406 translocation-related human proteins show that they are significantly enriched in disorder (43.3% vs. 20.7% in all human proteins, they have fewer Pfam domains, and their translocation breakpoints tend to avoid domain splitting. The vicinity of the breakpoint is significantly more disordered than the rest of these already highly disordered fusion proteins. In the unlikely event of domain splitting in fusion it usually spares much of the domain or splits at locations where the newly exposed hydrophobic surface area approximates that of an intact domain. The mechanisms of action of fusion proteins suggest that in most cases their structural disorder is also essential to the acquired oncogenic function, enabling the long-range structural communication of remote binding and/or catalytic elements. In this respect, there are three major mechanisms that contribute to generating an oncogenic signal: (i a phosphorylation site and a tyrosine-kinase domain are fused, and structural disorder of the intervening region enables intramolecular phosphorylation (e.g., BCR-ABL; (ii a dimerisation domain fuses with a tyrosine kinase domain and disorder enables the two subunits within the homodimer to engage in permanent intermolecular phosphorylations (e.g., TFG-ALK; (iii the fusion of a DNA-binding element to a transactivator domain results in an aberrant transcription factor that causes severe misregulation of transcription (e.g. EWS-ATF. Our findings also suggest novel strategies of intervention against the ensuing neoplastic transformations.

  3. Deciphering hepatocellular responses to metabolic and oncogenic stress

    Directory of Open Access Journals (Sweden)

    Kathrina L. Marcelo

    2015-08-01

    Full Text Available Each cell type responds uniquely to stress and fractionally contributes to global and tissue-specific stress responses. Hepatocytes, liver macrophages (MΦ, and sinusoidal endothelial cells (SEC play functionally important and interdependent roles in adaptive processes such as obesity and tumor growth. Although these cell types demonstrate significant phenotypic and functional heterogeneity, their distinctions enabling disease-specific responses remain understudied. We developed a strategy for the simultaneous isolation and quantification of these liver cell types based on antigenic cell surface marker expression. To demonstrate the utility and applicability of this technique, we quantified liver cell-specific responses to high-fat diet (HFD or diethylnitrosamine (DEN, a liver-specific carcinogen, and found that while there was only a marginal increase in hepatocyte number, MΦ and SEC populations were quantitatively increased. Global gene expression profiling of hepatocytes, MΦ and SEC identified characteristic gene signatures that define each cell type in their distinct physiological or pathological states. Integration of hepatic gene signatures with available human obesity and liver cancer microarray data provides further insight into the cell-specific responses to metabolic or oncogenic stress. Our data reveal unique gene expression patterns that serve as molecular “fingerprints” for the cell-centric responses to pathologic stimuli in the distinct microenvironment of the liver. The technical advance highlighted in this study provides an essential resource for assessing hepatic cell-specific contributions to metabolic and oncogenic stress, information that could unveil previously unappreciated molecular mechanisms for the cellular crosstalk that underlies the continuum from metabolic disruption to obesity and ultimately hepatic cancer.

  4. DNA topoisomerases participate in fragility of the oncogene RET.

    Directory of Open Access Journals (Sweden)

    Laura W Dillon

    Full Text Available Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH-induced DNA breakage within the RET oncogene, in which 144 APH-induced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication.

  5. Oncogenic c-kit transcript is a target for binase.

    Science.gov (United States)

    Mitkevich, Vladimir A; Petrushanko, Irina Y; Kretova, Olga V; Zelenikhin, Pavel V; Prassolov, Vladimir S; Tchurikov, Nickolai A; Ilinskaya, Olga N; Makarov, Alexander A

    2010-07-01

    Mutational activation of c-Kit receptor tyrosine kinase is common in acute myelogenous leukemia (AML). One such activating point mutation is the N822K replacement in the c-Kit protein. Here we investigate the selective cytotoxic effect of binase--RNase from Bacillus intermedius--on FDC-P1-N822K cells. These cells were derived from myeloid progenitor FDC-P1 cells, in which ectopic expression of N822K c-kit gene induces interleukin-3 independent growth. In order to determine whether the sensitivity of these cells to binase is caused by the expression of c-kit oncogene, the cytotoxicity of the RNase was studied in the presence of selective inhibitor of mutated c-Kit imatinib (Gleevec). Inhibition of mutated c-Kit protein leads to the loss of cell sensitivity to the apoptotic effect of binase, while the latter still decreases the amount of cellular RNA. Using green fluorescent protein as an expression marker for the c-Kit oncoprotein, we demonstrate that the elimination of c-Kit is the key factor in selective cytotoxicity of binase. Quantitative RT-PCR with RNA samples isolated from the binase-treated FDC-P1-N822K cells shows that binase treatment results in 41% reduction in the amount of с-kit mRNA. This indicates that the transcript of the activated mutant c-kit is the target for toxic action of binase. Thus, the combination of inhibition of oncogenic protein with the destruction of its mRNA is a promising approach to eliminating malignant cells.

  6. Transgenic plants with enhanced growth characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2016-09-06

    The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of the double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.

  7. Transgenic crops: Current challenges and future perspectives

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... development of Genetically Modified (GM) crops. As the time went on, ... INTRODUCTION. Food crops that are being produced or modified by the ...... Testing transgenes for insect resistance using Arabidopsis. Mol. Breed. 3:.

  8. Transgenic cassava lines carrying heterologous alternative oxidase ...

    African Journals Online (AJOL)

    To screen positive lines for gene function, leaf lobes from two transgenic lines with a line carrying an empty vector and the wild type were subjected to somatic embryogenesis (SE), a known oxidative ... African Journal of Biotechnology Vol.

  9. Expression of a mutant p53 results in an age-related demographic shift in spontaneous lung tumor formation in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Wenrui Duan

    Full Text Available BACKGROUND: Mutations in the P53 gene are among the most common genetic abnormalities in human lung cancer. Codon 273 in the sequence-specific DNA binding domain is one of the most frequently mutated sites. METHODOLOGY: To investigate the role of mutant p53 in lung tumorigenesis, a lung specific p53(273H transgenic mouse model was developed. Rates of lung cancer formation in the transgenic animals and their littermates were evaluated by necropsy studies performed in progressive age cohorts ranging from 4 to 24 months. In order to establish the influence of other common genetic abnormalities in lung tumor formation in the animals, K-Ras gene mutation and p16INK4a (p16 promoter methylation were evaluated in a total of 281 transgenic mice and 189 non-transgenic littermates. PRINCIPAL FINDINGS: At the age extremes of 4-12 and 22-24 months no differences were observed, with very low prevalence of tumors in animals younger than 12 months, and a relatively high prevalence at age 22 months or older. However, the transgenic mice had a significant higher lung tumor rate than their non-transgenic counterparts during the age of 13-21 months, suggesting an age-related shift in lung tumor formation induced by the lung-specific expression of the human mutant p53. Histopathology suggested a more aggressive nature for the transgenic tumors. Older mice (>13 months had a significantly higher rate of p16 promoter methylation (17% v 82%. In addition, an age related effect was observed for K-Ras codons 12 or 13 mutations, but not for codon 61 mutations. CONCLUSIONS/SIGNIFICANCE: These results would suggest that the mutant p53(273H contributes to an acceleration in the development of spontaneous lung tumors in these mice. Combination with other genetic and epigenetic alterations occurring after the age of 13 months is intimately linked to its oncogenic potential.

  10. Transgenic animals resistant to infectious diseases.

    Science.gov (United States)

    Tiley, L

    2016-04-01

    The list of transgenic animals developed to test ways of producing livestock resistant to infectious disease continues to grow. Although the basic techniques for generating transgenic animals have not changed very much in the ten years since they were last reviewed for the World Organisation for Animal Health, one recent fundamental technological advance stands to revolutionise genome engineering. The advent of technically simple and efficient site-specific gene targeting has profound implications for genetically modifying livestock species.

  11. Transgenic Wheat, Barley and Oats: Future Prospects

    Science.gov (United States)

    Dunwell, Jim M.

    Following the success of transgenic maize and rice, methods have now been developed for the efficient introduction of genes into wheat, barley and oats. This review summarizes the present position in relation to these three species, and also uses information from field trial databases and the patent literature to assess the future trends in the exploitation of transgenic material. This analysis includes agronomic traits and also discusses opportunities in expanding areas such as biofuels and biopharming.

  12. Lymphoma induction by heterocyclic amines in Eu-pim-1 transgenic mice

    DEFF Research Database (Denmark)

    Sørensen, Ilona Kryspin; Kristiansen, E.; Mortensen, Alicja

    1997-01-01

    The usefulness of transgenic E mu-pim-1 mice bearing in their genome the pim-1 oncogene supplemented with an upstream immunoglobulin enhancer and a downstream murine leukaemia virus long terminal repeat, as sensitive test organisms was studied in two short-term carcinogenicity studies. The mice...... were fed standard diet Altromin 1314 supplemented either with 0.03% 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) for 7 months or with 0.03% 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) for 6 months. PhIP and IQ are heterocyclic amines formed during cooking of meat and fish and are mutagenic...... to bacteria and cultured mammalian cells. PhIP is a potent mouse lymphomagen, while IQ is a liver, lung and forestomach carcinogen in mice. We found that transgenic E mu-pim-1 mice are highly susceptible to PhIP induced lymphomagenesis but do not respond to IQ treatment. PhIP feeding of E mu-pim-1 mice...

  13. Diverse hematological malignancies including hodgkin-like lymphomas develop in chimeric MHC class II transgenic mice.

    Directory of Open Access Journals (Sweden)

    Silke H Raffegerst

    Full Text Available A chimeric HLA-DR4-H2-E (DR4 homozygous transgenic mouse line spontaneously develops diverse hematological malignancies with high frequency (70%. The majority of malignancies were distributed equally between T and B cell neoplasms and included lymphoblastic T cell lymphoma (LTCL, lymphoblastic B cell lymphoma (LBCL, diffuse large B cell lymphoma (DLBCL, the histiocyte/T cell rich variant of DLBCL (DLBCL-HA/T cell rich DLBCL, splenic marginal zone lymphoma (SMZL, follicular B cell lymphoma (FBL and plasmacytoma (PCT. Most of these neoplasms were highly similar to human diseases. Also, some non-lymphoid malignancies such as acute myeloid leukemia (AML and histiocytic sarcoma were found. Interestingly, composite lymphomas, including Hodgkin-like lymphomas, were also detected that had CD30(+ Hodgkin/Reed-Sternberg (H/RS-like cells, representing a tumor type not previously described in mice. Analysis of microdissected H/RS-like cells revealed their origin as germinal center B cells bearing somatic hypermutations and, in some instances, crippled mutations, as described for human Hodgkin lymphoma (HL. Transgene integration in an oncogene was excluded as an exclusive driving force of tumorigenesis and age-related lymphoma development suggests a multi-step process. Thus, this DR4 line is a useful model to investigate common molecular mechanisms that may contribute to important neoplastic diseases in man.

  14. Gene expression analysis of pancreatic cystic neoplasm in SV40Tag transgenic mice model

    Institute of Scientific and Technical Information of China (English)

    Jie Feng; Qiang Sun; Cheng Gao; Juan Dong; Xiao-Luan Wei; Hua Xing; Hou-Da Li

    2007-01-01

    AIM: To study the gene expression changes in pancreatic cystic neoplasm in SV40Tag transgenic mice model and to provide information about the prevention,clinical diagnosis and therapy of pancreatic cancer.METHODS: Using the pBC-SV40Tag transgenic mice model of pancreatic cystic neoplasm, we studied the gene expression changes by applying high-density microarrays. Validation of part gene expression profiling data was performed using real-time PCR.RESULTS: By using high-density oligonucleotide microarray, of 14113 genes, 453 were increased and 760 decreased in pancreatic cystic neoplasm, including oncogenes, cell-cycle-related genes, signal transduction-related genes, skeleton-related genes and metabolism-related genes. Among these, we confirmed the changes in Igf, Shh and Wnt signal pathways with real-time PCR.The results of real-time PCR showed similar expression changes in gene chip.CONCLUSION: all the altered expression genes are associated with cell cycle, DNA damage and repair, signal pathway, and metabolism. SV40Tag may cooperate with several proteins in promoting tumorigenesis.

  15. Overexpression of Id1 in transgenic mice promotes mammary basal stem cell activity and breast tumorigenesis.

    Science.gov (United States)

    Shin, Dong-Hui; Park, Ji-Hye; Lee, Jeong-Yeon; Won, Hee-Young; Jang, Ki-Seok; Min, Kyueng-Whan; Jang, Si-Hyong; Woo, Jong-Kyu; Oh, Seung Hyun; Kong, Gu

    2015-07-10

    Inhibitor of differentiation/DNA binding (Id)1 is a crucial regulator of mammary development and breast cancer progression. However, its effect on stemness and tumorigenesis in mammary epithelial cells remains undefined. Herein, we demonstrate that Id1 induces mammary tumorigenesis by increasing normal and malignant mammary stem cell (MaSC) activities in transgenic mice. MaSC-enriched basal cell expansion and increased self-renewal and in vivo regenerative capacity of MaSCs are observed in the mammary glands of MMTV-Id1 transgenic mice. Furthermore, MMTV-Id1 mice develop ductal hyperplasia and mammary tumors with highly expressed basal markers. Id1 also increases breast cancer stem cell (CSC) population and activity in human breast cancer lines. Moreover, the effects of Id1 on normal and malignant stem cell activities are mediated by the Wnt/c-Myc pathway. Collectively, these findings provide in vivo genetic evidence of Id1 functions as an oncogene in breast cancer and indicate that Id1 regulates mammary basal stem cells by activating the Wnt/c-Myc pathway, thereby contributing to breast tumor development.

  16. Selenoprotein-Transgenic Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Jiazuan Ni

    2013-02-01

    Full Text Available Selenium (Se deficiency is associated with the occurrence of many diseases. However, excessive Se supplementation, especially with inorganic Se, can result in toxicity. Selenoproteins are the major forms of Se in vivo to exert its biological function. Expression of those selenoproteins, especially with the application of a newly developed system, is thus very important for studying the mechanism of Se in nutrition. The use of Chlamydomonas reinhardtii (C. reinhardtii as a biological vector to express an heterogeneous protein is still at the initial stages of development. In order to investigate the possibility of using this system to express selenoproteins, human 15-KDa selenoprotein (Sep15, a small but widely distributed selenoprotein in mammals, was chosen for the expression platform test. Apart from the wild-type human Sep15 gene fragment, two Sep15 recombinants were constructed containing Sep15 open reading frame (ORF and the selenocysteine insertion sequence (SECIS element from either human Sep15 or C. reinhardtii selenoprotein W1, a highly expressed selenoprotein in this alga. Those Sep15-containing plasmids were transformed into C. reinhardtii CC-849 cells. Results showed that Sep15 fragments were successfully inserted into the nuclear genome and expressed Sep15 protein in the cells. The transgenic and wild-type algae demonstrated similar growth curves in low Se culture medium. To our knowledge, this is the first report on expressing human selenoprotein in green alga.

  17. Transgenic technologies to induce sterility

    Directory of Open Access Journals (Sweden)

    Wimmer Ernst A

    2009-11-01

    Full Text Available Abstract The last few years have witnessed a considerable expansion in the number of tools available to perform molecular and genetic studies on the genome of Anopheles mosquitoes, the vectors of human malaria. As a consequence, knowledge of aspects of the biology of mosquitoes, such as immunity, reproduction and behaviour, that are relevant to their ability to transmit disease is rapidly increasing, and could be translated into concrete benefits for malaria control strategies. Amongst the most important scientific advances, the development of transgenic technologies for Anopheles mosquitoes provides a crucial opportunity to improve current vector control measures or design novel ones. In particular, the use of genetic modification of the mosquito genome could provide for a more effective deployment of the sterile insect technique (SIT against vector populations in the field. Currently, SIT relies on the release of radiation sterilized males, which compete with wild males for mating with wild females. The induction of sterility in males through the genetic manipulation of the mosquito genome, already achieved in a number of other insect species, could eliminate the need for radiation and increase the efficiency of SIT-based strategies. This paper provides an overview of the mechanisms already in use for inducing sterility by transgenesis in Drosophila and other insects, and speculates on possible ways to apply similar approaches to Anopheles mosquitoes.

  18. TRANSGENIC FISH MODEL IN ENVIRONMENTAL TOXICOLOGY

    Directory of Open Access Journals (Sweden)

    Madhuri Sharma

    2012-05-01

    Full Text Available A number of experiments and the use of drugs have been performed in fish. The fish may be used as model organism in various biological experiments, including environmental toxicology. Aquatic animals are being engineered to increase aquaculture production, for medical and industrial research, and for ornamental reasons. Fish have been found to play an important role in assessing potential risks associated with exposure to toxic substances in aquatic environment. Hence, it has been thought that the development of transgenic fish can enhance the use of fish in environmental toxicology. India has developed experimental transgenics of rohu fish, zebra fish, cat fish and singhi fish. Genes, promoters and vectors of indigenous origin are now available for only two species namely rohu and singhi for engineering growth. Development of fish model carrying identical transgenes to those found in rodents is beneficial and has shown that several aspects of in vivo mutagenesis are similar between the two classes of vertebrates. Fish shows the frequencies of spontaneous mutations similar to rodents and respond to mutagen exposure consistent with known mutagenic mechanisms. The feasibility of in vivo mutation analysis using transgenic fish has been demonstrated and the potential value of transgenic fish as a comparative animal model has been illustrated. Therefore, the transgenic fish can give the significant contribution to study the environmental toxicity in animals as a whole.

  19. Transgene flow: Facts, speculations and possible countermeasures

    Science.gov (United States)

    Ryffel, Gerhart U

    2014-01-01

    Convincing evidence has accumulated that unintended transgene escape occurs in oilseed rape, maize, cotton and creeping bentgrass. The escaped transgenes are found in variant cultivars, in wild type plants as well as in hybrids of sexually compatible species. The fact that in some cases stacked events are present that have not been planted commercially, implies unintended recombination of transgenic traits. As the consequences of this continuous transgene escape for the ecosystem cannot be reliably predicted, I propose to use more sophisticated approaches of gene technology in future. If possible GM plants should be constructed using either site-directed mutagenesis or cisgenic strategies to avoid the problem of transgene escape. In cases where a transgenic trait is needed, efficient containment should be the standard approach. Various strategies available or in development are discussed. Such a cautious approach in developing novel types of GM crops will enhance the sustainable potential of GM crops and thus increase the public trust in green gene technology. PMID:25523171

  20. Transgenic animals and their application in medicine

    Directory of Open Access Journals (Sweden)

    Bagle TR, Kunkulol RR, Baig MS, More SY

    2013-01-01

    Full Text Available Transgenic animals are animals that are genetically altered to have traits that mimic symptoms of specific human pathologies. They provide genetic models of various human diseases which are important in understanding disease and developing new targets. In early 1980 Gordon and co-workers described the first gene addition experiment using the microinjection technology and since then the impact of transgenic technology on basic research has been significant. Within 20 years of its inception, ATryn the first drug approved by USFDA from transgenic animals was developed and it has opened door to drugs from transgenic animals. In addition, they are looked upon as potential future donors for xenotransplantation. With increasing knowledge about the genetics and improvements in the transgenetic technology numerous useful applications like biologically safe new-generation drugs based on human regulatory proteins are being developed.Various aspects of concern in the coming years are the regulatory guidelines, ethical issues and patents related to the use of transgenic animals. This modern medicine is on the threshold of a pharmacological revolution. Use of transgenic animals will provide solutions for drug research, xenotransplantation, clinical trials and will prove to be a new insight in drug development.

  1. Uncoupling of the LKB1-AMPKalpha energy sensor pathway by growth factors and oncogenic BRAF.

    Directory of Open Access Journals (Sweden)

    Rosaura Esteve-Puig

    Full Text Available BACKGROUND: Understanding the biochemical mechanisms contributing to melanoma development and progression is critical for therapeutical intervention. LKB1 is a multi-task Ser/Thr kinase that phosphorylates AMPK controlling cell growth and apoptosis under metabolic stress conditions. Additionally, LKB1(Ser428 becomes phosphorylated in a RAS-Erk1/2-p90(RSK pathway dependent manner. However, the connection between the RAS pathway and LKB1 is mostly unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using the UV induced HGF transgenic mouse melanoma model to investigate the interplay among HGF signaling, RAS pathway and PI3K pathway in melanoma, we identified LKB1 as a protein directly modified by HGF induced signaling. A variety of molecular techniques and tissue culture revealed that LKB1(Ser428 (Ser431 in the mouse is constitutively phosphorylated in BRAF(V600E mutant melanoma cell lines and spontaneous mouse tumors with high RAS pathway activity. Interestingly, BRAF(V600E mutant melanoma cells showed a very limited response to metabolic stress mediated by the LKB1-AMPK-mTOR pathway. Here we show for the first time that RAS pathway activation including BRAF(V600E mutation promotes the uncoupling of AMPK from LKB1 by a mechanism that appears to be independent of LKB1(Ser428 phosphorylation. Notably, the inhibition of the RAS pathway in BRAF(V600E mutant melanoma cells recovered the complex formation and rescued the LKB1-AMPKalpha metabolic stress-induced response, increasing apoptosis in cooperation with the pro-apoptotic proteins Bad and Bim, and the down-regulation of Mcl-1. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that growth factor treatment and in particular oncogenic BRAF(V600E induces the uncoupling of LKB1-AMPKalpha complexes providing at the same time a possible mechanism in cell proliferation that engages cell growth and cell division in response to mitogenic stimuli and resistance to low energy conditions in tumor cells. Importantly, this

  2. Functional transition of Pak proto-oncogene during early evolution of metazoans.

    Science.gov (United States)

    Watari, A; Iwabe, N; Masuda, H; Okada, M

    2010-07-01

    Proto-oncogenes encode signaling molecular switches regulating cellular homeostasis in metazoans, and can be converted to oncogenes by gain-of-function mutations. To address the molecular basis for development of the regulatory system of proto-oncogenes during evolution, we screened for ancestral proto-oncogenes from the unicellular choanoflagellate Monosiga ovata by monitoring their transforming activities, and isolated a Pak gene ortholog encoding a serine/threonine kinase as a 'primitive oncogene'. We also cloned Pak orthologs from fungi and the multicellular sponge Ephydatia fluviatilis, and compared their regulatory features with that of M. ovata Pak (MoPak). MoPak is constitutively active and induces cell transformation in mammalian fibroblasts, although the Pak orthologs from multicellular animals are strictly regulated. Analyses of Pak mutants revealed that structural alteration of the auto-inhibitory domain (AID) of MoPak confers higher constitutive kinase activity, as well as greater binding ability to Rho family GTPases than the multicellular Paks, and this structural alteration is responsible for cell transformation and disruption of multicellular tissue organization. These results show that maturation of AID function was required for the development of the strict regulatory system of the Pak proto-oncogene, and suggest a potential link between the establishment of the regulatory system of proto-oncogenes and metazoan evolution.

  3. Induction of focal epithelial hyperplasia in tongue of young bk6-E6/E7 HPV16 transgenic mice.

    Science.gov (United States)

    Ocadiz-Delgado, Rodolfo; Marroquin-Chavira, Alberto; Hernandez-Mote, Ruth; Valencia, Concepción; Manjarrez-Zavala, M Eugenia; Covarrubias, Luis; Gariglio, Patricio

    2009-08-01

    Squamous cell carcinoma (SCC) of the oral cavity is one of the most common neoplasms in the world. During the past 2 decades, the role of high-risk human papilloma virus (HR-HPV) has been studied and the data supporting HPV as a one of the causative agents in the development and progression of a sub-set of head and neck squamous cell carcinomas (HNSCC) has accumulated. In order to investigate the role of HR-HPV oncogene expression in early epithelial alterations in vivo, we produced transgenic mice expressing HPV16 early region genes from the promoter of the bovine keratin 6 gene (Tg[bK6-E6/E7]). In this article, we demonstrate that E6/E7 transgene was abundantly expressed and cellular proliferation was increased in the middle tongue epithelia of transgenic mice, and that in the same region young (27 weeks old) Tg[bK6-E6/E7] mice spontaneously developed histological alterations, mainly focal epithelial hyperplasia (FEH).

  4. Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes

    NARCIS (Netherlands)

    Mlynarova, L.; Conner, A.J.; Nap, J.P.H.

    2006-01-01

    A major challenge for future genetically modified (GM) crops is to prevent undesired gene flow of transgenes to plant material intended for another use. Recombinase-mediated auto excision of transgenes directed by a tightly controlled microspore-specific promoter allows efficient removal of either t

  5. Efforts of Transgene Oncostatin M on the Development of Retinal Neuron in Transgenic Mice

    Institute of Scientific and Technical Information of China (English)

    Xiaobo Xia; Qin Chen

    2003-01-01

    Purpose:Oncostatin M(OSM) is a cytokine released by macrophages and lymphocytesthat can function as a growth regulator. A current study shows that leukemia inhibitoryfactor (LIF), a homologue of OSM, can prevent photoreceptor cell death when expressedin the lens of transgenic mice. We determined the efforts of lens-specific overexpressionof OSM on the development of eye.Methods: A truncated mouse OSM cDNA ( ~ 660 bp) was linked to the αA-crytallinpromoter, and injected into single-cell embryos with microinjection. Then, transgenic micewere established. The mRNA expression of transgene OSM was detected by in situhybridization. Immunohistochemistry was used to detect the expression of syntaxin, glialfibrillary acidic protein (GFAP), synaptophysin in the retinas of transgenic mice.Results: At embryonic day (E 17.5), the expression of the syntaxin at the inner and midportion of the retinas of transgenic mice was much higher than that of the retinas ofnon-transgenic mice. The expression of GFAP was detected in the retinas of transgenicmice, while no expression in non-transgenic normal FVB(FVB/N) mice was detected inthis stage. At postnatal day one (P1), the expression of synaptophysin was detected inthe retinas of transgenic mice, but there was no such expression in FVB/N mice.Conclusions: Lens-specific overexpression of OSM induces premature differentiation ofamacrine cells, gial cells, and photoreceptors in vivo.

  6. Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes

    NARCIS (Netherlands)

    Mlynarova, L.; Conner, A.J.; Nap, J.P.H.

    2006-01-01

    A major challenge for future genetically modified (GM) crops is to prevent undesired gene flow of transgenes to plant material intended for another use. Recombinase-mediated auto excision of transgenes directed by a tightly controlled microspore-specific promoter allows efficient removal of either

  7. Methylation status of c-fms oncogene in HCC and its relationship with clinical pathology

    Institute of Scientific and Technical Information of China (English)

    Jun Cui; Dong Hua Yang; Xiang Jun Bi; Zi Rong Fan

    2001-01-01

    @@ INTRODUCTIONThe mechanism that DNA hypomethylation leads toactivation of oncogene and occurrence of malignantneoplasm is being increasingly recognized byresearchers. Normal DNA methylation playsimportant role in stabilizing the phenotype of cell.DNA methylation status reduction and/or patternalteration are related to activation and abnormallyhigh expression of some oncogenes and cellularmalignancy[1-6]. c-fms oncogene encodes for colonystimulating factor 1 receptor (CSF-1R)[7], c-fms/CSF-1R was highly expressed in hepatocellularcarcinoma (HCC) tissue, but the mechanismremained obscure[8,9].

  8. Activating mutation in MET oncogene in familial colorectal cancer

    Directory of Open Access Journals (Sweden)

    Schildkraut Joellen M

    2011-10-01

    Full Text Available Abstract Background In developed countries, the lifetime risk of developing colorectal cancer (CRC is 5%, and it is the second leading cause of death from cancer. The presence of family history is a well established risk factor with 25-35% of CRCs attributable to inherited and/or familial factors. The highly penetrant inherited colon cancer syndromes account for approximately 5%, leaving greater than 20% without clear genetic definition. Familial colorectal cancer has been linked to chromosome 7q31 by multiple affected relative pair studies. The MET proto-oncogene which resides in this chromosomal region is considered a candidate for genetic susceptibility. Methods MET exons were amplified by PCR from germline DNA of 148 affected sibling pairs with colorectal cancer. Amplicons with altered sequence were detected with high-resolution melt-curve analysis using a LightScanner (Idaho Technologies. Samples demonstrating alternative melt curves were sequenced. A TaqMan assay for the specific c.2975C >T change was used to confirm this mutation in a cohort of 299 colorectal cancer cases and to look for allelic amplification in tumors. Results Here we report a germline non-synonymous change in the MET proto-oncogene at amino acid position T992I (also reported as MET p.T1010I in 5.2% of a cohort of sibling pairs affected with CRC. This genetic variant was then confirmed in a second cohort of individuals diagnosed with CRC and having a first degree relative with CRC at prevalence of 4.1%. This mutation has been reported in cancer cells of multiple origins, including 2.5% of colon cancers, and in Conclusions Although the MET p.T992I genetic mutation is commonly found in somatic colorectal cancer tissues, this is the first report also implicating this MET genetic mutation as a germline inherited risk factor for familial colorectal cancer. Future studies on the cancer risks associated with this mutation and the prevalence in different at-risk populations will

  9. Transgenic farm animals: applications in agriculture and biomedicine.

    Science.gov (United States)

    Yang, X; Tian, X C; Dai, Y; Wang, B

    2000-01-01

    During the last decade, tremendous progress has been made in the area of transgenic farm animals. While there are many important transgenic farm animal applications in agriculture, funding has been very limited and progress has been rather slow in this area. Encouragingly, the potential applications of transgenic farm animals as bioreactors for producing human therapeutic proteins and as organ donors for transplantations in humans have attracted vast funding from the private sectors. Several transgenic animal products are already in various phases of clinical trials. Estimates are, that in the near future, the worlds demands on human pharmaceutical proteins may largely be met by transgenic farm animals. While there are still major challenges ahead in the area of xenotransplantation using transgenic animal organs, transgenic tissues or cells have demonstrated promising results as a potential tool for gene therapy. Recent development on cloning, embryonic stem cells and alternative transgenic methods may further expand the transgenic applications in both agriculture and biomedicine.

  10. Transgenic cotton: from biotransformation methods to agricultural application.

    Science.gov (United States)

    Zhang, Baohong

    2013-01-01

    Transgenic cotton is among the first transgenic plants commercially adopted around the world. Since it was first introduced into the field in the middle of 1990s, transgenic cotton has been quickly adopted by cotton farmers in many developed and developing countries. Transgenic cotton has offered many important environmental, social, and economic benefits, including reduced usage of pesticides, indirect increase of yield, minimizing environmental pollution, and reducing labor and cost. Agrobacterium-mediated genetic transformation method is the major method for obtaining transgenic cotton. However, pollen tube pathway-mediated method is also used, particularly by scientists in China, to breed commercial transgenic cotton. Although transgenic cotton plants with disease-resistance, abiotic stress tolerance, and improved fiber quality have been developed in the past decades, insect-resistant and herbicide-tolerant cotton are the two dominant transgenic cottons in the transgenic cotton market.

  11. Generation of stable Xenopus laevis transgenic lines expressing a transgene controlled by weak promoters.

    Science.gov (United States)

    L'hostis-Guidet, Anne; Recher, Gaëlle; Guillet, Brigitte; Al-Mohammad, Abdulrahim; Coumailleau, Pascal; Tiaho, François; Boujard, Daniel; Madigou, Thierry

    2009-10-01

    Combining two existing protocols of trangenesis, namely the REMI and the I-SceI meganuclease methods, we generated Xenopus leavis expressing a transgene under the control of a promoter that presented a restricted pattern of activity and a low level of expression. This was realized by co-incubating sperm nuclei, the I-SceI enzyme and the transgene prior to transplantation into unfertilized eggs. The addition of the woodchuck hepatitis virus posttranscriptional regulatory element in our constructs further enhanced the expression of the transgene without affecting the tissue-specificity of the promoter activity. Using this combination of methods we produced high rates of fully transgenic animals that stably transmitted the transgene to the next generations with a transmission rate of 50% indicating a single integration event.

  12. Establishment of HRAS(G12V transgenic medaka as a stable tumor model for in vivo screening of anticancer drugs.

    Directory of Open Access Journals (Sweden)

    Yuriko Matsuzaki

    Full Text Available Most targeted anticancer drugs have been identified by screening at the molecular or cellular level in vitro. However, many compounds selected by such costly and time-consuming screening do not prove effective against tumors in vivo. The development of anticancer drugs would thus be facilitated by the availability of an in vivo screening system based on a multicellular organism. We have now established a transgenic line of the freshwater fish medaka in which melanophores (melanocytes proliferate in a manner dependent on heat shock-induced signaling by a human RAS oncoprotein. The human HRAS(G12V oncogene was expressed under the control of a melanophore-specific gene promoter in order to allow visualization of tumor growth in live fish maintained in a water tank. The expression of HRAS(G12V was induced as a result of Cre-mediated recombination by exposure of the fish to a temperature of 37°C for 30 min, given that the Cre gene was placed under the control of a medaka heat shock promoter. One of the stable transgenic lines developed abnormal pigment cell proliferation in the eyes and epidermis with 100% penetrance by 6 months postfertilization. Sorafenib, an inhibitor of RAS signaling, was administered to the transgenic fish and was found both to reduce the extent of melanophore proliferation and to improve survival. The transgenic medaka established here thus represents a promising in vivo system with which to screen potential anticancer drugs that target RAS signaling, and this system can readily be adapted for the screening of agents that target other oncogenes.

  13. Subchronic toxicity study of GH transgenic carp.

    Science.gov (United States)

    Yong, Ling; Liu, Yu-Mei; Jia, Xu-Dong; Li, Ning; Zhang, Wen-Zhong

    2012-11-01

    A subchronic toxicity study of GH (growth hormone) transgenic carp was carried out with 60 SD rats aged 4 weeks, weight 115∼125 g. Ten male and 10 female rats were allotted into each group. Animals of the three groups (transgenic carp group (GH-TC), parental carp group (PC) and control group) were fed soy- and alfalfa-free diet (SAFD) with 10% GH transgenic carp powder, 10% parental carp powder or 10% common carp powder for 90 consecutive days, respectively. In the end of study, animals were killed by exsanguination via the carotid artery under diethyl ether anesthesia, then weights of heart, liver, kidneys, spleen, thymus, brain, ovaries and uterus/testis were measured. Pathological examination of organs was determined. Endocrine hormones of triiodothyronine (T3), thyroid hormone (T4), follicle-stimulating hormone (FSH), 17β-estradiol (E2), progesterone (P) and testosterone (T) levels were detected by specific ELISA kit. Parameters of blood routine and blood biochemical were measured. The weights of the body and organs of the rats, food intake, blood routine, blood biochemical test and serum hormones showed no significant differences among the GH transgenic carp-treated, parental carp-treated and control groups (P>0.05). Thus, it was concluded that at the dose level of this study, GH transgenic carp showed no subchronic toxicity and endocrine disruption to SD rats.

  14. Research advances on transgenic plant vaccines.

    Science.gov (United States)

    Han, Mei; Su, Tao; Zu, Yuan-Gang; An, Zhi-Gang

    2006-04-01

    In recent years, with the development of genetics molecular biology and plant biotechnology, the vaccination (e.g. genetic engineering subunit vaccine, living vector vaccine, nucleic acid vaccine) programs are taking on a prosperous evolvement. In particular, the technology of the use of transgenic plants to produce human or animal therapeutic vaccines receives increasing attention. Expressing vaccine candidates in vegetables and fruits open up a new avenue for producing oral/edible vaccines. Transgenic plant vaccine disquisitions exhibit a tempting latent exploiting foreground. There are a lot of advantages for transgenic plant vaccines, such as low cost, easiness of storage, and convenient immune-inoculation. Some productions converged in edible tissues, so they can be consumed directly without isolation and purification. Up to now, many transgenic plant vaccine productions have been investigated and developed. In this review, recent advances on plant-derived recombinant protein expression systems, infectious targets, and delivery systems are presented. Some issues of high concern such as biosafety and public health are also discussed. Special attention is given to the prospects and limitations on transgenic plant vaccines.

  15. FOXM1 is an oncogenic mediator in Ewing Sarcoma.

    Directory of Open Access Journals (Sweden)

    Laura Christensen

    Full Text Available Ewing Family Tumors (Ewing Sarcoma and peripheral Primitive Neuroectodermal Tumor are common bone and soft tissue malignancies of childhood, adolescence and young adulthood. Chromosomal translocation in these tumors produces fusion oncogenes of the EWS/ETS class, with EWS/FLI1 being by far the most common. EWS/ETS chimera are the only well established driver mutations in these tumors and they function as aberrant transcription factors. Understanding the downstream genes whose expression is modified has been a central approach to the study of these tumors. FOXM1 is a proliferation associated transcription factor which has increasingly been found to play a role in the pathogenesis of a wide range of human cancers. Here we demonstrate that FOXM1 is expressed in Ewing primary tumors and cell lines. Reduction in FOXM1 expression in Ewing cell lines results in diminished potential for anchorage independent growth. FOXM1 expression is enhanced by EWS/FLI1, though, unlike other tumor systems, it is not driven by expression of the EWS/FLI1 target GLI1. Thiostrepton is a compound known to inhibit FOXM1 by direct binding. We show that Thiostrepton diminishes FOXM1 expression in Ewing cell lines and this reduction reduces cell viability through an apoptotic mechanism. FOXM1 is involved in Ewing tumor pathogenesis and may prove to be a useful therapeutic target in Ewing tumors.

  16. Oncogenic potential diverge among human papillomavirus type 16 natural variants

    Energy Technology Data Exchange (ETDEWEB)

    Sichero, Laura, E-mail: lsichero@gmail.com [Molecular Biology Laboratory, Center of Translational Oncology, Instituto do Cancer do Estado de Sao Paulo-ICESP, Sao Paulo 01246-000 (Brazil); Department of Virology, Ludwig Institute for Cancer Research, Sao Paulo 01323-903 (Brazil); Simao Sobrinho, Joao [Molecular Biology Laboratory, Center of Translational Oncology, Instituto do Cancer do Estado de Sao Paulo-ICESP, Sao Paulo 01246-000 (Brazil); Department of Virology, Ludwig Institute for Cancer Research, Sao Paulo 01323-903 (Brazil); Lina Villa, Luisa [Molecular Biology Laboratory, Center of Translational Oncology, Instituto do Cancer do Estado de Sao Paulo-ICESP, Sao Paulo 01246-000 (Brazil); Department of Virology, Ludwig Institute for Cancer Research, Sao Paulo 01323-903 (Brazil); Department of Radiology, School of Medicine, University of Sao Paulo (Brazil)

    2012-10-10

    We compared E6/E7 protein properties of three different HPV-16 variants: AA, E-P and E-350G. Primary human foreskin keratinocytes (PHFK) were transduced with HPV-16 E6 and E7 and evaluated for proliferation and ability to grow in soft agar. E-P infected keratinocytes presented the lowest efficiency in colony formation. AA and E-350G keratinocytes attained higher capacity for in vitro transformation. We observed similar degradation of TP53 among HPV-16 variants. Furthermore, we accessed the expression profile in early (p5) and late passage (p30) transduced cells of 84 genes commonly involved in carcinogenesis. Most differences could be attributed to HPV-16 E6/E7 expression. In particular, we detected different expression of ITGA2 and CHEK2 in keratinocytes infected with AA and AA/E-350G late passage cells, respectively, and higher expression of MAP2K1 in E-350G transduced keratinocytes. Our results indicate differences among HPV-16 variants that could explain, at least in part, differences in oncogenic potential attributed to these variants.

  17. Control of autophagy by oncogenes and tumor suppressor genes.

    Science.gov (United States)

    Maiuri, M C; Tasdemir, E; Criollo, A; Morselli, E; Vicencio, J M; Carnuccio, R; Kroemer, G

    2009-01-01

    Multiple oncogenes (in particular phosphatidylinositol 3-kinase, PI3K; activated Akt1; antiapoptotic proteins from the Bcl-2 family) inhibit autophagy. Similarly, several tumor suppressor proteins (such as BH3-only proteins; death-associated protein kinase-1, DAPK1; the phosphatase that antagonizes PI3K, PTEN; tuberous sclerosic complex 1 and 2, TSC1 and TSC2; as well as LKB1/STK11) induce autophagy, meaning that their loss reduces autophagy. Beclin-1, which is required for autophagy induction acts as a haploinsufficient tumor suppressor protein, and other essential autophagy mediators (such as Atg4c, UVRAG and Bif-1) are bona fide oncosuppressors. One of the central tumor suppressor proteins, p53 exerts an ambiguous function in the regulation of autophagy. Within the nucleus, p53 can act as an autophagy-inducing transcription factor. Within the cytoplasm, p53 exerts a tonic autophagy-inhibitory function, and its degradation is actually required for the induction of autophagy. The role of autophagy in oncogenesis and anticancer therapy is contradictory. Chronic suppression of autophagy may stimulate oncogenesis. However, once a tumor is formed, autophagy inhibition may be a therapeutic goal for radiosensitization and chemosensitization. Altogether, the current state-of-the art suggests a complex relationship between cancer and deregulated autophagy that must be disentangled by further in-depth investigation.

  18. Human Papillomavirus 16E6 Oncogene Mutation in Cervical Cancer

    Institute of Scientific and Technical Information of China (English)

    Feng Sun; Xiao-qin Ha; Tong-de Lv; Chuan-ping Xing; Bin Liu; Xiao-zhe Cao

    2009-01-01

    Objective: Cervical cancer (CC) is the second most common type of cancer in women worldwide, after breast cancer. High-risk human papillomaviruses (HR-HPVs) are considered to be the major causes of cervical cancer. HPV16 is the most common type of HR-HPVs and HPV16 E6 gene is one of the major oncogenes. Specific mutations are considered as dangerous factors causing CC. This study was designed to find mutations of HPV16 E6 and the relationship between the mutations and the happening of CC.Methods: The tissue DNA was extracted from 15 biopsies of CC. Part of HPV16 E6 gene (nucleotide 201-523) was amplified by polymerase chain reaction (PCR) from the CC tissue DNA. The PCR fragments were sequenced and analyzed.Results: The result of PCR showed that the positive rate of HPV16 E6 was 93.33% (14/15). After sequencing and analyzing, in the 13 out of 14 PCR fragments, 4 maintained prototype (30.77%), 8 had a same 350G mutation (61.54%), and 1 had a 249G mutation (7.69%).Conclusion: This study suggest that there is a high infection rate of HPV in cervical cancer and most of the HPV16 E6 gene has mutations. Those mutations may have an association with the development of cervical cancer.

  19. Re-Configuration of Sphingolipid Metabolism by Oncogenic Transformation

    Directory of Open Access Journals (Sweden)

    Anthony S. Don

    2014-03-01

    Full Text Available The sphingolipids are one of the major lipid families in eukaryotes, incorporating a diverse array of structural variants that exert a powerful influence over cell fate and physiology. Increased expression of sphingosine kinase 1 (SPHK1, which catalyses the synthesis of the pro-survival, pro-angiogenic metabolite sphingosine 1-phosphate (S1P, is well established as a hallmark of multiple cancers. Metabolic alterations that reduce levels of the pro-apoptotic lipid ceramide, particularly its glucosylation by glucosylceramide synthase (GCS, have frequently been associated with cancer drug resistance. However, the simple notion that the balance between ceramide and S1P, often referred to as the sphingolipid rheostat, dictates cell survival contrasts with recent studies showing that highly potent and selective SPHK1 inhibitors do not affect cancer cell proliferation or survival, and studies demonstrating higher ceramide levels in some metastatic cancers. Recent reports have implicated other sphingolipid metabolic enzymes such as acid sphingomyelinase (ASM more strongly in cancer pathogenesis, and highlight lysosomal sphingolipid metabolism as a possible weak point for therapeutic targeting in cancer. This review describes the evidence implicating different sphingolipid metabolic enzymes and their products in cancer pathogenesis, and suggests how newer systems-level approaches may improve our overall understanding of how oncogenic transformation reconfigures sphingolipid metabolism.

  20. RECQL4 helicase has oncogenic potential in sporadic breast cancers.

    Science.gov (United States)

    Arora, Arvind; Agarwal, Devika; Abdel-Fatah, Tarek Ma; Lu, Huiming; Croteau, Deborah L; Moseley, Paul; Aleskandarany, Mohammed A; Green, Andrew R; Ball, Graham; Rakha, Emad A; Chan, Stephen Yt; Ellis, Ian O; Wang, Lisa L; Zhao, Yongliang; Balajee, Adayabalam S; Bohr, Vilhelm A; Madhusudan, Srinivasan

    2016-03-01

    RECQL4 helicase is a molecular motor that unwinds DNA, a process essential during DNA replication and DNA repair. Germ-line mutations in RECQL4 cause type II Rothmund-Thomson syndrome (RTS), characterized by a premature ageing phenotype and cancer predisposition. RECQL4 is widely considered to be a tumour suppressor, although its role in human breast cancer is largely unknown. As the RECQL4 gene is localized to chromosome 8q24, a site frequently amplified in sporadic breast cancers, we hypothesized that it may play an oncogenic role in breast tumourigenesis. To address this, we analysed large cohorts for gene copy number changes (n = 1977), mRNA expression (n = 1977) and protein level (n = 1902). Breast cancer incidence was also explored in 58 patients with type II RTS. DNA replication dynamics and chemosensitivity was evaluated in RECQL4-depleted breast cancer cells in vitro. Amplification or gain in gene copy number (30.6%), high-level mRNA expression (51%) and high levels of protein (23%) significantly associated with aggressive tumour behaviour, including lymph node positivity, larger tumour size, HER2 overexpression, ER-negativity, triple-negative phenotypes and poor survival. RECQL4 depletion impaired the DNA replication rate and increased chemosensitivity in cultured breast cancer cells. Thus, although recognized as a 'safe guardian of the genome', our data provide compelling evidence that RECQL4 is tumour promoting in established breast cancers. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  1. The LMO2 oncogene regulates DNA replication in hematopoietic cells.

    Science.gov (United States)

    Sincennes, Marie-Claude; Humbert, Magali; Grondin, Benoît; Lisi, Véronique; Veiga, Diogo F T; Haman, André; Cazaux, Christophe; Mashtalir, Nazar; Affar, El Bachir; Verreault, Alain; Hoang, Trang

    2016-02-02

    Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression.

  2. Gallium-68: chemistry and radiolabeled peptides exploring different oncogenic pathways.

    Science.gov (United States)

    Morgat, Clément; Hindié, Elif; Mishra, Anil K; Allard, Michèle; Fernandez, Philippe

    2013-03-01

    Abstract Early and specific tumor detection and also therapy selection and response evaluation are some challenges of personalized medicine. This calls for high sensitive and specific molecular imaging such as positron emission tomography (PET). The use of peptides for PET molecular imaging has undeniable advantages: possibility of targeting through peptide-receptor interaction, small size and low-molecular weight conferring good penetration in the tissue or at cellular level, low toxicity, no antigenicity, and possibility of wide choice for radiolabeling. Among β(+)-emitter radioelements, Gallium-68 is a very attractive positron-emitter compared with carbon-11 or fluorine-18 taking into account its easy production via a (68)Ge/(68)Ga generator and well established radiochemistry. Gallium-68 chemistry is based on well-defined coordination complexes with macrocycle or chelates having strong binding properties, particularly suitable for linking peptides that allow resistance to in vivo transchelation of the metal ion. Understanding specific and nonspecific molecular mechanisms involved in oncogenesis is one major key to develop new molecular imaging tools. The present review focuses on peptide signaling involved in different oncogenic pathways. This peptide signalization might be common for tumoral and non-tumoral processes or could be specific of an oncological process. This review describes gallium chemistry and different (68)Ga-radiolabeled peptides already in use or under development aiming at developing molecular PET imaging of different oncological processes.

  3. Transgenic Rat Models for Breast Cancer Research

    Science.gov (United States)

    1999-10-01

    metallothionein promoter which is inducible by heavy metals such as zinc (22,23,25). The inducible approach was chosen to express the activated oncogene because... SPERMATOZOA . N Songsasen, KJ G. Rivera *, G. Alanis*, R. Bosch* and H. Monello 4 . Dept de Reprod Betteridge, SP Leibo. Dept Biomedical Sciences, Ontario...thawed spermatozoa has been reported. However, sperm survival has The effects of season of kidding on postpartum intervals were evaluated been either

  4. Oncogenic and tumor-promoting Spermatophytes and Pteridophytes and their active principles.

    Science.gov (United States)

    Farnsworth, N R; Bingel, A S; Fong, H H; Saleh, A A; Christenson, G M; Saufferer, S M

    1976-08-01

    A survey and discussion are presented of plants classified as Spermatophyta and Pteridophyta, extracts of which have been shown to be oncogenic or tumor-promoting in animals. The active oncogenic and tumor-promoting principles, where known, have been identified. They represent tannins; pyrrolizidine, indole, tropolone, quinoline, purine, and benzophenanthridine alkaloids; nitroso compounds; triterpene glycosides; lignans; isoflavans; allyl benzenoids; simple (nu-pyrenes; and carbocyclic hydroxy acids. A total of 28 compounds of known structure have been identified as oncogens and several phorbol esters as tumor-promoters. Plants known to contain any of the 28 oncogens (excluding shikimic acid and caffeine) have been tabulated; they represent at least 454 species, 110 genera, and 34 families of Spermatophyta and Pteridophyta.

  5. Alterations in metastatic properties of hepatocellular carcinoma cell following H-ras oncogene transfection

    Institute of Scientific and Technical Information of China (English)

    Qing Wang; Zhi Ying Lin; Xiao Li Feng

    2001-01-01

    AIM To demonstrate the relationship betweenH-ras oncogene and hepatocellular carcinoma(HCC) metastasis.METHODS Activated H-ras oncogene wastransfected into SMMC 7721, a cell line derivedfrom human HCC, by calcium phosphatetransfection method. Some metastasis-relatedparameters were detected in vitro, includingadhesion assay, migration assay, expression ofcollagenase ⅣV (c ⅣV ase) and epidermal growthfactor receptor (EGFR).RESULTS The abilities of H-ras-transfected cellclones in adhesion to laminin (LN) or fibronectin(FN), migration, c Ⅳ ase secretion increasedmarkedly, and the expression of EGFR elevatedmoderately. More importantly, these alterationswere consistent positively with the expressionof p21, the protein product of H-ras oncogene.CONCLUSION H-ras oncogene could inducethe metastatic phenotype of HCC cell in vitro toraise its metastatic potential.

  6. Analysis of acquired resistance to cis-diamminedichloroplatinum(II) in oncogene transfected SHOK cells

    Energy Technology Data Exchange (ETDEWEB)

    Kinashi, Yuko; Masunaga, Shinichiro; Suzuki, Minoru; Ono, Koji; Akaboshi, Mitsuhiko [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Watanabe, Masami

    1998-02-01

    SHOK (Syrian hamster Osaka-Kanazawa) cells were transfected with activated oncogenes (v-mos, c-myc, N-ras, H-ras, K-ras). These oncogene transfected cells were treated with {sup 195m}Pt-cis-diamminedichloroplatinum(II) (CDDP). Clonogenic cell survival assay showed that oncogene-transfected cells exhibited a 1.3-4.8 fold increases resistance to cisplatin compared to the parental SHOK cells. The CDDP concentration binding to DNA, RNA and protein were measured by counting the {sup 195m}Pt-radioactivity. The CDDP uptake was decreased in these oncogene transfected cells. The CDDP uptake in DNA of H-ras transfected cells decreased faster than control SHOK cells. (author)

  7. A germline RET proto-oncogene mutation in multiple members of an ...

    African Journals Online (AJOL)

    Makia Marafie

    2016-09-17

    Sep 17, 2016 ... multiple members of an Arab family with variable onset of MEN type ... fashion and caused by germline mutation in RET proto- oncogene. The main .... ing sudden severe high blood pressure crises that required immediate ...

  8. Toxins for Transgenic Resistance to Hemipteran Pests

    Directory of Open Access Journals (Sweden)

    Bryony C. Bonning

    2012-06-01

    Full Text Available The sap sucking insects (Hemiptera, which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests.

  9. Toxins for transgenic resistance to hemipteran pests.

    Science.gov (United States)

    Chougule, Nanasaheb P; Bonning, Bryony C

    2012-06-01

    The sap sucking insects (Hemiptera), which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt) has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests.

  10. Dana-Farber Cancer Institute: Discovery of Novel Oncogenes | Office of Cancer Genomics

    Science.gov (United States)

    Widespread recurrent copy number alterations are observed across the majority of human cancers, yet the specific targets of such amplified or deleted regions remain undefined. Here, the CTD2 Center at the Dana Farber Cancer Institute took a systematic approach using cDNA overexpression screening to identify and validate oncogenes residing in such amplified regions. In representative examples, these experiments have identified the adaptor proteins CRKL, GAB2, FRS2 and the TLOC and SKIL proteins as novel amplified oncogenes.

  11. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Lahortiga, Idoya; De Keersmaecker, Kim; Van Vlierberghe, Pieter; Graux, Carlos; Cauwelier, Barbara; Lambert, Frederic; Mentens, Nicole; Beverloo, H Berna; Pieters, Rob; Speleman, Frank; Odero, Maria D; Bauters, Marijke; Froyen, Guy; Marynen, Peter; Vandenberghe, Peter; Wlodarska, Iwona; Meijerink, Jules P P; Cools, Jan

    2007-05-01

    We identified a duplication of the MYB oncogene in 8.4% of individuals with T cell acute lymphoblastic leukemia (T-ALL) and in five T-ALL cell lines. The duplication is associated with a threefold increase in MYB expression, and knockdown of MYB expression initiates T cell differentiation. Our results identify duplication of MYB as an oncogenic event and suggest that MYB could be a therapeutic target in human T-ALL.

  12. PERSPECTIVES OF THE DEVELOPMENT OF MUCOSAL VACCINES AGAINST DANGEROUS INFECTIONS ON THE BASE OF TRANSGENIC PLANTS

    Directory of Open Access Journals (Sweden)

    A.V. Tretyakova

    2012-08-01

    Full Text Available Mucosal vaccines created on the base of transgenic plants reacting with mucosal layers of the intestines and other organs are considered to be the perspective method of the vaccination. These vaccines induce both mucosal and general humoral immunogenicity after the peroral administration. The folding of antigenic proteins synthesizing in plants occurs via eukaryotic type and has advantages before yeast and prokaryotic platforms. This feature results to more adequate synthesis of antibodies against pathogens and to the interaction with effector molecules of complement. Earlier we together with The State Scientific Center “Vector”, Institute of chemical biology and fundamental medicine SB RAS and Dr R.Hammond from Laboratory of Plant Pathology (Maryland, USA created two candidate vaccines : one of them against AIDS (HIV-1 and hepatitis B on the base of the chimeric gene TBI-HBS, encoding simultaneously 9 antigenic determinants of HIV-1 and the main surface antigen of hepatitis B (HBsAg. The second candidate vaccine was created against hepatitis B on the base of the genetic construct with the gene preS2-S encoding the synthesis of two subunits of the main surface antigen of hepatitis B and the signal peptide HDEL which directed antigens for the accumulation on ER. Both vaccines were tested on mice and confirmed their immunogenicity as the pronounced antibodies response. Twice vaccinated mice maintained the antibodies response during 11 months after there was little tendency to lowering. It was established that transgenic plants – vaccines (tomato kept the capability to the synthesis of antigenic determinants in seven seed generations during 7 years. The results of the development of the mucosal vaccine against cervical carcinoma (carcinoma of uterine cervix evoked by human papillomaviruses of high oncogenic risks were presented in this report. We created the genetic construct consisting of 35S CaMV promoter, Ώ (omega leader of TMV, the

  13. Oncogenic ETS proteins mimic activated RAS/MAPK signaling in prostate cells

    Science.gov (United States)

    Hollenhorst, Peter C.; Ferris, Mary W.; Hull, Megan A.; Chae, Heejoon; Kim, Sun; Graves, Barbara J.

    2011-01-01

    The aberrant expression of an oncogenic ETS transcription factor is implicated in the progression of the majority of prostate cancers, 40% of melanomas, and most cases of gastrointestinal stromal tumor and Ewing's sarcoma. Chromosomal rearrangements in prostate cancer result in overexpression of any one of four ETS transcription factors. How these four oncogenic ETS genes differ from the numerous other ETS genes expressed in normal prostate and contribute to tumor progression is not understood. We report that these oncogenic ETS proteins, but not other ETS factors, enhance prostate cell migration. Genome-wide binding analysis matched this specific biological function to occupancy of a unique set of genomic sites highlighted by the presence of ETS- and AP-1-binding sequences. ETS/AP-1-binding sequences are prototypical RAS-responsive elements, but oncogenic ETS proteins activated a RAS/MAPK transcriptional program in the absence of MAPK activation. Thus, overexpression of oncogenic ETS proteins can replace RAS/MAPK pathway activation in prostate cells. The genomic description of this ETS/AP-1-regulated, RAS-responsive, gene expression program provides a resource for understanding the role of these ETS factors in both an oncogenic setting and the developmental processes where these genes normally function. PMID:22012618

  14. Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis.

    Science.gov (United States)

    Mou, Haiwei; Moore, Jill; Malonia, Sunil K; Li, Yingxiang; Ozata, Deniz M; Hough, Soren; Song, Chun-Qing; Smith, Jordan L; Fischer, Andrew; Weng, Zhiping; Green, Michael R; Xue, Wen

    2017-04-04

    Genetic lesions that activate KRAS account for ∼30% of the 1.6 million annual cases of lung cancer. Despite clinical need, KRAS is still undruggable using traditional small-molecule drugs/inhibitors. When oncogenic Kras is suppressed by RNA interference, tumors initially regress but eventually recur and proliferate despite suppression of Kras Here, we show that tumor cells can survive knockout of oncogenic Kras, indicating the existence of Kras-independent survival pathways. Thus, even if clinical KRAS inhibitors were available, resistance would remain an obstacle to treatment. Kras-independent cancer cells exhibit decreased colony formation in vitro but retain the ability to form tumors in mice. Comparing the transcriptomes of oncogenic Kras cells and Kras knockout cells, we identified 603 genes that were specifically up-regulated in Kras knockout cells, including the Fas gene, which encodes a cell surface death receptor involved in physiological regulation of apoptosis. Antibodies recognizing Fas receptor efficiently induced apoptosis of Kras knockout cells but not oncogenic Kras-expressing cells. Increased Fas expression in Kras knockout cells was attributed to decreased association of repressive epigenetic marks at the Fas promoter. Concordant with this observation, treating oncogenic Kras cells with histone deacetylase inhibitor and Fas-activating antibody efficiently induced apoptosis, thus bypassing the need to inhibit Kras. Our results suggest that activation of Fas could be exploited as an Achilles' heel in tumors initiated by oncogenic Kras.

  15. [Oncogenes RET/PTC and mechanisms of their involvement in thyroid cancerogenesis].

    Science.gov (United States)

    Voskoboĭnyk, L H

    2009-01-01

    Papillary thyroid carcinomas are the most common type of thyroid oncopathology, and are rather often associated with the expression of RET/PTC oncogens. The first oncogen RET/PTC1 was isolated more than 20 years ago. Now 13 different forms of RET/PTC are known, and 12 different partner-genes are described, that could be involved in formation of RET/PTC oncogenes. The most common of them are RET/PTC1 and RET/PTC3 forms. The great majority of oncogens RET/PTC, except for two--ELKS-RET and HOOK3-RET, have been founded in radioaction-induced thyroid tumors. There is an opinion that the key role in development of papillary thyroid carcinomas belongs to RET/PTC oncogens. The data about different types of RET/PTC oncogens, factors, that lead to their formation have been described in the present review. Also different mechanisms of activation of transduction pathways and gene's expression in thyroid cells after RET/PTC induction have been presented.

  16. Transgenic cultures: from the economic viewpoint

    Directory of Open Access Journals (Sweden)

    Mauricio Mosquera

    2011-12-01

    Full Text Available The introduction of transgenic seeds for agricultural purposes poses modification to their production, due to the potential for reaching desired characteristics such as greater yield, this being fundamental in an economic environment characterised by open market conditions. However, acceptance of products resulting from genetic engineering is far from becoming a simple process; discussion relating to the predominance of private sector interests, the monopoly of knowledge and the safety of such seeds/food is currently in the spotlight. This article presents the main points of debate regarding adoption of transgenic cultures, contributing to discussion about this topic for Colombia.

  17. Developments in transgenic technology: applications for medicine.

    Science.gov (United States)

    Hunter, Cheryl V; Tiley, Laurence S; Sang, Helen M

    2005-06-01

    Recent advances in the efficiency of transgenic technology have important implications for medicine. The production of therapeutic proteins from animal bioreactors is well established and the first products are close to market. The genetic modification of pigs to improve their suitability as organ donors for xenotransplantation has been initiated, but many challenges remain. The use of transgenesis, in combination with the method of RNA interference to knock down gene expression, has been proposed as a method for making animals resistant to viral diseases, which could reduce the likelihood of transmission to humans. Here, the latest developments in transgenic technology and their applications relevant to medicine and human health will be discussed.

  18. Design and Management of a Transgenic Facility

    Institute of Scientific and Technical Information of China (English)

    Bob Springsteen

    2001-01-01

    @@ In 1965, I was given the opportunity to manage a research animal colony. At that time, the animal colony consisted of numerous species, such as primates, dogs, cats, rab bits, guinea pigs, hamsters, rats, mice, and some farm animals as well. Over the years,this menagerie was reduced to mice and rab bits. The animal facility now houses 8 000mice, of which 80% are transgenics. In approximately six years, transgenic mice have become the mainstay of the Berkeley Lab animal facility, and this population continues to grow.

  19. Influence of DNA methylation on transgene expression

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    DNA methylation plays an important role in gene expression in eukaryote. But DNA methylation of transgene usually leads to target gene silencing in plant genetic engineering. In this research, reporter gene b-glu- curonidase (GUS) gene (uidA) was introduced into tobaccos via Agrobacterium-mediated transformation method, and the foreign uidA gene became inactive in some transgenic tobaccos. No mRNA of uidA was detected in these plants by Northern blotting analysis, and DNA methylation of promoter region was found. The results indicated that gene silencing might be caused by DNA methylation of promoter.

  20. Generation of BAC transgenic epithelial organoids.

    Directory of Open Access Journals (Sweden)

    Gerald Schwank

    Full Text Available Under previously developed culture conditions, mouse and human intestinal epithelia can be cultured and expanded over long periods. These so-called organoids recapitulate the three-dimensional architecture of the gut epithelium, and consist of all major intestinal cell types. One key advantage of these ex vivo cultures is their accessibility to live imaging. So far the establishment of transgenic fluorescent reporter organoids has required the generation of transgenic mice, a laborious and time-consuming process, which cannot be extended to human cultures. Here we present a transfection protocol that enables the generation of recombinant mouse and human reporter organoids using BAC (bacterial artificial chromosome technology.

  1. Lectin cDNA and transgenic plants derived therefrom

    Science.gov (United States)

    Raikhel, Natasha V.

    2000-10-03

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties.

  2. Insect resistance to Nilaparvata lugens and Cnaphalocrocis medinalis in transgenic indica rice and the inheritance of gna+sbti transgenes.

    Science.gov (United States)

    Li, Guiying; Xu, Xinping; Xing, Hengtai; Zhu, Huachen; Fan, Qin

    2005-04-01

    Molecular genetic analysis and insect bioassay of transgenic indica rice 'Zhuxian B' plants carrying snowdrop lectin gene (gna) and soybean trypsin inhibitor gene (sbti) were investigated in detail. PCR, 'dot' blot and PCR-Southern blot analysis showed that both transgenes had been incorporated into the rice genome and transmitted up to R3 progeny in most lines tested. Some transgenic lines exhibited Mendelian segregation, but the other showed either 1:1 (positive: negative for the transgenes) or other aberrant segregation patterns. The segregation patterns of gna gene crossed between R2 and R3 progeny. In half of transgenic R3 lines, gna and sbti transgenes co-segregated. Two independent homozygous lines expressing double transgenes were identified in R3 progeny. Southern blot analysis demonstrated that the copy numbers of integrated gna and sbti transgenes varied from one to ten in different lines. Insect bioassay data showed that most transgenic plants had better resistance to both Nilaparvata lugens (Stahl) and Cnaphalocrocis medinalis (Guenee) than wild-type plants. The insect resistance of transgenic lines increased with the increase in transgene positive ratio in most of the transgenic lines. In all, we obtained nine lines of R3 transgenic plants, including one pure line, which had better resistance to both N lugens and C medinalis than wild-type plants.

  3. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein

    Directory of Open Access Journals (Sweden)

    Deeksha Vishwamitra

    2015-09-01

    Full Text Available Nucleophosmin-anaplastic lymphoma kinase–expressing (NPM-ALK+ T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5(p23;q35 that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm.

  4. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein.

    Science.gov (United States)

    Vishwamitra, Deeksha; Curry, Choladda V; Shi, Ping; Alkan, Serhan; Amin, Hesham M

    2015-09-01

    Nucleophosmin-anaplastic lymphoma kinase-expressing (NPM-ALK+) T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5)(p23;q35) that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs) with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm.

  5. CXCR4 in breast cancer: oncogenic role and therapeutic targeting

    Directory of Open Access Journals (Sweden)

    Xu C

    2015-08-01

    Full Text Available Chao Xu,1,* Hong Zhao,1,* Haitao Chen,1 Qinghua Yao2,3 1First Clinical College of Zhejiang Chinese Medical University, 2Department of Integrated Traditional Chinese and Western Medicine, Zhejiang Cancer Hospital, 3Key Laboratory of Integrated Traditional Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Chemokines are 8–12 kDa peptides that function as chemoattractant cytokines and are involved in cell activation, differentiation, and trafficking. Chemokines bind to specific G-protein-coupled seven-span transmembrane receptors. Chemokines play a fundamental role in the regulation of a variety of cellular, physiological, and developmental processes. Their aberrant expression can lead to a variety of human diseases including cancer. C-X-C chemokine receptor type 4 (CXCR4, also known as fusin or CD184, is an alpha-chemokine receptor specific for stromal-derived-factor-1 (SDF-1 also called CXCL12. CXCR4 belongs to the superfamily of the seven transmembrane domain heterotrimeric G protein-coupled receptors and is functionally expressed on the cell surface of various types of cancer cells. CXCR4 also plays a role in the cell proliferation and migration of these cells. Recently, CXCR4 has been reported to play an important role in cell survival, proliferation, migration, as well as metastasis of several cancers including breast cancer. This review is mainly focused on the current knowledge of the oncogenic role and potential drugs that target CXCR4 in breast cancer. Additionally, CXCR4 proangiogenic molecular mechanisms will be reviewed. Strict biunivocal binding affinity and activation of CXCR4/CXCL12 complex make CXCR4 a unique molecular target for prevention and treatment of breast cancer. Keywords: breast cancer, CXCR4, drug target, chemokine, angiogenesis

  6. A transcriptome map of cellular transformation by the fos oncogene

    Directory of Open Access Journals (Sweden)

    Ruan Hong

    2005-05-01

    Full Text Available Abstract Background The c-fos gene was originally identified as the cellular homolog of the oncogene v-fos carried by the Finkel-Biskis-Jenkins and Finkel-Biskis-Reilly murine osteogenic sarcoma retroviruses. Sustained expression of fos is sufficient to induce cellular transformation in vitro and tumorigenesis in vivo. Fos functions as a component of the AP-1 transcription factor complex to regulate gene transcription and several differentially expressed genes have been identified in cells transformed by fos. We have extended these studies by constructing a cellular system for conditional transformation by v-fos. Using Affymetrix-based DNA microarray technology, we analyzed transcriptional changes over the course of transformation and reversion in an inducible v-fos system. Results Microarray analyses of temporal gene expression during the process of v-fos mediated cellular transformation and morphological reversion revealed a remarkably dynamic transcriptome. Of the more than 8000 genes analyzed in this study, 3766 genes were categorized into 18 gene-expression patterns by using self-organizing map analysis. By combining the analysis of gene expression profiles in stably transformed cells with the analysis of sequential expression patterns during conditional transformation, we identified a relatively small cohort of genes implicated in v-fos mediated cellular transformation. Conclusion This approach defines a general conditional cell transformation system that can be used to study the endogenous transcription regulatory mechanisms involved in transformation and tumorigenesis. In addition, this study is the first reported analysis of dynamic changes in gene expression throughout experimentally controlled morphological transformation mediated by v-fos.

  7. Advancing environmental risk assessment for transgenic biofeedstock crops

    OpenAIRE

    2009-01-01

    Abstract Transgenic modification of plants is a key enabling technology for developing sustainable biofeedstocks for biofuels production. Regulatory decisions and the wider acceptance and development of transgenic biofeedstock crops are considered from the context of science-based risk assessment. The risk assessment paradigm for transgenic biofeedstock crops is fundamentally no different from that of current generation transgenic crops, except that the focus of the assessment must consider t...

  8. A screen identifies the oncogenic micro-RNA miR-378a-5p as a negative regulator of oncogene-induced senescence.

    Directory of Open Access Journals (Sweden)

    Susanne Marije Kooistra

    Full Text Available Oncogene-induced senescence (OIS can occur in response to hyperactive oncogenic signals and is believed to be a fail-safe mechanism protecting against tumorigenesis. To identify new factors involved in OIS, we performed a screen for microRNAs that can overcome or inhibit OIS in human diploid fibroblasts. This screen led to the identification of miR-378a-5p and in addition several other miRNAs that have previously been shown to play a role in senescence. We show that ectopic expression of miR-378a-5p reduces the expression of several senescence markers, including p16(INK4A and senescence-associated β-galactosidase. Moreover, cells with ectopic expression of miR-378a-5p retain proliferative capacity even in the presence of an activated Braf oncogene. Finally, we identified several miR-378a-5p targets in diploid fibroblasts that might explain the mechanism by which the microRNA can delay OIS. We speculate that miR-378a-5p might positively influence tumor formation by delaying OIS, which is consistent with a known pro-oncogenic function of this microRNA.

  9. Spi-1, Fli-1 and Fli-3 (miR-17-92 oncogenes contribute to a single oncogenic network controlling cell proliferation in friend erythroleukemia.

    Directory of Open Access Journals (Sweden)

    Samer Kayali

    Full Text Available Clonal erythroleukemia developing in susceptible mice infected by Friend virus complex are associated with highly recurrent proviral insertions at one of three loci called Spi-1, Fli-1 or Fli-3, leading to deregulated expression of oncogenic Spi-1 or Fli-1 transcription factors or miR-17-92 miRNA cluster, respectively. Deregulated expression of each of these three oncogenes has been independently shown to contribute to cell proliferation of erythroleukemic clones. Previous studies showed a close relationship between Spi-1 and Fli-1, which belong to the same ETS family, Spi-1 activating fli-1 gene, and both Spi-1 and Fli-1 activating multiple common target genes involved in ribosome biogenesis. In this study, we demonstrated that Spi-1 and Fli-1 are also involved in direct miR-17-92 transcriptional activation through their binding to a conserved ETS binding site in its promoter. Moreover, we demonstrated that physiological re-expression of exogenous miR-17 and miR-20a are able to partially rescue the proliferation loss induced by Fli-1 knock-down and identified HBP1 as a target of these miRNA in erythroleukemic cells. These results establish that three of the most recurrently activated oncogenes in Friend erythroleukemia are actually involved in a same oncogenic network controlling cell proliferation. The putative contribution of a similar ETS-miR-17-92 network module in other normal or pathological proliferative contexts is discussed.

  10. Spi-1, Fli-1 and Fli-3 (miR-17-92) oncogenes contribute to a single oncogenic network controlling cell proliferation in friend erythroleukemia.

    Science.gov (United States)

    Kayali, Samer; Giraud, Guillaume; Morlé, François; Guyot, Boris

    2012-01-01

    Clonal erythroleukemia developing in susceptible mice infected by Friend virus complex are associated with highly recurrent proviral insertions at one of three loci called Spi-1, Fli-1 or Fli-3, leading to deregulated expression of oncogenic Spi-1 or Fli-1 transcription factors or miR-17-92 miRNA cluster, respectively. Deregulated expression of each of these three oncogenes has been independently shown to contribute to cell proliferation of erythroleukemic clones. Previous studies showed a close relationship between Spi-1 and Fli-1, which belong to the same ETS family, Spi-1 activating fli-1 gene, and both Spi-1 and Fli-1 activating multiple common target genes involved in ribosome biogenesis. In this study, we demonstrated that Spi-1 and Fli-1 are also involved in direct miR-17-92 transcriptional activation through their binding to a conserved ETS binding site in its promoter. Moreover, we demonstrated that physiological re-expression of exogenous miR-17 and miR-20a are able to partially rescue the proliferation loss induced by Fli-1 knock-down and identified HBP1 as a target of these miRNA in erythroleukemic cells. These results establish that three of the most recurrently activated oncogenes in Friend erythroleukemia are actually involved in a same oncogenic network controlling cell proliferation. The putative contribution of a similar ETS-miR-17-92 network module in other normal or pathological proliferative contexts is discussed.

  11. Pharmacological Inhibition of ALK5 Causes Selective Induction of Terminal Differentiation in Mouse Keratinocytes Expressing Oncogenic HRAS

    Science.gov (United States)

    Markell, Lauren Mordasky; Masiuk, Katelyn E.; Blazanin, Nicholas; Glick, Adam B.

    2011-01-01

    Transforming growth factor β (TGFβ) has both tumor suppressive and oncogenic roles in cancer development. We previously showed that SB431542 (SB) a small molecule inhibitor of the TGFβ type I receptor (ALK5) kinase suppressed benign epidermal tumor formation but enhanced malignant conversion. Here we show that SB treatment of primary K5rTA x tetORASV12G bitransgenic keratinocytes did not alter HRASV12G- induced keratinocyte hyperproliferation. However, continuous SB treatment significantly enhanced HRASV12G-induced cornified envelope formation and cell death linked to increased expression of enzymes transglutaminase 1 (TGM1) and 3 (TGM3) and constituents of the cornified envelope small proline-rich protein 1A (SPR1A) and 2H (SPR2H). In contrast, TGFβ1 suppressed cornified envelope formation by HRASV12G keratinocytes. Similar results were obtained in HRASV12G transgenic mice treated topically with SB or by co-expressing TGFβ1 and HRASV12G in the epidermis. Despite significant cell death, SB resistant HRASV12G keratinocytes repopulated the primary culture that had overcome HRas-induced senescence. These cells expressed reduced levels of p16ink4a and were growth stimulated by SB but remained sensitive to a calcium-induced growth arrest. Together these results suggest that differential responsiveness to cornification may represent a mechanism by which pharmacological blockade of TGFβ signaling can inhibit the outgrowth of preneoplastic lesions but may cause a more progressed phenotype in a separate keratinocyte population. PMID:21521744

  12. Jnk2 effects on tumor development, genetic instability and replicative stress in an oncogene-driven mouse mammary tumor model.

    Directory of Open Access Journals (Sweden)

    Peila Chen

    Full Text Available Oncogenes induce cell proliferation leading to replicative stress, DNA damage and genomic instability. A wide variety of cellular stresses activate c-Jun N-terminal kinase (JNK proteins, but few studies have directly addressed the roles of JNK isoforms in tumor development. Herein, we show that jnk2 knockout mice expressing the Polyoma Middle T Antigen transgene developed mammary tumors earlier and experienced higher tumor multiplicity compared to jnk2 wildtype mice. Lack of jnk2 expression was associated with higher tumor aneuploidy and reduced DNA damage response, as marked by fewer pH2AX and 53BP1 nuclear foci. Comparative genomic hybridization further confirmed increased genomic instability in PyV MT/jnk2-/- tumors. In vitro, PyV MT/jnk2-/- cells underwent replicative stress and cell death as evidenced by lower BrdU incorporation, and sustained chromatin licensing and DNA replication factor 1 (CDT1 and p21(Waf1 protein expression, and phosphorylation of Chk1 after serum stimulation, but this response was not associated with phosphorylation of p53 Ser15. Adenoviral overexpression of CDT1 led to similar differences between jnk2 wildtype and knockout cells. In normal mammary cells undergoing UV induced single stranded DNA breaks, JNK2 localized to RPA (Replication Protein A coated strands indicating that JNK2 responds early to single stranded DNA damage and is critical for subsequent recruitment of DNA repair proteins. Together, these data support that JNK2 prevents replicative stress by coordinating cell cycle progression and DNA damage repair mechanisms.

  13. [Methods of hygromycin B phosphotransferase activity assay in transgenic plant].

    Science.gov (United States)

    Zhuo, Qin; Yang, Xiaoguang

    2004-07-01

    Hygromycin B phosphotransferase (HPT) is a widely used selectable marker protein of transgenic plant. Detection of its activity is critical to studies on the development of various transgenic plants, silence of inserted gene, marker-free system development and safety assessment of transgenic food. In this paper, several methods for detecting the activity of this enzyme were reviewed.

  14. The past, present and future of transgenic bioreactors.

    Science.gov (United States)

    Drohan, W N

    1997-07-01

    Hybrid genes can control the tissue-specific synthesis of human proteins in transgenic animals. Thus, it is now possible to produce proteins of biomedical value in the body fluids or cells of transgenic livestock. In fact, the first transgenically produced protein, antithrombin III, is now in clinical trials and others will soon follow.

  15. Production of recombinant proteins in milk of transgenic and non-transgenic goats

    Directory of Open Access Journals (Sweden)

    Raylene Ramos Moura

    2011-10-01

    Full Text Available Among all the transgenic mammalians produced so far, goats have represented an excellent model of transgenesis when considering the factors such as the market demand for protein, volume of milk produced per lactation and reproductive rate. Various recombinant proteins have been obtained from the transgenic and non-transgenic goats, and among these, human antithrombin, produced by the transgenic goats, was the first recombinant protein of animal origin to be released as a drug for the clinical use in humans. This review reports the aspects inherent to the production of recombinant proteins in the goats, from the production of the animal bioreactors up to the expression of these proteins in their milk.

  16. Strategies for antiviral resistance in transgenic plants

    NARCIS (Netherlands)

    Prins, M.W.; Laimer, M.; Noris, E.; Schubert, J.; Wassenegger, M.; Tepfer, M.

    2008-01-01

    Genetic engineering offers a means of incorporating new virus resistance traits into existing desirable plant cultivars. The initial attempts to create transgenes conferring virus resistance were based on the pathogen-derived resistance concept. The expression of the viral coat protein gene in

  17. [Allergic risk of transgenic food: prevention strategies].

    Science.gov (United States)

    Moneret-Vautrin, Denise-Anne

    2002-01-01

    Numerous allergens proceed from foods. The allergic risk of transgenic foods needs to be evaluated according recommendations from the Joint Expert Committee FAO/WHO. Potential issues are the risk of cross reactivity with existing allergens, the modification of allergenicity of the transgenic protein induced by a modified metabolism in the host, the modified allergenicity of the proteins of the transgenic plant, a potential neo-allergenicity of the transgenic protein, and the risk of dissemination through pollens, inducing a respiratory sensitization then a cross food allergy. The algorithm includes three steps for evaluation: first the search for significant homology of the protein with allergens listed in allergen databanks, or the identity of a sequence of six aminoacids with known allergens, then a cross reactivity explored through the binding to IgEs from patients allergic to the source of the gene, or allergic to organisms of the same group or botanical family, and finally the extent of the pepsine resistance. The risk of immunogenicity has to be studied with appropriate animal models. A post-marketing surveillance is recommended for monitoring of adverse effects. The structure of an Allergo-Vigilance Network, the tools for efficiency and the groups at higher risk will be discussed.

  18. Transgenic lilies via pollen mediated transformation

    NARCIS (Netherlands)

    Leede-Plegt, van der L.M.; Kronenburg-van de Ven, van B.C.E.; Franken, J.; Tuyl, van J.M.; Tunen, van A.J.; Dons, J.J.M.

    1997-01-01

    We have developed a procedure for the production of transgenic lilies by using the pollen grain as vector for DNA delivery. First, a particle gun was used for the introduction of the NPTII gene (for kanamycin resistance) into pollen of lily (Lilium longiflorum), cv ‘Gelria’. Subsequently the bombard

  19. Biological containment strategies for transgenic crops

    NARCIS (Netherlands)

    Maagd, de R.A.; Boutilier, K.A.

    2013-01-01

    Biological containment is the prevention or reduction in the spread of transgenes by modifying plant growth or development, most commonly through modification of reproductive characteristics. This review provides a summary of the current strategies for biological containment, including the use of bo

  20. Cancer immunotherapy : insights from transgenic animal models

    NARCIS (Netherlands)

    McLaughlin, PMJ; Kroesen, BJ; Harmsen, MC; de Leij, LFMH

    2001-01-01

    A wide range of strategies in cancer immunotherapy has been developed in the last decade, some of which are currently being used in clinical settings. The development of these immunotherapeutical strategies has been facilitated by the generation of relevant transgenic animal models. Since the

  1. Cancer immunotherapy : insights from transgenic animal models

    NARCIS (Netherlands)

    McLaughlin, PMJ; Kroesen, BJ; Harmsen, MC; de Leij, LFMH

    2001-01-01

    A wide range of strategies in cancer immunotherapy has been developed in the last decade, some of which are currently being used in clinical settings. The development of these immunotherapeutical strategies has been facilitated by the generation of relevant transgenic animal models. Since the differ

  2. Assessing the value of transgenic crops.

    Science.gov (United States)

    Lacey, Hugh

    2002-10-01

    In the current controversy about the value of transgenic crops, matters open to empirical inquiry are centrally at issue. One such matter is a key premise in a common argument (that I summarize) that transgenic crops should be considered to have universal value. The premise is that there are no alternative forms of agriculture available to enable the production of sufficient food to feed the world. The proponents of agroecology challenge it, claiming that agroecology provides an alternative, and they deny the claim that it is well founded on empirical evidence. It is, therefore, a matter of both social and scientific importance that this premise and the criticisms of it be investigated rigorously and empirically, so that the benefits and disadvantages of transgenic-intensive agriculture and agroecology can be compared in a reliable way. Conducting adequate investigation about the potential contribution of agroecology requires that the cultural conditions of its practice (and, thus, of the practices and movements of small-scale farmers in the "third world") be strengthened--and this puts the interests of investigation into tension with the socio-economic interests driving the development of transgenics. General issues about relationship between ethical argument and empirical (scientific) investigation are raised throughout the article.

  3. Can Transgenic Maize Affect Soil Microbial Communities?

    NARCIS (Netherlands)

    Mulder, Christian; Wouterse, Marja; Raubuch, Markus; Roelofs, Willem; Rutgers, Michiel

    2006-01-01

    The aim of the experiment was to determine if temporal variations of belowground activity reflect the influence of the Cry1Ab protein from transgenic maize on soil bacteria and, hence, on a regulatory change of the microbial community (ability to metabolize sources belonging to different chemical gu

  4. Transgenic plants protected from insect attack

    Science.gov (United States)

    Vaeck, Mark; Reynaerts, Arlette; Höfte, Herman; Jansens, Stefan; de Beuckeleer, Marc; Dean, Caroline; Zabeau, Marc; Montagu, Marc Van; Leemans, Jan

    1987-07-01

    The Gram-positive bacterium Bacillus thuringiensis produces proteins which are specifically toxic to a variety of insect species. Modified genes have been derived from bt2, a toxin gene cloned from one Bacillus strain. Transgenic tobacco plants expressing these genes synthesize insecticidal proteins which protect them from feeding damage by larvae of the tobacco hornworm.

  5. The substantive equivalence of transgenic (Bt and Chi) and non-transgenic cotton based on metabolite profiles.

    Science.gov (United States)

    Modirroosta, Bentol Hoda; Tohidfar, Masoud; Saba, Jalal; Moradi, Foad

    2014-03-01

    Compositional studies comparing transgenic with non-transgenic counterpart plants are almost universally required by governmental regulatory bodies. In the present study, two T(2) transgenic cotton lines containing chitinase (Line 11/57) and Bt lines (Line 61) were compared with non-transgenic counterpart. To do this, biochemical characteristics of leaves and seeds, including amino acids, fatty acids, carbohydrates, anions, and cations contents of the studied lines were analyzed using GC/MS, high-performance liquid chromatography (HPLC), and ion chromatography (IC) analyzers, respectively. polymerase chain reaction (PCR) and Western blot analyses confirmed the presence and expression of Chi and Bt genes in the studied transgenic lines. Although, compositional analysis of leaves contents confirmed no significant differences between transgenic and non-transgenic counterpart lines, but it was shown that glucose content of chitinase lines, fructose content of transgenic lines (Bt and chitinase) and asparagine and glutamine of chitinase lines were significantly higher than the non-transgenic counterpart plants. Both the transgenic lines (Bt and chitinase) showed significant decrease in the amounts of sodium in comparison to the non-transgenic counterpart plants. The experiments on the seeds showed that histidine, isoleucine, leucine, and phenylalanine contents of all transgenic and non-transgenic lines were the same, whereas other amino acids were significantly increased in the transgenic lines. Surprisingly, it was observed that the concentrations of stearic acid, myristic acid, oleic acid, and linoleic acid in the chitinase line were significantly different than those of non-transgenic counterpart plants, but these components were the same in both Bt line and its non-transgenic counterpart. It seems that more changes observed in the seed contents than leaves is via this point that seeds are known as metabolites storage organs, so they show greater changes in the

  6. Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF.

    Directory of Open Access Journals (Sweden)

    Claudia Wellbrock

    Full Text Available The Microphthalmia-associated transcription factor (MITF is an important regulator of cell-type specific functions in melanocytic cells. MITF is essential for the survival of pigmented cells, but whereas high levels of MITF drive melanocyte differentiation, lower levels are required to permit proliferation and survival of melanoma cells. MITF is phosphorylated by ERK, and this stimulates its activation, but also targets it for degradation through the ubiquitin-proteosome pathway, coupling MITF degradation to its activation. We have previously shown that because ERK is hyper-activated in melanoma cells in which BRAF is mutated, the MITF protein is constitutively down-regulated. Here we describe another intriguing aspect of MITF regulation by oncogenic BRAF in melanoma cells. We show oncogenic BRAF up-regulates MITF transcription through ERK and the transcription factor BRN2 (N-Oct3. In contrast, we show that in melanocytes this pathway does not exist because BRN2 is not expressed, demonstrating that MITF regulation is a newly acquired function of oncogenic BRAF that is not performed by the wild-type protein. Critically, in melanoma cells MITF is required downstream of oncogenic BRAF because it regulates expression of key cell cycle regulatory proteins such as CDK2 and CDK4. Wild-type BRAF does not regulate this pathway in melanocytes. Thus, we show that oncogenic BRAF exerts exquisite control over MITF on two levels. It downregulates the protein by stimulating its degradation, but then counteracts this by increasing transcription through BRN2. Our data suggest that oncogenic BRAF plays a critical role in regulating MITF expression to ensure that its protein levels are compatible with proliferation and survival of melanoma cells. We propose that its ability to appropriate the regulation of this critical factor explains in part why BRAF is such a potent oncogene in melanoma.

  7. Lysophosphatidic acid targets vascular and oncogenic pathways via RAGE signaling

    Science.gov (United States)

    Touré, Fatouma; Chitayat, Seth; Pei, Renjun; Song, Fei; Li, Qing; Zhang, Jinghua; Rosario, Rosa; Ramasamy, Ravichandran; Chazin, Walter J.

    2012-01-01

    The endogenous phospholipid lysophosphatidic acid (LPA) regulates fundamental cellular processes such as proliferation, survival, motility, and invasion implicated in homeostatic and pathological conditions. Hence, delineation of the full range of molecular mechanisms by which LPA exerts its broad effects is essential. We report avid binding of LPA to the receptor for advanced glycation end products (RAGE), a member of the immunoglobulin superfamily, and mapping of the LPA binding site on this receptor. In vitro, RAGE was required for LPA-mediated signal transduction in vascular smooth muscle cells and C6 glioma cells, as well as proliferation and migration. In vivo, the administration of soluble RAGE or genetic deletion of RAGE mitigated LPA-stimulated vascular Akt signaling, autotaxin/LPA-driven phosphorylation of Akt and cyclin D1 in the mammary tissue of transgenic mice vulnerable to carcinogenesis, and ovarian tumor implantation and development. These findings identify novel roles for RAGE as a conduit for LPA signaling and suggest targeting LPA–RAGE interaction as a therapeutic strategy to modify the pathological actions of LPA. PMID:23209312

  8. Transgenic studies on homeobox genes in nervous system development: spina bifida in Isl1 transgenic mice.

    Science.gov (United States)

    Kappen, Claudia; Yaworsky, Paul J; Muller, Yunhua L; Salbaum, J Michael

    2013-04-01

    To develop in vivo assays for homeobox gene function in neural development, we generated transgenic mice in which the expression of a homeobox gene is altered only within the nervous system, in neurons or neuronal precursor cells. Transgenic expression of Hoxc8 did not result in gross abnormalities, while a Hoxd4 transgene caused death shortly after birth. In neural progenitor cells, the motorneuron-specific homeodomain transcription factor Isl1 induced early developmental defects, including absence of anterior neural structures, profound defects in the neuroepithelium and defective neural tube closure. A fraction of Isl1 transgenic mice exhibited spina bifida. Isl1 transgene expression was also associated with decreased proliferation and increased Pbx1 expression in the ventral neural tube. Our results suggest a function for some homeobox genes in development of the nervous system, and that cell-type- and region-specific transgenic models will be useful to identify the cellular and molecular targets of homeobox transcription factors in nervous system development.

  9. Split-Cre complementation restores combination activity on transgene excision in hair roots of transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Mengling Wen

    Full Text Available The Cre/loxP system is increasingly exploited for genetic manipulation of DNA in vitro and in vivo. It was previously reported that inactive ''split-Cre'' fragments could restore Cre activity in transgenic mice when overlapping co-expression was controlled by two different promoters. In this study, we analyzed recombination activities of split-Cre proteins, and found that no recombinase activity was detected in the in vitro recombination reaction in which only the N-terminal domain (NCre of split-Cre protein was expressed, whereas recombination activity was obtained when the C-terminal (CCre or both NCre and CCre fragments were supplied. We have also determined the recombination efficiency of split-Cre proteins which were co-expressed in hair roots of transgenic tobacco. No Cre recombination event was observed in hair roots of transgenic tobacco when the NCre or CCre genes were expressed alone. In contrast, an efficient recombination event was found in transgenic hairy roots co-expressing both inactive split-Cre genes. Moreover, the restored recombination efficiency of split-Cre proteins fused with the nuclear localization sequence (NLS was higher than that of intact Cre in transgenic lines. Thus, DNA recombination mediated by split-Cre proteins provides an alternative method for spatial and temporal regulation of gene expression in transgenic plants.

  10. Molecular characterization of transgene integration by next-generation sequencing in transgenic cattle.

    Directory of Open Access Journals (Sweden)

    Ran Zhang

    Full Text Available As the number of transgenic livestock increases, reliable detection and molecular characterization of transgene integration sites and copy number are crucial not only for interpreting the relationship between the integration site and the specific phenotype but also for commercial and economic demands. However, the ability of conventional PCR techniques to detect incomplete and multiple integration events is limited, making it technically challenging to characterize transgenes. Next-generation sequencing has enabled cost-effective, routine and widespread high-throughput genomic analysis. Here, we demonstrate the use of next-generation sequencing to extensively characterize cattle harboring a 150-kb human lactoferrin transgene that was initially analyzed by chromosome walking without success. Using this approach, the sites upstream and downstream of the target gene integration site in the host genome were identified at the single nucleotide level. The sequencing result was verified by event-specific PCR for the integration sites and FISH for the chromosomal location. Sequencing depth analysis revealed that multiple copies of the incomplete target gene and the vector backbone were present in the host genome. Upon integration, complex recombination was also observed between the target gene and the vector backbone. These findings indicate that next-generation sequencing is a reliable and accurate approach for the molecular characterization of the transgene sequence, integration sites and copy number in transgenic species.

  11. Characterization of transgene integration pattern in F4 hGH-transgenic common carp (Cyprinus carpio L.)

    Institute of Scientific and Technical Information of China (English)

    Bo WU; Yong Hua SUN; Yan Wu WANG; Ya Ping WANG; Zuo Yan ZHU

    2005-01-01

    The integration pattern and adjacent host sequences of the inserted pMThGH-transgene in the F4 hGH-transgenic common carp were extensively studied. Here we show that each F4 transgenic fish contained about 200 copies of the pMThGH-transgene and the transgenes were integrated into the host genome generally with concatemers in a head-totail arrangement at 4-5 insertion sites. By using a method of plasmid rescue, four hundred copies of transgenes from two individuals of F4 transgenic fish, A and B, were recovered and clarified into 6 classes. All classes of recovered transgenes contained either complete or partial pMThGH sequences. The class Ⅰ, which comprised 83% and 84.5% respectively of the recovered transgene copies from fish A and B, had maintained the original configuration, indicating that most transgenes were faithfully inherited during the four generations of reproduction. The other five classes were different from the original configuration in both molecular weight and restriction map, indicating that a few transgenes had undergone mutation, rearrangement or deletion during integration and germline transmission. In the five types of aberrant transgenes, three flanking sequences of the host genome were analyzed. These sequences were common carp β-actin gene, common carp DNA sequences homologous to mouse phosphoglycerate kinase-1 and human epidermal keratin 14, respectively.

  12. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    Science.gov (United States)

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-12-02

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  13. Beta-catenin accelerates human papilloma virus type-16 mediated cervical carcinogenesis in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Gülay Bulut

    Full Text Available Human papilloma virus (HPV is the principal etiological agent of cervical cancer in women, and its DNA is present in virtually all of these tumors. However, exposure to the high-risk HPV types alone is insufficient for tumor development. Identifying specific collaborating factors that will lead to cervical cancer remains an unanswered question, especially because millions of women are exposed to HPV. Our earlier work using an in vitro model indicated that activation of the canonical Wnt pathway in HPV-positive epithelial cells was sufficient to induce anchorage independent growth. We therefore hypothesized that constitutive activation of this pathway might function as the "second hit." To address this possibility, we developed two double-transgenic (DT mouse models, K14-E7/ΔN87βcat and K14-HPV16/ΔN87βcat that express either the proteins encoded by the E7 oncogene or the HPV16 early region along with constitutively active β-catenin, which was expressed by linking it to the keratin-14 (K14 promoter. We initiated tumor formation by treating all groups with estrogen for six months. Invasive cervical cancer was observed in 11% of the K14-ΔN87βcat mice, expressing activated β-catenin and in 50% of the animals expressing the HPV16 E7 oncogene. In double-transgenic mice, coexpression of β-catenin and HPV16 E7 induced invasive cervical cancer at about 7 months in 94% of the cases. We did not observe cervical cancer in any group unless the mice were treated with estrogen. In the second model, K14-HPV16 mice suffered cervical dysplasias, but this phenotype was not augmented in HPV16/ΔN87βcat mice. In summary, the phenotypes of the K14-E7/ΔN87βcat mice support the hypothesis that activation of the Wnt/β-catenin pathway in HPV-associated premalignant lesions plays a functional role in accelerating cervical carcinogenesis.

  14. The oncogenic action of ionizing radiation on rat skin

    Energy Technology Data Exchange (ETDEWEB)

    Burns, F.J.; Garte, S.J.

    1992-01-01

    The multistage theory of carcinogenesis specifies that cells progress to cancer through a series of discrete, irreversible genetic alterations, but data on radiation-induced cancer incidence in rat skin suggests that an intermediate repairable alteration may occur. Data are presented on cancer induction in rat skin exposed to an electron beam (LET=0.34 keV/[mu]), a neon ion beam (LET=45) or an argon ion beam (LET=125). The rats were observed for tumors at least 78 weeks with squamous and basal cell carcinomas observed. The total cancer yield was fitted by the quadratic equation, and the equation parameters were estimated by linear regression for each type of radiation. Analysis of the DNA from the electron-induced carcinomas indicated that K-ras and/or c-myc oncogenes were activated. In situ hybridization indicated that the cancers contain subpopulations of cells with differing amounts of c-myc and H-ras amplification. The results are consistent with the idea that ionizing radiation produces stable, carcinogenically relevant lesions via 2 repairable events at low LET and via a non-repairable linked event pathway at high LET; either pathway may advance the cell by 1 stage. The proliferative response of rat epidermis following exposure to ionizing radiation was quantified by injection of [sup 14]C-thymidine. The return of these cells to S-phase a second time was detected by a second label ([sup 3]H). When the labeled cells were in G1-phase, the dorsal skin was irradiated with X-rays. All labeling indices were determined. The [sup 14]C labeling index was constant and unaffected by the radiation. The proportion of all cells entering S-phase averaged 3.5% at 18 hr and increased after 44, 52 and 75 hr to average levels of 11.8%, 5. 3%, and 6.6% at 0, 10 and 25 Gy respectively. The proportion of S-phase cells labeled with [sup 14]C increased after 42 hr and remained relatively constant thereafter.

  15. Repression of transcription mediated at a thyroid hormone response element by the v-erb-A oncogene product

    DEFF Research Database (Denmark)

    Sap, J; Muñoz, A; Schmitt, J

    1989-01-01

    Several recent observations, such as the identification of the cellular homologue of the v-erb-A oncogene as a thyroid-hormone receptor, have strongly implicated nuclear oncogenes in transcriptional control mechanisms. The v-erb-A oncogene blocks the differentiation of erythroid cells, and changes......-erb-A protein negatively interferes with normal transcriptional-control mechanisms, and that amino-acid substitutions have altered its DNA-binding properties....

  16. RASOnD - A comprehensive resource and search tool for RAS superfamily oncogenes from various species

    Directory of Open Access Journals (Sweden)

    Singh Tej P

    2011-07-01

    Full Text Available Abstract Background The Ras superfamily plays an important role in the control of cell signalling and division. Mutations in the Ras genes convert them into active oncogenes. The Ras oncogenes form a major thrust of global cancer research as they are involved in the development and progression of tumors. This has resulted in the exponential growth of data on Ras superfamily across different public databases and in literature. However, no dedicated public resource is currently available for data mining and analysis on this family. The present database was developed to facilitate straightforward accession, retrieval and analysis of information available on Ras oncogenes from one particular site. Description We have developed the RAS Oncogene Database (RASOnD as a comprehensive knowledgebase that provides integrated and curated information on a single platform for oncogenes of Ras superfamily. RASOnD encompasses exhaustive genomics and proteomics data existing across diverse publicly accessible databases. This resource presently includes overall 199,046 entries from 101 different species. It provides a search tool to generate information about their nucleotide and amino acid sequences, single nucleotide polymorphisms, chromosome positions, orthologies, motifs, structures, related pathways and associated diseases. We have implemented a number of user-friendly search interfaces and sequence analysis tools. At present the user can (i browse the data (ii search any field through a simple or advance search interface and (iii perform a BLAST search and subsequently CLUSTALW multiple sequence alignment by selecting sequences of Ras oncogenes. The Generic gene browser, GBrowse, JMOL for structural visualization and TREEVIEW for phylograms have been integrated for clear perception of retrieved data. External links to related databases have been included in RASOnD. Conclusions This database is a resource and search tool dedicated to Ras oncogenes. It has

  17. Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the V600EBRAF oncogene

    DEFF Research Database (Denmark)

    Hall, Arnaldur; Meyle, Kathrine Damm; Lange, Marina Krarup

    2013-01-01

    Oncogene addiction describes how cancer cells exhibit dependence on single oncogenes to escape apoptosis and senescence. While oncogene addiction constitutes the basis for new cancer treatment strategies targeting individual kinases and pathways activated by oncogenic mutations, the biochemical...... basis for this addiction is largely unknown. Here we provide evidence for a metabolic rationale behind the addiction to V600EBRAF in two malignant melanoma cell lines. Both cell lines display a striking addiction to glycolysis due to underlying dysfunction of oxidative phosphorylation (OXPHOS). Notably...

  18. High frequency of the HRAS oncogene codon 12 mutation in Macedonian patients with urinary bladder cancer

    Directory of Open Access Journals (Sweden)

    Sasho Panov

    2004-01-01

    Full Text Available Point mutations at codon 12 of the HRAS (v-Ha-ras Harvey rat sarcoma viral oncogene homolog oncogene are one of the best defined and widely studied molecular genetic events in transitional cell carcinoma (TCC of the urinary bladder. The aim of this study was to use the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP analysis of paraffin-embedded tissue-derived DNA to determine the frequency of the HRAS oncogene G ->T codon 12 mutation in TCC patients being treated at the University Urology Clinic in Skopje, Republic of Macedonia. DNA isolated from paraffin-embedded tissue (PET surgically removed TCC specimens of 62 (81.58% out of 76 patients were successfully amplified, the remaining 14 (18.42% showing compromised DNA integrity. The codon 12 mutation of the HRAS oncogene was found in 24 (38.71% out of 62 successfully tested TCC urinary bladder samples. No significant relationship between the mutation frequency and the histopathological grade of tumor differentiation was detected (chi² = 0.044; p = 0.978. The relatively high frequency of mutations found in our study was comparable with some of the previously reported data obtained by this and/or other PCR-based methods. This highly sensitive and specific PCR-RFLP analysis was demonstrated to be a suitable method for the detection of mutations at codon 12 of the HRAS oncogene in PET samples of urinary bladder TCC.

  19. Limited Role of Murine ATM in Oncogene-Induced Senescence and p53-Dependent Tumor Suppression

    Science.gov (United States)

    Martinez-Pastor, Barbara; Ortega-Molina, Ana; Soria, Rebeca; Collado, Manuel; Fernandez-Capetillo, Oscar; Serrano, Manuel

    2009-01-01

    Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability. PMID:19421407

  20. Oncofuse: a computational framework for the prediction of the oncogenic potential of gene fusions.

    Science.gov (United States)

    Shugay, Mikhail; Ortiz de Mendíbil, Iñigo; Vizmanos, José L; Novo, Francisco J

    2013-10-15

    Gene fusions resulting from chromosomal aberrations are an important cause of cancer. The complexity of genomic changes in certain cancer types has hampered the identification of gene fusions by molecular cytogenetic methods, especially in carcinomas. This is changing with the advent of next-generation sequencing, which is detecting a substantial number of new fusion transcripts in individual cancer genomes. However, this poses the challenge of identifying those fusions with greater oncogenic potential amid a background of 'passenger' fusion sequences. In the present work, we have used some recently identified genomic hallmarks of oncogenic fusion genes to develop a pipeline for the classification of fusion sequences, namely, Oncofuse. The pipeline predicts the oncogenic potential of novel fusion genes, calculating the probability that a fusion sequence behaves as 'driver' of the oncogenic process based on features present in known oncogenic fusions. Cross-validation and extensive validation tests on independent datasets suggest a robust behavior with good precision and recall rates. We believe that Oncofuse could become a useful tool to guide experimental validation studies of novel fusion sequences found during next-generation sequencing analysis of cancer transcriptomes. Oncofuse is a naive Bayes Network Classifier trained and tested using Weka machine learning package. The pipeline is executed by running a Java/Groovy script, available for download at www.unav.es/genetica/oncofuse.html.

  1. Limited role of murine ATM in oncogene-induced senescence and p53-dependent tumor suppression.

    Directory of Open Access Journals (Sweden)

    Alejo Efeyan

    Full Text Available Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability.

  2. LEO1 is regulated by PRL-3 and mediates its oncogenic properties in acute myelogenous leukemia.

    Science.gov (United States)

    Chong, Phyllis S Y; Zhou, Jianbiao; Cheong, Lip-Lee; Liu, Shaw-Cheng; Qian, Jingru; Guo, Tiannan; Sze, Siu Kwan; Zeng, Qi; Chng, Wee Joo

    2014-06-01

    PRL-3, an oncogenic dual-specificity phosphatase, is overexpressed in 50% of acute myelogenous leukemia (AML) and associated with poor survival. We found that stable expression of PRL-3 confers cytokine independence and growth advantage of AML cells. However, how PRL-3 mediates these functions in AML is not known. To comprehensively screen for PRL3-regulated proteins in AML, we performed SILAC-based quantitative proteomics analysis and discovered 398 significantly perturbed proteins after PRL-3 overexpression. We show that Leo1, a component of RNA polymerase II-associated factor (PAF) complex, is a novel and important mediator of PRL-3 oncogenic activities in AML. We described a novel mechanism where elevated PRL-3 protein increases JMJD2C histone demethylase occupancy on Leo1 promoter, thereby reducing the H3K9me3 repressive signals and promoting Leo1 gene expression. Furthermore, PRL-3 and Leo1 levels were positively associated in AML patient samples (N=24; PPRL-3 oncogenic phenotypes in AML. Loss of Leo1 leads to destabilization of the PAF complex and downregulation of SOX2 and SOX4, potent oncogenes in myeloid transformation. In conclusion, we identify an important and novel mechanism by which PRL-3 mediates its oncogenic function in AML.

  3. Viral Oncogenes, Noncoding RNAs, and RNA Splicing in Human Tumor Viruses

    Directory of Open Access Journals (Sweden)

    Zhi-Ming Zheng

    2010-01-01

    Full Text Available Viral oncogenes are responsible for oncogenesis resulting from persistent virus infection. Although different human tumor viruses express different viral oncogenes and induce different tumors, their oncoproteins often target similar sets of cellular tumor suppressors or signal pathways to immortalize and/or transform infected cells. Expression of the viral E6 and E7 oncogenes in papillomavirus, E1A and E1B oncogenes in adenovirus, large T and small t antigen in polyomavirus, and Tax oncogene in HTLV-1 are regulated by alternative RNA splicing. However, this regulation is only partially understood. DNA tumor viruses also encode noncoding RNAs, including viral microRNAs, that disturb normal cell functions. Among the determined viral microRNA precursors, EBV encodes 25 from two major clusters (BART and BHRF1, KSHV encodes 12 from a latent region, human polyomavirus MCV produce only one microRNA from the late region antisense to early transcripts, but HPVs appears to produce no viral microRNAs.

  4. Modulating the strength and threshold of NOTCH oncogenic signals by mir-181a-1/b-1.

    Directory of Open Access Journals (Sweden)

    Rita Fragoso

    Full Text Available Oncogenes, which are essential for tumor initiation, development, and maintenance, are valuable targets for cancer therapy. However, it remains a challenge to effectively inhibit oncogene activity by targeting their downstream pathways without causing significant toxicity to normal tissues. Here we show that deletion of mir-181a-1/b-1 expression inhibits the development of Notch1 oncogene-induced T cell acute lymphoblastic leukemia (T-ALL. mir-181a-1/b-1 controls the strength and threshold of Notch activity in tumorigenesis in part by dampening multiple negative feedback regulators downstream of NOTCH and pre-T cell receptor (TCR signaling pathways. Importantly, although Notch oncogenes utilize normal thymic progenitor cell genetic programs for tumor transformation, comparative analyses of mir-181a-1/b-1 function in normal thymocyte and tumor development demonstrate that mir-181a-1/b-1 can be specifically targeted to inhibit tumor development with little toxicity to normal development. Finally, we demonstrate that mir-181a-1/b-1, but not mir-181a-2b-2 and mir-181-c/d, controls the development of normal thymic T cells and leukemia cells. Together, these results illustrate that NOTCH oncogene activity in tumor development can be selectively inhibited by targeting the molecular networks controlled by mir-181a-1/b-1.

  5. Regulation of autophagy and chloroquine sensitivity by oncogenic RAS in vitro is context-dependent.

    Science.gov (United States)

    Morgan, Michael J; Gamez, Graciela; Menke, Christina; Hernandez, Ariel; Thorburn, Jacqueline; Gidan, Freddi; Staskiewicz, Leah; Morgan, Shellie; Cummings, Christopher; Maycotte, Paola; Thorburn, Andrew

    2014-10-01

    Chloroquine (CQ) is an antimalarial drug and late-stage inhibitor of autophagy currently FDA-approved for use in the treatment of rheumatoid arthritis and other autoimmune diseases. Based primarily on its ability to inhibit autophagy, CQ and its derivative, hydroxychloroquine, are currently being investigated as primary or adjuvant therapy in multiple clinical trials for cancer treatment. Oncogenic RAS has previously been shown to regulate autophagic flux, and cancers with high incidence of RAS mutations, such as pancreatic cancer, have been described in the literature as being particularly susceptible to CQ treatment, leading to the hypothesis that oncogenic RAS makes cancer cells dependent on autophagy. This autophagy "addiction" suggests that the mutation status of RAS in tumors could identify patients who would be more likely to benefit from CQ therapy. Here we show that RAS mutation status itself is unlikely to be beneficial in such a patient selection because oncogenic RAS does not always promote autophagy addiction. Moreover, oncogenic RAS can have opposite effects on both autophagic flux and CQ sensitivity in different cells. Finally, for any given cell type, the positive or negative effect of oncogenic RAS on autophagy does not necessarily predict whether RAS will promote or inhibit CQ-mediated toxicity. Thus, although our results confirm that different tumor cell lines display marked differences in how they respond to autophagy inhibition, these differences can occur irrespective of RAS mutation status and, in different contexts, can either promote or reduce chloroquine sensitivity of tumor cells.

  6. Single nucleotide polymorphisms in microRNA binding sites of oncogenes: implications in cancer and pharmacogenomics.

    Science.gov (United States)

    Manikandan, Mayakannan; Munirajan, Arasambattu Kannan

    2014-02-01

    Cancer, a complex genetic disease involving uncontrolled cell proliferation, is caused by inactivation of tumor suppressor genes and activation of oncogenes. A vast majority of these cancer causing genes are known targets of microRNAs (miRNAs) that bind to complementary sequences in 3' untranslated regions (UTR) of messenger RNAs and repress them from translation. Single Nucleotide Polymorphisms (SNPs) occurring naturally in such miRNA binding regions can alter the miRNA:mRNA interaction and can significantly affect gene expression. We hypothesized that 3'UTR SNPs in miRNA binding sites of proto-oncogenes could abrogate their post-transcriptional regulation, resulting in overexpression of oncogenic proteins, tumor initiation, progression, and modulation of drug response in cancer patients. Therefore, we developed a systematic computational pipeline that integrates data from well-established databases, followed stringent selection criteria and identified a panel of 30 high-confidence SNPs that may impair miRNA target sites in the 3' UTR of 54 mRNA transcripts of 24 proto-oncogenes. Further, 8 SNPs amidst them had the potential to determine therapeutic outcome in cancer patients. Functional annotation suggested that altogether these SNPs occur in proto-oncogenes enriched for kinase activities. We provide detailed in silico evidence for the functional effect of these candidate SNPs in various types of cancer.

  7. Production of transgenic medaka with increased resistance to bacterial pathogens.

    Science.gov (United States)

    Sarmasik, Aliye; Warr, Gregory; Chen, Thomas T

    2002-06-01

    Cecropins, first identified in silk moth (Hyalophora cecropia), are a group of antimicrobial peptides with bactericidal activity against a broad spectrum of bacteria. In this study we investigated whether (1) this group of antimicrobial peptides could exhibit bactericidal activity toward known fish bacterial pathogens and (2) expression of cecropin transgenes in transgenic medaka (Oryzias latipas) could result in increasing resistance of the transgenic fish to infection by fish bacterial pathogens. Cecropin gene construct containing silk moth preprocecropin B, procecropin B and cecropin B, and porcine cecropin P1 driven by a cytomegalovirus (CMV) promoter were transfected into chinook salmon embryonic cells (CHSE-214) by lipofection, and the resulting permanent transformants were collected. In an "inhibition zone" assay medium isolated from each transformant exhibited strong bactericidal activity toward known fish bacterial pathogens such as Pseudomonas fluorescens, Aeromonas hydrophila, and Vibrio anguillarum. The same cecropin transgene constructs were introduced into newly fertilized medaka eggs by electroporation to produce transgenic fish. About 40% to 60% of the embryos survived from electroporation, and about 5% to 11% of the surviving fish were shown to contain cecropin transgenes by polymerase chain reaction analysis of genomic DNA samples isolated from presumptive transgenic fish. These P1 transgenic fish were used as founder stocks, and following generations of successive breeding, a total of 20 F2 families of transgenic fish were established. Expression of cecropin transgenes was detected in the F2 transgenics by reverse transcriptase polymerase chain reaction analysis. Southern blot analysis of genomic DNA isolated from different F2 fish showed that cecropin transgenes were integrated into the genomes of F2 transgenic fish. To determine whether transgenic fish carrying cecropin transgenes could exhibit resistance to infection by known fish bacterial

  8. Hepatitis C virus core protein targets 4E-BP1 expression and phosphorylation and potentiates Myc-induced liver carcinogenesis in transgenic mice.

    Science.gov (United States)

    Abdallah, Cosette; Lejamtel, Charlène; Benzoubir, Nassima; Battaglia, Serena; Sidahmed-Adrar, Nazha; Desterke, Christophe; Lemasson, Matthieu; Rosenberg, Arielle R; Samuel, Didier; Bréchot, Christian; Pflieger, Delphine; Le Naour, François; Bourgeade, Marie-Françoise

    2017-08-22

    Hepatitis C virus (HCV) is a leading cause of liver diseases including the development of hepatocellular carcinoma (HCC). Particularly, core protein has been involved in HCV-related liver pathologies. However, the impact of HCV core on signaling pathways supporting the genesis of HCC remains largely elusive. To decipher the host cell signaling pathways involved in the oncogenic potential of HCV core, a global quantitative phosphoproteomic approach was carried out. This study shed light on novel differentially phosphorylated proteins, in particular several components involved in translation. Among the eukaryotic initiation factors that govern the translational machinery, 4E-BP1 represents a master regulator of protein synthesis that is associated with the development and progression of cancers due to its ability to increase protein expression of oncogenic pathways. Enhanced levels of 4E-BP1 in non-modified and phosphorylated forms were validated in human hepatoma cells and in mouse primary hepatocytes expressing HCV core, in the livers of HCV core transgenic mice as well as in HCV-infected human primary hepatocytes. The contribution of HCV core in carcinogenesis and the status of 4E-BP1 expression and phosphorylation were studied in HCV core/Myc double transgenic mice. HCV core increased the levels of 4E-BP1 expression and phosphorylation and significantly accelerated the onset of Myc-induced tumorigenesis in these double transgenic mice. These results reveal a novel function of HCV core in liver carcinogenesis potentiation. They position 4E-BP1 as a tumor-specific target of HCV core and support the involvement of the 4E-BP1/eIF4E axis in hepatocarcinogenesis.

  9. Assessment of peanut quality and compositional characteristics among transgenic sclerotinia blight-resistant and non-transgenic susceptible cultivars.

    Science.gov (United States)

    Hu, Jiahuai; Telenko, Darcy E P; Phipps, Patrick M; Grabau, Elizabeth A

    2014-08-06

    This study presents the results of a comparison that includes an analysis of variance and a canonical discriminant analysis to determine compositional equivalence and similarity between transgenic, sclerotinia blight-resistant and non-transgenic, susceptible cultivars of peanut in 3 years of field trials. Three Virginia-type cultivars (NC 7, Wilson, and Perry) and their corresponding transgenic lines (N70, W73, and P39) with a barley oxalate oxidase gene were analyzed for differences in key mineral nutrients, fatty acid components, hay constituents, and grade characteristics. Results from both analyses demonstrated that transgenic lines were compositionally similar to their non-transgenic parent cultivar in all factors as well as market-grade characteristics and nutritional value. Transgenic lines expressing oxalate oxidase for resistance to sclerotinia blight were substantially equivalent to their non-transgenic parent cultivar in quality and compositional characteristics.

  10. Enhanced T cell lymphoma in NOD.Stat5b transgenic mice is caused by hyperactivation of Stat5b in CD8+ thymocytes.

    Directory of Open Access Journals (Sweden)

    Bo Chen

    Full Text Available Activation of signal transducers and activators of transcription (STAT proteins may be critical to their oncogenic functions as demonstrated by the development of B-cell lymphoma/leukemia in transgenic (TG mice overexpressing a constitutively activated form of Stat5b. However, low incidence of CD8(+ T cell lymphoma was observed in B6 transgenic mice overexpressing a wild-type Stat5b (B6.Stat5b(Tg despite of undetectable Stat5b phosphorylation and the rate of lymphomagenesis was markedly enhanced by immunization or the introduction of TCR transgenes [1]. Here, we report that the wild-type Stat5b transgene leads to the acceleration and high incidence (74% of CD8(+ T cell lymphoblastic lymphomas in the non-obese-diabetic (NOD background. In contrast to the B6.Stat5b(Tg mice, Stat5b in transgenic NOD (NOD.Stat5b(Tg mice is selectively and progressively phosphorylated in CD8(+ thymocytes. Stat5 phosphorylation also leads to up-regulation of many genes putatively relevant to tumorigenesis. Treatment of NOD.Stat5b(Tg mice with cancer chemopreventive agents Apigenin and Xanthohumol efficiently blocked lymphomagenesis through reduction of Stat5 phosphorylation and genes up-regulated in the NOD.Stat5b(Tg mice. These results suggest that NOD genetic background is critical to the Stat5b-mediated lymphomagenesis through regulation of Stat5 hyperactivation. NOD.Stat5b(Tg mouse is an excellent model for studying the molecular mechanisms underlying lymphomagenesis and testing novel chemoprevention strategies.

  11. Human HLA-A*02:01/CHM1+ allo-restricted T cell receptor transgenic CD8+ T cells specifically inhibit Ewing sarcoma growth in vitro and in vivo.

    Science.gov (United States)

    Blaeschke, Franziska; Thiel, Uwe; Kirschner, Andreas; Thiede, Melanie; Rubio, Rebeca Alba; Schirmer, David; Kirchner, Thomas; Richter, Günther H S; Mall, Sabine; Klar, Richard; Riddell, Stanley; Busch, Dirk H; Krackhardt, Angela; Grunewald, Thomas G P; Burdach, Stefan

    2016-07-12

    The endochondral bone protein Chondromodulin-I (CHM1) provides oncogene addiction in Ewing sarcoma (ES). We pre-clinically tested the targetability of CHM1 by TCR transgenic, allo-restricted, peptide specific T cells to treat ES. We previously generated allo-restricted wildtype CD8+ T cells directed against the ES specific antigen CHM1319 causing specific responses against ES. However, utilization of these cells in current therapy protocols is hampered due to high complexity in production, relatively low cell numbers, and rapid T cell exhaustion.In order to provide off-the-shelf products in the future, we successfully generated HLA-A*02:01-restricted T cell receptor (TCR) transgenic T cells directed against CHM1319 by retroviral transduction.After short-term expansion a 100% purified CHM1319-TCR-transgenic T cell population expressed a CD62L+/CD45RO and CD62L+/CD45RA+ phenotype. These cells displayed specific in vitro IFNg and granzyme B release in co-culture with HLA-A*02:01+ ES cell lines expressing CHM1. When co-injected with ES cells in Rag2-/-É£c-/- mice, CHM1-specific TCR-transgenic T cells significantly inhibited the formation of lung and liver metastases in contrast to control mice. Lungs and livers of representative mice displayed CD8+ T cell infiltration in the presence (control group treated with unspecific T cells) and in the absence (study group) of metastatic disease, respectively. Furthermore, mice receiving unspecific T cells showed signs of graft-versus-host-disease in contrast to all mice, receiving CHM1319-TCR-transgenic T cells.CHM1319 specific TCR-transgenic T cells were successfully generated causing anti-ES responses in vitro and in vivo. In the future, CHM1319-TCR-transgenic T cells may control minimal residual disease rendering donor lymphocyte infusions more efficacious and less toxic.

  12. Bioinformatics of non small cell lung cancer and the ras proto-oncogene

    CERN Document Server

    Kashyap, Amita; Babu M, Naresh

    2015-01-01

    Cancer is initiated by activation of oncogenes or inactivation of tumor suppressor genes. Mutations in the K-ras proto-oncogene are responsible for 10–30% of adenocarcinomas. Clinical Findings point to a wide variety of other cancers contributing to lung cancer incidence. Such a scenario makes identification of lung cancer difficult and thus identifying its mechanisms can contribute to the society. Identifying unique conserved patterns common to contributing proto-oncogenes may further be a boon to Pharmacogenomics and pharmacoinformatics. This calls for ab initio/de novo drug discovery that in turn will require a comprehensive in silico approach of Sequence, Domain, Phylogenetic and Structural analysis of the receptors, ligand screening and optimization and detailed Docking studies. This brief involves extensive role of the RAS subfamily that includes a set of proteins, which cause an over expression of cancer-causing genes like M-ras and initiate tumour formation in lungs. SNP Studies and Structure based ...

  13. Polymorphic changes of cell phenotype caused by elevated expression of an exogenous NEU proto-oncogene.

    Science.gov (United States)

    Tarakhovsky, A M; Resnikov, M; Zaichuk, T; Tugusheva, M V; Butenko, Z A; Prassolov, V S

    1990-03-01

    The NEU proto-oncogene encodes a 185,000 dalton transmembrane glycoprotein with extensive homology to epidermal growth factor receptor. In the current study the effect of exogenous NEU expression on phenotype and growth properties of cells established lines was examined. The replication defective retroviruses were used to express constitutively NEU cDNA in the Rat-1, NIH3T3 and Balb/c3T3 cells. In spite of the practically similar NEU mRNA and protein content in infected cells only in Balb/c3T3 cells, high NEU expression ultimately led to oncogenic transformation. The Rat-1 cells were practically insensitive to oncogenic action of NEU. Subpopulation divergency with respect to NEU-dependent transformation was also revealed in infected NIH3T3 cells. These results suggest the existence of unknown host-specific factor(s) determining the response of cells to NEU overexpression.

  14. Review and prospect of transgenic rice research

    Institute of Scientific and Technical Information of China (English)

    CHEN Hao; LIN YongJun; ZHANG QiFa

    2009-01-01

    Rice is one of the most important crops as the staple food for more than half of the world's population.Rice improvement has achieved remarkable success in the past half-century,with the yield doubled in most parts of the world and even tripled in certain regions,which has contributed greatly to food security globally.Rapid population growth and economic development pose a constantly increased food requirement.However,rice yield has been hovering in the past decade,which is mainly caused by the absence of novel breeding technologies,reduction of genetic diversity of rice cultivars,and serious yield loss due to increasingly severe occurrences of insects,diseases,and abiotic stresses.To address these challenges,Chinese scientists proposed a novel rice breeding goal of developing Green Super Rice to improve rice varieties and realize the sustainable development of agriculture,by focusing on the following 5 classes of traits:insect and disease resistance,drought-tolerance,nutrient-use efficiency,quality and yield potential.As a modern breeding approach,transgenic strategy will play an important role in realizing the goal of Green Super Rice.Presently,many transgenic studies of rice have been conducted,and most of target traits are consistent with the goal of Green Super Rice.In this paper,we firstly review technical advances of rice transformation,and then outline the main progress in transgenic rice research with respect to the most important traits:insect and disease-resistance,drought-tolerance,nutrient-use efficiency,quality,yield potential and herbicide-tolerance.The prospects of developing transgenic rice are also discussed.

  15. Transgenic nonhuman primates for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Chan Anthony WS

    2004-06-01

    Full Text Available Abstract Animal models that represent human diseases constitute an important tool in understanding the pathogenesis of the diseases, and in developing effective therapies. Neurodegenerative diseases are complex disorders involving neuropathologic and psychiatric alterations. Although transgenic and knock-in mouse models of Alzheimer's disease, (AD, Parkinson's disease (PD and Huntington's disease (HD have been created, limited representation in clinical aspects has been recognized and the rodent models lack true neurodegeneration. Chemical induction of HD and PD in nonhuman primates (NHP has been reported, however, the role of intrinsic genetic factors in the development of the diseases is indeterminable. Nonhuman primates closely parallel humans with regard to genetic, neuroanatomic, and cognitive/behavioral characteristics. Accordingly, the development of NHP models for neurodegenerative diseases holds greater promise for success in the discovery of diagnoses, treatments, and cures than approaches using other animal species. Therefore, a transgenic NHP carrying a mutant gene similar to that of patients will help to clarify our understanding of disease onset and progression. Additionally, monitoring disease onset and development in the transgenic NHP by high resolution brain imaging technology such as MRI, and behavioral and cognitive testing can all be carried out simultaneously in the NHP but not in other animal models. Moreover, because of the similarity in motor repertoire between NHPs and humans, it will also be possible to compare the neurologic syndrome observed in the NHP model to that in patients. Understanding the correlation between genetic defects and physiologic changes (e.g. oxidative damage will lead to a better understanding of disease progression and the development of patient treatments, medications and preventive approaches for high risk individuals. The impact of the transgenic NHP model in understanding the role which

  16. Regulation of transgene expression in genetic immunization

    Directory of Open Access Journals (Sweden)

    Harms J.S.

    1999-01-01

    Full Text Available The use of mammalian gene expression vectors has become increasingly important for genetic immunization and gene therapy as well as basic research. Essential for the success of these vectors in genetic immunization is the proper choice of a promoter linked to the antigen of interest. Many genetic immunization vectors use promoter elements from pathogenic viruses including SV40 and CMV. Lymphokines produced by the immune response to proteins expressed by these vectors could inhibit further transcription initiation by viral promoters. Our objective was to determine the effect of IFN-g on transgene expression driven by viral SV40 or CMV promoter/enhancer and the mammalian promoter/enhancer for the major histocompatibility complex class I (MHC I gene. We transfected the luciferase gene driven by these three promoters into 14 cell lines of many tissues and several species. Luciferase assays of transfected cells untreated or treated with IFN-g indicated that although the viral promoters could drive luciferase production in all cell lines tested to higher or lower levels than the MHC I promoter, treatment with IFN-g inhibited transgene expression in most of the cell lines and amplification of the MHC I promoter-driven transgene expression in all cell lines. These data indicate that the SV40 and CMV promoter/enhancers may not be a suitable choice for gene delivery especially for genetic immunization or cancer cytokine gene therapy. The MHC I promoter/enhancer, on the other hand, may be an ideal transgene promoter for applications involving the immune system.

  17. ONCOGENIC HUMAN PAPILLOMAVIRUS (HPV) INFECTIONS IN 18 TO 24 YEAR OLD FEMALE ONLINE DATERS

    Science.gov (United States)

    Barrere, Alexis; Stern, Joshua E.; Feng, Qinghua; Hughes, James P.; Winer, Rachel L.

    2015-01-01

    Background While risk factors for HPV infections in young women are well-defined, the risk associated with meeting male sex partners via the internet is unclear. Methods We analyzed cross-sectional data from 282 18-24-year old women who reported using Internet dating websites in the past year. Women were mailed vaginal self-sampling kits for PCR-based HPV genotyping (including 19 oncogenic types) and sexual behavior and health history questionnaires. Generalized linear models were used to evaluate risk factors for prevalent oncogenic HPV infections. Results 35% of women reported having met a male sex partner via the Internet in the past 6 months, and 42% reported a history of HPV vaccination. The prevalence of oncogenic HPV infection was 37%, and 9% of women tested positive for HPV-16 or HPV-18. Having met a male sex partner via the Internet in the past 6 months was not significantly associated with oncogenic HPV infection. In multivariate analyses, variables associated with an increased likelihood of oncogenic HPV infection included male partners in the past 6 months who were reported to have ≥1 concurrent partnership (adjusted prevalence ratio [aPR]=1.51,95%CI:1.11-2.06) and not always using condoms with male partners in the past 6 months (aPR=1.86,95%CI:1.05-3.30). Self-reporting a history of receiving ≥1 dose of HPV vaccine was inversely associated with testing positive for HPV-16 or HPV-18 (aPR=0.39,95%CI:0.16–0.97). Conclusions While measures of recent sexual behavior were associated with prevalent oncogenic HPV infection, male partners met online were not associated with an increased likelihood of infection in this cohort of young women. PMID:26267875

  18. A view on EGFR-targeted therapies from the oncogene-addiction perspective

    Directory of Open Access Journals (Sweden)

    Rolando ePerez

    2013-04-01

    Full Text Available Tumor cell growth and survival can often be impaired by inactivating a single oncogen – a phenomenon that has been called as 'oncogene addiction'. It is in such scenarios that molecular targeted therapies may succeed. Among known oncogenes, the epidermal growth factor receptor (EGFR has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. A critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the 'EGFR addiction' phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies.

  19. [Oncogenic human papillomaviruses in extra-genital Bowen disease revealed by in situ hybridization].

    Science.gov (United States)

    Derancourt, C; Mougin, C; Chopard Lallier, M; Coumes-Marquet, S; Drobacheff, C; Laurent, R

    2001-01-01

    The association between mucosal oncogenic human papillomaviruses (HPV) and bowenoid papulosis or genital Bowen's disease is well documented. In contrast this association with extra-genital Bowen's disease is poorly studied. The aim of this study was to detect oncogenic (16/18, 31/33/51) and non oncogenic (8/11) mucosal HPV using a in situ hybridization method in 28 skin biopsy specimens of extra-genital Bowen's disease. Twenty-eight cases of extra-genital Bowen's disease seen in the period 1990-96 in the Dermatology department were included: 19 women and 9 men (mean age: 72 years). Bowen's disease locations were: hands and feet (8 cases), limbs (11 cases), face (8 cases), trunk (1 case). Blinded histopathologic examination confirmed the diagnosis of Bowen's disease and signs of HPV infection (koilocytosis). In situ hybridization was performed using three biotinylated probes detecting HPV types 6/11, 16/18, 31/33/51. Oncogenic HPV genoma was detected in 8 skin samples (28.6 p. 100). In all these cases, 16/18 probe was positive and in two cases, both 16/18 and 31/33/51 probes were positive; 4/8 Bowen's diseases of the extremities were positive for HPV. Koilocytes were found in 6/8 of skin samples with positive HPV detection. Mucosal oncogenic HPV are detected by in situ hybridization in 28.6 p. 100 of extra-genital Bowen's disease. In situ hybridization is an easier technique than Southern-Blot hybridization which is the gold standard. Five studies reported similar results and three studies reported different results that we discuss. A precise understanding of oncogenic HPV implication in the development of extra-genital Bowen's disease could lead to the development of new therapeutic strategies (topical cidofovir or imiquimod).

  20. Characterization of TRPS1 and ERAS as oncogenes implicated in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Gonzalez, L.

    2015-07-01

    New high throughput technologies have made possible to identify putative oncogenes in breast cancer. In this project we aim to relate and characterise two novel putative oncogenes, ERAS and TRPS1, in their role in human breast cancer. TRPS1, an atypical GATA factor, modulates cell proliferation and controls cell cycle progression through repression of GATA-regulated genes, therefore acting as a tumour suppressor gene. Conversely, TRPS1 expression has been shown to be significantly elevated in luminal and in a lesser extent in basal breast cancer cells, presenting roles both as an oncogene and as a tumour suppressor gene in breast cancer development. The aim of this project is therefore to determine the characteristics of TRPS1 either as a putative novel human oncogene or as a tumour suppressor gene in breast cancer cells. To this aim, we have cloned a novel isoform of TRPS1 and introduced it into several breast cancer cell lines. Our results show that overexpression of this isoform of TRPS1 results in variations in motility in non-carcinogenic cell lines, as well as in a series of EMT-like changes such as the down-regulation of the EMT marker E-cadherin, both of which can be associated to an increase in malignancy, suggesting an oncogenic behaviour for TRPS1. Furthermore, our results suggest that constitutively active members of the RAS protein family induce the expression of TRPS1, establishing a relationship between both genes. We can conclude that the effects of TRPS1 overexpression are moderate, inducing some changes but not fully transforming the cells. Therefore we cannot confirm that TRPS1 is a putative oncogene in breast cancer. (Author)

  1. A Screen Identifies the Oncogenic Micro-RNA miR-378a-5p as a Negative Regulator of Oncogene-Induced Senescence

    DEFF Research Database (Denmark)

    Kooistra, Susanne Marije; Rudkjær, Lise Christine; Lees, Michael James;

    2014-01-01

    fibroblasts. This screen led to the identification of miR-378a-5p and in addition several other miRNAs that have previously been shown to play a role in senescence. We show that ectopic expression of miR-378a-5p reduces the expression of several senescence markers, including p16INK4A and senescence......-associated β-galactosidase. Moreover, cells with ectopic expression of miR-378a-5p retain proliferative capacity even in the presence of an activated Braf oncogene. Finally, we identified several miR-378a-5p targets in diploid fibroblasts that might explain the mechanism by which the microRNA can delay OIS. We...... speculate that miR-378a-5p might positively influence tumor formation by delaying OIS, which is consistent with a known pro-oncogenic function of this microRNA....

  2. Transgenic oil palm: production and projection.

    Science.gov (United States)

    Parveez, G K; Masri, M M; Zainal, A; Majid, N A; Yunus, A M; Fadilah, H H; Rasid, O; Cheah, S C

    2000-12-01

    Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020.

  3. Transgenic approaches to western corn rootworm control.

    Science.gov (United States)

    Narva, Kenneth E; Siegfried, Blair D; Storer, Nicholas P

    2013-01-01

    The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) is a significant corn pest throughout the United States corn belt. Rootworm larvae feed on corn roots causing yield losses and control expenditures that are estimated to exceed US$1 billion annually. Traditional management practices to control rootworms such as chemical insecticides or crop rotation have suffered reduced effectiveness due to the development of physiological and behavioral resistance. Transgenic maize expressing insecticidal proteins are very successful in protecting against rootworm damage and preserving corn yield potential. However, the high rate of grower adoption and early reliance on hybrids expressing a single mode of action and low-dose traits threatens the durability of commercialized transgenic rootworm technology for rootworm control. A summary of current transgenic approaches for rootworm control and the corresponding insect resistance management practices is included. An overview of potential new modes of action based on insecticidal proteins, and especially RNAi targeting mRNA coding for essential insect proteins is provided.

  4. Regulation of Proto-Oncogenic Dbl by Chaperone-Controlled, Ubiquitin-Mediated Degradation▿

    OpenAIRE

    Kamynina, Elena; Kauppinen, Krista; Duan, Faping; Muakkassa, Nora; Manor, Danny

    2006-01-01

    The dbl proto-oncogene product is a prototype of a growing family of guanine nucleotide exchange factors (GEFs) that stimulate the activation of small GTP-binding proteins from the Rho family. Mutations that result in the loss of proto-Dbl's amino terminus produce a variant with constitutive GEF activity and high oncogenic potential. Here, we show that proto-Dbl is a short-lived protein that is kept at low levels in cells by efficient ubiquitination and degradation. The cellular fate of proto...

  5. Oncogenic osteomalacia secondary to a hemangiopericytoma of the hip: case report

    Energy Technology Data Exchange (ETDEWEB)

    Baronofsky, S.I.; Kalbhen, C.L.; Demos, T.C.; Sizemore, G.W. [Loyola Univ. Medical Center, Dept. of Medicine, Maywood, IL (United States)

    1999-02-01

    Osteomalacia is characterized by abnormally increased unmineralized osteoid within the bone matrix. This metabolic bone disease is usually the result of decreased uptake or abnormal metabolism of vitamin D or of renal tubular phosphate loss. Dietary deficiency, malabsorption, cirrhosis, renal tubular acidosis and certain drugs can cause osteomalacia., Oncogenic osteomalacia - osteomalacia secondary to tumours - is rare, and the exact mechanisms by which neoplasms induce osteomalacia are not known. We describe a patient with chronic osteomalacia of unknown origin who was subsequently found to have oncogenic osteomalacia secondary to a hemangiopericytoma of the hip. (author)

  6. LTβR signalling preferentially accelerates oncogenic AKT-initiated liver tumours

    Science.gov (United States)

    Scarzello, Anthony J; Jiang, Qun; Back, Timothy; Dang, Hien; Hodge, Deborah; Hanson, Charlotte; Subleski, Jeffrey; Weiss, Jonathan M; Stauffer, Jimmy K; Chaisaingmongkol, Jitti; Rabibhadana, Siritida; Ruchirawat, Mathuros; Ortaldo, John; Wang, Xin Wei; Norris, Paula S; Ware, Carl F; Wiltrout, Robert H

    2016-01-01

    Objectives The relative contributions of inflammatory signalling and sequential oncogenic dysregulation driving liver cancer pathogenesis remain incompletely understood. Lymphotoxin-β receptor (LTβR) signalling is critically involved in hepatitis and liver tumorigenesis. Therefore, we explored the interdependence of inflammatory lymphotoxin signalling and specific oncogenic pathways in the progression of hepatic cancer. Design Pathologically distinct liver tumours were initiated by hydrodynamic transfection of oncogenic V-Akt Murine Thymoma Viral Oncogene Homolog 1 (AKT)/β-catenin or AKT/Notch expressing plasmids. To investigate the relationship of LTβR signalling and specific oncogenic pathways, LTβR antagonist (LTβR-Fc) or agonist (anti-LTβR) were administered post oncogene transfection. Initiated livers/tumours were investigated for changes in oncogene expression, tumour proliferation, progression, latency and pathology. Moreover, specific LTβR-mediated molecular events were investigated in human liver cancer cell lines and through transcriptional analyses of samples from patients with intrahepatic cholangiocarcinoma (ICC). Results AKT/β-catenin-transfected livers displayed increased expression of LTβ and LTβR, with antagonism of LTβR signalling reducing tumour progression and enhancing survival. Conversely, enforced LTβR-activation of AKT/β-catenin-initiated tumours induced robust increases in proliferation and progression of hepatic tumour phenotypes in an AKT-dependent manner. LTβR-activation also rapidly accelerated ICC progression initiated by AKT/Notch, but not Notch alone. Moreover, LTβR-accelerated development coincides with increases of Notch, Hes1, c-MYC, pAKT and β-catenin. We further demonstrate LTβR signalling in human liver cancer cell lines to be a regulator of Notch, pAKTser473 and β-catenin. Transcriptome analysis of samples from patients with ICC links increased LTβR network expression with poor patient survival, increased

  7. Studies of an expanded trinucleotide repeat in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, P.; Wang, S.; Merry, D. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1994-09-01

    Spinal and bulbar muscular atrophy (SBMA) is a progressive motor neuron disease caused by expansion of a trinucleotide repeat in the androgen receptor gene (AR{sup exp}). AR{sup exp} repeats expand further or contract in approximately 25% of transmissions. Analogous {open_quotes}dynamic mutations{close_quotes} have been reported in other expanded trinucleotide repeat disorders. We have been developing a mouse model of this disease using a transgenic approach. Expression of the SBMA AR was documented in transgenic mice with an inducible promoter. No phenotypic effects of transgene expression were observed. We have extended our previous results on stability of the expanded trinucleotide repeat in transgenic mice in two lines carrying AR{sup exp}. Tail DNA was amplified by PCR using primers spanning the repeat on 60 AR{sup exp} transgenic mice from four different transgenic lines. Migration of the PCR product through an acrylamide gel showed no change of the 45 CAG repeat length in any progeny. Similarly, PCR products from 23 normal repeat transgenics showed no change from the repeat length of the original construct. Unlike the disease allele in humans, the expanded repeat AR cDNA in transgenic mice showed no change in repeat length with transmission. The relative stability of CAG repeats seen in the transgenic mice may indicate either differences in the fidelity of replicative enzymes, or differences in error identification and repair between mice and humans. Integration site or structural properties of the transgene itself might also play a role.

  8. A Screen Identifies the Oncogenic Micro-RNA miR-378a-5p as a Negative Regulator of Oncogene-Induced Senescence

    DEFF Research Database (Denmark)

    Kooistra, Susanne Marije; Rudkjær, Lise Christine; Lees, Michael James

    2014-01-01

    fibroblasts. This screen led to the identification of miR-378a-5p and in addition several other miRNAs that have previously been shown to play a role in senescence. We show that ectopic expression of miR-378a-5p reduces the expression of several senescence markers, including p16INK4A and senescence......Oncogene-induced senescence (OIS) can occur in response to hyperactive oncogenic signals and is believed to be a fail-safe mechanism protecting against tumorigenesis. To identify new factors involved in OIS, we performed a screen for microRNAs that can overcome or inhibit OIS in human diploid......-associated β-galactosidase. Moreover, cells with ectopic expression of miR-378a-5p retain proliferative capacity even in the presence of an activated Braf oncogene. Finally, we identified several miR-378a-5p targets in diploid fibroblasts that might explain the mechanism by which the microRNA can delay OIS. We...

  9. Aggressive transformation of juvenile myelomonocytic leukemia associated with duplication of oncogenic KRAS due to acquired uniparental disomy.

    Science.gov (United States)

    Kato, Motohiro; Yasui, Naoko; Seki, Masafumi; Kishimoto, Hiroshi; Sato-Otsubo, Aiko; Hasegawa, Daisuke; Kiyokawa, Nobutaka; Hanada, Ryoji; Ogawa, Seishi; Manabe, Atsushi; Takita, Junko; Koh, Katsuyoshi

    2013-06-01

    A small fraction of cases of juvenile myelomonocytic leukemia (JMML) develop massive disease activation. Through genomic analysis of JMML, which developed in an individual with mosaicism for oncogenic KRAS mutation with rapid progression, we identified acquired uniparental disomy at 12p. We demonstrated that duplication of oncogenic KRAS is associated with rapid JMML progression.

  10. Deletion mutants of region E1 a of AD12 E1 plasmids: Effect on oncogenic transformation

    NARCIS (Netherlands)

    Bos, J.L.; Jochemsen, A.G.; Bernards, R.A.; Schrier, P.I.; Ormondt, H. van; Eb, A.J. van der

    1983-01-01

    Plasmids containing the El region of Ad12 DNA can transform certain rodent cells into oncogenic cells. To study the role of the Ela subregion in the process of oncogenic transformation, Ad12 region El mutants carrying deletions in the Ela region were constructed. Deletion mutants pR7 and pR8 affect

  11. Effects of c-myc oncogene modulation on differentiation of human small cell lung carcinoma cell lines

    NARCIS (Netherlands)

    Van Waardenburg, RCAM; Meijer, C; Pinto-Sietsma, SJ; De Vries, EGE; Timens, W; Mulder, NM

    1998-01-01

    Amplification and over-expression of oncogenes of the myc family are related to the prognosis of certain solid tumors such as small cell lung cancer (SCLC). For SCLC, c-myc is the oncogene most consistently found to correlate with the end stage behaviour of the tumour, in particular with survival af

  12. In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research

    Directory of Open Access Journals (Sweden)

    Shaw Peter

    2006-11-01

    Full Text Available Abstract Genetic engineering of commercially important crops has become routine in many laboratories. However, the inability to predict where a transgene will integrate and to efficiently select plants with stable levels of transgenic expression remains a limitation of this technology. Fluorescence in situ hybridization (FISH is a powerful technique that can be used to visualize transgene integration sites and provide a better understanding of transgene behavior. Studies using FISH to characterize transgene integration have focused primarily on metaphase chromosomes, because the number and position of integration sites on the chromosomes are more easily determined at this stage. However gene (and transgene expression occurs mainly during interphase. In order to accurately predict the activity of a transgene, it is critical to understand its location and dynamics in the three-dimensional interphase nucleus. We and others have developed in situ methods to visualize transgenes (including single copy genes and their transcripts during interphase from different tissues and plant species. These techniques reduce the time necessary for characterization of transgene integration by eliminating the need for time-consuming segregation analysis, and extend characterization to the interphase nucleus, thus increasing the likelihood of accurate prediction of transgene activity. Furthermore, this approach is useful for studying nuclear organization and the dynamics of genes and chromatin.

  13. Transgenes in F4 pMThGH- transgenic common carp (Cy- prinus carpio L.) are highly polymorphic

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To gain information on the integration pattern of pMThGH-tansgene, 50 transgenes were recovered from F4 generation of pMThGH transgenic common carp (Cyprinus carpio L.) and 33 recovered genes were analyzed. The restriction maps of these recovered genes were constructed by digestion with five kinds of enzymes. These transgenes can be classified into 4 types according to their restriction maps. Only one type of transgenes maintains its original molecular form, whereas the other three types are very different from the original one and vary each other on both molecular weight and restriction maps. This implies that the sequences of most transgenes have been deleted and/or rearranged during integration and inheritance. The results of PCR am-plification and Southern blot hybridization indicate that MThGH in TypeI transgene keeps intact but most of its se-quence has been deleted in other three types. All these results suggest that transgenes in F4 generation of transgenic carp are highly polymorphic. Two DNA fragments concerning integration site of transgenes were cloned from recovered transgenes, and found to be homologous to the 5′UTR of β-actin gene of common carp and mouse mRNA for receptor tyrosine kinase (RTK), respectively.

  14. Transgenic plants as vital components of integrated pest management.

    Science.gov (United States)

    Kos, Martine; van Loon, Joop J A; Dicke, Marcel; Vet, Louise E M

    2009-11-01

    Although integrated pest management (IPM) strategies have been developed worldwide, further improvement of IPM effectiveness is required. The use of transgenic technology to create insect-resistant plants can offer a solution to the limited availability of highly insect-resistant cultivars. Commercially available insect-resistant transgenic crops show clear benefits for agriculture and there are many exciting new developments such as transgenic plants that enhance biological control. Effective evaluation tools are needed to ascertain that transgenic plants do not result in undesired non-target effects. If these conditions are met, there will be ample opportunities for transgenic plants to become key components of environmentally benign and durable pest management systems. Here we discuss the potential and challenges for incorporating transgenic plants in IPM.

  15. Welfare assessment in transgenic pigs expressing green fluorescent protein (GFP)

    DEFF Research Database (Denmark)

    Huber, Reinhard C.; Remuge, Liliana; Carlisle, Ailsa

    2012-01-01

    Since large animal transgenesis has been successfully attempted for the first time about 25 years ago, the technology has been applied in various lines of transgenic pigs. Nevertheless one of the concerns with the technology—animal welfare—has not been approached through systematic assessment...... and statements regarding the welfare of transgenic pigs have been based on anecdotal observations during early stages of transgenic programs. The main aim of the present study was therefore to perform an extensive welfare assessment comparing heterozygous transgenic animals expressing GFP with wildtype animals...... months. The absence of significant differences between GFP and wildtype animals in the parameters observed suggests that the transgenic animals in question are unlikely to suffer from deleterious effects of transgene expression on their welfare and thus support existing anecdotal observations of pigs...

  16. Transgenic Expression of the Recombinant Phytase in Rice (Oryza sativa)

    Institute of Scientific and Technical Information of China (English)

    LIU Qiao-quan; LI Qian-feng; JIANG Li; ZHANG Da-jiang; WANG Hong-mei; GU Ming-hong; YAO Quan-hong

    2006-01-01

    In most of the cereal crop, phytic acid is the main storage form of phosphorus, which can decrease the bioavailability of phosphate. Transgenic expression of phytase is regarded as an efficient way to release phosphate from phytate in transgenic plants.In this study, a plant expression vector, containing the recombinant phytase gene driven by the maize ubiquitin (Ubi) promoter was constructed and introduced into an elite rice variety via Agrobacterium-mediated transformation. During the experiment, a total of 15 independent transgenic rice lines were regenerated. The results of PCR and Southern blot indicated that the target gene was integrated into the genome of transgenic rice plants. Moreover, the RT-PCR analysis of total RNAs extracted from the immature seeds of several transgenic lines showed that the recombinant phytase gene could be normally expressed. The inorganic phosphorus content, both in the mature seeds and the leaf was significantly higher in the transgenic plants than in the untransformed wild type.

  17. [Effect of transgenic plants on biodiversity of agroecosystem].

    Science.gov (United States)

    Nie, Chengrong; Wang, Jianwu; Luo, Shiming

    2003-08-01

    The effect of transgenic plants on the biodiversity of agroecosystem is an important environmental issue. There are many researches in this field at home and abroad recently. This paper reviewed the advances of the researches based on three levels of biodiversity as genetic diversity, species diversity and ecosystem diversity. They included following aspects: the effect of insect-resistant transgenic crops on target pest; the effect of herbicide-resistant transgenic crops on crops and wild weedy relatives; the effect of virus-resistant transgenic crops on virus; and the effect of transgenic crops on non-target organisms. This paper also discussed the effect of transgenic crops on soil ecosystem and crop genetic diversity. Their potential risks included uncontrolled flows of genes to wild relatives; development of herbicide, insect, and virus resistance in wild relatives; reduced crop genetic diversity; and adverse effects on organisms that were not pests, such as beneficial insects.

  18. Immunology in the clinic review series; focus on cancer: multiple roles for the immune system in oncogene addiction.

    Science.gov (United States)

    Bachireddy, P; Rakhra, K; Felsher, D W

    2012-02-01

    Despite complex genomic and epigenetic abnormalities, many cancers are irrevocably dependent on an initiating oncogenic lesion whose restoration to a normal physiological activation can elicit a dramatic and sudden reversal of their neoplastic properties. This phenomenon of the reversal of tumorigenesis has been described as oncogene addiction. Oncogene addiction had been thought to occur largely through tumour cell-autonomous mechanisms such as proliferative arrest, apoptosis, differentiation and cellular senescence. However, the immune system plays an integral role in almost every aspect of tumorigenesis, including tumour initiation, prevention and progression as well as the response to therapeutics. Here we highlight more recent evidence suggesting that oncogene addiction may be integrally dependent upon host immune-mediated mechanisms, including specific immune effectors and cytokines that regulate tumour cell senescence and tumour-associated angiogenesis. Hence, the host immune system is essential to oncogene addiction.

  19. Using {sup 18F} FDG PET/CT to Detect an occult Mesenchymal Tumor Causing Oncogenic Osteomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyo Jung; Choi, Yun Jung; Kim, Hyun Jeong; Jeong, Yong Hyu; Cho, Arthur; Lee, Jae Hoon; Yun, Mijin; Lee, Jong Doo; Kang, Won Jun [Yonsei Univ. College of Medicine, Seoul (Korea, Republic of)

    2011-09-15

    Oncogenic osteomalacia is a rare paraneoplastic syndrome characterized by renal phosphate excretion, hypophosphatemia, and osteomalacia. This syndrome is often caused by tumors of mesenchymal origin. Patients with oncogenic osteomalacia have abnormal bone mineralization, resulting in a high frequency of fractures. Tumor resection is the treatment of choice, as it will often correct the metabolic imbalance. Although oncogenic osteomalacia is a potentially curable disease, diagnosis is difficult and often delayed because of the small size and sporadic location of the tumor. Bone scintigraphy and radiography best characterize osteoma lacia; magnetic resonance imaging findings are nonspecific. Here, we report a case of oncogenic osteomalacia secondary to a phosphaturic mesenchymal tumor that was successfully detected by {sup 18F} fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18F} FDG PET/CT). This case illustrates the advantages of {sup 18F} FDG PET/CT in detecting the occult mesenchymal tumor that causes oncogenic osteomalacia.

  20. Heritable retroviral transgenes are highly expressed in chickens.

    OpenAIRE

    Briskin, M J; Hsu, R Y; Boggs, T; Schultz, J. A.; Rishell, W; Bosselman, R A

    1991-01-01

    This report describes expression of heritable reticuloendotheliosis virus (REV) vector ME111 in 20 independent lines of transgenic chickens. The results are strikingly different from studies of Moloney virus in transgenic mice, where restricted expression of inherited proviruses has led to their use primarily as insertional mutagens rather than general agents for gene transfer. In contrast, the REV ME111 provirus is actively transcribed in a variety of tissues from transgenic chickens, is exp...

  1. Human gene control by vital oncogenes: revisiting a theoretical model and its implications for targeted cancer therapy.

    Science.gov (United States)

    Willis, Rudolph E

    2012-01-01

    An important assumption of our current understanding of the mechanisms of carcinogenesis has been the belief that clarification of the cancer process would inevitably reveal some of the crucial mechanisms of normal human gene regulation. Since the momentous work of Bishop and Varmus, both the molecular and the biochemical processes underlying the events in the development of cancer have become increasingly clear. The identification of cellular signaling pathways and the role of protein kinases in the events leading to gene activation have been critical to our understanding not only of normal cellular gene control mechanisms, but also have clarified some of the important molecular and biochemical events occurring within a cancer cell. We now know that oncogenes are dysfunctional proto-oncogenes and that dysfunctional tumor suppressor genes contribute to the cancer process. Furthermore, Weinstein and others have hypothesized the phenomenon of oncogene addiction as a distinct characteristic of the malignant cell. It can be assumed that cancer cells, indeed, become dependent on such vital oncogenes. The products of these vital oncogenes, such as c-myc, may well be the Achilles heel by which targeted molecular therapy may lead to truly personalized cancer therapy. The remaining problem is the need to introduce relevant molecular diagnostic tests such as genome microarray analysis and proteomic methods, especially protein kinase identification arrays, for each individual patient. Genome wide association studies on cancers with gene analysis of single nucleotide and other mutations in functional proto-oncogenes will, hopefully, identify dysfunctional proto-oncogenes and allow the development of more specific targeted drugs directed against the protein products of these vital oncogenes. In 1984 Willis proposed a molecular and biochemical model for eukaryotic gene regulation suggesting how proto-oncogenes might function within the normal cell. That model predicted the

  2. Oncogenic GNAQ mutations are not correlated with disease-free survival in uveal melanoma

    NARCIS (Netherlands)

    Bauer, J.; Kilic, E.; Vaarwater, J.; Bastian, B. C.; Garbe, C.; de Klein, A.

    2009-01-01

    BACKGROUND: Recently, oncogenic G protein alpha subunit q (GNAQ) mutations have been described in about 50% of uveal melanomas and in the blue nevi of the skin. METHODS: GNAQ exon 5 was amplified from 75 ciliary body and choroidal melanoma DNAs and sequenced directly. GNAQ mutation status was correl

  3. N-Linked oligosaccharide changes with oncogenic transformation require sialylation of multiantennae

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Santer, U.V.; DeSantis, R.; Hård, K.; Kuik, J.A. van; Won, B.; Glick, M.C.

    1989-01-01

    Glycopeptides derived from NIH 3T3 fibroblasts and these cells transformed by transfection with human DNA containing oncogene H-ras were analyzed by 500-MHz 1H-NMR spectroscopy and binding to immobilized lectins. The cells were metabolically labeled with D-[3H]glucosamine or L-[3H]fucose and the gly

  4. Escape from premature senescence is not sufficient for oncogenic transformation by Ras

    NARCIS (Netherlands)

    Peeper, D.S.; Dannenberg, J.-H.; Douma, S.; Riele, H. te; Bernards, R.A.

    2001-01-01

    Resistance of primary cells to transformation by oncogenic Ras has been attributed to the induction of replicative growth arrest1, 2, 3. This irreversible 'fail-safe mechanism' resembles senescence and requires induction by Ras of p19ARF and p53 (refs 3−5). Mutation of either p19ARF or p53 alleviate

  5. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression

    Science.gov (United States)

    Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E.; Lazar, Alexander J.; Davies, Michael A.; Woodman, Scott E.; Kwong, Lawrence N.

    2016-01-01

    Somatic copy number alterations (SCNAs) affecting oncogenic drivers have a firmly established role in promoting cancer. However, no agreed-upon standard exists for calling locus-specific amplifications and deletions in each patient sample. Here, we report the correlative analysis of copy number amplitude and length with gene expression across 6,109 samples from The Cancer Genome Atlas (TCGA) dataset across 16 cancer types. Using specificity, sensitivity, and precision-based scores, we assigned optimized amplitude and length cutoffs for nine recurrent SCNAs affecting known oncogenic drivers, using mRNA expression as a functional readout. These cutoffs captured the majority of SCNA-driven, highly-expression-altered samples. The majority of oncogenes required only amplitude cutoffs, as high amplitude samples were almost invariably focal; however, CDKN2A and PTEN uniquely required both amplitude and length cutoffs as primary predictors. For PTEN, these extended to downstream AKT activation. In contrast, SCNA genes located peri-telomerically or in fragile sites showed poor expression-copy number correlations. Overall, our analyses identify optimized amplitude and length cutoffs as efficient predictors of gene expression changes for specific oncogenic SCNAs, yet warn against one-size-fits-all interpretations across all loci. Our results have implications for cancer data analyses and the clinic, where copy number and mutation data are increasingly used to personalize cancer therapy.

  6. Clinical relevance of the K-ras oncogene in colorectal cancer: Experience in a Mexican population

    Directory of Open Access Journals (Sweden)

    F. Cabrera-Mendoza

    2014-07-01

    Conclusions: No relation was found between the K-ras oncogene mutation and reduced survival, in contrast to what has been established in the international medical literature. Further studies that include both a larger number of patients and those receiving monoclonal treatment, need to be conducted. There were only 5 patients in the present study that received cetuximab, resulting in a misleading analysis.

  7. Oncogenic events associated with endometrial and ovarian cancers are rare in endometriosis

    DEFF Research Database (Denmark)

    Vestergaard, Anna Lindeløv; Thorup, Katrine; Knudsen, Ulla Breth

    2011-01-01

    using methylation-specific melting curve analysis (MS-MCA), and 9 genes (BRAF, HRAS, NRAS, CTNNB1, CDK4, FGFR3, PIK3CA, TP53 and PTEN) were analyzed for mutations using denaturing gradient gel electrophoresis (DGGE) and direct sequencing. An oncogenic mutation in KRAS (c. 34G>T; p.G12C) was detected...

  8. Oncogenic human papillomaviruses activate the tumor-associated lens epithelial-derived growth factor (LEDGF gene.

    Directory of Open Access Journals (Sweden)

    Jenny Leitz

    2014-03-01

    Full Text Available The expression of the human papillomavirus (HPV E6/E7 oncogenes is crucial for HPV-induced malignant cell transformation. The identification of cellular targets attacked by the HPV oncogenes is critical for our understanding of the molecular mechanisms of HPV-associated carcinogenesis and may open novel therapeutic opportunities. Here, we identify the Lens Epithelial-Derived Growth Factor (LEDGF gene as a novel cellular target gene for the HPV oncogenes. Elevated LEDGF expression has been recently linked to human carcinogenesis and can protect tumor cells towards different forms of cellular stress. We show that intracellular LEDGF mRNA and protein levels in HPV-positive cancer cells are critically dependent on the maintenance of viral oncogene expression. Ectopic E6/E7 expression stimulates LEDGF transcription in primary keratinocytes, at least in part via activation of the LEDGF promoter. Repression of endogenous LEDGF expression by RNA interference results in an increased sensitivity of HPV-positive cancer cells towards genotoxic agents. Immunohistochemical analyses of cervical tissue specimens reveal a highly significant increase of LEDGF protein levels in HPV-positive lesions compared to histologically normal cervical epithelium. Taken together, these results indicate that the E6/E7-dependent maintenance of intracellular LEDGF expression is critical for protecting HPV-positive cancer cells against various forms of cellular stress, including DNA damage. This could support tumor cell survival and contribute to the therapeutic resistance of cervical cancers towards genotoxic treatment strategies in the clinic.

  9. Assessment of human papillomavirus E6/E7 oncogene expression as cervical disease biomarker

    National Research Council Canada - National Science Library

    Fontecha, Nerea; Basaras, Miren; Hernáez, Silvia; Andía, Daniel; Cisterna, Ramón

    2016-01-01

    .... After RNA extraction, E6/E7 oncogene mRNA detection was performed by NucliSens[R] EasyQ[R] HPV v1 Test (bioM#241;rieux). The results of the present study showed that E6/E7 mRNA positivity rate...

  10. Oncogenic Human Papillomaviruses Activate the Tumor-Associated Lens Epithelial-Derived Growth Factor (LEDGF) Gene

    Science.gov (United States)

    Leitz, Jenny; Reuschenbach, Miriam; Lohrey, Claudia; Honegger, Anja; Accardi, Rosita; Tommasino, Massimo; Llano, Manuel; von Knebel Doeberitz, Magnus; Hoppe-Seyler, Karin; Hoppe-Seyler, Felix

    2014-01-01

    The expression of the human papillomavirus (HPV) E6/E7 oncogenes is crucial for HPV-induced malignant cell transformation. The identification of cellular targets attacked by the HPV oncogenes is critical for our understanding of the molecular mechanisms of HPV-associated carcinogenesis and may open novel therapeutic opportunities. Here, we identify the Lens Epithelial-Derived Growth Factor (LEDGF) gene as a novel cellular target gene for the HPV oncogenes. Elevated LEDGF expression has been recently linked to human carcinogenesis and can protect tumor cells towards different forms of cellular stress. We show that intracellular LEDGF mRNA and protein levels in HPV-positive cancer cells are critically dependent on the maintenance of viral oncogene expression. Ectopic E6/E7 expression stimulates LEDGF transcription in primary keratinocytes, at least in part via activation of the LEDGF promoter. Repression of endogenous LEDGF expression by RNA interference results in an increased sensitivity of HPV-positive cancer cells towards genotoxic agents. Immunohistochemical analyses of cervical tissue specimens reveal a highly significant increase of LEDGF protein levels in HPV-positive lesions compared to histologically normal cervical epithelium. Taken together, these results indicate that the E6/E7-dependent maintenance of intracellular LEDGF expression is critical for protecting HPV-positive cancer cells against various forms of cellular stress, including DNA damage. This could support tumor cell survival and contribute to the therapeutic resistance of cervical cancers towards genotoxic treatment strategies in the clinic. PMID:24604027

  11. Microarray-Based oncogenic pathway profiling in advanced serous papillary ovarian carcinoma

    NARCIS (Netherlands)

    X.B. Trinh; W.A.A. Tjalma (Wiebren); L. Dirix (Luc); P.B. Vermeulen; D. Peeters (Dieter); D. Bachvarov (Dimcho); M. Plante (Marie); P.M.J.J. Berns (Els); J. Helleman (Jozien); S.J. van Laere; P.A. van Dam

    2011-01-01

    textabstractIntroduction: The identification of specific targets for treatment of ovarian cancer patients remains a challenge. The objective of this study is the analysis of oncogenic pathways in ovarian cancer and their relation with clinical outcome. Methodology: A meta-analysis of 6 gene expressi

  12. Gene expression of oncogenes, antimicrobial peptides, and cytokines in the development of oral leukoplakia.

    NARCIS (Netherlands)

    Wenghoefer, M.; Pantelis, A.; Najafi, T.; Deschner, J.; Allam, J.P.; Novak, N.; Reich, R.; Martini, M.; Berge, S.J.; Fischer, H.P.; Jepsen, S.; Winter, J.

    2010-01-01

    OBJECTIVE: The aim of this study was to investigate the expression pattern of oncogenes, antimicrobial peptides, and genes involved in inflammation in leukoplakia of the oral cavity compared with healthy gingiva. STUDY DESIGN: Biopsies of healthy gingiva (n=20) and leukoplakia (n=20), were obtained

  13. K-ras oncogene mutations in sporadic colorectal cancer in The Netherlands Cohort Study

    NARCIS (Netherlands)

    Brink, M.; Goeij, A.F.P.M. de; Weijenberg, M.P.; Roemen, G.M.J.M.; Lentjes, M.H.F.M.; Pachen, M.M.M.; Smits, K.M.; Bruïne, A.P. de; Goldbohm, R.A.; Brandt, P.A. van den

    2003-01-01

    Activation of K-ras oncogene has been implicated in colorectal carcinogenesis, being mutated in 30-60% of the adenocarcinomas. In this study, 737 incident colorectal cancer (CRC) patients, originating from 120 852 men and women (55-69 years at baseline) participating in the Netherlands Cohort Study

  14. For better or for worse : the role of Pim oncogenes in tumorigenesis

    NARCIS (Netherlands)

    Nawijn, Martijn C.; Alendar, Andrej; Berns, Anton

    2011-01-01

    Pim oncogenes are overexpressed in a wide range of tumours from a haematological and epithelial origin. Pim genes encode serine/threonine kinases that have been shown to counteract the increased sensitivity to apoptosis induction that is associated with MYC-driven tumorigenesis. Recently, considerab

  15. Skin carcinomas in organ-transplant recipients : from early oncogenic events to therapy

    NARCIS (Netherlands)

    Graaf, Ymke Grete Leontien de

    2008-01-01

    Skin carcinomas develop at a high rate in organ-transplant recipients who are kept on immune suppressive drugs to prevent graft rejection. The present study dealt with a broad range of aspects of this elevated carcinoma risk, starting from the earliest oncogenic events to the ultimate therapy.

  16. Skin carcinomas in organ-transplant recipients : from early oncogenic events to therapy

    NARCIS (Netherlands)

    Graaf, Ymke Grete Leontien de

    2008-01-01

    Skin carcinomas develop at a high rate in organ-transplant recipients who are kept on immune suppressive drugs to prevent graft rejection. The present study dealt with a broad range of aspects of this elevated carcinoma risk, starting from the earliest oncogenic events to the ultimate therapy. Advan

  17. Oncogenic human papillomaviruses activate the tumor-associated lens epithelial-derived growth factor (LEDGF) gene.

    Science.gov (United States)

    Leitz, Jenny; Reuschenbach, Miriam; Lohrey, Claudia; Honegger, Anja; Accardi, Rosita; Tommasino, Massimo; Llano, Manuel; von Knebel Doeberitz, Magnus; Hoppe-Seyler, Karin; Hoppe-Seyler, Felix

    2014-03-01

    The expression of the human papillomavirus (HPV) E6/E7 oncogenes is crucial for HPV-induced malignant cell transformation. The identification of cellular targets attacked by the HPV oncogenes is critical for our understanding of the molecular mechanisms of HPV-associated carcinogenesis and may open novel therapeutic opportunities. Here, we identify the Lens Epithelial-Derived Growth Factor (LEDGF) gene as a novel cellular target gene for the HPV oncogenes. Elevated LEDGF expression has been recently linked to human carcinogenesis and can protect tumor cells towards different forms of cellular stress. We show that intracellular LEDGF mRNA and protein levels in HPV-positive cancer cells are critically dependent on the maintenance of viral oncogene expression. Ectopic E6/E7 expression stimulates LEDGF transcription in primary keratinocytes, at least in part via activation of the LEDGF promoter. Repression of endogenous LEDGF expression by RNA interference results in an increased sensitivity of HPV-positive cancer cells towards genotoxic agents. Immunohistochemical analyses of cervical tissue specimens reveal a highly significant increase of LEDGF protein levels in HPV-positive lesions compared to histologically normal cervical epithelium. Taken together, these results indicate that the E6/E7-dependent maintenance of intracellular LEDGF expression is critical for protecting HPV-positive cancer cells against various forms of cellular stress, including DNA damage. This could support tumor cell survival and contribute to the therapeutic resistance of cervical cancers towards genotoxic treatment strategies in the clinic.

  18. Gene expression of oncogenes, antimicrobial peptides, and cytokines in the development of oral leukoplakia.

    NARCIS (Netherlands)

    Wenghoefer, M.; Pantelis, A.; Najafi, T.; Deschner, J.; Allam, J.P.; Novak, N.; Reich, R.; Martini, M.; Berge, S.J.; Fischer, H.P.; Jepsen, S.; Winter, J.

    2010-01-01

    OBJECTIVE: The aim of this study was to investigate the expression pattern of oncogenes, antimicrobial peptides, and genes involved in inflammation in leukoplakia of the oral cavity compared with healthy gingiva. STUDY DESIGN: Biopsies of healthy gingiva (n=20) and leukoplakia (n=20), were obtained

  19. Correlation between oncogenic mutations and parameter sensitivity of the apoptosis pathway model.

    Directory of Open Access Journals (Sweden)

    Jia Chen

    2014-01-01

    Full Text Available One of the major breakthroughs in oncogenesis research in recent years is the discovery that, in most patients, oncogenic mutations are concentrated in a few core biological functional pathways. This discovery indicates that oncogenic mechanisms are highly related to the dynamics of biologic regulatory networks, which govern the behaviour of functional pathways. Here, we propose that oncogenic mutations found in different biological functional pathways are closely related to parameter sensitivity of the corresponding networks. To test this hypothesis, we focus on the DNA damage-induced apoptotic pathway--the most important safeguard against oncogenesis. We first built the regulatory network that governs the apoptosis pathway, and then translated the network into dynamics equations. Using sensitivity analysis of the network parameters and comparing the results with cancer gene mutation spectra, we found that parameters that significantly affect the bifurcation point correspond to high-frequency oncogenic mutations. This result shows that the position of the bifurcation point is a better measure of the functionality of a biological network than gene expression levels of certain key proteins. It further demonstrates the suitability of applying systems-level analysis to biological networks as opposed to studying genes or proteins in isolation.

  20. Complex Oncogenic Translocations with Gene Amplification are Initiated by Specific DNA Breaks in Lymphocytes

    OpenAIRE

    2009-01-01

    Chromosomal instability is a hallmark of many tumor types. Complex chromosomal rearrangements with associated gene amplification, known as complicons, characterize many hematologic and solid cancers. While chromosomal aberrations, including complicons, are useful diagnostic and prognostic cancer markers, their molecular origins are not known. Although accumulating evidence has implicated DNA double strand break repair in suppression of oncogenic genome instability, the genomic elements requir...

  1. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia

    NARCIS (Netherlands)

    Gröschel, Stefan; Sanders, Mathijs A; Hoogenboezem, Remco; de Wit, Elzo; Bouwman, Britta A M; Erpelinck, Claudia; van der Velden, Vincent H J; Havermans, Marije; Avellino, Roberto; van Lom, Kirsten; Rombouts, Elwin J; van Duin, Mark; Döhner, Konstanze; Beverloo, H Berna; Bradner, James E; Döhner, Hartmut; Löwenberg, Bob; Valk, Peter J M; Bindels, Eric M J; de Laat, Wouter; Delwel, Ruud

    2014-01-01

    Chromosomal rearrangements without gene fusions have been implicated in leukemogenesis by causing deregulation of proto-oncogenes via relocation of cryptic regulatory DNA elements. AML with inv(3)/t(3;3) is associated with aberrant expression of the stem-cell regulator EVI1. Applying functional geno

  2. Role of STAT3 in in vitro transformation triggered by TRK oncogenes.

    Directory of Open Access Journals (Sweden)

    Claudia Miranda

    Full Text Available TRK oncoproteins are chimeric versions of the NTRK1/NGF receptor and display constitutive tyrosine kinase activity leading to transformation of NIH3T3 cells and neuronal differentiation of PC12 cells. Signal Transducer and Activator of Transcription (STAT 3 is activated in response to cytokines and growth factors and it has been recently identified as a novel signal transducer for TrkA, mediating the functions of NGF in nervous system. In this paper we have investigated STAT3 involvement in signalling induced by TRK oncogenes. We showed that TRK oncogenes trigger STAT3 phosphorylation both on Y705 and S727 residues and STAT3 transcriptional activity. MAPK pathway was involved in the induction of STAT3 phosphorylation. Interestingly, we have shown reduced STAT3 protein level in NIH3T3 transformed foci expressing TRK oncogenes. Overall, we have unveiled a dual role for STAT3 in TRK oncogenes-induced NIH3T3 transformation: i decreased STAT3 protein levels, driven by TRK oncoproteins activity, are associated to morphological transformation; ii residual STAT3 transcriptional activity is required for cell growth.

  3. The contribution of tumor and host tissue factor expression to oncogene-driven gliomagenesis.

    Science.gov (United States)

    Magnus, Nathalie; Meehan, Brian; Garnier, Delphine; Hashemi, Maryam; Montermini, Laura; Lee, Tae Hoon; Milsom, Chloe; Pawlinski, Rafal; Ohlfest, John; Anderson, Mark; Mackman, Nigel; Rak, Janusz

    2014-11-14

    Glioblastoma multiforme (GBM) is an aggressive form of glial brain tumors, associated with angiogenesis, thrombosis, and upregulation of tissue factor (TF), the key cellular trigger of coagulation and signaling. Since TF is upregulated by oncogenic mutations occurring in different subsets of human brain tumors we investigated whether TF contributes to tumourigenesis driven by oncogenic activation of EGFR (EGFRvIII) and RAS pathways in the brain. Here we show that TF expression correlates with poor prognosis in glioma, but not in GBM. In situ, the TF protein expression is heterogeneously expressed in adult and pediatric gliomas. GBM cells harboring EGFRvIII (U373vIII) grow aggressively as xenografts in SCID mice and their progression is delayed by administration of monoclonal antibodies blocking coagulant (CNTO 859) and signaling (10H10) effects of TF in vivo. Mice in which TF gene is disrupted in the neuroectodermal lineage exhibit delayed progression of spontaneous brain tumors driven by oncogenic N-ras and SV40 large T antigen (SV40LT) expressed under the control of sleeping beauty transposase. Reduced host TF levels in low-TF/SCID hypomorphic mice mitigated growth of glioma subcutaneously but not in the brain. Thus, we suggest that tumor-associated TF may serve as therapeutic target in the context of oncogene-driven disease progression in a subset of glioma.

  4. Netrin-1 exerts oncogenic activities through enhancing Yes-associated protein stability.

    Science.gov (United States)

    Qi, Qi; Li, Dean Y; Luo, Hongbo R; Guan, Kun-Liang; Ye, Keqiang

    2015-06-09

    Yes-associated protein (YAP), a transcription coactivator, is the major downstream effector of the Hippo pathway, which plays a critical role in organ size control and cancer development. However, how YAP is regulated by extracellular stimuli in tumorigenesis remains incompletely understood. Netrin-1, a laminin-related secreted protein, displays proto-oncogenic activity in cancers. Nonetheless, the downstream signaling mediating its oncogenic effects is not well defined. Here we show that netrin-1 via its transmembrane receptors, deleted in colorectal cancer and uncoordinated-5 homolog, up-regulates YAP expression, escalating YAP levels in the nucleus and promoting cancer cell proliferation and migration. Inactivating netrin-1, deleted in colorectal cancer, or uncoordinated-5 homolog B (UNC5B) decreases YAP protein levels, abrogating cancer cell progression by netrin-1, whereas knockdown of mammalian STE20-like protein kinase 1/2 (MST1/2) or large tumor suppressor kinase 1/2 (Lats1/2), two sets of upstream core kinases of the Hippo pathway, has no effect in blocking netrin-1-induced up-regulation of YAP. Netrin-1 stimulates phosphatase 1A to dephosphorylate YAP, which leads to decreased ubiquitination and degradation, enhancing YAP accumulation and signaling. Hence, our findings support that netrin-1 exerts oncogenic activity through YAP signaling, providing a mechanism coupling extracellular signals to the nuclear YAP oncogene.

  5. Src-like-adaptor protein (SLAP) differentially regulates normal and oncogenic c-Kit signaling.

    Science.gov (United States)

    Kazi, Julhash U; Agarwal, Shruti; Sun, Jianmin; Bracco, Enrico; Rönnstrand, Lars

    2014-02-01

    The Src-like-adaptor protein (SLAP) is an adaptor protein sharing considerable structural homology with Src. SLAP is expressed in a variety of cells and regulates receptor tyrosine kinase signaling by direct association. In this report, we show that SLAP associates with both wild-type and oncogenic c-Kit (c-Kit-D816V). The association involves the SLAP SH2 domain and receptor phosphotyrosine residues different from those mediating Src interaction. Association of SLAP triggers c-Kit ubiquitylation which, in turn, is followed by receptor degradation. Although SLAP depletion potentiates c-Kit downstream signaling by stabilizing the receptor, it remains non-functional in c-Kit-D816V signaling. Ligand-stimulated c-Kit or c-Kit-D816V did not alter membrane localization of SLAP. Interestingly oncogenic c-Kit-D816V, but not wild-type c-Kit, phosphorylates SLAP on residues Y120, Y258 and Y273. Physical interaction between c-Kit-D816V and SLAP is mandatory for the phosphorylation to take place. Although tyrosine-phosphorylated SLAP does not affect c-Kit-D816V signaling, mutation of these tyrosine sites to phenylalanine can restore SLAP activity. Taken together the data demonstrate that SLAP negatively regulates wild-type c-Kit signaling, but not its oncogenic counterpart, indicating a possible mechanism by which the oncogenic c-Kit bypasses the normal cellular negative feedback control.

  6. Calpain Activity Is Generally Elevated during Transformation but Has Oncogene-Specific Biological Functions

    Directory of Open Access Journals (Sweden)

    N.O. Carragher

    2004-01-01

    Full Text Available Several oncogene and tumor-suppressor gene products are known substrates for the calpain family of cysteine proteases, and calpain is required for transformation by v-src and tumor invasion. Thus, we have now addressed whether calpain is generally associated with transformation and how calpain contributes to oncogene function. Our results demonstrate that calpain activity is enhanced upon transformation induced by the v-Src, v-Jun, v-Myc, k-Ras, and v-Fos oncoproteins. Furthermore, elevated calpain activity commonly promotes focal adhesion remodelling, disruption of actin cytoskeleton, morphological transformation, and cell migration, although proteolysis of target substrates (such as focal adhesion kinase, talin, and spectrin is differently specified by individual oncoproteins. Interestingly, v-Fos differs from other common oncoproteins in not requiring calpain activity for actin/adhesion remodelling or migration of v-Fos transformed cells. However, anchorage-independent growth of all transformed cells is sensitive to calpain inhibition. In addition, elevated calpain activity contributes to oncogene-induced apoptosis associated with transformation by v-Myc. Taken together, these studies demonstrate that calpain activity is necessary for full cellular transformation induced by common oncoproteins, but has distinct roles in oncogenic events induced by individual transforming proteins. Thus, targeting calpain activity may represent a useful general strategy for interfering with activated protooncogenes in cancer cells.

  7. Analyses of domains and domain fusions in human proto-oncogenes

    Directory of Open Access Journals (Sweden)

    Wan Ping

    2009-03-01

    Full Text Available Abstract Background Understanding the constituent domains of oncogenes, their origins and their fusions may shed new light about the initiation and the development of cancers. Results We have developed a computational pipeline for identification of functional domains of human genes, prediction of the origins of these domains and their major fusion events during evolution through integration of existing and new tools of our own. An application of the pipeline to 124 well-characterized human oncogenes has led to the identification of a collection of domains and domain pairs that occur substantially more frequently in oncogenes than in human genes on average. Most of these enriched domains and domain pairs are related to tyrosine kinase activities. In addition, our analyses indicate that a substantial portion of the domain-fusion events of oncogenes took place in metazoans during evolution. Conclusion We expect that the computational pipeline for domain identification, domain origin and domain fusion prediction will prove to be useful for studying other groups of genes.

  8. Repeat-element driven activation of proto-oncogenes in human malignancies.

    Science.gov (United States)

    Lamprecht, Björn; Bonifer, Constanze; Mathas, Stephan

    2010-11-01

    Recent data demonstrated that the aberrant activity of endogenous repetitive elements of the DNA in humans can drive the expression of proto-oncogenes. This article summarizes these results and gives an outlook on the impact of these findings on the pathogenesis and therapy of human cancer.

  9. Oncogenic Splicing Factor SRSF1 Is a Critical Transcriptional Target of MYC

    Directory of Open Access Journals (Sweden)

    Shipra Das

    2012-02-01

    Full Text Available The SR protein splicing factor SRSF1 is a potent proto-oncogene that is frequently upregulated in cancer. Here, we show that SRSF1 is a direct target of the transcription factor oncoprotein MYC. These two oncogenes are significantly coexpressed in lung carcinomas, and MYC knockdown downregulates SRSF1 expression in lung-cancer cell lines. MYC directly activates transcription of SRSF1 through two noncanonical E-boxes in its promoter. The resulting increase in SRSF1 protein is sufficient to modulate alternative splicing of a subset of transcripts. In particular, MYC induction leads to SRSF1-mediated alternative splicing of the signaling kinase MKNK2 and the transcription factor TEAD1. SRSF1 knockdown reduces MYC's oncogenic activity, decreasing proliferation and anchorage-independent growth. These results suggest a mechanism for SRSF1 upregulation in tumors with elevated MYC and identify SRSF1 as a critical MYC target that contributes to its oncogenic potential by enabling MYC to regulate the expression of specific protein isoforms through alternative splicing.

  10. [Effects of transgenic crops on soil microorganisms: a review].

    Science.gov (United States)

    Zhang, Yan-Jun; Xie, Ming; Peng, De-Liang

    2013-09-01

    The worldwide cultivation of transgenic crops not only provides tremendous economic benefits, but also induces the concern about the potential risks of transgenic crops on soil ecosystem in which microorganisms are involved. The potential effects of transgenic crops on soil microorganisms include the direct effects of the transgenic proteins on non-target soil microorganisms, and the indirect effects of the unintentional changes in the chemical compositions of root exudates induced by the introduction of the exogenous transgenic proteins. Most of the studies on transgenic crops suggested that transgenic crops could affect the quantity and structure of soil microbial populations. However, the perceivable effects on the soil microorganisms are inconsistent, with some in significant and others in non-significant, or some with persistent and others with non-persistent. This paper summarized the effects of different transgenic crops on soil microorganisms, and discussed the factors affecting the assessment reliability, including the species of transgenic crops and the experimental technologies and principles. Some issues needed to be paid special attention to in the future studies were put forward.

  11. Antifungal activity of a virally encoded gene in transgenic wheat.

    Science.gov (United States)

    Clausen, M; Kräuter, R; Schachermayr, G; Potrykus, I; Sautter, C

    2000-04-01

    The cDNA encoding the antifungal protein KP4 from Ustilago maydis-infecting virus was inserted behind the ubiquitin promoter of maize and genetically transferred to wheat varieties particularly susceptible to stinking smut (Tilletia tritici) disease. The transgene was integrated and inherited over several generations. Of seven transgenic lines, three showed antifungal activity against U. maydis. The antifungal activity correlated with the presence of the KP4 transgene. KP4-transgenic, soil-grown wheat plants exhibit increased endogenous resistance against stinking smut.

  12. Generation of bovine transgenics using somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Stice Steven L

    2003-11-01

    Full Text Available Abstract The ability to produce transgenic animals through the introduction of exogenous DNA has existed for many years. However, past methods available to generate transgenic animals, such as pronuclear microinjection or the use of embryonic stem cells, have either been inefficient or not available in all animals, bovine included. More recently somatic cell nuclear transfer has provided a method to create transgenic animals that overcomes many deficiencies present in other methods. This review summarizes the benefits of using somatic cell nuclear transfer to create bovine transgenics as well as the possible opportunities this method creates for the future.

  13. Transgenic chickens as bioreactors for protein-based drugs.

    Science.gov (United States)

    Lillico, Simon G; McGrew, Michael J; Sherman, Adrian; Sang, Helen M

    2005-02-01

    The potential of using transgenic animals for the synthesis of therapeutic proteins was suggested over twenty years ago. Considerable progress has been made in developing methods for the production of transgenic animals and specifically in the expression of therapeutic proteins in the mammary glands of cows, sheep and goats. Development of transgenic hens for protein production in eggs has lagged behind these systems. The positive features associated with the use of the chicken in terms of cost, speed of development of a production flock and potentially appropriate glycosylation of target proteins have led to significant advances in transgenic chicken models in the past few years.

  14. Transgene detection by digital droplet PCR.

    Directory of Open Access Journals (Sweden)

    Dirk A Moser

    Full Text Available Somatic gene therapy is a promising tool for the treatment of severe diseases. Because of its abuse potential for performance enhancement in sports, the World Anti-Doping Agency (WADA included the term 'gene doping' in the official list of banned substances and methods in 2004. Several nested PCR or qPCR-based strategies have been proposed that aim at detecting long-term presence of transgene in blood, but these strategies are hampered by technical limitations. We developed a digital droplet PCR (ddPCR protocol for Insulin-Like Growth Factor 1 (IGF1 detection and demonstrated its applicability monitoring 6 mice injected into skeletal muscle with AAV9-IGF1 elements and 2 controls over a 33-day period. A duplex ddPCR protocol for simultaneous detection of Insulin-Like Growth Factor 1 (IGF1 and Erythropoietin (EPO transgenic elements was created. A new DNA extraction procedure with target-orientated usage of restriction enzymes including on-column DNA-digestion was established. In vivo data revealed that IGF1 transgenic elements could be reliably detected for a 33-day period in DNA extracted from whole blood. In vitro data indicated feasibility of IGF1 and EPO detection by duplex ddPCR with high reliability and sensitivity. On-column DNA-digestion allowed for significantly improved target detection in downstream PCR-based approaches. As ddPCR provides absolute quantification, it ensures excellent day-to-day reproducibility. Therefore, we expect this technique to be used in diagnosing and monitoring of viral and bacterial infection, in detecting mutated DNA sequences as well as profiling for the presence of foreign genetic material in elite athletes in the future.

  15. First molecular identification of the transgene red fluorescent protein (RFP) in transgenic ornamental zebrafish (Danio rerio) introduced in Peru

    OpenAIRE

    Carlos Scotto; Fernando Serna

    2013-01-01

    In this paper the transgenic fluorescent red, orange and pink zebra fish (Danio rerio), found in local aquariums in Peru, were identified using the PCR technique to amplify the transgene RFP sea anemone belonging to Discosoma spp. The gene expression of the red fluorescent protein (RFP) transgene was found to determine different gradients-of-bioluminescence (shades in color) in each GMO fish analyzed. We performed sequence analysis of the two variants of the RFP along with six variants of the...

  16. Oncogenic signaling by Kit tyrosine kinase occurs selectively on the Golgi apparatus in gastrointestinal stromal tumors.

    Science.gov (United States)

    Obata, Y; Horikawa, K; Takahashi, T; Akieda, Y; Tsujimoto, M; Fletcher, J A; Esumi, H; Nishida, T; Abe, R

    2017-02-13

    Gastrointestinal stromal tumors (GISTs) are caused by gain-of-function mutations in the Kit receptor tyrosine kinase. Most primary GIST patients respond to the Kit inhibitor imatinib, but this drug often becomes ineffective because of secondary mutations in the Kit kinase domain. The characteristic intracellular accumulation of imatinib-sensitive and -resistant Kit protein is well documented, but its relationship to oncogenic signaling remains unknown. Here, we show that in cancer tissue from primary GIST patients as well as in cell lines, mutant Kit accumulates on the Golgi apparatus, whereas normal Kit localizes to the plasma membrane (PM). In imatinib-resistant GIST with a secondary Kit mutation, Kit localizes predominantly on the Golgi apparatus. Both imatinib-sensitive and imatinib-resistant Kit (Kit(mut)) become fully auto-phosphorylated only on the Golgi and only if in a complex-glycosylated form. Kit(mut) accumulates on the Golgi during the early secretory pathway, but not after endocytosis. The aberrant kinase activity of Kit(mut) prevents its export from the Golgi to the PM. Furthermore, Kit(mut) on the Golgi signals and activates the phosphatidylinositol 3-kinase-Akt (PI3K-Akt) pathway, signal transducer and activator of transcription 5 (STAT5), and the Mek-Erk pathway. Blocking the biosynthetic transport of Kit(mut) to the Golgi from the endoplasmic reticulum inhibits oncogenic signaling. PM localization of Kit(mut) is not required for its signaling. Activation of Src-family tyrosine kinases on the Golgi is essential for oncogenic Kit signaling. These results suggest that the Golgi apparatus serves as a platform for oncogenic Kit signaling. Our study demonstrates that Kit(mut)'s pathogenicity is related to its mis-localization, and may offer a new strategy for treating imatinib-resistant GISTs.Oncogene advance online publication, 13 February 2017; doi:10.1038/onc.2016.519.

  17. Analysis of multiple sarcoma expression datasets: implications for classification, oncogenic pathway activation and chemotherapy resistance.

    Directory of Open Access Journals (Sweden)

    Panagiotis A Konstantinopoulos

    Full Text Available BACKGROUND: Diagnosis of soft tissue sarcomas (STS is challenging. Many remain unclassified (not-otherwise-specified, NOS or grouped in controversial categories such as malignant fibrous histiocytoma (MFH, with unclear therapeutic value. We analyzed several independent microarray datasets, to identify a predictor, use it to classify unclassifiable sarcomas, and assess oncogenic pathway activation and chemotherapy response. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed 5 independent datasets (325 tumor arrays. We developed and validated a predictor, which was used to reclassify MFH and NOS sarcomas. The molecular "match" between MFH and their predicted subtypes was assessed using genome-wide hierarchical clustering and Subclass-Mapping. Findings were validated in 15 paraffin samples profiled on the DASL platform. Bayesian models of oncogenic pathway activation and chemotherapy response were applied to individual STS samples. A 170-gene predictor was developed and independently validated (80-85% accuracy in all datasets. Most MFH and NOS tumors were reclassified as leiomyosarcomas, liposarcomas and fibrosarcomas. "Molecular match" between MFH and their predicted STS subtypes was confirmed both within and across datasets. This classification revealed previously unrecognized tissue differentiation lines (adipocyte, fibroblastic, smooth-muscle and was reproduced in paraffin specimens. Different sarcoma subtypes demonstrated distinct oncogenic pathway activation patterns, and reclassified MFH tumors shared oncogenic pathway activation patterns with their predicted subtypes. These patterns were associated with predicted resistance to chemotherapeutic agents commonly used in sarcomas. CONCLUSIONS/SIGNIFICANCE: STS profiling can aid in diagnosis through a predictor tracking distinct tissue differentiation in unclassified tumors, and in therapeutic management via oncogenic pathway activation and chemotherapy response assessment.

  18. An Empirical Assessment of Transgene Flow from a Bt Transgenic Poplar Plantation.

    Science.gov (United States)

    Hu, Jianjun; Zhang, Jin; Chen, Xingling; Lv, Jinhui; Jia, Huixia; Zhao, Shutang; Lu, Mengzhu

    2017-01-01

    To assess the possible impact of transgenic poplar plantations on the ecosystem, we analyzed the frequency and distance of gene flow from a mature male transgenic Populus nigra plantation carrying the Bacillus thuringiensis toxin gene (Bt poplar) and the survival of Bt poplar seeds. The resultant Bt poplar seeds occurred at a frequency of ~0.15% at 0 m to ~0.02% at 500 m from the Bt poplar plantation. The germination of Bt poplar seeds diminished within three weeks in the field (germination rate from 68% to 0%) compared to 48% after three weeks of storage at 4°C. The survival rate of seedlings in the field was 0% without any treatment but increased to 1.7% under the addition of four treatments (cleaning and trimming, watering, weeding, and covering with plastic film to maintain moisture) after being seeded in the field for eight weeks. The results of this study indicate that gene flow originating from the Bt poplar plantation occurred at an extremely low level through pollen or seeds under natural conditions. This study provides first-hand field data on the extent of transgene flow in poplar plantations and offers guidance for the risk assessment of transgenic poplar plantations.

  19. Comparative Proteomics of Leaves from Phytase-Transgenic Maize and Its Non-transgenic Isogenic Variety

    Science.gov (United States)

    Tan, Yanhua; Yi, Xiaoping; Wang, Limin; Peng, Cunzhi; Sun, Yong; Wang, Dan; Zhang, Jiaming; Guo, Anping; Wang, Xuchu

    2016-01-01

    To investigate unintended effects in genetically modified crops (GMCs), a comparative proteomic analysis between the leaves of the phytase-transgenic maize and the non-transgenic plants was performed using two-dimensional gel electrophoresis and mass spectrometry. A total of 57 differentially expressed proteins (DEPs) were successfully identified, which represents 44 unique proteins. Functional classification of the identified proteins showed that these DEPs were predominantly involved in carbohydrate transport and metabolism category, followed by post-translational modification. KEGG pathway analysis revealed that most of the DEPs participated in carbon fixation in photosynthesis. Among them, 15 proteins were found to show protein-protein interactions with each other, and these proteins were mainly participated in glycolysis and carbon fixation. Comparison of the changes in the protein and tanscript levels of the identified proteins showed that most proteins had a similar pattern of changes between proteins and transcripts. Our results suggested that although some significant differences were observed, the proteomic patterns were not substantially different between the leaves of the phytase-transgenic maize and the non-transgenic isogenic type. Moreover, none of the DEPs was identified as a new toxic protein or an allergenic protein. The differences between the leaf proteome might be attributed to both genetic modification and hybrid influence. PMID:27582747

  20. Comparative Proteomics of Leaves from Phytase-transgenic Maize and the Non-transgenic Isogenic Variety

    Directory of Open Access Journals (Sweden)

    Yanhua Tan

    2016-08-01

    Full Text Available To investigate unintended effects in genetically modified crops (GMCs, a comparative proteomics analysis between the leaves of the phytase-transgenic maize and those of non-transgenic plants was performed by using two-dimensional gel electrophoresis and mass spectrometry. A total of 57 differentially expressed protein spots (DEPs were successfully identified, which represented 44 unique proteins. Functional classification of the identified unique proteins showed that these proteins were predominantly involved in carbohydrate transport and metabolism, followed by post-translational modification. KEGG pathway analysis revealed that most of the DEPs participated in carbon fixation in photosynthesis. Comparison of the changes in the protein and gene transcript levels of the identified unique proteins showed that most proteins had a similar pattern of changes between proteins and transcripts. Our results suggested that although some significant differences were observed, the proteomic patterns were not substantially altered between the leaves of phytase-transgenic maize and its non-transgenic isogenic type. Moreover, none of the DEPs was identified as a new toxic protein or an allergenic protein. The differences of proteome between the two kinds of maize leaves might be attributed to both genetic modification and hybrid influence.

  1. A transgenic tri-modality reporter mouse.

    Directory of Open Access Journals (Sweden)

    Xinrui Yan

    Full Text Available Transgenic mouse with a stably integrated reporter gene(s can be a valuable resource for obtaining uniformly labeled stem cells, tissues, and organs for various applications. We have generated a transgenic mouse model that ubiquitously expresses a tri-fusion reporter gene (fluc2-tdTomato-ttk driven by a constitutive chicken β-actin promoter. This "Tri-Modality Reporter Mouse" system allows one to isolate most cells from this donor mouse and image them for bioluminescent (fluc2, fluorescent (tdTomato, and positron emission tomography (PET (ttk modalities. Transgenic colonies with different levels of tri-fusion reporter gene expression showed a linear correlation between all three-reporter proteins (R(2=0.89 for TdTomato vs Fluc, R(2=0.94 for Fluc vs TTK, R(2=0.89 for TdTomato vs TTK in vitro from tissue lysates and in vivo by optical and PET imaging. Mesenchymal stem cells (MSCs isolated from this transgenics showed high level of reporter gene expression, which linearly correlated with the cell numbers (R(2=0.99 for bioluminescence imaging (BLI. Both BLI (R(2=0.93 and micro-PET (R(2=0.94 imaging of the subcutaneous implants of Tri-Modality Reporter Mouse derived MSCs in nude mice showed linear correlation with the cell numbers and across different imaging modalities (R(2=0.97. Serial imaging of MSCs transplanted to mice with acute myocardial infarction (MI by intramyocardial injection exhibited significantly higher signals in MI heart at days 2, 3, 4, and 7 (p<0.01. MSCs transplanted to the ischemic hindlimb of nude mice showed significantly higher BLI and PET signals in the first 2 weeks that dropped by 4(th week due to poor cell survival. However, laser Doppler perfusion imaging revealed that blood circulation in the ischemic limb was significantly improved in the MSCs transplantation group compared with the control group. In summary, this mouse can be used as a source of donor cells and organs in various research areas such as stem cell

  2. Mosquito transgenic technologies to reduce Plasmodium transmission.

    Science.gov (United States)

    Fuchs, Silke; Nolan, Tony; Crisanti, Andrea

    2013-01-01

    The ability to introduce genetic constructs of choice into the genome of Anopheles mosquitoes provides a valuable tool to study the molecular interactions between the Plasmodium parasite and its insect host. In the long term, this technology could potentially offer new ways to control vector-borne diseases through the suppression of target mosquito populations or through the introgression of traits that preclude pathogen transmission. Here, we describe in detail protocols for the generation of transgenic Anopheles gambiae mosquitoes based on germ-line transformation using either modified transposable elements or the site-specific PhiC31 recombinase.

  3. A Transgenic Tri-Modality Reporter Mouse

    Science.gov (United States)

    Yan, Xinrui; Ray, Pritha; Paulmurugan, Ramasamy; Tong, Ricky; Gong, Yongquan; Sathirachinda, Ataya; Wu, Joseph C.; Gambhir, Sanjiv S.

    2013-01-01

    Transgenic mouse with a stably integrated reporter gene(s) can be a valuable resource for obtaining uniformly labeled stem cells, tissues, and organs for various applications. We have generated a transgenic mouse model that ubiquitously expresses a tri-fusion reporter gene (fluc2-tdTomato-ttk) driven by a constitutive chicken β-actin promoter. This “Tri-Modality Reporter Mouse” system allows one to isolate most cells from this donor mouse and image them for bioluminescent (fluc2), fluorescent (tdTomato), and positron emission tomography (PET) (ttk) modalities. Transgenic colonies with different levels of tri-fusion reporter gene expression showed a linear correlation between all three-reporter proteins (R2=0.89 for TdTomato vs Fluc, R2=0.94 for Fluc vs TTK, R2=0.89 for TdTomato vs TTK) in vitro from tissue lysates and in vivo by optical and PET imaging. Mesenchymal stem cells (MSCs) isolated from this transgenics showed high level of reporter gene expression, which linearly correlated with the cell numbers (R2=0.99 for bioluminescence imaging (BLI)). Both BLI (R2=0.93) and micro-PET (R2=0.94) imaging of the subcutaneous implants of Tri-Modality Reporter Mouse derived MSCs in nude mice showed linear correlation with the cell numbers and across different imaging modalities (R2=0.97). Serial imaging of MSCs transplanted to mice with acute myocardial infarction (MI) by intramyocardial injection exhibited significantly higher signals in MI heart at days 2, 3, 4, and 7 (p<0.01). MSCs transplanted to the ischemic hindlimb of nude mice showed significantly higher BLI and PET signals in the first 2 weeks that dropped by 4th week due to poor cell survival. However, laser Doppler perfusion imaging revealed that blood circulation in the ischemic limb was significantly improved in the MSCs transplantation group compared with the control group. In summary, this mouse can be used as a source of donor cells and organs in various research areas such as stem cell research

  4. Position-independent expression of transgenes in zebrafish.

    Science.gov (United States)

    Caldovic, L; Agalliu, D; Hackett, P B

    1999-10-01

    The variability in expression patterns of transgenes, caused by the influence of neighboring chromatin, is called 'position effect'. Border elements are DNA sequences, which have the ability to alleviate position effects. The abilities of two types of border elements, scs/scs' from the D. melanogaster 87A7 heat shock locus and the A-element from the chicken lysozyme gene, to protect transgenes from position effects were quantified in developing zebrafish embryos. The transgenic construct used was FV3CAT, which consists of the carp beta-actin transcriptional regulatory region, the chloramphenicol acetyltransferase (CAT) gene and the 3'-untranslated region from the Chinook salmon growth hormone gene. FV3CAT constructs flanked by either scs/scs'-elements or A-elements were introduced into zebrafish chromosomes and the spatial and temporal expression patterns of the transgenes were quantified in multiple generations of transgenic zebrafish. Levels of transgene expression were uniform in the pre-differentiated and fully differentiated populations of cells present during embryonic development. Levels of transgene expression were proportional to the numbers of integrated transgenes. Expression of transgenes per cell varied less than two-fold in different transgenic lines. Both types of border elements were able to prevent the influences of neighboring chromatin on transgene expression through three generations of fish. The results are consistent with the ability of border elements to function with equal efficiencies in the many cell types found in vertebrates. Thus, inclusion of border elements in genetic constructs can provide reliable and reproducible levels of gene expression in multiple lines of fish.

  5. Adventitious presence of transgenic events in the maize supply chain in Peru: A case study

    NARCIS (Netherlands)

    Santa-Maria, M.C.; Lajo-Morgan, G.; Guardia, L.

    2014-01-01

    Cultivation and trade of transgenic or genetically modified organisms (GMO) and commodities has become widespread worldwide. In particular, production of transgenic crops has seen an accelerated growth along with a complex regulatory process. Current Peruvian legislation prohibits import of transgen

  6. Investigations into the hypothesis of transgenic cannabis.

    Science.gov (United States)

    Cascini, Fidelia

    2012-05-01

    The unusual concentration of cannabinoids recently found in marijuana samples submitted to the forensic laboratory for chemical analysis prompted an investigation into whether genetic modifications have been made to the DNA of Cannabis sativa L. to increase its potency. Traditional methods for the detection of genetically modified organisms (GMO) were used to analyze herbal cannabis preparations. Our analyses support the hypothesis that marijuana samples submitted to forensic laboratories and characterized by an abnormal level of Δ(9)-THC are the product of breeding selection rather than of transgenic modifications. Further, this research has shown a risk of false positive results associated with the poor quality of the seized samples and probably due to the contamination by other transgenic vegetable products. On the other hand, based on these data, a conclusive distinction between the hypothesis of GMO plant contamination and the other of genetic modification of cannabis cannot be made requiring further studies on comparative chemical and genetic analyses to find out an explanation for the recently detected increased potency of cannabis.

  7. [Biofuels, food security and transgenic crops].

    Science.gov (United States)

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology.

  8. Transgenic Mice for cGMP Imaging

    Science.gov (United States)

    Thunemann, Martin; Wen, Lai; Hillenbrand, Matthias; Vachaviolos, Angelos; Feil, Susanne; Ott, Thomas; Han, Xiaoxing; Fukumura, Dai; Jain, Rakesh K.; Russwurm, Michael; de Wit, Cor; Feil, Robert

    2014-01-01

    Rationale Cyclic GMP (cGMP) is an important intracellular signaling molecule in the cardiovascular system, but its spatiotemporal dynamics in vivo is largely unknown. Objective To generate and characterize transgenic mice expressing the fluorescence resonance energy transfer–based ratiometric cGMP sensor, cGMP indicator with an EC50 of 500 nmol/L (cGi500), in cardiovascular tissues. Methods and Results Mouse lines with smooth muscle–specific or ubiquitous expression of cGi500 were generated by random transgenesis using an SM22α promoter fragment or by targeted integration of a Cre recombinase–activatable expression cassette driven by the cytomegalovirus early enhancer/chicken β-actin/β-globin promoter into the Rosa26 locus, respectively. Primary smooth muscle cells isolated from aorta, bladder, and colon of cGi500 mice showed strong sensor fluorescence. Basal cGMP concentrations were 3 µmol/L could also be monitored in blood vessels of the isolated retina and in the cremaster microcirculation of anesthetized mice. Moreover, with the use of a dorsal skinfold chamber model and multiphoton fluorescence resonance energy transfer microscopy, nitric oxide–stimulated vascular cGMP signals associated with vasodilation were detected in vivo in an acutely untouched preparation. Conclusions These cGi500 transgenic mice permit the visualization of cardiovascular cGMP signals in live cells, tissues, and mice under normal and pathological conditions or during pharmacotherapy with cGMP-elevating drugs. PMID:23801067

  9. Modeling Alzheimer's disease in transgenic rats.

    Science.gov (United States)

    Do Carmo, Sonia; Cuello, A Claudio

    2013-10-25

    Alzheimer's disease (AD) is the most common form of dementia. At the diagnostic stage, the AD brain is characterized by the accumulation of extracellular amyloid plaques, intracellular neurofibrillary tangles and neuronal loss. Despite the large variety of therapeutic approaches, this condition remains incurable, since at the time of clinical diagnosis, the brain has already suffered irreversible and extensive damage. In recent years, it has become evident that AD starts decades prior to its clinical presentation. In this regard, transgenic animal models can shed much light on the mechanisms underlying this "pre-clinical" stage, enabling the identification and validation of new therapeutic targets. This paper summarizes the formidable efforts to create models mimicking the various aspects of AD pathology in the rat. Transgenic rat models offer distinctive advantages over mice. Rats are physiologically, genetically and morphologically closer to humans. More importantly, the rat has a well-characterized, rich behavioral display. Consequently, rat models of AD should allow a more sophisticated and accurate assessment of the impact of pathology and novel therapeutics on cognitive outcomes.

  10. An Interaction with Ewing's Sarcoma Breakpoint Protein EWS Defines a Specific Oncogenic Mechanism of ETS Factors Rearranged in Prostate Cancer.

    Science.gov (United States)

    Kedage, Vivekananda; Selvaraj, Nagarathinam; Nicholas, Taylor R; Budka, Justin A; Plotnik, Joshua P; Jerde, Travis J; Hollenhorst, Peter C

    2016-10-25

    More than 50% of prostate tumors have a chromosomal rearrangement resulting in aberrant expression of an oncogenic ETS family transcription factor. However, mechanisms that differentiate the function of oncogenic ETS factors expressed in prostate tumors from non-oncogenic ETS factors expressed in normal prostate are unknown. Here, we find that four oncogenic ETS (ERG, ETV1, ETV4, and ETV5), and no other ETS, interact with the Ewing's sarcoma breakpoint protein, EWS. This EWS interaction was necessary and sufficient for oncogenic ETS functions including gene activation, cell migration, clonogenic survival, and transformation. Significantly, the EWS interacting region of ERG has no homology with that of ETV1, ETV4, and ETV5. Therefore, this finding may explain how divergent ETS factors have a common oncogenic function. Strikingly, EWS is fused to various ETS factors by the chromosome translocations that cause Ewing's sarcoma. Therefore, these findings link oncogenic ETS function in both prostate cancer and Ewing's sarcoma. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. In Vivo Imaging-Based Mathematical Modeling Techniques That Enhance the Understanding of Oncogene Addiction in relation to Tumor Growth

    Directory of Open Access Journals (Sweden)

    Chinyere Nwabugwu

    2013-01-01

    Full Text Available The dependence on the overexpression of a single oncogene constitutes an exploitable weakness for molecular targeted therapy. These drugs can produce dramatic tumor regression by targeting the driving oncogene, but relapse often follows. Understanding the complex interactions of the tumor’s multifaceted response to oncogene inactivation is key to tumor regression. It has become clear that a collection of cellular responses lead to regression and that immune-mediated steps are vital to preventing relapse. Our integrative mathematical model includes a variety of cellular response mechanisms of tumors to oncogene inactivation. It allows for correct predictions of the time course of events following oncogene inactivation and their impact on tumor burden. A number of aspects of our mathematical model have proven to be necessary for recapitulating our experimental results. These include a number of heterogeneous tumor cell states since cells following different cellular programs have vastly different fates. Stochastic transitions between these states are necessary to capture the effect of escape from oncogene addiction (i.e., resistance. Finally, delay differential equations were used to accurately model the tumor growth kinetics that we have observed. We use this to model oncogene addiction in MYC-induced lymphoma, osteosarcoma, and hepatocellular carcinoma.

  12. Single-copy insertion of transgenes in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Frøkjaer-Jensen, Christian; Davis, M Wayne; Hopkins, Christopher E;

    2008-01-01

    At present, transgenes in Caenorhabditis elegans are generated by injecting DNA into the germline. The DNA assembles into a semistable extrachromosomal array composed of many copies of injected DNA. These transgenes are typically overexpressed in somatic cells and silenced in the germline. We have...

  13. Public reactions and scientific responses to transgenic crops.

    Science.gov (United States)

    Dale, P J

    1999-04-01

    There is currently intense debate in parts of Europe about the commercial production of transgenic food crops. Information from the press and lobbying groups has not encouraged an informed and balanced consideration of the issues. In marked contrast, there is widespread acceptance of transgenic food crops in North America.

  14. Development and application of transgenic technologies in cassava

    NARCIS (Netherlands)

    Taylor, N.; Chavarriaga, P.; Raemakers, C.J.J.M.; Sititunga, D.; Zhang, P.

    2004-01-01

    The capacity to integrate transgenes into the tropical root crop cassava (Manihot esculenta Crantz) is now established and being utilized to generate plants expressing traits of agronomic interest. The tissue culture and gene transfer systems currently employed to produce these transgenic cassava

  15. Principles and application of transgenic technology in marine organisms

    Science.gov (United States)

    Marine organisms into which a foreign gene or noncoding DNA fragment is artificially introduced and stably integrated in their genomes are termed transgenic marine organisms. Since the first report in 1985, a wide range of transgenic fish and marine bivalve mollusks have been produced by microinjec...

  16. Overview on the investigations of transgenic plums in Romania

    Science.gov (United States)

    Transgenic plums of Prunus domestica L. transformed with the Plum pox virus coat protein gene (PPV-CP) were the subjects of three experiments undertaken in Romania. In the first experiment, PPV-CP transgenic clones C2, C3, C4, C5, C6, PT3 and PT5 were evaluated for Sharka resistance under high natu...

  17. Overview of the investigation of transgenic plums in Romania

    Science.gov (United States)

    Transgenic plums of Prunus domestica L. transformed with the Plum pox virus coat protein gene (PPV-CP) were the subjects of three experiments undertaken in Romania. In the first experiment, PPV-CP transgenic clones C2, C3, C4, C5, C6 and PT3 were evaluated for Sharka resistance under high natural i...

  18. Production of transgenic calves by somatic cell nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    GONG Guochun; WAN Rong; HUANG Yinghua; LI Ning; DAI Yunping; FAN Baoliang; ZHU Huabing; WANG Lili; WANG Haiping; TANG Bo; LIU Ying; LI Rong

    2004-01-01

    Bovine fetal oviduct epithelial cells were transfected with constructed double marker selective vector (pCE-EGFP-IRES-Neo-dNdB) containing the enhanced green fluorescent protein (EGFP) and neomycin-resistant (Neor) genes by electroporation, and a transgenic cell line was obtained. Somatic cell nuclear transfer (SCNT) was carried out using the transgenic cells as nuclei donor. A total of 424 SCNT embryos were reconstructed and 208 (49.1%) of them developed to blastocyst stage. 17 blastocysts on D 7 after reconstruction were transferred to 17 surrogate calves, and 5 (29.4%) recipients were found to be pregnant. Three of them maintained to term and delivered three cloned calves. PCR and Southern blot analysis confirmed the integration of transgene in all of the three cloned calves. In addition, expression of EGFP was detected in biopsy isolated from the transgenic cloned calves and fibroblasts derived from the biopsy. Our results suggest that transgenic calves could be efficiently produced by SCNT using transgenic cells as nuclei donor. Furthermore, all cloned animals could be ensured to be transgenic by efficiently pre-screening transgenic cells and SCNT embryos using the constructed double marker selective vector.

  19. Apoptosis of transgenic cloned and recloned bovine blastocysts

    Institute of Scientific and Technical Information of China (English)

    Guojie Sun; Rong Li; Yunping Dai; Haiping Wang; Lili Wang; Ying Liu; Fangrong Ding; Hengxi Wei; Ning Li

    2009-01-01

    Apoptosis plays an important role in preimplantation embryonic development. Investigating mechanisms of apoptosis can provide useful information for obtaining high-quality embryos and help to improve cloning efficiency. Here, we investigated the incidence of blastomere apoptosis in transgenic blastocysts generated by somatic cell nuclear transfer (SCNT) and recloning using a terminal deoxy-nucleotidyl transferase-mediated d-UTP nick end-labeling (TUNEL) assay. Transgenic recloned embryos were the second generation SCNT embryos derived from the somatic cells of a transgenic SCNT calf. The blastocyst rate of transgenic SCNT embryos was lower than that of nontransgenic SCNT embryos. The incidence of apoptosis in transgenic SCNT embryos was higher than that of nontrans-genie SCNT embryos. The blastocyst rate and the incidence of apoptosis in transgenic recloned embryos were similar to nontransgenic SCNT embryos. The process of donor cell transfection and drug selection may decrease the developmental capacity of transgenic SCNT embryos. Serial cloning did not influence the developmental capacity of transgenic recloned embryos.

  20. Recent advances in the development of new transgenic animal technology.

    Science.gov (United States)

    Miao, Xiangyang

    2013-03-01

    Transgenic animal technology is one of the fastest growing biotechnology areas. It is used to integrate exogenous genes into the animal genome by genetic engineering technology so that these genes can be inherited and expressed by offspring. The transgenic efficiency and precise control of gene expression are the key limiting factors in the production of transgenic animals. A variety of transgenic technologies are available. Each has its own advantages and disadvantages and needs further study because of unresolved technical and safety issues. Further studies will allow transgenic technology to explore gene function, animal genetic improvement, bioreactors, animal disease models, and organ transplantation. This article reviews the recently developed animal transgenic technologies, including the germ line stem cell-mediated method to improve efficiency, gene targeting to improve accuracy, RNA interference-mediated gene silencing technology, zinc-finger nuclease gene targeting technology and induced pluripotent stem cell technology. These new transgenic techniques can provide a better platform to develop transgenic animals for breeding new animal varieties and promote the development of medical sciences, livestock production, and other fields.

  1. Expression systems and species used for transgenic animal bioreactors.

    Science.gov (United States)

    Wang, Yanli; Zhao, Sihai; Bai, Liang; Fan, Jianglin; Liu, Enqi

    2013-01-01

    Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals) and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm cocoon), the mammary glands of transgenic animals have enormous potential. Compared with other mammalian species (pig, goat, sheep, and cow) that are currently being studied as bioreactors, rabbits offer many advantages: high fertility, easy generation of transgenic founders and offspring, insensitivity to prion diseases, relatively high milk production, and no transmission of severe diseases to humans. Noticeably, for a small- or medium-sized facility, the rabbit system is ideal to produce up to 50 kg of protein per year, considering both economical and hygienic aspects; rabbits are attractive candidates for the mammary-gland-specific expression of recombinant proteins. We also reviewed recombinant proteins that have been produced by targeted expression in the mammary glands of rabbits and discussed the limitations of transgenic animal bioreactors.

  2. Biodiversity versus transgenic sugar beet : the one Euro question

    NARCIS (Netherlands)

    Demont, M.; Wesseler, J.; Tollens, E.

    2002-01-01

    The decision whether to release transgenic crops in the EU is one subject to flexibility, uncertainty and irreversibility. The case of herbicide tolerant sugar beet is analysed. Reassessed is whether the 1998 de facto moratorium of the EU on transgenic crops for sugar beet was correct from a cost-be

  3. Biodiversity versus transgenic sugar beet: the one euro question

    NARCIS (Netherlands)

    Demont, M.; Wesseler, J.H.H.; Tollens, E.

    2004-01-01

    The decision on whether to release transgenic crops in the EU is subject to irreversibility, uncertainty and flexibility. We analyse the case of herbicide-tolerant sugar beet and assess whether the EU's 1998 de facto moratorium on transgenic crops for sugar beet was correct from a cost-benefit persp

  4. Transgenic manipulation of the metabolism of polyamines in poplar cells

    Science.gov (United States)

    Pratiksha Bhatnagar; Bernadette M. Glasheen; Suneet K. Bains; Stephanie L. Long; Rakesh Minocha; Christian Walter; Subhash C. Minocha

    2001-01-01

    The metabolism of polyamines (putrescine, spermidine, and spermine) has become the target of genetic manipulation because of their significance in plant development and possibly stress tolerance. We studied the polyamine metabolism in non-transgenic (NT) and transgenic cells of poplar (Populus nigra 3 maximowiczii) expressing a...

  5. Bacterial Diversity in Rhizospheres of Nontransgenic and Transgenic Corn

    OpenAIRE

    Fang, Min; Kremer, Robert J.; Peter P. Motavalli; Davis, Georgia

    2005-01-01

    Bacterial diversity in transgenic and nontransgenic corn rhizospheres was determined. In greenhouse and field studies, metabolic profiling and molecular analysis of 16S rRNAs differentiated bacterial communities among soil textures but not between corn varieties. We conclude that bacteria in corn rhizospheres are affected more by soil texture than by cultivation of transgenic varieties.

  6. Transgenic Crops and Sustainable Agriculture in the European Context

    Science.gov (United States)

    Ponti, Luigi

    2005-01-01

    The rapid adoption of transgenic crops in the United States, Argentina, and Canada stands in strong contrast to the situation in the European Union (EU), where a de facto moratorium has been in place since 1998. This article reviews recent scientific literature relevant to the problematic introduction of transgenic crops in the EU to assess if…

  7. Bioavailability of transgenic microRNAs in genetically modified plants

    Science.gov (United States)

    Transgenic expression of small RNAs is a prevalent approach in agrobiotechnology for the global enhancement of plant foods. Meanwhile, emerging studies have, on the one hand, emphasized the potential of transgenic microRNAs (miRNAs) as novel dietary therapeutics and, on the other, suggested potentia...

  8. Clean vector technology for marker-free transgenic fruit crops

    NARCIS (Netherlands)

    Krens, F.A.; Pelgrom, K.T.B.; Schaart, J.G.; Nijs, den A.P.M.; Rouwendal, G.J.A.

    2004-01-01

    Marker-free transgenic crops confer several advantages over transgenic crops equipped with selection genes coding e.g. for antibiotic resistance. Firstly, the European Union has prepared a guidance document for risk assessment of GM-crops to be introduced in the environment (E.U. Joint Working Group

  9. Clean vector technology for marker-free transgenic fruit crops

    NARCIS (Netherlands)

    Krens, F.A.; Pelgrom, K.T.B.; Schaart, J.G.; Nijs, den A.P.M.; Rouwendal, G.J.A.

    2004-01-01

    Marker-free transgenic crops confer several advantages over transgenic crops equipped with selection genes coding e.g. for antibiotic resistance. Firstly, the European Union has prepared a guidance document for risk assessment of GM-crops to be introduced in the environment (E.U. Joint Working Group

  10. Expression Systems and Species Used for Transgenic Animal Bioreactors

    Directory of Open Access Journals (Sweden)

    Yanli Wang

    2013-01-01

    Full Text Available Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm cocoon, the mammary glands of transgenic animals have enormous potential. Compared with other mammalian species (pig, goat, sheep, and cow that are currently being studied as bioreactors, rabbits offer many advantages: high fertility, easy generation of transgenic founders and offspring, insensitivity to prion diseases, relatively high milk production, and no transmission of severe diseases to humans. Noticeably, for a small- or medium-sized facility, the rabbit system is ideal to produce up to 50 kg of protein per year, considering both economical and hygienic aspects; rabbits are attractive candidates for the mammary-gland-specific expression of recombinant proteins. We also reviewed recombinant proteins that have been produced by targeted expression in the mammary glands of rabbits and discussed the limitations of transgenic animal bioreactors.

  11. Development and application of transgenic technologies in cassava

    NARCIS (Netherlands)

    Taylor, N.; Chavarriaga, P.; Raemakers, C.J.J.M.; Sititunga, D.; Zhang, P.

    2004-01-01

    The capacity to integrate transgenes into the tropical root crop cassava (Manihot esculenta Crantz) is now established and being utilized to generate plants expressing traits of agronomic interest. The tissue culture and gene transfer systems currently employed to produce these transgenic cassava ha

  12. Oncogenic HPV among HIV infected female population in West Bengal, India

    Directory of Open Access Journals (Sweden)

    Sengupta Sharmila

    2011-03-01

    Full Text Available Abstract Background Prevalence of both cervical cancer and Human Immunodeficiency Virus (HIV infection are very high in India. Natural history of Human Papilloma Virus (HPV infection is known to be altered in HIV positive women and there is an increased possibility of persistence of HPV infections in this population. Therefore, this study was conducted to understand the epidemiology and circulating genotypes of oncogenic HPV among HIV positive and negative female population in West Bengal, India. Methods In this hospital-based cross-sectional study, 93 known HIV positive females attending a pre-ART registration clinic and 1106 HIV negative females attending a Reproductive and Child Health Care Clinic were subjected to study. Cervical cell samples collected from the study population were tested for the presence of HPV 16, 18 using specific primers. Roche PCR assay was used to detect other specific HPV genotypes in the cervical cells specimens of HIV positive cases only. Results Prevalence of HPV 16, 18 among HIV positive females (32.2%; n = 30 was higher than HIV negative females (9.1%; n = 101. About 53% (23/43 of cases with oncogenic HPV were infected with genotypes other than 16, 18 either as single/multiple infections. HPV 18 and HPV 16 were the predominant genotypes among HIV positive and HIV negative subjects respectively. Oncogenic HPV was not found to be associated with age and duration of sexual exposure. But the presence of HIV was found to a statistically significant predictor oncogenic HPV. Conclusion The currently available HPV vaccines offer protection only against HPV 16 and 18 and some cross- protection to few associated genotypes. These vaccines are therefore less likely to offer protection against cervical cancer in HIV positive women a high percentage of who were infected with non-16 and non-18 oncogenic HPV genotypes. Additionally, there is a lack of sufficient evidence of immunogenicity in HIV infected individuals. Therefore

  13. Targeting CK2-driven non-oncogene addiction in B-cell tumors.

    Science.gov (United States)

    Mandato, E; Manni, S; Zaffino, F; Semenzato, G; Piazza, F

    2016-11-24

    Genetic mutations of oncogenes often underlie deranged cell growth and altered differentiation pathways leading to malignant transformation of B-lymphocytes. However, addiction to oncogenes is not the only drive to lymphoid tumor pathogenesis. Dependence on non-oncogenes, which act by propelling basic mechanisms of cell proliferation and survival, has also been recognized in the pathobiology of lymphoid leukemias, lymphomas and multiple myeloma. Among the growing number of molecules that may uphold non-oncogene addiction, a key place is increasingly being recognized to the serine-threonine kinase CK2. This enzyme is overexpressed and overactive in B-acute lymphoblastic leukemia, multiple myeloma, chronic lymphocytic leukemia and non-Hodgkin lymphomas, such as mantle cell, follicular, Burkitt's and diffuse large B-cell lymphomas. In these tumors, CK2 may serve the activity of oncogenes, similar to BCR-ABL and c-MYC, control the activation of critical signaling cascades, such as NF-κB (nuclear factor-κB), STAT3 (signal transducer and activator of transcription 3) and PTEN/PI3K/AKT (phosphatase and tensin homolog protein/phosphoinositide 3-kinase/AKR thymoma), and sustain multiple cellular stress-elicited pathways, such as the proteotoxic stress, unfolded protein and DNA-damage responses. CK2 has also been shown to have an essential role in tuning signals derived from the stromal tumor microenvironment. Not surprisingly, targeting CK2 in lymphoid tumor cell lines or mouse xenograft models can boost the cytotoxic effects of both conventional chemotherapeutics and novel agents, similar to heat-shock protein 90, proteasome and tyrosine kinases inhibitors. In this review, we summarize the evidence indicating how CK2 embodies most of the features of a cancer growth-promoting non-oncogene, focusing on lymphoid tumors. We further discuss the preclinical data of the use of small ATP-competitive CK2 inhibitors, which hold the promise to be additional options in novel drug

  14. BCL3 exerts an oncogenic function by regulating STAT3 in human cervical cancer

    Directory of Open Access Journals (Sweden)

    Zhao H

    2016-10-01

    Full Text Available Hu Zhao,1 Wuliang Wang,1 Qinghe Zhao,1 Guiming Hu,2 Kehong Deng,1 Yuling Liu1 1Department of Gynecology and Obstetrics, 2Department of Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China Abstract: Aberrant expression of oncogenes and/or tumor suppressors play a fundamental effect on the pathogenesis and tumorigenicity of cervical cancer (CC. B-cell CLL/lymphoma 3 (BCL3 was previously found to be a putative proto-oncogene in human cancers and regulated signal transducer and activator of transcription 3 (STAT3, a critical oncogene, in CC cell line. However, its expression status, clinical significance and biological functions in CC remain largely unclear. The expressions of BCL3 and STAT3 in CC specimens were determined by immunohistochemistry. MTT, colony formation assays and flow cytometry analysis were carried out to test proliferation and cell cycle of CC cells. Here, the levels of BCL3 were overexpressed in CC compared to adjacent cervical tissues. Furthermore, high levels of BCL3 protein were confirmed by immunoblotting in CC cells as compared with normal cervical epithelial cells. The positive expression of BCL3 was correlated with adverse prognostic features and reduced survival rate. In addition, BCL3 regulated STAT3 abundance in CC cells. STAT3 was found to be upregulated and positively correlated with BCL3 expression in CC specimens. BCL3 overexpression resulted in prominent increased proliferation and cell cycle progression in Hela cells. By contrast, inhibition of BCL3 in CaSki cells remarkably suppressed proliferative ability and cell cycle progression. In vivo studies showed that knockdown of BCL3 inhibited tumor growth of CC in mice xenograft model. Notably, we confirmed that STAT3 mediated the oncogenic roles of BCL3 in CC. In conclusion, we suggest that BCL3 serves as an oncogene in CC by modulating proliferation and cell cycle progression, and its oncogenic effect is

  15. ADAM 12 protease induces adipogenesis in transgenic mice

    DEFF Research Database (Denmark)

    Kawaguchi, Nobuko; Xu, Xiufeng; Tajima, Rie

    2002-01-01

    in the perivascular space in muscle tissue of 1- to 2-week-old transgenic mice whereas mature lipid-laden adipocytes were seen at 3 to 4 weeks. Moreover, female transgenics expressing ADAM 12-S exhibited increases in body weight, total body fat mass, abdominal fat mass, and herniation, but were normoglycemic and did......-anchored protein, ADAM 12-L, and a shorter secreted form, ADAM 12-S. Here we report the occurrence of adipocytes in the skeletal muscle of transgenic mice in which overexpression of either form is driven by the muscle creatine kinase promoter. Cells expressing a marker of early adipogenesis were apparent...... not exhibit increased serum insulin, cholesterol, or triglycerides. Male transgenics were slightly overweight and also developed herniation but did not become obese. Transgenic mice expressing a truncated form of ADAM 12-S lacking the prodomain and the metalloprotease domain did not develop this adipogenic...

  16. MRI of Transgene Expression: Correlation to Therapeutic Gene Expression

    Directory of Open Access Journals (Sweden)

    Tomotsugu Ichikawa

    2002-01-01

    Full Text Available Magnetic resonance imaging (MRI can provide highresolution 3D maps of structural and functional information, yet its use of mapping in vivo gene expression has only recently been explored. A potential application for this technology is to noninvasively image transgene expression. The current study explores the latter using a nonregulatable internalizing engineered transferrin receptor (ETR whose expression can be probed for with a superparamagnetic Tf-CLIO probe. Using an HSV-based amplicon vector system for transgene delivery, we demonstrate that: 1 ETR is a sensitive MR marker gene; 2 several transgenes can be efficiently expressed from a single amplicon; 3 expression of each transgene results in functional gene product; and 4 ETR gene expression correlates with expression of therapeutic genes when the latter are contained within the same amplicon. These data, taken together, suggest that MRI of ETR expression can serve as a surrogate for measuring therapeutic transgene expression.

  17. Advancing environmental risk assessment for transgenic biofeedstock crops

    Directory of Open Access Journals (Sweden)

    Wolt Jeffrey D

    2009-11-01

    Full Text Available Abstract Transgenic modification of plants is a key enabling technology for developing sustainable biofeedstocks for biofuels production. Regulatory decisions and the wider acceptance and development of transgenic biofeedstock crops are considered from the context of science-based risk assessment. The risk assessment paradigm for transgenic biofeedstock crops is fundamentally no different from that of current generation transgenic crops, except that the focus of the assessment must consider the unique attributes of a given biofeedstock crop and its environmental release. For currently envisioned biofeedstock crops, particular emphasis in risk assessment will be given to characterization of altered metabolic profiles and their implications relative to non-target environmental effects and food safety; weediness and invasiveness when plants are modified for abiotic stress tolerance or are domesticated; and aggregate risk when plants are platforms for multi-product production. Robust risk assessments for transgenic biofeedstock crops are case-specific, initiated through problem formulation, and use tiered approaches for risk characterization.

  18. Spatial and temporal control of transgene expression in zebrafish.

    Directory of Open Access Journals (Sweden)

    Alexander A Akerberg

    Full Text Available Transgenic zebrafish research has provided valuable insights into gene functions and cell behaviors directing vertebrate development, physiology, and disease models. Most approaches use constitutive transgene expression and therefore do not provide control over the timing or levels of transgene induction. We describe an inducible gene expression system that uses new tissue-specific zebrafish transgenic lines that express the Gal4 transcription factor fused to the estrogen-binding domain of the human estrogen receptor. We show these Gal4-ERT driver lines confer rapid, tissue-specific induction of UAS-controlled transgenes following tamoxifen exposure in both embryos and adult fish. We demonstrate how this technology can be used to define developmental windows of gene function by spatiotemporal-controlled expression of constitutively active Notch1 in embryos. Given the array of existing UAS lines, the modular nature of this system will enable many previously intractable zebrafish experiments.

  19. Transgene directionally integrated into C-genome of Brassica napus

    Institute of Scientific and Technical Information of China (English)

    FANG Xiaoping; WANG Zhuan; LI Jun; LUO Lixia; HU Qiong

    2006-01-01

    Integration of a transgene into a C-genome chromosome plays an important role in reducing ecological risk of transgenic Brassica napus.To obtain C-genome transgenic B. napus, herbicide-resistant bar gene was firstly transferred into B.oleracea var. a/bog/abra mediated by Agrobacterium tumefaciens strain LBA4404. Then using the transgenic B. oleracea as paternal plants and 8 nontransgenic varieties of B. rapa as maternal plants, Cgenome transgenic B. napus with bar gene was artificially resynthesized by means of ovary culture and chromosome doubling. Among 67 lines of the resynthesized B. napus, 31 were positive, and 36 were negative according to PCR test for bar gene. At least 2 plants from each line were kept for PPT spray confirmation. The result was in consistence with the PCR test. Genomic Southern blotting of three randomly chosen lines also showed that bar gene had been integrated into the genome of resynthesized B. napus lines.

  20. Reduction of choline acetyltransferase activities in APP770 transgenic mice

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Transgenic mice overexpressing the 770-amino acid isoform of human Alzheimer amyloid precursor protein exhibit extracellular b -amyloid deposits in brain regions including cerebral cortex and hippocampus, which are severely affected in Alzheimer's disease patients. Significant reduction in choline acetyltransferase (ChAT) activities has been observed in both cortical and hippocampal brain regions in the transgenic mice at the age of 10 months compared with the age-matched non-transgenic mice, but such changes have not been observed in any brain regions of the transgenic mice under the age of 5 months. These results suggest that deposition of b -amyloid can induce changes in the brain cholinergic system of the transgenic mice.

  1. Characterization of Growth and Reproduction Performance, Transgene Integration, Expression, and Transmission Patterns in Transgenic Pigs Produced by piggyBac Transposition-Mediated Gene Transfer.

    Science.gov (United States)

    Zeng, Fang; Li, Zicong; Cai, Gengyuan; Gao, Wenchao; Jiang, Gelong; Liu, Dewu; Urschitz, Johann; Moisyadi, Stefan; Wu, Zhenfang

    2016-10-01

    Previously we successfully produced a group of EGFP-expressing founder transgenic pigs by a newly developed efficient and simple pig transgenesis method based on cytoplasmic injection of piggyBac plasmids. In this study, we investigated the growth and reproduction performance and characterized the transgene insertion, transmission, and expression patterns in transgenic pigs generated by piggyBac transposition. Results showed that transgene has no injurious effect on the growth and reproduction of transgenic pigs. Multiple copies of monogenic EGFP transgene were inserted at noncoding sequences of host genome, and passed from founder transgenic pigs to their transgenic offspring in segregation or linkage manner. The EGFP transgene was ubiquitously expressed in transgenic pigs, and its expression intensity was associated with transgene copy number but not related to its promoter DNA methylation level. To the best of our knowledge, this is first study that fully described the growth and reproduction performance, transgene insertion, expression, and transmission profiles in transgenic pigs produced by piggyBac system. It not only demonstrates that piggyBac transposition-mediated gene transfer is an effective and favorable approach for pig transgenesis, but also provides scientific information for understanding the transgene insertion, expression and transmission patterns in transgenic animals produced by piggyBac transposition.

  2. Transgenic rabbits as therapeutic protein bioreactors and human disease models.

    Science.gov (United States)

    Fan, Jianglin; Watanabe, Teruo

    2003-09-01

    Genetically modified laboratory animals provide a powerful approach for studying gene expression and regulation and allow one to directly examine structure-function and cause-and-effect relationships in pathophysiological processes. Today, transgenic mice are available as a research tool in almost every research institution. On the other hand, the development of a relatively large mammalian transgenic model, transgenic rabbits, has provided unprecedented opportunities for investigators to study the mechanisms of human diseases and has also provided an alternative way to produce therapeutic proteins to treat human diseases. Transgenic rabbits expressing human genes have been used as a model for cardiovascular disease, AIDS, and cancer research. The recombinant proteins can be produced from the milk of transgenic rabbits not only at lower cost but also on a relatively large scale. One of the most promising and attractive recombinant proteins derived from transgenic rabbit milk, human alpha-glucosidase, has been successfully used to treat the patients who are genetically deficient in this enzyme. Although the pronuclear microinjection is still the major and most popular method for the creation of transgenic rabbits, recent progress in gene targeting and animal cloning has opened new avenues that should make it possible to produce transgenic rabbits by somatic cell nuclear transfer in the future. Based on a computer-assisted search of the studies of transgenic rabbits published in the English literature here, we introduce to the reader the achievements made thus far with transgenic rabbits, with emphasis on the application of these rabbits as human disease models and live bioreactors for producing human therapeutic proteins and on the recent progress in cloned rabbits.

  3. Minute Pirate Bug (Orius Insidiosus Say) populations on transgenic and non-transgenic maize using different sampling techniques

    Science.gov (United States)

    Field experiments were conducted to evaluate the populations of minute pirate bug [Orius insidiosus (Say)] using visual, sticky cards, and destructive sampling techniques in transgenic and non-transgenic maize in three locations in Nebraska (Mead, Clay Center, and Concord), United States of America,...

  4. Composite potato plants with transgenic roots on non-transgenic shoots: a model system for studying gene silencing in roots

    DEFF Research Database (Denmark)

    Horn, Patricia; Santala, Johanna; Nielsen, Steen Lykke;

    2014-01-01

    Composite plants, with transgenic roots on a non-transgenic shoot, can be obtained by shoot explant transformation with Agrobacterium rhizogenes. The aim of this study was to generate composite potato plants (Solanum tuberosum) to be used as a model system in future studies on root...... of composite potato plants expressed significantly higher amounts of β-glucuronidase (GUS) than the roots of a GUS-transgenic potato line event. Silencing of the uidA transgene (GUS) was tested by inducing roots on the GUS-transgenic cv. Albatros event with strains of A. rhizogenes over-expressing either......-mediated silencing (co-suppression) was not functional in roots. The results suggest that composite plants offer a useful experimental system for potato research, which has gained little previous attention....

  5. Oncogenic transformation through the cell cycle and the LET dependent inverse dose rate effect

    Science.gov (United States)

    Geard, C. R.; Miller, R. C.; Brenner, D. J.; Hall, E. J.; Wachholz, B. W. (Principal Investigator)

    1994-01-01

    Synchronised populations of mouse C3H/10T-1/2 cells were obtained by a stringent mitotic dislodgment procedure. Mitotic cells rapidly attach and progress sequentially through the cell cycle. Irradiation (3 Gy of X rays) was carried out at intervals from 0 to 18 h after initiating cell cycle progression of the mitotic cells. Oncogenic transformation was enhanced 10-fold over cells irradiated soon after replating (G1 and S phases) for cells in a near 2 h period corresponding to cells in G2 phase but not in mitosis. The cell surviving fraction had a 2-1/2-fold variation with resistant peaks corresponding to the late G1 and late S phases. These findings provide experimental support for the hypothesis initiated by Rossi and Kellerer and developed by Brenner and Hall to explain the LET dependent inverse dose rate effect for oncogenic transformation.

  6. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia.

    Science.gov (United States)

    Grembecka, Jolanta; He, Shihan; Shi, Aibin; Purohit, Trupta; Muntean, Andrew G; Sorenson, Roderick J; Showalter, Hollis D; Murai, Marcelo J; Belcher, Amalia M; Hartley, Thomas; Hess, Jay L; Cierpicki, Tomasz

    2012-03-01

    Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin-MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein-mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.

  7. Plac8 Links Oncogenic Mutations to Regulation of Autophagy and Is Critical to Pancreatic Cancer Progression

    Directory of Open Access Journals (Sweden)

    Conan Kinsey

    2014-05-01

    Full Text Available Mutations in p53 and RAS potently cooperate in oncogenic transformation, and correspondingly, these genetic alterations frequently coexist in pancreatic ductal adenocarcinoma (PDA and other human cancers. Previously, we identified a set of genes synergistically activated by combined RAS and p53 mutations as frequent downstream mediators of tumorigenesis. Here, we show that the synergistically activated gene Plac8 is critical for pancreatic cancer growth. Silencing of Plac8 in cell lines suppresses tumor formation by blocking autophagy, a process essential for maintaining metabolic homeostasis in PDA, and genetic inactivation in an engineered mouse model inhibits PDA progression. We show that Plac8 is a critical regulator of the autophagic machinery, localizing to the lysosomal compartment and facilitating lysosome-autophagosome fusion. Plac8 thus provides a mechanistic link between primary oncogenic mutations and the induction of autophagy, a central mechanism of metabolic reprogramming, during PDA progression.

  8. Chemically robust fluoroalkyl phthalocyanine-oligonucleotide bioconjugates and their GRP78 oncogene photocleavage activity.

    Science.gov (United States)

    Patel, Pradeepkumar; Patel, Hemantbhai H; Borland, Emily; Gorun, Sergiu M; Sabatino, David

    2014-06-18

    The first representative of functionalized fluoroalkyl phthalocyanines, F48H7(COOH)PcZn, is reported. The complex generates (1)O2 affording long-lasting photooxidation of an external substrate without self-decomposition. The carboxylic group couples with an antisense oligonucleotide targeting GRP78 oncogenes, resulting in the F48H7PcZn-cancer targeting oligonucleotide (CTO). The bioconjugated fluorophthalocyanine effectively hybridizes complementary GRP78 DNA and mRNA sequences. Piperidine cleavage assays reveal desired photochemical oligonucleotide oxidative degradation for both F48H7PcZn-CTO:DNA and F48H7PcZn-CTO:mRNA hybrids. This new materials strategy could be extended to other functional fluorinated phthalocyanines-antisense oligonucleotide combinations for long-lasting oncogene-targeting photodynamic therapy.

  9. Repurposing a Prokaryotic Toxin-Antitoxin System for the Selective Killing of Oncogenically Stressed Human Cells.

    Science.gov (United States)

    Preston, Mark A; Pimentel, Belén; Bermejo-Rodríguez, Camino; Dionne, Isabelle; Turnbull, Alice; de la Cueva-Méndez, Guillermo

    2016-07-15

    Prokaryotes express intracellular toxins that pass unnoticed to carrying cells until coexpressed antitoxin partners are degraded in response to stress. Although not evolved to function in eukaryotes, one of these toxins, Kid, induces apoptosis in mammalian cells, an effect that is neutralized by its cognate antitoxin, Kis. Here we engineered this toxin-antitoxin pair to create a synthetic system that becomes active in human cells suffering a specific oncogenic stress. Inspired by the way Kid becomes active in bacterial cells, we produced a Kis variant that is selectively degraded in human cells expressing oncoprotein E6. The resulting toxin-antitoxin system functions autonomously in human cells, distinguishing those that suffer the oncogenic insult, which are killed by Kid, from those that do not, which remain protected by Kis. Our results provide a framework for developing personalized anticancer strategies avoiding off-target effects, a challenge that has been hardly tractable by other means thus far.

  10. MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes.

    Directory of Open Access Journals (Sweden)

    Damon Polioudakis

    Full Text Available miRNAs play a central role in numerous pathologies including multiple cancer types. miR-191 has predominantly been studied as an oncogene, but the role of miR-191 in the proliferation of primary cells is not well characterized, and the miR-191 targetome has not been experimentally profiled. Here we utilized RNA induced silencing complex immunoprecipitations as well as gene expression profiling to construct a genome wide miR-191 target profile. We show that miR-191 represses proliferation in primary human fibroblasts, identify multiple proto-oncogenes as novel miR-191 targets, including CDK9, NOTCH2, and RPS6KA3, and present evidence that miR-191 extensively mediates target expression through coding sequence (CDS pairing. Our results provide a comprehensive genome wide miR-191 target profile, and demonstrate miR-191's regulation of primary human fibroblast proliferation.

  11. RNA-DNA differences are rarer in proto-oncogenes than in tumor suppressor genes.

    Science.gov (United States)

    Gao, Feng; Lin, Yan; Zhang, Randy Ren

    2012-01-01

    It has long been assumed that DNA sequences and corresponding RNA transcripts are almost identical; a recent discovery, however, revealed widespread RNA-DNA differences (RDDs), which represent a largely unexplored aspect of human genome variation. It has been speculated that RDDs can affect disease susceptibility and manifestations; however, almost nothing is known about how RDDs are related to disease. Here, we show that RDDs are rarer in proto-oncogenes than in tumor suppressor genes; the number of RDDs in coding exons, but not in 3'UTR and 5'UTR, is significantly lower in the former than the latter, and this trend is especially pronounced in non-synonymous RDDs, i.e., those cause amino acid changes. A potential mechanism is that, unlike proto-oncogenes, the requirement of tumor suppressor genes to have both alleles affected to cause tumor 'buffers' these genes to tolerate more RDDs.

  12. MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes.

    Science.gov (United States)

    Polioudakis, Damon; Abell, Nathan S; Iyer, Vishwanath R

    2015-01-01

    miRNAs play a central role in numerous pathologies including multiple cancer types. miR-191 has predominantly been studied as an oncogene, but the role of miR-191 in the proliferation of primary cells is not well characterized, and the miR-191 targetome has not been experimentally profiled. Here we utilized RNA induced silencing complex immunoprecipitations as well as gene expression profiling to construct a genome wide miR-191 target profile. We show that miR-191 represses proliferation in primary human fibroblasts, identify multiple proto-oncogenes as novel miR-191 targets, including CDK9, NOTCH2, and RPS6KA3, and present evidence that miR-191 extensively mediates target expression through coding sequence (CDS) pairing. Our results provide a comprehensive genome wide miR-191 target profile, and demonstrate miR-191's regulation of primary human fibroblast proliferation.

  13. DNA Oncogenic Virus-Induced Oxidative Stress, Genomic Damage, and Aberrant Epigenetic Alterations

    Directory of Open Access Journals (Sweden)

    Mankgopo Magdeline Kgatle

    2017-01-01

    Full Text Available Approximately 20% of human cancers is attributable to DNA oncogenic viruses such as human papillomavirus (HPV, hepatitis B virus (HBV, and Epstein-Barr virus (EBV. Unrepaired DNA damage is the most common and overlapping feature of these DNA oncogenic viruses and a source of genomic instability and tumour development. Sustained DNA damage results from unceasing production of reactive oxygen species and activation of inflammasome cascades that trigger genomic changes and increased propensity of epigenetic alterations. Accumulation of epigenetic alterations may interfere with genome-wide cellular signalling machineries and promote malignant transformation leading to cancer development. Untangling and understanding the underlying mechanisms that promote these detrimental effects remain the major objectives for ongoing research and hope for effective virus-induced cancer therapy. Here, we review current literature with an emphasis on how DNA damage influences HPV, HVB, and EBV replication and epigenetic alterations that are associated with carcinogenesis.

  14. Genetic treatment of severe hemoglobinopathies: the combat against transgene variegation and transgene silencing.

    Science.gov (United States)

    Rivella, S; Sadelain, M

    1998-04-01

    Gene addition strategies are rational approaches to the treatment of sickle cell anemia and thalassemia. The goal of such genetic treatments is to introduce a functional globin transcription unit in hematopoietic stem cells and express the transgene in a manner that is erythroid-specific, elevated, relatively constant from one cell to another, and sustained over time. Gene transfer is mediated by an expanding array of viral and nonviral vectors. High-titer retroviral vectors harboring the human beta-globin gene and the core sequences of the human beta-globin locus control region yield erythroid-specific gene expression in erythroid cell lines and in short-term murine bone marrow chimeras. However, we show that expression remains subject to position effect variegation and often decreases over time in vivo. Rather than a progressive transcriptional silencing in all cells, we ascribe the waning expression to the gradual emergence in blood of erythroid progeny derived from more and more primitive precursor cells in the months after transplantation. In our model, transgene expression is therefore determined by the integration site and the differentiation stage of the transduced cell at the time of integration. Globin expression is thus different in the progeny of a transduced erythroid progenitor cell and in the erythroid progeny of a transduced hematopoietic stem cell, reflecting the effect of flanking chromatin in differentiated cells and of chromatin remodeling at the site of integration in the progeny of multipotential cells. This model predicts that insulators and matrix attachment regions could be highly valuable to gene therapy in combination with potent transcriptional activators. When efficient gene transfer in hematopoietic stem cells is achieved at last, the challenge will be to regulate gene expression in vivo and overcome transgene variegation and transgene silencing.

  15. The methods to generate transgenic animals and to control transgene expression.

    Science.gov (United States)

    Houdebine, Louis-Marie

    2002-09-25

    Transgenic animals have been used for years to study gene function and to create models for the study of human diseases. This approach has become still more justified after the complete sequencing of several genomes. Transgenic animals are ready to become industrial bioreactors for the preparation of pharmaceuticals in milk and probably in the future in egg white. Improvement of animal production by transgenesis is still in infancy. Despite its intensive use, animal transgenesis is still suffering from technical limitations. The generation of transgenics has recently become easier or possible for different species thanks to the use of transposons or retrovirus, to incubation of sperm which DNA followed by fertilization by intracellular sperm injection or not and to the use of the cloning technique using somatic cells in which genes have been added or inactivated. The Cre-LoxP system is more and more used to withdraw a given sequence from the genome or to target the integration of a foreign DNA. The tetracycline system has been improved and can more and more frequently be used to obtain faithful expression of transgenes. Several tools: RNA forming a triple helix with DNA, antisense RNA including double strand RNA inducing RNA interference and ribozymes, and also expression of proteins having a negative transdominant effect, are tentatively being improved to inhibit specifically the expression of host or viral genes.All these techniques are expected to offer experimenters new and more precise models to study gene function even in large animals. Improvement of breeding by transgenesis has become more plausible including through the precise allele replacement in farm animals.

  16. A Transgenic Mouse Model of Poliomyelitis.

    Science.gov (United States)

    Koike, Satoshi; Nagata, Noriyo

    2016-01-01

    Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model.

  17. Novel transgenic rice-based vaccines.

    Science.gov (United States)

    Azegami, Tatsuhiko; Itoh, Hiroshi; Kiyono, Hiroshi; Yuki, Yoshikazu

    2015-04-01

    Oral vaccination can induce both systemic and mucosal antigen-specific immune responses. To control rampant mucosal infectious diseases, the development of new effective oral vaccines is needed. Plant-based vaccines are new candidates for oral vaccines, and have some advantages over the traditional vaccines in cost, safety, and scalability. Rice seeds are attractive for vaccine production because of their stability and resistance to digestion in the stomach. The efficacy of some rice-based vaccines for infectious, autoimmune, and other diseases has been already demonstrated in animal models. We reported the efficacy in mice, safety, and stability of a rice-based cholera toxin B subunit vaccine called MucoRice-CTB. To advance MucoRice-CTB for use in humans, we also examined its efficacy and safety in primates. The potential of transgenic rice production as a new mucosal vaccine delivery system is reviewed from the perspective of future development of effective oral vaccines.

  18. ADVANCES IN TRANSGENIC MAIZE FOR QUALITY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    M.Rajendar Reddy

    2015-12-01

    Full Text Available Maize (Zea mays is a major food and animal feed worldwide and occupies a relevant place in the world economy and trade as an industrial grain crop. Currently more than 70% of maize production is used for food and feed; therefore, knowledge of genes involved in grain structure and chemical is important for improving the nutritional and food-making properties of maize. It is a good source of carbohydrates, fats, proteins, vitamins and minerals but deficient in two essential amino acids, Viz., lysine and tryptophan. To overcome this problem and to improve the above quality characters the maize breeders have followed different strategies like opaque 2, QPM and development of transgenic maize with improved quality characters. Finally we can conclude that the conventional breeding techniques and now plant biotechnology are helping meet the growing demand for food production, nutrition security while preserving our environment for future generations

  19. T cell immunity using transgenic B lymphocytes

    Science.gov (United States)

    Gerloni, Mara; Rizzi, Marta; Castiglioni, Paola; Zanetti, Maurizio

    2004-03-01

    Adaptive immunity exists in all vertebrates and plays a defense role against microbial pathogens and tumors. T cell responses begin when precursor T cells recognize antigen on specialized antigen-presenting cells and differentiate into effector cells. Currently, dendritic cells are considered the only cells capable of stimulating T lymphocytes. Here, we show that mature naïve B lymphocytes can be genetically programmed by using nonviral DNA and turned into powerful antigen-presenting cells with a dual capacity of synthesis and presentation of antigen to T cells in vivo. A single i.v. injection of transgenic lymphocytes activates T cell responses reproducibly and specifically even at very low cell doses (102). We also demonstrate that T cell priming can occur in the absence of dendritic cells and results in immunological memory with protective effector functions. These findings disclose aspects in the regulation of adaptive immunity and indicate possibilities for vaccination against viruses and cancer in humans.

  20. WP1: transgenic opto-animals

    Science.gov (United States)

    UŻarowska, E.; Czajkowski, Rafał; Konopka, W.

    2014-11-01

    We aim to create a set of genetic tools where permanent opsin expression (ChR or NpHR) is precisely limited to the population of neurons that express immediate early gene c-fos during a specific temporal window of behavioral training. Since the c-fos gene is only expressed in neurons that form experience-dependent ensemble, this approach will result in specific labeling of a small subset of cells that create memory trace for the learned behavior. To this end we employ two alternative inducible gene expression systems: Tet Expression System and Cre/lox System. In both cases, the temporal window for opsin induction is controlled pharmacologically, by doxycycline or tamoxifen, respectively. Both systems will be used for creating lines of transgenic animals.

  1. Immortalized cells and one oncogene in malignant transformation: old insights on new explanation

    Science.gov (United States)

    2011-01-01

    Background Nearly thirty years ago, it was first shown that malignant transformation with single oncogene necessarily requires the immortal state of the cell. From that time this thesis for the cells of human origin was not disproved. The basic point which we want to focus on by this short communication is the correct interpretation of the results obtained on the widely used human embryonic kidney 293 (HEK293) cells. Results Intensive literature analysis revealed an increasing number of recent studies discovering new oncogenes with non-overlapping functions. Since the 1970s, dozens of oncogenes have been identified in human cancer. Cultured cell lines are often used as model systems in these experiments. In some investigations the results obtained on such cells are interpreted by the authors as a malignant transformation of normal animal or even normal human cells (as for example with HEK293 cells). However, when a cell line gains the ability to undergo continuous cell division, the cells are not normal any more, they are immortalized cells. Nevertheless, the authors consider these cells as normal human ones, what is basically incorrect. Moreover, it was early demonstrated that the widely used human embryonic kidney 293 (HEK293) cells have a relationship to neurons. Conclusions Thus, the experiments with established cell lines reinforce the notion that immortality is an essential requirement for malignant transformation that cooperates with other oncogenic changes to program the neoplastic state and substances under such investigation should be interpreted as factors which do not malignantly transform normal cells alone, but possess the ability to enhance the tumorigenic potential of already immortalized cells. PMID:21605454

  2. Activation of cellular oncogenes by chemical carcinogens in Syrian hamster embryo fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, R.; Reiss, E.; Roellich, G.; Schiffmann, D. (Univ. of Wuerzburg (West Germany)); Barrett, J.C.; Wiseman, R.W. (National Institute of Environmental Health Sciences, Research Triangle Park, NC (USA)); Pechan, R.

    1990-08-01

    Carcinogen-induced point mutations resulting in activation of ras oncogenes have been demonstrated in various experimental systems such as skin carcinogenesis, mammary, and liver carcinogenesis. In many cases, the data support the conclusion that these point mutations are critical changes in the initiation of these tumors. The Syrian hamster embryo (SHE) cell transformation model system has been widely used to study the multistep process of chemically induced neoplastic transformation. Recent data suggest that activation of the Ha-ras gene via point mutation is one of the crucial events in the transformation of these cells. The authors have now cloned the c-Ha-ras proto-oncogene from SHE cDNA-libraries, and we have performed polymerase chain reaction and direct sequencing to analyze tumor cell lines induced by different chemical carcinogens for the presence of point mutations. No changes were detectable at codons 12, 13, 59, 61, and 117 or adjacent regions in tumor cell lines induced by diethylstilbestrol, asbestos, benzo(a)pyrene, trenbolone, or aflatoxin B{sub 1}. Thus, it is not known whether point mutations in the Ha-ras proto-oncogene are essential for the acquisition of the neoplastic phenotype of SHE cells. Activation of other oncogenes or inactivation of tumor suppressor genes may be responsible for the neoplastic progression of these cells. However, in SHE cells neoplastically transformed by diethylstilbestrol or trenbolone, a significant elevation of the c-Ha-ras expression was observed. Enhanced expression of c-myc was detected in SHE cells transformed by benzo(a)pyrene or trenbolone.

  3. Oncogenic LINE-1 Retroelements Sustain Prostate Tumor Cells and Promote Metastatic Progression

    Science.gov (United States)

    2015-10-01

    elements in prostate cancer contribute to its progression by activating oncogenic DNA sequences, or silencing tumor suppressor like sequences. We have...the use of animals and the use of recombinant DNA /lentiviral vectors. All of these approvals have now been obtained. For Task 1, we cloned the LINE...Books or other non-periodical, one-time publications. Report any book, monograph , dissertation, abstract, or the like published as or in a

  4. Cooperativity Between Oncogenic PKC Epsilon and Pten Loss in Prostate Cancer Progression

    Science.gov (United States)

    2015-10-01

    initiated studies to dissect the signaling mechanisms that mediate CXCL13 induction. We took advantage of a cellular model that we generated in our...metastatic loop that is mediated by CXCL13. We also hypothesize that PKCε is a CXCL13:CXCR5 effector that contributes to positively amplify this oncogenic...shown). Therefore, it is possible that an autocrine CXCL13:CXCR5 loop mediates effects driven by PKCε overexpression and Pten loss. * * R el at iv

  5. PTPN14 interacts with and negatively regulates the oncogenic function of YAP

    OpenAIRE

    Liu, X; Yang, N; Figel, SA; Wilson, KE; Morrison, CD; Gelman, IH; Zhang, J

    2012-01-01

    The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. The pivotal effector of this pathway is YAP, a transcriptional co-activator amplified in mouse and human cancers where it promotes epithelial-to-mesenchymal transition and malignant transformation. Here, we report a novel regulatory mechanism for the YAP oncogenic function via direct interaction with non-receptor tyrosine phosphatase 14 (PTPN14) thro...

  6. MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christoph Campregher

    Full Text Available BACKGROUND/AIM: Elevated microsatellite instability at selected tetranucleotide repeats (EMAST is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. METHODS: HCT116 and HCT116+chr3 (both MSH3-deficient and primary human colon epithelial cells (HCEC, MSH3-wildtype were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs were assessed by Comet assay. RESULTS: Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4 at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50, apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. CONCLUSIONS: MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon

  7. Nuclear Localization and DNA Binding Properties of a Protein Expressed by Human c-myc Oncogene

    Science.gov (United States)

    Persson, Hakan; Leder, Philip

    1984-08-01

    Antisera to the human cellular myc oncogene product were used to identify a human c-myc specific protein with a molecular weight of 65,000. Subcellular fractionation showed that the human c-myc protein is predominantly found in the cell nucleus. The p65 Kc-myc protein binds to double- and single-stranded DNA as measured by a DNA affinity chromatography assay.

  8. Oncogenic HPV among HIV infected female population in West Bengal, India

    OpenAIRE

    Sengupta Sharmila; Bhattacharya Subhasish; Saha Bibhuti; Bal Baishali; Pal Reshmi; Sarkar Kamalesh; Mazumdar Partha; Chakraborti Shekhar

    2011-01-01

    Abstract Background Prevalence of both cervical cancer and Human Immunodeficiency Virus (HIV) infection are very high in India. Natural history of Human Papilloma Virus (HPV) infection is known to be altered in HIV positive women and there is an increased possibility of persistence of HPV infections in this population. Therefore, this study was conducted to understand the epidemiology and circulating genotypes of oncogenic HPV among HIV positive and negative female population in West Bengal, ...

  9. Expression Profiling of Circulating Microvesicles Reveals Intercellular Transmission of Oncogenic Pathways.

    Science.gov (United States)

    Milani, Gloria; Lana, Tobia; Bresolin, Silvia; Aveic, Sanja; Pastò, Anna; Frasson, Chiara; Te Kronnie, Geertruy

    2017-06-01

    Circulating microvesicles have been described as important players in cell-to-cell communication carrying biological information under normal or pathologic condition. Microvesicles released by cancer cells may incorporate diverse biomolecules (e.g., active lipids, proteins, and RNA), which can be delivered and internalized by recipient cells, potentially altering the gene expression of recipient cells and eventually impacting disease progression. Leukemia in vitro model systems were used to investigate microvesicles as vehicles of protein-coding messages. Several leukemic cells (K562, LAMA-87, TOM-1, REH, and SHI-1), each carrying a specific chromosomal translocation, were analyzed. In the leukemic cells, these chromosomal translocations are transcribed into oncogenic fusion transcripts and the transfer of these transcripts was monitored from leukemic cells to microvesicles for each of the cell lines. Microarray gene expression profiling was performed to compare transcriptomes of K562-derived microvesicles and parental K562 cells. The data show that oncogenic BCR-ABL1 transcripts and mRNAs related to basic functions of leukemic cells were included in microvesicles. Further analysis of microvesicles cargo revealed a remarkable enrichment of transcripts related to cell membrane activity, cell surface receptors, and extracellular communication when compared with parental K562 cells. Finally, coculturing of healthy mesenchymal stem cells (MSC) with K562-derived microvesicles displayed the transfer of the oncogenic message, and confirmed the increase of target cell proliferation as a function of microvesicle dosage.Implications: This study provides novel insight into tumor-derived microvesicles as carriers of oncogenic protein-coding messages that can potentially jeopardize cell-directed therapy, and spread to other compartments of the body. Mol Cancer Res; 15(6); 683-95. ©2017 AACR. ©2017 American Association for Cancer Research.

  10. Detection of FLT3 Oncogene Mutations in Acute Myeloid Leukemia Using Conformation Sensitive Gel Electrophoresis

    OpenAIRE

    2008-01-01

    FLT3 (fms-related tyrosine kinase 3) is a receptor tyrosine kinase class III that is expressed on by early hematopoietic progenitor cells and plays an important role in hematopoietic stem cell proliferation, differentiation and survival. FLT3 is also expressed on leukemia blasts in most cases of acute myeloid leukemia (AML). In order to determine the frequency of FLT3 oncogene mutations, we analyzed genomic DNA of adult de novo acute myeloid leukemia (AML). Polymerase chain reaction (PCR) and...

  11. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation

    OpenAIRE

    Le Rolle, Anne-France; Chiu, Thang K; ZENG, ZHAOSHI; Shia, Jinru; Weiser, Martin R; Paty, Philip B.; Chiu, Vi K

    2016-01-01

    Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut ) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer i...

  12. Oncogenic Alternative Splicing Switches: Role in Cancer Progression and Prospects for Therapy

    OpenAIRE

    Serena Bonomi; Stefania Gallo; Morena Catillo; Daniela Pignataro; Giuseppe Biamonti; Claudia Ghigna

    2013-01-01

    Alterations in the abundance or activities of alternative splicing regulators generate alternatively spliced variants that contribute to multiple aspects of tumor establishment, progression and resistance to therapeutic treatments. Notably, many cancer-associated genes are regulated through alternative splicing suggesting a significant role of this post-transcriptional regulatory mechanism in the production of oncogenes and tumor suppressors. Thus, the study of alternative splicing in cancer ...

  13. Oncogenic action of beta, proton, alpha and electron radiation on the rat skin

    Energy Technology Data Exchange (ETDEWEB)

    Burns, F.J.

    1980-01-01

    Rat skin is being utilized as an empirical model for testing dose and time related aspects of the oncogenic action of ionizing radiation, ultraviolet light, and polycyclic aromatic hydrocarbons. Molecular lesions in the skin DNA, including, strand breaks and thymine dimers, are being measured and compared to tumor induction. The induction and repair kinetics of molcular lesions are being compared to split dose repair. Modifiers and radiosensitizers are being utilized to test specific aspects of a chromosome breakage theory of radiation oncogenesis.

  14. Mutation of RET proto-oncogene in Hirschsprung's disease and intestinal neuronal dysplasia

    Institute of Scientific and Technical Information of China (English)

    Jin-Fa Tou; Min-Ju Li; Tao Guan; Ji-Cheng Li; Xiong-Kai Zhu; Zhi-Gang Feng

    2006-01-01

    AIM: To investigate the genetic relationship between Hirschsprung's disease (HD) and intestinal neuronal dysplasia (IND) in Chinese population.METHODS: Peripheral blood samples were obtained from 30 HD patients, 20 IND patients, 18 HD/IND combined patients and 20 normal individuals as control.Genomic DNA was extracted according to standard procedure. Exons 11,13,15,17 of RET proto-oncogene were amplified by polymerase chain reaction (PCR).The mutations of RET proto-oncogene were analyzed by single strand conformational polymorphism (SSCP)and sequencing of the positive amplified products was performed.RESULTS: Eight germline sequence variants were detected. In HD patients, 2 missense mutations in exon 11at nucleotide 15165 G→A (G667S), 2 frameshift mutations in exon 13 at nucleotide 18974 (18974insG), 1missense mutation in exon 13 at nucleotide 18919 A→G (K756E) and 1silent mutation in exon 15 at nucleotide 20692 G→A(Q916Q) were detected. In HD/IND combined patients, 1 missense mutation in exon 11 at nucleotide 15165 G→A and 1 silent mutation in exon 13at nucleotide 18888 T→G (L745L) were detected. No mutation was found in IND patients and controls.CONCLUSION: Mutation of RET proto-oncogene is involved in the etiopathogenesis of HD. The frequency of RET proto-oncogene mutation is quite different between IND and HD in Chinese population. IND is a distinct clinical entity genetically different from HD.

  15. Exosomes enriched in stemness/metastatic-related mRNAS promote oncogenic potential in breast cancer

    OpenAIRE

    2015-01-01

    Cancer cells efficiently transfer exosome contents (essentially mRNAs and microRNAs) to other cell types, modifying immune responses, cell growth, angiogenesis and metastasis. Here we analyzed the exosomes release by breast tumor cells with different capacities of stemness/metastasis based on CXCR4 expression, and evaluated their capacity to generate oncogenic features in recipient cells. Breast cancer cells overexpressing CXCR4 showed an increase in stemness-related markers, and in prolifera...

  16. Initiation of metastatic breast carcinoma by targeting of the ductal epithelium with adenovirus-cre: a novel transgenic mouse model of breast cancer.

    Science.gov (United States)

    Rutkowski, Melanie R; Allegrezza, Michael J; Svoronos, Nikolaos; Tesone, Amelia J; Stephen, Tom L; Perales-Puchalt, Alfredo; Nguyen, Jenny; Zhang, Paul J; Fiering, Steven N; Tchou, Julia; Conejo-Garcia, Jose R

    2014-03-26

    Breast cancer is a heterogeneous disease involving complex cellular interactions between the developing tumor and immune system, eventually resulting in exponential tumor growth and metastasis to distal tissues and the collapse of anti-tumor immunity. Many useful animal models exist to study breast cancer, but none completely recapitulate the disease progression that occurs in humans. In order to gain a better understanding of the cellular interactions that result in the formation of latent metastasis and decreased survival, we have generated an inducible transgenic mouse model of YFP-expressing ductal carcinoma that develops after sexual maturity in immune-competent mice and is driven by consistent, endocrine-independent oncogene expression. Activation of YFP, ablation of p53, and expression of an oncogenic form of K-ras was achieved by the delivery of an adenovirus expressing Cre-recombinase into the mammary duct of sexually mature, virgin female mice. Tumors begin to appear 6 weeks after the initiation of oncogenic events. After tumors become apparent, they progress slowly for approximately two weeks before they begin to grow exponentially. After 7-8 weeks post-adenovirus injection, vasculature is observed connecting the tumor mass to distal lymph nodes, with eventual lymphovascular invasion of YFP+ tumor cells to the distal axillary lymph nodes. Infiltrating leukocyte populations are similar to those found in human breast carcinomas, including the presence of αβ and γδ T cells, macrophages and MDSCs. This unique model will facilitate the study of cellular and immunological mechanisms involved in latent metastasis and dormancy in addition to being useful for designing novel immunotherapeutic interventions to treat invasive breast cancer.

  17. Transgenic Studies with a Keratin Promoter-Driven Growth Hormone Transgene: Prospects for Gene Therapy

    Science.gov (United States)

    Wang, Xiaoming; Zinkel, Sandra; Polonsky, Kenneth; Fuchs, Elaine

    1997-01-01

    Keratinocytes are potentially appealing vehicles for the delivery of secreted gene products because they can be transferred to human skin by the relatively simple procedure of grafting. Adult human keratinocytes can be efficiently propagated in culture with sufficient proliferative capacity to produce enough epidermis to cover the body surface of an average adult. However, the feasibility of delivering secreted proteins through skin grafting rests upon (i) the strength of the promoter in keratinocytes and (ii) the efficiency of protein transport through the basement membrane of the stratified epithelium and into the bloodstream. In this paper, we use transgenic technology to demonstrate that the activity of the human keratin 14 promoter remains high in adult skin and that keratinocyte-derived human growth hormone (hGH) can be produced, secreted, and transported to the bloodstream of mice with efficiency that is sufficient to exceed by an order of magnitude the circulating hGH concentration in growing children. Transgenic skin grafts from these adults continue to produce and secrete hGH stably, at ≈ 1/10 physiological levels in the bloodstream of nontransgenic recipient mice. These studies underscore the utility of the keratin 14 promoter for expressing foreign transgenes in keratinocytes and demonstrate that keratinocytes can be used as effective vehicles for transporting factors to the bloodstream and for eliciting metabolic changes. These findings have important implications for considering the keratinocyte as a possible vehicle for gene therapy.

  18. Panaxquin quefolium diolsaponins dose-dependently inhibits the proliferation of vascular smooth muscle cells by downregulating proto-oncogene expression

    Directory of Open Access Journals (Sweden)

    Zhihao Wang

    2013-01-01

    Conclusions: Our study demonstrates that PQDS may reduce AngII-stimulated VSMC proliferation by suppressing the expression of proto-oncogenes. These results may provide insights for the development of novel traditional Chinese medicines to prevent atherosclerosis.

  19. A human cellular sequence implicated in trk oncogene activation is DNA damage inducible

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Ishai, R.; Scharf, R.; Sharon, R.; Kapten, I. (Technion-Israel Institute of Technology, Haifa (Israel))

    1990-08-01

    Xeroderma pigmentosum cells, which are deficient in the repair of UV light-induced DNA damage, have been used to clone DNA-damage-inducible transcripts in human cells. The cDNA clone designated pC-5 hybridizes on RNA gel blots to a 1-kilobase transcript, which is moderately abundant in nontreated cells and whose synthesis is enhanced in human cells following UV irradiation or treatment with several other DNA-damaging agents. UV-enhanced transcription of C-5 RNA is transient and occurs at lower fluences and to a greater extent in DNA-repair-deficient than in DNA-repair-proficient cells. Southern blot analysis indicates that the C-5 gene belongs to a multigene family. A cDNA clone containing the complete coding sequence of C-5 was isolated. Sequence analysis revealed that it is homologous to a human cellular sequence encoding the amino-terminal activating sequence of the trk-2h chimeric oncogene. The presence of DNA-damage-responsive sequences at the 5' end of a chimeric oncogene could result in enhanced expression of the oncogene in response to carcinogens.

  20. Features and Usage Areas of MicroRNAs as Oncogenes and Tumor Suppressors

    Directory of Open Access Journals (Sweden)

    G. Seyda Seydel

    2009-02-01

    Full Text Available MicroRNAs (miRNA are small non-coding RNA of 19–24 nucleotides in length that were discovered 12 years ago by Victor Ambros and colleagues. They are important regulatory molecules in animals and plants. MicroRNAs are downregulate gene expression during various crucial cell processes such as apoptosis, differentiation and development. In addition, some miRNAs may function as oncogenes or tumor suppressors. More than 50% of miRNA genes are located in cancer-associated genomic regions or in fragile sites. Overexpressed miRNAs in cancers, such as mir17–92, may function as oncogenes and promote cancer development by negatively regulating tumor suppressor genes and genes that control cell differentiation or apoptosis. Underexpressed miRNAs in cancers, such as let–7, function as tumor suppressor genes and may inhibit cancers by regulating oncogenes and genes that control cell differentiation or apoptosis. miRNA expression profiles may become useful biomarkers for cancer diagnostics. [Archives Medical Review Journal 2009; 18(1.000: 1-12

  1. HER2 missense mutations have distinct effects on oncogenic signaling and migration

    Science.gov (United States)

    Zabransky, Daniel J.; Yankaskas, Christopher L.; Cochran, Rory L.; Wong, Hong Yuen; Croessmann, Sarah; Chu, David; Kavuri, Shyam M.; Red Brewer, Monica; Rosen, D. Marc; Dalton, W. Brian; Cimino-Mathews, Ashley; Cravero, Karen; Button, Berry; Kyker-Snowman, Kelly; Cidado, Justin; Erlanger, Bracha; Parsons, Heather A.; Manto, Kristen M.; Bose, Ron; Lauring, Josh; Arteaga, Carlos L.; Konstantopoulos, Konstantinos; Park, Ben Ho

    2015-01-01

    Recurrent human epidermal growth factor receptor 2 (HER2) missense mutations have been reported in human cancers. These mutations occur primarily in the absence of HER2 gene amplification such that most HER2-mutant tumors are classified as “negative” by FISH or immunohistochemistry assays. It remains unclear whether nonamplified HER2 missense mutations are oncogenic and whether they are targets for HER2-directed therapies that are currently approved for the treatment of HER2 gene-amplified breast cancers. Here we functionally characterize HER2 kinase and extracellular domain mutations through gene editing of the endogenous loci in HER2 nonamplified human breast epithelial cells. In in vitro and in vivo assays, the majority of HER2 missense mutations do not impart detectable oncogenic changes. However, the HER2 V777L mutation increased biochemical pathway activation and, in the context of a PIK3CA mutation, enhanced migratory features in vitro. However, the V777L mutation did not alter in vivo tumorigenicity or sensitivity to HER2-directed therapies in proliferation assays. Our results suggest the oncogenicity and potential targeting of HER2 missense mutations should be considered in the context of cooperating genetic alterations and provide previously unidentified insights into functional analysis of HER2 mutations and strategies to target them. PMID:26508629

  2. Transglutaminase 2 contributes to a TP53-induced autophagy program to prevent oncogenic transformation.

    Science.gov (United States)

    Yeo, Shi Yun; Itahana, Yoko; Guo, Alvin Kunyao; Han, Rachel; Iwamoto, Kozue; Nguyen, Hung Thanh; Bao, Yi; Kleiber, Kai; Wu, Ya Jun; Bay, Boon Huat; Voorhoeve, Mathijs; Itahana, Koji

    2016-03-09

    Genetic alterations which impair the function of the TP53 signaling pathway in TP53 wild-type human tumors remain elusive. To identify new components of this pathway, we performed a screen for genes whose loss-of-function debilitated TP53 signaling and enabled oncogenic transformation of human mammary epithelial cells. We identified transglutaminase 2 (TGM2) as a putative tumor suppressor in the TP53 pathway. TGM2 suppressed colony formation in soft agar and tumor formation in a xenograft mouse model. The depletion of growth supplements induced both TGM2 expression and autophagy in a TP53-dependent manner, and TGM2 promoted autophagic flux by enhancing autophagic protein degradation and autolysosome clearance. Reduced expression of both CDKN1A, which regulates the cell cycle downstream of TP53, and TGM2 synergized to promote oncogenic transformation. Our findings suggest that TGM2-mediated autophagy and CDKN1A-mediated cell cycle arrest are two important barriers in the TP53 pathway that prevent oncogenic transformation.

  3.  Oncogenic osteomalacia and its symptoms: hypophosphatemia, bone pain and pathological fractures

    Directory of Open Access Journals (Sweden)

    Sonia Kaniuka-Jakubowska

    2012-08-01

    Full Text Available  Oncogenic osteomalacia (OOM is a rare paraneoplastic syndrome induced by tumor produced phosphaturic factors, i.e. phosphatonins. The disorder is characterized by renal tubular phosphate loss, secondary to this process hypophosphatemia and defective production of active form of vitamin D. The clinical course of oncogenic osteomalacia is characterized by bone pain, pathological fractures, muscle weakness and general fatigue. Osteomalacia-associated tumors are usually located in the upper and lower limbs, with half of the lesions primarily situated in the bones. Most of them are small, slow-growing tumors. Their insignificant size and various location coupled with rare occurrence of the disease and non-specificity of clinical symptoms lead to difficulties in reaching a diagnosis, which is often time-consuming and requires a number of additional tests. The average time between the appearance of the first symptoms and the establishment of an accurate diagnosis and the beginning of treatment is over 2.5 years. The aim of this study is to discuss the pathophysiology of disease symptoms, pathomorphology of tumors, diagnostic methods and treatment of oncogenic osteomalacia.

  4. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation

    Science.gov (United States)

    Timmerman, Luika A.; Grego-Bessa, Joaquín; Raya, Angel; Bertrán, Esther; Pérez-Pomares, José María; Díez, Juan; Aranda, Sergi; Palomo, Sergio; McCormick, Frank; Izpisúa-Belmonte, Juan Carlos; de la Pompa, José Luis

    2004-01-01

    Epithelial-to-mesenchymal transition (EMT) is fundamental to both embryogenesis and tumor metastasis. The Notch intercellular signaling pathway regulates cell fate determination throughout metazoan evolution, and overexpression of activating alleles is oncogenic in mammals. Here we demonstrate that Notch activity promotes EMT during both cardiac development and oncogenic transformation via transcriptional induction of the Snail repressor, a potent and evolutionarily conserved mediator of EMT in many tissues and tumor types. In the embryonic heart, Notch functions via lateral induction to promote a selective transforming growth factor-β (TGFβ)-mediated EMT that leads to cellularization of developing cardiac valvular primordia. Embryos that lack Notch signaling elements exhibit severely attenuated cardiac snail expression, abnormal maintenance of intercellular endocardial adhesion complexes, and abortive endocardial EMT in vivo and in vitro. Accordingly, transient ectopic expression of activated Notch1 (N1IC) in zebrafish embryos leads to hypercellular cardiac valves, whereas Notch inhibition prevents valve development. Overexpression of N1IC in immortalized endothelial cells in vitro induces EMT accompanied by oncogenic transformation, with corresponding induction of snail and repression of VE-cadherin expression. Notch is expressed in embryonic regions where EMT occurs, suggesting an intimate and fundamental role for Notch, which may be reactivated during tumor metastasis. PMID:14701881

  5. The potent oncogene NPM-ALK mediates malignant transformation of normal human CD4(+) T lymphocytes.

    Science.gov (United States)

    Zhang, Qian; Wei, Fang; Wang, Hong Yi; Liu, Xiaobin; Roy, Darshan; Xiong, Qun-Bin; Jiang, Shuguang; Medvec, Andrew; Danet-Desnoyers, Gwenn; Watt, Christopher; Tomczak, Ewa; Kalos, Michael; Riley, James L; Wasik, Mariusz A

    2013-12-01

    With this study we have demonstrated that in vitro transduction of normal human CD4(+) T lymphocytes with NPM-ALK results in their malignant transformation. The transformed cells become immortalized and display morphology and immunophenotype characteristic of patient-derived anaplastic large-cell lymphomas. These unique features, which are strictly dependent on NPM-ALK activity and expression, include perpetual cell growth, proliferation, and survival; activation of the key signal transduction pathways STAT3 and mTORC1; and expression of CD30 (the hallmark of anaplastic large-cell lymphoma) and of immunosuppressive cytokine IL-10 and cell-surface protein PD-L1/CD274. Implantation of NPM-ALK-transformed CD4(+) T lymphocytes into immunodeficient mice resulted in formation of tumors indistinguishable from patients' anaplastic large-cell lymphomas. Our findings demonstrate that the key aspects of human carcinogenesis closely recapitulating the features of the native tumors can be faithfully reproduced in vitro when an appropriate oncogene is used to transform its natural target cells; this in turn points to the fundamental role in malignant cell transformation of potent oncogenes expressed in the relevant target cells. Such transformed cells should permit study of the early stages of carcinogenesis, and in particular the initial oncogene-host cell interactions. This experimental design could also be useful for studies of the effects of early therapeutic intervention and likely also the mechanisms of malignant progression.

  6. Narrowing the focus: a toolkit to systematically connect oncogenic signaling pathways with cancer phenotypes

    Science.gov (United States)

    Singleton, Katherine R.; Wood, Kris C.

    2016-01-01

    Functional genomics approaches such as gain- and loss-of-function screening can efficiently reveal genes that control cancer cell growth, survival, signal transduction, and drug resistance, but distilling the results of large-scale screens into actionable therapeutic strategies is challenging given our incomplete understanding of the functions of many genes. Research over several decades, including the results of large-scale cancer sequencing projects, has made it clear that many oncogenic properties are controlled by a common set of core oncogenic signaling pathways. By directly screening this core set of pathways, rather than much larger numbers of individual genes, it may be possible to more directly and efficiently connect functional genomic screening results with therapeutic targets. Here, we describe the recent development of methods to directly screen oncogenic pathways in high-throughput. We summarize the results of studies that have used pathway-centric screening to map the pathways of resistance to targeted therapies in diverse cancer types, then conclude by expanding on potential future applications of this approach.

  7. JAC, a direct target of oncogenic transcription factor Jun, is involved in cell transformation and tumorigenesis.

    Science.gov (United States)

    Hartl, M; Reiter, F; Bader, A G; Castellazzi, M; Bister, K

    2001-11-20

    Using subtractive hybridization techniques, we have isolated a gene termed JAC that is strongly and specifically activated in avian fibroblasts transformed by the v-jun oncogene of avian sarcoma virus 17 (ASV17), but not in cells transformed by other oncogenic agents. Furthermore, JAC is highly expressed in cell lines derived from jun-induced avian fibrosarcomas. Kinetic analysis using a doxycycline-controlled conditional cell transformation system showed that expression of the 0.8-kb JAC mRNA is induced rapidly upon activation of the oncogenic v-jun allele. Nucleotide sequence analysis and transcriptional mapping revealed that the JAC gene contains two exons, with the longest ORF confined to exon 2. The deduced 68-amino acid chicken JAC protein is rich in cysteine residues and displays 37% sequence identity to mammalian high-sulfur keratin-associated proteins. The promoter region of JAC contains a consensus (5'-TGACTCA-3') and a nonconsensus (5'-TGAGTAA-3') AP-1 binding site in tandem, which are both specifically bound by the Gag-Jun hybrid protein encoded by ASV17. Mutational analysis revealed that the two AP-1 sites confer strong transcriptional activation by Gag-Jun in a synergistic manner. Ectopic expression of JAC in avian fibroblasts leads to anchorage-independent growth, strongly suggesting that deregulation of JAC is an essential event in jun-induced cell transformation and tumorigenesis.

  8. Determination of somatic oncogenic mutations linked to target-based therapies using MassARRAY technology

    Science.gov (United States)

    Llorca-Cardeñosa, Marta J.; Mongort, Cristina; Alonso, Elisa; Navarro, Samuel; Burgues, Octavio; Vivancos, Ana; Cejalvo, Juan Miguel; Perez-Fidalgo, José Alejandro; Roselló, Susana; Ribas, Gloria; Cervantes, Andrés

    2016-01-01

    Somatic mutation analysis represents a useful tool in selecting personalized therapy. The aim of our study was to determine the presence of common genetic events affecting actionable oncogenes using a MassARRAY technology in patients with advanced solid tumors who were potential candidates for target-based therapies. The analysis of 238 mutations across 19 oncogenes was performed in 197 formalin-fixed paraffin-embedded samples of different tumors using the OncoCarta Panel v1.0 (Sequenom Hamburg, Germany). Of the 197 specimens, 97 (49.2%) presented at least one mutation. Forty-nine different oncogenic mutations in 16 genes were detected. Mutations in KRAS and PIK3CA were detected in 40/97 (41.2%) and 30/97 (30.9%) patients respectively. Thirty-one patients (32.0%) had mutations in two genes, 20 of them (64.5%) initially diagnosed with colorectal cancer. The co-occurrence of mutation involved mainly KRAS, PIK3CA, KIT and RET. Mutation profiles were validated using a customized panel and the Junior Next-Generation Sequencing technology (GS-Junior 454, Roche). Twenty-eight patients participated in early clinical trials or received specific treatments according to the molecular characterization (28.0%). MassARRAY technology is a rapid and effective method for identifying key cancer-driving mutations across a large number of samples, which allows for a more appropriate selection for personalized therapies. PMID:26968814

  9. HER2 missense mutations have distinct effects on oncogenic signaling and migration.

    Science.gov (United States)

    Zabransky, Daniel J; Yankaskas, Christopher L; Cochran, Rory L; Wong, Hong Yuen; Croessmann, Sarah; Chu, David; Kavuri, Shyam M; Red Brewer, Monica; Rosen, D Marc; Dalton, W Brian; Cimino-Mathews, Ashley; Cravero, Karen; Button, Berry; Kyker-Snowman, Kelly; Cidado, Justin; Erlanger, Bracha; Parsons, Heather A; Manto, Kristen M; Bose, Ron; Lauring, Josh; Arteaga, Carlos L; Konstantopoulos, Konstantinos; Park, Ben Ho

    2015-11-10

    Recurrent human epidermal growth factor receptor 2 (HER2) missense mutations have been reported in human cancers. These mutations occur primarily in the absence of HER2 gene amplification such that most HER2-mutant tumors are classified as "negative" by FISH or immunohistochemistry assays. It remains unclear whether nonamplified HER2 missense mutations are oncogenic and whether they are targets for HER2-directed therapies that are currently approved for the treatment of HER2 gene-amplified breast cancers. Here we functionally characterize HER2 kinase and extracellular domain mutations through gene editing of the endogenous loci in HER2 nonamplified human breast epithelial cells. In in vitro and in vivo assays, the majority of HER2 missense mutations do not impart detectable oncogenic changes. However, the HER2 V777L mutation increased biochemical pathway activation and, in the context of a PIK3CA mutation, enhanced migratory features in vitro. However, the V777L mutation did not alter in vivo tumorigenicity or sensitivity to HER2-directed therapies in proliferation assays. Our results suggest the oncogenicity and potential targeting of HER2 missense mutations should be considered in the context of cooperating genetic alterations and provide previously unidentified insights into functional analysis of HER2 mutations and strategies to target them.

  10. Depletion of insulin receptor substrate 2 reverses oncogenic transformation induced by v-src

    Institute of Scientific and Technical Information of China (English)

    Hong-zhi SUN; Lin XU; Bo ZHOU; Wei-jin ZANG; Shu-fang WU

    2011-01-01

    Aim: To investigate the role of insulin receptor substrate 2 (IRS-2) in oncogenic transformation induced by v-src. Methods: IRS-2 gene was silenced using small interfering RNAs (siRNAs). Nuclear translocation and interaction of IRS-2 with v-src was determined using subcellular fractionation, confocal microscopy, and immunoprecipitation. The activity of the cyclin D1 promoter and r-DNA promoter was measured with a luciferase assay.Results: Depletion of IRS-2 inhibited R-/v-src cell growth and reverse the oncogenic transformation. IRS-2 bound to src via its two PI3-K binding sites, which are critical for activities involved in the transformation. Nuclear IRS-2 occupied the cyclin D1 and rDNA promoters. The combination of IRS-2 and v-src increased the activity of the two promoters, especially the rDNA promoter.Conclusion: Depletion of insulin receptor substrate 2 could reverse oncogenic transformation induced by v-src.

  11. Oncogenic function and prognostic significance of protein tyrosine phosphatase PRL-1 in hepatocellular carcinoma.

    Science.gov (United States)

    Jin, Shaowen; Wang, Kaimei; Xu, Kang; Xu, Junyao; Sun, Jian; Chu, Zhonghua; Lin, Dechen; Koeffler, Phillip H; Wang, Jie; Yin, Dong

    2014-06-15

    Our SNP-Chip data demonstrated 7/60 (12%) hepatocellular carcinoma (HCC) patients had PRL-1 copy number amplification. However, its biological functions and signaling pathways in HCC are deficient. Here, we investigated its oncogenic function and prognostic significance in HCC. PRL-1 protein levels were examined in 167 HCC samples by immunohistochemisty (IHC). The relationship of PRL-1 expression and clinicopathological features was assessed by correlation, Kaplan-Meier and Cox regression analyses. The oncogenic function of PRL-1 in HCC cells and its underlying mechanism were investigated by ectopic overexpression and knockdown model. PRL-1 levels in primary HCC and metastatic intravascular cancer thrombus were also determined by IHC. PRL-1 levels were frequently elevated in HCC tissues (81%), and elevated expression of PRL-1 was significantly associated with more aggressive phenotype and poorer prognosis in HCC patients (pPRL-1 markedly enhanced HCC cells migration and invasion. Furthermore, the oncogenic functions of PRL-1 were mediated by PI3K/AKT/GSK3β signaling pathway through inhibiting E-cadherin expression. Finally, PRL-1 protein levels in metastatic cancer thrombus were higher than that in primary HCC tissues (pPRL-1 in HCC invasion and metastasis implicating PRL-1 as a potential prognostic marker as well as therapeutic target in HCC.

  12. A posttranslational modification cascade involving p38, Tip60, and PRAK mediates oncogene-induced senescence.

    Science.gov (United States)

    Zheng, Hui; Seit-Nebi, Alim; Han, Xuemei; Aslanian, Aaron; Tat, John; Liao, Rong; Yates, John R; Sun, Peiqing

    2013-06-06

    Oncogene-induced senescence is an important tumor-suppressing defense mechanism. However, relatively little is known about the signaling pathway mediating the senescence response. Here, we demonstrate that a multifunctional acetyltransferase, Tip60, plays an essential role in oncogenic ras-induced senescence. Further investigation reveals a cascade of posttranslational modifications involving p38, Tip60, and PRAK, three proteins that are essential for ras-induced senescence. Upon activation by ras, p38 induces the acetyltransferase activity of Tip60 through phosphorylation of Thr158; activated Tip60 in turn directly interacts with and induces the protein kinase activity of PRAK through acetylation of K364 in a manner that depends on phosphorylation of both Tip60 and PRAK by p38. These posttranslational modifications are critical for the prosenescent function of Tip60 and PRAK, respectively. These results have defined a signaling pathway that mediates oncogene-induced senescence, and identified posttranslational modifications that regulate the enzymatic activity and biological functions of Tip60 and PRAK.

  13. Proto-oncogenes expression in the process of asthma airway remodeling

    Institute of Scientific and Technical Information of China (English)

    LIU Ying-ge; QI Hao-wen; LI Huan-zhang

    2002-01-01

    Objective: To observe the expression of proto-oncogenes in the process of airway remodeling in asthma. Methods: Guinea pig was used as an asthma model challenged by ovoglobulin. Dot-blot, Northernblot molecular hybridization and immunohistochemistry techniques were used to detect the expression of cfos, c-myc, c-jun and c-sis. Results: Expression of c-fos and c-myc mRNA could not be detected or detected at very low level in the control group. There were greatly increased expression of c-fos and c-nyc mRNA after guinea pigs were challenged by ovoglobulin. Thirty minutes after the challenge, the expression of c-fos and c-myc mRNA reached to the peak and returned to normal level 4 h after the challenge. Immunohistochemistry studies showed that Fos, Myc, Jun and Sis expressed at low level in control group and increased after ovoglobulin stimulation. Immunohistochemically positive cells laid in the plasma of airway epithelium,in cell nucleus of bronchial epithelium and in the inflammatory cells. Pathologic studies showed there were smooth muscle thicken around bronchia and lymphocytes infiltration under mucosa or around bronchia smooth muscle. Conclusion: Proto-oncogenes expressed in airway of asthma in a guinea pig model, proto-oncogenes may have roles in the process of airway remodeling.

  14. Beneficial effects of low dose radiation in response to the oncogenic KRAS induced cellular transformation.

    Science.gov (United States)

    Kim, Rae-Kwon; Kim, Min-Jung; Seong, Ki Moon; Kaushik, Neha; Suh, Yongjoon; Yoo, Ki-Chun; Cui, Yan-Hong; Jin, Young Woo; Nam, Seon Young; Lee, Su-Jae

    2015-10-30

    Recently low dose irradiation has gained attention in the field of radiotherapy. For lack of understanding of the molecular consequences of low dose irradiation, there is much doubt concerning its risks on human beings. In this article, we report that low dose irradiation is capable of blocking the oncogenic KRAS-induced malignant transformation. To address this hypothesis, we showed that low dose irradiation, at doses of 0.1 Gray (Gy); predominantly provide defensive response against oncogenic KRAS -induced malignant transformation in human cells through the induction of antioxidants without causing cell death and acts as a critical regulator for the attenuation of reactive oxygen species (ROS). Importantly, we elucidated that knockdown of antioxidants significantly enhanced ROS generation, invasive and migratory properties and abnormal acini formation in KRAS transformed normal as well as cancer cells. Taken together, this study demonstrates that low dose irradiation reduces the KRAS induced malignant cellular transformation through diminution of ROS. This interesting phenomenon illuminates the beneficial effects of low dose irradiation, suggesting one of contributory mechanisms for reducing the oncogene induced carcinogenesis that intensify the potential use of low dose irradiation as a standard regimen.

  15. Emerging Roles of Agrobacterial Plant-Transforming Oncogenes in Plant Defense Reactions

    Science.gov (United States)

    Bulgakov, Victor P.; Inyushkina, Yuliya V.; Gorpenchenko, Tatiana Y.; Koren, Olga G.; Shkryl, Yuri N.; Zhuravlev, Yuri N.

    2009-01-01

    For recent years, engineering plant metabolic pathways by using rol genes looks promising in several aspects. New directions of rol-gene studies are highlighted in this work underlying the unique regulatory properties of the genes. It is known that following agrobacterial infection, the Agrobacterium rhizogenes rolA, rolB and rolC genes are transferred to plant genome, causing tumor formation and hairy root disease. In this report, we show mat these oncogenes are also involved in regulation of plant defense reactions, including the production of secondary metabolites. Situations occur where the rol genes perform their own critical function to regulate secondary metabolism by bypassing upstream plant control mechanisms and directing defense reactions via a "short cut." The rolC gene expressed in transformed plant cells is efficient in establishing an enhanced resistance of host cells to salt and temperature stresses. The emerging complexity of the rol-gene triggered effects and the involvement of signals generated by these genes in basic processes of cell biology such as calcium and ROS signaling indicate that the plant oncogenes, like some animal protooncogenes, use sophisticated strategies to affect cell growth and differentiation. The data raise the intriguing possibility that some components of plant and animal oncogene signaling pathways share common features.

  16. Gene expression array analyses predict increased proto-oncogene expression in MMTV induced mammary tumors.

    Science.gov (United States)

    Popken-Harris, Pamela; Kirchhof, Nicole; Harrison, Ben; Harris, Lester F

    2006-08-01

    Exogenous infection by milk-borne mouse mammary tumor viruses (MMTV) typically induce mouse mammary tumors in genetically susceptible mice at a rate of 90-95% by 1 year of age. In contrast to other transforming retroviruses, MMTV acts as an insertional mutagen and under the influence of steroid hormones induces oncogenic transformation after insertion into the host genome. As these events correspond with increases in adjacent proto-oncogene transcription, we used expression array profiling to determine which commonly associated MMTV insertion site proto-oncogenes were transcriptionally active in MMTV induced mouse mammary tumors. To verify our gene expression array results we developed real-time quantitative RT-PCR assays for the common MMTV insertion site genes found in RIII/Sa mice (int-1/wnt-1, int-2/fgf-3, int-3/Notch 4, and fgf8/AIGF) as well as two genes that were consistently up regulated (CCND1, and MAT-8) and two genes that were consistently down regulated (FN1 and MAT-8) in the MMTV induced tumors as compared to normal mammary gland. Finally, each tumor was also examined histopathologically. Our expression array findings support a model whereby just one or a few common MMTV insertions into the host genome sets up a dominant cascade of events that leave a characteristic molecular signature.

  17. Modulation of junction tension by tumor suppressors and proto-oncogenes regulates cell-cell contacts.

    Science.gov (United States)

    Bosveld, Floris; Guirao, Boris; Wang, Zhimin; Rivière, Mathieu; Bonnet, Isabelle; Graner, François; Bellaïche, Yohanns

    2016-02-15

    Tumor suppressors and proto-oncogenes play crucial roles in tissue proliferation. Furthermore, de-regulation of their functions is deleterious to tissue architecture and can result in the sorting of somatic rounded clones minimizing their contact with surrounding wild-type (wt) cells. Defects in the shape of somatic clones correlate with defects in proliferation, cell affinity, cell-cell adhesion, oriented cell division and cortical contractility. Combining genetics, live-imaging, laser ablation and computer simulations, we aim to analyze whether distinct or similar mechanisms can account for the common role of tumor suppressors and proto-oncogenes in cell-cell contact regulation. In Drosophila epithelia, the tumor suppressors Fat (Ft) and Dachsous (Ds) regulate cell proliferation, tissue morphogenesis, planar cell polarity and junction tension. By analyzing the evolution over time of ft mutant cells and clones, we show that ft clones reduce their cell-cell contacts with the surrounding wt tissue in the absence of concomitant cell divisions and over-proliferation. This contact reduction depends on opposed changes of junction tensions in the clone bulk and its boundary with neighboring wt tissue. More generally, either clone bulk or boundary junction tension is modulated by the activation of Yorkie, Myc and Ras, yielding similar contact reductions with wt cells. Together, our data highlight mechanical roles for proto-oncogene and tumor suppressor pathways in cell-cell interactions.

  18. Engineering and Functional Characterization of Fusion Genes Identifies Novel Oncogenic Drivers of Cancer. | Office of Cancer Genomics

    Science.gov (United States)

    Oncogenic gene fusions drive many human cancers, but tools to more quickly unravel their functional contributions are needed. Here we describe methodology permitting fusion gene construction for functional evaluation. Using this strategy, we engineered the known fusion oncogenes, BCR-ABL1, EML4-ALK, and ETV6-NTRK3, as well as 20 previously uncharacterized fusion genes identified in TCGA datasets.

  19. [Effect of transgenic insect-resistant rice on biodiversity].

    Science.gov (United States)

    Zhang, Lei; Zhu, Zhen

    2011-05-01

    Rice is the most important food crops in maintaining food security in China. The loss of China's annual rice production caused by pests is over ten million tons. Present studies showed that the transgenic insect-resistant rice can substantially reduce the application amount of chemical pesticides. In the case of no pesticide use, the pest density in transgenic rice field is significantly lower than that in non-transgenic field, and the neutral insects and natural enemies of pests increased significantly, indicating that the ecological environment and biodiversity toward the positive direction. The gene flow frequency from transgenic rice is dramatically reduced with the distance increases, reaching less than 0.01% at the distance of 6.2 m. Application of transgenic insect-resistant rice in China has an important significance for ensuring food security, maintaining sustainable agricultural development, and protecting the ecological environment and biodiversity. This review summarized the research progress in transgenic insect-resistant rice and its effect on biodiversity. The research directions and development trends of crop pest controlling in future are discussed. These help to promote better use of transgenic insect-resistant rice.

  20. High-level expressing YAC vector for transgenic animal bioreactors.

    Science.gov (United States)

    Fujiwara, Y; Miwa, M; Takahashi, R; Kodaira, K; Hirabayashi, M; Suzuki, T; Ueda, M

    1999-04-01

    The position effect is one major problem in the production of transgenic animals as mammary gland bioreactors. In the present study, we introduced the human growth hormone (hGH) gene into 210-kb human alpha-lactalbumin position-independent YAC vectors using homologous recombination and produced transgenic rats via microinjection of YAC DNA into rat embryos. The efficiency of producing transgenic rats with the YAC vector DNA was the same as that using plasmid constructs. All analyzed transgenic rats had one copy of the transgene and produced milk containing a high level of hGH (0.25-8.9 mg/ml). In transgenic rats with the YAC vector in which the human alpha-lactalbumin gene was replaced with the hGH gene, tissue specificity of hGH mRNA was the same as that of the endogenous rat alpha-lactalbumin gene. Thus, the 210-kb human alpha-lactalbumin YAC is a useful vector for high-level expression of foreign genes in the milk of transgenic animals.

  1. Transgenic dairy cattle: genetic engineering on a large scale.

    Science.gov (United States)

    Wall, R J; Kerr, D E; Bondioli, K R

    1997-09-01

    Amid the explosion of fundamental knowledge generated from transgenic animal models, a small group of scientists has been producing transgenic livestock with goals of improving animal production efficiency and generating new products. The ability to modify mammary-specific genes provides an opportunity to pursue several distinctly different avenues of research. The objective of the emerging gene "pharming" industry is to produce pharmaceuticals for treating human diseases. It is argued that mammary glands are an ideal site for producing complex bioactive proteins that can be cost effectively harvested and purified. Consequently, during the past decade, approximately a dozen companies have been created to capture the US market for pharmaceuticals produced from transgenic bioreactors estimated at $3 billion annually. Several products produced in this way are now in human clinical trials. Another research direction, which has been widely discussed but has received less attention in the laboratory, is genetic engineering of the bovine mammary gland to alter the composition of milk destined for human consumption. Proposals include increasing or altering endogenous proteins, decreasing fat, and altering milk composition to resemble that of human milk. Initial studies using transgenic mice to investigate the feasibility of enhancing manufacturing properties of milk have been encouraging. The potential profitability of gene "pharming" seems clear, as do the benefits of transgenic cows producing milk that has been optimized for food products. To take full advantage of enhanced milk, it may be desirable to restructure the method by which dairy producers are compensated. However, the cost of producing functional transgenic cattle will remain a severe limitation to realizing the potential of transgenic cattle until inefficiencies of transgenic technology are overcome. These inefficiencies include low rates of gene integration, poor embryo survival, and unpredictable transgene

  2. Transgenic fish systems and their application in ecotoxicology.

    Science.gov (United States)

    Lee, Okhyun; Green, Jon M; Tyler, Charles R

    2015-02-01

    The use of transgenics in fish is a relatively recent development for advancing understanding of genetic mechanisms and developmental processes, improving aquaculture, and for pharmaceutical discovery. Transgenic fish have also been applied in ecotoxicology where they have the potential to provide more advanced and integrated systems for assessing health impacts of chemicals. The zebrafish (Daniorerio) is the most popular fish for transgenic models, for reasons including their high fecundity, transparency of their embryos, rapid organogenesis and availability of extensive genetic resources. The most commonly used technique for producing transgenic zebrafish is via microinjection of transgenes into fertilized eggs. Transposon and meganuclease have become the most reliable methods for insertion of the genetic construct in the production of stable transgenic fish lines. The GAL4-UAS system, where GAL4 is placed under the control of a desired promoter and UAS is fused with a fluorescent marker, has greatly enhanced model development for studies in ecotoxicology. Transgenic fish have been developed to study for the effects of heavy metal toxicity (via heat-shock protein genes), oxidative stress (via an electrophile-responsive element), for various organic chemicals acting through the aryl hydrocarbon receptor, thyroid and glucocorticoid response pathways, and estrogenicity. These models vary in their sensitivity with only very few able to detect responses for environmentally relevant exposures. Nevertheless, the potential of these systems for analyses of chemical effects in real time and across multiple targets in intact organisms is considerable. Here we illustrate the techniques used for generating transgenic zebrafish and assess progress in the development and application of transgenic fish (principally zebrafish) for studies in environmental toxicology. We further provide a viewpoint on future development opportunities.

  3. [Effects of phytase transgenic corn planting on soil nematode community].

    Science.gov (United States)

    Zhao, Zong-Chao; Su, Ying; Mou, Wen-Ya; Liu, Man-Qiang; Chen, Xiao-Yun; Chen, Fa-Jun

    2014-04-01

    A healthy soil ecosystem is essential for nutrient cycling and energy conversion, and the impact of exogenous genes from genetically modified crops had aroused wide concerns. Phytase transgenic corn (i. e., the inbred line BVLA430101) was issued a bio-safety certificate on 27 September 2009 in China, which could improve the efficiency of feed utilization, reduce environmental pollution caused by animal manure. In this study, the abundance of trophic groups, community structure and ecological indices of soil nematodes were studied over the growing cycle of phytase transgenic corn (ab. transgenic corn) and control conventional parental corn (ab. control corn) in the field. Totally 29 and 26 nematode genera were isolated from transgenic corn and control corn fields, respectively. The abundances of bacterivores and omnivores-predators, the total number of soil nematodes, and the Shannon index (H) were significantly greater under transgenic corn than under control corn, while the opposite trend was found for the relative abundance of herbivores and the maturity index (Sigma MI) of soil nematodes. Repeated-measures analysis of variance (ANOVA) did not detect any significant effects of transgenic corn on the composition and abundance of nematode trophic groups and ecological indices of soil nematodes. Furthermore, the Student-T test showed that the abundances of bacterivores and omnivores-predators and the total number of soil nematodes during the milk-ripe stage were significant higher in the transgenic corn field than in the control corn field. The effects of transgenic corn planting on soil nematodes might be related to the increase in the nitrogen content of field soil under transgenic corn compared to control corn.

  4. Generation and characterization of human heme oxygenase-1 transgenic pigs.

    Directory of Open Access Journals (Sweden)

    Hye-Jung Yeom

    Full Text Available Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1, an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs. Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation.

  5. Generation and characterization of human heme oxygenase-1 transgenic pigs.

    Science.gov (United States)

    Yeom, Hye-Jung; Koo, Ok Jae; Yang, Jaeseok; Cho, Bumrae; Hwang, Jong-Ik; Park, Sol Ji; Hurh, Sunghoon; Kim, Hwajung; Lee, Eun Mi; Ro, Han; Kang, Jung Taek; Kim, Su Jin; Won, Jae-Kyung; O'Connell, Philip J; Kim, Hyunil; Surh, Charles D; Lee, Byeong-Chun; Ahn, Curie

    2012-01-01

    Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1), an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs). Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation.

  6. Oncogenic EGFR Represses the TET1 DNA Demethylase to Induce Silencing of Tumor Suppressors in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Matteo Forloni

    2016-07-01

    Full Text Available Oncogene-induced DNA methylation-mediated transcriptional silencing of tumor suppressors frequently occurs in cancer, but the mechanism and functional role of this silencing in oncogenesis are not fully understood. Here, we show that oncogenic epidermal growth factor receptor (EGFR induces silencing of multiple unrelated tumor suppressors in lung adenocarcinomas and glioblastomas by inhibiting the DNA demethylase TET oncogene family member 1 (TET1 via the C/EBPα transcription factor. After oncogenic EGFR inhibition, TET1 binds to tumor suppressor promoters and induces their re-expression through active DNA demethylation. Ectopic expression of TET1 potently inhibits lung and glioblastoma tumor growth, and TET1 knockdown confers resistance to EGFR inhibitors in lung cancer cells. Lung cancer samples exhibited reduced TET1 expression or TET1 cytoplasmic localization in the majority of cases. Collectively, these results identify a conserved pathway of oncogenic EGFR-induced DNA methylation-mediated transcriptional silencing of tumor suppressors that may have therapeutic benefits for oncogenic EGFR-mediated lung cancers and glioblastomas.

  7. Endogenous allergen upregulation: transgenic vs. traditionally bred crops.

    Science.gov (United States)

    Herman, Rod A; Ladics, Gregory S

    2011-10-01

    The safety assessment for transgenic food crops currently includes an evaluation of the endogenous allergy potential (via serum IgE screening) when the non-transgenic counterpart is a commonly allergenic food. The value of this analysis in the safety assessment of transgenic crops, especially with reference to recent requests to quantify individual allergen concentrations in raw commodities, is examined. We conclude that the likelihood of upregulating an endogenous allergen due to transgenesis is no greater than from traditional breeding which has a history of safety and is largely unregulated. The potential consequences of upregulating an endogenous allergen are also unclear.

  8. Generation of transgenic dogs that conditionally express green fluorescent protein.

    Science.gov (United States)

    Kim, Min Jung; Oh, Hyun Ju; Park, Jung Eun; Kim, Geon A; Hong, So Gun; Jang, Goo; Kwon, Mo Sun; Koo, Bon Chul; Kim, Teoan; Kang, Sung Keun; Ra, Jeong Chan; Ko, Chemyong; Lee, Byeong Chun

    2011-06-01

    We report the creation of a transgenic dog that conditionally expresses eGFP (enhanced green fluorescent protein) under the regulation of doxycycline. Briefly, fetal fibroblasts infected with a Tet-on eGFP vector were used for somatic cell nuclear transfer. Subsequently reconstructed oocytes were transferred to recipients. Three clones having transgenes were born and one dog was alive. The dog showed all features of inducible expression of eGFP upon doxycycline administration, and successful breeding resulted in eGFP-positive puppies, confirming stable insertion of the transgene into the genome. This inducible dog model will be useful for a variety of medical research studies.

  9. Recombinant Human Factor IX Produced from Transgenic Porcine Milk

    OpenAIRE

    Meng-Hwan Lee; Yin-Shen Lin; Ching-Fu Tu; Chon-Ho Yen

    2014-01-01

    Production of biopharmaceuticals from transgenic animal milk is a cost-effective method for highly complex proteins that cannot be efficiently produced using conventional systems such as microorganisms or animal cells. Yields of recombinant human factor IX (rhFIX) produced from transgenic porcine milk under the control of the bovine α-lactalbumin promoter reached 0.25 mg/mL. The rhFIX protein was purified from transgenic porcine milk using a three-column purification scheme after a precipitat...

  10. Regeneration of transgenic citrus plants under non selective conditions results in high-frequency recovery of plants with silenced transgenes.

    Science.gov (United States)

    Domínguez, A; Fagoaga, C; Navarro, L; Moreno, P; Peña, L

    2002-06-01

    Insertion of foreign DNA into plant genomes frequently results in the recovery of transgenic plants with silenced transgenes. To investigate to what extent regeneration under selective conditions limits the recovery of transgenic plants showing gene silencing in woody species, Mexican lime [ Citrus aurantifolia (Christm.) Swing.] plants were transformed with the p25 coat protein gene of Citrus tristeza virus (CTV) with or without selection for nptII and uidA. Strikingly, more than 30% of the transgenic limes regenerated under non-selective conditions had silenced transgenes, and in all cases silencing affected all the three transgenes incorporated. These results indicate that the frequency of transgene silencing may be greatly underestimated when the rate of silencing is estimated from the number of regenerants obtained under selective conditions. To our knowledge, this is the first report in which the frequency of gene silencing after transformation has been quantified. When the integration pattern of T-DNA was analyzed in silenced and non-silenced lines, it was observed that inverted repeats as well as direct repeats and even single integrations were able to trigger gene silencing. Gene silencing has often been associated with the insertion of DNA sequences as inverted repeats. Interestingly, here, direct repeats and single-copy insertions were found in both silenced and non-silenced lines, suggesting that the presence of inverted-repeat T-DNAs and the subsequent formation of dsRNAs triggering gene silencing cannot account for all silencing events.

  11. The effect of Bt-transgene introgression on plant growth and reproduction in wild Brassica juncea.

    Science.gov (United States)

    Liu, Yong-Bo; Darmency, Henry; Stewart, C Neal; Wei, Wei; Tang, Zhi-Xi; Ma, Ke-Ping

    2015-06-01

    This study aims to investigate the relative plant growth and reproduction of insect-resistant and susceptible plants following the introgression of an insect-resistance Bt-transgene from Brassica napus, oilseed rape, to wild Brassica juncea. The second backcrossed generation (BC2) from a single backcross family was grown in pure and mixed stands of Bt-transgenic and non-transgenic siblings under two insect treatments. Various proportions of Bt-transgenic plants were employed in mixed stands to study the interaction between resistant and susceptible plants. In the pure stands, Bt-transgenic BC2 plants performed better than non-transgenic plants with or without insect treatments. In mixed stands, Bt-transgenic BC2 plants produced fewer seeds than their non-Bt counterparts at low proportions of Bt-transgenic BC2 plants in the absence of insects. Reproductive allocation of non-transgenic plants marginally increased with increasing proportions of Bt-transgenic plants under herbivore pressure, which resulted in increased total biomass and seed production per stand. The results showed that the growth of non-transgenic plants was protected by Bt-transgenic plants under herbivore pressure. The Bt-transgene might not be advantageous in mixed stands of backcrossed hybrids; thus transgene introgression would not be facilitated when herbivorous insects are not present. However, a relatively large initial population of Bt-transgenic plants might result in transgene persistence when target herbivores are present.

  12. MYCN transgenic zebrafish model with the characterization of acute myeloid leukemia and altered hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Li-Jing Shen

    Full Text Available BACKGROUND: Amplification of MYCN (N-Myc oncogene has been reported as a frequent event and a poor prognostic marker in human acute myeloid leukemia (AML. The molecular mechanisms and transcriptional networks by which MYCN exerts its influence in AML are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We introduced murine MYCN gene into embryonic zebrafish through a heat-shock promoter and established the stable germline Tg(MYCN:HSE:EGFP zebrafish. N-Myc downstream regulated gene 1 (NDRG1, negatively controlled by MYCN in human and functionally involved in neutrophil maturation, was significantly under-expressed in this model. Using peripheral blood smear detection, histological section and flow cytometric analysis of single cell suspension from kidney and spleen, we found that MYCN overexpression promoted cell proliferation, enhanced the repopulating activity of myeloid cells and the accumulation of immature hematopoietic blast cells. MYCN enhanced primitive hematopoiesis by upregulating scl and lmo2 expression and promoted myelopoiesis by inhibiting gata1 expression and inducing pu.1, mpo expression. Microarray analysis identified that cell cycle, glycolysis/gluconeogenesis, MAPK/Ras, and p53-mediated apoptosis pathways were upregulated. In addition, mismatch repair, transforming and growth factor β (TGFβ were downregulated in MYCN-overexpressing blood cells (p<0.01. All of these signaling pathways are critical in the proliferation and malignant transformation of blood cells. CONCLUSION/SIGNIFICANCE: The above results induced by overexpression of MYCN closely resemble the main aspects of human AML, suggesting that MYCN plays a role in the etiology of AML. MYCN reprograms hematopoietic cell fate by regulating NDRG1 and several lineage-specific hematopoietic transcription factors. Therefore, this MYCN transgenic zebrafish model facilitates dissection of MYCN-mediated signaling in vivo, and enables high-throughput scale screens to identify the

  13. Acinar-to-ductal metaplasia accompanies c-myc-induced exocrine pancreatic cancer progression in transgenic rodents.

    Science.gov (United States)

    Grippo, Paul J; Sandgren, Eric P

    2012-09-01

    Several important characteristics of exocrine pancreatic tumor pathogenesis remain incompletely defined, including identification of the cell of origin. Most human pancreatic neoplasms are ductal adenocarcinomas. However, acinar cells have been proposed as the source of some ductal neoplasms through a process of acinar-to-ductal metaplasia. The oncogenic transcription factor c-myc is associated with human pancreatic neoplasms. Transgenic mice overexpressing c-myc under control of acinar cell-specific elastase (Ela) gene regulatory elements not only develop acinar cell carcinomas but also mixed neoplasms that display both acinar-like neoplastic cells and duct-like neoplastic cells. In this report, we demonstrate that, first, c-myc is sufficient to induce acinar hyperplasia, though neoplastic lesions develop focally. Second, cell proliferation remains elevated in the neoplastic duct cell compartment of mixed neoplasms. Third, the proliferation/apoptosis ratio in cells from all lesion types remains constant, suggesting that differential regulation of these processes is not a feature of cancer progression in this model. Fourth, before the development of mixed neoplasms, there is transcriptional activation of the duct cell-specific cytokeratin-19 gene promoter in multicellular foci of amylase-positive acinar neoplasms. This observation provides direct evidence for metaplasia as the mechanism underlying development of ductal neoplastic cells within the context of an acinar neoplasm and suggests that the stimulus for this transformation acts over a multicellular domain or field within a neoplasm. Finally, focal ductal elements develop in some acinar cell carcinomas in Ela-c-myc transgenic rats, indicating that myc-associated acinar-to-ductal metaplasia is not restricted to the mouse.

  14. A transgenic Drosophila model demonstrates that the Helicobacter pylori CagA protein functions as a eukaryotic Gab adaptor.

    Directory of Open Access Journals (Sweden)

    Crystal M Botham

    2008-05-01

    Full Text Available Infection with the human gastric pathogen Helicobacter pylori is associated with a spectrum of diseases including gastritis, peptic ulcers, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. The cytotoxin-associated gene A (CagA protein of H. pylori, which is translocated into host cells via a type IV secretion system, is a major risk factor for disease development. Experiments in gastric tissue culture cells have shown that once translocated, CagA activates the phosphatase SHP-2, which is a component of receptor tyrosine kinase (RTK pathways whose over-activation is associated with cancer formation. Based on CagA's ability to activate SHP-2, it has been proposed that CagA functions as a prokaryotic mimic of the eukaryotic Grb2-associated binder (Gab adaptor protein, which normally activates SHP-2. We have developed a transgenic Drosophila model to test this hypothesis by investigating whether CagA can function in a well-characterized Gab-dependent process: the specification of photoreceptors cells in the Drosophila eye. We demonstrate that CagA expression is sufficient to rescue photoreceptor development in the absence of the Drosophila Gab homologue, Daughter of Sevenless (DOS. Furthermore, CagA's ability to promote photoreceptor development requires the SHP-2 phosphatase Corkscrew (CSW. These results provide the first demonstration that CagA functions as a Gab protein within the tissue of an organism and provide insight into CagA's oncogenic potential. Since many translocated bacterial proteins target highly conserved eukaryotic cellular processes, such as the RTK signaling pathway, the transgenic Drosophila model should be of general use for testing the in vivo function of bacterial effector proteins and for identifying the host genes through which they function.

  15. Aberrant proliferation of differentiating alveolar cells induces hyperplasia in resting mammary glands of SV40-TAg transgenic mice

    Directory of Open Access Journals (Sweden)

    Wolfgang eBohn

    2014-06-01

    Full Text Available WAP-T1 transgenic mice express SV40-TAg under control of the WAP promoter (Whey Acidic Protein which directs activity of this strong viral oncogene to luminal cells of the mammary gland. Resting uniparous WAP-T1 glands develop hyperplasia composed of TAg positive cells prior to appearance of advanced tumor stages. We show that cells in hyperplasia display markers of alveolar differentiation, suggesting that TAg targets differentiating cells of the alveolar compartment. The glands show significant expression of Elf5 and milk genes (Lalba, Csn2, and Wap. TAg expressing cells largely co-stain with antibodies to Elf5, lack the epithelial marker Sca-1, and are hormone receptor negative. High expression levels of Elf5 but not of milk genes are also seen in resting glands of normal BALB/c mice. This indicates that expression of Elf5 in resting WAP-T1 glands is not specifically induced by TAg. CK6a positive luminal cells lack TAg. These cells co-express the markers prominin1, CK6a, and Sca1, and are positive for hormone receptors. These hormone sensitive cells localize to ducts and seem not to be targeted by TAg. Despite reaching an advanced stage in alveolar differentiation the cells in hyperplasia do not exit the cell cycle. Thus, expression of TAg in conjunction with regular morphogenetic processes of alveologenesis seem to provide the basis for a hormone independent, unscheduled proliferation of differentiating cells in resting glands of WAP-T1 transgenic mice, leading to the formation of hyperplastic lesions.

  16. Aberrant Proliferation of Differentiating Alveolar Cells Induces Hyperplasia in Resting Mammary Glands of SV40-TAg Transgenic Mice.

    Science.gov (United States)

    Quante, Timo; Wegwitz, Florian; Abe, Julia; Rossi, Alessandra; Deppert, Wolfgang; Bohn, Wolfgang

    2014-01-01

    WAP-T1 transgenic mice express SV40-TAg under control of the whey acidic protein (WAP) promoter, which directs activity of this strong viral oncogene to luminal cells of the mammary gland. Resting uniparous WAP-T1 glands develop hyperplasia composed of TAg positive cells prior to appearance of advanced tumor stages. We show that cells in hyperplasia display markers of alveolar differentiation, suggesting that TAg targets differentiating cells of the alveolar compartment. The glands show significant expression of Elf5 and milk genes (Lalba, Csn2, and Wap). TAg expressing cells largely co-stain with antibodies to Elf5, lack the epithelial marker Sca1, and are hormone receptor negative. High expression levels of Elf5 but not of milk genes are also seen in resting glands of normal BALB/c mice. This indicates that expression of Elf5 in resting WAP-T1 glands is not specifically induced by TAg. CK6a positive luminal cells lack TAg. These cells co-express the markers prominin-1, CK6a, and Sca1, and are positive for hormone receptors. These hormone sensitive cells localize to ducts and seem not to be targeted by TAg. Despite reaching an advanced stage in alveolar differentiation, the cells in hyperplasia do not exit the cell cycle. Thus, expression of TAg in conjunction with regular morphogenetic processes of alveologenesis seem to provide the basis for a hormone independent, unscheduled proliferation of differentiating cells in resting glands of WAP-T1 transgenic mice, leading to the formation of hyperplastic lesions.

  17. Chrysotile effects on the expression of anti-oncogene P53 and P16 and oncogene C-jun and C-fos in Wistar rats' lung tissues.

    Science.gov (United States)

    Cui, Yan; Wang, Yuchan; Deng, Jianjun; Hu, Gongli; Dong, Faqin; Zhang, Qingbi

    2017-09-13

    Chrysotile is the most widely used form of asbestos worldwide. China is the world's largest consumer and second largest producer of chrysotile. The carcinogenicity of chrysotile has been extensively documented, and accumulative evidence has shown that chrysotile is capable of causing lung cancer and other forms of cancer. However, molecular mechanisms underlying the tumorigenic effects of chrysotile remained poorly understood. To explore the carcinogenicity of chrysotile, Wistar rats were administered by intratracheal instillation (by an artificial route of administration) for 0, 0.5, 2, or 8 mg/ml of natural chrysotile (from Mangnai, Qinghai, China) dissolved in saline, repeated once a month for 6 months (a repeated high-dose exposure which may have little bearing on the effects following human exposure). The lung tissues were analyzed for viscera coefficients and histopathological alterations. Expression of P53, P16, C-JUN, and C-FOS was measured by western blotting and qRT-PCR. Our results found that chrysotile exposure leads the body weight to grow slowly and lung viscera coefficients to increase in a dose-dependent manner. General sample showed white nodules, punctiform asbestos spots, and irregular atrophy; moreover, HE staining revealed inflammatory infiltration, damage of alveolar structures, agglomerations, and pulmonary fibrosis. In addition, chrysotile can induce inactivation of the anti-oncogene P53 and P16 and activation of the proto-oncogenes C-JUN and C-FOS both in the messenger RNA and protein level. In conclusion, chrysotile induced an imbalanced expression of cancer-related genes in rats' lung tissue. These results contribute to our understanding of the carcinogenic mechanism of chrysotile.

  18. Study on the Handle of Keratin Transgenic Cotton Fabric

    Institute of Scientific and Technical Information of China (English)

    蒋培清; 严文源; 严灏景

    2004-01-01

    Gene of animal keratin can be inoculated into cotton fiber and thus get the keratin transgenic cotton fiber through transgenic technology. Handle of two kinds of pure cotton poplin, one of which is made of the keratin transgenic cotton while the other is made of the ordinary cotton of the same breed as control group and both with absolutely identical spinning, weaving, and dyeing process, was objectively evaluated with KES system. The result of analysis indicates that the principal changes of keratin transgenic cotton fabric are that the bending and shearing property of the fabric are considerably enhanced, KOSHI (Stiffness) and HARI (Anti-drape stiffness) of the fabric are good, while SHINAYAKASA (Flexibility with soft feeling) and SHARI (Crispness) decline.

  19. The Application of TDZ in Enhancing Regeneration of Transgenic Plants

    Institute of Scientific and Technical Information of China (English)

    H.Y. Jia; B. Zhao; X.D. Wang

    2007-01-01

    @@ At present, transgenic plants are globally grown. Availability of a reliable regeneration system predominantly from a single transformed cell is the prerequisites for gene transfer, but regeneration is still a key problem (Wenzel, 2006).

  20. Designer proton-channel transgenic algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu [Knoxville, TN

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.